1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 127 { 128 #ifdef CONFIG_SLUB_CPU_PARTIAL 129 return !kmem_cache_debug(s); 130 #else 131 return false; 132 #endif 133 } 134 135 /* 136 * Issues still to be resolved: 137 * 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 139 * 140 * - Variable sizing of the per node arrays 141 */ 142 143 /* Enable to test recovery from slab corruption on boot */ 144 #undef SLUB_RESILIENCY_TEST 145 146 /* Enable to log cmpxchg failures */ 147 #undef SLUB_DEBUG_CMPXCHG 148 149 /* 150 * Mininum number of partial slabs. These will be left on the partial 151 * lists even if they are empty. kmem_cache_shrink may reclaim them. 152 */ 153 #define MIN_PARTIAL 5 154 155 /* 156 * Maximum number of desirable partial slabs. 157 * The existence of more partial slabs makes kmem_cache_shrink 158 * sort the partial list by the number of objects in use. 159 */ 160 #define MAX_PARTIAL 10 161 162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 163 SLAB_POISON | SLAB_STORE_USER) 164 165 /* 166 * Debugging flags that require metadata to be stored in the slab. These get 167 * disabled when slub_debug=O is used and a cache's min order increases with 168 * metadata. 169 */ 170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 171 172 #define OO_SHIFT 16 173 #define OO_MASK ((1 << OO_SHIFT) - 1) 174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 175 176 /* Internal SLUB flags */ 177 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 179 180 #ifdef CONFIG_SMP 181 static struct notifier_block slab_notifier; 182 #endif 183 184 /* 185 * Tracking user of a slab. 186 */ 187 #define TRACK_ADDRS_COUNT 16 188 struct track { 189 unsigned long addr; /* Called from address */ 190 #ifdef CONFIG_STACKTRACE 191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 192 #endif 193 int cpu; /* Was running on cpu */ 194 int pid; /* Pid context */ 195 unsigned long when; /* When did the operation occur */ 196 }; 197 198 enum track_item { TRACK_ALLOC, TRACK_FREE }; 199 200 #ifdef CONFIG_SYSFS 201 static int sysfs_slab_add(struct kmem_cache *); 202 static int sysfs_slab_alias(struct kmem_cache *, const char *); 203 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 204 #else 205 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 206 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 207 { return 0; } 208 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 209 #endif 210 211 static inline void stat(const struct kmem_cache *s, enum stat_item si) 212 { 213 #ifdef CONFIG_SLUB_STATS 214 /* 215 * The rmw is racy on a preemptible kernel but this is acceptable, so 216 * avoid this_cpu_add()'s irq-disable overhead. 217 */ 218 raw_cpu_inc(s->cpu_slab->stat[si]); 219 #endif 220 } 221 222 /******************************************************************** 223 * Core slab cache functions 224 *******************************************************************/ 225 226 /* Verify that a pointer has an address that is valid within a slab page */ 227 static inline int check_valid_pointer(struct kmem_cache *s, 228 struct page *page, const void *object) 229 { 230 void *base; 231 232 if (!object) 233 return 1; 234 235 base = page_address(page); 236 if (object < base || object >= base + page->objects * s->size || 237 (object - base) % s->size) { 238 return 0; 239 } 240 241 return 1; 242 } 243 244 static inline void *get_freepointer(struct kmem_cache *s, void *object) 245 { 246 return *(void **)(object + s->offset); 247 } 248 249 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 250 { 251 prefetch(object + s->offset); 252 } 253 254 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 255 { 256 void *p; 257 258 #ifdef CONFIG_DEBUG_PAGEALLOC 259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 260 #else 261 p = get_freepointer(s, object); 262 #endif 263 return p; 264 } 265 266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 267 { 268 *(void **)(object + s->offset) = fp; 269 } 270 271 /* Loop over all objects in a slab */ 272 #define for_each_object(__p, __s, __addr, __objects) \ 273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 274 __p += (__s)->size) 275 276 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 277 for (__p = (__addr), __idx = 1; __idx <= __objects;\ 278 __p += (__s)->size, __idx++) 279 280 /* Determine object index from a given position */ 281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 282 { 283 return (p - addr) / s->size; 284 } 285 286 static inline size_t slab_ksize(const struct kmem_cache *s) 287 { 288 #ifdef CONFIG_SLUB_DEBUG 289 /* 290 * Debugging requires use of the padding between object 291 * and whatever may come after it. 292 */ 293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 294 return s->object_size; 295 296 #endif 297 /* 298 * If we have the need to store the freelist pointer 299 * back there or track user information then we can 300 * only use the space before that information. 301 */ 302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 303 return s->inuse; 304 /* 305 * Else we can use all the padding etc for the allocation 306 */ 307 return s->size; 308 } 309 310 static inline int order_objects(int order, unsigned long size, int reserved) 311 { 312 return ((PAGE_SIZE << order) - reserved) / size; 313 } 314 315 static inline struct kmem_cache_order_objects oo_make(int order, 316 unsigned long size, int reserved) 317 { 318 struct kmem_cache_order_objects x = { 319 (order << OO_SHIFT) + order_objects(order, size, reserved) 320 }; 321 322 return x; 323 } 324 325 static inline int oo_order(struct kmem_cache_order_objects x) 326 { 327 return x.x >> OO_SHIFT; 328 } 329 330 static inline int oo_objects(struct kmem_cache_order_objects x) 331 { 332 return x.x & OO_MASK; 333 } 334 335 /* 336 * Per slab locking using the pagelock 337 */ 338 static __always_inline void slab_lock(struct page *page) 339 { 340 bit_spin_lock(PG_locked, &page->flags); 341 } 342 343 static __always_inline void slab_unlock(struct page *page) 344 { 345 __bit_spin_unlock(PG_locked, &page->flags); 346 } 347 348 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 349 { 350 struct page tmp; 351 tmp.counters = counters_new; 352 /* 353 * page->counters can cover frozen/inuse/objects as well 354 * as page->_count. If we assign to ->counters directly 355 * we run the risk of losing updates to page->_count, so 356 * be careful and only assign to the fields we need. 357 */ 358 page->frozen = tmp.frozen; 359 page->inuse = tmp.inuse; 360 page->objects = tmp.objects; 361 } 362 363 /* Interrupts must be disabled (for the fallback code to work right) */ 364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 365 void *freelist_old, unsigned long counters_old, 366 void *freelist_new, unsigned long counters_new, 367 const char *n) 368 { 369 VM_BUG_ON(!irqs_disabled()); 370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 372 if (s->flags & __CMPXCHG_DOUBLE) { 373 if (cmpxchg_double(&page->freelist, &page->counters, 374 freelist_old, counters_old, 375 freelist_new, counters_new)) 376 return 1; 377 } else 378 #endif 379 { 380 slab_lock(page); 381 if (page->freelist == freelist_old && 382 page->counters == counters_old) { 383 page->freelist = freelist_new; 384 set_page_slub_counters(page, counters_new); 385 slab_unlock(page); 386 return 1; 387 } 388 slab_unlock(page); 389 } 390 391 cpu_relax(); 392 stat(s, CMPXCHG_DOUBLE_FAIL); 393 394 #ifdef SLUB_DEBUG_CMPXCHG 395 pr_info("%s %s: cmpxchg double redo ", n, s->name); 396 #endif 397 398 return 0; 399 } 400 401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 402 void *freelist_old, unsigned long counters_old, 403 void *freelist_new, unsigned long counters_new, 404 const char *n) 405 { 406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 408 if (s->flags & __CMPXCHG_DOUBLE) { 409 if (cmpxchg_double(&page->freelist, &page->counters, 410 freelist_old, counters_old, 411 freelist_new, counters_new)) 412 return 1; 413 } else 414 #endif 415 { 416 unsigned long flags; 417 418 local_irq_save(flags); 419 slab_lock(page); 420 if (page->freelist == freelist_old && 421 page->counters == counters_old) { 422 page->freelist = freelist_new; 423 set_page_slub_counters(page, counters_new); 424 slab_unlock(page); 425 local_irq_restore(flags); 426 return 1; 427 } 428 slab_unlock(page); 429 local_irq_restore(flags); 430 } 431 432 cpu_relax(); 433 stat(s, CMPXCHG_DOUBLE_FAIL); 434 435 #ifdef SLUB_DEBUG_CMPXCHG 436 pr_info("%s %s: cmpxchg double redo ", n, s->name); 437 #endif 438 439 return 0; 440 } 441 442 #ifdef CONFIG_SLUB_DEBUG 443 /* 444 * Determine a map of object in use on a page. 445 * 446 * Node listlock must be held to guarantee that the page does 447 * not vanish from under us. 448 */ 449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 450 { 451 void *p; 452 void *addr = page_address(page); 453 454 for (p = page->freelist; p; p = get_freepointer(s, p)) 455 set_bit(slab_index(p, s, addr), map); 456 } 457 458 /* 459 * Debug settings: 460 */ 461 #ifdef CONFIG_SLUB_DEBUG_ON 462 static int slub_debug = DEBUG_DEFAULT_FLAGS; 463 #else 464 static int slub_debug; 465 #endif 466 467 static char *slub_debug_slabs; 468 static int disable_higher_order_debug; 469 470 /* 471 * Object debugging 472 */ 473 static void print_section(char *text, u8 *addr, unsigned int length) 474 { 475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 476 length, 1); 477 } 478 479 static struct track *get_track(struct kmem_cache *s, void *object, 480 enum track_item alloc) 481 { 482 struct track *p; 483 484 if (s->offset) 485 p = object + s->offset + sizeof(void *); 486 else 487 p = object + s->inuse; 488 489 return p + alloc; 490 } 491 492 static void set_track(struct kmem_cache *s, void *object, 493 enum track_item alloc, unsigned long addr) 494 { 495 struct track *p = get_track(s, object, alloc); 496 497 if (addr) { 498 #ifdef CONFIG_STACKTRACE 499 struct stack_trace trace; 500 int i; 501 502 trace.nr_entries = 0; 503 trace.max_entries = TRACK_ADDRS_COUNT; 504 trace.entries = p->addrs; 505 trace.skip = 3; 506 save_stack_trace(&trace); 507 508 /* See rant in lockdep.c */ 509 if (trace.nr_entries != 0 && 510 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 511 trace.nr_entries--; 512 513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 514 p->addrs[i] = 0; 515 #endif 516 p->addr = addr; 517 p->cpu = smp_processor_id(); 518 p->pid = current->pid; 519 p->when = jiffies; 520 } else 521 memset(p, 0, sizeof(struct track)); 522 } 523 524 static void init_tracking(struct kmem_cache *s, void *object) 525 { 526 if (!(s->flags & SLAB_STORE_USER)) 527 return; 528 529 set_track(s, object, TRACK_FREE, 0UL); 530 set_track(s, object, TRACK_ALLOC, 0UL); 531 } 532 533 static void print_track(const char *s, struct track *t) 534 { 535 if (!t->addr) 536 return; 537 538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 540 #ifdef CONFIG_STACKTRACE 541 { 542 int i; 543 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 544 if (t->addrs[i]) 545 pr_err("\t%pS\n", (void *)t->addrs[i]); 546 else 547 break; 548 } 549 #endif 550 } 551 552 static void print_tracking(struct kmem_cache *s, void *object) 553 { 554 if (!(s->flags & SLAB_STORE_USER)) 555 return; 556 557 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 558 print_track("Freed", get_track(s, object, TRACK_FREE)); 559 } 560 561 static void print_page_info(struct page *page) 562 { 563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 564 page, page->objects, page->inuse, page->freelist, page->flags); 565 566 } 567 568 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 569 { 570 struct va_format vaf; 571 va_list args; 572 573 va_start(args, fmt); 574 vaf.fmt = fmt; 575 vaf.va = &args; 576 pr_err("=============================================================================\n"); 577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 578 pr_err("-----------------------------------------------------------------------------\n\n"); 579 580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 581 va_end(args); 582 } 583 584 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 585 { 586 struct va_format vaf; 587 va_list args; 588 589 va_start(args, fmt); 590 vaf.fmt = fmt; 591 vaf.va = &args; 592 pr_err("FIX %s: %pV\n", s->name, &vaf); 593 va_end(args); 594 } 595 596 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 597 { 598 unsigned int off; /* Offset of last byte */ 599 u8 *addr = page_address(page); 600 601 print_tracking(s, p); 602 603 print_page_info(page); 604 605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 606 p, p - addr, get_freepointer(s, p)); 607 608 if (p > addr + 16) 609 print_section("Bytes b4 ", p - 16, 16); 610 611 print_section("Object ", p, min_t(unsigned long, s->object_size, 612 PAGE_SIZE)); 613 if (s->flags & SLAB_RED_ZONE) 614 print_section("Redzone ", p + s->object_size, 615 s->inuse - s->object_size); 616 617 if (s->offset) 618 off = s->offset + sizeof(void *); 619 else 620 off = s->inuse; 621 622 if (s->flags & SLAB_STORE_USER) 623 off += 2 * sizeof(struct track); 624 625 if (off != s->size) 626 /* Beginning of the filler is the free pointer */ 627 print_section("Padding ", p + off, s->size - off); 628 629 dump_stack(); 630 } 631 632 static void object_err(struct kmem_cache *s, struct page *page, 633 u8 *object, char *reason) 634 { 635 slab_bug(s, "%s", reason); 636 print_trailer(s, page, object); 637 } 638 639 static void slab_err(struct kmem_cache *s, struct page *page, 640 const char *fmt, ...) 641 { 642 va_list args; 643 char buf[100]; 644 645 va_start(args, fmt); 646 vsnprintf(buf, sizeof(buf), fmt, args); 647 va_end(args); 648 slab_bug(s, "%s", buf); 649 print_page_info(page); 650 dump_stack(); 651 } 652 653 static void init_object(struct kmem_cache *s, void *object, u8 val) 654 { 655 u8 *p = object; 656 657 if (s->flags & __OBJECT_POISON) { 658 memset(p, POISON_FREE, s->object_size - 1); 659 p[s->object_size - 1] = POISON_END; 660 } 661 662 if (s->flags & SLAB_RED_ZONE) 663 memset(p + s->object_size, val, s->inuse - s->object_size); 664 } 665 666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 667 void *from, void *to) 668 { 669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 670 memset(from, data, to - from); 671 } 672 673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 674 u8 *object, char *what, 675 u8 *start, unsigned int value, unsigned int bytes) 676 { 677 u8 *fault; 678 u8 *end; 679 680 fault = memchr_inv(start, value, bytes); 681 if (!fault) 682 return 1; 683 684 end = start + bytes; 685 while (end > fault && end[-1] == value) 686 end--; 687 688 slab_bug(s, "%s overwritten", what); 689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 690 fault, end - 1, fault[0], value); 691 print_trailer(s, page, object); 692 693 restore_bytes(s, what, value, fault, end); 694 return 0; 695 } 696 697 /* 698 * Object layout: 699 * 700 * object address 701 * Bytes of the object to be managed. 702 * If the freepointer may overlay the object then the free 703 * pointer is the first word of the object. 704 * 705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 706 * 0xa5 (POISON_END) 707 * 708 * object + s->object_size 709 * Padding to reach word boundary. This is also used for Redzoning. 710 * Padding is extended by another word if Redzoning is enabled and 711 * object_size == inuse. 712 * 713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 714 * 0xcc (RED_ACTIVE) for objects in use. 715 * 716 * object + s->inuse 717 * Meta data starts here. 718 * 719 * A. Free pointer (if we cannot overwrite object on free) 720 * B. Tracking data for SLAB_STORE_USER 721 * C. Padding to reach required alignment boundary or at mininum 722 * one word if debugging is on to be able to detect writes 723 * before the word boundary. 724 * 725 * Padding is done using 0x5a (POISON_INUSE) 726 * 727 * object + s->size 728 * Nothing is used beyond s->size. 729 * 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly 731 * ignored. And therefore no slab options that rely on these boundaries 732 * may be used with merged slabcaches. 733 */ 734 735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 736 { 737 unsigned long off = s->inuse; /* The end of info */ 738 739 if (s->offset) 740 /* Freepointer is placed after the object. */ 741 off += sizeof(void *); 742 743 if (s->flags & SLAB_STORE_USER) 744 /* We also have user information there */ 745 off += 2 * sizeof(struct track); 746 747 if (s->size == off) 748 return 1; 749 750 return check_bytes_and_report(s, page, p, "Object padding", 751 p + off, POISON_INUSE, s->size - off); 752 } 753 754 /* Check the pad bytes at the end of a slab page */ 755 static int slab_pad_check(struct kmem_cache *s, struct page *page) 756 { 757 u8 *start; 758 u8 *fault; 759 u8 *end; 760 int length; 761 int remainder; 762 763 if (!(s->flags & SLAB_POISON)) 764 return 1; 765 766 start = page_address(page); 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 768 end = start + length; 769 remainder = length % s->size; 770 if (!remainder) 771 return 1; 772 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 774 if (!fault) 775 return 1; 776 while (end > fault && end[-1] == POISON_INUSE) 777 end--; 778 779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 780 print_section("Padding ", end - remainder, remainder); 781 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 783 return 0; 784 } 785 786 static int check_object(struct kmem_cache *s, struct page *page, 787 void *object, u8 val) 788 { 789 u8 *p = object; 790 u8 *endobject = object + s->object_size; 791 792 if (s->flags & SLAB_RED_ZONE) { 793 if (!check_bytes_and_report(s, page, object, "Redzone", 794 endobject, val, s->inuse - s->object_size)) 795 return 0; 796 } else { 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 798 check_bytes_and_report(s, page, p, "Alignment padding", 799 endobject, POISON_INUSE, 800 s->inuse - s->object_size); 801 } 802 } 803 804 if (s->flags & SLAB_POISON) { 805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 806 (!check_bytes_and_report(s, page, p, "Poison", p, 807 POISON_FREE, s->object_size - 1) || 808 !check_bytes_and_report(s, page, p, "Poison", 809 p + s->object_size - 1, POISON_END, 1))) 810 return 0; 811 /* 812 * check_pad_bytes cleans up on its own. 813 */ 814 check_pad_bytes(s, page, p); 815 } 816 817 if (!s->offset && val == SLUB_RED_ACTIVE) 818 /* 819 * Object and freepointer overlap. Cannot check 820 * freepointer while object is allocated. 821 */ 822 return 1; 823 824 /* Check free pointer validity */ 825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 826 object_err(s, page, p, "Freepointer corrupt"); 827 /* 828 * No choice but to zap it and thus lose the remainder 829 * of the free objects in this slab. May cause 830 * another error because the object count is now wrong. 831 */ 832 set_freepointer(s, p, NULL); 833 return 0; 834 } 835 return 1; 836 } 837 838 static int check_slab(struct kmem_cache *s, struct page *page) 839 { 840 int maxobj; 841 842 VM_BUG_ON(!irqs_disabled()); 843 844 if (!PageSlab(page)) { 845 slab_err(s, page, "Not a valid slab page"); 846 return 0; 847 } 848 849 maxobj = order_objects(compound_order(page), s->size, s->reserved); 850 if (page->objects > maxobj) { 851 slab_err(s, page, "objects %u > max %u", 852 page->objects, maxobj); 853 return 0; 854 } 855 if (page->inuse > page->objects) { 856 slab_err(s, page, "inuse %u > max %u", 857 page->inuse, page->objects); 858 return 0; 859 } 860 /* Slab_pad_check fixes things up after itself */ 861 slab_pad_check(s, page); 862 return 1; 863 } 864 865 /* 866 * Determine if a certain object on a page is on the freelist. Must hold the 867 * slab lock to guarantee that the chains are in a consistent state. 868 */ 869 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 870 { 871 int nr = 0; 872 void *fp; 873 void *object = NULL; 874 int max_objects; 875 876 fp = page->freelist; 877 while (fp && nr <= page->objects) { 878 if (fp == search) 879 return 1; 880 if (!check_valid_pointer(s, page, fp)) { 881 if (object) { 882 object_err(s, page, object, 883 "Freechain corrupt"); 884 set_freepointer(s, object, NULL); 885 } else { 886 slab_err(s, page, "Freepointer corrupt"); 887 page->freelist = NULL; 888 page->inuse = page->objects; 889 slab_fix(s, "Freelist cleared"); 890 return 0; 891 } 892 break; 893 } 894 object = fp; 895 fp = get_freepointer(s, object); 896 nr++; 897 } 898 899 max_objects = order_objects(compound_order(page), s->size, s->reserved); 900 if (max_objects > MAX_OBJS_PER_PAGE) 901 max_objects = MAX_OBJS_PER_PAGE; 902 903 if (page->objects != max_objects) { 904 slab_err(s, page, "Wrong number of objects. Found %d but " 905 "should be %d", page->objects, max_objects); 906 page->objects = max_objects; 907 slab_fix(s, "Number of objects adjusted."); 908 } 909 if (page->inuse != page->objects - nr) { 910 slab_err(s, page, "Wrong object count. Counter is %d but " 911 "counted were %d", page->inuse, page->objects - nr); 912 page->inuse = page->objects - nr; 913 slab_fix(s, "Object count adjusted."); 914 } 915 return search == NULL; 916 } 917 918 static void trace(struct kmem_cache *s, struct page *page, void *object, 919 int alloc) 920 { 921 if (s->flags & SLAB_TRACE) { 922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 923 s->name, 924 alloc ? "alloc" : "free", 925 object, page->inuse, 926 page->freelist); 927 928 if (!alloc) 929 print_section("Object ", (void *)object, 930 s->object_size); 931 932 dump_stack(); 933 } 934 } 935 936 /* 937 * Tracking of fully allocated slabs for debugging purposes. 938 */ 939 static void add_full(struct kmem_cache *s, 940 struct kmem_cache_node *n, struct page *page) 941 { 942 if (!(s->flags & SLAB_STORE_USER)) 943 return; 944 945 lockdep_assert_held(&n->list_lock); 946 list_add(&page->lru, &n->full); 947 } 948 949 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 950 { 951 if (!(s->flags & SLAB_STORE_USER)) 952 return; 953 954 lockdep_assert_held(&n->list_lock); 955 list_del(&page->lru); 956 } 957 958 /* Tracking of the number of slabs for debugging purposes */ 959 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 960 { 961 struct kmem_cache_node *n = get_node(s, node); 962 963 return atomic_long_read(&n->nr_slabs); 964 } 965 966 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 967 { 968 return atomic_long_read(&n->nr_slabs); 969 } 970 971 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 972 { 973 struct kmem_cache_node *n = get_node(s, node); 974 975 /* 976 * May be called early in order to allocate a slab for the 977 * kmem_cache_node structure. Solve the chicken-egg 978 * dilemma by deferring the increment of the count during 979 * bootstrap (see early_kmem_cache_node_alloc). 980 */ 981 if (likely(n)) { 982 atomic_long_inc(&n->nr_slabs); 983 atomic_long_add(objects, &n->total_objects); 984 } 985 } 986 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 987 { 988 struct kmem_cache_node *n = get_node(s, node); 989 990 atomic_long_dec(&n->nr_slabs); 991 atomic_long_sub(objects, &n->total_objects); 992 } 993 994 /* Object debug checks for alloc/free paths */ 995 static void setup_object_debug(struct kmem_cache *s, struct page *page, 996 void *object) 997 { 998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 999 return; 1000 1001 init_object(s, object, SLUB_RED_INACTIVE); 1002 init_tracking(s, object); 1003 } 1004 1005 static noinline int alloc_debug_processing(struct kmem_cache *s, 1006 struct page *page, 1007 void *object, unsigned long addr) 1008 { 1009 if (!check_slab(s, page)) 1010 goto bad; 1011 1012 if (!check_valid_pointer(s, page, object)) { 1013 object_err(s, page, object, "Freelist Pointer check fails"); 1014 goto bad; 1015 } 1016 1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1018 goto bad; 1019 1020 /* Success perform special debug activities for allocs */ 1021 if (s->flags & SLAB_STORE_USER) 1022 set_track(s, object, TRACK_ALLOC, addr); 1023 trace(s, page, object, 1); 1024 init_object(s, object, SLUB_RED_ACTIVE); 1025 return 1; 1026 1027 bad: 1028 if (PageSlab(page)) { 1029 /* 1030 * If this is a slab page then lets do the best we can 1031 * to avoid issues in the future. Marking all objects 1032 * as used avoids touching the remaining objects. 1033 */ 1034 slab_fix(s, "Marking all objects used"); 1035 page->inuse = page->objects; 1036 page->freelist = NULL; 1037 } 1038 return 0; 1039 } 1040 1041 static noinline struct kmem_cache_node *free_debug_processing( 1042 struct kmem_cache *s, struct page *page, void *object, 1043 unsigned long addr, unsigned long *flags) 1044 { 1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1046 1047 spin_lock_irqsave(&n->list_lock, *flags); 1048 slab_lock(page); 1049 1050 if (!check_slab(s, page)) 1051 goto fail; 1052 1053 if (!check_valid_pointer(s, page, object)) { 1054 slab_err(s, page, "Invalid object pointer 0x%p", object); 1055 goto fail; 1056 } 1057 1058 if (on_freelist(s, page, object)) { 1059 object_err(s, page, object, "Object already free"); 1060 goto fail; 1061 } 1062 1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1064 goto out; 1065 1066 if (unlikely(s != page->slab_cache)) { 1067 if (!PageSlab(page)) { 1068 slab_err(s, page, "Attempt to free object(0x%p) " 1069 "outside of slab", object); 1070 } else if (!page->slab_cache) { 1071 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1072 object); 1073 dump_stack(); 1074 } else 1075 object_err(s, page, object, 1076 "page slab pointer corrupt."); 1077 goto fail; 1078 } 1079 1080 if (s->flags & SLAB_STORE_USER) 1081 set_track(s, object, TRACK_FREE, addr); 1082 trace(s, page, object, 0); 1083 init_object(s, object, SLUB_RED_INACTIVE); 1084 out: 1085 slab_unlock(page); 1086 /* 1087 * Keep node_lock to preserve integrity 1088 * until the object is actually freed 1089 */ 1090 return n; 1091 1092 fail: 1093 slab_unlock(page); 1094 spin_unlock_irqrestore(&n->list_lock, *flags); 1095 slab_fix(s, "Object at 0x%p not freed", object); 1096 return NULL; 1097 } 1098 1099 static int __init setup_slub_debug(char *str) 1100 { 1101 slub_debug = DEBUG_DEFAULT_FLAGS; 1102 if (*str++ != '=' || !*str) 1103 /* 1104 * No options specified. Switch on full debugging. 1105 */ 1106 goto out; 1107 1108 if (*str == ',') 1109 /* 1110 * No options but restriction on slabs. This means full 1111 * debugging for slabs matching a pattern. 1112 */ 1113 goto check_slabs; 1114 1115 if (tolower(*str) == 'o') { 1116 /* 1117 * Avoid enabling debugging on caches if its minimum order 1118 * would increase as a result. 1119 */ 1120 disable_higher_order_debug = 1; 1121 goto out; 1122 } 1123 1124 slub_debug = 0; 1125 if (*str == '-') 1126 /* 1127 * Switch off all debugging measures. 1128 */ 1129 goto out; 1130 1131 /* 1132 * Determine which debug features should be switched on 1133 */ 1134 for (; *str && *str != ','; str++) { 1135 switch (tolower(*str)) { 1136 case 'f': 1137 slub_debug |= SLAB_DEBUG_FREE; 1138 break; 1139 case 'z': 1140 slub_debug |= SLAB_RED_ZONE; 1141 break; 1142 case 'p': 1143 slub_debug |= SLAB_POISON; 1144 break; 1145 case 'u': 1146 slub_debug |= SLAB_STORE_USER; 1147 break; 1148 case 't': 1149 slub_debug |= SLAB_TRACE; 1150 break; 1151 case 'a': 1152 slub_debug |= SLAB_FAILSLAB; 1153 break; 1154 default: 1155 pr_err("slub_debug option '%c' unknown. skipped\n", 1156 *str); 1157 } 1158 } 1159 1160 check_slabs: 1161 if (*str == ',') 1162 slub_debug_slabs = str + 1; 1163 out: 1164 return 1; 1165 } 1166 1167 __setup("slub_debug", setup_slub_debug); 1168 1169 unsigned long kmem_cache_flags(unsigned long object_size, 1170 unsigned long flags, const char *name, 1171 void (*ctor)(void *)) 1172 { 1173 /* 1174 * Enable debugging if selected on the kernel commandline. 1175 */ 1176 if (slub_debug && (!slub_debug_slabs || (name && 1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1178 flags |= slub_debug; 1179 1180 return flags; 1181 } 1182 #else 1183 static inline void setup_object_debug(struct kmem_cache *s, 1184 struct page *page, void *object) {} 1185 1186 static inline int alloc_debug_processing(struct kmem_cache *s, 1187 struct page *page, void *object, unsigned long addr) { return 0; } 1188 1189 static inline struct kmem_cache_node *free_debug_processing( 1190 struct kmem_cache *s, struct page *page, void *object, 1191 unsigned long addr, unsigned long *flags) { return NULL; } 1192 1193 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1194 { return 1; } 1195 static inline int check_object(struct kmem_cache *s, struct page *page, 1196 void *object, u8 val) { return 1; } 1197 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1198 struct page *page) {} 1199 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1200 struct page *page) {} 1201 unsigned long kmem_cache_flags(unsigned long object_size, 1202 unsigned long flags, const char *name, 1203 void (*ctor)(void *)) 1204 { 1205 return flags; 1206 } 1207 #define slub_debug 0 1208 1209 #define disable_higher_order_debug 0 1210 1211 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1212 { return 0; } 1213 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1214 { return 0; } 1215 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1216 int objects) {} 1217 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1218 int objects) {} 1219 1220 #endif /* CONFIG_SLUB_DEBUG */ 1221 1222 /* 1223 * Hooks for other subsystems that check memory allocations. In a typical 1224 * production configuration these hooks all should produce no code at all. 1225 */ 1226 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1227 { 1228 kmemleak_alloc(ptr, size, 1, flags); 1229 } 1230 1231 static inline void kfree_hook(const void *x) 1232 { 1233 kmemleak_free(x); 1234 } 1235 1236 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 1237 gfp_t flags) 1238 { 1239 flags &= gfp_allowed_mask; 1240 lockdep_trace_alloc(flags); 1241 might_sleep_if(flags & __GFP_WAIT); 1242 1243 if (should_failslab(s->object_size, flags, s->flags)) 1244 return NULL; 1245 1246 return memcg_kmem_get_cache(s, flags); 1247 } 1248 1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, 1250 gfp_t flags, void *object) 1251 { 1252 flags &= gfp_allowed_mask; 1253 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 1254 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 1255 memcg_kmem_put_cache(s); 1256 } 1257 1258 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1259 { 1260 kmemleak_free_recursive(x, s->flags); 1261 1262 /* 1263 * Trouble is that we may no longer disable interrupts in the fast path 1264 * So in order to make the debug calls that expect irqs to be 1265 * disabled we need to disable interrupts temporarily. 1266 */ 1267 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1268 { 1269 unsigned long flags; 1270 1271 local_irq_save(flags); 1272 kmemcheck_slab_free(s, x, s->object_size); 1273 debug_check_no_locks_freed(x, s->object_size); 1274 local_irq_restore(flags); 1275 } 1276 #endif 1277 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1278 debug_check_no_obj_freed(x, s->object_size); 1279 } 1280 1281 /* 1282 * Slab allocation and freeing 1283 */ 1284 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1285 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1286 { 1287 struct page *page; 1288 int order = oo_order(oo); 1289 1290 flags |= __GFP_NOTRACK; 1291 1292 if (memcg_charge_slab(s, flags, order)) 1293 return NULL; 1294 1295 if (node == NUMA_NO_NODE) 1296 page = alloc_pages(flags, order); 1297 else 1298 page = alloc_pages_exact_node(node, flags, order); 1299 1300 if (!page) 1301 memcg_uncharge_slab(s, order); 1302 1303 return page; 1304 } 1305 1306 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1307 { 1308 struct page *page; 1309 struct kmem_cache_order_objects oo = s->oo; 1310 gfp_t alloc_gfp; 1311 1312 flags &= gfp_allowed_mask; 1313 1314 if (flags & __GFP_WAIT) 1315 local_irq_enable(); 1316 1317 flags |= s->allocflags; 1318 1319 /* 1320 * Let the initial higher-order allocation fail under memory pressure 1321 * so we fall-back to the minimum order allocation. 1322 */ 1323 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1324 1325 page = alloc_slab_page(s, alloc_gfp, node, oo); 1326 if (unlikely(!page)) { 1327 oo = s->min; 1328 alloc_gfp = flags; 1329 /* 1330 * Allocation may have failed due to fragmentation. 1331 * Try a lower order alloc if possible 1332 */ 1333 page = alloc_slab_page(s, alloc_gfp, node, oo); 1334 1335 if (page) 1336 stat(s, ORDER_FALLBACK); 1337 } 1338 1339 if (kmemcheck_enabled && page 1340 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1341 int pages = 1 << oo_order(oo); 1342 1343 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1344 1345 /* 1346 * Objects from caches that have a constructor don't get 1347 * cleared when they're allocated, so we need to do it here. 1348 */ 1349 if (s->ctor) 1350 kmemcheck_mark_uninitialized_pages(page, pages); 1351 else 1352 kmemcheck_mark_unallocated_pages(page, pages); 1353 } 1354 1355 if (flags & __GFP_WAIT) 1356 local_irq_disable(); 1357 if (!page) 1358 return NULL; 1359 1360 page->objects = oo_objects(oo); 1361 mod_zone_page_state(page_zone(page), 1362 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1363 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1364 1 << oo_order(oo)); 1365 1366 return page; 1367 } 1368 1369 static void setup_object(struct kmem_cache *s, struct page *page, 1370 void *object) 1371 { 1372 setup_object_debug(s, page, object); 1373 if (unlikely(s->ctor)) 1374 s->ctor(object); 1375 } 1376 1377 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1378 { 1379 struct page *page; 1380 void *start; 1381 void *p; 1382 int order; 1383 int idx; 1384 1385 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1386 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 1387 BUG(); 1388 } 1389 1390 page = allocate_slab(s, 1391 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1392 if (!page) 1393 goto out; 1394 1395 order = compound_order(page); 1396 inc_slabs_node(s, page_to_nid(page), page->objects); 1397 page->slab_cache = s; 1398 __SetPageSlab(page); 1399 if (page->pfmemalloc) 1400 SetPageSlabPfmemalloc(page); 1401 1402 start = page_address(page); 1403 1404 if (unlikely(s->flags & SLAB_POISON)) 1405 memset(start, POISON_INUSE, PAGE_SIZE << order); 1406 1407 for_each_object_idx(p, idx, s, start, page->objects) { 1408 setup_object(s, page, p); 1409 if (likely(idx < page->objects)) 1410 set_freepointer(s, p, p + s->size); 1411 else 1412 set_freepointer(s, p, NULL); 1413 } 1414 1415 page->freelist = start; 1416 page->inuse = page->objects; 1417 page->frozen = 1; 1418 out: 1419 return page; 1420 } 1421 1422 static void __free_slab(struct kmem_cache *s, struct page *page) 1423 { 1424 int order = compound_order(page); 1425 int pages = 1 << order; 1426 1427 if (kmem_cache_debug(s)) { 1428 void *p; 1429 1430 slab_pad_check(s, page); 1431 for_each_object(p, s, page_address(page), 1432 page->objects) 1433 check_object(s, page, p, SLUB_RED_INACTIVE); 1434 } 1435 1436 kmemcheck_free_shadow(page, compound_order(page)); 1437 1438 mod_zone_page_state(page_zone(page), 1439 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1440 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1441 -pages); 1442 1443 __ClearPageSlabPfmemalloc(page); 1444 __ClearPageSlab(page); 1445 1446 page_mapcount_reset(page); 1447 if (current->reclaim_state) 1448 current->reclaim_state->reclaimed_slab += pages; 1449 __free_pages(page, order); 1450 memcg_uncharge_slab(s, order); 1451 } 1452 1453 #define need_reserve_slab_rcu \ 1454 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1455 1456 static void rcu_free_slab(struct rcu_head *h) 1457 { 1458 struct page *page; 1459 1460 if (need_reserve_slab_rcu) 1461 page = virt_to_head_page(h); 1462 else 1463 page = container_of((struct list_head *)h, struct page, lru); 1464 1465 __free_slab(page->slab_cache, page); 1466 } 1467 1468 static void free_slab(struct kmem_cache *s, struct page *page) 1469 { 1470 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1471 struct rcu_head *head; 1472 1473 if (need_reserve_slab_rcu) { 1474 int order = compound_order(page); 1475 int offset = (PAGE_SIZE << order) - s->reserved; 1476 1477 VM_BUG_ON(s->reserved != sizeof(*head)); 1478 head = page_address(page) + offset; 1479 } else { 1480 /* 1481 * RCU free overloads the RCU head over the LRU 1482 */ 1483 head = (void *)&page->lru; 1484 } 1485 1486 call_rcu(head, rcu_free_slab); 1487 } else 1488 __free_slab(s, page); 1489 } 1490 1491 static void discard_slab(struct kmem_cache *s, struct page *page) 1492 { 1493 dec_slabs_node(s, page_to_nid(page), page->objects); 1494 free_slab(s, page); 1495 } 1496 1497 /* 1498 * Management of partially allocated slabs. 1499 */ 1500 static inline void 1501 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1502 { 1503 n->nr_partial++; 1504 if (tail == DEACTIVATE_TO_TAIL) 1505 list_add_tail(&page->lru, &n->partial); 1506 else 1507 list_add(&page->lru, &n->partial); 1508 } 1509 1510 static inline void add_partial(struct kmem_cache_node *n, 1511 struct page *page, int tail) 1512 { 1513 lockdep_assert_held(&n->list_lock); 1514 __add_partial(n, page, tail); 1515 } 1516 1517 static inline void 1518 __remove_partial(struct kmem_cache_node *n, struct page *page) 1519 { 1520 list_del(&page->lru); 1521 n->nr_partial--; 1522 } 1523 1524 static inline void remove_partial(struct kmem_cache_node *n, 1525 struct page *page) 1526 { 1527 lockdep_assert_held(&n->list_lock); 1528 __remove_partial(n, page); 1529 } 1530 1531 /* 1532 * Remove slab from the partial list, freeze it and 1533 * return the pointer to the freelist. 1534 * 1535 * Returns a list of objects or NULL if it fails. 1536 */ 1537 static inline void *acquire_slab(struct kmem_cache *s, 1538 struct kmem_cache_node *n, struct page *page, 1539 int mode, int *objects) 1540 { 1541 void *freelist; 1542 unsigned long counters; 1543 struct page new; 1544 1545 lockdep_assert_held(&n->list_lock); 1546 1547 /* 1548 * Zap the freelist and set the frozen bit. 1549 * The old freelist is the list of objects for the 1550 * per cpu allocation list. 1551 */ 1552 freelist = page->freelist; 1553 counters = page->counters; 1554 new.counters = counters; 1555 *objects = new.objects - new.inuse; 1556 if (mode) { 1557 new.inuse = page->objects; 1558 new.freelist = NULL; 1559 } else { 1560 new.freelist = freelist; 1561 } 1562 1563 VM_BUG_ON(new.frozen); 1564 new.frozen = 1; 1565 1566 if (!__cmpxchg_double_slab(s, page, 1567 freelist, counters, 1568 new.freelist, new.counters, 1569 "acquire_slab")) 1570 return NULL; 1571 1572 remove_partial(n, page); 1573 WARN_ON(!freelist); 1574 return freelist; 1575 } 1576 1577 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1578 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1579 1580 /* 1581 * Try to allocate a partial slab from a specific node. 1582 */ 1583 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1584 struct kmem_cache_cpu *c, gfp_t flags) 1585 { 1586 struct page *page, *page2; 1587 void *object = NULL; 1588 int available = 0; 1589 int objects; 1590 1591 /* 1592 * Racy check. If we mistakenly see no partial slabs then we 1593 * just allocate an empty slab. If we mistakenly try to get a 1594 * partial slab and there is none available then get_partials() 1595 * will return NULL. 1596 */ 1597 if (!n || !n->nr_partial) 1598 return NULL; 1599 1600 spin_lock(&n->list_lock); 1601 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1602 void *t; 1603 1604 if (!pfmemalloc_match(page, flags)) 1605 continue; 1606 1607 t = acquire_slab(s, n, page, object == NULL, &objects); 1608 if (!t) 1609 break; 1610 1611 available += objects; 1612 if (!object) { 1613 c->page = page; 1614 stat(s, ALLOC_FROM_PARTIAL); 1615 object = t; 1616 } else { 1617 put_cpu_partial(s, page, 0); 1618 stat(s, CPU_PARTIAL_NODE); 1619 } 1620 if (!kmem_cache_has_cpu_partial(s) 1621 || available > s->cpu_partial / 2) 1622 break; 1623 1624 } 1625 spin_unlock(&n->list_lock); 1626 return object; 1627 } 1628 1629 /* 1630 * Get a page from somewhere. Search in increasing NUMA distances. 1631 */ 1632 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1633 struct kmem_cache_cpu *c) 1634 { 1635 #ifdef CONFIG_NUMA 1636 struct zonelist *zonelist; 1637 struct zoneref *z; 1638 struct zone *zone; 1639 enum zone_type high_zoneidx = gfp_zone(flags); 1640 void *object; 1641 unsigned int cpuset_mems_cookie; 1642 1643 /* 1644 * The defrag ratio allows a configuration of the tradeoffs between 1645 * inter node defragmentation and node local allocations. A lower 1646 * defrag_ratio increases the tendency to do local allocations 1647 * instead of attempting to obtain partial slabs from other nodes. 1648 * 1649 * If the defrag_ratio is set to 0 then kmalloc() always 1650 * returns node local objects. If the ratio is higher then kmalloc() 1651 * may return off node objects because partial slabs are obtained 1652 * from other nodes and filled up. 1653 * 1654 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1655 * defrag_ratio = 1000) then every (well almost) allocation will 1656 * first attempt to defrag slab caches on other nodes. This means 1657 * scanning over all nodes to look for partial slabs which may be 1658 * expensive if we do it every time we are trying to find a slab 1659 * with available objects. 1660 */ 1661 if (!s->remote_node_defrag_ratio || 1662 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1663 return NULL; 1664 1665 do { 1666 cpuset_mems_cookie = read_mems_allowed_begin(); 1667 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1668 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1669 struct kmem_cache_node *n; 1670 1671 n = get_node(s, zone_to_nid(zone)); 1672 1673 if (n && cpuset_zone_allowed(zone, 1674 flags | __GFP_HARDWALL) && 1675 n->nr_partial > s->min_partial) { 1676 object = get_partial_node(s, n, c, flags); 1677 if (object) { 1678 /* 1679 * Don't check read_mems_allowed_retry() 1680 * here - if mems_allowed was updated in 1681 * parallel, that was a harmless race 1682 * between allocation and the cpuset 1683 * update 1684 */ 1685 return object; 1686 } 1687 } 1688 } 1689 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1690 #endif 1691 return NULL; 1692 } 1693 1694 /* 1695 * Get a partial page, lock it and return it. 1696 */ 1697 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1698 struct kmem_cache_cpu *c) 1699 { 1700 void *object; 1701 int searchnode = node; 1702 1703 if (node == NUMA_NO_NODE) 1704 searchnode = numa_mem_id(); 1705 else if (!node_present_pages(node)) 1706 searchnode = node_to_mem_node(node); 1707 1708 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1709 if (object || node != NUMA_NO_NODE) 1710 return object; 1711 1712 return get_any_partial(s, flags, c); 1713 } 1714 1715 #ifdef CONFIG_PREEMPT 1716 /* 1717 * Calculate the next globally unique transaction for disambiguiation 1718 * during cmpxchg. The transactions start with the cpu number and are then 1719 * incremented by CONFIG_NR_CPUS. 1720 */ 1721 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1722 #else 1723 /* 1724 * No preemption supported therefore also no need to check for 1725 * different cpus. 1726 */ 1727 #define TID_STEP 1 1728 #endif 1729 1730 static inline unsigned long next_tid(unsigned long tid) 1731 { 1732 return tid + TID_STEP; 1733 } 1734 1735 static inline unsigned int tid_to_cpu(unsigned long tid) 1736 { 1737 return tid % TID_STEP; 1738 } 1739 1740 static inline unsigned long tid_to_event(unsigned long tid) 1741 { 1742 return tid / TID_STEP; 1743 } 1744 1745 static inline unsigned int init_tid(int cpu) 1746 { 1747 return cpu; 1748 } 1749 1750 static inline void note_cmpxchg_failure(const char *n, 1751 const struct kmem_cache *s, unsigned long tid) 1752 { 1753 #ifdef SLUB_DEBUG_CMPXCHG 1754 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1755 1756 pr_info("%s %s: cmpxchg redo ", n, s->name); 1757 1758 #ifdef CONFIG_PREEMPT 1759 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1760 pr_warn("due to cpu change %d -> %d\n", 1761 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1762 else 1763 #endif 1764 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1765 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1766 tid_to_event(tid), tid_to_event(actual_tid)); 1767 else 1768 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1769 actual_tid, tid, next_tid(tid)); 1770 #endif 1771 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1772 } 1773 1774 static void init_kmem_cache_cpus(struct kmem_cache *s) 1775 { 1776 int cpu; 1777 1778 for_each_possible_cpu(cpu) 1779 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1780 } 1781 1782 /* 1783 * Remove the cpu slab 1784 */ 1785 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1786 void *freelist) 1787 { 1788 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1789 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1790 int lock = 0; 1791 enum slab_modes l = M_NONE, m = M_NONE; 1792 void *nextfree; 1793 int tail = DEACTIVATE_TO_HEAD; 1794 struct page new; 1795 struct page old; 1796 1797 if (page->freelist) { 1798 stat(s, DEACTIVATE_REMOTE_FREES); 1799 tail = DEACTIVATE_TO_TAIL; 1800 } 1801 1802 /* 1803 * Stage one: Free all available per cpu objects back 1804 * to the page freelist while it is still frozen. Leave the 1805 * last one. 1806 * 1807 * There is no need to take the list->lock because the page 1808 * is still frozen. 1809 */ 1810 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1811 void *prior; 1812 unsigned long counters; 1813 1814 do { 1815 prior = page->freelist; 1816 counters = page->counters; 1817 set_freepointer(s, freelist, prior); 1818 new.counters = counters; 1819 new.inuse--; 1820 VM_BUG_ON(!new.frozen); 1821 1822 } while (!__cmpxchg_double_slab(s, page, 1823 prior, counters, 1824 freelist, new.counters, 1825 "drain percpu freelist")); 1826 1827 freelist = nextfree; 1828 } 1829 1830 /* 1831 * Stage two: Ensure that the page is unfrozen while the 1832 * list presence reflects the actual number of objects 1833 * during unfreeze. 1834 * 1835 * We setup the list membership and then perform a cmpxchg 1836 * with the count. If there is a mismatch then the page 1837 * is not unfrozen but the page is on the wrong list. 1838 * 1839 * Then we restart the process which may have to remove 1840 * the page from the list that we just put it on again 1841 * because the number of objects in the slab may have 1842 * changed. 1843 */ 1844 redo: 1845 1846 old.freelist = page->freelist; 1847 old.counters = page->counters; 1848 VM_BUG_ON(!old.frozen); 1849 1850 /* Determine target state of the slab */ 1851 new.counters = old.counters; 1852 if (freelist) { 1853 new.inuse--; 1854 set_freepointer(s, freelist, old.freelist); 1855 new.freelist = freelist; 1856 } else 1857 new.freelist = old.freelist; 1858 1859 new.frozen = 0; 1860 1861 if (!new.inuse && n->nr_partial >= s->min_partial) 1862 m = M_FREE; 1863 else if (new.freelist) { 1864 m = M_PARTIAL; 1865 if (!lock) { 1866 lock = 1; 1867 /* 1868 * Taking the spinlock removes the possiblity 1869 * that acquire_slab() will see a slab page that 1870 * is frozen 1871 */ 1872 spin_lock(&n->list_lock); 1873 } 1874 } else { 1875 m = M_FULL; 1876 if (kmem_cache_debug(s) && !lock) { 1877 lock = 1; 1878 /* 1879 * This also ensures that the scanning of full 1880 * slabs from diagnostic functions will not see 1881 * any frozen slabs. 1882 */ 1883 spin_lock(&n->list_lock); 1884 } 1885 } 1886 1887 if (l != m) { 1888 1889 if (l == M_PARTIAL) 1890 1891 remove_partial(n, page); 1892 1893 else if (l == M_FULL) 1894 1895 remove_full(s, n, page); 1896 1897 if (m == M_PARTIAL) { 1898 1899 add_partial(n, page, tail); 1900 stat(s, tail); 1901 1902 } else if (m == M_FULL) { 1903 1904 stat(s, DEACTIVATE_FULL); 1905 add_full(s, n, page); 1906 1907 } 1908 } 1909 1910 l = m; 1911 if (!__cmpxchg_double_slab(s, page, 1912 old.freelist, old.counters, 1913 new.freelist, new.counters, 1914 "unfreezing slab")) 1915 goto redo; 1916 1917 if (lock) 1918 spin_unlock(&n->list_lock); 1919 1920 if (m == M_FREE) { 1921 stat(s, DEACTIVATE_EMPTY); 1922 discard_slab(s, page); 1923 stat(s, FREE_SLAB); 1924 } 1925 } 1926 1927 /* 1928 * Unfreeze all the cpu partial slabs. 1929 * 1930 * This function must be called with interrupts disabled 1931 * for the cpu using c (or some other guarantee must be there 1932 * to guarantee no concurrent accesses). 1933 */ 1934 static void unfreeze_partials(struct kmem_cache *s, 1935 struct kmem_cache_cpu *c) 1936 { 1937 #ifdef CONFIG_SLUB_CPU_PARTIAL 1938 struct kmem_cache_node *n = NULL, *n2 = NULL; 1939 struct page *page, *discard_page = NULL; 1940 1941 while ((page = c->partial)) { 1942 struct page new; 1943 struct page old; 1944 1945 c->partial = page->next; 1946 1947 n2 = get_node(s, page_to_nid(page)); 1948 if (n != n2) { 1949 if (n) 1950 spin_unlock(&n->list_lock); 1951 1952 n = n2; 1953 spin_lock(&n->list_lock); 1954 } 1955 1956 do { 1957 1958 old.freelist = page->freelist; 1959 old.counters = page->counters; 1960 VM_BUG_ON(!old.frozen); 1961 1962 new.counters = old.counters; 1963 new.freelist = old.freelist; 1964 1965 new.frozen = 0; 1966 1967 } while (!__cmpxchg_double_slab(s, page, 1968 old.freelist, old.counters, 1969 new.freelist, new.counters, 1970 "unfreezing slab")); 1971 1972 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 1973 page->next = discard_page; 1974 discard_page = page; 1975 } else { 1976 add_partial(n, page, DEACTIVATE_TO_TAIL); 1977 stat(s, FREE_ADD_PARTIAL); 1978 } 1979 } 1980 1981 if (n) 1982 spin_unlock(&n->list_lock); 1983 1984 while (discard_page) { 1985 page = discard_page; 1986 discard_page = discard_page->next; 1987 1988 stat(s, DEACTIVATE_EMPTY); 1989 discard_slab(s, page); 1990 stat(s, FREE_SLAB); 1991 } 1992 #endif 1993 } 1994 1995 /* 1996 * Put a page that was just frozen (in __slab_free) into a partial page 1997 * slot if available. This is done without interrupts disabled and without 1998 * preemption disabled. The cmpxchg is racy and may put the partial page 1999 * onto a random cpus partial slot. 2000 * 2001 * If we did not find a slot then simply move all the partials to the 2002 * per node partial list. 2003 */ 2004 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2005 { 2006 #ifdef CONFIG_SLUB_CPU_PARTIAL 2007 struct page *oldpage; 2008 int pages; 2009 int pobjects; 2010 2011 do { 2012 pages = 0; 2013 pobjects = 0; 2014 oldpage = this_cpu_read(s->cpu_slab->partial); 2015 2016 if (oldpage) { 2017 pobjects = oldpage->pobjects; 2018 pages = oldpage->pages; 2019 if (drain && pobjects > s->cpu_partial) { 2020 unsigned long flags; 2021 /* 2022 * partial array is full. Move the existing 2023 * set to the per node partial list. 2024 */ 2025 local_irq_save(flags); 2026 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2027 local_irq_restore(flags); 2028 oldpage = NULL; 2029 pobjects = 0; 2030 pages = 0; 2031 stat(s, CPU_PARTIAL_DRAIN); 2032 } 2033 } 2034 2035 pages++; 2036 pobjects += page->objects - page->inuse; 2037 2038 page->pages = pages; 2039 page->pobjects = pobjects; 2040 page->next = oldpage; 2041 2042 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2043 != oldpage); 2044 #endif 2045 } 2046 2047 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2048 { 2049 stat(s, CPUSLAB_FLUSH); 2050 deactivate_slab(s, c->page, c->freelist); 2051 2052 c->tid = next_tid(c->tid); 2053 c->page = NULL; 2054 c->freelist = NULL; 2055 } 2056 2057 /* 2058 * Flush cpu slab. 2059 * 2060 * Called from IPI handler with interrupts disabled. 2061 */ 2062 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2063 { 2064 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2065 2066 if (likely(c)) { 2067 if (c->page) 2068 flush_slab(s, c); 2069 2070 unfreeze_partials(s, c); 2071 } 2072 } 2073 2074 static void flush_cpu_slab(void *d) 2075 { 2076 struct kmem_cache *s = d; 2077 2078 __flush_cpu_slab(s, smp_processor_id()); 2079 } 2080 2081 static bool has_cpu_slab(int cpu, void *info) 2082 { 2083 struct kmem_cache *s = info; 2084 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2085 2086 return c->page || c->partial; 2087 } 2088 2089 static void flush_all(struct kmem_cache *s) 2090 { 2091 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2092 } 2093 2094 /* 2095 * Check if the objects in a per cpu structure fit numa 2096 * locality expectations. 2097 */ 2098 static inline int node_match(struct page *page, int node) 2099 { 2100 #ifdef CONFIG_NUMA 2101 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2102 return 0; 2103 #endif 2104 return 1; 2105 } 2106 2107 #ifdef CONFIG_SLUB_DEBUG 2108 static int count_free(struct page *page) 2109 { 2110 return page->objects - page->inuse; 2111 } 2112 2113 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2114 { 2115 return atomic_long_read(&n->total_objects); 2116 } 2117 #endif /* CONFIG_SLUB_DEBUG */ 2118 2119 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2120 static unsigned long count_partial(struct kmem_cache_node *n, 2121 int (*get_count)(struct page *)) 2122 { 2123 unsigned long flags; 2124 unsigned long x = 0; 2125 struct page *page; 2126 2127 spin_lock_irqsave(&n->list_lock, flags); 2128 list_for_each_entry(page, &n->partial, lru) 2129 x += get_count(page); 2130 spin_unlock_irqrestore(&n->list_lock, flags); 2131 return x; 2132 } 2133 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2134 2135 static noinline void 2136 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2137 { 2138 #ifdef CONFIG_SLUB_DEBUG 2139 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2140 DEFAULT_RATELIMIT_BURST); 2141 int node; 2142 struct kmem_cache_node *n; 2143 2144 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2145 return; 2146 2147 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2148 nid, gfpflags); 2149 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2150 s->name, s->object_size, s->size, oo_order(s->oo), 2151 oo_order(s->min)); 2152 2153 if (oo_order(s->min) > get_order(s->object_size)) 2154 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2155 s->name); 2156 2157 for_each_kmem_cache_node(s, node, n) { 2158 unsigned long nr_slabs; 2159 unsigned long nr_objs; 2160 unsigned long nr_free; 2161 2162 nr_free = count_partial(n, count_free); 2163 nr_slabs = node_nr_slabs(n); 2164 nr_objs = node_nr_objs(n); 2165 2166 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2167 node, nr_slabs, nr_objs, nr_free); 2168 } 2169 #endif 2170 } 2171 2172 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2173 int node, struct kmem_cache_cpu **pc) 2174 { 2175 void *freelist; 2176 struct kmem_cache_cpu *c = *pc; 2177 struct page *page; 2178 2179 freelist = get_partial(s, flags, node, c); 2180 2181 if (freelist) 2182 return freelist; 2183 2184 page = new_slab(s, flags, node); 2185 if (page) { 2186 c = raw_cpu_ptr(s->cpu_slab); 2187 if (c->page) 2188 flush_slab(s, c); 2189 2190 /* 2191 * No other reference to the page yet so we can 2192 * muck around with it freely without cmpxchg 2193 */ 2194 freelist = page->freelist; 2195 page->freelist = NULL; 2196 2197 stat(s, ALLOC_SLAB); 2198 c->page = page; 2199 *pc = c; 2200 } else 2201 freelist = NULL; 2202 2203 return freelist; 2204 } 2205 2206 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2207 { 2208 if (unlikely(PageSlabPfmemalloc(page))) 2209 return gfp_pfmemalloc_allowed(gfpflags); 2210 2211 return true; 2212 } 2213 2214 /* 2215 * Check the page->freelist of a page and either transfer the freelist to the 2216 * per cpu freelist or deactivate the page. 2217 * 2218 * The page is still frozen if the return value is not NULL. 2219 * 2220 * If this function returns NULL then the page has been unfrozen. 2221 * 2222 * This function must be called with interrupt disabled. 2223 */ 2224 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2225 { 2226 struct page new; 2227 unsigned long counters; 2228 void *freelist; 2229 2230 do { 2231 freelist = page->freelist; 2232 counters = page->counters; 2233 2234 new.counters = counters; 2235 VM_BUG_ON(!new.frozen); 2236 2237 new.inuse = page->objects; 2238 new.frozen = freelist != NULL; 2239 2240 } while (!__cmpxchg_double_slab(s, page, 2241 freelist, counters, 2242 NULL, new.counters, 2243 "get_freelist")); 2244 2245 return freelist; 2246 } 2247 2248 /* 2249 * Slow path. The lockless freelist is empty or we need to perform 2250 * debugging duties. 2251 * 2252 * Processing is still very fast if new objects have been freed to the 2253 * regular freelist. In that case we simply take over the regular freelist 2254 * as the lockless freelist and zap the regular freelist. 2255 * 2256 * If that is not working then we fall back to the partial lists. We take the 2257 * first element of the freelist as the object to allocate now and move the 2258 * rest of the freelist to the lockless freelist. 2259 * 2260 * And if we were unable to get a new slab from the partial slab lists then 2261 * we need to allocate a new slab. This is the slowest path since it involves 2262 * a call to the page allocator and the setup of a new slab. 2263 */ 2264 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2265 unsigned long addr, struct kmem_cache_cpu *c) 2266 { 2267 void *freelist; 2268 struct page *page; 2269 unsigned long flags; 2270 2271 local_irq_save(flags); 2272 #ifdef CONFIG_PREEMPT 2273 /* 2274 * We may have been preempted and rescheduled on a different 2275 * cpu before disabling interrupts. Need to reload cpu area 2276 * pointer. 2277 */ 2278 c = this_cpu_ptr(s->cpu_slab); 2279 #endif 2280 2281 page = c->page; 2282 if (!page) 2283 goto new_slab; 2284 redo: 2285 2286 if (unlikely(!node_match(page, node))) { 2287 int searchnode = node; 2288 2289 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2290 searchnode = node_to_mem_node(node); 2291 2292 if (unlikely(!node_match(page, searchnode))) { 2293 stat(s, ALLOC_NODE_MISMATCH); 2294 deactivate_slab(s, page, c->freelist); 2295 c->page = NULL; 2296 c->freelist = NULL; 2297 goto new_slab; 2298 } 2299 } 2300 2301 /* 2302 * By rights, we should be searching for a slab page that was 2303 * PFMEMALLOC but right now, we are losing the pfmemalloc 2304 * information when the page leaves the per-cpu allocator 2305 */ 2306 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2307 deactivate_slab(s, page, c->freelist); 2308 c->page = NULL; 2309 c->freelist = NULL; 2310 goto new_slab; 2311 } 2312 2313 /* must check again c->freelist in case of cpu migration or IRQ */ 2314 freelist = c->freelist; 2315 if (freelist) 2316 goto load_freelist; 2317 2318 freelist = get_freelist(s, page); 2319 2320 if (!freelist) { 2321 c->page = NULL; 2322 stat(s, DEACTIVATE_BYPASS); 2323 goto new_slab; 2324 } 2325 2326 stat(s, ALLOC_REFILL); 2327 2328 load_freelist: 2329 /* 2330 * freelist is pointing to the list of objects to be used. 2331 * page is pointing to the page from which the objects are obtained. 2332 * That page must be frozen for per cpu allocations to work. 2333 */ 2334 VM_BUG_ON(!c->page->frozen); 2335 c->freelist = get_freepointer(s, freelist); 2336 c->tid = next_tid(c->tid); 2337 local_irq_restore(flags); 2338 return freelist; 2339 2340 new_slab: 2341 2342 if (c->partial) { 2343 page = c->page = c->partial; 2344 c->partial = page->next; 2345 stat(s, CPU_PARTIAL_ALLOC); 2346 c->freelist = NULL; 2347 goto redo; 2348 } 2349 2350 freelist = new_slab_objects(s, gfpflags, node, &c); 2351 2352 if (unlikely(!freelist)) { 2353 slab_out_of_memory(s, gfpflags, node); 2354 local_irq_restore(flags); 2355 return NULL; 2356 } 2357 2358 page = c->page; 2359 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2360 goto load_freelist; 2361 2362 /* Only entered in the debug case */ 2363 if (kmem_cache_debug(s) && 2364 !alloc_debug_processing(s, page, freelist, addr)) 2365 goto new_slab; /* Slab failed checks. Next slab needed */ 2366 2367 deactivate_slab(s, page, get_freepointer(s, freelist)); 2368 c->page = NULL; 2369 c->freelist = NULL; 2370 local_irq_restore(flags); 2371 return freelist; 2372 } 2373 2374 /* 2375 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2376 * have the fastpath folded into their functions. So no function call 2377 * overhead for requests that can be satisfied on the fastpath. 2378 * 2379 * The fastpath works by first checking if the lockless freelist can be used. 2380 * If not then __slab_alloc is called for slow processing. 2381 * 2382 * Otherwise we can simply pick the next object from the lockless free list. 2383 */ 2384 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2385 gfp_t gfpflags, int node, unsigned long addr) 2386 { 2387 void **object; 2388 struct kmem_cache_cpu *c; 2389 struct page *page; 2390 unsigned long tid; 2391 2392 s = slab_pre_alloc_hook(s, gfpflags); 2393 if (!s) 2394 return NULL; 2395 redo: 2396 /* 2397 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2398 * enabled. We may switch back and forth between cpus while 2399 * reading from one cpu area. That does not matter as long 2400 * as we end up on the original cpu again when doing the cmpxchg. 2401 * 2402 * Preemption is disabled for the retrieval of the tid because that 2403 * must occur from the current processor. We cannot allow rescheduling 2404 * on a different processor between the determination of the pointer 2405 * and the retrieval of the tid. 2406 */ 2407 preempt_disable(); 2408 c = this_cpu_ptr(s->cpu_slab); 2409 2410 /* 2411 * The transaction ids are globally unique per cpu and per operation on 2412 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2413 * occurs on the right processor and that there was no operation on the 2414 * linked list in between. 2415 */ 2416 tid = c->tid; 2417 preempt_enable(); 2418 2419 object = c->freelist; 2420 page = c->page; 2421 if (unlikely(!object || !node_match(page, node))) { 2422 object = __slab_alloc(s, gfpflags, node, addr, c); 2423 stat(s, ALLOC_SLOWPATH); 2424 } else { 2425 void *next_object = get_freepointer_safe(s, object); 2426 2427 /* 2428 * The cmpxchg will only match if there was no additional 2429 * operation and if we are on the right processor. 2430 * 2431 * The cmpxchg does the following atomically (without lock 2432 * semantics!) 2433 * 1. Relocate first pointer to the current per cpu area. 2434 * 2. Verify that tid and freelist have not been changed 2435 * 3. If they were not changed replace tid and freelist 2436 * 2437 * Since this is without lock semantics the protection is only 2438 * against code executing on this cpu *not* from access by 2439 * other cpus. 2440 */ 2441 if (unlikely(!this_cpu_cmpxchg_double( 2442 s->cpu_slab->freelist, s->cpu_slab->tid, 2443 object, tid, 2444 next_object, next_tid(tid)))) { 2445 2446 note_cmpxchg_failure("slab_alloc", s, tid); 2447 goto redo; 2448 } 2449 prefetch_freepointer(s, next_object); 2450 stat(s, ALLOC_FASTPATH); 2451 } 2452 2453 if (unlikely(gfpflags & __GFP_ZERO) && object) 2454 memset(object, 0, s->object_size); 2455 2456 slab_post_alloc_hook(s, gfpflags, object); 2457 2458 return object; 2459 } 2460 2461 static __always_inline void *slab_alloc(struct kmem_cache *s, 2462 gfp_t gfpflags, unsigned long addr) 2463 { 2464 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2465 } 2466 2467 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2468 { 2469 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2470 2471 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2472 s->size, gfpflags); 2473 2474 return ret; 2475 } 2476 EXPORT_SYMBOL(kmem_cache_alloc); 2477 2478 #ifdef CONFIG_TRACING 2479 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2480 { 2481 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2482 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2483 return ret; 2484 } 2485 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2486 #endif 2487 2488 #ifdef CONFIG_NUMA 2489 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2490 { 2491 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2492 2493 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2494 s->object_size, s->size, gfpflags, node); 2495 2496 return ret; 2497 } 2498 EXPORT_SYMBOL(kmem_cache_alloc_node); 2499 2500 #ifdef CONFIG_TRACING 2501 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2502 gfp_t gfpflags, 2503 int node, size_t size) 2504 { 2505 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2506 2507 trace_kmalloc_node(_RET_IP_, ret, 2508 size, s->size, gfpflags, node); 2509 return ret; 2510 } 2511 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2512 #endif 2513 #endif 2514 2515 /* 2516 * Slow patch handling. This may still be called frequently since objects 2517 * have a longer lifetime than the cpu slabs in most processing loads. 2518 * 2519 * So we still attempt to reduce cache line usage. Just take the slab 2520 * lock and free the item. If there is no additional partial page 2521 * handling required then we can return immediately. 2522 */ 2523 static void __slab_free(struct kmem_cache *s, struct page *page, 2524 void *x, unsigned long addr) 2525 { 2526 void *prior; 2527 void **object = (void *)x; 2528 int was_frozen; 2529 struct page new; 2530 unsigned long counters; 2531 struct kmem_cache_node *n = NULL; 2532 unsigned long uninitialized_var(flags); 2533 2534 stat(s, FREE_SLOWPATH); 2535 2536 if (kmem_cache_debug(s) && 2537 !(n = free_debug_processing(s, page, x, addr, &flags))) 2538 return; 2539 2540 do { 2541 if (unlikely(n)) { 2542 spin_unlock_irqrestore(&n->list_lock, flags); 2543 n = NULL; 2544 } 2545 prior = page->freelist; 2546 counters = page->counters; 2547 set_freepointer(s, object, prior); 2548 new.counters = counters; 2549 was_frozen = new.frozen; 2550 new.inuse--; 2551 if ((!new.inuse || !prior) && !was_frozen) { 2552 2553 if (kmem_cache_has_cpu_partial(s) && !prior) { 2554 2555 /* 2556 * Slab was on no list before and will be 2557 * partially empty 2558 * We can defer the list move and instead 2559 * freeze it. 2560 */ 2561 new.frozen = 1; 2562 2563 } else { /* Needs to be taken off a list */ 2564 2565 n = get_node(s, page_to_nid(page)); 2566 /* 2567 * Speculatively acquire the list_lock. 2568 * If the cmpxchg does not succeed then we may 2569 * drop the list_lock without any processing. 2570 * 2571 * Otherwise the list_lock will synchronize with 2572 * other processors updating the list of slabs. 2573 */ 2574 spin_lock_irqsave(&n->list_lock, flags); 2575 2576 } 2577 } 2578 2579 } while (!cmpxchg_double_slab(s, page, 2580 prior, counters, 2581 object, new.counters, 2582 "__slab_free")); 2583 2584 if (likely(!n)) { 2585 2586 /* 2587 * If we just froze the page then put it onto the 2588 * per cpu partial list. 2589 */ 2590 if (new.frozen && !was_frozen) { 2591 put_cpu_partial(s, page, 1); 2592 stat(s, CPU_PARTIAL_FREE); 2593 } 2594 /* 2595 * The list lock was not taken therefore no list 2596 * activity can be necessary. 2597 */ 2598 if (was_frozen) 2599 stat(s, FREE_FROZEN); 2600 return; 2601 } 2602 2603 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2604 goto slab_empty; 2605 2606 /* 2607 * Objects left in the slab. If it was not on the partial list before 2608 * then add it. 2609 */ 2610 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2611 if (kmem_cache_debug(s)) 2612 remove_full(s, n, page); 2613 add_partial(n, page, DEACTIVATE_TO_TAIL); 2614 stat(s, FREE_ADD_PARTIAL); 2615 } 2616 spin_unlock_irqrestore(&n->list_lock, flags); 2617 return; 2618 2619 slab_empty: 2620 if (prior) { 2621 /* 2622 * Slab on the partial list. 2623 */ 2624 remove_partial(n, page); 2625 stat(s, FREE_REMOVE_PARTIAL); 2626 } else { 2627 /* Slab must be on the full list */ 2628 remove_full(s, n, page); 2629 } 2630 2631 spin_unlock_irqrestore(&n->list_lock, flags); 2632 stat(s, FREE_SLAB); 2633 discard_slab(s, page); 2634 } 2635 2636 /* 2637 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2638 * can perform fastpath freeing without additional function calls. 2639 * 2640 * The fastpath is only possible if we are freeing to the current cpu slab 2641 * of this processor. This typically the case if we have just allocated 2642 * the item before. 2643 * 2644 * If fastpath is not possible then fall back to __slab_free where we deal 2645 * with all sorts of special processing. 2646 */ 2647 static __always_inline void slab_free(struct kmem_cache *s, 2648 struct page *page, void *x, unsigned long addr) 2649 { 2650 void **object = (void *)x; 2651 struct kmem_cache_cpu *c; 2652 unsigned long tid; 2653 2654 slab_free_hook(s, x); 2655 2656 redo: 2657 /* 2658 * Determine the currently cpus per cpu slab. 2659 * The cpu may change afterward. However that does not matter since 2660 * data is retrieved via this pointer. If we are on the same cpu 2661 * during the cmpxchg then the free will succedd. 2662 */ 2663 preempt_disable(); 2664 c = this_cpu_ptr(s->cpu_slab); 2665 2666 tid = c->tid; 2667 preempt_enable(); 2668 2669 if (likely(page == c->page)) { 2670 set_freepointer(s, object, c->freelist); 2671 2672 if (unlikely(!this_cpu_cmpxchg_double( 2673 s->cpu_slab->freelist, s->cpu_slab->tid, 2674 c->freelist, tid, 2675 object, next_tid(tid)))) { 2676 2677 note_cmpxchg_failure("slab_free", s, tid); 2678 goto redo; 2679 } 2680 stat(s, FREE_FASTPATH); 2681 } else 2682 __slab_free(s, page, x, addr); 2683 2684 } 2685 2686 void kmem_cache_free(struct kmem_cache *s, void *x) 2687 { 2688 s = cache_from_obj(s, x); 2689 if (!s) 2690 return; 2691 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2692 trace_kmem_cache_free(_RET_IP_, x); 2693 } 2694 EXPORT_SYMBOL(kmem_cache_free); 2695 2696 /* 2697 * Object placement in a slab is made very easy because we always start at 2698 * offset 0. If we tune the size of the object to the alignment then we can 2699 * get the required alignment by putting one properly sized object after 2700 * another. 2701 * 2702 * Notice that the allocation order determines the sizes of the per cpu 2703 * caches. Each processor has always one slab available for allocations. 2704 * Increasing the allocation order reduces the number of times that slabs 2705 * must be moved on and off the partial lists and is therefore a factor in 2706 * locking overhead. 2707 */ 2708 2709 /* 2710 * Mininum / Maximum order of slab pages. This influences locking overhead 2711 * and slab fragmentation. A higher order reduces the number of partial slabs 2712 * and increases the number of allocations possible without having to 2713 * take the list_lock. 2714 */ 2715 static int slub_min_order; 2716 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2717 static int slub_min_objects; 2718 2719 /* 2720 * Calculate the order of allocation given an slab object size. 2721 * 2722 * The order of allocation has significant impact on performance and other 2723 * system components. Generally order 0 allocations should be preferred since 2724 * order 0 does not cause fragmentation in the page allocator. Larger objects 2725 * be problematic to put into order 0 slabs because there may be too much 2726 * unused space left. We go to a higher order if more than 1/16th of the slab 2727 * would be wasted. 2728 * 2729 * In order to reach satisfactory performance we must ensure that a minimum 2730 * number of objects is in one slab. Otherwise we may generate too much 2731 * activity on the partial lists which requires taking the list_lock. This is 2732 * less a concern for large slabs though which are rarely used. 2733 * 2734 * slub_max_order specifies the order where we begin to stop considering the 2735 * number of objects in a slab as critical. If we reach slub_max_order then 2736 * we try to keep the page order as low as possible. So we accept more waste 2737 * of space in favor of a small page order. 2738 * 2739 * Higher order allocations also allow the placement of more objects in a 2740 * slab and thereby reduce object handling overhead. If the user has 2741 * requested a higher mininum order then we start with that one instead of 2742 * the smallest order which will fit the object. 2743 */ 2744 static inline int slab_order(int size, int min_objects, 2745 int max_order, int fract_leftover, int reserved) 2746 { 2747 int order; 2748 int rem; 2749 int min_order = slub_min_order; 2750 2751 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2752 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2753 2754 for (order = max(min_order, 2755 fls(min_objects * size - 1) - PAGE_SHIFT); 2756 order <= max_order; order++) { 2757 2758 unsigned long slab_size = PAGE_SIZE << order; 2759 2760 if (slab_size < min_objects * size + reserved) 2761 continue; 2762 2763 rem = (slab_size - reserved) % size; 2764 2765 if (rem <= slab_size / fract_leftover) 2766 break; 2767 2768 } 2769 2770 return order; 2771 } 2772 2773 static inline int calculate_order(int size, int reserved) 2774 { 2775 int order; 2776 int min_objects; 2777 int fraction; 2778 int max_objects; 2779 2780 /* 2781 * Attempt to find best configuration for a slab. This 2782 * works by first attempting to generate a layout with 2783 * the best configuration and backing off gradually. 2784 * 2785 * First we reduce the acceptable waste in a slab. Then 2786 * we reduce the minimum objects required in a slab. 2787 */ 2788 min_objects = slub_min_objects; 2789 if (!min_objects) 2790 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2791 max_objects = order_objects(slub_max_order, size, reserved); 2792 min_objects = min(min_objects, max_objects); 2793 2794 while (min_objects > 1) { 2795 fraction = 16; 2796 while (fraction >= 4) { 2797 order = slab_order(size, min_objects, 2798 slub_max_order, fraction, reserved); 2799 if (order <= slub_max_order) 2800 return order; 2801 fraction /= 2; 2802 } 2803 min_objects--; 2804 } 2805 2806 /* 2807 * We were unable to place multiple objects in a slab. Now 2808 * lets see if we can place a single object there. 2809 */ 2810 order = slab_order(size, 1, slub_max_order, 1, reserved); 2811 if (order <= slub_max_order) 2812 return order; 2813 2814 /* 2815 * Doh this slab cannot be placed using slub_max_order. 2816 */ 2817 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2818 if (order < MAX_ORDER) 2819 return order; 2820 return -ENOSYS; 2821 } 2822 2823 static void 2824 init_kmem_cache_node(struct kmem_cache_node *n) 2825 { 2826 n->nr_partial = 0; 2827 spin_lock_init(&n->list_lock); 2828 INIT_LIST_HEAD(&n->partial); 2829 #ifdef CONFIG_SLUB_DEBUG 2830 atomic_long_set(&n->nr_slabs, 0); 2831 atomic_long_set(&n->total_objects, 0); 2832 INIT_LIST_HEAD(&n->full); 2833 #endif 2834 } 2835 2836 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2837 { 2838 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2839 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2840 2841 /* 2842 * Must align to double word boundary for the double cmpxchg 2843 * instructions to work; see __pcpu_double_call_return_bool(). 2844 */ 2845 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2846 2 * sizeof(void *)); 2847 2848 if (!s->cpu_slab) 2849 return 0; 2850 2851 init_kmem_cache_cpus(s); 2852 2853 return 1; 2854 } 2855 2856 static struct kmem_cache *kmem_cache_node; 2857 2858 /* 2859 * No kmalloc_node yet so do it by hand. We know that this is the first 2860 * slab on the node for this slabcache. There are no concurrent accesses 2861 * possible. 2862 * 2863 * Note that this function only works on the kmem_cache_node 2864 * when allocating for the kmem_cache_node. This is used for bootstrapping 2865 * memory on a fresh node that has no slab structures yet. 2866 */ 2867 static void early_kmem_cache_node_alloc(int node) 2868 { 2869 struct page *page; 2870 struct kmem_cache_node *n; 2871 2872 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2873 2874 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2875 2876 BUG_ON(!page); 2877 if (page_to_nid(page) != node) { 2878 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 2879 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 2880 } 2881 2882 n = page->freelist; 2883 BUG_ON(!n); 2884 page->freelist = get_freepointer(kmem_cache_node, n); 2885 page->inuse = 1; 2886 page->frozen = 0; 2887 kmem_cache_node->node[node] = n; 2888 #ifdef CONFIG_SLUB_DEBUG 2889 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2890 init_tracking(kmem_cache_node, n); 2891 #endif 2892 init_kmem_cache_node(n); 2893 inc_slabs_node(kmem_cache_node, node, page->objects); 2894 2895 /* 2896 * No locks need to be taken here as it has just been 2897 * initialized and there is no concurrent access. 2898 */ 2899 __add_partial(n, page, DEACTIVATE_TO_HEAD); 2900 } 2901 2902 static void free_kmem_cache_nodes(struct kmem_cache *s) 2903 { 2904 int node; 2905 struct kmem_cache_node *n; 2906 2907 for_each_kmem_cache_node(s, node, n) { 2908 kmem_cache_free(kmem_cache_node, n); 2909 s->node[node] = NULL; 2910 } 2911 } 2912 2913 static int init_kmem_cache_nodes(struct kmem_cache *s) 2914 { 2915 int node; 2916 2917 for_each_node_state(node, N_NORMAL_MEMORY) { 2918 struct kmem_cache_node *n; 2919 2920 if (slab_state == DOWN) { 2921 early_kmem_cache_node_alloc(node); 2922 continue; 2923 } 2924 n = kmem_cache_alloc_node(kmem_cache_node, 2925 GFP_KERNEL, node); 2926 2927 if (!n) { 2928 free_kmem_cache_nodes(s); 2929 return 0; 2930 } 2931 2932 s->node[node] = n; 2933 init_kmem_cache_node(n); 2934 } 2935 return 1; 2936 } 2937 2938 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2939 { 2940 if (min < MIN_PARTIAL) 2941 min = MIN_PARTIAL; 2942 else if (min > MAX_PARTIAL) 2943 min = MAX_PARTIAL; 2944 s->min_partial = min; 2945 } 2946 2947 /* 2948 * calculate_sizes() determines the order and the distribution of data within 2949 * a slab object. 2950 */ 2951 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2952 { 2953 unsigned long flags = s->flags; 2954 unsigned long size = s->object_size; 2955 int order; 2956 2957 /* 2958 * Round up object size to the next word boundary. We can only 2959 * place the free pointer at word boundaries and this determines 2960 * the possible location of the free pointer. 2961 */ 2962 size = ALIGN(size, sizeof(void *)); 2963 2964 #ifdef CONFIG_SLUB_DEBUG 2965 /* 2966 * Determine if we can poison the object itself. If the user of 2967 * the slab may touch the object after free or before allocation 2968 * then we should never poison the object itself. 2969 */ 2970 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2971 !s->ctor) 2972 s->flags |= __OBJECT_POISON; 2973 else 2974 s->flags &= ~__OBJECT_POISON; 2975 2976 2977 /* 2978 * If we are Redzoning then check if there is some space between the 2979 * end of the object and the free pointer. If not then add an 2980 * additional word to have some bytes to store Redzone information. 2981 */ 2982 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 2983 size += sizeof(void *); 2984 #endif 2985 2986 /* 2987 * With that we have determined the number of bytes in actual use 2988 * by the object. This is the potential offset to the free pointer. 2989 */ 2990 s->inuse = size; 2991 2992 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2993 s->ctor)) { 2994 /* 2995 * Relocate free pointer after the object if it is not 2996 * permitted to overwrite the first word of the object on 2997 * kmem_cache_free. 2998 * 2999 * This is the case if we do RCU, have a constructor or 3000 * destructor or are poisoning the objects. 3001 */ 3002 s->offset = size; 3003 size += sizeof(void *); 3004 } 3005 3006 #ifdef CONFIG_SLUB_DEBUG 3007 if (flags & SLAB_STORE_USER) 3008 /* 3009 * Need to store information about allocs and frees after 3010 * the object. 3011 */ 3012 size += 2 * sizeof(struct track); 3013 3014 if (flags & SLAB_RED_ZONE) 3015 /* 3016 * Add some empty padding so that we can catch 3017 * overwrites from earlier objects rather than let 3018 * tracking information or the free pointer be 3019 * corrupted if a user writes before the start 3020 * of the object. 3021 */ 3022 size += sizeof(void *); 3023 #endif 3024 3025 /* 3026 * SLUB stores one object immediately after another beginning from 3027 * offset 0. In order to align the objects we have to simply size 3028 * each object to conform to the alignment. 3029 */ 3030 size = ALIGN(size, s->align); 3031 s->size = size; 3032 if (forced_order >= 0) 3033 order = forced_order; 3034 else 3035 order = calculate_order(size, s->reserved); 3036 3037 if (order < 0) 3038 return 0; 3039 3040 s->allocflags = 0; 3041 if (order) 3042 s->allocflags |= __GFP_COMP; 3043 3044 if (s->flags & SLAB_CACHE_DMA) 3045 s->allocflags |= GFP_DMA; 3046 3047 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3048 s->allocflags |= __GFP_RECLAIMABLE; 3049 3050 /* 3051 * Determine the number of objects per slab 3052 */ 3053 s->oo = oo_make(order, size, s->reserved); 3054 s->min = oo_make(get_order(size), size, s->reserved); 3055 if (oo_objects(s->oo) > oo_objects(s->max)) 3056 s->max = s->oo; 3057 3058 return !!oo_objects(s->oo); 3059 } 3060 3061 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3062 { 3063 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3064 s->reserved = 0; 3065 3066 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3067 s->reserved = sizeof(struct rcu_head); 3068 3069 if (!calculate_sizes(s, -1)) 3070 goto error; 3071 if (disable_higher_order_debug) { 3072 /* 3073 * Disable debugging flags that store metadata if the min slab 3074 * order increased. 3075 */ 3076 if (get_order(s->size) > get_order(s->object_size)) { 3077 s->flags &= ~DEBUG_METADATA_FLAGS; 3078 s->offset = 0; 3079 if (!calculate_sizes(s, -1)) 3080 goto error; 3081 } 3082 } 3083 3084 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3085 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3086 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3087 /* Enable fast mode */ 3088 s->flags |= __CMPXCHG_DOUBLE; 3089 #endif 3090 3091 /* 3092 * The larger the object size is, the more pages we want on the partial 3093 * list to avoid pounding the page allocator excessively. 3094 */ 3095 set_min_partial(s, ilog2(s->size) / 2); 3096 3097 /* 3098 * cpu_partial determined the maximum number of objects kept in the 3099 * per cpu partial lists of a processor. 3100 * 3101 * Per cpu partial lists mainly contain slabs that just have one 3102 * object freed. If they are used for allocation then they can be 3103 * filled up again with minimal effort. The slab will never hit the 3104 * per node partial lists and therefore no locking will be required. 3105 * 3106 * This setting also determines 3107 * 3108 * A) The number of objects from per cpu partial slabs dumped to the 3109 * per node list when we reach the limit. 3110 * B) The number of objects in cpu partial slabs to extract from the 3111 * per node list when we run out of per cpu objects. We only fetch 3112 * 50% to keep some capacity around for frees. 3113 */ 3114 if (!kmem_cache_has_cpu_partial(s)) 3115 s->cpu_partial = 0; 3116 else if (s->size >= PAGE_SIZE) 3117 s->cpu_partial = 2; 3118 else if (s->size >= 1024) 3119 s->cpu_partial = 6; 3120 else if (s->size >= 256) 3121 s->cpu_partial = 13; 3122 else 3123 s->cpu_partial = 30; 3124 3125 #ifdef CONFIG_NUMA 3126 s->remote_node_defrag_ratio = 1000; 3127 #endif 3128 if (!init_kmem_cache_nodes(s)) 3129 goto error; 3130 3131 if (alloc_kmem_cache_cpus(s)) 3132 return 0; 3133 3134 free_kmem_cache_nodes(s); 3135 error: 3136 if (flags & SLAB_PANIC) 3137 panic("Cannot create slab %s size=%lu realsize=%u " 3138 "order=%u offset=%u flags=%lx\n", 3139 s->name, (unsigned long)s->size, s->size, 3140 oo_order(s->oo), s->offset, flags); 3141 return -EINVAL; 3142 } 3143 3144 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3145 const char *text) 3146 { 3147 #ifdef CONFIG_SLUB_DEBUG 3148 void *addr = page_address(page); 3149 void *p; 3150 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3151 sizeof(long), GFP_ATOMIC); 3152 if (!map) 3153 return; 3154 slab_err(s, page, text, s->name); 3155 slab_lock(page); 3156 3157 get_map(s, page, map); 3158 for_each_object(p, s, addr, page->objects) { 3159 3160 if (!test_bit(slab_index(p, s, addr), map)) { 3161 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3162 print_tracking(s, p); 3163 } 3164 } 3165 slab_unlock(page); 3166 kfree(map); 3167 #endif 3168 } 3169 3170 /* 3171 * Attempt to free all partial slabs on a node. 3172 * This is called from kmem_cache_close(). We must be the last thread 3173 * using the cache and therefore we do not need to lock anymore. 3174 */ 3175 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3176 { 3177 struct page *page, *h; 3178 3179 list_for_each_entry_safe(page, h, &n->partial, lru) { 3180 if (!page->inuse) { 3181 __remove_partial(n, page); 3182 discard_slab(s, page); 3183 } else { 3184 list_slab_objects(s, page, 3185 "Objects remaining in %s on kmem_cache_close()"); 3186 } 3187 } 3188 } 3189 3190 /* 3191 * Release all resources used by a slab cache. 3192 */ 3193 static inline int kmem_cache_close(struct kmem_cache *s) 3194 { 3195 int node; 3196 struct kmem_cache_node *n; 3197 3198 flush_all(s); 3199 /* Attempt to free all objects */ 3200 for_each_kmem_cache_node(s, node, n) { 3201 free_partial(s, n); 3202 if (n->nr_partial || slabs_node(s, node)) 3203 return 1; 3204 } 3205 free_percpu(s->cpu_slab); 3206 free_kmem_cache_nodes(s); 3207 return 0; 3208 } 3209 3210 int __kmem_cache_shutdown(struct kmem_cache *s) 3211 { 3212 return kmem_cache_close(s); 3213 } 3214 3215 /******************************************************************** 3216 * Kmalloc subsystem 3217 *******************************************************************/ 3218 3219 static int __init setup_slub_min_order(char *str) 3220 { 3221 get_option(&str, &slub_min_order); 3222 3223 return 1; 3224 } 3225 3226 __setup("slub_min_order=", setup_slub_min_order); 3227 3228 static int __init setup_slub_max_order(char *str) 3229 { 3230 get_option(&str, &slub_max_order); 3231 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3232 3233 return 1; 3234 } 3235 3236 __setup("slub_max_order=", setup_slub_max_order); 3237 3238 static int __init setup_slub_min_objects(char *str) 3239 { 3240 get_option(&str, &slub_min_objects); 3241 3242 return 1; 3243 } 3244 3245 __setup("slub_min_objects=", setup_slub_min_objects); 3246 3247 void *__kmalloc(size_t size, gfp_t flags) 3248 { 3249 struct kmem_cache *s; 3250 void *ret; 3251 3252 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3253 return kmalloc_large(size, flags); 3254 3255 s = kmalloc_slab(size, flags); 3256 3257 if (unlikely(ZERO_OR_NULL_PTR(s))) 3258 return s; 3259 3260 ret = slab_alloc(s, flags, _RET_IP_); 3261 3262 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3263 3264 return ret; 3265 } 3266 EXPORT_SYMBOL(__kmalloc); 3267 3268 #ifdef CONFIG_NUMA 3269 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3270 { 3271 struct page *page; 3272 void *ptr = NULL; 3273 3274 flags |= __GFP_COMP | __GFP_NOTRACK; 3275 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3276 if (page) 3277 ptr = page_address(page); 3278 3279 kmalloc_large_node_hook(ptr, size, flags); 3280 return ptr; 3281 } 3282 3283 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3284 { 3285 struct kmem_cache *s; 3286 void *ret; 3287 3288 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3289 ret = kmalloc_large_node(size, flags, node); 3290 3291 trace_kmalloc_node(_RET_IP_, ret, 3292 size, PAGE_SIZE << get_order(size), 3293 flags, node); 3294 3295 return ret; 3296 } 3297 3298 s = kmalloc_slab(size, flags); 3299 3300 if (unlikely(ZERO_OR_NULL_PTR(s))) 3301 return s; 3302 3303 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3304 3305 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3306 3307 return ret; 3308 } 3309 EXPORT_SYMBOL(__kmalloc_node); 3310 #endif 3311 3312 size_t ksize(const void *object) 3313 { 3314 struct page *page; 3315 3316 if (unlikely(object == ZERO_SIZE_PTR)) 3317 return 0; 3318 3319 page = virt_to_head_page(object); 3320 3321 if (unlikely(!PageSlab(page))) { 3322 WARN_ON(!PageCompound(page)); 3323 return PAGE_SIZE << compound_order(page); 3324 } 3325 3326 return slab_ksize(page->slab_cache); 3327 } 3328 EXPORT_SYMBOL(ksize); 3329 3330 void kfree(const void *x) 3331 { 3332 struct page *page; 3333 void *object = (void *)x; 3334 3335 trace_kfree(_RET_IP_, x); 3336 3337 if (unlikely(ZERO_OR_NULL_PTR(x))) 3338 return; 3339 3340 page = virt_to_head_page(x); 3341 if (unlikely(!PageSlab(page))) { 3342 BUG_ON(!PageCompound(page)); 3343 kfree_hook(x); 3344 __free_kmem_pages(page, compound_order(page)); 3345 return; 3346 } 3347 slab_free(page->slab_cache, page, object, _RET_IP_); 3348 } 3349 EXPORT_SYMBOL(kfree); 3350 3351 /* 3352 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3353 * the remaining slabs by the number of items in use. The slabs with the 3354 * most items in use come first. New allocations will then fill those up 3355 * and thus they can be removed from the partial lists. 3356 * 3357 * The slabs with the least items are placed last. This results in them 3358 * being allocated from last increasing the chance that the last objects 3359 * are freed in them. 3360 */ 3361 int __kmem_cache_shrink(struct kmem_cache *s) 3362 { 3363 int node; 3364 int i; 3365 struct kmem_cache_node *n; 3366 struct page *page; 3367 struct page *t; 3368 int objects = oo_objects(s->max); 3369 struct list_head *slabs_by_inuse = 3370 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3371 unsigned long flags; 3372 3373 if (!slabs_by_inuse) 3374 return -ENOMEM; 3375 3376 flush_all(s); 3377 for_each_kmem_cache_node(s, node, n) { 3378 if (!n->nr_partial) 3379 continue; 3380 3381 for (i = 0; i < objects; i++) 3382 INIT_LIST_HEAD(slabs_by_inuse + i); 3383 3384 spin_lock_irqsave(&n->list_lock, flags); 3385 3386 /* 3387 * Build lists indexed by the items in use in each slab. 3388 * 3389 * Note that concurrent frees may occur while we hold the 3390 * list_lock. page->inuse here is the upper limit. 3391 */ 3392 list_for_each_entry_safe(page, t, &n->partial, lru) { 3393 list_move(&page->lru, slabs_by_inuse + page->inuse); 3394 if (!page->inuse) 3395 n->nr_partial--; 3396 } 3397 3398 /* 3399 * Rebuild the partial list with the slabs filled up most 3400 * first and the least used slabs at the end. 3401 */ 3402 for (i = objects - 1; i > 0; i--) 3403 list_splice(slabs_by_inuse + i, n->partial.prev); 3404 3405 spin_unlock_irqrestore(&n->list_lock, flags); 3406 3407 /* Release empty slabs */ 3408 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3409 discard_slab(s, page); 3410 } 3411 3412 kfree(slabs_by_inuse); 3413 return 0; 3414 } 3415 3416 static int slab_mem_going_offline_callback(void *arg) 3417 { 3418 struct kmem_cache *s; 3419 3420 mutex_lock(&slab_mutex); 3421 list_for_each_entry(s, &slab_caches, list) 3422 __kmem_cache_shrink(s); 3423 mutex_unlock(&slab_mutex); 3424 3425 return 0; 3426 } 3427 3428 static void slab_mem_offline_callback(void *arg) 3429 { 3430 struct kmem_cache_node *n; 3431 struct kmem_cache *s; 3432 struct memory_notify *marg = arg; 3433 int offline_node; 3434 3435 offline_node = marg->status_change_nid_normal; 3436 3437 /* 3438 * If the node still has available memory. we need kmem_cache_node 3439 * for it yet. 3440 */ 3441 if (offline_node < 0) 3442 return; 3443 3444 mutex_lock(&slab_mutex); 3445 list_for_each_entry(s, &slab_caches, list) { 3446 n = get_node(s, offline_node); 3447 if (n) { 3448 /* 3449 * if n->nr_slabs > 0, slabs still exist on the node 3450 * that is going down. We were unable to free them, 3451 * and offline_pages() function shouldn't call this 3452 * callback. So, we must fail. 3453 */ 3454 BUG_ON(slabs_node(s, offline_node)); 3455 3456 s->node[offline_node] = NULL; 3457 kmem_cache_free(kmem_cache_node, n); 3458 } 3459 } 3460 mutex_unlock(&slab_mutex); 3461 } 3462 3463 static int slab_mem_going_online_callback(void *arg) 3464 { 3465 struct kmem_cache_node *n; 3466 struct kmem_cache *s; 3467 struct memory_notify *marg = arg; 3468 int nid = marg->status_change_nid_normal; 3469 int ret = 0; 3470 3471 /* 3472 * If the node's memory is already available, then kmem_cache_node is 3473 * already created. Nothing to do. 3474 */ 3475 if (nid < 0) 3476 return 0; 3477 3478 /* 3479 * We are bringing a node online. No memory is available yet. We must 3480 * allocate a kmem_cache_node structure in order to bring the node 3481 * online. 3482 */ 3483 mutex_lock(&slab_mutex); 3484 list_for_each_entry(s, &slab_caches, list) { 3485 /* 3486 * XXX: kmem_cache_alloc_node will fallback to other nodes 3487 * since memory is not yet available from the node that 3488 * is brought up. 3489 */ 3490 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3491 if (!n) { 3492 ret = -ENOMEM; 3493 goto out; 3494 } 3495 init_kmem_cache_node(n); 3496 s->node[nid] = n; 3497 } 3498 out: 3499 mutex_unlock(&slab_mutex); 3500 return ret; 3501 } 3502 3503 static int slab_memory_callback(struct notifier_block *self, 3504 unsigned long action, void *arg) 3505 { 3506 int ret = 0; 3507 3508 switch (action) { 3509 case MEM_GOING_ONLINE: 3510 ret = slab_mem_going_online_callback(arg); 3511 break; 3512 case MEM_GOING_OFFLINE: 3513 ret = slab_mem_going_offline_callback(arg); 3514 break; 3515 case MEM_OFFLINE: 3516 case MEM_CANCEL_ONLINE: 3517 slab_mem_offline_callback(arg); 3518 break; 3519 case MEM_ONLINE: 3520 case MEM_CANCEL_OFFLINE: 3521 break; 3522 } 3523 if (ret) 3524 ret = notifier_from_errno(ret); 3525 else 3526 ret = NOTIFY_OK; 3527 return ret; 3528 } 3529 3530 static struct notifier_block slab_memory_callback_nb = { 3531 .notifier_call = slab_memory_callback, 3532 .priority = SLAB_CALLBACK_PRI, 3533 }; 3534 3535 /******************************************************************** 3536 * Basic setup of slabs 3537 *******************************************************************/ 3538 3539 /* 3540 * Used for early kmem_cache structures that were allocated using 3541 * the page allocator. Allocate them properly then fix up the pointers 3542 * that may be pointing to the wrong kmem_cache structure. 3543 */ 3544 3545 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3546 { 3547 int node; 3548 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3549 struct kmem_cache_node *n; 3550 3551 memcpy(s, static_cache, kmem_cache->object_size); 3552 3553 /* 3554 * This runs very early, and only the boot processor is supposed to be 3555 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3556 * IPIs around. 3557 */ 3558 __flush_cpu_slab(s, smp_processor_id()); 3559 for_each_kmem_cache_node(s, node, n) { 3560 struct page *p; 3561 3562 list_for_each_entry(p, &n->partial, lru) 3563 p->slab_cache = s; 3564 3565 #ifdef CONFIG_SLUB_DEBUG 3566 list_for_each_entry(p, &n->full, lru) 3567 p->slab_cache = s; 3568 #endif 3569 } 3570 list_add(&s->list, &slab_caches); 3571 return s; 3572 } 3573 3574 void __init kmem_cache_init(void) 3575 { 3576 static __initdata struct kmem_cache boot_kmem_cache, 3577 boot_kmem_cache_node; 3578 3579 if (debug_guardpage_minorder()) 3580 slub_max_order = 0; 3581 3582 kmem_cache_node = &boot_kmem_cache_node; 3583 kmem_cache = &boot_kmem_cache; 3584 3585 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3586 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3587 3588 register_hotmemory_notifier(&slab_memory_callback_nb); 3589 3590 /* Able to allocate the per node structures */ 3591 slab_state = PARTIAL; 3592 3593 create_boot_cache(kmem_cache, "kmem_cache", 3594 offsetof(struct kmem_cache, node) + 3595 nr_node_ids * sizeof(struct kmem_cache_node *), 3596 SLAB_HWCACHE_ALIGN); 3597 3598 kmem_cache = bootstrap(&boot_kmem_cache); 3599 3600 /* 3601 * Allocate kmem_cache_node properly from the kmem_cache slab. 3602 * kmem_cache_node is separately allocated so no need to 3603 * update any list pointers. 3604 */ 3605 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3606 3607 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3608 create_kmalloc_caches(0); 3609 3610 #ifdef CONFIG_SMP 3611 register_cpu_notifier(&slab_notifier); 3612 #endif 3613 3614 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3615 cache_line_size(), 3616 slub_min_order, slub_max_order, slub_min_objects, 3617 nr_cpu_ids, nr_node_ids); 3618 } 3619 3620 void __init kmem_cache_init_late(void) 3621 { 3622 } 3623 3624 struct kmem_cache * 3625 __kmem_cache_alias(const char *name, size_t size, size_t align, 3626 unsigned long flags, void (*ctor)(void *)) 3627 { 3628 struct kmem_cache *s; 3629 3630 s = find_mergeable(size, align, flags, name, ctor); 3631 if (s) { 3632 int i; 3633 struct kmem_cache *c; 3634 3635 s->refcount++; 3636 3637 /* 3638 * Adjust the object sizes so that we clear 3639 * the complete object on kzalloc. 3640 */ 3641 s->object_size = max(s->object_size, (int)size); 3642 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3643 3644 for_each_memcg_cache_index(i) { 3645 c = cache_from_memcg_idx(s, i); 3646 if (!c) 3647 continue; 3648 c->object_size = s->object_size; 3649 c->inuse = max_t(int, c->inuse, 3650 ALIGN(size, sizeof(void *))); 3651 } 3652 3653 if (sysfs_slab_alias(s, name)) { 3654 s->refcount--; 3655 s = NULL; 3656 } 3657 } 3658 3659 return s; 3660 } 3661 3662 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3663 { 3664 int err; 3665 3666 err = kmem_cache_open(s, flags); 3667 if (err) 3668 return err; 3669 3670 /* Mutex is not taken during early boot */ 3671 if (slab_state <= UP) 3672 return 0; 3673 3674 memcg_propagate_slab_attrs(s); 3675 err = sysfs_slab_add(s); 3676 if (err) 3677 kmem_cache_close(s); 3678 3679 return err; 3680 } 3681 3682 #ifdef CONFIG_SMP 3683 /* 3684 * Use the cpu notifier to insure that the cpu slabs are flushed when 3685 * necessary. 3686 */ 3687 static int slab_cpuup_callback(struct notifier_block *nfb, 3688 unsigned long action, void *hcpu) 3689 { 3690 long cpu = (long)hcpu; 3691 struct kmem_cache *s; 3692 unsigned long flags; 3693 3694 switch (action) { 3695 case CPU_UP_CANCELED: 3696 case CPU_UP_CANCELED_FROZEN: 3697 case CPU_DEAD: 3698 case CPU_DEAD_FROZEN: 3699 mutex_lock(&slab_mutex); 3700 list_for_each_entry(s, &slab_caches, list) { 3701 local_irq_save(flags); 3702 __flush_cpu_slab(s, cpu); 3703 local_irq_restore(flags); 3704 } 3705 mutex_unlock(&slab_mutex); 3706 break; 3707 default: 3708 break; 3709 } 3710 return NOTIFY_OK; 3711 } 3712 3713 static struct notifier_block slab_notifier = { 3714 .notifier_call = slab_cpuup_callback 3715 }; 3716 3717 #endif 3718 3719 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3720 { 3721 struct kmem_cache *s; 3722 void *ret; 3723 3724 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3725 return kmalloc_large(size, gfpflags); 3726 3727 s = kmalloc_slab(size, gfpflags); 3728 3729 if (unlikely(ZERO_OR_NULL_PTR(s))) 3730 return s; 3731 3732 ret = slab_alloc(s, gfpflags, caller); 3733 3734 /* Honor the call site pointer we received. */ 3735 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3736 3737 return ret; 3738 } 3739 3740 #ifdef CONFIG_NUMA 3741 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3742 int node, unsigned long caller) 3743 { 3744 struct kmem_cache *s; 3745 void *ret; 3746 3747 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3748 ret = kmalloc_large_node(size, gfpflags, node); 3749 3750 trace_kmalloc_node(caller, ret, 3751 size, PAGE_SIZE << get_order(size), 3752 gfpflags, node); 3753 3754 return ret; 3755 } 3756 3757 s = kmalloc_slab(size, gfpflags); 3758 3759 if (unlikely(ZERO_OR_NULL_PTR(s))) 3760 return s; 3761 3762 ret = slab_alloc_node(s, gfpflags, node, caller); 3763 3764 /* Honor the call site pointer we received. */ 3765 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3766 3767 return ret; 3768 } 3769 #endif 3770 3771 #ifdef CONFIG_SYSFS 3772 static int count_inuse(struct page *page) 3773 { 3774 return page->inuse; 3775 } 3776 3777 static int count_total(struct page *page) 3778 { 3779 return page->objects; 3780 } 3781 #endif 3782 3783 #ifdef CONFIG_SLUB_DEBUG 3784 static int validate_slab(struct kmem_cache *s, struct page *page, 3785 unsigned long *map) 3786 { 3787 void *p; 3788 void *addr = page_address(page); 3789 3790 if (!check_slab(s, page) || 3791 !on_freelist(s, page, NULL)) 3792 return 0; 3793 3794 /* Now we know that a valid freelist exists */ 3795 bitmap_zero(map, page->objects); 3796 3797 get_map(s, page, map); 3798 for_each_object(p, s, addr, page->objects) { 3799 if (test_bit(slab_index(p, s, addr), map)) 3800 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3801 return 0; 3802 } 3803 3804 for_each_object(p, s, addr, page->objects) 3805 if (!test_bit(slab_index(p, s, addr), map)) 3806 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3807 return 0; 3808 return 1; 3809 } 3810 3811 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3812 unsigned long *map) 3813 { 3814 slab_lock(page); 3815 validate_slab(s, page, map); 3816 slab_unlock(page); 3817 } 3818 3819 static int validate_slab_node(struct kmem_cache *s, 3820 struct kmem_cache_node *n, unsigned long *map) 3821 { 3822 unsigned long count = 0; 3823 struct page *page; 3824 unsigned long flags; 3825 3826 spin_lock_irqsave(&n->list_lock, flags); 3827 3828 list_for_each_entry(page, &n->partial, lru) { 3829 validate_slab_slab(s, page, map); 3830 count++; 3831 } 3832 if (count != n->nr_partial) 3833 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 3834 s->name, count, n->nr_partial); 3835 3836 if (!(s->flags & SLAB_STORE_USER)) 3837 goto out; 3838 3839 list_for_each_entry(page, &n->full, lru) { 3840 validate_slab_slab(s, page, map); 3841 count++; 3842 } 3843 if (count != atomic_long_read(&n->nr_slabs)) 3844 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 3845 s->name, count, atomic_long_read(&n->nr_slabs)); 3846 3847 out: 3848 spin_unlock_irqrestore(&n->list_lock, flags); 3849 return count; 3850 } 3851 3852 static long validate_slab_cache(struct kmem_cache *s) 3853 { 3854 int node; 3855 unsigned long count = 0; 3856 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3857 sizeof(unsigned long), GFP_KERNEL); 3858 struct kmem_cache_node *n; 3859 3860 if (!map) 3861 return -ENOMEM; 3862 3863 flush_all(s); 3864 for_each_kmem_cache_node(s, node, n) 3865 count += validate_slab_node(s, n, map); 3866 kfree(map); 3867 return count; 3868 } 3869 /* 3870 * Generate lists of code addresses where slabcache objects are allocated 3871 * and freed. 3872 */ 3873 3874 struct location { 3875 unsigned long count; 3876 unsigned long addr; 3877 long long sum_time; 3878 long min_time; 3879 long max_time; 3880 long min_pid; 3881 long max_pid; 3882 DECLARE_BITMAP(cpus, NR_CPUS); 3883 nodemask_t nodes; 3884 }; 3885 3886 struct loc_track { 3887 unsigned long max; 3888 unsigned long count; 3889 struct location *loc; 3890 }; 3891 3892 static void free_loc_track(struct loc_track *t) 3893 { 3894 if (t->max) 3895 free_pages((unsigned long)t->loc, 3896 get_order(sizeof(struct location) * t->max)); 3897 } 3898 3899 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3900 { 3901 struct location *l; 3902 int order; 3903 3904 order = get_order(sizeof(struct location) * max); 3905 3906 l = (void *)__get_free_pages(flags, order); 3907 if (!l) 3908 return 0; 3909 3910 if (t->count) { 3911 memcpy(l, t->loc, sizeof(struct location) * t->count); 3912 free_loc_track(t); 3913 } 3914 t->max = max; 3915 t->loc = l; 3916 return 1; 3917 } 3918 3919 static int add_location(struct loc_track *t, struct kmem_cache *s, 3920 const struct track *track) 3921 { 3922 long start, end, pos; 3923 struct location *l; 3924 unsigned long caddr; 3925 unsigned long age = jiffies - track->when; 3926 3927 start = -1; 3928 end = t->count; 3929 3930 for ( ; ; ) { 3931 pos = start + (end - start + 1) / 2; 3932 3933 /* 3934 * There is nothing at "end". If we end up there 3935 * we need to add something to before end. 3936 */ 3937 if (pos == end) 3938 break; 3939 3940 caddr = t->loc[pos].addr; 3941 if (track->addr == caddr) { 3942 3943 l = &t->loc[pos]; 3944 l->count++; 3945 if (track->when) { 3946 l->sum_time += age; 3947 if (age < l->min_time) 3948 l->min_time = age; 3949 if (age > l->max_time) 3950 l->max_time = age; 3951 3952 if (track->pid < l->min_pid) 3953 l->min_pid = track->pid; 3954 if (track->pid > l->max_pid) 3955 l->max_pid = track->pid; 3956 3957 cpumask_set_cpu(track->cpu, 3958 to_cpumask(l->cpus)); 3959 } 3960 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3961 return 1; 3962 } 3963 3964 if (track->addr < caddr) 3965 end = pos; 3966 else 3967 start = pos; 3968 } 3969 3970 /* 3971 * Not found. Insert new tracking element. 3972 */ 3973 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3974 return 0; 3975 3976 l = t->loc + pos; 3977 if (pos < t->count) 3978 memmove(l + 1, l, 3979 (t->count - pos) * sizeof(struct location)); 3980 t->count++; 3981 l->count = 1; 3982 l->addr = track->addr; 3983 l->sum_time = age; 3984 l->min_time = age; 3985 l->max_time = age; 3986 l->min_pid = track->pid; 3987 l->max_pid = track->pid; 3988 cpumask_clear(to_cpumask(l->cpus)); 3989 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3990 nodes_clear(l->nodes); 3991 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3992 return 1; 3993 } 3994 3995 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3996 struct page *page, enum track_item alloc, 3997 unsigned long *map) 3998 { 3999 void *addr = page_address(page); 4000 void *p; 4001 4002 bitmap_zero(map, page->objects); 4003 get_map(s, page, map); 4004 4005 for_each_object(p, s, addr, page->objects) 4006 if (!test_bit(slab_index(p, s, addr), map)) 4007 add_location(t, s, get_track(s, p, alloc)); 4008 } 4009 4010 static int list_locations(struct kmem_cache *s, char *buf, 4011 enum track_item alloc) 4012 { 4013 int len = 0; 4014 unsigned long i; 4015 struct loc_track t = { 0, 0, NULL }; 4016 int node; 4017 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4018 sizeof(unsigned long), GFP_KERNEL); 4019 struct kmem_cache_node *n; 4020 4021 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4022 GFP_TEMPORARY)) { 4023 kfree(map); 4024 return sprintf(buf, "Out of memory\n"); 4025 } 4026 /* Push back cpu slabs */ 4027 flush_all(s); 4028 4029 for_each_kmem_cache_node(s, node, n) { 4030 unsigned long flags; 4031 struct page *page; 4032 4033 if (!atomic_long_read(&n->nr_slabs)) 4034 continue; 4035 4036 spin_lock_irqsave(&n->list_lock, flags); 4037 list_for_each_entry(page, &n->partial, lru) 4038 process_slab(&t, s, page, alloc, map); 4039 list_for_each_entry(page, &n->full, lru) 4040 process_slab(&t, s, page, alloc, map); 4041 spin_unlock_irqrestore(&n->list_lock, flags); 4042 } 4043 4044 for (i = 0; i < t.count; i++) { 4045 struct location *l = &t.loc[i]; 4046 4047 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4048 break; 4049 len += sprintf(buf + len, "%7ld ", l->count); 4050 4051 if (l->addr) 4052 len += sprintf(buf + len, "%pS", (void *)l->addr); 4053 else 4054 len += sprintf(buf + len, "<not-available>"); 4055 4056 if (l->sum_time != l->min_time) { 4057 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4058 l->min_time, 4059 (long)div_u64(l->sum_time, l->count), 4060 l->max_time); 4061 } else 4062 len += sprintf(buf + len, " age=%ld", 4063 l->min_time); 4064 4065 if (l->min_pid != l->max_pid) 4066 len += sprintf(buf + len, " pid=%ld-%ld", 4067 l->min_pid, l->max_pid); 4068 else 4069 len += sprintf(buf + len, " pid=%ld", 4070 l->min_pid); 4071 4072 if (num_online_cpus() > 1 && 4073 !cpumask_empty(to_cpumask(l->cpus)) && 4074 len < PAGE_SIZE - 60) { 4075 len += sprintf(buf + len, " cpus="); 4076 len += cpulist_scnprintf(buf + len, 4077 PAGE_SIZE - len - 50, 4078 to_cpumask(l->cpus)); 4079 } 4080 4081 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4082 len < PAGE_SIZE - 60) { 4083 len += sprintf(buf + len, " nodes="); 4084 len += nodelist_scnprintf(buf + len, 4085 PAGE_SIZE - len - 50, 4086 l->nodes); 4087 } 4088 4089 len += sprintf(buf + len, "\n"); 4090 } 4091 4092 free_loc_track(&t); 4093 kfree(map); 4094 if (!t.count) 4095 len += sprintf(buf, "No data\n"); 4096 return len; 4097 } 4098 #endif 4099 4100 #ifdef SLUB_RESILIENCY_TEST 4101 static void __init resiliency_test(void) 4102 { 4103 u8 *p; 4104 4105 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4106 4107 pr_err("SLUB resiliency testing\n"); 4108 pr_err("-----------------------\n"); 4109 pr_err("A. Corruption after allocation\n"); 4110 4111 p = kzalloc(16, GFP_KERNEL); 4112 p[16] = 0x12; 4113 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4114 p + 16); 4115 4116 validate_slab_cache(kmalloc_caches[4]); 4117 4118 /* Hmmm... The next two are dangerous */ 4119 p = kzalloc(32, GFP_KERNEL); 4120 p[32 + sizeof(void *)] = 0x34; 4121 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4122 p); 4123 pr_err("If allocated object is overwritten then not detectable\n\n"); 4124 4125 validate_slab_cache(kmalloc_caches[5]); 4126 p = kzalloc(64, GFP_KERNEL); 4127 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4128 *p = 0x56; 4129 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4130 p); 4131 pr_err("If allocated object is overwritten then not detectable\n\n"); 4132 validate_slab_cache(kmalloc_caches[6]); 4133 4134 pr_err("\nB. Corruption after free\n"); 4135 p = kzalloc(128, GFP_KERNEL); 4136 kfree(p); 4137 *p = 0x78; 4138 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4139 validate_slab_cache(kmalloc_caches[7]); 4140 4141 p = kzalloc(256, GFP_KERNEL); 4142 kfree(p); 4143 p[50] = 0x9a; 4144 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4145 validate_slab_cache(kmalloc_caches[8]); 4146 4147 p = kzalloc(512, GFP_KERNEL); 4148 kfree(p); 4149 p[512] = 0xab; 4150 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4151 validate_slab_cache(kmalloc_caches[9]); 4152 } 4153 #else 4154 #ifdef CONFIG_SYSFS 4155 static void resiliency_test(void) {}; 4156 #endif 4157 #endif 4158 4159 #ifdef CONFIG_SYSFS 4160 enum slab_stat_type { 4161 SL_ALL, /* All slabs */ 4162 SL_PARTIAL, /* Only partially allocated slabs */ 4163 SL_CPU, /* Only slabs used for cpu caches */ 4164 SL_OBJECTS, /* Determine allocated objects not slabs */ 4165 SL_TOTAL /* Determine object capacity not slabs */ 4166 }; 4167 4168 #define SO_ALL (1 << SL_ALL) 4169 #define SO_PARTIAL (1 << SL_PARTIAL) 4170 #define SO_CPU (1 << SL_CPU) 4171 #define SO_OBJECTS (1 << SL_OBJECTS) 4172 #define SO_TOTAL (1 << SL_TOTAL) 4173 4174 static ssize_t show_slab_objects(struct kmem_cache *s, 4175 char *buf, unsigned long flags) 4176 { 4177 unsigned long total = 0; 4178 int node; 4179 int x; 4180 unsigned long *nodes; 4181 4182 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4183 if (!nodes) 4184 return -ENOMEM; 4185 4186 if (flags & SO_CPU) { 4187 int cpu; 4188 4189 for_each_possible_cpu(cpu) { 4190 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4191 cpu); 4192 int node; 4193 struct page *page; 4194 4195 page = ACCESS_ONCE(c->page); 4196 if (!page) 4197 continue; 4198 4199 node = page_to_nid(page); 4200 if (flags & SO_TOTAL) 4201 x = page->objects; 4202 else if (flags & SO_OBJECTS) 4203 x = page->inuse; 4204 else 4205 x = 1; 4206 4207 total += x; 4208 nodes[node] += x; 4209 4210 page = ACCESS_ONCE(c->partial); 4211 if (page) { 4212 node = page_to_nid(page); 4213 if (flags & SO_TOTAL) 4214 WARN_ON_ONCE(1); 4215 else if (flags & SO_OBJECTS) 4216 WARN_ON_ONCE(1); 4217 else 4218 x = page->pages; 4219 total += x; 4220 nodes[node] += x; 4221 } 4222 } 4223 } 4224 4225 get_online_mems(); 4226 #ifdef CONFIG_SLUB_DEBUG 4227 if (flags & SO_ALL) { 4228 struct kmem_cache_node *n; 4229 4230 for_each_kmem_cache_node(s, node, n) { 4231 4232 if (flags & SO_TOTAL) 4233 x = atomic_long_read(&n->total_objects); 4234 else if (flags & SO_OBJECTS) 4235 x = atomic_long_read(&n->total_objects) - 4236 count_partial(n, count_free); 4237 else 4238 x = atomic_long_read(&n->nr_slabs); 4239 total += x; 4240 nodes[node] += x; 4241 } 4242 4243 } else 4244 #endif 4245 if (flags & SO_PARTIAL) { 4246 struct kmem_cache_node *n; 4247 4248 for_each_kmem_cache_node(s, node, n) { 4249 if (flags & SO_TOTAL) 4250 x = count_partial(n, count_total); 4251 else if (flags & SO_OBJECTS) 4252 x = count_partial(n, count_inuse); 4253 else 4254 x = n->nr_partial; 4255 total += x; 4256 nodes[node] += x; 4257 } 4258 } 4259 x = sprintf(buf, "%lu", total); 4260 #ifdef CONFIG_NUMA 4261 for (node = 0; node < nr_node_ids; node++) 4262 if (nodes[node]) 4263 x += sprintf(buf + x, " N%d=%lu", 4264 node, nodes[node]); 4265 #endif 4266 put_online_mems(); 4267 kfree(nodes); 4268 return x + sprintf(buf + x, "\n"); 4269 } 4270 4271 #ifdef CONFIG_SLUB_DEBUG 4272 static int any_slab_objects(struct kmem_cache *s) 4273 { 4274 int node; 4275 struct kmem_cache_node *n; 4276 4277 for_each_kmem_cache_node(s, node, n) 4278 if (atomic_long_read(&n->total_objects)) 4279 return 1; 4280 4281 return 0; 4282 } 4283 #endif 4284 4285 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4286 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4287 4288 struct slab_attribute { 4289 struct attribute attr; 4290 ssize_t (*show)(struct kmem_cache *s, char *buf); 4291 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4292 }; 4293 4294 #define SLAB_ATTR_RO(_name) \ 4295 static struct slab_attribute _name##_attr = \ 4296 __ATTR(_name, 0400, _name##_show, NULL) 4297 4298 #define SLAB_ATTR(_name) \ 4299 static struct slab_attribute _name##_attr = \ 4300 __ATTR(_name, 0600, _name##_show, _name##_store) 4301 4302 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4303 { 4304 return sprintf(buf, "%d\n", s->size); 4305 } 4306 SLAB_ATTR_RO(slab_size); 4307 4308 static ssize_t align_show(struct kmem_cache *s, char *buf) 4309 { 4310 return sprintf(buf, "%d\n", s->align); 4311 } 4312 SLAB_ATTR_RO(align); 4313 4314 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4315 { 4316 return sprintf(buf, "%d\n", s->object_size); 4317 } 4318 SLAB_ATTR_RO(object_size); 4319 4320 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4321 { 4322 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4323 } 4324 SLAB_ATTR_RO(objs_per_slab); 4325 4326 static ssize_t order_store(struct kmem_cache *s, 4327 const char *buf, size_t length) 4328 { 4329 unsigned long order; 4330 int err; 4331 4332 err = kstrtoul(buf, 10, &order); 4333 if (err) 4334 return err; 4335 4336 if (order > slub_max_order || order < slub_min_order) 4337 return -EINVAL; 4338 4339 calculate_sizes(s, order); 4340 return length; 4341 } 4342 4343 static ssize_t order_show(struct kmem_cache *s, char *buf) 4344 { 4345 return sprintf(buf, "%d\n", oo_order(s->oo)); 4346 } 4347 SLAB_ATTR(order); 4348 4349 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4350 { 4351 return sprintf(buf, "%lu\n", s->min_partial); 4352 } 4353 4354 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4355 size_t length) 4356 { 4357 unsigned long min; 4358 int err; 4359 4360 err = kstrtoul(buf, 10, &min); 4361 if (err) 4362 return err; 4363 4364 set_min_partial(s, min); 4365 return length; 4366 } 4367 SLAB_ATTR(min_partial); 4368 4369 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4370 { 4371 return sprintf(buf, "%u\n", s->cpu_partial); 4372 } 4373 4374 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4375 size_t length) 4376 { 4377 unsigned long objects; 4378 int err; 4379 4380 err = kstrtoul(buf, 10, &objects); 4381 if (err) 4382 return err; 4383 if (objects && !kmem_cache_has_cpu_partial(s)) 4384 return -EINVAL; 4385 4386 s->cpu_partial = objects; 4387 flush_all(s); 4388 return length; 4389 } 4390 SLAB_ATTR(cpu_partial); 4391 4392 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4393 { 4394 if (!s->ctor) 4395 return 0; 4396 return sprintf(buf, "%pS\n", s->ctor); 4397 } 4398 SLAB_ATTR_RO(ctor); 4399 4400 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4401 { 4402 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4403 } 4404 SLAB_ATTR_RO(aliases); 4405 4406 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4407 { 4408 return show_slab_objects(s, buf, SO_PARTIAL); 4409 } 4410 SLAB_ATTR_RO(partial); 4411 4412 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4413 { 4414 return show_slab_objects(s, buf, SO_CPU); 4415 } 4416 SLAB_ATTR_RO(cpu_slabs); 4417 4418 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4419 { 4420 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4421 } 4422 SLAB_ATTR_RO(objects); 4423 4424 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4425 { 4426 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4427 } 4428 SLAB_ATTR_RO(objects_partial); 4429 4430 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4431 { 4432 int objects = 0; 4433 int pages = 0; 4434 int cpu; 4435 int len; 4436 4437 for_each_online_cpu(cpu) { 4438 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4439 4440 if (page) { 4441 pages += page->pages; 4442 objects += page->pobjects; 4443 } 4444 } 4445 4446 len = sprintf(buf, "%d(%d)", objects, pages); 4447 4448 #ifdef CONFIG_SMP 4449 for_each_online_cpu(cpu) { 4450 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4451 4452 if (page && len < PAGE_SIZE - 20) 4453 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4454 page->pobjects, page->pages); 4455 } 4456 #endif 4457 return len + sprintf(buf + len, "\n"); 4458 } 4459 SLAB_ATTR_RO(slabs_cpu_partial); 4460 4461 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4462 { 4463 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4464 } 4465 4466 static ssize_t reclaim_account_store(struct kmem_cache *s, 4467 const char *buf, size_t length) 4468 { 4469 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4470 if (buf[0] == '1') 4471 s->flags |= SLAB_RECLAIM_ACCOUNT; 4472 return length; 4473 } 4474 SLAB_ATTR(reclaim_account); 4475 4476 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4477 { 4478 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4479 } 4480 SLAB_ATTR_RO(hwcache_align); 4481 4482 #ifdef CONFIG_ZONE_DMA 4483 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4484 { 4485 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4486 } 4487 SLAB_ATTR_RO(cache_dma); 4488 #endif 4489 4490 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4491 { 4492 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4493 } 4494 SLAB_ATTR_RO(destroy_by_rcu); 4495 4496 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4497 { 4498 return sprintf(buf, "%d\n", s->reserved); 4499 } 4500 SLAB_ATTR_RO(reserved); 4501 4502 #ifdef CONFIG_SLUB_DEBUG 4503 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4504 { 4505 return show_slab_objects(s, buf, SO_ALL); 4506 } 4507 SLAB_ATTR_RO(slabs); 4508 4509 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4510 { 4511 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4512 } 4513 SLAB_ATTR_RO(total_objects); 4514 4515 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4516 { 4517 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4518 } 4519 4520 static ssize_t sanity_checks_store(struct kmem_cache *s, 4521 const char *buf, size_t length) 4522 { 4523 s->flags &= ~SLAB_DEBUG_FREE; 4524 if (buf[0] == '1') { 4525 s->flags &= ~__CMPXCHG_DOUBLE; 4526 s->flags |= SLAB_DEBUG_FREE; 4527 } 4528 return length; 4529 } 4530 SLAB_ATTR(sanity_checks); 4531 4532 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4533 { 4534 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4535 } 4536 4537 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4538 size_t length) 4539 { 4540 /* 4541 * Tracing a merged cache is going to give confusing results 4542 * as well as cause other issues like converting a mergeable 4543 * cache into an umergeable one. 4544 */ 4545 if (s->refcount > 1) 4546 return -EINVAL; 4547 4548 s->flags &= ~SLAB_TRACE; 4549 if (buf[0] == '1') { 4550 s->flags &= ~__CMPXCHG_DOUBLE; 4551 s->flags |= SLAB_TRACE; 4552 } 4553 return length; 4554 } 4555 SLAB_ATTR(trace); 4556 4557 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4558 { 4559 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4560 } 4561 4562 static ssize_t red_zone_store(struct kmem_cache *s, 4563 const char *buf, size_t length) 4564 { 4565 if (any_slab_objects(s)) 4566 return -EBUSY; 4567 4568 s->flags &= ~SLAB_RED_ZONE; 4569 if (buf[0] == '1') { 4570 s->flags &= ~__CMPXCHG_DOUBLE; 4571 s->flags |= SLAB_RED_ZONE; 4572 } 4573 calculate_sizes(s, -1); 4574 return length; 4575 } 4576 SLAB_ATTR(red_zone); 4577 4578 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4579 { 4580 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4581 } 4582 4583 static ssize_t poison_store(struct kmem_cache *s, 4584 const char *buf, size_t length) 4585 { 4586 if (any_slab_objects(s)) 4587 return -EBUSY; 4588 4589 s->flags &= ~SLAB_POISON; 4590 if (buf[0] == '1') { 4591 s->flags &= ~__CMPXCHG_DOUBLE; 4592 s->flags |= SLAB_POISON; 4593 } 4594 calculate_sizes(s, -1); 4595 return length; 4596 } 4597 SLAB_ATTR(poison); 4598 4599 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4600 { 4601 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4602 } 4603 4604 static ssize_t store_user_store(struct kmem_cache *s, 4605 const char *buf, size_t length) 4606 { 4607 if (any_slab_objects(s)) 4608 return -EBUSY; 4609 4610 s->flags &= ~SLAB_STORE_USER; 4611 if (buf[0] == '1') { 4612 s->flags &= ~__CMPXCHG_DOUBLE; 4613 s->flags |= SLAB_STORE_USER; 4614 } 4615 calculate_sizes(s, -1); 4616 return length; 4617 } 4618 SLAB_ATTR(store_user); 4619 4620 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4621 { 4622 return 0; 4623 } 4624 4625 static ssize_t validate_store(struct kmem_cache *s, 4626 const char *buf, size_t length) 4627 { 4628 int ret = -EINVAL; 4629 4630 if (buf[0] == '1') { 4631 ret = validate_slab_cache(s); 4632 if (ret >= 0) 4633 ret = length; 4634 } 4635 return ret; 4636 } 4637 SLAB_ATTR(validate); 4638 4639 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4640 { 4641 if (!(s->flags & SLAB_STORE_USER)) 4642 return -ENOSYS; 4643 return list_locations(s, buf, TRACK_ALLOC); 4644 } 4645 SLAB_ATTR_RO(alloc_calls); 4646 4647 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4648 { 4649 if (!(s->flags & SLAB_STORE_USER)) 4650 return -ENOSYS; 4651 return list_locations(s, buf, TRACK_FREE); 4652 } 4653 SLAB_ATTR_RO(free_calls); 4654 #endif /* CONFIG_SLUB_DEBUG */ 4655 4656 #ifdef CONFIG_FAILSLAB 4657 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4658 { 4659 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4660 } 4661 4662 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4663 size_t length) 4664 { 4665 if (s->refcount > 1) 4666 return -EINVAL; 4667 4668 s->flags &= ~SLAB_FAILSLAB; 4669 if (buf[0] == '1') 4670 s->flags |= SLAB_FAILSLAB; 4671 return length; 4672 } 4673 SLAB_ATTR(failslab); 4674 #endif 4675 4676 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4677 { 4678 return 0; 4679 } 4680 4681 static ssize_t shrink_store(struct kmem_cache *s, 4682 const char *buf, size_t length) 4683 { 4684 if (buf[0] == '1') { 4685 int rc = kmem_cache_shrink(s); 4686 4687 if (rc) 4688 return rc; 4689 } else 4690 return -EINVAL; 4691 return length; 4692 } 4693 SLAB_ATTR(shrink); 4694 4695 #ifdef CONFIG_NUMA 4696 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4697 { 4698 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4699 } 4700 4701 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4702 const char *buf, size_t length) 4703 { 4704 unsigned long ratio; 4705 int err; 4706 4707 err = kstrtoul(buf, 10, &ratio); 4708 if (err) 4709 return err; 4710 4711 if (ratio <= 100) 4712 s->remote_node_defrag_ratio = ratio * 10; 4713 4714 return length; 4715 } 4716 SLAB_ATTR(remote_node_defrag_ratio); 4717 #endif 4718 4719 #ifdef CONFIG_SLUB_STATS 4720 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4721 { 4722 unsigned long sum = 0; 4723 int cpu; 4724 int len; 4725 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4726 4727 if (!data) 4728 return -ENOMEM; 4729 4730 for_each_online_cpu(cpu) { 4731 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4732 4733 data[cpu] = x; 4734 sum += x; 4735 } 4736 4737 len = sprintf(buf, "%lu", sum); 4738 4739 #ifdef CONFIG_SMP 4740 for_each_online_cpu(cpu) { 4741 if (data[cpu] && len < PAGE_SIZE - 20) 4742 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4743 } 4744 #endif 4745 kfree(data); 4746 return len + sprintf(buf + len, "\n"); 4747 } 4748 4749 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4750 { 4751 int cpu; 4752 4753 for_each_online_cpu(cpu) 4754 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4755 } 4756 4757 #define STAT_ATTR(si, text) \ 4758 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4759 { \ 4760 return show_stat(s, buf, si); \ 4761 } \ 4762 static ssize_t text##_store(struct kmem_cache *s, \ 4763 const char *buf, size_t length) \ 4764 { \ 4765 if (buf[0] != '0') \ 4766 return -EINVAL; \ 4767 clear_stat(s, si); \ 4768 return length; \ 4769 } \ 4770 SLAB_ATTR(text); \ 4771 4772 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4773 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4774 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4775 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4776 STAT_ATTR(FREE_FROZEN, free_frozen); 4777 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4778 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4779 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4780 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4781 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4782 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4783 STAT_ATTR(FREE_SLAB, free_slab); 4784 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4785 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4786 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4787 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4788 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4789 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4790 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4791 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4792 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4793 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4794 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4795 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4796 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4797 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4798 #endif 4799 4800 static struct attribute *slab_attrs[] = { 4801 &slab_size_attr.attr, 4802 &object_size_attr.attr, 4803 &objs_per_slab_attr.attr, 4804 &order_attr.attr, 4805 &min_partial_attr.attr, 4806 &cpu_partial_attr.attr, 4807 &objects_attr.attr, 4808 &objects_partial_attr.attr, 4809 &partial_attr.attr, 4810 &cpu_slabs_attr.attr, 4811 &ctor_attr.attr, 4812 &aliases_attr.attr, 4813 &align_attr.attr, 4814 &hwcache_align_attr.attr, 4815 &reclaim_account_attr.attr, 4816 &destroy_by_rcu_attr.attr, 4817 &shrink_attr.attr, 4818 &reserved_attr.attr, 4819 &slabs_cpu_partial_attr.attr, 4820 #ifdef CONFIG_SLUB_DEBUG 4821 &total_objects_attr.attr, 4822 &slabs_attr.attr, 4823 &sanity_checks_attr.attr, 4824 &trace_attr.attr, 4825 &red_zone_attr.attr, 4826 &poison_attr.attr, 4827 &store_user_attr.attr, 4828 &validate_attr.attr, 4829 &alloc_calls_attr.attr, 4830 &free_calls_attr.attr, 4831 #endif 4832 #ifdef CONFIG_ZONE_DMA 4833 &cache_dma_attr.attr, 4834 #endif 4835 #ifdef CONFIG_NUMA 4836 &remote_node_defrag_ratio_attr.attr, 4837 #endif 4838 #ifdef CONFIG_SLUB_STATS 4839 &alloc_fastpath_attr.attr, 4840 &alloc_slowpath_attr.attr, 4841 &free_fastpath_attr.attr, 4842 &free_slowpath_attr.attr, 4843 &free_frozen_attr.attr, 4844 &free_add_partial_attr.attr, 4845 &free_remove_partial_attr.attr, 4846 &alloc_from_partial_attr.attr, 4847 &alloc_slab_attr.attr, 4848 &alloc_refill_attr.attr, 4849 &alloc_node_mismatch_attr.attr, 4850 &free_slab_attr.attr, 4851 &cpuslab_flush_attr.attr, 4852 &deactivate_full_attr.attr, 4853 &deactivate_empty_attr.attr, 4854 &deactivate_to_head_attr.attr, 4855 &deactivate_to_tail_attr.attr, 4856 &deactivate_remote_frees_attr.attr, 4857 &deactivate_bypass_attr.attr, 4858 &order_fallback_attr.attr, 4859 &cmpxchg_double_fail_attr.attr, 4860 &cmpxchg_double_cpu_fail_attr.attr, 4861 &cpu_partial_alloc_attr.attr, 4862 &cpu_partial_free_attr.attr, 4863 &cpu_partial_node_attr.attr, 4864 &cpu_partial_drain_attr.attr, 4865 #endif 4866 #ifdef CONFIG_FAILSLAB 4867 &failslab_attr.attr, 4868 #endif 4869 4870 NULL 4871 }; 4872 4873 static struct attribute_group slab_attr_group = { 4874 .attrs = slab_attrs, 4875 }; 4876 4877 static ssize_t slab_attr_show(struct kobject *kobj, 4878 struct attribute *attr, 4879 char *buf) 4880 { 4881 struct slab_attribute *attribute; 4882 struct kmem_cache *s; 4883 int err; 4884 4885 attribute = to_slab_attr(attr); 4886 s = to_slab(kobj); 4887 4888 if (!attribute->show) 4889 return -EIO; 4890 4891 err = attribute->show(s, buf); 4892 4893 return err; 4894 } 4895 4896 static ssize_t slab_attr_store(struct kobject *kobj, 4897 struct attribute *attr, 4898 const char *buf, size_t len) 4899 { 4900 struct slab_attribute *attribute; 4901 struct kmem_cache *s; 4902 int err; 4903 4904 attribute = to_slab_attr(attr); 4905 s = to_slab(kobj); 4906 4907 if (!attribute->store) 4908 return -EIO; 4909 4910 err = attribute->store(s, buf, len); 4911 #ifdef CONFIG_MEMCG_KMEM 4912 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 4913 int i; 4914 4915 mutex_lock(&slab_mutex); 4916 if (s->max_attr_size < len) 4917 s->max_attr_size = len; 4918 4919 /* 4920 * This is a best effort propagation, so this function's return 4921 * value will be determined by the parent cache only. This is 4922 * basically because not all attributes will have a well 4923 * defined semantics for rollbacks - most of the actions will 4924 * have permanent effects. 4925 * 4926 * Returning the error value of any of the children that fail 4927 * is not 100 % defined, in the sense that users seeing the 4928 * error code won't be able to know anything about the state of 4929 * the cache. 4930 * 4931 * Only returning the error code for the parent cache at least 4932 * has well defined semantics. The cache being written to 4933 * directly either failed or succeeded, in which case we loop 4934 * through the descendants with best-effort propagation. 4935 */ 4936 for_each_memcg_cache_index(i) { 4937 struct kmem_cache *c = cache_from_memcg_idx(s, i); 4938 if (c) 4939 attribute->store(c, buf, len); 4940 } 4941 mutex_unlock(&slab_mutex); 4942 } 4943 #endif 4944 return err; 4945 } 4946 4947 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 4948 { 4949 #ifdef CONFIG_MEMCG_KMEM 4950 int i; 4951 char *buffer = NULL; 4952 struct kmem_cache *root_cache; 4953 4954 if (is_root_cache(s)) 4955 return; 4956 4957 root_cache = s->memcg_params->root_cache; 4958 4959 /* 4960 * This mean this cache had no attribute written. Therefore, no point 4961 * in copying default values around 4962 */ 4963 if (!root_cache->max_attr_size) 4964 return; 4965 4966 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 4967 char mbuf[64]; 4968 char *buf; 4969 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 4970 4971 if (!attr || !attr->store || !attr->show) 4972 continue; 4973 4974 /* 4975 * It is really bad that we have to allocate here, so we will 4976 * do it only as a fallback. If we actually allocate, though, 4977 * we can just use the allocated buffer until the end. 4978 * 4979 * Most of the slub attributes will tend to be very small in 4980 * size, but sysfs allows buffers up to a page, so they can 4981 * theoretically happen. 4982 */ 4983 if (buffer) 4984 buf = buffer; 4985 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 4986 buf = mbuf; 4987 else { 4988 buffer = (char *) get_zeroed_page(GFP_KERNEL); 4989 if (WARN_ON(!buffer)) 4990 continue; 4991 buf = buffer; 4992 } 4993 4994 attr->show(root_cache, buf); 4995 attr->store(s, buf, strlen(buf)); 4996 } 4997 4998 if (buffer) 4999 free_page((unsigned long)buffer); 5000 #endif 5001 } 5002 5003 static void kmem_cache_release(struct kobject *k) 5004 { 5005 slab_kmem_cache_release(to_slab(k)); 5006 } 5007 5008 static const struct sysfs_ops slab_sysfs_ops = { 5009 .show = slab_attr_show, 5010 .store = slab_attr_store, 5011 }; 5012 5013 static struct kobj_type slab_ktype = { 5014 .sysfs_ops = &slab_sysfs_ops, 5015 .release = kmem_cache_release, 5016 }; 5017 5018 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5019 { 5020 struct kobj_type *ktype = get_ktype(kobj); 5021 5022 if (ktype == &slab_ktype) 5023 return 1; 5024 return 0; 5025 } 5026 5027 static const struct kset_uevent_ops slab_uevent_ops = { 5028 .filter = uevent_filter, 5029 }; 5030 5031 static struct kset *slab_kset; 5032 5033 static inline struct kset *cache_kset(struct kmem_cache *s) 5034 { 5035 #ifdef CONFIG_MEMCG_KMEM 5036 if (!is_root_cache(s)) 5037 return s->memcg_params->root_cache->memcg_kset; 5038 #endif 5039 return slab_kset; 5040 } 5041 5042 #define ID_STR_LENGTH 64 5043 5044 /* Create a unique string id for a slab cache: 5045 * 5046 * Format :[flags-]size 5047 */ 5048 static char *create_unique_id(struct kmem_cache *s) 5049 { 5050 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5051 char *p = name; 5052 5053 BUG_ON(!name); 5054 5055 *p++ = ':'; 5056 /* 5057 * First flags affecting slabcache operations. We will only 5058 * get here for aliasable slabs so we do not need to support 5059 * too many flags. The flags here must cover all flags that 5060 * are matched during merging to guarantee that the id is 5061 * unique. 5062 */ 5063 if (s->flags & SLAB_CACHE_DMA) 5064 *p++ = 'd'; 5065 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5066 *p++ = 'a'; 5067 if (s->flags & SLAB_DEBUG_FREE) 5068 *p++ = 'F'; 5069 if (!(s->flags & SLAB_NOTRACK)) 5070 *p++ = 't'; 5071 if (p != name + 1) 5072 *p++ = '-'; 5073 p += sprintf(p, "%07d", s->size); 5074 5075 BUG_ON(p > name + ID_STR_LENGTH - 1); 5076 return name; 5077 } 5078 5079 static int sysfs_slab_add(struct kmem_cache *s) 5080 { 5081 int err; 5082 const char *name; 5083 int unmergeable = slab_unmergeable(s); 5084 5085 if (unmergeable) { 5086 /* 5087 * Slabcache can never be merged so we can use the name proper. 5088 * This is typically the case for debug situations. In that 5089 * case we can catch duplicate names easily. 5090 */ 5091 sysfs_remove_link(&slab_kset->kobj, s->name); 5092 name = s->name; 5093 } else { 5094 /* 5095 * Create a unique name for the slab as a target 5096 * for the symlinks. 5097 */ 5098 name = create_unique_id(s); 5099 } 5100 5101 s->kobj.kset = cache_kset(s); 5102 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5103 if (err) 5104 goto out_put_kobj; 5105 5106 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5107 if (err) 5108 goto out_del_kobj; 5109 5110 #ifdef CONFIG_MEMCG_KMEM 5111 if (is_root_cache(s)) { 5112 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5113 if (!s->memcg_kset) { 5114 err = -ENOMEM; 5115 goto out_del_kobj; 5116 } 5117 } 5118 #endif 5119 5120 kobject_uevent(&s->kobj, KOBJ_ADD); 5121 if (!unmergeable) { 5122 /* Setup first alias */ 5123 sysfs_slab_alias(s, s->name); 5124 } 5125 out: 5126 if (!unmergeable) 5127 kfree(name); 5128 return err; 5129 out_del_kobj: 5130 kobject_del(&s->kobj); 5131 out_put_kobj: 5132 kobject_put(&s->kobj); 5133 goto out; 5134 } 5135 5136 void sysfs_slab_remove(struct kmem_cache *s) 5137 { 5138 if (slab_state < FULL) 5139 /* 5140 * Sysfs has not been setup yet so no need to remove the 5141 * cache from sysfs. 5142 */ 5143 return; 5144 5145 #ifdef CONFIG_MEMCG_KMEM 5146 kset_unregister(s->memcg_kset); 5147 #endif 5148 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5149 kobject_del(&s->kobj); 5150 kobject_put(&s->kobj); 5151 } 5152 5153 /* 5154 * Need to buffer aliases during bootup until sysfs becomes 5155 * available lest we lose that information. 5156 */ 5157 struct saved_alias { 5158 struct kmem_cache *s; 5159 const char *name; 5160 struct saved_alias *next; 5161 }; 5162 5163 static struct saved_alias *alias_list; 5164 5165 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5166 { 5167 struct saved_alias *al; 5168 5169 if (slab_state == FULL) { 5170 /* 5171 * If we have a leftover link then remove it. 5172 */ 5173 sysfs_remove_link(&slab_kset->kobj, name); 5174 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5175 } 5176 5177 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5178 if (!al) 5179 return -ENOMEM; 5180 5181 al->s = s; 5182 al->name = name; 5183 al->next = alias_list; 5184 alias_list = al; 5185 return 0; 5186 } 5187 5188 static int __init slab_sysfs_init(void) 5189 { 5190 struct kmem_cache *s; 5191 int err; 5192 5193 mutex_lock(&slab_mutex); 5194 5195 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5196 if (!slab_kset) { 5197 mutex_unlock(&slab_mutex); 5198 pr_err("Cannot register slab subsystem.\n"); 5199 return -ENOSYS; 5200 } 5201 5202 slab_state = FULL; 5203 5204 list_for_each_entry(s, &slab_caches, list) { 5205 err = sysfs_slab_add(s); 5206 if (err) 5207 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5208 s->name); 5209 } 5210 5211 while (alias_list) { 5212 struct saved_alias *al = alias_list; 5213 5214 alias_list = alias_list->next; 5215 err = sysfs_slab_alias(al->s, al->name); 5216 if (err) 5217 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5218 al->name); 5219 kfree(al); 5220 } 5221 5222 mutex_unlock(&slab_mutex); 5223 resiliency_test(); 5224 return 0; 5225 } 5226 5227 __initcall(slab_sysfs_init); 5228 #endif /* CONFIG_SYSFS */ 5229 5230 /* 5231 * The /proc/slabinfo ABI 5232 */ 5233 #ifdef CONFIG_SLABINFO 5234 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5235 { 5236 unsigned long nr_slabs = 0; 5237 unsigned long nr_objs = 0; 5238 unsigned long nr_free = 0; 5239 int node; 5240 struct kmem_cache_node *n; 5241 5242 for_each_kmem_cache_node(s, node, n) { 5243 nr_slabs += node_nr_slabs(n); 5244 nr_objs += node_nr_objs(n); 5245 nr_free += count_partial(n, count_free); 5246 } 5247 5248 sinfo->active_objs = nr_objs - nr_free; 5249 sinfo->num_objs = nr_objs; 5250 sinfo->active_slabs = nr_slabs; 5251 sinfo->num_slabs = nr_slabs; 5252 sinfo->objects_per_slab = oo_objects(s->oo); 5253 sinfo->cache_order = oo_order(s->oo); 5254 } 5255 5256 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5257 { 5258 } 5259 5260 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5261 size_t count, loff_t *ppos) 5262 { 5263 return -EIO; 5264 } 5265 #endif /* CONFIG_SLABINFO */ 5266