xref: /linux/mm/slub.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 	return !kmem_cache_debug(s);
130 #else
131 	return false;
132 #endif
133 }
134 
135 /*
136  * Issues still to be resolved:
137  *
138  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139  *
140  * - Variable sizing of the per node arrays
141  */
142 
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145 
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148 
149 /*
150  * Mininum number of partial slabs. These will be left on the partial
151  * lists even if they are empty. kmem_cache_shrink may reclaim them.
152  */
153 #define MIN_PARTIAL 5
154 
155 /*
156  * Maximum number of desirable partial slabs.
157  * The existence of more partial slabs makes kmem_cache_shrink
158  * sort the partial list by the number of objects in use.
159  */
160 #define MAX_PARTIAL 10
161 
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 				SLAB_POISON | SLAB_STORE_USER)
164 
165 /*
166  * Debugging flags that require metadata to be stored in the slab.  These get
167  * disabled when slub_debug=O is used and a cache's min order increases with
168  * metadata.
169  */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171 
172 #define OO_SHIFT	16
173 #define OO_MASK		((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
175 
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON		0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
179 
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183 
184 /*
185  * Tracking user of a slab.
186  */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 	unsigned long addr;	/* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
192 #endif
193 	int cpu;		/* Was running on cpu */
194 	int pid;		/* Pid context */
195 	unsigned long when;	/* When did the operation occur */
196 };
197 
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199 
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
204 #else
205 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 							{ return 0; }
208 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
209 #endif
210 
211 static inline void stat(const struct kmem_cache *s, enum stat_item si)
212 {
213 #ifdef CONFIG_SLUB_STATS
214 	/*
215 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 	 * avoid this_cpu_add()'s irq-disable overhead.
217 	 */
218 	raw_cpu_inc(s->cpu_slab->stat[si]);
219 #endif
220 }
221 
222 /********************************************************************
223  * 			Core slab cache functions
224  *******************************************************************/
225 
226 /* Verify that a pointer has an address that is valid within a slab page */
227 static inline int check_valid_pointer(struct kmem_cache *s,
228 				struct page *page, const void *object)
229 {
230 	void *base;
231 
232 	if (!object)
233 		return 1;
234 
235 	base = page_address(page);
236 	if (object < base || object >= base + page->objects * s->size ||
237 		(object - base) % s->size) {
238 		return 0;
239 	}
240 
241 	return 1;
242 }
243 
244 static inline void *get_freepointer(struct kmem_cache *s, void *object)
245 {
246 	return *(void **)(object + s->offset);
247 }
248 
249 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250 {
251 	prefetch(object + s->offset);
252 }
253 
254 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255 {
256 	void *p;
257 
258 #ifdef CONFIG_DEBUG_PAGEALLOC
259 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260 #else
261 	p = get_freepointer(s, object);
262 #endif
263 	return p;
264 }
265 
266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267 {
268 	*(void **)(object + s->offset) = fp;
269 }
270 
271 /* Loop over all objects in a slab */
272 #define for_each_object(__p, __s, __addr, __objects) \
273 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 			__p += (__s)->size)
275 
276 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 	for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 			__p += (__s)->size, __idx++)
279 
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 	return (p - addr) / s->size;
284 }
285 
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 	/*
290 	 * Debugging requires use of the padding between object
291 	 * and whatever may come after it.
292 	 */
293 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 		return s->object_size;
295 
296 #endif
297 	/*
298 	 * If we have the need to store the freelist pointer
299 	 * back there or track user information then we can
300 	 * only use the space before that information.
301 	 */
302 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 		return s->inuse;
304 	/*
305 	 * Else we can use all the padding etc for the allocation
306 	 */
307 	return s->size;
308 }
309 
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 	return ((PAGE_SIZE << order) - reserved) / size;
313 }
314 
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 		unsigned long size, int reserved)
317 {
318 	struct kmem_cache_order_objects x = {
319 		(order << OO_SHIFT) + order_objects(order, size, reserved)
320 	};
321 
322 	return x;
323 }
324 
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 	return x.x >> OO_SHIFT;
328 }
329 
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 	return x.x & OO_MASK;
333 }
334 
335 /*
336  * Per slab locking using the pagelock
337  */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 	bit_spin_lock(PG_locked, &page->flags);
341 }
342 
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 	__bit_spin_unlock(PG_locked, &page->flags);
346 }
347 
348 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349 {
350 	struct page tmp;
351 	tmp.counters = counters_new;
352 	/*
353 	 * page->counters can cover frozen/inuse/objects as well
354 	 * as page->_count.  If we assign to ->counters directly
355 	 * we run the risk of losing updates to page->_count, so
356 	 * be careful and only assign to the fields we need.
357 	 */
358 	page->frozen  = tmp.frozen;
359 	page->inuse   = tmp.inuse;
360 	page->objects = tmp.objects;
361 }
362 
363 /* Interrupts must be disabled (for the fallback code to work right) */
364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 		void *freelist_old, unsigned long counters_old,
366 		void *freelist_new, unsigned long counters_new,
367 		const char *n)
368 {
369 	VM_BUG_ON(!irqs_disabled());
370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 	if (s->flags & __CMPXCHG_DOUBLE) {
373 		if (cmpxchg_double(&page->freelist, &page->counters,
374 				   freelist_old, counters_old,
375 				   freelist_new, counters_new))
376 			return 1;
377 	} else
378 #endif
379 	{
380 		slab_lock(page);
381 		if (page->freelist == freelist_old &&
382 					page->counters == counters_old) {
383 			page->freelist = freelist_new;
384 			set_page_slub_counters(page, counters_new);
385 			slab_unlock(page);
386 			return 1;
387 		}
388 		slab_unlock(page);
389 	}
390 
391 	cpu_relax();
392 	stat(s, CMPXCHG_DOUBLE_FAIL);
393 
394 #ifdef SLUB_DEBUG_CMPXCHG
395 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 #endif
397 
398 	return 0;
399 }
400 
401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 		void *freelist_old, unsigned long counters_old,
403 		void *freelist_new, unsigned long counters_new,
404 		const char *n)
405 {
406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 	if (s->flags & __CMPXCHG_DOUBLE) {
409 		if (cmpxchg_double(&page->freelist, &page->counters,
410 				   freelist_old, counters_old,
411 				   freelist_new, counters_new))
412 			return 1;
413 	} else
414 #endif
415 	{
416 		unsigned long flags;
417 
418 		local_irq_save(flags);
419 		slab_lock(page);
420 		if (page->freelist == freelist_old &&
421 					page->counters == counters_old) {
422 			page->freelist = freelist_new;
423 			set_page_slub_counters(page, counters_new);
424 			slab_unlock(page);
425 			local_irq_restore(flags);
426 			return 1;
427 		}
428 		slab_unlock(page);
429 		local_irq_restore(flags);
430 	}
431 
432 	cpu_relax();
433 	stat(s, CMPXCHG_DOUBLE_FAIL);
434 
435 #ifdef SLUB_DEBUG_CMPXCHG
436 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 #endif
438 
439 	return 0;
440 }
441 
442 #ifdef CONFIG_SLUB_DEBUG
443 /*
444  * Determine a map of object in use on a page.
445  *
446  * Node listlock must be held to guarantee that the page does
447  * not vanish from under us.
448  */
449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450 {
451 	void *p;
452 	void *addr = page_address(page);
453 
454 	for (p = page->freelist; p; p = get_freepointer(s, p))
455 		set_bit(slab_index(p, s, addr), map);
456 }
457 
458 /*
459  * Debug settings:
460  */
461 #ifdef CONFIG_SLUB_DEBUG_ON
462 static int slub_debug = DEBUG_DEFAULT_FLAGS;
463 #else
464 static int slub_debug;
465 #endif
466 
467 static char *slub_debug_slabs;
468 static int disable_higher_order_debug;
469 
470 /*
471  * Object debugging
472  */
473 static void print_section(char *text, u8 *addr, unsigned int length)
474 {
475 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 			length, 1);
477 }
478 
479 static struct track *get_track(struct kmem_cache *s, void *object,
480 	enum track_item alloc)
481 {
482 	struct track *p;
483 
484 	if (s->offset)
485 		p = object + s->offset + sizeof(void *);
486 	else
487 		p = object + s->inuse;
488 
489 	return p + alloc;
490 }
491 
492 static void set_track(struct kmem_cache *s, void *object,
493 			enum track_item alloc, unsigned long addr)
494 {
495 	struct track *p = get_track(s, object, alloc);
496 
497 	if (addr) {
498 #ifdef CONFIG_STACKTRACE
499 		struct stack_trace trace;
500 		int i;
501 
502 		trace.nr_entries = 0;
503 		trace.max_entries = TRACK_ADDRS_COUNT;
504 		trace.entries = p->addrs;
505 		trace.skip = 3;
506 		save_stack_trace(&trace);
507 
508 		/* See rant in lockdep.c */
509 		if (trace.nr_entries != 0 &&
510 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 			trace.nr_entries--;
512 
513 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 			p->addrs[i] = 0;
515 #endif
516 		p->addr = addr;
517 		p->cpu = smp_processor_id();
518 		p->pid = current->pid;
519 		p->when = jiffies;
520 	} else
521 		memset(p, 0, sizeof(struct track));
522 }
523 
524 static void init_tracking(struct kmem_cache *s, void *object)
525 {
526 	if (!(s->flags & SLAB_STORE_USER))
527 		return;
528 
529 	set_track(s, object, TRACK_FREE, 0UL);
530 	set_track(s, object, TRACK_ALLOC, 0UL);
531 }
532 
533 static void print_track(const char *s, struct track *t)
534 {
535 	if (!t->addr)
536 		return;
537 
538 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
540 #ifdef CONFIG_STACKTRACE
541 	{
542 		int i;
543 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 			if (t->addrs[i])
545 				pr_err("\t%pS\n", (void *)t->addrs[i]);
546 			else
547 				break;
548 	}
549 #endif
550 }
551 
552 static void print_tracking(struct kmem_cache *s, void *object)
553 {
554 	if (!(s->flags & SLAB_STORE_USER))
555 		return;
556 
557 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 	print_track("Freed", get_track(s, object, TRACK_FREE));
559 }
560 
561 static void print_page_info(struct page *page)
562 {
563 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
564 	       page, page->objects, page->inuse, page->freelist, page->flags);
565 
566 }
567 
568 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569 {
570 	struct va_format vaf;
571 	va_list args;
572 
573 	va_start(args, fmt);
574 	vaf.fmt = fmt;
575 	vaf.va = &args;
576 	pr_err("=============================================================================\n");
577 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
578 	pr_err("-----------------------------------------------------------------------------\n\n");
579 
580 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581 	va_end(args);
582 }
583 
584 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585 {
586 	struct va_format vaf;
587 	va_list args;
588 
589 	va_start(args, fmt);
590 	vaf.fmt = fmt;
591 	vaf.va = &args;
592 	pr_err("FIX %s: %pV\n", s->name, &vaf);
593 	va_end(args);
594 }
595 
596 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
597 {
598 	unsigned int off;	/* Offset of last byte */
599 	u8 *addr = page_address(page);
600 
601 	print_tracking(s, p);
602 
603 	print_page_info(page);
604 
605 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 	       p, p - addr, get_freepointer(s, p));
607 
608 	if (p > addr + 16)
609 		print_section("Bytes b4 ", p - 16, 16);
610 
611 	print_section("Object ", p, min_t(unsigned long, s->object_size,
612 				PAGE_SIZE));
613 	if (s->flags & SLAB_RED_ZONE)
614 		print_section("Redzone ", p + s->object_size,
615 			s->inuse - s->object_size);
616 
617 	if (s->offset)
618 		off = s->offset + sizeof(void *);
619 	else
620 		off = s->inuse;
621 
622 	if (s->flags & SLAB_STORE_USER)
623 		off += 2 * sizeof(struct track);
624 
625 	if (off != s->size)
626 		/* Beginning of the filler is the free pointer */
627 		print_section("Padding ", p + off, s->size - off);
628 
629 	dump_stack();
630 }
631 
632 static void object_err(struct kmem_cache *s, struct page *page,
633 			u8 *object, char *reason)
634 {
635 	slab_bug(s, "%s", reason);
636 	print_trailer(s, page, object);
637 }
638 
639 static void slab_err(struct kmem_cache *s, struct page *page,
640 			const char *fmt, ...)
641 {
642 	va_list args;
643 	char buf[100];
644 
645 	va_start(args, fmt);
646 	vsnprintf(buf, sizeof(buf), fmt, args);
647 	va_end(args);
648 	slab_bug(s, "%s", buf);
649 	print_page_info(page);
650 	dump_stack();
651 }
652 
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 	u8 *p = object;
656 
657 	if (s->flags & __OBJECT_POISON) {
658 		memset(p, POISON_FREE, s->object_size - 1);
659 		p[s->object_size - 1] = POISON_END;
660 	}
661 
662 	if (s->flags & SLAB_RED_ZONE)
663 		memset(p + s->object_size, val, s->inuse - s->object_size);
664 }
665 
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 						void *from, void *to)
668 {
669 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 	memset(from, data, to - from);
671 }
672 
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 			u8 *object, char *what,
675 			u8 *start, unsigned int value, unsigned int bytes)
676 {
677 	u8 *fault;
678 	u8 *end;
679 
680 	fault = memchr_inv(start, value, bytes);
681 	if (!fault)
682 		return 1;
683 
684 	end = start + bytes;
685 	while (end > fault && end[-1] == value)
686 		end--;
687 
688 	slab_bug(s, "%s overwritten", what);
689 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 					fault, end - 1, fault[0], value);
691 	print_trailer(s, page, object);
692 
693 	restore_bytes(s, what, value, fault, end);
694 	return 0;
695 }
696 
697 /*
698  * Object layout:
699  *
700  * object address
701  * 	Bytes of the object to be managed.
702  * 	If the freepointer may overlay the object then the free
703  * 	pointer is the first word of the object.
704  *
705  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
706  * 	0xa5 (POISON_END)
707  *
708  * object + s->object_size
709  * 	Padding to reach word boundary. This is also used for Redzoning.
710  * 	Padding is extended by another word if Redzoning is enabled and
711  * 	object_size == inuse.
712  *
713  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714  * 	0xcc (RED_ACTIVE) for objects in use.
715  *
716  * object + s->inuse
717  * 	Meta data starts here.
718  *
719  * 	A. Free pointer (if we cannot overwrite object on free)
720  * 	B. Tracking data for SLAB_STORE_USER
721  * 	C. Padding to reach required alignment boundary or at mininum
722  * 		one word if debugging is on to be able to detect writes
723  * 		before the word boundary.
724  *
725  *	Padding is done using 0x5a (POISON_INUSE)
726  *
727  * object + s->size
728  * 	Nothing is used beyond s->size.
729  *
730  * If slabcaches are merged then the object_size and inuse boundaries are mostly
731  * ignored. And therefore no slab options that rely on these boundaries
732  * may be used with merged slabcaches.
733  */
734 
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 	unsigned long off = s->inuse;	/* The end of info */
738 
739 	if (s->offset)
740 		/* Freepointer is placed after the object. */
741 		off += sizeof(void *);
742 
743 	if (s->flags & SLAB_STORE_USER)
744 		/* We also have user information there */
745 		off += 2 * sizeof(struct track);
746 
747 	if (s->size == off)
748 		return 1;
749 
750 	return check_bytes_and_report(s, page, p, "Object padding",
751 				p + off, POISON_INUSE, s->size - off);
752 }
753 
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 	u8 *start;
758 	u8 *fault;
759 	u8 *end;
760 	int length;
761 	int remainder;
762 
763 	if (!(s->flags & SLAB_POISON))
764 		return 1;
765 
766 	start = page_address(page);
767 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 	end = start + length;
769 	remainder = length % s->size;
770 	if (!remainder)
771 		return 1;
772 
773 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 	if (!fault)
775 		return 1;
776 	while (end > fault && end[-1] == POISON_INUSE)
777 		end--;
778 
779 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 	print_section("Padding ", end - remainder, remainder);
781 
782 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 	return 0;
784 }
785 
786 static int check_object(struct kmem_cache *s, struct page *page,
787 					void *object, u8 val)
788 {
789 	u8 *p = object;
790 	u8 *endobject = object + s->object_size;
791 
792 	if (s->flags & SLAB_RED_ZONE) {
793 		if (!check_bytes_and_report(s, page, object, "Redzone",
794 			endobject, val, s->inuse - s->object_size))
795 			return 0;
796 	} else {
797 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
798 			check_bytes_and_report(s, page, p, "Alignment padding",
799 				endobject, POISON_INUSE,
800 				s->inuse - s->object_size);
801 		}
802 	}
803 
804 	if (s->flags & SLAB_POISON) {
805 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
806 			(!check_bytes_and_report(s, page, p, "Poison", p,
807 					POISON_FREE, s->object_size - 1) ||
808 			 !check_bytes_and_report(s, page, p, "Poison",
809 				p + s->object_size - 1, POISON_END, 1)))
810 			return 0;
811 		/*
812 		 * check_pad_bytes cleans up on its own.
813 		 */
814 		check_pad_bytes(s, page, p);
815 	}
816 
817 	if (!s->offset && val == SLUB_RED_ACTIVE)
818 		/*
819 		 * Object and freepointer overlap. Cannot check
820 		 * freepointer while object is allocated.
821 		 */
822 		return 1;
823 
824 	/* Check free pointer validity */
825 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 		object_err(s, page, p, "Freepointer corrupt");
827 		/*
828 		 * No choice but to zap it and thus lose the remainder
829 		 * of the free objects in this slab. May cause
830 		 * another error because the object count is now wrong.
831 		 */
832 		set_freepointer(s, p, NULL);
833 		return 0;
834 	}
835 	return 1;
836 }
837 
838 static int check_slab(struct kmem_cache *s, struct page *page)
839 {
840 	int maxobj;
841 
842 	VM_BUG_ON(!irqs_disabled());
843 
844 	if (!PageSlab(page)) {
845 		slab_err(s, page, "Not a valid slab page");
846 		return 0;
847 	}
848 
849 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
850 	if (page->objects > maxobj) {
851 		slab_err(s, page, "objects %u > max %u",
852 			page->objects, maxobj);
853 		return 0;
854 	}
855 	if (page->inuse > page->objects) {
856 		slab_err(s, page, "inuse %u > max %u",
857 			page->inuse, page->objects);
858 		return 0;
859 	}
860 	/* Slab_pad_check fixes things up after itself */
861 	slab_pad_check(s, page);
862 	return 1;
863 }
864 
865 /*
866  * Determine if a certain object on a page is on the freelist. Must hold the
867  * slab lock to guarantee that the chains are in a consistent state.
868  */
869 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870 {
871 	int nr = 0;
872 	void *fp;
873 	void *object = NULL;
874 	int max_objects;
875 
876 	fp = page->freelist;
877 	while (fp && nr <= page->objects) {
878 		if (fp == search)
879 			return 1;
880 		if (!check_valid_pointer(s, page, fp)) {
881 			if (object) {
882 				object_err(s, page, object,
883 					"Freechain corrupt");
884 				set_freepointer(s, object, NULL);
885 			} else {
886 				slab_err(s, page, "Freepointer corrupt");
887 				page->freelist = NULL;
888 				page->inuse = page->objects;
889 				slab_fix(s, "Freelist cleared");
890 				return 0;
891 			}
892 			break;
893 		}
894 		object = fp;
895 		fp = get_freepointer(s, object);
896 		nr++;
897 	}
898 
899 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 	if (max_objects > MAX_OBJS_PER_PAGE)
901 		max_objects = MAX_OBJS_PER_PAGE;
902 
903 	if (page->objects != max_objects) {
904 		slab_err(s, page, "Wrong number of objects. Found %d but "
905 			"should be %d", page->objects, max_objects);
906 		page->objects = max_objects;
907 		slab_fix(s, "Number of objects adjusted.");
908 	}
909 	if (page->inuse != page->objects - nr) {
910 		slab_err(s, page, "Wrong object count. Counter is %d but "
911 			"counted were %d", page->inuse, page->objects - nr);
912 		page->inuse = page->objects - nr;
913 		slab_fix(s, "Object count adjusted.");
914 	}
915 	return search == NULL;
916 }
917 
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 								int alloc)
920 {
921 	if (s->flags & SLAB_TRACE) {
922 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 			s->name,
924 			alloc ? "alloc" : "free",
925 			object, page->inuse,
926 			page->freelist);
927 
928 		if (!alloc)
929 			print_section("Object ", (void *)object,
930 					s->object_size);
931 
932 		dump_stack();
933 	}
934 }
935 
936 /*
937  * Tracking of fully allocated slabs for debugging purposes.
938  */
939 static void add_full(struct kmem_cache *s,
940 	struct kmem_cache_node *n, struct page *page)
941 {
942 	if (!(s->flags & SLAB_STORE_USER))
943 		return;
944 
945 	lockdep_assert_held(&n->list_lock);
946 	list_add(&page->lru, &n->full);
947 }
948 
949 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
950 {
951 	if (!(s->flags & SLAB_STORE_USER))
952 		return;
953 
954 	lockdep_assert_held(&n->list_lock);
955 	list_del(&page->lru);
956 }
957 
958 /* Tracking of the number of slabs for debugging purposes */
959 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960 {
961 	struct kmem_cache_node *n = get_node(s, node);
962 
963 	return atomic_long_read(&n->nr_slabs);
964 }
965 
966 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967 {
968 	return atomic_long_read(&n->nr_slabs);
969 }
970 
971 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
972 {
973 	struct kmem_cache_node *n = get_node(s, node);
974 
975 	/*
976 	 * May be called early in order to allocate a slab for the
977 	 * kmem_cache_node structure. Solve the chicken-egg
978 	 * dilemma by deferring the increment of the count during
979 	 * bootstrap (see early_kmem_cache_node_alloc).
980 	 */
981 	if (likely(n)) {
982 		atomic_long_inc(&n->nr_slabs);
983 		atomic_long_add(objects, &n->total_objects);
984 	}
985 }
986 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
987 {
988 	struct kmem_cache_node *n = get_node(s, node);
989 
990 	atomic_long_dec(&n->nr_slabs);
991 	atomic_long_sub(objects, &n->total_objects);
992 }
993 
994 /* Object debug checks for alloc/free paths */
995 static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 								void *object)
997 {
998 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 		return;
1000 
1001 	init_object(s, object, SLUB_RED_INACTIVE);
1002 	init_tracking(s, object);
1003 }
1004 
1005 static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 					struct page *page,
1007 					void *object, unsigned long addr)
1008 {
1009 	if (!check_slab(s, page))
1010 		goto bad;
1011 
1012 	if (!check_valid_pointer(s, page, object)) {
1013 		object_err(s, page, object, "Freelist Pointer check fails");
1014 		goto bad;
1015 	}
1016 
1017 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1018 		goto bad;
1019 
1020 	/* Success perform special debug activities for allocs */
1021 	if (s->flags & SLAB_STORE_USER)
1022 		set_track(s, object, TRACK_ALLOC, addr);
1023 	trace(s, page, object, 1);
1024 	init_object(s, object, SLUB_RED_ACTIVE);
1025 	return 1;
1026 
1027 bad:
1028 	if (PageSlab(page)) {
1029 		/*
1030 		 * If this is a slab page then lets do the best we can
1031 		 * to avoid issues in the future. Marking all objects
1032 		 * as used avoids touching the remaining objects.
1033 		 */
1034 		slab_fix(s, "Marking all objects used");
1035 		page->inuse = page->objects;
1036 		page->freelist = NULL;
1037 	}
1038 	return 0;
1039 }
1040 
1041 static noinline struct kmem_cache_node *free_debug_processing(
1042 	struct kmem_cache *s, struct page *page, void *object,
1043 	unsigned long addr, unsigned long *flags)
1044 {
1045 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1046 
1047 	spin_lock_irqsave(&n->list_lock, *flags);
1048 	slab_lock(page);
1049 
1050 	if (!check_slab(s, page))
1051 		goto fail;
1052 
1053 	if (!check_valid_pointer(s, page, object)) {
1054 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1055 		goto fail;
1056 	}
1057 
1058 	if (on_freelist(s, page, object)) {
1059 		object_err(s, page, object, "Object already free");
1060 		goto fail;
1061 	}
1062 
1063 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1064 		goto out;
1065 
1066 	if (unlikely(s != page->slab_cache)) {
1067 		if (!PageSlab(page)) {
1068 			slab_err(s, page, "Attempt to free object(0x%p) "
1069 				"outside of slab", object);
1070 		} else if (!page->slab_cache) {
1071 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 			       object);
1073 			dump_stack();
1074 		} else
1075 			object_err(s, page, object,
1076 					"page slab pointer corrupt.");
1077 		goto fail;
1078 	}
1079 
1080 	if (s->flags & SLAB_STORE_USER)
1081 		set_track(s, object, TRACK_FREE, addr);
1082 	trace(s, page, object, 0);
1083 	init_object(s, object, SLUB_RED_INACTIVE);
1084 out:
1085 	slab_unlock(page);
1086 	/*
1087 	 * Keep node_lock to preserve integrity
1088 	 * until the object is actually freed
1089 	 */
1090 	return n;
1091 
1092 fail:
1093 	slab_unlock(page);
1094 	spin_unlock_irqrestore(&n->list_lock, *flags);
1095 	slab_fix(s, "Object at 0x%p not freed", object);
1096 	return NULL;
1097 }
1098 
1099 static int __init setup_slub_debug(char *str)
1100 {
1101 	slub_debug = DEBUG_DEFAULT_FLAGS;
1102 	if (*str++ != '=' || !*str)
1103 		/*
1104 		 * No options specified. Switch on full debugging.
1105 		 */
1106 		goto out;
1107 
1108 	if (*str == ',')
1109 		/*
1110 		 * No options but restriction on slabs. This means full
1111 		 * debugging for slabs matching a pattern.
1112 		 */
1113 		goto check_slabs;
1114 
1115 	if (tolower(*str) == 'o') {
1116 		/*
1117 		 * Avoid enabling debugging on caches if its minimum order
1118 		 * would increase as a result.
1119 		 */
1120 		disable_higher_order_debug = 1;
1121 		goto out;
1122 	}
1123 
1124 	slub_debug = 0;
1125 	if (*str == '-')
1126 		/*
1127 		 * Switch off all debugging measures.
1128 		 */
1129 		goto out;
1130 
1131 	/*
1132 	 * Determine which debug features should be switched on
1133 	 */
1134 	for (; *str && *str != ','; str++) {
1135 		switch (tolower(*str)) {
1136 		case 'f':
1137 			slub_debug |= SLAB_DEBUG_FREE;
1138 			break;
1139 		case 'z':
1140 			slub_debug |= SLAB_RED_ZONE;
1141 			break;
1142 		case 'p':
1143 			slub_debug |= SLAB_POISON;
1144 			break;
1145 		case 'u':
1146 			slub_debug |= SLAB_STORE_USER;
1147 			break;
1148 		case 't':
1149 			slub_debug |= SLAB_TRACE;
1150 			break;
1151 		case 'a':
1152 			slub_debug |= SLAB_FAILSLAB;
1153 			break;
1154 		default:
1155 			pr_err("slub_debug option '%c' unknown. skipped\n",
1156 			       *str);
1157 		}
1158 	}
1159 
1160 check_slabs:
1161 	if (*str == ',')
1162 		slub_debug_slabs = str + 1;
1163 out:
1164 	return 1;
1165 }
1166 
1167 __setup("slub_debug", setup_slub_debug);
1168 
1169 unsigned long kmem_cache_flags(unsigned long object_size,
1170 	unsigned long flags, const char *name,
1171 	void (*ctor)(void *))
1172 {
1173 	/*
1174 	 * Enable debugging if selected on the kernel commandline.
1175 	 */
1176 	if (slub_debug && (!slub_debug_slabs || (name &&
1177 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1178 		flags |= slub_debug;
1179 
1180 	return flags;
1181 }
1182 #else
1183 static inline void setup_object_debug(struct kmem_cache *s,
1184 			struct page *page, void *object) {}
1185 
1186 static inline int alloc_debug_processing(struct kmem_cache *s,
1187 	struct page *page, void *object, unsigned long addr) { return 0; }
1188 
1189 static inline struct kmem_cache_node *free_debug_processing(
1190 	struct kmem_cache *s, struct page *page, void *object,
1191 	unsigned long addr, unsigned long *flags) { return NULL; }
1192 
1193 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 			{ return 1; }
1195 static inline int check_object(struct kmem_cache *s, struct page *page,
1196 			void *object, u8 val) { return 1; }
1197 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 					struct page *page) {}
1199 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 					struct page *page) {}
1201 unsigned long kmem_cache_flags(unsigned long object_size,
1202 	unsigned long flags, const char *name,
1203 	void (*ctor)(void *))
1204 {
1205 	return flags;
1206 }
1207 #define slub_debug 0
1208 
1209 #define disable_higher_order_debug 0
1210 
1211 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 							{ return 0; }
1213 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 							{ return 0; }
1215 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 							int objects) {}
1217 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 							int objects) {}
1219 
1220 #endif /* CONFIG_SLUB_DEBUG */
1221 
1222 /*
1223  * Hooks for other subsystems that check memory allocations. In a typical
1224  * production configuration these hooks all should produce no code at all.
1225  */
1226 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227 {
1228 	kmemleak_alloc(ptr, size, 1, flags);
1229 }
1230 
1231 static inline void kfree_hook(const void *x)
1232 {
1233 	kmemleak_free(x);
1234 }
1235 
1236 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1237 						     gfp_t flags)
1238 {
1239 	flags &= gfp_allowed_mask;
1240 	lockdep_trace_alloc(flags);
1241 	might_sleep_if(flags & __GFP_WAIT);
1242 
1243 	if (should_failslab(s->object_size, flags, s->flags))
1244 		return NULL;
1245 
1246 	return memcg_kmem_get_cache(s, flags);
1247 }
1248 
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1250 					gfp_t flags, void *object)
1251 {
1252 	flags &= gfp_allowed_mask;
1253 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1254 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1255 	memcg_kmem_put_cache(s);
1256 }
1257 
1258 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1259 {
1260 	kmemleak_free_recursive(x, s->flags);
1261 
1262 	/*
1263 	 * Trouble is that we may no longer disable interrupts in the fast path
1264 	 * So in order to make the debug calls that expect irqs to be
1265 	 * disabled we need to disable interrupts temporarily.
1266 	 */
1267 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1268 	{
1269 		unsigned long flags;
1270 
1271 		local_irq_save(flags);
1272 		kmemcheck_slab_free(s, x, s->object_size);
1273 		debug_check_no_locks_freed(x, s->object_size);
1274 		local_irq_restore(flags);
1275 	}
1276 #endif
1277 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1278 		debug_check_no_obj_freed(x, s->object_size);
1279 }
1280 
1281 /*
1282  * Slab allocation and freeing
1283  */
1284 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1285 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1286 {
1287 	struct page *page;
1288 	int order = oo_order(oo);
1289 
1290 	flags |= __GFP_NOTRACK;
1291 
1292 	if (memcg_charge_slab(s, flags, order))
1293 		return NULL;
1294 
1295 	if (node == NUMA_NO_NODE)
1296 		page = alloc_pages(flags, order);
1297 	else
1298 		page = alloc_pages_exact_node(node, flags, order);
1299 
1300 	if (!page)
1301 		memcg_uncharge_slab(s, order);
1302 
1303 	return page;
1304 }
1305 
1306 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1307 {
1308 	struct page *page;
1309 	struct kmem_cache_order_objects oo = s->oo;
1310 	gfp_t alloc_gfp;
1311 
1312 	flags &= gfp_allowed_mask;
1313 
1314 	if (flags & __GFP_WAIT)
1315 		local_irq_enable();
1316 
1317 	flags |= s->allocflags;
1318 
1319 	/*
1320 	 * Let the initial higher-order allocation fail under memory pressure
1321 	 * so we fall-back to the minimum order allocation.
1322 	 */
1323 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1324 
1325 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1326 	if (unlikely(!page)) {
1327 		oo = s->min;
1328 		alloc_gfp = flags;
1329 		/*
1330 		 * Allocation may have failed due to fragmentation.
1331 		 * Try a lower order alloc if possible
1332 		 */
1333 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1334 
1335 		if (page)
1336 			stat(s, ORDER_FALLBACK);
1337 	}
1338 
1339 	if (kmemcheck_enabled && page
1340 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1341 		int pages = 1 << oo_order(oo);
1342 
1343 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1344 
1345 		/*
1346 		 * Objects from caches that have a constructor don't get
1347 		 * cleared when they're allocated, so we need to do it here.
1348 		 */
1349 		if (s->ctor)
1350 			kmemcheck_mark_uninitialized_pages(page, pages);
1351 		else
1352 			kmemcheck_mark_unallocated_pages(page, pages);
1353 	}
1354 
1355 	if (flags & __GFP_WAIT)
1356 		local_irq_disable();
1357 	if (!page)
1358 		return NULL;
1359 
1360 	page->objects = oo_objects(oo);
1361 	mod_zone_page_state(page_zone(page),
1362 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1363 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1364 		1 << oo_order(oo));
1365 
1366 	return page;
1367 }
1368 
1369 static void setup_object(struct kmem_cache *s, struct page *page,
1370 				void *object)
1371 {
1372 	setup_object_debug(s, page, object);
1373 	if (unlikely(s->ctor))
1374 		s->ctor(object);
1375 }
1376 
1377 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1378 {
1379 	struct page *page;
1380 	void *start;
1381 	void *p;
1382 	int order;
1383 	int idx;
1384 
1385 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1386 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1387 		BUG();
1388 	}
1389 
1390 	page = allocate_slab(s,
1391 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1392 	if (!page)
1393 		goto out;
1394 
1395 	order = compound_order(page);
1396 	inc_slabs_node(s, page_to_nid(page), page->objects);
1397 	page->slab_cache = s;
1398 	__SetPageSlab(page);
1399 	if (page->pfmemalloc)
1400 		SetPageSlabPfmemalloc(page);
1401 
1402 	start = page_address(page);
1403 
1404 	if (unlikely(s->flags & SLAB_POISON))
1405 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1406 
1407 	for_each_object_idx(p, idx, s, start, page->objects) {
1408 		setup_object(s, page, p);
1409 		if (likely(idx < page->objects))
1410 			set_freepointer(s, p, p + s->size);
1411 		else
1412 			set_freepointer(s, p, NULL);
1413 	}
1414 
1415 	page->freelist = start;
1416 	page->inuse = page->objects;
1417 	page->frozen = 1;
1418 out:
1419 	return page;
1420 }
1421 
1422 static void __free_slab(struct kmem_cache *s, struct page *page)
1423 {
1424 	int order = compound_order(page);
1425 	int pages = 1 << order;
1426 
1427 	if (kmem_cache_debug(s)) {
1428 		void *p;
1429 
1430 		slab_pad_check(s, page);
1431 		for_each_object(p, s, page_address(page),
1432 						page->objects)
1433 			check_object(s, page, p, SLUB_RED_INACTIVE);
1434 	}
1435 
1436 	kmemcheck_free_shadow(page, compound_order(page));
1437 
1438 	mod_zone_page_state(page_zone(page),
1439 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1440 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1441 		-pages);
1442 
1443 	__ClearPageSlabPfmemalloc(page);
1444 	__ClearPageSlab(page);
1445 
1446 	page_mapcount_reset(page);
1447 	if (current->reclaim_state)
1448 		current->reclaim_state->reclaimed_slab += pages;
1449 	__free_pages(page, order);
1450 	memcg_uncharge_slab(s, order);
1451 }
1452 
1453 #define need_reserve_slab_rcu						\
1454 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1455 
1456 static void rcu_free_slab(struct rcu_head *h)
1457 {
1458 	struct page *page;
1459 
1460 	if (need_reserve_slab_rcu)
1461 		page = virt_to_head_page(h);
1462 	else
1463 		page = container_of((struct list_head *)h, struct page, lru);
1464 
1465 	__free_slab(page->slab_cache, page);
1466 }
1467 
1468 static void free_slab(struct kmem_cache *s, struct page *page)
1469 {
1470 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1471 		struct rcu_head *head;
1472 
1473 		if (need_reserve_slab_rcu) {
1474 			int order = compound_order(page);
1475 			int offset = (PAGE_SIZE << order) - s->reserved;
1476 
1477 			VM_BUG_ON(s->reserved != sizeof(*head));
1478 			head = page_address(page) + offset;
1479 		} else {
1480 			/*
1481 			 * RCU free overloads the RCU head over the LRU
1482 			 */
1483 			head = (void *)&page->lru;
1484 		}
1485 
1486 		call_rcu(head, rcu_free_slab);
1487 	} else
1488 		__free_slab(s, page);
1489 }
1490 
1491 static void discard_slab(struct kmem_cache *s, struct page *page)
1492 {
1493 	dec_slabs_node(s, page_to_nid(page), page->objects);
1494 	free_slab(s, page);
1495 }
1496 
1497 /*
1498  * Management of partially allocated slabs.
1499  */
1500 static inline void
1501 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1502 {
1503 	n->nr_partial++;
1504 	if (tail == DEACTIVATE_TO_TAIL)
1505 		list_add_tail(&page->lru, &n->partial);
1506 	else
1507 		list_add(&page->lru, &n->partial);
1508 }
1509 
1510 static inline void add_partial(struct kmem_cache_node *n,
1511 				struct page *page, int tail)
1512 {
1513 	lockdep_assert_held(&n->list_lock);
1514 	__add_partial(n, page, tail);
1515 }
1516 
1517 static inline void
1518 __remove_partial(struct kmem_cache_node *n, struct page *page)
1519 {
1520 	list_del(&page->lru);
1521 	n->nr_partial--;
1522 }
1523 
1524 static inline void remove_partial(struct kmem_cache_node *n,
1525 					struct page *page)
1526 {
1527 	lockdep_assert_held(&n->list_lock);
1528 	__remove_partial(n, page);
1529 }
1530 
1531 /*
1532  * Remove slab from the partial list, freeze it and
1533  * return the pointer to the freelist.
1534  *
1535  * Returns a list of objects or NULL if it fails.
1536  */
1537 static inline void *acquire_slab(struct kmem_cache *s,
1538 		struct kmem_cache_node *n, struct page *page,
1539 		int mode, int *objects)
1540 {
1541 	void *freelist;
1542 	unsigned long counters;
1543 	struct page new;
1544 
1545 	lockdep_assert_held(&n->list_lock);
1546 
1547 	/*
1548 	 * Zap the freelist and set the frozen bit.
1549 	 * The old freelist is the list of objects for the
1550 	 * per cpu allocation list.
1551 	 */
1552 	freelist = page->freelist;
1553 	counters = page->counters;
1554 	new.counters = counters;
1555 	*objects = new.objects - new.inuse;
1556 	if (mode) {
1557 		new.inuse = page->objects;
1558 		new.freelist = NULL;
1559 	} else {
1560 		new.freelist = freelist;
1561 	}
1562 
1563 	VM_BUG_ON(new.frozen);
1564 	new.frozen = 1;
1565 
1566 	if (!__cmpxchg_double_slab(s, page,
1567 			freelist, counters,
1568 			new.freelist, new.counters,
1569 			"acquire_slab"))
1570 		return NULL;
1571 
1572 	remove_partial(n, page);
1573 	WARN_ON(!freelist);
1574 	return freelist;
1575 }
1576 
1577 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1578 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1579 
1580 /*
1581  * Try to allocate a partial slab from a specific node.
1582  */
1583 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1584 				struct kmem_cache_cpu *c, gfp_t flags)
1585 {
1586 	struct page *page, *page2;
1587 	void *object = NULL;
1588 	int available = 0;
1589 	int objects;
1590 
1591 	/*
1592 	 * Racy check. If we mistakenly see no partial slabs then we
1593 	 * just allocate an empty slab. If we mistakenly try to get a
1594 	 * partial slab and there is none available then get_partials()
1595 	 * will return NULL.
1596 	 */
1597 	if (!n || !n->nr_partial)
1598 		return NULL;
1599 
1600 	spin_lock(&n->list_lock);
1601 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1602 		void *t;
1603 
1604 		if (!pfmemalloc_match(page, flags))
1605 			continue;
1606 
1607 		t = acquire_slab(s, n, page, object == NULL, &objects);
1608 		if (!t)
1609 			break;
1610 
1611 		available += objects;
1612 		if (!object) {
1613 			c->page = page;
1614 			stat(s, ALLOC_FROM_PARTIAL);
1615 			object = t;
1616 		} else {
1617 			put_cpu_partial(s, page, 0);
1618 			stat(s, CPU_PARTIAL_NODE);
1619 		}
1620 		if (!kmem_cache_has_cpu_partial(s)
1621 			|| available > s->cpu_partial / 2)
1622 			break;
1623 
1624 	}
1625 	spin_unlock(&n->list_lock);
1626 	return object;
1627 }
1628 
1629 /*
1630  * Get a page from somewhere. Search in increasing NUMA distances.
1631  */
1632 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1633 		struct kmem_cache_cpu *c)
1634 {
1635 #ifdef CONFIG_NUMA
1636 	struct zonelist *zonelist;
1637 	struct zoneref *z;
1638 	struct zone *zone;
1639 	enum zone_type high_zoneidx = gfp_zone(flags);
1640 	void *object;
1641 	unsigned int cpuset_mems_cookie;
1642 
1643 	/*
1644 	 * The defrag ratio allows a configuration of the tradeoffs between
1645 	 * inter node defragmentation and node local allocations. A lower
1646 	 * defrag_ratio increases the tendency to do local allocations
1647 	 * instead of attempting to obtain partial slabs from other nodes.
1648 	 *
1649 	 * If the defrag_ratio is set to 0 then kmalloc() always
1650 	 * returns node local objects. If the ratio is higher then kmalloc()
1651 	 * may return off node objects because partial slabs are obtained
1652 	 * from other nodes and filled up.
1653 	 *
1654 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1655 	 * defrag_ratio = 1000) then every (well almost) allocation will
1656 	 * first attempt to defrag slab caches on other nodes. This means
1657 	 * scanning over all nodes to look for partial slabs which may be
1658 	 * expensive if we do it every time we are trying to find a slab
1659 	 * with available objects.
1660 	 */
1661 	if (!s->remote_node_defrag_ratio ||
1662 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1663 		return NULL;
1664 
1665 	do {
1666 		cpuset_mems_cookie = read_mems_allowed_begin();
1667 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1668 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669 			struct kmem_cache_node *n;
1670 
1671 			n = get_node(s, zone_to_nid(zone));
1672 
1673 			if (n && cpuset_zone_allowed(zone,
1674 						     flags | __GFP_HARDWALL) &&
1675 					n->nr_partial > s->min_partial) {
1676 				object = get_partial_node(s, n, c, flags);
1677 				if (object) {
1678 					/*
1679 					 * Don't check read_mems_allowed_retry()
1680 					 * here - if mems_allowed was updated in
1681 					 * parallel, that was a harmless race
1682 					 * between allocation and the cpuset
1683 					 * update
1684 					 */
1685 					return object;
1686 				}
1687 			}
1688 		}
1689 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1690 #endif
1691 	return NULL;
1692 }
1693 
1694 /*
1695  * Get a partial page, lock it and return it.
1696  */
1697 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1698 		struct kmem_cache_cpu *c)
1699 {
1700 	void *object;
1701 	int searchnode = node;
1702 
1703 	if (node == NUMA_NO_NODE)
1704 		searchnode = numa_mem_id();
1705 	else if (!node_present_pages(node))
1706 		searchnode = node_to_mem_node(node);
1707 
1708 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1709 	if (object || node != NUMA_NO_NODE)
1710 		return object;
1711 
1712 	return get_any_partial(s, flags, c);
1713 }
1714 
1715 #ifdef CONFIG_PREEMPT
1716 /*
1717  * Calculate the next globally unique transaction for disambiguiation
1718  * during cmpxchg. The transactions start with the cpu number and are then
1719  * incremented by CONFIG_NR_CPUS.
1720  */
1721 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1722 #else
1723 /*
1724  * No preemption supported therefore also no need to check for
1725  * different cpus.
1726  */
1727 #define TID_STEP 1
1728 #endif
1729 
1730 static inline unsigned long next_tid(unsigned long tid)
1731 {
1732 	return tid + TID_STEP;
1733 }
1734 
1735 static inline unsigned int tid_to_cpu(unsigned long tid)
1736 {
1737 	return tid % TID_STEP;
1738 }
1739 
1740 static inline unsigned long tid_to_event(unsigned long tid)
1741 {
1742 	return tid / TID_STEP;
1743 }
1744 
1745 static inline unsigned int init_tid(int cpu)
1746 {
1747 	return cpu;
1748 }
1749 
1750 static inline void note_cmpxchg_failure(const char *n,
1751 		const struct kmem_cache *s, unsigned long tid)
1752 {
1753 #ifdef SLUB_DEBUG_CMPXCHG
1754 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1755 
1756 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1757 
1758 #ifdef CONFIG_PREEMPT
1759 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1760 		pr_warn("due to cpu change %d -> %d\n",
1761 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1762 	else
1763 #endif
1764 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1765 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1766 			tid_to_event(tid), tid_to_event(actual_tid));
1767 	else
1768 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1769 			actual_tid, tid, next_tid(tid));
1770 #endif
1771 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1772 }
1773 
1774 static void init_kmem_cache_cpus(struct kmem_cache *s)
1775 {
1776 	int cpu;
1777 
1778 	for_each_possible_cpu(cpu)
1779 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1780 }
1781 
1782 /*
1783  * Remove the cpu slab
1784  */
1785 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1786 				void *freelist)
1787 {
1788 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1789 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1790 	int lock = 0;
1791 	enum slab_modes l = M_NONE, m = M_NONE;
1792 	void *nextfree;
1793 	int tail = DEACTIVATE_TO_HEAD;
1794 	struct page new;
1795 	struct page old;
1796 
1797 	if (page->freelist) {
1798 		stat(s, DEACTIVATE_REMOTE_FREES);
1799 		tail = DEACTIVATE_TO_TAIL;
1800 	}
1801 
1802 	/*
1803 	 * Stage one: Free all available per cpu objects back
1804 	 * to the page freelist while it is still frozen. Leave the
1805 	 * last one.
1806 	 *
1807 	 * There is no need to take the list->lock because the page
1808 	 * is still frozen.
1809 	 */
1810 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1811 		void *prior;
1812 		unsigned long counters;
1813 
1814 		do {
1815 			prior = page->freelist;
1816 			counters = page->counters;
1817 			set_freepointer(s, freelist, prior);
1818 			new.counters = counters;
1819 			new.inuse--;
1820 			VM_BUG_ON(!new.frozen);
1821 
1822 		} while (!__cmpxchg_double_slab(s, page,
1823 			prior, counters,
1824 			freelist, new.counters,
1825 			"drain percpu freelist"));
1826 
1827 		freelist = nextfree;
1828 	}
1829 
1830 	/*
1831 	 * Stage two: Ensure that the page is unfrozen while the
1832 	 * list presence reflects the actual number of objects
1833 	 * during unfreeze.
1834 	 *
1835 	 * We setup the list membership and then perform a cmpxchg
1836 	 * with the count. If there is a mismatch then the page
1837 	 * is not unfrozen but the page is on the wrong list.
1838 	 *
1839 	 * Then we restart the process which may have to remove
1840 	 * the page from the list that we just put it on again
1841 	 * because the number of objects in the slab may have
1842 	 * changed.
1843 	 */
1844 redo:
1845 
1846 	old.freelist = page->freelist;
1847 	old.counters = page->counters;
1848 	VM_BUG_ON(!old.frozen);
1849 
1850 	/* Determine target state of the slab */
1851 	new.counters = old.counters;
1852 	if (freelist) {
1853 		new.inuse--;
1854 		set_freepointer(s, freelist, old.freelist);
1855 		new.freelist = freelist;
1856 	} else
1857 		new.freelist = old.freelist;
1858 
1859 	new.frozen = 0;
1860 
1861 	if (!new.inuse && n->nr_partial >= s->min_partial)
1862 		m = M_FREE;
1863 	else if (new.freelist) {
1864 		m = M_PARTIAL;
1865 		if (!lock) {
1866 			lock = 1;
1867 			/*
1868 			 * Taking the spinlock removes the possiblity
1869 			 * that acquire_slab() will see a slab page that
1870 			 * is frozen
1871 			 */
1872 			spin_lock(&n->list_lock);
1873 		}
1874 	} else {
1875 		m = M_FULL;
1876 		if (kmem_cache_debug(s) && !lock) {
1877 			lock = 1;
1878 			/*
1879 			 * This also ensures that the scanning of full
1880 			 * slabs from diagnostic functions will not see
1881 			 * any frozen slabs.
1882 			 */
1883 			spin_lock(&n->list_lock);
1884 		}
1885 	}
1886 
1887 	if (l != m) {
1888 
1889 		if (l == M_PARTIAL)
1890 
1891 			remove_partial(n, page);
1892 
1893 		else if (l == M_FULL)
1894 
1895 			remove_full(s, n, page);
1896 
1897 		if (m == M_PARTIAL) {
1898 
1899 			add_partial(n, page, tail);
1900 			stat(s, tail);
1901 
1902 		} else if (m == M_FULL) {
1903 
1904 			stat(s, DEACTIVATE_FULL);
1905 			add_full(s, n, page);
1906 
1907 		}
1908 	}
1909 
1910 	l = m;
1911 	if (!__cmpxchg_double_slab(s, page,
1912 				old.freelist, old.counters,
1913 				new.freelist, new.counters,
1914 				"unfreezing slab"))
1915 		goto redo;
1916 
1917 	if (lock)
1918 		spin_unlock(&n->list_lock);
1919 
1920 	if (m == M_FREE) {
1921 		stat(s, DEACTIVATE_EMPTY);
1922 		discard_slab(s, page);
1923 		stat(s, FREE_SLAB);
1924 	}
1925 }
1926 
1927 /*
1928  * Unfreeze all the cpu partial slabs.
1929  *
1930  * This function must be called with interrupts disabled
1931  * for the cpu using c (or some other guarantee must be there
1932  * to guarantee no concurrent accesses).
1933  */
1934 static void unfreeze_partials(struct kmem_cache *s,
1935 		struct kmem_cache_cpu *c)
1936 {
1937 #ifdef CONFIG_SLUB_CPU_PARTIAL
1938 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1939 	struct page *page, *discard_page = NULL;
1940 
1941 	while ((page = c->partial)) {
1942 		struct page new;
1943 		struct page old;
1944 
1945 		c->partial = page->next;
1946 
1947 		n2 = get_node(s, page_to_nid(page));
1948 		if (n != n2) {
1949 			if (n)
1950 				spin_unlock(&n->list_lock);
1951 
1952 			n = n2;
1953 			spin_lock(&n->list_lock);
1954 		}
1955 
1956 		do {
1957 
1958 			old.freelist = page->freelist;
1959 			old.counters = page->counters;
1960 			VM_BUG_ON(!old.frozen);
1961 
1962 			new.counters = old.counters;
1963 			new.freelist = old.freelist;
1964 
1965 			new.frozen = 0;
1966 
1967 		} while (!__cmpxchg_double_slab(s, page,
1968 				old.freelist, old.counters,
1969 				new.freelist, new.counters,
1970 				"unfreezing slab"));
1971 
1972 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1973 			page->next = discard_page;
1974 			discard_page = page;
1975 		} else {
1976 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1977 			stat(s, FREE_ADD_PARTIAL);
1978 		}
1979 	}
1980 
1981 	if (n)
1982 		spin_unlock(&n->list_lock);
1983 
1984 	while (discard_page) {
1985 		page = discard_page;
1986 		discard_page = discard_page->next;
1987 
1988 		stat(s, DEACTIVATE_EMPTY);
1989 		discard_slab(s, page);
1990 		stat(s, FREE_SLAB);
1991 	}
1992 #endif
1993 }
1994 
1995 /*
1996  * Put a page that was just frozen (in __slab_free) into a partial page
1997  * slot if available. This is done without interrupts disabled and without
1998  * preemption disabled. The cmpxchg is racy and may put the partial page
1999  * onto a random cpus partial slot.
2000  *
2001  * If we did not find a slot then simply move all the partials to the
2002  * per node partial list.
2003  */
2004 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2005 {
2006 #ifdef CONFIG_SLUB_CPU_PARTIAL
2007 	struct page *oldpage;
2008 	int pages;
2009 	int pobjects;
2010 
2011 	do {
2012 		pages = 0;
2013 		pobjects = 0;
2014 		oldpage = this_cpu_read(s->cpu_slab->partial);
2015 
2016 		if (oldpage) {
2017 			pobjects = oldpage->pobjects;
2018 			pages = oldpage->pages;
2019 			if (drain && pobjects > s->cpu_partial) {
2020 				unsigned long flags;
2021 				/*
2022 				 * partial array is full. Move the existing
2023 				 * set to the per node partial list.
2024 				 */
2025 				local_irq_save(flags);
2026 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2027 				local_irq_restore(flags);
2028 				oldpage = NULL;
2029 				pobjects = 0;
2030 				pages = 0;
2031 				stat(s, CPU_PARTIAL_DRAIN);
2032 			}
2033 		}
2034 
2035 		pages++;
2036 		pobjects += page->objects - page->inuse;
2037 
2038 		page->pages = pages;
2039 		page->pobjects = pobjects;
2040 		page->next = oldpage;
2041 
2042 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2043 								!= oldpage);
2044 #endif
2045 }
2046 
2047 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2048 {
2049 	stat(s, CPUSLAB_FLUSH);
2050 	deactivate_slab(s, c->page, c->freelist);
2051 
2052 	c->tid = next_tid(c->tid);
2053 	c->page = NULL;
2054 	c->freelist = NULL;
2055 }
2056 
2057 /*
2058  * Flush cpu slab.
2059  *
2060  * Called from IPI handler with interrupts disabled.
2061  */
2062 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2063 {
2064 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2065 
2066 	if (likely(c)) {
2067 		if (c->page)
2068 			flush_slab(s, c);
2069 
2070 		unfreeze_partials(s, c);
2071 	}
2072 }
2073 
2074 static void flush_cpu_slab(void *d)
2075 {
2076 	struct kmem_cache *s = d;
2077 
2078 	__flush_cpu_slab(s, smp_processor_id());
2079 }
2080 
2081 static bool has_cpu_slab(int cpu, void *info)
2082 {
2083 	struct kmem_cache *s = info;
2084 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2085 
2086 	return c->page || c->partial;
2087 }
2088 
2089 static void flush_all(struct kmem_cache *s)
2090 {
2091 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2092 }
2093 
2094 /*
2095  * Check if the objects in a per cpu structure fit numa
2096  * locality expectations.
2097  */
2098 static inline int node_match(struct page *page, int node)
2099 {
2100 #ifdef CONFIG_NUMA
2101 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2102 		return 0;
2103 #endif
2104 	return 1;
2105 }
2106 
2107 #ifdef CONFIG_SLUB_DEBUG
2108 static int count_free(struct page *page)
2109 {
2110 	return page->objects - page->inuse;
2111 }
2112 
2113 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2114 {
2115 	return atomic_long_read(&n->total_objects);
2116 }
2117 #endif /* CONFIG_SLUB_DEBUG */
2118 
2119 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2120 static unsigned long count_partial(struct kmem_cache_node *n,
2121 					int (*get_count)(struct page *))
2122 {
2123 	unsigned long flags;
2124 	unsigned long x = 0;
2125 	struct page *page;
2126 
2127 	spin_lock_irqsave(&n->list_lock, flags);
2128 	list_for_each_entry(page, &n->partial, lru)
2129 		x += get_count(page);
2130 	spin_unlock_irqrestore(&n->list_lock, flags);
2131 	return x;
2132 }
2133 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2134 
2135 static noinline void
2136 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2137 {
2138 #ifdef CONFIG_SLUB_DEBUG
2139 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2140 				      DEFAULT_RATELIMIT_BURST);
2141 	int node;
2142 	struct kmem_cache_node *n;
2143 
2144 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2145 		return;
2146 
2147 	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2148 		nid, gfpflags);
2149 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2150 		s->name, s->object_size, s->size, oo_order(s->oo),
2151 		oo_order(s->min));
2152 
2153 	if (oo_order(s->min) > get_order(s->object_size))
2154 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2155 			s->name);
2156 
2157 	for_each_kmem_cache_node(s, node, n) {
2158 		unsigned long nr_slabs;
2159 		unsigned long nr_objs;
2160 		unsigned long nr_free;
2161 
2162 		nr_free  = count_partial(n, count_free);
2163 		nr_slabs = node_nr_slabs(n);
2164 		nr_objs  = node_nr_objs(n);
2165 
2166 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2167 			node, nr_slabs, nr_objs, nr_free);
2168 	}
2169 #endif
2170 }
2171 
2172 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2173 			int node, struct kmem_cache_cpu **pc)
2174 {
2175 	void *freelist;
2176 	struct kmem_cache_cpu *c = *pc;
2177 	struct page *page;
2178 
2179 	freelist = get_partial(s, flags, node, c);
2180 
2181 	if (freelist)
2182 		return freelist;
2183 
2184 	page = new_slab(s, flags, node);
2185 	if (page) {
2186 		c = raw_cpu_ptr(s->cpu_slab);
2187 		if (c->page)
2188 			flush_slab(s, c);
2189 
2190 		/*
2191 		 * No other reference to the page yet so we can
2192 		 * muck around with it freely without cmpxchg
2193 		 */
2194 		freelist = page->freelist;
2195 		page->freelist = NULL;
2196 
2197 		stat(s, ALLOC_SLAB);
2198 		c->page = page;
2199 		*pc = c;
2200 	} else
2201 		freelist = NULL;
2202 
2203 	return freelist;
2204 }
2205 
2206 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2207 {
2208 	if (unlikely(PageSlabPfmemalloc(page)))
2209 		return gfp_pfmemalloc_allowed(gfpflags);
2210 
2211 	return true;
2212 }
2213 
2214 /*
2215  * Check the page->freelist of a page and either transfer the freelist to the
2216  * per cpu freelist or deactivate the page.
2217  *
2218  * The page is still frozen if the return value is not NULL.
2219  *
2220  * If this function returns NULL then the page has been unfrozen.
2221  *
2222  * This function must be called with interrupt disabled.
2223  */
2224 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2225 {
2226 	struct page new;
2227 	unsigned long counters;
2228 	void *freelist;
2229 
2230 	do {
2231 		freelist = page->freelist;
2232 		counters = page->counters;
2233 
2234 		new.counters = counters;
2235 		VM_BUG_ON(!new.frozen);
2236 
2237 		new.inuse = page->objects;
2238 		new.frozen = freelist != NULL;
2239 
2240 	} while (!__cmpxchg_double_slab(s, page,
2241 		freelist, counters,
2242 		NULL, new.counters,
2243 		"get_freelist"));
2244 
2245 	return freelist;
2246 }
2247 
2248 /*
2249  * Slow path. The lockless freelist is empty or we need to perform
2250  * debugging duties.
2251  *
2252  * Processing is still very fast if new objects have been freed to the
2253  * regular freelist. In that case we simply take over the regular freelist
2254  * as the lockless freelist and zap the regular freelist.
2255  *
2256  * If that is not working then we fall back to the partial lists. We take the
2257  * first element of the freelist as the object to allocate now and move the
2258  * rest of the freelist to the lockless freelist.
2259  *
2260  * And if we were unable to get a new slab from the partial slab lists then
2261  * we need to allocate a new slab. This is the slowest path since it involves
2262  * a call to the page allocator and the setup of a new slab.
2263  */
2264 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2265 			  unsigned long addr, struct kmem_cache_cpu *c)
2266 {
2267 	void *freelist;
2268 	struct page *page;
2269 	unsigned long flags;
2270 
2271 	local_irq_save(flags);
2272 #ifdef CONFIG_PREEMPT
2273 	/*
2274 	 * We may have been preempted and rescheduled on a different
2275 	 * cpu before disabling interrupts. Need to reload cpu area
2276 	 * pointer.
2277 	 */
2278 	c = this_cpu_ptr(s->cpu_slab);
2279 #endif
2280 
2281 	page = c->page;
2282 	if (!page)
2283 		goto new_slab;
2284 redo:
2285 
2286 	if (unlikely(!node_match(page, node))) {
2287 		int searchnode = node;
2288 
2289 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2290 			searchnode = node_to_mem_node(node);
2291 
2292 		if (unlikely(!node_match(page, searchnode))) {
2293 			stat(s, ALLOC_NODE_MISMATCH);
2294 			deactivate_slab(s, page, c->freelist);
2295 			c->page = NULL;
2296 			c->freelist = NULL;
2297 			goto new_slab;
2298 		}
2299 	}
2300 
2301 	/*
2302 	 * By rights, we should be searching for a slab page that was
2303 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2304 	 * information when the page leaves the per-cpu allocator
2305 	 */
2306 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2307 		deactivate_slab(s, page, c->freelist);
2308 		c->page = NULL;
2309 		c->freelist = NULL;
2310 		goto new_slab;
2311 	}
2312 
2313 	/* must check again c->freelist in case of cpu migration or IRQ */
2314 	freelist = c->freelist;
2315 	if (freelist)
2316 		goto load_freelist;
2317 
2318 	freelist = get_freelist(s, page);
2319 
2320 	if (!freelist) {
2321 		c->page = NULL;
2322 		stat(s, DEACTIVATE_BYPASS);
2323 		goto new_slab;
2324 	}
2325 
2326 	stat(s, ALLOC_REFILL);
2327 
2328 load_freelist:
2329 	/*
2330 	 * freelist is pointing to the list of objects to be used.
2331 	 * page is pointing to the page from which the objects are obtained.
2332 	 * That page must be frozen for per cpu allocations to work.
2333 	 */
2334 	VM_BUG_ON(!c->page->frozen);
2335 	c->freelist = get_freepointer(s, freelist);
2336 	c->tid = next_tid(c->tid);
2337 	local_irq_restore(flags);
2338 	return freelist;
2339 
2340 new_slab:
2341 
2342 	if (c->partial) {
2343 		page = c->page = c->partial;
2344 		c->partial = page->next;
2345 		stat(s, CPU_PARTIAL_ALLOC);
2346 		c->freelist = NULL;
2347 		goto redo;
2348 	}
2349 
2350 	freelist = new_slab_objects(s, gfpflags, node, &c);
2351 
2352 	if (unlikely(!freelist)) {
2353 		slab_out_of_memory(s, gfpflags, node);
2354 		local_irq_restore(flags);
2355 		return NULL;
2356 	}
2357 
2358 	page = c->page;
2359 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2360 		goto load_freelist;
2361 
2362 	/* Only entered in the debug case */
2363 	if (kmem_cache_debug(s) &&
2364 			!alloc_debug_processing(s, page, freelist, addr))
2365 		goto new_slab;	/* Slab failed checks. Next slab needed */
2366 
2367 	deactivate_slab(s, page, get_freepointer(s, freelist));
2368 	c->page = NULL;
2369 	c->freelist = NULL;
2370 	local_irq_restore(flags);
2371 	return freelist;
2372 }
2373 
2374 /*
2375  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2376  * have the fastpath folded into their functions. So no function call
2377  * overhead for requests that can be satisfied on the fastpath.
2378  *
2379  * The fastpath works by first checking if the lockless freelist can be used.
2380  * If not then __slab_alloc is called for slow processing.
2381  *
2382  * Otherwise we can simply pick the next object from the lockless free list.
2383  */
2384 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2385 		gfp_t gfpflags, int node, unsigned long addr)
2386 {
2387 	void **object;
2388 	struct kmem_cache_cpu *c;
2389 	struct page *page;
2390 	unsigned long tid;
2391 
2392 	s = slab_pre_alloc_hook(s, gfpflags);
2393 	if (!s)
2394 		return NULL;
2395 redo:
2396 	/*
2397 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2398 	 * enabled. We may switch back and forth between cpus while
2399 	 * reading from one cpu area. That does not matter as long
2400 	 * as we end up on the original cpu again when doing the cmpxchg.
2401 	 *
2402 	 * Preemption is disabled for the retrieval of the tid because that
2403 	 * must occur from the current processor. We cannot allow rescheduling
2404 	 * on a different processor between the determination of the pointer
2405 	 * and the retrieval of the tid.
2406 	 */
2407 	preempt_disable();
2408 	c = this_cpu_ptr(s->cpu_slab);
2409 
2410 	/*
2411 	 * The transaction ids are globally unique per cpu and per operation on
2412 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2413 	 * occurs on the right processor and that there was no operation on the
2414 	 * linked list in between.
2415 	 */
2416 	tid = c->tid;
2417 	preempt_enable();
2418 
2419 	object = c->freelist;
2420 	page = c->page;
2421 	if (unlikely(!object || !node_match(page, node))) {
2422 		object = __slab_alloc(s, gfpflags, node, addr, c);
2423 		stat(s, ALLOC_SLOWPATH);
2424 	} else {
2425 		void *next_object = get_freepointer_safe(s, object);
2426 
2427 		/*
2428 		 * The cmpxchg will only match if there was no additional
2429 		 * operation and if we are on the right processor.
2430 		 *
2431 		 * The cmpxchg does the following atomically (without lock
2432 		 * semantics!)
2433 		 * 1. Relocate first pointer to the current per cpu area.
2434 		 * 2. Verify that tid and freelist have not been changed
2435 		 * 3. If they were not changed replace tid and freelist
2436 		 *
2437 		 * Since this is without lock semantics the protection is only
2438 		 * against code executing on this cpu *not* from access by
2439 		 * other cpus.
2440 		 */
2441 		if (unlikely(!this_cpu_cmpxchg_double(
2442 				s->cpu_slab->freelist, s->cpu_slab->tid,
2443 				object, tid,
2444 				next_object, next_tid(tid)))) {
2445 
2446 			note_cmpxchg_failure("slab_alloc", s, tid);
2447 			goto redo;
2448 		}
2449 		prefetch_freepointer(s, next_object);
2450 		stat(s, ALLOC_FASTPATH);
2451 	}
2452 
2453 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2454 		memset(object, 0, s->object_size);
2455 
2456 	slab_post_alloc_hook(s, gfpflags, object);
2457 
2458 	return object;
2459 }
2460 
2461 static __always_inline void *slab_alloc(struct kmem_cache *s,
2462 		gfp_t gfpflags, unsigned long addr)
2463 {
2464 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2465 }
2466 
2467 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2468 {
2469 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2470 
2471 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2472 				s->size, gfpflags);
2473 
2474 	return ret;
2475 }
2476 EXPORT_SYMBOL(kmem_cache_alloc);
2477 
2478 #ifdef CONFIG_TRACING
2479 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2480 {
2481 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2482 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2483 	return ret;
2484 }
2485 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2486 #endif
2487 
2488 #ifdef CONFIG_NUMA
2489 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2490 {
2491 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2492 
2493 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2494 				    s->object_size, s->size, gfpflags, node);
2495 
2496 	return ret;
2497 }
2498 EXPORT_SYMBOL(kmem_cache_alloc_node);
2499 
2500 #ifdef CONFIG_TRACING
2501 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2502 				    gfp_t gfpflags,
2503 				    int node, size_t size)
2504 {
2505 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2506 
2507 	trace_kmalloc_node(_RET_IP_, ret,
2508 			   size, s->size, gfpflags, node);
2509 	return ret;
2510 }
2511 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2512 #endif
2513 #endif
2514 
2515 /*
2516  * Slow patch handling. This may still be called frequently since objects
2517  * have a longer lifetime than the cpu slabs in most processing loads.
2518  *
2519  * So we still attempt to reduce cache line usage. Just take the slab
2520  * lock and free the item. If there is no additional partial page
2521  * handling required then we can return immediately.
2522  */
2523 static void __slab_free(struct kmem_cache *s, struct page *page,
2524 			void *x, unsigned long addr)
2525 {
2526 	void *prior;
2527 	void **object = (void *)x;
2528 	int was_frozen;
2529 	struct page new;
2530 	unsigned long counters;
2531 	struct kmem_cache_node *n = NULL;
2532 	unsigned long uninitialized_var(flags);
2533 
2534 	stat(s, FREE_SLOWPATH);
2535 
2536 	if (kmem_cache_debug(s) &&
2537 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2538 		return;
2539 
2540 	do {
2541 		if (unlikely(n)) {
2542 			spin_unlock_irqrestore(&n->list_lock, flags);
2543 			n = NULL;
2544 		}
2545 		prior = page->freelist;
2546 		counters = page->counters;
2547 		set_freepointer(s, object, prior);
2548 		new.counters = counters;
2549 		was_frozen = new.frozen;
2550 		new.inuse--;
2551 		if ((!new.inuse || !prior) && !was_frozen) {
2552 
2553 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2554 
2555 				/*
2556 				 * Slab was on no list before and will be
2557 				 * partially empty
2558 				 * We can defer the list move and instead
2559 				 * freeze it.
2560 				 */
2561 				new.frozen = 1;
2562 
2563 			} else { /* Needs to be taken off a list */
2564 
2565 				n = get_node(s, page_to_nid(page));
2566 				/*
2567 				 * Speculatively acquire the list_lock.
2568 				 * If the cmpxchg does not succeed then we may
2569 				 * drop the list_lock without any processing.
2570 				 *
2571 				 * Otherwise the list_lock will synchronize with
2572 				 * other processors updating the list of slabs.
2573 				 */
2574 				spin_lock_irqsave(&n->list_lock, flags);
2575 
2576 			}
2577 		}
2578 
2579 	} while (!cmpxchg_double_slab(s, page,
2580 		prior, counters,
2581 		object, new.counters,
2582 		"__slab_free"));
2583 
2584 	if (likely(!n)) {
2585 
2586 		/*
2587 		 * If we just froze the page then put it onto the
2588 		 * per cpu partial list.
2589 		 */
2590 		if (new.frozen && !was_frozen) {
2591 			put_cpu_partial(s, page, 1);
2592 			stat(s, CPU_PARTIAL_FREE);
2593 		}
2594 		/*
2595 		 * The list lock was not taken therefore no list
2596 		 * activity can be necessary.
2597 		 */
2598 		if (was_frozen)
2599 			stat(s, FREE_FROZEN);
2600 		return;
2601 	}
2602 
2603 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2604 		goto slab_empty;
2605 
2606 	/*
2607 	 * Objects left in the slab. If it was not on the partial list before
2608 	 * then add it.
2609 	 */
2610 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2611 		if (kmem_cache_debug(s))
2612 			remove_full(s, n, page);
2613 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2614 		stat(s, FREE_ADD_PARTIAL);
2615 	}
2616 	spin_unlock_irqrestore(&n->list_lock, flags);
2617 	return;
2618 
2619 slab_empty:
2620 	if (prior) {
2621 		/*
2622 		 * Slab on the partial list.
2623 		 */
2624 		remove_partial(n, page);
2625 		stat(s, FREE_REMOVE_PARTIAL);
2626 	} else {
2627 		/* Slab must be on the full list */
2628 		remove_full(s, n, page);
2629 	}
2630 
2631 	spin_unlock_irqrestore(&n->list_lock, flags);
2632 	stat(s, FREE_SLAB);
2633 	discard_slab(s, page);
2634 }
2635 
2636 /*
2637  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2638  * can perform fastpath freeing without additional function calls.
2639  *
2640  * The fastpath is only possible if we are freeing to the current cpu slab
2641  * of this processor. This typically the case if we have just allocated
2642  * the item before.
2643  *
2644  * If fastpath is not possible then fall back to __slab_free where we deal
2645  * with all sorts of special processing.
2646  */
2647 static __always_inline void slab_free(struct kmem_cache *s,
2648 			struct page *page, void *x, unsigned long addr)
2649 {
2650 	void **object = (void *)x;
2651 	struct kmem_cache_cpu *c;
2652 	unsigned long tid;
2653 
2654 	slab_free_hook(s, x);
2655 
2656 redo:
2657 	/*
2658 	 * Determine the currently cpus per cpu slab.
2659 	 * The cpu may change afterward. However that does not matter since
2660 	 * data is retrieved via this pointer. If we are on the same cpu
2661 	 * during the cmpxchg then the free will succedd.
2662 	 */
2663 	preempt_disable();
2664 	c = this_cpu_ptr(s->cpu_slab);
2665 
2666 	tid = c->tid;
2667 	preempt_enable();
2668 
2669 	if (likely(page == c->page)) {
2670 		set_freepointer(s, object, c->freelist);
2671 
2672 		if (unlikely(!this_cpu_cmpxchg_double(
2673 				s->cpu_slab->freelist, s->cpu_slab->tid,
2674 				c->freelist, tid,
2675 				object, next_tid(tid)))) {
2676 
2677 			note_cmpxchg_failure("slab_free", s, tid);
2678 			goto redo;
2679 		}
2680 		stat(s, FREE_FASTPATH);
2681 	} else
2682 		__slab_free(s, page, x, addr);
2683 
2684 }
2685 
2686 void kmem_cache_free(struct kmem_cache *s, void *x)
2687 {
2688 	s = cache_from_obj(s, x);
2689 	if (!s)
2690 		return;
2691 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2692 	trace_kmem_cache_free(_RET_IP_, x);
2693 }
2694 EXPORT_SYMBOL(kmem_cache_free);
2695 
2696 /*
2697  * Object placement in a slab is made very easy because we always start at
2698  * offset 0. If we tune the size of the object to the alignment then we can
2699  * get the required alignment by putting one properly sized object after
2700  * another.
2701  *
2702  * Notice that the allocation order determines the sizes of the per cpu
2703  * caches. Each processor has always one slab available for allocations.
2704  * Increasing the allocation order reduces the number of times that slabs
2705  * must be moved on and off the partial lists and is therefore a factor in
2706  * locking overhead.
2707  */
2708 
2709 /*
2710  * Mininum / Maximum order of slab pages. This influences locking overhead
2711  * and slab fragmentation. A higher order reduces the number of partial slabs
2712  * and increases the number of allocations possible without having to
2713  * take the list_lock.
2714  */
2715 static int slub_min_order;
2716 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2717 static int slub_min_objects;
2718 
2719 /*
2720  * Calculate the order of allocation given an slab object size.
2721  *
2722  * The order of allocation has significant impact on performance and other
2723  * system components. Generally order 0 allocations should be preferred since
2724  * order 0 does not cause fragmentation in the page allocator. Larger objects
2725  * be problematic to put into order 0 slabs because there may be too much
2726  * unused space left. We go to a higher order if more than 1/16th of the slab
2727  * would be wasted.
2728  *
2729  * In order to reach satisfactory performance we must ensure that a minimum
2730  * number of objects is in one slab. Otherwise we may generate too much
2731  * activity on the partial lists which requires taking the list_lock. This is
2732  * less a concern for large slabs though which are rarely used.
2733  *
2734  * slub_max_order specifies the order where we begin to stop considering the
2735  * number of objects in a slab as critical. If we reach slub_max_order then
2736  * we try to keep the page order as low as possible. So we accept more waste
2737  * of space in favor of a small page order.
2738  *
2739  * Higher order allocations also allow the placement of more objects in a
2740  * slab and thereby reduce object handling overhead. If the user has
2741  * requested a higher mininum order then we start with that one instead of
2742  * the smallest order which will fit the object.
2743  */
2744 static inline int slab_order(int size, int min_objects,
2745 				int max_order, int fract_leftover, int reserved)
2746 {
2747 	int order;
2748 	int rem;
2749 	int min_order = slub_min_order;
2750 
2751 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2752 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2753 
2754 	for (order = max(min_order,
2755 				fls(min_objects * size - 1) - PAGE_SHIFT);
2756 			order <= max_order; order++) {
2757 
2758 		unsigned long slab_size = PAGE_SIZE << order;
2759 
2760 		if (slab_size < min_objects * size + reserved)
2761 			continue;
2762 
2763 		rem = (slab_size - reserved) % size;
2764 
2765 		if (rem <= slab_size / fract_leftover)
2766 			break;
2767 
2768 	}
2769 
2770 	return order;
2771 }
2772 
2773 static inline int calculate_order(int size, int reserved)
2774 {
2775 	int order;
2776 	int min_objects;
2777 	int fraction;
2778 	int max_objects;
2779 
2780 	/*
2781 	 * Attempt to find best configuration for a slab. This
2782 	 * works by first attempting to generate a layout with
2783 	 * the best configuration and backing off gradually.
2784 	 *
2785 	 * First we reduce the acceptable waste in a slab. Then
2786 	 * we reduce the minimum objects required in a slab.
2787 	 */
2788 	min_objects = slub_min_objects;
2789 	if (!min_objects)
2790 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2791 	max_objects = order_objects(slub_max_order, size, reserved);
2792 	min_objects = min(min_objects, max_objects);
2793 
2794 	while (min_objects > 1) {
2795 		fraction = 16;
2796 		while (fraction >= 4) {
2797 			order = slab_order(size, min_objects,
2798 					slub_max_order, fraction, reserved);
2799 			if (order <= slub_max_order)
2800 				return order;
2801 			fraction /= 2;
2802 		}
2803 		min_objects--;
2804 	}
2805 
2806 	/*
2807 	 * We were unable to place multiple objects in a slab. Now
2808 	 * lets see if we can place a single object there.
2809 	 */
2810 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2811 	if (order <= slub_max_order)
2812 		return order;
2813 
2814 	/*
2815 	 * Doh this slab cannot be placed using slub_max_order.
2816 	 */
2817 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2818 	if (order < MAX_ORDER)
2819 		return order;
2820 	return -ENOSYS;
2821 }
2822 
2823 static void
2824 init_kmem_cache_node(struct kmem_cache_node *n)
2825 {
2826 	n->nr_partial = 0;
2827 	spin_lock_init(&n->list_lock);
2828 	INIT_LIST_HEAD(&n->partial);
2829 #ifdef CONFIG_SLUB_DEBUG
2830 	atomic_long_set(&n->nr_slabs, 0);
2831 	atomic_long_set(&n->total_objects, 0);
2832 	INIT_LIST_HEAD(&n->full);
2833 #endif
2834 }
2835 
2836 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2837 {
2838 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2839 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2840 
2841 	/*
2842 	 * Must align to double word boundary for the double cmpxchg
2843 	 * instructions to work; see __pcpu_double_call_return_bool().
2844 	 */
2845 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2846 				     2 * sizeof(void *));
2847 
2848 	if (!s->cpu_slab)
2849 		return 0;
2850 
2851 	init_kmem_cache_cpus(s);
2852 
2853 	return 1;
2854 }
2855 
2856 static struct kmem_cache *kmem_cache_node;
2857 
2858 /*
2859  * No kmalloc_node yet so do it by hand. We know that this is the first
2860  * slab on the node for this slabcache. There are no concurrent accesses
2861  * possible.
2862  *
2863  * Note that this function only works on the kmem_cache_node
2864  * when allocating for the kmem_cache_node. This is used for bootstrapping
2865  * memory on a fresh node that has no slab structures yet.
2866  */
2867 static void early_kmem_cache_node_alloc(int node)
2868 {
2869 	struct page *page;
2870 	struct kmem_cache_node *n;
2871 
2872 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2873 
2874 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2875 
2876 	BUG_ON(!page);
2877 	if (page_to_nid(page) != node) {
2878 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2879 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2880 	}
2881 
2882 	n = page->freelist;
2883 	BUG_ON(!n);
2884 	page->freelist = get_freepointer(kmem_cache_node, n);
2885 	page->inuse = 1;
2886 	page->frozen = 0;
2887 	kmem_cache_node->node[node] = n;
2888 #ifdef CONFIG_SLUB_DEBUG
2889 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2890 	init_tracking(kmem_cache_node, n);
2891 #endif
2892 	init_kmem_cache_node(n);
2893 	inc_slabs_node(kmem_cache_node, node, page->objects);
2894 
2895 	/*
2896 	 * No locks need to be taken here as it has just been
2897 	 * initialized and there is no concurrent access.
2898 	 */
2899 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
2900 }
2901 
2902 static void free_kmem_cache_nodes(struct kmem_cache *s)
2903 {
2904 	int node;
2905 	struct kmem_cache_node *n;
2906 
2907 	for_each_kmem_cache_node(s, node, n) {
2908 		kmem_cache_free(kmem_cache_node, n);
2909 		s->node[node] = NULL;
2910 	}
2911 }
2912 
2913 static int init_kmem_cache_nodes(struct kmem_cache *s)
2914 {
2915 	int node;
2916 
2917 	for_each_node_state(node, N_NORMAL_MEMORY) {
2918 		struct kmem_cache_node *n;
2919 
2920 		if (slab_state == DOWN) {
2921 			early_kmem_cache_node_alloc(node);
2922 			continue;
2923 		}
2924 		n = kmem_cache_alloc_node(kmem_cache_node,
2925 						GFP_KERNEL, node);
2926 
2927 		if (!n) {
2928 			free_kmem_cache_nodes(s);
2929 			return 0;
2930 		}
2931 
2932 		s->node[node] = n;
2933 		init_kmem_cache_node(n);
2934 	}
2935 	return 1;
2936 }
2937 
2938 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2939 {
2940 	if (min < MIN_PARTIAL)
2941 		min = MIN_PARTIAL;
2942 	else if (min > MAX_PARTIAL)
2943 		min = MAX_PARTIAL;
2944 	s->min_partial = min;
2945 }
2946 
2947 /*
2948  * calculate_sizes() determines the order and the distribution of data within
2949  * a slab object.
2950  */
2951 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2952 {
2953 	unsigned long flags = s->flags;
2954 	unsigned long size = s->object_size;
2955 	int order;
2956 
2957 	/*
2958 	 * Round up object size to the next word boundary. We can only
2959 	 * place the free pointer at word boundaries and this determines
2960 	 * the possible location of the free pointer.
2961 	 */
2962 	size = ALIGN(size, sizeof(void *));
2963 
2964 #ifdef CONFIG_SLUB_DEBUG
2965 	/*
2966 	 * Determine if we can poison the object itself. If the user of
2967 	 * the slab may touch the object after free or before allocation
2968 	 * then we should never poison the object itself.
2969 	 */
2970 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2971 			!s->ctor)
2972 		s->flags |= __OBJECT_POISON;
2973 	else
2974 		s->flags &= ~__OBJECT_POISON;
2975 
2976 
2977 	/*
2978 	 * If we are Redzoning then check if there is some space between the
2979 	 * end of the object and the free pointer. If not then add an
2980 	 * additional word to have some bytes to store Redzone information.
2981 	 */
2982 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2983 		size += sizeof(void *);
2984 #endif
2985 
2986 	/*
2987 	 * With that we have determined the number of bytes in actual use
2988 	 * by the object. This is the potential offset to the free pointer.
2989 	 */
2990 	s->inuse = size;
2991 
2992 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2993 		s->ctor)) {
2994 		/*
2995 		 * Relocate free pointer after the object if it is not
2996 		 * permitted to overwrite the first word of the object on
2997 		 * kmem_cache_free.
2998 		 *
2999 		 * This is the case if we do RCU, have a constructor or
3000 		 * destructor or are poisoning the objects.
3001 		 */
3002 		s->offset = size;
3003 		size += sizeof(void *);
3004 	}
3005 
3006 #ifdef CONFIG_SLUB_DEBUG
3007 	if (flags & SLAB_STORE_USER)
3008 		/*
3009 		 * Need to store information about allocs and frees after
3010 		 * the object.
3011 		 */
3012 		size += 2 * sizeof(struct track);
3013 
3014 	if (flags & SLAB_RED_ZONE)
3015 		/*
3016 		 * Add some empty padding so that we can catch
3017 		 * overwrites from earlier objects rather than let
3018 		 * tracking information or the free pointer be
3019 		 * corrupted if a user writes before the start
3020 		 * of the object.
3021 		 */
3022 		size += sizeof(void *);
3023 #endif
3024 
3025 	/*
3026 	 * SLUB stores one object immediately after another beginning from
3027 	 * offset 0. In order to align the objects we have to simply size
3028 	 * each object to conform to the alignment.
3029 	 */
3030 	size = ALIGN(size, s->align);
3031 	s->size = size;
3032 	if (forced_order >= 0)
3033 		order = forced_order;
3034 	else
3035 		order = calculate_order(size, s->reserved);
3036 
3037 	if (order < 0)
3038 		return 0;
3039 
3040 	s->allocflags = 0;
3041 	if (order)
3042 		s->allocflags |= __GFP_COMP;
3043 
3044 	if (s->flags & SLAB_CACHE_DMA)
3045 		s->allocflags |= GFP_DMA;
3046 
3047 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3048 		s->allocflags |= __GFP_RECLAIMABLE;
3049 
3050 	/*
3051 	 * Determine the number of objects per slab
3052 	 */
3053 	s->oo = oo_make(order, size, s->reserved);
3054 	s->min = oo_make(get_order(size), size, s->reserved);
3055 	if (oo_objects(s->oo) > oo_objects(s->max))
3056 		s->max = s->oo;
3057 
3058 	return !!oo_objects(s->oo);
3059 }
3060 
3061 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3062 {
3063 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3064 	s->reserved = 0;
3065 
3066 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3067 		s->reserved = sizeof(struct rcu_head);
3068 
3069 	if (!calculate_sizes(s, -1))
3070 		goto error;
3071 	if (disable_higher_order_debug) {
3072 		/*
3073 		 * Disable debugging flags that store metadata if the min slab
3074 		 * order increased.
3075 		 */
3076 		if (get_order(s->size) > get_order(s->object_size)) {
3077 			s->flags &= ~DEBUG_METADATA_FLAGS;
3078 			s->offset = 0;
3079 			if (!calculate_sizes(s, -1))
3080 				goto error;
3081 		}
3082 	}
3083 
3084 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3085     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3086 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3087 		/* Enable fast mode */
3088 		s->flags |= __CMPXCHG_DOUBLE;
3089 #endif
3090 
3091 	/*
3092 	 * The larger the object size is, the more pages we want on the partial
3093 	 * list to avoid pounding the page allocator excessively.
3094 	 */
3095 	set_min_partial(s, ilog2(s->size) / 2);
3096 
3097 	/*
3098 	 * cpu_partial determined the maximum number of objects kept in the
3099 	 * per cpu partial lists of a processor.
3100 	 *
3101 	 * Per cpu partial lists mainly contain slabs that just have one
3102 	 * object freed. If they are used for allocation then they can be
3103 	 * filled up again with minimal effort. The slab will never hit the
3104 	 * per node partial lists and therefore no locking will be required.
3105 	 *
3106 	 * This setting also determines
3107 	 *
3108 	 * A) The number of objects from per cpu partial slabs dumped to the
3109 	 *    per node list when we reach the limit.
3110 	 * B) The number of objects in cpu partial slabs to extract from the
3111 	 *    per node list when we run out of per cpu objects. We only fetch
3112 	 *    50% to keep some capacity around for frees.
3113 	 */
3114 	if (!kmem_cache_has_cpu_partial(s))
3115 		s->cpu_partial = 0;
3116 	else if (s->size >= PAGE_SIZE)
3117 		s->cpu_partial = 2;
3118 	else if (s->size >= 1024)
3119 		s->cpu_partial = 6;
3120 	else if (s->size >= 256)
3121 		s->cpu_partial = 13;
3122 	else
3123 		s->cpu_partial = 30;
3124 
3125 #ifdef CONFIG_NUMA
3126 	s->remote_node_defrag_ratio = 1000;
3127 #endif
3128 	if (!init_kmem_cache_nodes(s))
3129 		goto error;
3130 
3131 	if (alloc_kmem_cache_cpus(s))
3132 		return 0;
3133 
3134 	free_kmem_cache_nodes(s);
3135 error:
3136 	if (flags & SLAB_PANIC)
3137 		panic("Cannot create slab %s size=%lu realsize=%u "
3138 			"order=%u offset=%u flags=%lx\n",
3139 			s->name, (unsigned long)s->size, s->size,
3140 			oo_order(s->oo), s->offset, flags);
3141 	return -EINVAL;
3142 }
3143 
3144 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3145 							const char *text)
3146 {
3147 #ifdef CONFIG_SLUB_DEBUG
3148 	void *addr = page_address(page);
3149 	void *p;
3150 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3151 				     sizeof(long), GFP_ATOMIC);
3152 	if (!map)
3153 		return;
3154 	slab_err(s, page, text, s->name);
3155 	slab_lock(page);
3156 
3157 	get_map(s, page, map);
3158 	for_each_object(p, s, addr, page->objects) {
3159 
3160 		if (!test_bit(slab_index(p, s, addr), map)) {
3161 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3162 			print_tracking(s, p);
3163 		}
3164 	}
3165 	slab_unlock(page);
3166 	kfree(map);
3167 #endif
3168 }
3169 
3170 /*
3171  * Attempt to free all partial slabs on a node.
3172  * This is called from kmem_cache_close(). We must be the last thread
3173  * using the cache and therefore we do not need to lock anymore.
3174  */
3175 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3176 {
3177 	struct page *page, *h;
3178 
3179 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3180 		if (!page->inuse) {
3181 			__remove_partial(n, page);
3182 			discard_slab(s, page);
3183 		} else {
3184 			list_slab_objects(s, page,
3185 			"Objects remaining in %s on kmem_cache_close()");
3186 		}
3187 	}
3188 }
3189 
3190 /*
3191  * Release all resources used by a slab cache.
3192  */
3193 static inline int kmem_cache_close(struct kmem_cache *s)
3194 {
3195 	int node;
3196 	struct kmem_cache_node *n;
3197 
3198 	flush_all(s);
3199 	/* Attempt to free all objects */
3200 	for_each_kmem_cache_node(s, node, n) {
3201 		free_partial(s, n);
3202 		if (n->nr_partial || slabs_node(s, node))
3203 			return 1;
3204 	}
3205 	free_percpu(s->cpu_slab);
3206 	free_kmem_cache_nodes(s);
3207 	return 0;
3208 }
3209 
3210 int __kmem_cache_shutdown(struct kmem_cache *s)
3211 {
3212 	return kmem_cache_close(s);
3213 }
3214 
3215 /********************************************************************
3216  *		Kmalloc subsystem
3217  *******************************************************************/
3218 
3219 static int __init setup_slub_min_order(char *str)
3220 {
3221 	get_option(&str, &slub_min_order);
3222 
3223 	return 1;
3224 }
3225 
3226 __setup("slub_min_order=", setup_slub_min_order);
3227 
3228 static int __init setup_slub_max_order(char *str)
3229 {
3230 	get_option(&str, &slub_max_order);
3231 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3232 
3233 	return 1;
3234 }
3235 
3236 __setup("slub_max_order=", setup_slub_max_order);
3237 
3238 static int __init setup_slub_min_objects(char *str)
3239 {
3240 	get_option(&str, &slub_min_objects);
3241 
3242 	return 1;
3243 }
3244 
3245 __setup("slub_min_objects=", setup_slub_min_objects);
3246 
3247 void *__kmalloc(size_t size, gfp_t flags)
3248 {
3249 	struct kmem_cache *s;
3250 	void *ret;
3251 
3252 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3253 		return kmalloc_large(size, flags);
3254 
3255 	s = kmalloc_slab(size, flags);
3256 
3257 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3258 		return s;
3259 
3260 	ret = slab_alloc(s, flags, _RET_IP_);
3261 
3262 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3263 
3264 	return ret;
3265 }
3266 EXPORT_SYMBOL(__kmalloc);
3267 
3268 #ifdef CONFIG_NUMA
3269 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3270 {
3271 	struct page *page;
3272 	void *ptr = NULL;
3273 
3274 	flags |= __GFP_COMP | __GFP_NOTRACK;
3275 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3276 	if (page)
3277 		ptr = page_address(page);
3278 
3279 	kmalloc_large_node_hook(ptr, size, flags);
3280 	return ptr;
3281 }
3282 
3283 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3284 {
3285 	struct kmem_cache *s;
3286 	void *ret;
3287 
3288 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3289 		ret = kmalloc_large_node(size, flags, node);
3290 
3291 		trace_kmalloc_node(_RET_IP_, ret,
3292 				   size, PAGE_SIZE << get_order(size),
3293 				   flags, node);
3294 
3295 		return ret;
3296 	}
3297 
3298 	s = kmalloc_slab(size, flags);
3299 
3300 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3301 		return s;
3302 
3303 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3304 
3305 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3306 
3307 	return ret;
3308 }
3309 EXPORT_SYMBOL(__kmalloc_node);
3310 #endif
3311 
3312 size_t ksize(const void *object)
3313 {
3314 	struct page *page;
3315 
3316 	if (unlikely(object == ZERO_SIZE_PTR))
3317 		return 0;
3318 
3319 	page = virt_to_head_page(object);
3320 
3321 	if (unlikely(!PageSlab(page))) {
3322 		WARN_ON(!PageCompound(page));
3323 		return PAGE_SIZE << compound_order(page);
3324 	}
3325 
3326 	return slab_ksize(page->slab_cache);
3327 }
3328 EXPORT_SYMBOL(ksize);
3329 
3330 void kfree(const void *x)
3331 {
3332 	struct page *page;
3333 	void *object = (void *)x;
3334 
3335 	trace_kfree(_RET_IP_, x);
3336 
3337 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3338 		return;
3339 
3340 	page = virt_to_head_page(x);
3341 	if (unlikely(!PageSlab(page))) {
3342 		BUG_ON(!PageCompound(page));
3343 		kfree_hook(x);
3344 		__free_kmem_pages(page, compound_order(page));
3345 		return;
3346 	}
3347 	slab_free(page->slab_cache, page, object, _RET_IP_);
3348 }
3349 EXPORT_SYMBOL(kfree);
3350 
3351 /*
3352  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3353  * the remaining slabs by the number of items in use. The slabs with the
3354  * most items in use come first. New allocations will then fill those up
3355  * and thus they can be removed from the partial lists.
3356  *
3357  * The slabs with the least items are placed last. This results in them
3358  * being allocated from last increasing the chance that the last objects
3359  * are freed in them.
3360  */
3361 int __kmem_cache_shrink(struct kmem_cache *s)
3362 {
3363 	int node;
3364 	int i;
3365 	struct kmem_cache_node *n;
3366 	struct page *page;
3367 	struct page *t;
3368 	int objects = oo_objects(s->max);
3369 	struct list_head *slabs_by_inuse =
3370 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3371 	unsigned long flags;
3372 
3373 	if (!slabs_by_inuse)
3374 		return -ENOMEM;
3375 
3376 	flush_all(s);
3377 	for_each_kmem_cache_node(s, node, n) {
3378 		if (!n->nr_partial)
3379 			continue;
3380 
3381 		for (i = 0; i < objects; i++)
3382 			INIT_LIST_HEAD(slabs_by_inuse + i);
3383 
3384 		spin_lock_irqsave(&n->list_lock, flags);
3385 
3386 		/*
3387 		 * Build lists indexed by the items in use in each slab.
3388 		 *
3389 		 * Note that concurrent frees may occur while we hold the
3390 		 * list_lock. page->inuse here is the upper limit.
3391 		 */
3392 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3393 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3394 			if (!page->inuse)
3395 				n->nr_partial--;
3396 		}
3397 
3398 		/*
3399 		 * Rebuild the partial list with the slabs filled up most
3400 		 * first and the least used slabs at the end.
3401 		 */
3402 		for (i = objects - 1; i > 0; i--)
3403 			list_splice(slabs_by_inuse + i, n->partial.prev);
3404 
3405 		spin_unlock_irqrestore(&n->list_lock, flags);
3406 
3407 		/* Release empty slabs */
3408 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3409 			discard_slab(s, page);
3410 	}
3411 
3412 	kfree(slabs_by_inuse);
3413 	return 0;
3414 }
3415 
3416 static int slab_mem_going_offline_callback(void *arg)
3417 {
3418 	struct kmem_cache *s;
3419 
3420 	mutex_lock(&slab_mutex);
3421 	list_for_each_entry(s, &slab_caches, list)
3422 		__kmem_cache_shrink(s);
3423 	mutex_unlock(&slab_mutex);
3424 
3425 	return 0;
3426 }
3427 
3428 static void slab_mem_offline_callback(void *arg)
3429 {
3430 	struct kmem_cache_node *n;
3431 	struct kmem_cache *s;
3432 	struct memory_notify *marg = arg;
3433 	int offline_node;
3434 
3435 	offline_node = marg->status_change_nid_normal;
3436 
3437 	/*
3438 	 * If the node still has available memory. we need kmem_cache_node
3439 	 * for it yet.
3440 	 */
3441 	if (offline_node < 0)
3442 		return;
3443 
3444 	mutex_lock(&slab_mutex);
3445 	list_for_each_entry(s, &slab_caches, list) {
3446 		n = get_node(s, offline_node);
3447 		if (n) {
3448 			/*
3449 			 * if n->nr_slabs > 0, slabs still exist on the node
3450 			 * that is going down. We were unable to free them,
3451 			 * and offline_pages() function shouldn't call this
3452 			 * callback. So, we must fail.
3453 			 */
3454 			BUG_ON(slabs_node(s, offline_node));
3455 
3456 			s->node[offline_node] = NULL;
3457 			kmem_cache_free(kmem_cache_node, n);
3458 		}
3459 	}
3460 	mutex_unlock(&slab_mutex);
3461 }
3462 
3463 static int slab_mem_going_online_callback(void *arg)
3464 {
3465 	struct kmem_cache_node *n;
3466 	struct kmem_cache *s;
3467 	struct memory_notify *marg = arg;
3468 	int nid = marg->status_change_nid_normal;
3469 	int ret = 0;
3470 
3471 	/*
3472 	 * If the node's memory is already available, then kmem_cache_node is
3473 	 * already created. Nothing to do.
3474 	 */
3475 	if (nid < 0)
3476 		return 0;
3477 
3478 	/*
3479 	 * We are bringing a node online. No memory is available yet. We must
3480 	 * allocate a kmem_cache_node structure in order to bring the node
3481 	 * online.
3482 	 */
3483 	mutex_lock(&slab_mutex);
3484 	list_for_each_entry(s, &slab_caches, list) {
3485 		/*
3486 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3487 		 *      since memory is not yet available from the node that
3488 		 *      is brought up.
3489 		 */
3490 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3491 		if (!n) {
3492 			ret = -ENOMEM;
3493 			goto out;
3494 		}
3495 		init_kmem_cache_node(n);
3496 		s->node[nid] = n;
3497 	}
3498 out:
3499 	mutex_unlock(&slab_mutex);
3500 	return ret;
3501 }
3502 
3503 static int slab_memory_callback(struct notifier_block *self,
3504 				unsigned long action, void *arg)
3505 {
3506 	int ret = 0;
3507 
3508 	switch (action) {
3509 	case MEM_GOING_ONLINE:
3510 		ret = slab_mem_going_online_callback(arg);
3511 		break;
3512 	case MEM_GOING_OFFLINE:
3513 		ret = slab_mem_going_offline_callback(arg);
3514 		break;
3515 	case MEM_OFFLINE:
3516 	case MEM_CANCEL_ONLINE:
3517 		slab_mem_offline_callback(arg);
3518 		break;
3519 	case MEM_ONLINE:
3520 	case MEM_CANCEL_OFFLINE:
3521 		break;
3522 	}
3523 	if (ret)
3524 		ret = notifier_from_errno(ret);
3525 	else
3526 		ret = NOTIFY_OK;
3527 	return ret;
3528 }
3529 
3530 static struct notifier_block slab_memory_callback_nb = {
3531 	.notifier_call = slab_memory_callback,
3532 	.priority = SLAB_CALLBACK_PRI,
3533 };
3534 
3535 /********************************************************************
3536  *			Basic setup of slabs
3537  *******************************************************************/
3538 
3539 /*
3540  * Used for early kmem_cache structures that were allocated using
3541  * the page allocator. Allocate them properly then fix up the pointers
3542  * that may be pointing to the wrong kmem_cache structure.
3543  */
3544 
3545 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3546 {
3547 	int node;
3548 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3549 	struct kmem_cache_node *n;
3550 
3551 	memcpy(s, static_cache, kmem_cache->object_size);
3552 
3553 	/*
3554 	 * This runs very early, and only the boot processor is supposed to be
3555 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3556 	 * IPIs around.
3557 	 */
3558 	__flush_cpu_slab(s, smp_processor_id());
3559 	for_each_kmem_cache_node(s, node, n) {
3560 		struct page *p;
3561 
3562 		list_for_each_entry(p, &n->partial, lru)
3563 			p->slab_cache = s;
3564 
3565 #ifdef CONFIG_SLUB_DEBUG
3566 		list_for_each_entry(p, &n->full, lru)
3567 			p->slab_cache = s;
3568 #endif
3569 	}
3570 	list_add(&s->list, &slab_caches);
3571 	return s;
3572 }
3573 
3574 void __init kmem_cache_init(void)
3575 {
3576 	static __initdata struct kmem_cache boot_kmem_cache,
3577 		boot_kmem_cache_node;
3578 
3579 	if (debug_guardpage_minorder())
3580 		slub_max_order = 0;
3581 
3582 	kmem_cache_node = &boot_kmem_cache_node;
3583 	kmem_cache = &boot_kmem_cache;
3584 
3585 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3586 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3587 
3588 	register_hotmemory_notifier(&slab_memory_callback_nb);
3589 
3590 	/* Able to allocate the per node structures */
3591 	slab_state = PARTIAL;
3592 
3593 	create_boot_cache(kmem_cache, "kmem_cache",
3594 			offsetof(struct kmem_cache, node) +
3595 				nr_node_ids * sizeof(struct kmem_cache_node *),
3596 		       SLAB_HWCACHE_ALIGN);
3597 
3598 	kmem_cache = bootstrap(&boot_kmem_cache);
3599 
3600 	/*
3601 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3602 	 * kmem_cache_node is separately allocated so no need to
3603 	 * update any list pointers.
3604 	 */
3605 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3606 
3607 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3608 	create_kmalloc_caches(0);
3609 
3610 #ifdef CONFIG_SMP
3611 	register_cpu_notifier(&slab_notifier);
3612 #endif
3613 
3614 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3615 		cache_line_size(),
3616 		slub_min_order, slub_max_order, slub_min_objects,
3617 		nr_cpu_ids, nr_node_ids);
3618 }
3619 
3620 void __init kmem_cache_init_late(void)
3621 {
3622 }
3623 
3624 struct kmem_cache *
3625 __kmem_cache_alias(const char *name, size_t size, size_t align,
3626 		   unsigned long flags, void (*ctor)(void *))
3627 {
3628 	struct kmem_cache *s;
3629 
3630 	s = find_mergeable(size, align, flags, name, ctor);
3631 	if (s) {
3632 		int i;
3633 		struct kmem_cache *c;
3634 
3635 		s->refcount++;
3636 
3637 		/*
3638 		 * Adjust the object sizes so that we clear
3639 		 * the complete object on kzalloc.
3640 		 */
3641 		s->object_size = max(s->object_size, (int)size);
3642 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3643 
3644 		for_each_memcg_cache_index(i) {
3645 			c = cache_from_memcg_idx(s, i);
3646 			if (!c)
3647 				continue;
3648 			c->object_size = s->object_size;
3649 			c->inuse = max_t(int, c->inuse,
3650 					 ALIGN(size, sizeof(void *)));
3651 		}
3652 
3653 		if (sysfs_slab_alias(s, name)) {
3654 			s->refcount--;
3655 			s = NULL;
3656 		}
3657 	}
3658 
3659 	return s;
3660 }
3661 
3662 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3663 {
3664 	int err;
3665 
3666 	err = kmem_cache_open(s, flags);
3667 	if (err)
3668 		return err;
3669 
3670 	/* Mutex is not taken during early boot */
3671 	if (slab_state <= UP)
3672 		return 0;
3673 
3674 	memcg_propagate_slab_attrs(s);
3675 	err = sysfs_slab_add(s);
3676 	if (err)
3677 		kmem_cache_close(s);
3678 
3679 	return err;
3680 }
3681 
3682 #ifdef CONFIG_SMP
3683 /*
3684  * Use the cpu notifier to insure that the cpu slabs are flushed when
3685  * necessary.
3686  */
3687 static int slab_cpuup_callback(struct notifier_block *nfb,
3688 		unsigned long action, void *hcpu)
3689 {
3690 	long cpu = (long)hcpu;
3691 	struct kmem_cache *s;
3692 	unsigned long flags;
3693 
3694 	switch (action) {
3695 	case CPU_UP_CANCELED:
3696 	case CPU_UP_CANCELED_FROZEN:
3697 	case CPU_DEAD:
3698 	case CPU_DEAD_FROZEN:
3699 		mutex_lock(&slab_mutex);
3700 		list_for_each_entry(s, &slab_caches, list) {
3701 			local_irq_save(flags);
3702 			__flush_cpu_slab(s, cpu);
3703 			local_irq_restore(flags);
3704 		}
3705 		mutex_unlock(&slab_mutex);
3706 		break;
3707 	default:
3708 		break;
3709 	}
3710 	return NOTIFY_OK;
3711 }
3712 
3713 static struct notifier_block slab_notifier = {
3714 	.notifier_call = slab_cpuup_callback
3715 };
3716 
3717 #endif
3718 
3719 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3720 {
3721 	struct kmem_cache *s;
3722 	void *ret;
3723 
3724 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3725 		return kmalloc_large(size, gfpflags);
3726 
3727 	s = kmalloc_slab(size, gfpflags);
3728 
3729 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3730 		return s;
3731 
3732 	ret = slab_alloc(s, gfpflags, caller);
3733 
3734 	/* Honor the call site pointer we received. */
3735 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3736 
3737 	return ret;
3738 }
3739 
3740 #ifdef CONFIG_NUMA
3741 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3742 					int node, unsigned long caller)
3743 {
3744 	struct kmem_cache *s;
3745 	void *ret;
3746 
3747 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3748 		ret = kmalloc_large_node(size, gfpflags, node);
3749 
3750 		trace_kmalloc_node(caller, ret,
3751 				   size, PAGE_SIZE << get_order(size),
3752 				   gfpflags, node);
3753 
3754 		return ret;
3755 	}
3756 
3757 	s = kmalloc_slab(size, gfpflags);
3758 
3759 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3760 		return s;
3761 
3762 	ret = slab_alloc_node(s, gfpflags, node, caller);
3763 
3764 	/* Honor the call site pointer we received. */
3765 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3766 
3767 	return ret;
3768 }
3769 #endif
3770 
3771 #ifdef CONFIG_SYSFS
3772 static int count_inuse(struct page *page)
3773 {
3774 	return page->inuse;
3775 }
3776 
3777 static int count_total(struct page *page)
3778 {
3779 	return page->objects;
3780 }
3781 #endif
3782 
3783 #ifdef CONFIG_SLUB_DEBUG
3784 static int validate_slab(struct kmem_cache *s, struct page *page,
3785 						unsigned long *map)
3786 {
3787 	void *p;
3788 	void *addr = page_address(page);
3789 
3790 	if (!check_slab(s, page) ||
3791 			!on_freelist(s, page, NULL))
3792 		return 0;
3793 
3794 	/* Now we know that a valid freelist exists */
3795 	bitmap_zero(map, page->objects);
3796 
3797 	get_map(s, page, map);
3798 	for_each_object(p, s, addr, page->objects) {
3799 		if (test_bit(slab_index(p, s, addr), map))
3800 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3801 				return 0;
3802 	}
3803 
3804 	for_each_object(p, s, addr, page->objects)
3805 		if (!test_bit(slab_index(p, s, addr), map))
3806 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3807 				return 0;
3808 	return 1;
3809 }
3810 
3811 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3812 						unsigned long *map)
3813 {
3814 	slab_lock(page);
3815 	validate_slab(s, page, map);
3816 	slab_unlock(page);
3817 }
3818 
3819 static int validate_slab_node(struct kmem_cache *s,
3820 		struct kmem_cache_node *n, unsigned long *map)
3821 {
3822 	unsigned long count = 0;
3823 	struct page *page;
3824 	unsigned long flags;
3825 
3826 	spin_lock_irqsave(&n->list_lock, flags);
3827 
3828 	list_for_each_entry(page, &n->partial, lru) {
3829 		validate_slab_slab(s, page, map);
3830 		count++;
3831 	}
3832 	if (count != n->nr_partial)
3833 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3834 		       s->name, count, n->nr_partial);
3835 
3836 	if (!(s->flags & SLAB_STORE_USER))
3837 		goto out;
3838 
3839 	list_for_each_entry(page, &n->full, lru) {
3840 		validate_slab_slab(s, page, map);
3841 		count++;
3842 	}
3843 	if (count != atomic_long_read(&n->nr_slabs))
3844 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3845 		       s->name, count, atomic_long_read(&n->nr_slabs));
3846 
3847 out:
3848 	spin_unlock_irqrestore(&n->list_lock, flags);
3849 	return count;
3850 }
3851 
3852 static long validate_slab_cache(struct kmem_cache *s)
3853 {
3854 	int node;
3855 	unsigned long count = 0;
3856 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3857 				sizeof(unsigned long), GFP_KERNEL);
3858 	struct kmem_cache_node *n;
3859 
3860 	if (!map)
3861 		return -ENOMEM;
3862 
3863 	flush_all(s);
3864 	for_each_kmem_cache_node(s, node, n)
3865 		count += validate_slab_node(s, n, map);
3866 	kfree(map);
3867 	return count;
3868 }
3869 /*
3870  * Generate lists of code addresses where slabcache objects are allocated
3871  * and freed.
3872  */
3873 
3874 struct location {
3875 	unsigned long count;
3876 	unsigned long addr;
3877 	long long sum_time;
3878 	long min_time;
3879 	long max_time;
3880 	long min_pid;
3881 	long max_pid;
3882 	DECLARE_BITMAP(cpus, NR_CPUS);
3883 	nodemask_t nodes;
3884 };
3885 
3886 struct loc_track {
3887 	unsigned long max;
3888 	unsigned long count;
3889 	struct location *loc;
3890 };
3891 
3892 static void free_loc_track(struct loc_track *t)
3893 {
3894 	if (t->max)
3895 		free_pages((unsigned long)t->loc,
3896 			get_order(sizeof(struct location) * t->max));
3897 }
3898 
3899 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3900 {
3901 	struct location *l;
3902 	int order;
3903 
3904 	order = get_order(sizeof(struct location) * max);
3905 
3906 	l = (void *)__get_free_pages(flags, order);
3907 	if (!l)
3908 		return 0;
3909 
3910 	if (t->count) {
3911 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3912 		free_loc_track(t);
3913 	}
3914 	t->max = max;
3915 	t->loc = l;
3916 	return 1;
3917 }
3918 
3919 static int add_location(struct loc_track *t, struct kmem_cache *s,
3920 				const struct track *track)
3921 {
3922 	long start, end, pos;
3923 	struct location *l;
3924 	unsigned long caddr;
3925 	unsigned long age = jiffies - track->when;
3926 
3927 	start = -1;
3928 	end = t->count;
3929 
3930 	for ( ; ; ) {
3931 		pos = start + (end - start + 1) / 2;
3932 
3933 		/*
3934 		 * There is nothing at "end". If we end up there
3935 		 * we need to add something to before end.
3936 		 */
3937 		if (pos == end)
3938 			break;
3939 
3940 		caddr = t->loc[pos].addr;
3941 		if (track->addr == caddr) {
3942 
3943 			l = &t->loc[pos];
3944 			l->count++;
3945 			if (track->when) {
3946 				l->sum_time += age;
3947 				if (age < l->min_time)
3948 					l->min_time = age;
3949 				if (age > l->max_time)
3950 					l->max_time = age;
3951 
3952 				if (track->pid < l->min_pid)
3953 					l->min_pid = track->pid;
3954 				if (track->pid > l->max_pid)
3955 					l->max_pid = track->pid;
3956 
3957 				cpumask_set_cpu(track->cpu,
3958 						to_cpumask(l->cpus));
3959 			}
3960 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3961 			return 1;
3962 		}
3963 
3964 		if (track->addr < caddr)
3965 			end = pos;
3966 		else
3967 			start = pos;
3968 	}
3969 
3970 	/*
3971 	 * Not found. Insert new tracking element.
3972 	 */
3973 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3974 		return 0;
3975 
3976 	l = t->loc + pos;
3977 	if (pos < t->count)
3978 		memmove(l + 1, l,
3979 			(t->count - pos) * sizeof(struct location));
3980 	t->count++;
3981 	l->count = 1;
3982 	l->addr = track->addr;
3983 	l->sum_time = age;
3984 	l->min_time = age;
3985 	l->max_time = age;
3986 	l->min_pid = track->pid;
3987 	l->max_pid = track->pid;
3988 	cpumask_clear(to_cpumask(l->cpus));
3989 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3990 	nodes_clear(l->nodes);
3991 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3992 	return 1;
3993 }
3994 
3995 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3996 		struct page *page, enum track_item alloc,
3997 		unsigned long *map)
3998 {
3999 	void *addr = page_address(page);
4000 	void *p;
4001 
4002 	bitmap_zero(map, page->objects);
4003 	get_map(s, page, map);
4004 
4005 	for_each_object(p, s, addr, page->objects)
4006 		if (!test_bit(slab_index(p, s, addr), map))
4007 			add_location(t, s, get_track(s, p, alloc));
4008 }
4009 
4010 static int list_locations(struct kmem_cache *s, char *buf,
4011 					enum track_item alloc)
4012 {
4013 	int len = 0;
4014 	unsigned long i;
4015 	struct loc_track t = { 0, 0, NULL };
4016 	int node;
4017 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4018 				     sizeof(unsigned long), GFP_KERNEL);
4019 	struct kmem_cache_node *n;
4020 
4021 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4022 				     GFP_TEMPORARY)) {
4023 		kfree(map);
4024 		return sprintf(buf, "Out of memory\n");
4025 	}
4026 	/* Push back cpu slabs */
4027 	flush_all(s);
4028 
4029 	for_each_kmem_cache_node(s, node, n) {
4030 		unsigned long flags;
4031 		struct page *page;
4032 
4033 		if (!atomic_long_read(&n->nr_slabs))
4034 			continue;
4035 
4036 		spin_lock_irqsave(&n->list_lock, flags);
4037 		list_for_each_entry(page, &n->partial, lru)
4038 			process_slab(&t, s, page, alloc, map);
4039 		list_for_each_entry(page, &n->full, lru)
4040 			process_slab(&t, s, page, alloc, map);
4041 		spin_unlock_irqrestore(&n->list_lock, flags);
4042 	}
4043 
4044 	for (i = 0; i < t.count; i++) {
4045 		struct location *l = &t.loc[i];
4046 
4047 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4048 			break;
4049 		len += sprintf(buf + len, "%7ld ", l->count);
4050 
4051 		if (l->addr)
4052 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4053 		else
4054 			len += sprintf(buf + len, "<not-available>");
4055 
4056 		if (l->sum_time != l->min_time) {
4057 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4058 				l->min_time,
4059 				(long)div_u64(l->sum_time, l->count),
4060 				l->max_time);
4061 		} else
4062 			len += sprintf(buf + len, " age=%ld",
4063 				l->min_time);
4064 
4065 		if (l->min_pid != l->max_pid)
4066 			len += sprintf(buf + len, " pid=%ld-%ld",
4067 				l->min_pid, l->max_pid);
4068 		else
4069 			len += sprintf(buf + len, " pid=%ld",
4070 				l->min_pid);
4071 
4072 		if (num_online_cpus() > 1 &&
4073 				!cpumask_empty(to_cpumask(l->cpus)) &&
4074 				len < PAGE_SIZE - 60) {
4075 			len += sprintf(buf + len, " cpus=");
4076 			len += cpulist_scnprintf(buf + len,
4077 						 PAGE_SIZE - len - 50,
4078 						 to_cpumask(l->cpus));
4079 		}
4080 
4081 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4082 				len < PAGE_SIZE - 60) {
4083 			len += sprintf(buf + len, " nodes=");
4084 			len += nodelist_scnprintf(buf + len,
4085 						  PAGE_SIZE - len - 50,
4086 						  l->nodes);
4087 		}
4088 
4089 		len += sprintf(buf + len, "\n");
4090 	}
4091 
4092 	free_loc_track(&t);
4093 	kfree(map);
4094 	if (!t.count)
4095 		len += sprintf(buf, "No data\n");
4096 	return len;
4097 }
4098 #endif
4099 
4100 #ifdef SLUB_RESILIENCY_TEST
4101 static void __init resiliency_test(void)
4102 {
4103 	u8 *p;
4104 
4105 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4106 
4107 	pr_err("SLUB resiliency testing\n");
4108 	pr_err("-----------------------\n");
4109 	pr_err("A. Corruption after allocation\n");
4110 
4111 	p = kzalloc(16, GFP_KERNEL);
4112 	p[16] = 0x12;
4113 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4114 	       p + 16);
4115 
4116 	validate_slab_cache(kmalloc_caches[4]);
4117 
4118 	/* Hmmm... The next two are dangerous */
4119 	p = kzalloc(32, GFP_KERNEL);
4120 	p[32 + sizeof(void *)] = 0x34;
4121 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4122 	       p);
4123 	pr_err("If allocated object is overwritten then not detectable\n\n");
4124 
4125 	validate_slab_cache(kmalloc_caches[5]);
4126 	p = kzalloc(64, GFP_KERNEL);
4127 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4128 	*p = 0x56;
4129 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4130 	       p);
4131 	pr_err("If allocated object is overwritten then not detectable\n\n");
4132 	validate_slab_cache(kmalloc_caches[6]);
4133 
4134 	pr_err("\nB. Corruption after free\n");
4135 	p = kzalloc(128, GFP_KERNEL);
4136 	kfree(p);
4137 	*p = 0x78;
4138 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4139 	validate_slab_cache(kmalloc_caches[7]);
4140 
4141 	p = kzalloc(256, GFP_KERNEL);
4142 	kfree(p);
4143 	p[50] = 0x9a;
4144 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4145 	validate_slab_cache(kmalloc_caches[8]);
4146 
4147 	p = kzalloc(512, GFP_KERNEL);
4148 	kfree(p);
4149 	p[512] = 0xab;
4150 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4151 	validate_slab_cache(kmalloc_caches[9]);
4152 }
4153 #else
4154 #ifdef CONFIG_SYSFS
4155 static void resiliency_test(void) {};
4156 #endif
4157 #endif
4158 
4159 #ifdef CONFIG_SYSFS
4160 enum slab_stat_type {
4161 	SL_ALL,			/* All slabs */
4162 	SL_PARTIAL,		/* Only partially allocated slabs */
4163 	SL_CPU,			/* Only slabs used for cpu caches */
4164 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4165 	SL_TOTAL		/* Determine object capacity not slabs */
4166 };
4167 
4168 #define SO_ALL		(1 << SL_ALL)
4169 #define SO_PARTIAL	(1 << SL_PARTIAL)
4170 #define SO_CPU		(1 << SL_CPU)
4171 #define SO_OBJECTS	(1 << SL_OBJECTS)
4172 #define SO_TOTAL	(1 << SL_TOTAL)
4173 
4174 static ssize_t show_slab_objects(struct kmem_cache *s,
4175 			    char *buf, unsigned long flags)
4176 {
4177 	unsigned long total = 0;
4178 	int node;
4179 	int x;
4180 	unsigned long *nodes;
4181 
4182 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4183 	if (!nodes)
4184 		return -ENOMEM;
4185 
4186 	if (flags & SO_CPU) {
4187 		int cpu;
4188 
4189 		for_each_possible_cpu(cpu) {
4190 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4191 							       cpu);
4192 			int node;
4193 			struct page *page;
4194 
4195 			page = ACCESS_ONCE(c->page);
4196 			if (!page)
4197 				continue;
4198 
4199 			node = page_to_nid(page);
4200 			if (flags & SO_TOTAL)
4201 				x = page->objects;
4202 			else if (flags & SO_OBJECTS)
4203 				x = page->inuse;
4204 			else
4205 				x = 1;
4206 
4207 			total += x;
4208 			nodes[node] += x;
4209 
4210 			page = ACCESS_ONCE(c->partial);
4211 			if (page) {
4212 				node = page_to_nid(page);
4213 				if (flags & SO_TOTAL)
4214 					WARN_ON_ONCE(1);
4215 				else if (flags & SO_OBJECTS)
4216 					WARN_ON_ONCE(1);
4217 				else
4218 					x = page->pages;
4219 				total += x;
4220 				nodes[node] += x;
4221 			}
4222 		}
4223 	}
4224 
4225 	get_online_mems();
4226 #ifdef CONFIG_SLUB_DEBUG
4227 	if (flags & SO_ALL) {
4228 		struct kmem_cache_node *n;
4229 
4230 		for_each_kmem_cache_node(s, node, n) {
4231 
4232 			if (flags & SO_TOTAL)
4233 				x = atomic_long_read(&n->total_objects);
4234 			else if (flags & SO_OBJECTS)
4235 				x = atomic_long_read(&n->total_objects) -
4236 					count_partial(n, count_free);
4237 			else
4238 				x = atomic_long_read(&n->nr_slabs);
4239 			total += x;
4240 			nodes[node] += x;
4241 		}
4242 
4243 	} else
4244 #endif
4245 	if (flags & SO_PARTIAL) {
4246 		struct kmem_cache_node *n;
4247 
4248 		for_each_kmem_cache_node(s, node, n) {
4249 			if (flags & SO_TOTAL)
4250 				x = count_partial(n, count_total);
4251 			else if (flags & SO_OBJECTS)
4252 				x = count_partial(n, count_inuse);
4253 			else
4254 				x = n->nr_partial;
4255 			total += x;
4256 			nodes[node] += x;
4257 		}
4258 	}
4259 	x = sprintf(buf, "%lu", total);
4260 #ifdef CONFIG_NUMA
4261 	for (node = 0; node < nr_node_ids; node++)
4262 		if (nodes[node])
4263 			x += sprintf(buf + x, " N%d=%lu",
4264 					node, nodes[node]);
4265 #endif
4266 	put_online_mems();
4267 	kfree(nodes);
4268 	return x + sprintf(buf + x, "\n");
4269 }
4270 
4271 #ifdef CONFIG_SLUB_DEBUG
4272 static int any_slab_objects(struct kmem_cache *s)
4273 {
4274 	int node;
4275 	struct kmem_cache_node *n;
4276 
4277 	for_each_kmem_cache_node(s, node, n)
4278 		if (atomic_long_read(&n->total_objects))
4279 			return 1;
4280 
4281 	return 0;
4282 }
4283 #endif
4284 
4285 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4286 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4287 
4288 struct slab_attribute {
4289 	struct attribute attr;
4290 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4291 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4292 };
4293 
4294 #define SLAB_ATTR_RO(_name) \
4295 	static struct slab_attribute _name##_attr = \
4296 	__ATTR(_name, 0400, _name##_show, NULL)
4297 
4298 #define SLAB_ATTR(_name) \
4299 	static struct slab_attribute _name##_attr =  \
4300 	__ATTR(_name, 0600, _name##_show, _name##_store)
4301 
4302 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4303 {
4304 	return sprintf(buf, "%d\n", s->size);
4305 }
4306 SLAB_ATTR_RO(slab_size);
4307 
4308 static ssize_t align_show(struct kmem_cache *s, char *buf)
4309 {
4310 	return sprintf(buf, "%d\n", s->align);
4311 }
4312 SLAB_ATTR_RO(align);
4313 
4314 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4315 {
4316 	return sprintf(buf, "%d\n", s->object_size);
4317 }
4318 SLAB_ATTR_RO(object_size);
4319 
4320 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4321 {
4322 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4323 }
4324 SLAB_ATTR_RO(objs_per_slab);
4325 
4326 static ssize_t order_store(struct kmem_cache *s,
4327 				const char *buf, size_t length)
4328 {
4329 	unsigned long order;
4330 	int err;
4331 
4332 	err = kstrtoul(buf, 10, &order);
4333 	if (err)
4334 		return err;
4335 
4336 	if (order > slub_max_order || order < slub_min_order)
4337 		return -EINVAL;
4338 
4339 	calculate_sizes(s, order);
4340 	return length;
4341 }
4342 
4343 static ssize_t order_show(struct kmem_cache *s, char *buf)
4344 {
4345 	return sprintf(buf, "%d\n", oo_order(s->oo));
4346 }
4347 SLAB_ATTR(order);
4348 
4349 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4350 {
4351 	return sprintf(buf, "%lu\n", s->min_partial);
4352 }
4353 
4354 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4355 				 size_t length)
4356 {
4357 	unsigned long min;
4358 	int err;
4359 
4360 	err = kstrtoul(buf, 10, &min);
4361 	if (err)
4362 		return err;
4363 
4364 	set_min_partial(s, min);
4365 	return length;
4366 }
4367 SLAB_ATTR(min_partial);
4368 
4369 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4370 {
4371 	return sprintf(buf, "%u\n", s->cpu_partial);
4372 }
4373 
4374 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4375 				 size_t length)
4376 {
4377 	unsigned long objects;
4378 	int err;
4379 
4380 	err = kstrtoul(buf, 10, &objects);
4381 	if (err)
4382 		return err;
4383 	if (objects && !kmem_cache_has_cpu_partial(s))
4384 		return -EINVAL;
4385 
4386 	s->cpu_partial = objects;
4387 	flush_all(s);
4388 	return length;
4389 }
4390 SLAB_ATTR(cpu_partial);
4391 
4392 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4393 {
4394 	if (!s->ctor)
4395 		return 0;
4396 	return sprintf(buf, "%pS\n", s->ctor);
4397 }
4398 SLAB_ATTR_RO(ctor);
4399 
4400 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4401 {
4402 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4403 }
4404 SLAB_ATTR_RO(aliases);
4405 
4406 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4407 {
4408 	return show_slab_objects(s, buf, SO_PARTIAL);
4409 }
4410 SLAB_ATTR_RO(partial);
4411 
4412 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4413 {
4414 	return show_slab_objects(s, buf, SO_CPU);
4415 }
4416 SLAB_ATTR_RO(cpu_slabs);
4417 
4418 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4419 {
4420 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4421 }
4422 SLAB_ATTR_RO(objects);
4423 
4424 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4425 {
4426 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4427 }
4428 SLAB_ATTR_RO(objects_partial);
4429 
4430 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4431 {
4432 	int objects = 0;
4433 	int pages = 0;
4434 	int cpu;
4435 	int len;
4436 
4437 	for_each_online_cpu(cpu) {
4438 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4439 
4440 		if (page) {
4441 			pages += page->pages;
4442 			objects += page->pobjects;
4443 		}
4444 	}
4445 
4446 	len = sprintf(buf, "%d(%d)", objects, pages);
4447 
4448 #ifdef CONFIG_SMP
4449 	for_each_online_cpu(cpu) {
4450 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4451 
4452 		if (page && len < PAGE_SIZE - 20)
4453 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4454 				page->pobjects, page->pages);
4455 	}
4456 #endif
4457 	return len + sprintf(buf + len, "\n");
4458 }
4459 SLAB_ATTR_RO(slabs_cpu_partial);
4460 
4461 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4462 {
4463 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4464 }
4465 
4466 static ssize_t reclaim_account_store(struct kmem_cache *s,
4467 				const char *buf, size_t length)
4468 {
4469 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4470 	if (buf[0] == '1')
4471 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4472 	return length;
4473 }
4474 SLAB_ATTR(reclaim_account);
4475 
4476 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4477 {
4478 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4479 }
4480 SLAB_ATTR_RO(hwcache_align);
4481 
4482 #ifdef CONFIG_ZONE_DMA
4483 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4484 {
4485 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4486 }
4487 SLAB_ATTR_RO(cache_dma);
4488 #endif
4489 
4490 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4491 {
4492 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4493 }
4494 SLAB_ATTR_RO(destroy_by_rcu);
4495 
4496 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4497 {
4498 	return sprintf(buf, "%d\n", s->reserved);
4499 }
4500 SLAB_ATTR_RO(reserved);
4501 
4502 #ifdef CONFIG_SLUB_DEBUG
4503 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4504 {
4505 	return show_slab_objects(s, buf, SO_ALL);
4506 }
4507 SLAB_ATTR_RO(slabs);
4508 
4509 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4510 {
4511 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4512 }
4513 SLAB_ATTR_RO(total_objects);
4514 
4515 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4516 {
4517 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4518 }
4519 
4520 static ssize_t sanity_checks_store(struct kmem_cache *s,
4521 				const char *buf, size_t length)
4522 {
4523 	s->flags &= ~SLAB_DEBUG_FREE;
4524 	if (buf[0] == '1') {
4525 		s->flags &= ~__CMPXCHG_DOUBLE;
4526 		s->flags |= SLAB_DEBUG_FREE;
4527 	}
4528 	return length;
4529 }
4530 SLAB_ATTR(sanity_checks);
4531 
4532 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4533 {
4534 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4535 }
4536 
4537 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4538 							size_t length)
4539 {
4540 	/*
4541 	 * Tracing a merged cache is going to give confusing results
4542 	 * as well as cause other issues like converting a mergeable
4543 	 * cache into an umergeable one.
4544 	 */
4545 	if (s->refcount > 1)
4546 		return -EINVAL;
4547 
4548 	s->flags &= ~SLAB_TRACE;
4549 	if (buf[0] == '1') {
4550 		s->flags &= ~__CMPXCHG_DOUBLE;
4551 		s->flags |= SLAB_TRACE;
4552 	}
4553 	return length;
4554 }
4555 SLAB_ATTR(trace);
4556 
4557 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4558 {
4559 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4560 }
4561 
4562 static ssize_t red_zone_store(struct kmem_cache *s,
4563 				const char *buf, size_t length)
4564 {
4565 	if (any_slab_objects(s))
4566 		return -EBUSY;
4567 
4568 	s->flags &= ~SLAB_RED_ZONE;
4569 	if (buf[0] == '1') {
4570 		s->flags &= ~__CMPXCHG_DOUBLE;
4571 		s->flags |= SLAB_RED_ZONE;
4572 	}
4573 	calculate_sizes(s, -1);
4574 	return length;
4575 }
4576 SLAB_ATTR(red_zone);
4577 
4578 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4579 {
4580 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4581 }
4582 
4583 static ssize_t poison_store(struct kmem_cache *s,
4584 				const char *buf, size_t length)
4585 {
4586 	if (any_slab_objects(s))
4587 		return -EBUSY;
4588 
4589 	s->flags &= ~SLAB_POISON;
4590 	if (buf[0] == '1') {
4591 		s->flags &= ~__CMPXCHG_DOUBLE;
4592 		s->flags |= SLAB_POISON;
4593 	}
4594 	calculate_sizes(s, -1);
4595 	return length;
4596 }
4597 SLAB_ATTR(poison);
4598 
4599 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4600 {
4601 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4602 }
4603 
4604 static ssize_t store_user_store(struct kmem_cache *s,
4605 				const char *buf, size_t length)
4606 {
4607 	if (any_slab_objects(s))
4608 		return -EBUSY;
4609 
4610 	s->flags &= ~SLAB_STORE_USER;
4611 	if (buf[0] == '1') {
4612 		s->flags &= ~__CMPXCHG_DOUBLE;
4613 		s->flags |= SLAB_STORE_USER;
4614 	}
4615 	calculate_sizes(s, -1);
4616 	return length;
4617 }
4618 SLAB_ATTR(store_user);
4619 
4620 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4621 {
4622 	return 0;
4623 }
4624 
4625 static ssize_t validate_store(struct kmem_cache *s,
4626 			const char *buf, size_t length)
4627 {
4628 	int ret = -EINVAL;
4629 
4630 	if (buf[0] == '1') {
4631 		ret = validate_slab_cache(s);
4632 		if (ret >= 0)
4633 			ret = length;
4634 	}
4635 	return ret;
4636 }
4637 SLAB_ATTR(validate);
4638 
4639 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4640 {
4641 	if (!(s->flags & SLAB_STORE_USER))
4642 		return -ENOSYS;
4643 	return list_locations(s, buf, TRACK_ALLOC);
4644 }
4645 SLAB_ATTR_RO(alloc_calls);
4646 
4647 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4648 {
4649 	if (!(s->flags & SLAB_STORE_USER))
4650 		return -ENOSYS;
4651 	return list_locations(s, buf, TRACK_FREE);
4652 }
4653 SLAB_ATTR_RO(free_calls);
4654 #endif /* CONFIG_SLUB_DEBUG */
4655 
4656 #ifdef CONFIG_FAILSLAB
4657 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4658 {
4659 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4660 }
4661 
4662 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4663 							size_t length)
4664 {
4665 	if (s->refcount > 1)
4666 		return -EINVAL;
4667 
4668 	s->flags &= ~SLAB_FAILSLAB;
4669 	if (buf[0] == '1')
4670 		s->flags |= SLAB_FAILSLAB;
4671 	return length;
4672 }
4673 SLAB_ATTR(failslab);
4674 #endif
4675 
4676 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4677 {
4678 	return 0;
4679 }
4680 
4681 static ssize_t shrink_store(struct kmem_cache *s,
4682 			const char *buf, size_t length)
4683 {
4684 	if (buf[0] == '1') {
4685 		int rc = kmem_cache_shrink(s);
4686 
4687 		if (rc)
4688 			return rc;
4689 	} else
4690 		return -EINVAL;
4691 	return length;
4692 }
4693 SLAB_ATTR(shrink);
4694 
4695 #ifdef CONFIG_NUMA
4696 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4697 {
4698 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4699 }
4700 
4701 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4702 				const char *buf, size_t length)
4703 {
4704 	unsigned long ratio;
4705 	int err;
4706 
4707 	err = kstrtoul(buf, 10, &ratio);
4708 	if (err)
4709 		return err;
4710 
4711 	if (ratio <= 100)
4712 		s->remote_node_defrag_ratio = ratio * 10;
4713 
4714 	return length;
4715 }
4716 SLAB_ATTR(remote_node_defrag_ratio);
4717 #endif
4718 
4719 #ifdef CONFIG_SLUB_STATS
4720 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4721 {
4722 	unsigned long sum  = 0;
4723 	int cpu;
4724 	int len;
4725 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4726 
4727 	if (!data)
4728 		return -ENOMEM;
4729 
4730 	for_each_online_cpu(cpu) {
4731 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4732 
4733 		data[cpu] = x;
4734 		sum += x;
4735 	}
4736 
4737 	len = sprintf(buf, "%lu", sum);
4738 
4739 #ifdef CONFIG_SMP
4740 	for_each_online_cpu(cpu) {
4741 		if (data[cpu] && len < PAGE_SIZE - 20)
4742 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4743 	}
4744 #endif
4745 	kfree(data);
4746 	return len + sprintf(buf + len, "\n");
4747 }
4748 
4749 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4750 {
4751 	int cpu;
4752 
4753 	for_each_online_cpu(cpu)
4754 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4755 }
4756 
4757 #define STAT_ATTR(si, text) 					\
4758 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4759 {								\
4760 	return show_stat(s, buf, si);				\
4761 }								\
4762 static ssize_t text##_store(struct kmem_cache *s,		\
4763 				const char *buf, size_t length)	\
4764 {								\
4765 	if (buf[0] != '0')					\
4766 		return -EINVAL;					\
4767 	clear_stat(s, si);					\
4768 	return length;						\
4769 }								\
4770 SLAB_ATTR(text);						\
4771 
4772 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4773 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4774 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4775 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4776 STAT_ATTR(FREE_FROZEN, free_frozen);
4777 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4778 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4779 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4780 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4781 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4782 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4783 STAT_ATTR(FREE_SLAB, free_slab);
4784 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4785 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4786 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4787 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4788 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4789 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4790 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4791 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4792 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4793 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4794 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4795 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4796 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4797 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4798 #endif
4799 
4800 static struct attribute *slab_attrs[] = {
4801 	&slab_size_attr.attr,
4802 	&object_size_attr.attr,
4803 	&objs_per_slab_attr.attr,
4804 	&order_attr.attr,
4805 	&min_partial_attr.attr,
4806 	&cpu_partial_attr.attr,
4807 	&objects_attr.attr,
4808 	&objects_partial_attr.attr,
4809 	&partial_attr.attr,
4810 	&cpu_slabs_attr.attr,
4811 	&ctor_attr.attr,
4812 	&aliases_attr.attr,
4813 	&align_attr.attr,
4814 	&hwcache_align_attr.attr,
4815 	&reclaim_account_attr.attr,
4816 	&destroy_by_rcu_attr.attr,
4817 	&shrink_attr.attr,
4818 	&reserved_attr.attr,
4819 	&slabs_cpu_partial_attr.attr,
4820 #ifdef CONFIG_SLUB_DEBUG
4821 	&total_objects_attr.attr,
4822 	&slabs_attr.attr,
4823 	&sanity_checks_attr.attr,
4824 	&trace_attr.attr,
4825 	&red_zone_attr.attr,
4826 	&poison_attr.attr,
4827 	&store_user_attr.attr,
4828 	&validate_attr.attr,
4829 	&alloc_calls_attr.attr,
4830 	&free_calls_attr.attr,
4831 #endif
4832 #ifdef CONFIG_ZONE_DMA
4833 	&cache_dma_attr.attr,
4834 #endif
4835 #ifdef CONFIG_NUMA
4836 	&remote_node_defrag_ratio_attr.attr,
4837 #endif
4838 #ifdef CONFIG_SLUB_STATS
4839 	&alloc_fastpath_attr.attr,
4840 	&alloc_slowpath_attr.attr,
4841 	&free_fastpath_attr.attr,
4842 	&free_slowpath_attr.attr,
4843 	&free_frozen_attr.attr,
4844 	&free_add_partial_attr.attr,
4845 	&free_remove_partial_attr.attr,
4846 	&alloc_from_partial_attr.attr,
4847 	&alloc_slab_attr.attr,
4848 	&alloc_refill_attr.attr,
4849 	&alloc_node_mismatch_attr.attr,
4850 	&free_slab_attr.attr,
4851 	&cpuslab_flush_attr.attr,
4852 	&deactivate_full_attr.attr,
4853 	&deactivate_empty_attr.attr,
4854 	&deactivate_to_head_attr.attr,
4855 	&deactivate_to_tail_attr.attr,
4856 	&deactivate_remote_frees_attr.attr,
4857 	&deactivate_bypass_attr.attr,
4858 	&order_fallback_attr.attr,
4859 	&cmpxchg_double_fail_attr.attr,
4860 	&cmpxchg_double_cpu_fail_attr.attr,
4861 	&cpu_partial_alloc_attr.attr,
4862 	&cpu_partial_free_attr.attr,
4863 	&cpu_partial_node_attr.attr,
4864 	&cpu_partial_drain_attr.attr,
4865 #endif
4866 #ifdef CONFIG_FAILSLAB
4867 	&failslab_attr.attr,
4868 #endif
4869 
4870 	NULL
4871 };
4872 
4873 static struct attribute_group slab_attr_group = {
4874 	.attrs = slab_attrs,
4875 };
4876 
4877 static ssize_t slab_attr_show(struct kobject *kobj,
4878 				struct attribute *attr,
4879 				char *buf)
4880 {
4881 	struct slab_attribute *attribute;
4882 	struct kmem_cache *s;
4883 	int err;
4884 
4885 	attribute = to_slab_attr(attr);
4886 	s = to_slab(kobj);
4887 
4888 	if (!attribute->show)
4889 		return -EIO;
4890 
4891 	err = attribute->show(s, buf);
4892 
4893 	return err;
4894 }
4895 
4896 static ssize_t slab_attr_store(struct kobject *kobj,
4897 				struct attribute *attr,
4898 				const char *buf, size_t len)
4899 {
4900 	struct slab_attribute *attribute;
4901 	struct kmem_cache *s;
4902 	int err;
4903 
4904 	attribute = to_slab_attr(attr);
4905 	s = to_slab(kobj);
4906 
4907 	if (!attribute->store)
4908 		return -EIO;
4909 
4910 	err = attribute->store(s, buf, len);
4911 #ifdef CONFIG_MEMCG_KMEM
4912 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4913 		int i;
4914 
4915 		mutex_lock(&slab_mutex);
4916 		if (s->max_attr_size < len)
4917 			s->max_attr_size = len;
4918 
4919 		/*
4920 		 * This is a best effort propagation, so this function's return
4921 		 * value will be determined by the parent cache only. This is
4922 		 * basically because not all attributes will have a well
4923 		 * defined semantics for rollbacks - most of the actions will
4924 		 * have permanent effects.
4925 		 *
4926 		 * Returning the error value of any of the children that fail
4927 		 * is not 100 % defined, in the sense that users seeing the
4928 		 * error code won't be able to know anything about the state of
4929 		 * the cache.
4930 		 *
4931 		 * Only returning the error code for the parent cache at least
4932 		 * has well defined semantics. The cache being written to
4933 		 * directly either failed or succeeded, in which case we loop
4934 		 * through the descendants with best-effort propagation.
4935 		 */
4936 		for_each_memcg_cache_index(i) {
4937 			struct kmem_cache *c = cache_from_memcg_idx(s, i);
4938 			if (c)
4939 				attribute->store(c, buf, len);
4940 		}
4941 		mutex_unlock(&slab_mutex);
4942 	}
4943 #endif
4944 	return err;
4945 }
4946 
4947 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4948 {
4949 #ifdef CONFIG_MEMCG_KMEM
4950 	int i;
4951 	char *buffer = NULL;
4952 	struct kmem_cache *root_cache;
4953 
4954 	if (is_root_cache(s))
4955 		return;
4956 
4957 	root_cache = s->memcg_params->root_cache;
4958 
4959 	/*
4960 	 * This mean this cache had no attribute written. Therefore, no point
4961 	 * in copying default values around
4962 	 */
4963 	if (!root_cache->max_attr_size)
4964 		return;
4965 
4966 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4967 		char mbuf[64];
4968 		char *buf;
4969 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4970 
4971 		if (!attr || !attr->store || !attr->show)
4972 			continue;
4973 
4974 		/*
4975 		 * It is really bad that we have to allocate here, so we will
4976 		 * do it only as a fallback. If we actually allocate, though,
4977 		 * we can just use the allocated buffer until the end.
4978 		 *
4979 		 * Most of the slub attributes will tend to be very small in
4980 		 * size, but sysfs allows buffers up to a page, so they can
4981 		 * theoretically happen.
4982 		 */
4983 		if (buffer)
4984 			buf = buffer;
4985 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
4986 			buf = mbuf;
4987 		else {
4988 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
4989 			if (WARN_ON(!buffer))
4990 				continue;
4991 			buf = buffer;
4992 		}
4993 
4994 		attr->show(root_cache, buf);
4995 		attr->store(s, buf, strlen(buf));
4996 	}
4997 
4998 	if (buffer)
4999 		free_page((unsigned long)buffer);
5000 #endif
5001 }
5002 
5003 static void kmem_cache_release(struct kobject *k)
5004 {
5005 	slab_kmem_cache_release(to_slab(k));
5006 }
5007 
5008 static const struct sysfs_ops slab_sysfs_ops = {
5009 	.show = slab_attr_show,
5010 	.store = slab_attr_store,
5011 };
5012 
5013 static struct kobj_type slab_ktype = {
5014 	.sysfs_ops = &slab_sysfs_ops,
5015 	.release = kmem_cache_release,
5016 };
5017 
5018 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5019 {
5020 	struct kobj_type *ktype = get_ktype(kobj);
5021 
5022 	if (ktype == &slab_ktype)
5023 		return 1;
5024 	return 0;
5025 }
5026 
5027 static const struct kset_uevent_ops slab_uevent_ops = {
5028 	.filter = uevent_filter,
5029 };
5030 
5031 static struct kset *slab_kset;
5032 
5033 static inline struct kset *cache_kset(struct kmem_cache *s)
5034 {
5035 #ifdef CONFIG_MEMCG_KMEM
5036 	if (!is_root_cache(s))
5037 		return s->memcg_params->root_cache->memcg_kset;
5038 #endif
5039 	return slab_kset;
5040 }
5041 
5042 #define ID_STR_LENGTH 64
5043 
5044 /* Create a unique string id for a slab cache:
5045  *
5046  * Format	:[flags-]size
5047  */
5048 static char *create_unique_id(struct kmem_cache *s)
5049 {
5050 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5051 	char *p = name;
5052 
5053 	BUG_ON(!name);
5054 
5055 	*p++ = ':';
5056 	/*
5057 	 * First flags affecting slabcache operations. We will only
5058 	 * get here for aliasable slabs so we do not need to support
5059 	 * too many flags. The flags here must cover all flags that
5060 	 * are matched during merging to guarantee that the id is
5061 	 * unique.
5062 	 */
5063 	if (s->flags & SLAB_CACHE_DMA)
5064 		*p++ = 'd';
5065 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5066 		*p++ = 'a';
5067 	if (s->flags & SLAB_DEBUG_FREE)
5068 		*p++ = 'F';
5069 	if (!(s->flags & SLAB_NOTRACK))
5070 		*p++ = 't';
5071 	if (p != name + 1)
5072 		*p++ = '-';
5073 	p += sprintf(p, "%07d", s->size);
5074 
5075 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5076 	return name;
5077 }
5078 
5079 static int sysfs_slab_add(struct kmem_cache *s)
5080 {
5081 	int err;
5082 	const char *name;
5083 	int unmergeable = slab_unmergeable(s);
5084 
5085 	if (unmergeable) {
5086 		/*
5087 		 * Slabcache can never be merged so we can use the name proper.
5088 		 * This is typically the case for debug situations. In that
5089 		 * case we can catch duplicate names easily.
5090 		 */
5091 		sysfs_remove_link(&slab_kset->kobj, s->name);
5092 		name = s->name;
5093 	} else {
5094 		/*
5095 		 * Create a unique name for the slab as a target
5096 		 * for the symlinks.
5097 		 */
5098 		name = create_unique_id(s);
5099 	}
5100 
5101 	s->kobj.kset = cache_kset(s);
5102 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5103 	if (err)
5104 		goto out_put_kobj;
5105 
5106 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5107 	if (err)
5108 		goto out_del_kobj;
5109 
5110 #ifdef CONFIG_MEMCG_KMEM
5111 	if (is_root_cache(s)) {
5112 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5113 		if (!s->memcg_kset) {
5114 			err = -ENOMEM;
5115 			goto out_del_kobj;
5116 		}
5117 	}
5118 #endif
5119 
5120 	kobject_uevent(&s->kobj, KOBJ_ADD);
5121 	if (!unmergeable) {
5122 		/* Setup first alias */
5123 		sysfs_slab_alias(s, s->name);
5124 	}
5125 out:
5126 	if (!unmergeable)
5127 		kfree(name);
5128 	return err;
5129 out_del_kobj:
5130 	kobject_del(&s->kobj);
5131 out_put_kobj:
5132 	kobject_put(&s->kobj);
5133 	goto out;
5134 }
5135 
5136 void sysfs_slab_remove(struct kmem_cache *s)
5137 {
5138 	if (slab_state < FULL)
5139 		/*
5140 		 * Sysfs has not been setup yet so no need to remove the
5141 		 * cache from sysfs.
5142 		 */
5143 		return;
5144 
5145 #ifdef CONFIG_MEMCG_KMEM
5146 	kset_unregister(s->memcg_kset);
5147 #endif
5148 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5149 	kobject_del(&s->kobj);
5150 	kobject_put(&s->kobj);
5151 }
5152 
5153 /*
5154  * Need to buffer aliases during bootup until sysfs becomes
5155  * available lest we lose that information.
5156  */
5157 struct saved_alias {
5158 	struct kmem_cache *s;
5159 	const char *name;
5160 	struct saved_alias *next;
5161 };
5162 
5163 static struct saved_alias *alias_list;
5164 
5165 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5166 {
5167 	struct saved_alias *al;
5168 
5169 	if (slab_state == FULL) {
5170 		/*
5171 		 * If we have a leftover link then remove it.
5172 		 */
5173 		sysfs_remove_link(&slab_kset->kobj, name);
5174 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5175 	}
5176 
5177 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5178 	if (!al)
5179 		return -ENOMEM;
5180 
5181 	al->s = s;
5182 	al->name = name;
5183 	al->next = alias_list;
5184 	alias_list = al;
5185 	return 0;
5186 }
5187 
5188 static int __init slab_sysfs_init(void)
5189 {
5190 	struct kmem_cache *s;
5191 	int err;
5192 
5193 	mutex_lock(&slab_mutex);
5194 
5195 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5196 	if (!slab_kset) {
5197 		mutex_unlock(&slab_mutex);
5198 		pr_err("Cannot register slab subsystem.\n");
5199 		return -ENOSYS;
5200 	}
5201 
5202 	slab_state = FULL;
5203 
5204 	list_for_each_entry(s, &slab_caches, list) {
5205 		err = sysfs_slab_add(s);
5206 		if (err)
5207 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5208 			       s->name);
5209 	}
5210 
5211 	while (alias_list) {
5212 		struct saved_alias *al = alias_list;
5213 
5214 		alias_list = alias_list->next;
5215 		err = sysfs_slab_alias(al->s, al->name);
5216 		if (err)
5217 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5218 			       al->name);
5219 		kfree(al);
5220 	}
5221 
5222 	mutex_unlock(&slab_mutex);
5223 	resiliency_test();
5224 	return 0;
5225 }
5226 
5227 __initcall(slab_sysfs_init);
5228 #endif /* CONFIG_SYSFS */
5229 
5230 /*
5231  * The /proc/slabinfo ABI
5232  */
5233 #ifdef CONFIG_SLABINFO
5234 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5235 {
5236 	unsigned long nr_slabs = 0;
5237 	unsigned long nr_objs = 0;
5238 	unsigned long nr_free = 0;
5239 	int node;
5240 	struct kmem_cache_node *n;
5241 
5242 	for_each_kmem_cache_node(s, node, n) {
5243 		nr_slabs += node_nr_slabs(n);
5244 		nr_objs += node_nr_objs(n);
5245 		nr_free += count_partial(n, count_free);
5246 	}
5247 
5248 	sinfo->active_objs = nr_objs - nr_free;
5249 	sinfo->num_objs = nr_objs;
5250 	sinfo->active_slabs = nr_slabs;
5251 	sinfo->num_slabs = nr_slabs;
5252 	sinfo->objects_per_slab = oo_objects(s->oo);
5253 	sinfo->cache_order = oo_order(s->oo);
5254 }
5255 
5256 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5257 {
5258 }
5259 
5260 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5261 		       size_t count, loff_t *ppos)
5262 {
5263 	return -EIO;
5264 }
5265 #endif /* CONFIG_SLABINFO */
5266