xref: /linux/mm/slub.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 
24 /*
25  * Lock order:
26  *   1. slab_lock(page)
27  *   2. slab->list_lock
28  *
29  *   The slab_lock protects operations on the object of a particular
30  *   slab and its metadata in the page struct. If the slab lock
31  *   has been taken then no allocations nor frees can be performed
32  *   on the objects in the slab nor can the slab be added or removed
33  *   from the partial or full lists since this would mean modifying
34  *   the page_struct of the slab.
35  *
36  *   The list_lock protects the partial and full list on each node and
37  *   the partial slab counter. If taken then no new slabs may be added or
38  *   removed from the lists nor make the number of partial slabs be modified.
39  *   (Note that the total number of slabs is an atomic value that may be
40  *   modified without taking the list lock).
41  *
42  *   The list_lock is a centralized lock and thus we avoid taking it as
43  *   much as possible. As long as SLUB does not have to handle partial
44  *   slabs, operations can continue without any centralized lock. F.e.
45  *   allocating a long series of objects that fill up slabs does not require
46  *   the list lock.
47  *
48  *   The lock order is sometimes inverted when we are trying to get a slab
49  *   off a list. We take the list_lock and then look for a page on the list
50  *   to use. While we do that objects in the slabs may be freed. We can
51  *   only operate on the slab if we have also taken the slab_lock. So we use
52  *   a slab_trylock() on the slab. If trylock was successful then no frees
53  *   can occur anymore and we can use the slab for allocations etc. If the
54  *   slab_trylock() does not succeed then frees are in progress in the slab and
55  *   we must stay away from it for a while since we may cause a bouncing
56  *   cacheline if we try to acquire the lock. So go onto the next slab.
57  *   If all pages are busy then we may allocate a new slab instead of reusing
58  *   a partial slab. A new slab has noone operating on it and thus there is
59  *   no danger of cacheline contention.
60  *
61  *   Interrupts are disabled during allocation and deallocation in order to
62  *   make the slab allocator safe to use in the context of an irq. In addition
63  *   interrupts are disabled to ensure that the processor does not change
64  *   while handling per_cpu slabs, due to kernel preemption.
65  *
66  * SLUB assigns one slab for allocation to each processor.
67  * Allocations only occur from these slabs called cpu slabs.
68  *
69  * Slabs with free elements are kept on a partial list and during regular
70  * operations no list for full slabs is used. If an object in a full slab is
71  * freed then the slab will show up again on the partial lists.
72  * We track full slabs for debugging purposes though because otherwise we
73  * cannot scan all objects.
74  *
75  * Slabs are freed when they become empty. Teardown and setup is
76  * minimal so we rely on the page allocators per cpu caches for
77  * fast frees and allocs.
78  *
79  * Overloading of page flags that are otherwise used for LRU management.
80  *
81  * PageActive 		The slab is frozen and exempt from list processing.
82  * 			This means that the slab is dedicated to a purpose
83  * 			such as satisfying allocations for a specific
84  * 			processor. Objects may be freed in the slab while
85  * 			it is frozen but slab_free will then skip the usual
86  * 			list operations. It is up to the processor holding
87  * 			the slab to integrate the slab into the slab lists
88  * 			when the slab is no longer needed.
89  *
90  * 			One use of this flag is to mark slabs that are
91  * 			used for allocations. Then such a slab becomes a cpu
92  * 			slab. The cpu slab may be equipped with an additional
93  * 			freelist that allows lockless access to
94  * 			free objects in addition to the regular freelist
95  * 			that requires the slab lock.
96  *
97  * PageError		Slab requires special handling due to debug
98  * 			options set. This moves	slab handling out of
99  * 			the fast path and disables lockless freelists.
100  */
101 
102 #define FROZEN (1 << PG_active)
103 
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
109 
110 static inline int SlabFrozen(struct page *page)
111 {
112 	return page->flags & FROZEN;
113 }
114 
115 static inline void SetSlabFrozen(struct page *page)
116 {
117 	page->flags |= FROZEN;
118 }
119 
120 static inline void ClearSlabFrozen(struct page *page)
121 {
122 	page->flags &= ~FROZEN;
123 }
124 
125 static inline int SlabDebug(struct page *page)
126 {
127 	return page->flags & SLABDEBUG;
128 }
129 
130 static inline void SetSlabDebug(struct page *page)
131 {
132 	page->flags |= SLABDEBUG;
133 }
134 
135 static inline void ClearSlabDebug(struct page *page)
136 {
137 	page->flags &= ~SLABDEBUG;
138 }
139 
140 /*
141  * Issues still to be resolved:
142  *
143  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
144  *
145  * - Variable sizing of the per node arrays
146  */
147 
148 /* Enable to test recovery from slab corruption on boot */
149 #undef SLUB_RESILIENCY_TEST
150 
151 #if PAGE_SHIFT <= 12
152 
153 /*
154  * Small page size. Make sure that we do not fragment memory
155  */
156 #define DEFAULT_MAX_ORDER 1
157 #define DEFAULT_MIN_OBJECTS 4
158 
159 #else
160 
161 /*
162  * Large page machines are customarily able to handle larger
163  * page orders.
164  */
165 #define DEFAULT_MAX_ORDER 2
166 #define DEFAULT_MIN_OBJECTS 8
167 
168 #endif
169 
170 /*
171  * Mininum number of partial slabs. These will be left on the partial
172  * lists even if they are empty. kmem_cache_shrink may reclaim them.
173  */
174 #define MIN_PARTIAL 2
175 
176 /*
177  * Maximum number of desirable partial slabs.
178  * The existence of more partial slabs makes kmem_cache_shrink
179  * sort the partial list by the number of objects in the.
180  */
181 #define MAX_PARTIAL 10
182 
183 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
184 				SLAB_POISON | SLAB_STORE_USER)
185 
186 /*
187  * Set of flags that will prevent slab merging
188  */
189 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
190 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
191 
192 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
193 		SLAB_CACHE_DMA)
194 
195 #ifndef ARCH_KMALLOC_MINALIGN
196 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
197 #endif
198 
199 #ifndef ARCH_SLAB_MINALIGN
200 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
201 #endif
202 
203 /* Internal SLUB flags */
204 #define __OBJECT_POISON		0x80000000 /* Poison object */
205 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
206 
207 /* Not all arches define cache_line_size */
208 #ifndef cache_line_size
209 #define cache_line_size()	L1_CACHE_BYTES
210 #endif
211 
212 static int kmem_size = sizeof(struct kmem_cache);
213 
214 #ifdef CONFIG_SMP
215 static struct notifier_block slab_notifier;
216 #endif
217 
218 static enum {
219 	DOWN,		/* No slab functionality available */
220 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
221 	UP,		/* Everything works but does not show up in sysfs */
222 	SYSFS		/* Sysfs up */
223 } slab_state = DOWN;
224 
225 /* A list of all slab caches on the system */
226 static DECLARE_RWSEM(slub_lock);
227 static LIST_HEAD(slab_caches);
228 
229 /*
230  * Tracking user of a slab.
231  */
232 struct track {
233 	void *addr;		/* Called from address */
234 	int cpu;		/* Was running on cpu */
235 	int pid;		/* Pid context */
236 	unsigned long when;	/* When did the operation occur */
237 };
238 
239 enum track_item { TRACK_ALLOC, TRACK_FREE };
240 
241 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
242 static int sysfs_slab_add(struct kmem_cache *);
243 static int sysfs_slab_alias(struct kmem_cache *, const char *);
244 static void sysfs_slab_remove(struct kmem_cache *);
245 #else
246 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
247 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
248 							{ return 0; }
249 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
250 #endif
251 
252 /********************************************************************
253  * 			Core slab cache functions
254  *******************************************************************/
255 
256 int slab_is_available(void)
257 {
258 	return slab_state >= UP;
259 }
260 
261 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
262 {
263 #ifdef CONFIG_NUMA
264 	return s->node[node];
265 #else
266 	return &s->local_node;
267 #endif
268 }
269 
270 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
271 {
272 #ifdef CONFIG_SMP
273 	return s->cpu_slab[cpu];
274 #else
275 	return &s->cpu_slab;
276 #endif
277 }
278 
279 static inline int check_valid_pointer(struct kmem_cache *s,
280 				struct page *page, const void *object)
281 {
282 	void *base;
283 
284 	if (!object)
285 		return 1;
286 
287 	base = page_address(page);
288 	if (object < base || object >= base + s->objects * s->size ||
289 		(object - base) % s->size) {
290 		return 0;
291 	}
292 
293 	return 1;
294 }
295 
296 /*
297  * Slow version of get and set free pointer.
298  *
299  * This version requires touching the cache lines of kmem_cache which
300  * we avoid to do in the fast alloc free paths. There we obtain the offset
301  * from the page struct.
302  */
303 static inline void *get_freepointer(struct kmem_cache *s, void *object)
304 {
305 	return *(void **)(object + s->offset);
306 }
307 
308 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
309 {
310 	*(void **)(object + s->offset) = fp;
311 }
312 
313 /* Loop over all objects in a slab */
314 #define for_each_object(__p, __s, __addr) \
315 	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
316 			__p += (__s)->size)
317 
318 /* Scan freelist */
319 #define for_each_free_object(__p, __s, __free) \
320 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
321 
322 /* Determine object index from a given position */
323 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
324 {
325 	return (p - addr) / s->size;
326 }
327 
328 #ifdef CONFIG_SLUB_DEBUG
329 /*
330  * Debug settings:
331  */
332 #ifdef CONFIG_SLUB_DEBUG_ON
333 static int slub_debug = DEBUG_DEFAULT_FLAGS;
334 #else
335 static int slub_debug;
336 #endif
337 
338 static char *slub_debug_slabs;
339 
340 /*
341  * Object debugging
342  */
343 static void print_section(char *text, u8 *addr, unsigned int length)
344 {
345 	int i, offset;
346 	int newline = 1;
347 	char ascii[17];
348 
349 	ascii[16] = 0;
350 
351 	for (i = 0; i < length; i++) {
352 		if (newline) {
353 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
354 			newline = 0;
355 		}
356 		printk(" %02x", addr[i]);
357 		offset = i % 16;
358 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
359 		if (offset == 15) {
360 			printk(" %s\n",ascii);
361 			newline = 1;
362 		}
363 	}
364 	if (!newline) {
365 		i %= 16;
366 		while (i < 16) {
367 			printk("   ");
368 			ascii[i] = ' ';
369 			i++;
370 		}
371 		printk(" %s\n", ascii);
372 	}
373 }
374 
375 static struct track *get_track(struct kmem_cache *s, void *object,
376 	enum track_item alloc)
377 {
378 	struct track *p;
379 
380 	if (s->offset)
381 		p = object + s->offset + sizeof(void *);
382 	else
383 		p = object + s->inuse;
384 
385 	return p + alloc;
386 }
387 
388 static void set_track(struct kmem_cache *s, void *object,
389 				enum track_item alloc, void *addr)
390 {
391 	struct track *p;
392 
393 	if (s->offset)
394 		p = object + s->offset + sizeof(void *);
395 	else
396 		p = object + s->inuse;
397 
398 	p += alloc;
399 	if (addr) {
400 		p->addr = addr;
401 		p->cpu = smp_processor_id();
402 		p->pid = current ? current->pid : -1;
403 		p->when = jiffies;
404 	} else
405 		memset(p, 0, sizeof(struct track));
406 }
407 
408 static void init_tracking(struct kmem_cache *s, void *object)
409 {
410 	if (!(s->flags & SLAB_STORE_USER))
411 		return;
412 
413 	set_track(s, object, TRACK_FREE, NULL);
414 	set_track(s, object, TRACK_ALLOC, NULL);
415 }
416 
417 static void print_track(const char *s, struct track *t)
418 {
419 	if (!t->addr)
420 		return;
421 
422 	printk(KERN_ERR "INFO: %s in ", s);
423 	__print_symbol("%s", (unsigned long)t->addr);
424 	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
425 }
426 
427 static void print_tracking(struct kmem_cache *s, void *object)
428 {
429 	if (!(s->flags & SLAB_STORE_USER))
430 		return;
431 
432 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
433 	print_track("Freed", get_track(s, object, TRACK_FREE));
434 }
435 
436 static void print_page_info(struct page *page)
437 {
438 	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
439 		page, page->inuse, page->freelist, page->flags);
440 
441 }
442 
443 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
444 {
445 	va_list args;
446 	char buf[100];
447 
448 	va_start(args, fmt);
449 	vsnprintf(buf, sizeof(buf), fmt, args);
450 	va_end(args);
451 	printk(KERN_ERR "========================================"
452 			"=====================================\n");
453 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
454 	printk(KERN_ERR "----------------------------------------"
455 			"-------------------------------------\n\n");
456 }
457 
458 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
459 {
460 	va_list args;
461 	char buf[100];
462 
463 	va_start(args, fmt);
464 	vsnprintf(buf, sizeof(buf), fmt, args);
465 	va_end(args);
466 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
467 }
468 
469 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
470 {
471 	unsigned int off;	/* Offset of last byte */
472 	u8 *addr = page_address(page);
473 
474 	print_tracking(s, p);
475 
476 	print_page_info(page);
477 
478 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
479 			p, p - addr, get_freepointer(s, p));
480 
481 	if (p > addr + 16)
482 		print_section("Bytes b4", p - 16, 16);
483 
484 	print_section("Object", p, min(s->objsize, 128));
485 
486 	if (s->flags & SLAB_RED_ZONE)
487 		print_section("Redzone", p + s->objsize,
488 			s->inuse - s->objsize);
489 
490 	if (s->offset)
491 		off = s->offset + sizeof(void *);
492 	else
493 		off = s->inuse;
494 
495 	if (s->flags & SLAB_STORE_USER)
496 		off += 2 * sizeof(struct track);
497 
498 	if (off != s->size)
499 		/* Beginning of the filler is the free pointer */
500 		print_section("Padding", p + off, s->size - off);
501 
502 	dump_stack();
503 }
504 
505 static void object_err(struct kmem_cache *s, struct page *page,
506 			u8 *object, char *reason)
507 {
508 	slab_bug(s, reason);
509 	print_trailer(s, page, object);
510 }
511 
512 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
513 {
514 	va_list args;
515 	char buf[100];
516 
517 	va_start(args, fmt);
518 	vsnprintf(buf, sizeof(buf), fmt, args);
519 	va_end(args);
520 	slab_bug(s, fmt);
521 	print_page_info(page);
522 	dump_stack();
523 }
524 
525 static void init_object(struct kmem_cache *s, void *object, int active)
526 {
527 	u8 *p = object;
528 
529 	if (s->flags & __OBJECT_POISON) {
530 		memset(p, POISON_FREE, s->objsize - 1);
531 		p[s->objsize -1] = POISON_END;
532 	}
533 
534 	if (s->flags & SLAB_RED_ZONE)
535 		memset(p + s->objsize,
536 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
537 			s->inuse - s->objsize);
538 }
539 
540 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
541 {
542 	while (bytes) {
543 		if (*start != (u8)value)
544 			return start;
545 		start++;
546 		bytes--;
547 	}
548 	return NULL;
549 }
550 
551 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
552 						void *from, void *to)
553 {
554 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
555 	memset(from, data, to - from);
556 }
557 
558 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
559 			u8 *object, char *what,
560 			u8* start, unsigned int value, unsigned int bytes)
561 {
562 	u8 *fault;
563 	u8 *end;
564 
565 	fault = check_bytes(start, value, bytes);
566 	if (!fault)
567 		return 1;
568 
569 	end = start + bytes;
570 	while (end > fault && end[-1] == value)
571 		end--;
572 
573 	slab_bug(s, "%s overwritten", what);
574 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
575 					fault, end - 1, fault[0], value);
576 	print_trailer(s, page, object);
577 
578 	restore_bytes(s, what, value, fault, end);
579 	return 0;
580 }
581 
582 /*
583  * Object layout:
584  *
585  * object address
586  * 	Bytes of the object to be managed.
587  * 	If the freepointer may overlay the object then the free
588  * 	pointer is the first word of the object.
589  *
590  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
591  * 	0xa5 (POISON_END)
592  *
593  * object + s->objsize
594  * 	Padding to reach word boundary. This is also used for Redzoning.
595  * 	Padding is extended by another word if Redzoning is enabled and
596  * 	objsize == inuse.
597  *
598  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
599  * 	0xcc (RED_ACTIVE) for objects in use.
600  *
601  * object + s->inuse
602  * 	Meta data starts here.
603  *
604  * 	A. Free pointer (if we cannot overwrite object on free)
605  * 	B. Tracking data for SLAB_STORE_USER
606  * 	C. Padding to reach required alignment boundary or at mininum
607  * 		one word if debuggin is on to be able to detect writes
608  * 		before the word boundary.
609  *
610  *	Padding is done using 0x5a (POISON_INUSE)
611  *
612  * object + s->size
613  * 	Nothing is used beyond s->size.
614  *
615  * If slabcaches are merged then the objsize and inuse boundaries are mostly
616  * ignored. And therefore no slab options that rely on these boundaries
617  * may be used with merged slabcaches.
618  */
619 
620 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
621 {
622 	unsigned long off = s->inuse;	/* The end of info */
623 
624 	if (s->offset)
625 		/* Freepointer is placed after the object. */
626 		off += sizeof(void *);
627 
628 	if (s->flags & SLAB_STORE_USER)
629 		/* We also have user information there */
630 		off += 2 * sizeof(struct track);
631 
632 	if (s->size == off)
633 		return 1;
634 
635 	return check_bytes_and_report(s, page, p, "Object padding",
636 				p + off, POISON_INUSE, s->size - off);
637 }
638 
639 static int slab_pad_check(struct kmem_cache *s, struct page *page)
640 {
641 	u8 *start;
642 	u8 *fault;
643 	u8 *end;
644 	int length;
645 	int remainder;
646 
647 	if (!(s->flags & SLAB_POISON))
648 		return 1;
649 
650 	start = page_address(page);
651 	end = start + (PAGE_SIZE << s->order);
652 	length = s->objects * s->size;
653 	remainder = end - (start + length);
654 	if (!remainder)
655 		return 1;
656 
657 	fault = check_bytes(start + length, POISON_INUSE, remainder);
658 	if (!fault)
659 		return 1;
660 	while (end > fault && end[-1] == POISON_INUSE)
661 		end--;
662 
663 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
664 	print_section("Padding", start, length);
665 
666 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
667 	return 0;
668 }
669 
670 static int check_object(struct kmem_cache *s, struct page *page,
671 					void *object, int active)
672 {
673 	u8 *p = object;
674 	u8 *endobject = object + s->objsize;
675 
676 	if (s->flags & SLAB_RED_ZONE) {
677 		unsigned int red =
678 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
679 
680 		if (!check_bytes_and_report(s, page, object, "Redzone",
681 			endobject, red, s->inuse - s->objsize))
682 			return 0;
683 	} else {
684 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
685 			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
686 				POISON_INUSE, s->inuse - s->objsize);
687 	}
688 
689 	if (s->flags & SLAB_POISON) {
690 		if (!active && (s->flags & __OBJECT_POISON) &&
691 			(!check_bytes_and_report(s, page, p, "Poison", p,
692 					POISON_FREE, s->objsize - 1) ||
693 			 !check_bytes_and_report(s, page, p, "Poison",
694 			 	p + s->objsize -1, POISON_END, 1)))
695 			return 0;
696 		/*
697 		 * check_pad_bytes cleans up on its own.
698 		 */
699 		check_pad_bytes(s, page, p);
700 	}
701 
702 	if (!s->offset && active)
703 		/*
704 		 * Object and freepointer overlap. Cannot check
705 		 * freepointer while object is allocated.
706 		 */
707 		return 1;
708 
709 	/* Check free pointer validity */
710 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
711 		object_err(s, page, p, "Freepointer corrupt");
712 		/*
713 		 * No choice but to zap it and thus loose the remainder
714 		 * of the free objects in this slab. May cause
715 		 * another error because the object count is now wrong.
716 		 */
717 		set_freepointer(s, p, NULL);
718 		return 0;
719 	}
720 	return 1;
721 }
722 
723 static int check_slab(struct kmem_cache *s, struct page *page)
724 {
725 	VM_BUG_ON(!irqs_disabled());
726 
727 	if (!PageSlab(page)) {
728 		slab_err(s, page, "Not a valid slab page");
729 		return 0;
730 	}
731 	if (page->inuse > s->objects) {
732 		slab_err(s, page, "inuse %u > max %u",
733 			s->name, page->inuse, s->objects);
734 		return 0;
735 	}
736 	/* Slab_pad_check fixes things up after itself */
737 	slab_pad_check(s, page);
738 	return 1;
739 }
740 
741 /*
742  * Determine if a certain object on a page is on the freelist. Must hold the
743  * slab lock to guarantee that the chains are in a consistent state.
744  */
745 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
746 {
747 	int nr = 0;
748 	void *fp = page->freelist;
749 	void *object = NULL;
750 
751 	while (fp && nr <= s->objects) {
752 		if (fp == search)
753 			return 1;
754 		if (!check_valid_pointer(s, page, fp)) {
755 			if (object) {
756 				object_err(s, page, object,
757 					"Freechain corrupt");
758 				set_freepointer(s, object, NULL);
759 				break;
760 			} else {
761 				slab_err(s, page, "Freepointer corrupt");
762 				page->freelist = NULL;
763 				page->inuse = s->objects;
764 				slab_fix(s, "Freelist cleared");
765 				return 0;
766 			}
767 			break;
768 		}
769 		object = fp;
770 		fp = get_freepointer(s, object);
771 		nr++;
772 	}
773 
774 	if (page->inuse != s->objects - nr) {
775 		slab_err(s, page, "Wrong object count. Counter is %d but "
776 			"counted were %d", page->inuse, s->objects - nr);
777 		page->inuse = s->objects - nr;
778 		slab_fix(s, "Object count adjusted.");
779 	}
780 	return search == NULL;
781 }
782 
783 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
784 {
785 	if (s->flags & SLAB_TRACE) {
786 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
787 			s->name,
788 			alloc ? "alloc" : "free",
789 			object, page->inuse,
790 			page->freelist);
791 
792 		if (!alloc)
793 			print_section("Object", (void *)object, s->objsize);
794 
795 		dump_stack();
796 	}
797 }
798 
799 /*
800  * Tracking of fully allocated slabs for debugging purposes.
801  */
802 static void add_full(struct kmem_cache_node *n, struct page *page)
803 {
804 	spin_lock(&n->list_lock);
805 	list_add(&page->lru, &n->full);
806 	spin_unlock(&n->list_lock);
807 }
808 
809 static void remove_full(struct kmem_cache *s, struct page *page)
810 {
811 	struct kmem_cache_node *n;
812 
813 	if (!(s->flags & SLAB_STORE_USER))
814 		return;
815 
816 	n = get_node(s, page_to_nid(page));
817 
818 	spin_lock(&n->list_lock);
819 	list_del(&page->lru);
820 	spin_unlock(&n->list_lock);
821 }
822 
823 static void setup_object_debug(struct kmem_cache *s, struct page *page,
824 								void *object)
825 {
826 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
827 		return;
828 
829 	init_object(s, object, 0);
830 	init_tracking(s, object);
831 }
832 
833 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
834 						void *object, void *addr)
835 {
836 	if (!check_slab(s, page))
837 		goto bad;
838 
839 	if (object && !on_freelist(s, page, object)) {
840 		object_err(s, page, object, "Object already allocated");
841 		goto bad;
842 	}
843 
844 	if (!check_valid_pointer(s, page, object)) {
845 		object_err(s, page, object, "Freelist Pointer check fails");
846 		goto bad;
847 	}
848 
849 	if (object && !check_object(s, page, object, 0))
850 		goto bad;
851 
852 	/* Success perform special debug activities for allocs */
853 	if (s->flags & SLAB_STORE_USER)
854 		set_track(s, object, TRACK_ALLOC, addr);
855 	trace(s, page, object, 1);
856 	init_object(s, object, 1);
857 	return 1;
858 
859 bad:
860 	if (PageSlab(page)) {
861 		/*
862 		 * If this is a slab page then lets do the best we can
863 		 * to avoid issues in the future. Marking all objects
864 		 * as used avoids touching the remaining objects.
865 		 */
866 		slab_fix(s, "Marking all objects used");
867 		page->inuse = s->objects;
868 		page->freelist = NULL;
869 	}
870 	return 0;
871 }
872 
873 static int free_debug_processing(struct kmem_cache *s, struct page *page,
874 						void *object, void *addr)
875 {
876 	if (!check_slab(s, page))
877 		goto fail;
878 
879 	if (!check_valid_pointer(s, page, object)) {
880 		slab_err(s, page, "Invalid object pointer 0x%p", object);
881 		goto fail;
882 	}
883 
884 	if (on_freelist(s, page, object)) {
885 		object_err(s, page, object, "Object already free");
886 		goto fail;
887 	}
888 
889 	if (!check_object(s, page, object, 1))
890 		return 0;
891 
892 	if (unlikely(s != page->slab)) {
893 		if (!PageSlab(page))
894 			slab_err(s, page, "Attempt to free object(0x%p) "
895 				"outside of slab", object);
896 		else
897 		if (!page->slab) {
898 			printk(KERN_ERR
899 				"SLUB <none>: no slab for object 0x%p.\n",
900 						object);
901 			dump_stack();
902 		}
903 		else
904 			object_err(s, page, object,
905 					"page slab pointer corrupt.");
906 		goto fail;
907 	}
908 
909 	/* Special debug activities for freeing objects */
910 	if (!SlabFrozen(page) && !page->freelist)
911 		remove_full(s, page);
912 	if (s->flags & SLAB_STORE_USER)
913 		set_track(s, object, TRACK_FREE, addr);
914 	trace(s, page, object, 0);
915 	init_object(s, object, 0);
916 	return 1;
917 
918 fail:
919 	slab_fix(s, "Object at 0x%p not freed", object);
920 	return 0;
921 }
922 
923 static int __init setup_slub_debug(char *str)
924 {
925 	slub_debug = DEBUG_DEFAULT_FLAGS;
926 	if (*str++ != '=' || !*str)
927 		/*
928 		 * No options specified. Switch on full debugging.
929 		 */
930 		goto out;
931 
932 	if (*str == ',')
933 		/*
934 		 * No options but restriction on slabs. This means full
935 		 * debugging for slabs matching a pattern.
936 		 */
937 		goto check_slabs;
938 
939 	slub_debug = 0;
940 	if (*str == '-')
941 		/*
942 		 * Switch off all debugging measures.
943 		 */
944 		goto out;
945 
946 	/*
947 	 * Determine which debug features should be switched on
948 	 */
949 	for ( ;*str && *str != ','; str++) {
950 		switch (tolower(*str)) {
951 		case 'f':
952 			slub_debug |= SLAB_DEBUG_FREE;
953 			break;
954 		case 'z':
955 			slub_debug |= SLAB_RED_ZONE;
956 			break;
957 		case 'p':
958 			slub_debug |= SLAB_POISON;
959 			break;
960 		case 'u':
961 			slub_debug |= SLAB_STORE_USER;
962 			break;
963 		case 't':
964 			slub_debug |= SLAB_TRACE;
965 			break;
966 		default:
967 			printk(KERN_ERR "slub_debug option '%c' "
968 				"unknown. skipped\n",*str);
969 		}
970 	}
971 
972 check_slabs:
973 	if (*str == ',')
974 		slub_debug_slabs = str + 1;
975 out:
976 	return 1;
977 }
978 
979 __setup("slub_debug", setup_slub_debug);
980 
981 static unsigned long kmem_cache_flags(unsigned long objsize,
982 	unsigned long flags, const char *name,
983 	void (*ctor)(void *, struct kmem_cache *, unsigned long))
984 {
985 	/*
986 	 * The page->offset field is only 16 bit wide. This is an offset
987 	 * in units of words from the beginning of an object. If the slab
988 	 * size is bigger then we cannot move the free pointer behind the
989 	 * object anymore.
990 	 *
991 	 * On 32 bit platforms the limit is 256k. On 64bit platforms
992 	 * the limit is 512k.
993 	 *
994 	 * Debugging or ctor may create a need to move the free
995 	 * pointer. Fail if this happens.
996 	 */
997 	if (objsize >= 65535 * sizeof(void *)) {
998 		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
999 				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1000 		BUG_ON(ctor);
1001 	} else {
1002 		/*
1003 		 * Enable debugging if selected on the kernel commandline.
1004 		 */
1005 		if (slub_debug && (!slub_debug_slabs ||
1006 		    strncmp(slub_debug_slabs, name,
1007 		    	strlen(slub_debug_slabs)) == 0))
1008 				flags |= slub_debug;
1009 	}
1010 
1011 	return flags;
1012 }
1013 #else
1014 static inline void setup_object_debug(struct kmem_cache *s,
1015 			struct page *page, void *object) {}
1016 
1017 static inline int alloc_debug_processing(struct kmem_cache *s,
1018 	struct page *page, void *object, void *addr) { return 0; }
1019 
1020 static inline int free_debug_processing(struct kmem_cache *s,
1021 	struct page *page, void *object, void *addr) { return 0; }
1022 
1023 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1024 			{ return 1; }
1025 static inline int check_object(struct kmem_cache *s, struct page *page,
1026 			void *object, int active) { return 1; }
1027 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1028 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1029 	unsigned long flags, const char *name,
1030 	void (*ctor)(void *, struct kmem_cache *, unsigned long))
1031 {
1032 	return flags;
1033 }
1034 #define slub_debug 0
1035 #endif
1036 /*
1037  * Slab allocation and freeing
1038  */
1039 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1040 {
1041 	struct page * page;
1042 	int pages = 1 << s->order;
1043 
1044 	if (s->order)
1045 		flags |= __GFP_COMP;
1046 
1047 	if (s->flags & SLAB_CACHE_DMA)
1048 		flags |= SLUB_DMA;
1049 
1050 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
1051 		flags |= __GFP_RECLAIMABLE;
1052 
1053 	if (node == -1)
1054 		page = alloc_pages(flags, s->order);
1055 	else
1056 		page = alloc_pages_node(node, flags, s->order);
1057 
1058 	if (!page)
1059 		return NULL;
1060 
1061 	mod_zone_page_state(page_zone(page),
1062 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1063 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1064 		pages);
1065 
1066 	return page;
1067 }
1068 
1069 static void setup_object(struct kmem_cache *s, struct page *page,
1070 				void *object)
1071 {
1072 	setup_object_debug(s, page, object);
1073 	if (unlikely(s->ctor))
1074 		s->ctor(object, s, 0);
1075 }
1076 
1077 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1078 {
1079 	struct page *page;
1080 	struct kmem_cache_node *n;
1081 	void *start;
1082 	void *end;
1083 	void *last;
1084 	void *p;
1085 
1086 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1087 
1088 	if (flags & __GFP_WAIT)
1089 		local_irq_enable();
1090 
1091 	page = allocate_slab(s,
1092 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1093 	if (!page)
1094 		goto out;
1095 
1096 	n = get_node(s, page_to_nid(page));
1097 	if (n)
1098 		atomic_long_inc(&n->nr_slabs);
1099 	page->slab = s;
1100 	page->flags |= 1 << PG_slab;
1101 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1102 			SLAB_STORE_USER | SLAB_TRACE))
1103 		SetSlabDebug(page);
1104 
1105 	start = page_address(page);
1106 	end = start + s->objects * s->size;
1107 
1108 	if (unlikely(s->flags & SLAB_POISON))
1109 		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1110 
1111 	last = start;
1112 	for_each_object(p, s, start) {
1113 		setup_object(s, page, last);
1114 		set_freepointer(s, last, p);
1115 		last = p;
1116 	}
1117 	setup_object(s, page, last);
1118 	set_freepointer(s, last, NULL);
1119 
1120 	page->freelist = start;
1121 	page->inuse = 0;
1122 out:
1123 	if (flags & __GFP_WAIT)
1124 		local_irq_disable();
1125 	return page;
1126 }
1127 
1128 static void __free_slab(struct kmem_cache *s, struct page *page)
1129 {
1130 	int pages = 1 << s->order;
1131 
1132 	if (unlikely(SlabDebug(page))) {
1133 		void *p;
1134 
1135 		slab_pad_check(s, page);
1136 		for_each_object(p, s, page_address(page))
1137 			check_object(s, page, p, 0);
1138 		ClearSlabDebug(page);
1139 	}
1140 
1141 	mod_zone_page_state(page_zone(page),
1142 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1143 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1144 		- pages);
1145 
1146 	__free_pages(page, s->order);
1147 }
1148 
1149 static void rcu_free_slab(struct rcu_head *h)
1150 {
1151 	struct page *page;
1152 
1153 	page = container_of((struct list_head *)h, struct page, lru);
1154 	__free_slab(page->slab, page);
1155 }
1156 
1157 static void free_slab(struct kmem_cache *s, struct page *page)
1158 {
1159 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1160 		/*
1161 		 * RCU free overloads the RCU head over the LRU
1162 		 */
1163 		struct rcu_head *head = (void *)&page->lru;
1164 
1165 		call_rcu(head, rcu_free_slab);
1166 	} else
1167 		__free_slab(s, page);
1168 }
1169 
1170 static void discard_slab(struct kmem_cache *s, struct page *page)
1171 {
1172 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173 
1174 	atomic_long_dec(&n->nr_slabs);
1175 	reset_page_mapcount(page);
1176 	__ClearPageSlab(page);
1177 	free_slab(s, page);
1178 }
1179 
1180 /*
1181  * Per slab locking using the pagelock
1182  */
1183 static __always_inline void slab_lock(struct page *page)
1184 {
1185 	bit_spin_lock(PG_locked, &page->flags);
1186 }
1187 
1188 static __always_inline void slab_unlock(struct page *page)
1189 {
1190 	bit_spin_unlock(PG_locked, &page->flags);
1191 }
1192 
1193 static __always_inline int slab_trylock(struct page *page)
1194 {
1195 	int rc = 1;
1196 
1197 	rc = bit_spin_trylock(PG_locked, &page->flags);
1198 	return rc;
1199 }
1200 
1201 /*
1202  * Management of partially allocated slabs
1203  */
1204 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1205 {
1206 	spin_lock(&n->list_lock);
1207 	n->nr_partial++;
1208 	list_add_tail(&page->lru, &n->partial);
1209 	spin_unlock(&n->list_lock);
1210 }
1211 
1212 static void add_partial(struct kmem_cache_node *n, struct page *page)
1213 {
1214 	spin_lock(&n->list_lock);
1215 	n->nr_partial++;
1216 	list_add(&page->lru, &n->partial);
1217 	spin_unlock(&n->list_lock);
1218 }
1219 
1220 static void remove_partial(struct kmem_cache *s,
1221 						struct page *page)
1222 {
1223 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1224 
1225 	spin_lock(&n->list_lock);
1226 	list_del(&page->lru);
1227 	n->nr_partial--;
1228 	spin_unlock(&n->list_lock);
1229 }
1230 
1231 /*
1232  * Lock slab and remove from the partial list.
1233  *
1234  * Must hold list_lock.
1235  */
1236 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1237 {
1238 	if (slab_trylock(page)) {
1239 		list_del(&page->lru);
1240 		n->nr_partial--;
1241 		SetSlabFrozen(page);
1242 		return 1;
1243 	}
1244 	return 0;
1245 }
1246 
1247 /*
1248  * Try to allocate a partial slab from a specific node.
1249  */
1250 static struct page *get_partial_node(struct kmem_cache_node *n)
1251 {
1252 	struct page *page;
1253 
1254 	/*
1255 	 * Racy check. If we mistakenly see no partial slabs then we
1256 	 * just allocate an empty slab. If we mistakenly try to get a
1257 	 * partial slab and there is none available then get_partials()
1258 	 * will return NULL.
1259 	 */
1260 	if (!n || !n->nr_partial)
1261 		return NULL;
1262 
1263 	spin_lock(&n->list_lock);
1264 	list_for_each_entry(page, &n->partial, lru)
1265 		if (lock_and_freeze_slab(n, page))
1266 			goto out;
1267 	page = NULL;
1268 out:
1269 	spin_unlock(&n->list_lock);
1270 	return page;
1271 }
1272 
1273 /*
1274  * Get a page from somewhere. Search in increasing NUMA distances.
1275  */
1276 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1277 {
1278 #ifdef CONFIG_NUMA
1279 	struct zonelist *zonelist;
1280 	struct zone **z;
1281 	struct page *page;
1282 
1283 	/*
1284 	 * The defrag ratio allows a configuration of the tradeoffs between
1285 	 * inter node defragmentation and node local allocations. A lower
1286 	 * defrag_ratio increases the tendency to do local allocations
1287 	 * instead of attempting to obtain partial slabs from other nodes.
1288 	 *
1289 	 * If the defrag_ratio is set to 0 then kmalloc() always
1290 	 * returns node local objects. If the ratio is higher then kmalloc()
1291 	 * may return off node objects because partial slabs are obtained
1292 	 * from other nodes and filled up.
1293 	 *
1294 	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1295 	 * defrag_ratio = 1000) then every (well almost) allocation will
1296 	 * first attempt to defrag slab caches on other nodes. This means
1297 	 * scanning over all nodes to look for partial slabs which may be
1298 	 * expensive if we do it every time we are trying to find a slab
1299 	 * with available objects.
1300 	 */
1301 	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1302 		return NULL;
1303 
1304 	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1305 					->node_zonelists[gfp_zone(flags)];
1306 	for (z = zonelist->zones; *z; z++) {
1307 		struct kmem_cache_node *n;
1308 
1309 		n = get_node(s, zone_to_nid(*z));
1310 
1311 		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1312 				n->nr_partial > MIN_PARTIAL) {
1313 			page = get_partial_node(n);
1314 			if (page)
1315 				return page;
1316 		}
1317 	}
1318 #endif
1319 	return NULL;
1320 }
1321 
1322 /*
1323  * Get a partial page, lock it and return it.
1324  */
1325 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1326 {
1327 	struct page *page;
1328 	int searchnode = (node == -1) ? numa_node_id() : node;
1329 
1330 	page = get_partial_node(get_node(s, searchnode));
1331 	if (page || (flags & __GFP_THISNODE))
1332 		return page;
1333 
1334 	return get_any_partial(s, flags);
1335 }
1336 
1337 /*
1338  * Move a page back to the lists.
1339  *
1340  * Must be called with the slab lock held.
1341  *
1342  * On exit the slab lock will have been dropped.
1343  */
1344 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1345 {
1346 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1347 
1348 	ClearSlabFrozen(page);
1349 	if (page->inuse) {
1350 
1351 		if (page->freelist)
1352 			add_partial(n, page);
1353 		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1354 			add_full(n, page);
1355 		slab_unlock(page);
1356 
1357 	} else {
1358 		if (n->nr_partial < MIN_PARTIAL) {
1359 			/*
1360 			 * Adding an empty slab to the partial slabs in order
1361 			 * to avoid page allocator overhead. This slab needs
1362 			 * to come after the other slabs with objects in
1363 			 * order to fill them up. That way the size of the
1364 			 * partial list stays small. kmem_cache_shrink can
1365 			 * reclaim empty slabs from the partial list.
1366 			 */
1367 			add_partial_tail(n, page);
1368 			slab_unlock(page);
1369 		} else {
1370 			slab_unlock(page);
1371 			discard_slab(s, page);
1372 		}
1373 	}
1374 }
1375 
1376 /*
1377  * Remove the cpu slab
1378  */
1379 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1380 {
1381 	struct page *page = c->page;
1382 	/*
1383 	 * Merge cpu freelist into freelist. Typically we get here
1384 	 * because both freelists are empty. So this is unlikely
1385 	 * to occur.
1386 	 */
1387 	while (unlikely(c->freelist)) {
1388 		void **object;
1389 
1390 		/* Retrieve object from cpu_freelist */
1391 		object = c->freelist;
1392 		c->freelist = c->freelist[c->offset];
1393 
1394 		/* And put onto the regular freelist */
1395 		object[c->offset] = page->freelist;
1396 		page->freelist = object;
1397 		page->inuse--;
1398 	}
1399 	c->page = NULL;
1400 	unfreeze_slab(s, page);
1401 }
1402 
1403 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1404 {
1405 	slab_lock(c->page);
1406 	deactivate_slab(s, c);
1407 }
1408 
1409 /*
1410  * Flush cpu slab.
1411  * Called from IPI handler with interrupts disabled.
1412  */
1413 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1414 {
1415 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1416 
1417 	if (likely(c && c->page))
1418 		flush_slab(s, c);
1419 }
1420 
1421 static void flush_cpu_slab(void *d)
1422 {
1423 	struct kmem_cache *s = d;
1424 
1425 	__flush_cpu_slab(s, smp_processor_id());
1426 }
1427 
1428 static void flush_all(struct kmem_cache *s)
1429 {
1430 #ifdef CONFIG_SMP
1431 	on_each_cpu(flush_cpu_slab, s, 1, 1);
1432 #else
1433 	unsigned long flags;
1434 
1435 	local_irq_save(flags);
1436 	flush_cpu_slab(s);
1437 	local_irq_restore(flags);
1438 #endif
1439 }
1440 
1441 /*
1442  * Check if the objects in a per cpu structure fit numa
1443  * locality expectations.
1444  */
1445 static inline int node_match(struct kmem_cache_cpu *c, int node)
1446 {
1447 #ifdef CONFIG_NUMA
1448 	if (node != -1 && c->node != node)
1449 		return 0;
1450 #endif
1451 	return 1;
1452 }
1453 
1454 /*
1455  * Slow path. The lockless freelist is empty or we need to perform
1456  * debugging duties.
1457  *
1458  * Interrupts are disabled.
1459  *
1460  * Processing is still very fast if new objects have been freed to the
1461  * regular freelist. In that case we simply take over the regular freelist
1462  * as the lockless freelist and zap the regular freelist.
1463  *
1464  * If that is not working then we fall back to the partial lists. We take the
1465  * first element of the freelist as the object to allocate now and move the
1466  * rest of the freelist to the lockless freelist.
1467  *
1468  * And if we were unable to get a new slab from the partial slab lists then
1469  * we need to allocate a new slab. This is slowest path since we may sleep.
1470  */
1471 static void *__slab_alloc(struct kmem_cache *s,
1472 		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1473 {
1474 	void **object;
1475 	struct page *new;
1476 
1477 	if (!c->page)
1478 		goto new_slab;
1479 
1480 	slab_lock(c->page);
1481 	if (unlikely(!node_match(c, node)))
1482 		goto another_slab;
1483 load_freelist:
1484 	object = c->page->freelist;
1485 	if (unlikely(!object))
1486 		goto another_slab;
1487 	if (unlikely(SlabDebug(c->page)))
1488 		goto debug;
1489 
1490 	object = c->page->freelist;
1491 	c->freelist = object[c->offset];
1492 	c->page->inuse = s->objects;
1493 	c->page->freelist = NULL;
1494 	c->node = page_to_nid(c->page);
1495 	slab_unlock(c->page);
1496 	return object;
1497 
1498 another_slab:
1499 	deactivate_slab(s, c);
1500 
1501 new_slab:
1502 	new = get_partial(s, gfpflags, node);
1503 	if (new) {
1504 		c->page = new;
1505 		goto load_freelist;
1506 	}
1507 
1508 	new = new_slab(s, gfpflags, node);
1509 	if (new) {
1510 		c = get_cpu_slab(s, smp_processor_id());
1511 		if (c->page) {
1512 			/*
1513 			 * Someone else populated the cpu_slab while we
1514 			 * enabled interrupts, or we have gotten scheduled
1515 			 * on another cpu. The page may not be on the
1516 			 * requested node even if __GFP_THISNODE was
1517 			 * specified. So we need to recheck.
1518 			 */
1519 			if (node_match(c, node)) {
1520 				/*
1521 				 * Current cpuslab is acceptable and we
1522 				 * want the current one since its cache hot
1523 				 */
1524 				discard_slab(s, new);
1525 				slab_lock(c->page);
1526 				goto load_freelist;
1527 			}
1528 			/* New slab does not fit our expectations */
1529 			flush_slab(s, c);
1530 		}
1531 		slab_lock(new);
1532 		SetSlabFrozen(new);
1533 		c->page = new;
1534 		goto load_freelist;
1535 	}
1536 	return NULL;
1537 debug:
1538 	object = c->page->freelist;
1539 	if (!alloc_debug_processing(s, c->page, object, addr))
1540 		goto another_slab;
1541 
1542 	c->page->inuse++;
1543 	c->page->freelist = object[c->offset];
1544 	c->node = -1;
1545 	slab_unlock(c->page);
1546 	return object;
1547 }
1548 
1549 /*
1550  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1551  * have the fastpath folded into their functions. So no function call
1552  * overhead for requests that can be satisfied on the fastpath.
1553  *
1554  * The fastpath works by first checking if the lockless freelist can be used.
1555  * If not then __slab_alloc is called for slow processing.
1556  *
1557  * Otherwise we can simply pick the next object from the lockless free list.
1558  */
1559 static void __always_inline *slab_alloc(struct kmem_cache *s,
1560 		gfp_t gfpflags, int node, void *addr)
1561 {
1562 	void **object;
1563 	unsigned long flags;
1564 	struct kmem_cache_cpu *c;
1565 
1566 	local_irq_save(flags);
1567 	c = get_cpu_slab(s, smp_processor_id());
1568 	if (unlikely(!c->freelist || !node_match(c, node)))
1569 
1570 		object = __slab_alloc(s, gfpflags, node, addr, c);
1571 
1572 	else {
1573 		object = c->freelist;
1574 		c->freelist = object[c->offset];
1575 	}
1576 	local_irq_restore(flags);
1577 
1578 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1579 		memset(object, 0, c->objsize);
1580 
1581 	return object;
1582 }
1583 
1584 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1585 {
1586 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1587 }
1588 EXPORT_SYMBOL(kmem_cache_alloc);
1589 
1590 #ifdef CONFIG_NUMA
1591 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1592 {
1593 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1594 }
1595 EXPORT_SYMBOL(kmem_cache_alloc_node);
1596 #endif
1597 
1598 /*
1599  * Slow patch handling. This may still be called frequently since objects
1600  * have a longer lifetime than the cpu slabs in most processing loads.
1601  *
1602  * So we still attempt to reduce cache line usage. Just take the slab
1603  * lock and free the item. If there is no additional partial page
1604  * handling required then we can return immediately.
1605  */
1606 static void __slab_free(struct kmem_cache *s, struct page *page,
1607 				void *x, void *addr, unsigned int offset)
1608 {
1609 	void *prior;
1610 	void **object = (void *)x;
1611 
1612 	slab_lock(page);
1613 
1614 	if (unlikely(SlabDebug(page)))
1615 		goto debug;
1616 checks_ok:
1617 	prior = object[offset] = page->freelist;
1618 	page->freelist = object;
1619 	page->inuse--;
1620 
1621 	if (unlikely(SlabFrozen(page)))
1622 		goto out_unlock;
1623 
1624 	if (unlikely(!page->inuse))
1625 		goto slab_empty;
1626 
1627 	/*
1628 	 * Objects left in the slab. If it
1629 	 * was not on the partial list before
1630 	 * then add it.
1631 	 */
1632 	if (unlikely(!prior))
1633 		add_partial(get_node(s, page_to_nid(page)), page);
1634 
1635 out_unlock:
1636 	slab_unlock(page);
1637 	return;
1638 
1639 slab_empty:
1640 	if (prior)
1641 		/*
1642 		 * Slab still on the partial list.
1643 		 */
1644 		remove_partial(s, page);
1645 
1646 	slab_unlock(page);
1647 	discard_slab(s, page);
1648 	return;
1649 
1650 debug:
1651 	if (!free_debug_processing(s, page, x, addr))
1652 		goto out_unlock;
1653 	goto checks_ok;
1654 }
1655 
1656 /*
1657  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1658  * can perform fastpath freeing without additional function calls.
1659  *
1660  * The fastpath is only possible if we are freeing to the current cpu slab
1661  * of this processor. This typically the case if we have just allocated
1662  * the item before.
1663  *
1664  * If fastpath is not possible then fall back to __slab_free where we deal
1665  * with all sorts of special processing.
1666  */
1667 static void __always_inline slab_free(struct kmem_cache *s,
1668 			struct page *page, void *x, void *addr)
1669 {
1670 	void **object = (void *)x;
1671 	unsigned long flags;
1672 	struct kmem_cache_cpu *c;
1673 
1674 	local_irq_save(flags);
1675 	debug_check_no_locks_freed(object, s->objsize);
1676 	c = get_cpu_slab(s, smp_processor_id());
1677 	if (likely(page == c->page && c->node >= 0)) {
1678 		object[c->offset] = c->freelist;
1679 		c->freelist = object;
1680 	} else
1681 		__slab_free(s, page, x, addr, c->offset);
1682 
1683 	local_irq_restore(flags);
1684 }
1685 
1686 void kmem_cache_free(struct kmem_cache *s, void *x)
1687 {
1688 	struct page *page;
1689 
1690 	page = virt_to_head_page(x);
1691 
1692 	slab_free(s, page, x, __builtin_return_address(0));
1693 }
1694 EXPORT_SYMBOL(kmem_cache_free);
1695 
1696 /* Figure out on which slab object the object resides */
1697 static struct page *get_object_page(const void *x)
1698 {
1699 	struct page *page = virt_to_head_page(x);
1700 
1701 	if (!PageSlab(page))
1702 		return NULL;
1703 
1704 	return page;
1705 }
1706 
1707 /*
1708  * Object placement in a slab is made very easy because we always start at
1709  * offset 0. If we tune the size of the object to the alignment then we can
1710  * get the required alignment by putting one properly sized object after
1711  * another.
1712  *
1713  * Notice that the allocation order determines the sizes of the per cpu
1714  * caches. Each processor has always one slab available for allocations.
1715  * Increasing the allocation order reduces the number of times that slabs
1716  * must be moved on and off the partial lists and is therefore a factor in
1717  * locking overhead.
1718  */
1719 
1720 /*
1721  * Mininum / Maximum order of slab pages. This influences locking overhead
1722  * and slab fragmentation. A higher order reduces the number of partial slabs
1723  * and increases the number of allocations possible without having to
1724  * take the list_lock.
1725  */
1726 static int slub_min_order;
1727 static int slub_max_order = DEFAULT_MAX_ORDER;
1728 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1729 
1730 /*
1731  * Merge control. If this is set then no merging of slab caches will occur.
1732  * (Could be removed. This was introduced to pacify the merge skeptics.)
1733  */
1734 static int slub_nomerge;
1735 
1736 /*
1737  * Calculate the order of allocation given an slab object size.
1738  *
1739  * The order of allocation has significant impact on performance and other
1740  * system components. Generally order 0 allocations should be preferred since
1741  * order 0 does not cause fragmentation in the page allocator. Larger objects
1742  * be problematic to put into order 0 slabs because there may be too much
1743  * unused space left. We go to a higher order if more than 1/8th of the slab
1744  * would be wasted.
1745  *
1746  * In order to reach satisfactory performance we must ensure that a minimum
1747  * number of objects is in one slab. Otherwise we may generate too much
1748  * activity on the partial lists which requires taking the list_lock. This is
1749  * less a concern for large slabs though which are rarely used.
1750  *
1751  * slub_max_order specifies the order where we begin to stop considering the
1752  * number of objects in a slab as critical. If we reach slub_max_order then
1753  * we try to keep the page order as low as possible. So we accept more waste
1754  * of space in favor of a small page order.
1755  *
1756  * Higher order allocations also allow the placement of more objects in a
1757  * slab and thereby reduce object handling overhead. If the user has
1758  * requested a higher mininum order then we start with that one instead of
1759  * the smallest order which will fit the object.
1760  */
1761 static inline int slab_order(int size, int min_objects,
1762 				int max_order, int fract_leftover)
1763 {
1764 	int order;
1765 	int rem;
1766 	int min_order = slub_min_order;
1767 
1768 	for (order = max(min_order,
1769 				fls(min_objects * size - 1) - PAGE_SHIFT);
1770 			order <= max_order; order++) {
1771 
1772 		unsigned long slab_size = PAGE_SIZE << order;
1773 
1774 		if (slab_size < min_objects * size)
1775 			continue;
1776 
1777 		rem = slab_size % size;
1778 
1779 		if (rem <= slab_size / fract_leftover)
1780 			break;
1781 
1782 	}
1783 
1784 	return order;
1785 }
1786 
1787 static inline int calculate_order(int size)
1788 {
1789 	int order;
1790 	int min_objects;
1791 	int fraction;
1792 
1793 	/*
1794 	 * Attempt to find best configuration for a slab. This
1795 	 * works by first attempting to generate a layout with
1796 	 * the best configuration and backing off gradually.
1797 	 *
1798 	 * First we reduce the acceptable waste in a slab. Then
1799 	 * we reduce the minimum objects required in a slab.
1800 	 */
1801 	min_objects = slub_min_objects;
1802 	while (min_objects > 1) {
1803 		fraction = 8;
1804 		while (fraction >= 4) {
1805 			order = slab_order(size, min_objects,
1806 						slub_max_order, fraction);
1807 			if (order <= slub_max_order)
1808 				return order;
1809 			fraction /= 2;
1810 		}
1811 		min_objects /= 2;
1812 	}
1813 
1814 	/*
1815 	 * We were unable to place multiple objects in a slab. Now
1816 	 * lets see if we can place a single object there.
1817 	 */
1818 	order = slab_order(size, 1, slub_max_order, 1);
1819 	if (order <= slub_max_order)
1820 		return order;
1821 
1822 	/*
1823 	 * Doh this slab cannot be placed using slub_max_order.
1824 	 */
1825 	order = slab_order(size, 1, MAX_ORDER, 1);
1826 	if (order <= MAX_ORDER)
1827 		return order;
1828 	return -ENOSYS;
1829 }
1830 
1831 /*
1832  * Figure out what the alignment of the objects will be.
1833  */
1834 static unsigned long calculate_alignment(unsigned long flags,
1835 		unsigned long align, unsigned long size)
1836 {
1837 	/*
1838 	 * If the user wants hardware cache aligned objects then
1839 	 * follow that suggestion if the object is sufficiently
1840 	 * large.
1841 	 *
1842 	 * The hardware cache alignment cannot override the
1843 	 * specified alignment though. If that is greater
1844 	 * then use it.
1845 	 */
1846 	if ((flags & SLAB_HWCACHE_ALIGN) &&
1847 			size > cache_line_size() / 2)
1848 		return max_t(unsigned long, align, cache_line_size());
1849 
1850 	if (align < ARCH_SLAB_MINALIGN)
1851 		return ARCH_SLAB_MINALIGN;
1852 
1853 	return ALIGN(align, sizeof(void *));
1854 }
1855 
1856 static void init_kmem_cache_cpu(struct kmem_cache *s,
1857 			struct kmem_cache_cpu *c)
1858 {
1859 	c->page = NULL;
1860 	c->freelist = NULL;
1861 	c->node = 0;
1862 	c->offset = s->offset / sizeof(void *);
1863 	c->objsize = s->objsize;
1864 }
1865 
1866 static void init_kmem_cache_node(struct kmem_cache_node *n)
1867 {
1868 	n->nr_partial = 0;
1869 	atomic_long_set(&n->nr_slabs, 0);
1870 	spin_lock_init(&n->list_lock);
1871 	INIT_LIST_HEAD(&n->partial);
1872 #ifdef CONFIG_SLUB_DEBUG
1873 	INIT_LIST_HEAD(&n->full);
1874 #endif
1875 }
1876 
1877 #ifdef CONFIG_SMP
1878 /*
1879  * Per cpu array for per cpu structures.
1880  *
1881  * The per cpu array places all kmem_cache_cpu structures from one processor
1882  * close together meaning that it becomes possible that multiple per cpu
1883  * structures are contained in one cacheline. This may be particularly
1884  * beneficial for the kmalloc caches.
1885  *
1886  * A desktop system typically has around 60-80 slabs. With 100 here we are
1887  * likely able to get per cpu structures for all caches from the array defined
1888  * here. We must be able to cover all kmalloc caches during bootstrap.
1889  *
1890  * If the per cpu array is exhausted then fall back to kmalloc
1891  * of individual cachelines. No sharing is possible then.
1892  */
1893 #define NR_KMEM_CACHE_CPU 100
1894 
1895 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1896 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1897 
1898 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1899 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1900 
1901 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1902 							int cpu, gfp_t flags)
1903 {
1904 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1905 
1906 	if (c)
1907 		per_cpu(kmem_cache_cpu_free, cpu) =
1908 				(void *)c->freelist;
1909 	else {
1910 		/* Table overflow: So allocate ourselves */
1911 		c = kmalloc_node(
1912 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1913 			flags, cpu_to_node(cpu));
1914 		if (!c)
1915 			return NULL;
1916 	}
1917 
1918 	init_kmem_cache_cpu(s, c);
1919 	return c;
1920 }
1921 
1922 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1923 {
1924 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1925 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1926 		kfree(c);
1927 		return;
1928 	}
1929 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1930 	per_cpu(kmem_cache_cpu_free, cpu) = c;
1931 }
1932 
1933 static void free_kmem_cache_cpus(struct kmem_cache *s)
1934 {
1935 	int cpu;
1936 
1937 	for_each_online_cpu(cpu) {
1938 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1939 
1940 		if (c) {
1941 			s->cpu_slab[cpu] = NULL;
1942 			free_kmem_cache_cpu(c, cpu);
1943 		}
1944 	}
1945 }
1946 
1947 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1948 {
1949 	int cpu;
1950 
1951 	for_each_online_cpu(cpu) {
1952 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1953 
1954 		if (c)
1955 			continue;
1956 
1957 		c = alloc_kmem_cache_cpu(s, cpu, flags);
1958 		if (!c) {
1959 			free_kmem_cache_cpus(s);
1960 			return 0;
1961 		}
1962 		s->cpu_slab[cpu] = c;
1963 	}
1964 	return 1;
1965 }
1966 
1967 /*
1968  * Initialize the per cpu array.
1969  */
1970 static void init_alloc_cpu_cpu(int cpu)
1971 {
1972 	int i;
1973 
1974 	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1975 		return;
1976 
1977 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1978 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1979 
1980 	cpu_set(cpu, kmem_cach_cpu_free_init_once);
1981 }
1982 
1983 static void __init init_alloc_cpu(void)
1984 {
1985 	int cpu;
1986 
1987 	for_each_online_cpu(cpu)
1988 		init_alloc_cpu_cpu(cpu);
1989   }
1990 
1991 #else
1992 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1993 static inline void init_alloc_cpu(void) {}
1994 
1995 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1996 {
1997 	init_kmem_cache_cpu(s, &s->cpu_slab);
1998 	return 1;
1999 }
2000 #endif
2001 
2002 #ifdef CONFIG_NUMA
2003 /*
2004  * No kmalloc_node yet so do it by hand. We know that this is the first
2005  * slab on the node for this slabcache. There are no concurrent accesses
2006  * possible.
2007  *
2008  * Note that this function only works on the kmalloc_node_cache
2009  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2010  * memory on a fresh node that has no slab structures yet.
2011  */
2012 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2013 							   int node)
2014 {
2015 	struct page *page;
2016 	struct kmem_cache_node *n;
2017 
2018 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2019 
2020 	page = new_slab(kmalloc_caches, gfpflags, node);
2021 
2022 	BUG_ON(!page);
2023 	if (page_to_nid(page) != node) {
2024 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2025 				"node %d\n", node);
2026 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2027 				"in order to be able to continue\n");
2028 	}
2029 
2030 	n = page->freelist;
2031 	BUG_ON(!n);
2032 	page->freelist = get_freepointer(kmalloc_caches, n);
2033 	page->inuse++;
2034 	kmalloc_caches->node[node] = n;
2035 #ifdef CONFIG_SLUB_DEBUG
2036 	init_object(kmalloc_caches, n, 1);
2037 	init_tracking(kmalloc_caches, n);
2038 #endif
2039 	init_kmem_cache_node(n);
2040 	atomic_long_inc(&n->nr_slabs);
2041 	add_partial(n, page);
2042 
2043 	/*
2044 	 * new_slab() disables interupts. If we do not reenable interrupts here
2045 	 * then bootup would continue with interrupts disabled.
2046 	 */
2047 	local_irq_enable();
2048 	return n;
2049 }
2050 
2051 static void free_kmem_cache_nodes(struct kmem_cache *s)
2052 {
2053 	int node;
2054 
2055 	for_each_node_state(node, N_NORMAL_MEMORY) {
2056 		struct kmem_cache_node *n = s->node[node];
2057 		if (n && n != &s->local_node)
2058 			kmem_cache_free(kmalloc_caches, n);
2059 		s->node[node] = NULL;
2060 	}
2061 }
2062 
2063 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2064 {
2065 	int node;
2066 	int local_node;
2067 
2068 	if (slab_state >= UP)
2069 		local_node = page_to_nid(virt_to_page(s));
2070 	else
2071 		local_node = 0;
2072 
2073 	for_each_node_state(node, N_NORMAL_MEMORY) {
2074 		struct kmem_cache_node *n;
2075 
2076 		if (local_node == node)
2077 			n = &s->local_node;
2078 		else {
2079 			if (slab_state == DOWN) {
2080 				n = early_kmem_cache_node_alloc(gfpflags,
2081 								node);
2082 				continue;
2083 			}
2084 			n = kmem_cache_alloc_node(kmalloc_caches,
2085 							gfpflags, node);
2086 
2087 			if (!n) {
2088 				free_kmem_cache_nodes(s);
2089 				return 0;
2090 			}
2091 
2092 		}
2093 		s->node[node] = n;
2094 		init_kmem_cache_node(n);
2095 	}
2096 	return 1;
2097 }
2098 #else
2099 static void free_kmem_cache_nodes(struct kmem_cache *s)
2100 {
2101 }
2102 
2103 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2104 {
2105 	init_kmem_cache_node(&s->local_node);
2106 	return 1;
2107 }
2108 #endif
2109 
2110 /*
2111  * calculate_sizes() determines the order and the distribution of data within
2112  * a slab object.
2113  */
2114 static int calculate_sizes(struct kmem_cache *s)
2115 {
2116 	unsigned long flags = s->flags;
2117 	unsigned long size = s->objsize;
2118 	unsigned long align = s->align;
2119 
2120 	/*
2121 	 * Determine if we can poison the object itself. If the user of
2122 	 * the slab may touch the object after free or before allocation
2123 	 * then we should never poison the object itself.
2124 	 */
2125 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2126 			!s->ctor)
2127 		s->flags |= __OBJECT_POISON;
2128 	else
2129 		s->flags &= ~__OBJECT_POISON;
2130 
2131 	/*
2132 	 * Round up object size to the next word boundary. We can only
2133 	 * place the free pointer at word boundaries and this determines
2134 	 * the possible location of the free pointer.
2135 	 */
2136 	size = ALIGN(size, sizeof(void *));
2137 
2138 #ifdef CONFIG_SLUB_DEBUG
2139 	/*
2140 	 * If we are Redzoning then check if there is some space between the
2141 	 * end of the object and the free pointer. If not then add an
2142 	 * additional word to have some bytes to store Redzone information.
2143 	 */
2144 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2145 		size += sizeof(void *);
2146 #endif
2147 
2148 	/*
2149 	 * With that we have determined the number of bytes in actual use
2150 	 * by the object. This is the potential offset to the free pointer.
2151 	 */
2152 	s->inuse = size;
2153 
2154 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2155 		s->ctor)) {
2156 		/*
2157 		 * Relocate free pointer after the object if it is not
2158 		 * permitted to overwrite the first word of the object on
2159 		 * kmem_cache_free.
2160 		 *
2161 		 * This is the case if we do RCU, have a constructor or
2162 		 * destructor or are poisoning the objects.
2163 		 */
2164 		s->offset = size;
2165 		size += sizeof(void *);
2166 	}
2167 
2168 #ifdef CONFIG_SLUB_DEBUG
2169 	if (flags & SLAB_STORE_USER)
2170 		/*
2171 		 * Need to store information about allocs and frees after
2172 		 * the object.
2173 		 */
2174 		size += 2 * sizeof(struct track);
2175 
2176 	if (flags & SLAB_RED_ZONE)
2177 		/*
2178 		 * Add some empty padding so that we can catch
2179 		 * overwrites from earlier objects rather than let
2180 		 * tracking information or the free pointer be
2181 		 * corrupted if an user writes before the start
2182 		 * of the object.
2183 		 */
2184 		size += sizeof(void *);
2185 #endif
2186 
2187 	/*
2188 	 * Determine the alignment based on various parameters that the
2189 	 * user specified and the dynamic determination of cache line size
2190 	 * on bootup.
2191 	 */
2192 	align = calculate_alignment(flags, align, s->objsize);
2193 
2194 	/*
2195 	 * SLUB stores one object immediately after another beginning from
2196 	 * offset 0. In order to align the objects we have to simply size
2197 	 * each object to conform to the alignment.
2198 	 */
2199 	size = ALIGN(size, align);
2200 	s->size = size;
2201 
2202 	s->order = calculate_order(size);
2203 	if (s->order < 0)
2204 		return 0;
2205 
2206 	/*
2207 	 * Determine the number of objects per slab
2208 	 */
2209 	s->objects = (PAGE_SIZE << s->order) / size;
2210 
2211 	return !!s->objects;
2212 
2213 }
2214 
2215 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2216 		const char *name, size_t size,
2217 		size_t align, unsigned long flags,
2218 		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2219 {
2220 	memset(s, 0, kmem_size);
2221 	s->name = name;
2222 	s->ctor = ctor;
2223 	s->objsize = size;
2224 	s->align = align;
2225 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2226 
2227 	if (!calculate_sizes(s))
2228 		goto error;
2229 
2230 	s->refcount = 1;
2231 #ifdef CONFIG_NUMA
2232 	s->defrag_ratio = 100;
2233 #endif
2234 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2235 		goto error;
2236 
2237 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2238 		return 1;
2239 	free_kmem_cache_nodes(s);
2240 error:
2241 	if (flags & SLAB_PANIC)
2242 		panic("Cannot create slab %s size=%lu realsize=%u "
2243 			"order=%u offset=%u flags=%lx\n",
2244 			s->name, (unsigned long)size, s->size, s->order,
2245 			s->offset, flags);
2246 	return 0;
2247 }
2248 
2249 /*
2250  * Check if a given pointer is valid
2251  */
2252 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2253 {
2254 	struct page * page;
2255 
2256 	page = get_object_page(object);
2257 
2258 	if (!page || s != page->slab)
2259 		/* No slab or wrong slab */
2260 		return 0;
2261 
2262 	if (!check_valid_pointer(s, page, object))
2263 		return 0;
2264 
2265 	/*
2266 	 * We could also check if the object is on the slabs freelist.
2267 	 * But this would be too expensive and it seems that the main
2268 	 * purpose of kmem_ptr_valid is to check if the object belongs
2269 	 * to a certain slab.
2270 	 */
2271 	return 1;
2272 }
2273 EXPORT_SYMBOL(kmem_ptr_validate);
2274 
2275 /*
2276  * Determine the size of a slab object
2277  */
2278 unsigned int kmem_cache_size(struct kmem_cache *s)
2279 {
2280 	return s->objsize;
2281 }
2282 EXPORT_SYMBOL(kmem_cache_size);
2283 
2284 const char *kmem_cache_name(struct kmem_cache *s)
2285 {
2286 	return s->name;
2287 }
2288 EXPORT_SYMBOL(kmem_cache_name);
2289 
2290 /*
2291  * Attempt to free all slabs on a node. Return the number of slabs we
2292  * were unable to free.
2293  */
2294 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2295 			struct list_head *list)
2296 {
2297 	int slabs_inuse = 0;
2298 	unsigned long flags;
2299 	struct page *page, *h;
2300 
2301 	spin_lock_irqsave(&n->list_lock, flags);
2302 	list_for_each_entry_safe(page, h, list, lru)
2303 		if (!page->inuse) {
2304 			list_del(&page->lru);
2305 			discard_slab(s, page);
2306 		} else
2307 			slabs_inuse++;
2308 	spin_unlock_irqrestore(&n->list_lock, flags);
2309 	return slabs_inuse;
2310 }
2311 
2312 /*
2313  * Release all resources used by a slab cache.
2314  */
2315 static inline int kmem_cache_close(struct kmem_cache *s)
2316 {
2317 	int node;
2318 
2319 	flush_all(s);
2320 
2321 	/* Attempt to free all objects */
2322 	free_kmem_cache_cpus(s);
2323 	for_each_node_state(node, N_NORMAL_MEMORY) {
2324 		struct kmem_cache_node *n = get_node(s, node);
2325 
2326 		n->nr_partial -= free_list(s, n, &n->partial);
2327 		if (atomic_long_read(&n->nr_slabs))
2328 			return 1;
2329 	}
2330 	free_kmem_cache_nodes(s);
2331 	return 0;
2332 }
2333 
2334 /*
2335  * Close a cache and release the kmem_cache structure
2336  * (must be used for caches created using kmem_cache_create)
2337  */
2338 void kmem_cache_destroy(struct kmem_cache *s)
2339 {
2340 	down_write(&slub_lock);
2341 	s->refcount--;
2342 	if (!s->refcount) {
2343 		list_del(&s->list);
2344 		up_write(&slub_lock);
2345 		if (kmem_cache_close(s))
2346 			WARN_ON(1);
2347 		sysfs_slab_remove(s);
2348 		kfree(s);
2349 	} else
2350 		up_write(&slub_lock);
2351 }
2352 EXPORT_SYMBOL(kmem_cache_destroy);
2353 
2354 /********************************************************************
2355  *		Kmalloc subsystem
2356  *******************************************************************/
2357 
2358 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2359 EXPORT_SYMBOL(kmalloc_caches);
2360 
2361 #ifdef CONFIG_ZONE_DMA
2362 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2363 #endif
2364 
2365 static int __init setup_slub_min_order(char *str)
2366 {
2367 	get_option (&str, &slub_min_order);
2368 
2369 	return 1;
2370 }
2371 
2372 __setup("slub_min_order=", setup_slub_min_order);
2373 
2374 static int __init setup_slub_max_order(char *str)
2375 {
2376 	get_option (&str, &slub_max_order);
2377 
2378 	return 1;
2379 }
2380 
2381 __setup("slub_max_order=", setup_slub_max_order);
2382 
2383 static int __init setup_slub_min_objects(char *str)
2384 {
2385 	get_option (&str, &slub_min_objects);
2386 
2387 	return 1;
2388 }
2389 
2390 __setup("slub_min_objects=", setup_slub_min_objects);
2391 
2392 static int __init setup_slub_nomerge(char *str)
2393 {
2394 	slub_nomerge = 1;
2395 	return 1;
2396 }
2397 
2398 __setup("slub_nomerge", setup_slub_nomerge);
2399 
2400 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2401 		const char *name, int size, gfp_t gfp_flags)
2402 {
2403 	unsigned int flags = 0;
2404 
2405 	if (gfp_flags & SLUB_DMA)
2406 		flags = SLAB_CACHE_DMA;
2407 
2408 	down_write(&slub_lock);
2409 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2410 			flags, NULL))
2411 		goto panic;
2412 
2413 	list_add(&s->list, &slab_caches);
2414 	up_write(&slub_lock);
2415 	if (sysfs_slab_add(s))
2416 		goto panic;
2417 	return s;
2418 
2419 panic:
2420 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2421 }
2422 
2423 #ifdef CONFIG_ZONE_DMA
2424 
2425 static void sysfs_add_func(struct work_struct *w)
2426 {
2427 	struct kmem_cache *s;
2428 
2429 	down_write(&slub_lock);
2430 	list_for_each_entry(s, &slab_caches, list) {
2431 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2432 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2433 			sysfs_slab_add(s);
2434 		}
2435 	}
2436 	up_write(&slub_lock);
2437 }
2438 
2439 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2440 
2441 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2442 {
2443 	struct kmem_cache *s;
2444 	char *text;
2445 	size_t realsize;
2446 
2447 	s = kmalloc_caches_dma[index];
2448 	if (s)
2449 		return s;
2450 
2451 	/* Dynamically create dma cache */
2452 	if (flags & __GFP_WAIT)
2453 		down_write(&slub_lock);
2454 	else {
2455 		if (!down_write_trylock(&slub_lock))
2456 			goto out;
2457 	}
2458 
2459 	if (kmalloc_caches_dma[index])
2460 		goto unlock_out;
2461 
2462 	realsize = kmalloc_caches[index].objsize;
2463 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2464 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2465 
2466 	if (!s || !text || !kmem_cache_open(s, flags, text,
2467 			realsize, ARCH_KMALLOC_MINALIGN,
2468 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2469 		kfree(s);
2470 		kfree(text);
2471 		goto unlock_out;
2472 	}
2473 
2474 	list_add(&s->list, &slab_caches);
2475 	kmalloc_caches_dma[index] = s;
2476 
2477 	schedule_work(&sysfs_add_work);
2478 
2479 unlock_out:
2480 	up_write(&slub_lock);
2481 out:
2482 	return kmalloc_caches_dma[index];
2483 }
2484 #endif
2485 
2486 /*
2487  * Conversion table for small slabs sizes / 8 to the index in the
2488  * kmalloc array. This is necessary for slabs < 192 since we have non power
2489  * of two cache sizes there. The size of larger slabs can be determined using
2490  * fls.
2491  */
2492 static s8 size_index[24] = {
2493 	3,	/* 8 */
2494 	4,	/* 16 */
2495 	5,	/* 24 */
2496 	5,	/* 32 */
2497 	6,	/* 40 */
2498 	6,	/* 48 */
2499 	6,	/* 56 */
2500 	6,	/* 64 */
2501 	1,	/* 72 */
2502 	1,	/* 80 */
2503 	1,	/* 88 */
2504 	1,	/* 96 */
2505 	7,	/* 104 */
2506 	7,	/* 112 */
2507 	7,	/* 120 */
2508 	7,	/* 128 */
2509 	2,	/* 136 */
2510 	2,	/* 144 */
2511 	2,	/* 152 */
2512 	2,	/* 160 */
2513 	2,	/* 168 */
2514 	2,	/* 176 */
2515 	2,	/* 184 */
2516 	2	/* 192 */
2517 };
2518 
2519 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2520 {
2521 	int index;
2522 
2523 	if (size <= 192) {
2524 		if (!size)
2525 			return ZERO_SIZE_PTR;
2526 
2527 		index = size_index[(size - 1) / 8];
2528 	} else
2529 		index = fls(size - 1);
2530 
2531 #ifdef CONFIG_ZONE_DMA
2532 	if (unlikely((flags & SLUB_DMA)))
2533 		return dma_kmalloc_cache(index, flags);
2534 
2535 #endif
2536 	return &kmalloc_caches[index];
2537 }
2538 
2539 void *__kmalloc(size_t size, gfp_t flags)
2540 {
2541 	struct kmem_cache *s;
2542 
2543 	if (unlikely(size > PAGE_SIZE / 2))
2544 		return (void *)__get_free_pages(flags | __GFP_COMP,
2545 							get_order(size));
2546 
2547 	s = get_slab(size, flags);
2548 
2549 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2550 		return s;
2551 
2552 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2553 }
2554 EXPORT_SYMBOL(__kmalloc);
2555 
2556 #ifdef CONFIG_NUMA
2557 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2558 {
2559 	struct kmem_cache *s;
2560 
2561 	if (unlikely(size > PAGE_SIZE / 2))
2562 		return (void *)__get_free_pages(flags | __GFP_COMP,
2563 							get_order(size));
2564 
2565 	s = get_slab(size, flags);
2566 
2567 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2568 		return s;
2569 
2570 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2571 }
2572 EXPORT_SYMBOL(__kmalloc_node);
2573 #endif
2574 
2575 size_t ksize(const void *object)
2576 {
2577 	struct page *page;
2578 	struct kmem_cache *s;
2579 
2580 	BUG_ON(!object);
2581 	if (unlikely(object == ZERO_SIZE_PTR))
2582 		return 0;
2583 
2584 	page = get_object_page(object);
2585 	BUG_ON(!page);
2586 	s = page->slab;
2587 	BUG_ON(!s);
2588 
2589 	/*
2590 	 * Debugging requires use of the padding between object
2591 	 * and whatever may come after it.
2592 	 */
2593 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2594 		return s->objsize;
2595 
2596 	/*
2597 	 * If we have the need to store the freelist pointer
2598 	 * back there or track user information then we can
2599 	 * only use the space before that information.
2600 	 */
2601 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2602 		return s->inuse;
2603 
2604 	/*
2605 	 * Else we can use all the padding etc for the allocation
2606 	 */
2607 	return s->size;
2608 }
2609 EXPORT_SYMBOL(ksize);
2610 
2611 void kfree(const void *x)
2612 {
2613 	struct page *page;
2614 
2615 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2616 		return;
2617 
2618 	page = virt_to_head_page(x);
2619 	if (unlikely(!PageSlab(page))) {
2620 		put_page(page);
2621 		return;
2622 	}
2623 	slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2624 }
2625 EXPORT_SYMBOL(kfree);
2626 
2627 /*
2628  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2629  * the remaining slabs by the number of items in use. The slabs with the
2630  * most items in use come first. New allocations will then fill those up
2631  * and thus they can be removed from the partial lists.
2632  *
2633  * The slabs with the least items are placed last. This results in them
2634  * being allocated from last increasing the chance that the last objects
2635  * are freed in them.
2636  */
2637 int kmem_cache_shrink(struct kmem_cache *s)
2638 {
2639 	int node;
2640 	int i;
2641 	struct kmem_cache_node *n;
2642 	struct page *page;
2643 	struct page *t;
2644 	struct list_head *slabs_by_inuse =
2645 		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2646 	unsigned long flags;
2647 
2648 	if (!slabs_by_inuse)
2649 		return -ENOMEM;
2650 
2651 	flush_all(s);
2652 	for_each_node_state(node, N_NORMAL_MEMORY) {
2653 		n = get_node(s, node);
2654 
2655 		if (!n->nr_partial)
2656 			continue;
2657 
2658 		for (i = 0; i < s->objects; i++)
2659 			INIT_LIST_HEAD(slabs_by_inuse + i);
2660 
2661 		spin_lock_irqsave(&n->list_lock, flags);
2662 
2663 		/*
2664 		 * Build lists indexed by the items in use in each slab.
2665 		 *
2666 		 * Note that concurrent frees may occur while we hold the
2667 		 * list_lock. page->inuse here is the upper limit.
2668 		 */
2669 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2670 			if (!page->inuse && slab_trylock(page)) {
2671 				/*
2672 				 * Must hold slab lock here because slab_free
2673 				 * may have freed the last object and be
2674 				 * waiting to release the slab.
2675 				 */
2676 				list_del(&page->lru);
2677 				n->nr_partial--;
2678 				slab_unlock(page);
2679 				discard_slab(s, page);
2680 			} else {
2681 				list_move(&page->lru,
2682 				slabs_by_inuse + page->inuse);
2683 			}
2684 		}
2685 
2686 		/*
2687 		 * Rebuild the partial list with the slabs filled up most
2688 		 * first and the least used slabs at the end.
2689 		 */
2690 		for (i = s->objects - 1; i >= 0; i--)
2691 			list_splice(slabs_by_inuse + i, n->partial.prev);
2692 
2693 		spin_unlock_irqrestore(&n->list_lock, flags);
2694 	}
2695 
2696 	kfree(slabs_by_inuse);
2697 	return 0;
2698 }
2699 EXPORT_SYMBOL(kmem_cache_shrink);
2700 
2701 /********************************************************************
2702  *			Basic setup of slabs
2703  *******************************************************************/
2704 
2705 void __init kmem_cache_init(void)
2706 {
2707 	int i;
2708 	int caches = 0;
2709 
2710 	init_alloc_cpu();
2711 
2712 #ifdef CONFIG_NUMA
2713 	/*
2714 	 * Must first have the slab cache available for the allocations of the
2715 	 * struct kmem_cache_node's. There is special bootstrap code in
2716 	 * kmem_cache_open for slab_state == DOWN.
2717 	 */
2718 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2719 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2720 	kmalloc_caches[0].refcount = -1;
2721 	caches++;
2722 #endif
2723 
2724 	/* Able to allocate the per node structures */
2725 	slab_state = PARTIAL;
2726 
2727 	/* Caches that are not of the two-to-the-power-of size */
2728 	if (KMALLOC_MIN_SIZE <= 64) {
2729 		create_kmalloc_cache(&kmalloc_caches[1],
2730 				"kmalloc-96", 96, GFP_KERNEL);
2731 		caches++;
2732 	}
2733 	if (KMALLOC_MIN_SIZE <= 128) {
2734 		create_kmalloc_cache(&kmalloc_caches[2],
2735 				"kmalloc-192", 192, GFP_KERNEL);
2736 		caches++;
2737 	}
2738 
2739 	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2740 		create_kmalloc_cache(&kmalloc_caches[i],
2741 			"kmalloc", 1 << i, GFP_KERNEL);
2742 		caches++;
2743 	}
2744 
2745 
2746 	/*
2747 	 * Patch up the size_index table if we have strange large alignment
2748 	 * requirements for the kmalloc array. This is only the case for
2749 	 * mips it seems. The standard arches will not generate any code here.
2750 	 *
2751 	 * Largest permitted alignment is 256 bytes due to the way we
2752 	 * handle the index determination for the smaller caches.
2753 	 *
2754 	 * Make sure that nothing crazy happens if someone starts tinkering
2755 	 * around with ARCH_KMALLOC_MINALIGN
2756 	 */
2757 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2758 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2759 
2760 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2761 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2762 
2763 	slab_state = UP;
2764 
2765 	/* Provide the correct kmalloc names now that the caches are up */
2766 	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2767 		kmalloc_caches[i]. name =
2768 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2769 
2770 #ifdef CONFIG_SMP
2771 	register_cpu_notifier(&slab_notifier);
2772 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2773 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2774 #else
2775 	kmem_size = sizeof(struct kmem_cache);
2776 #endif
2777 
2778 
2779 	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2780 		" CPUs=%d, Nodes=%d\n",
2781 		caches, cache_line_size(),
2782 		slub_min_order, slub_max_order, slub_min_objects,
2783 		nr_cpu_ids, nr_node_ids);
2784 }
2785 
2786 /*
2787  * Find a mergeable slab cache
2788  */
2789 static int slab_unmergeable(struct kmem_cache *s)
2790 {
2791 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2792 		return 1;
2793 
2794 	if (s->ctor)
2795 		return 1;
2796 
2797 	/*
2798 	 * We may have set a slab to be unmergeable during bootstrap.
2799 	 */
2800 	if (s->refcount < 0)
2801 		return 1;
2802 
2803 	return 0;
2804 }
2805 
2806 static struct kmem_cache *find_mergeable(size_t size,
2807 		size_t align, unsigned long flags, const char *name,
2808 		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2809 {
2810 	struct kmem_cache *s;
2811 
2812 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2813 		return NULL;
2814 
2815 	if (ctor)
2816 		return NULL;
2817 
2818 	size = ALIGN(size, sizeof(void *));
2819 	align = calculate_alignment(flags, align, size);
2820 	size = ALIGN(size, align);
2821 	flags = kmem_cache_flags(size, flags, name, NULL);
2822 
2823 	list_for_each_entry(s, &slab_caches, list) {
2824 		if (slab_unmergeable(s))
2825 			continue;
2826 
2827 		if (size > s->size)
2828 			continue;
2829 
2830 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2831 				continue;
2832 		/*
2833 		 * Check if alignment is compatible.
2834 		 * Courtesy of Adrian Drzewiecki
2835 		 */
2836 		if ((s->size & ~(align -1)) != s->size)
2837 			continue;
2838 
2839 		if (s->size - size >= sizeof(void *))
2840 			continue;
2841 
2842 		return s;
2843 	}
2844 	return NULL;
2845 }
2846 
2847 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2848 		size_t align, unsigned long flags,
2849 		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2850 {
2851 	struct kmem_cache *s;
2852 
2853 	down_write(&slub_lock);
2854 	s = find_mergeable(size, align, flags, name, ctor);
2855 	if (s) {
2856 		int cpu;
2857 
2858 		s->refcount++;
2859 		/*
2860 		 * Adjust the object sizes so that we clear
2861 		 * the complete object on kzalloc.
2862 		 */
2863 		s->objsize = max(s->objsize, (int)size);
2864 
2865 		/*
2866 		 * And then we need to update the object size in the
2867 		 * per cpu structures
2868 		 */
2869 		for_each_online_cpu(cpu)
2870 			get_cpu_slab(s, cpu)->objsize = s->objsize;
2871 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2872 		up_write(&slub_lock);
2873 		if (sysfs_slab_alias(s, name))
2874 			goto err;
2875 		return s;
2876 	}
2877 	s = kmalloc(kmem_size, GFP_KERNEL);
2878 	if (s) {
2879 		if (kmem_cache_open(s, GFP_KERNEL, name,
2880 				size, align, flags, ctor)) {
2881 			list_add(&s->list, &slab_caches);
2882 			up_write(&slub_lock);
2883 			if (sysfs_slab_add(s))
2884 				goto err;
2885 			return s;
2886 		}
2887 		kfree(s);
2888 	}
2889 	up_write(&slub_lock);
2890 
2891 err:
2892 	if (flags & SLAB_PANIC)
2893 		panic("Cannot create slabcache %s\n", name);
2894 	else
2895 		s = NULL;
2896 	return s;
2897 }
2898 EXPORT_SYMBOL(kmem_cache_create);
2899 
2900 #ifdef CONFIG_SMP
2901 /*
2902  * Use the cpu notifier to insure that the cpu slabs are flushed when
2903  * necessary.
2904  */
2905 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2906 		unsigned long action, void *hcpu)
2907 {
2908 	long cpu = (long)hcpu;
2909 	struct kmem_cache *s;
2910 	unsigned long flags;
2911 
2912 	switch (action) {
2913 	case CPU_UP_PREPARE:
2914 	case CPU_UP_PREPARE_FROZEN:
2915 		init_alloc_cpu_cpu(cpu);
2916 		down_read(&slub_lock);
2917 		list_for_each_entry(s, &slab_caches, list)
2918 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
2919 							GFP_KERNEL);
2920 		up_read(&slub_lock);
2921 		break;
2922 
2923 	case CPU_UP_CANCELED:
2924 	case CPU_UP_CANCELED_FROZEN:
2925 	case CPU_DEAD:
2926 	case CPU_DEAD_FROZEN:
2927 		down_read(&slub_lock);
2928 		list_for_each_entry(s, &slab_caches, list) {
2929 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2930 
2931 			local_irq_save(flags);
2932 			__flush_cpu_slab(s, cpu);
2933 			local_irq_restore(flags);
2934 			free_kmem_cache_cpu(c, cpu);
2935 			s->cpu_slab[cpu] = NULL;
2936 		}
2937 		up_read(&slub_lock);
2938 		break;
2939 	default:
2940 		break;
2941 	}
2942 	return NOTIFY_OK;
2943 }
2944 
2945 static struct notifier_block __cpuinitdata slab_notifier =
2946 	{ &slab_cpuup_callback, NULL, 0 };
2947 
2948 #endif
2949 
2950 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2951 {
2952 	struct kmem_cache *s;
2953 
2954 	if (unlikely(size > PAGE_SIZE / 2))
2955 		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2956 							get_order(size));
2957 	s = get_slab(size, gfpflags);
2958 
2959 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2960 		return s;
2961 
2962 	return slab_alloc(s, gfpflags, -1, caller);
2963 }
2964 
2965 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2966 					int node, void *caller)
2967 {
2968 	struct kmem_cache *s;
2969 
2970 	if (unlikely(size > PAGE_SIZE / 2))
2971 		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2972 							get_order(size));
2973 	s = get_slab(size, gfpflags);
2974 
2975 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2976 		return s;
2977 
2978 	return slab_alloc(s, gfpflags, node, caller);
2979 }
2980 
2981 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2982 static int validate_slab(struct kmem_cache *s, struct page *page,
2983 						unsigned long *map)
2984 {
2985 	void *p;
2986 	void *addr = page_address(page);
2987 
2988 	if (!check_slab(s, page) ||
2989 			!on_freelist(s, page, NULL))
2990 		return 0;
2991 
2992 	/* Now we know that a valid freelist exists */
2993 	bitmap_zero(map, s->objects);
2994 
2995 	for_each_free_object(p, s, page->freelist) {
2996 		set_bit(slab_index(p, s, addr), map);
2997 		if (!check_object(s, page, p, 0))
2998 			return 0;
2999 	}
3000 
3001 	for_each_object(p, s, addr)
3002 		if (!test_bit(slab_index(p, s, addr), map))
3003 			if (!check_object(s, page, p, 1))
3004 				return 0;
3005 	return 1;
3006 }
3007 
3008 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3009 						unsigned long *map)
3010 {
3011 	if (slab_trylock(page)) {
3012 		validate_slab(s, page, map);
3013 		slab_unlock(page);
3014 	} else
3015 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3016 			s->name, page);
3017 
3018 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3019 		if (!SlabDebug(page))
3020 			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3021 				"on slab 0x%p\n", s->name, page);
3022 	} else {
3023 		if (SlabDebug(page))
3024 			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3025 				"slab 0x%p\n", s->name, page);
3026 	}
3027 }
3028 
3029 static int validate_slab_node(struct kmem_cache *s,
3030 		struct kmem_cache_node *n, unsigned long *map)
3031 {
3032 	unsigned long count = 0;
3033 	struct page *page;
3034 	unsigned long flags;
3035 
3036 	spin_lock_irqsave(&n->list_lock, flags);
3037 
3038 	list_for_each_entry(page, &n->partial, lru) {
3039 		validate_slab_slab(s, page, map);
3040 		count++;
3041 	}
3042 	if (count != n->nr_partial)
3043 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3044 			"counter=%ld\n", s->name, count, n->nr_partial);
3045 
3046 	if (!(s->flags & SLAB_STORE_USER))
3047 		goto out;
3048 
3049 	list_for_each_entry(page, &n->full, lru) {
3050 		validate_slab_slab(s, page, map);
3051 		count++;
3052 	}
3053 	if (count != atomic_long_read(&n->nr_slabs))
3054 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3055 			"counter=%ld\n", s->name, count,
3056 			atomic_long_read(&n->nr_slabs));
3057 
3058 out:
3059 	spin_unlock_irqrestore(&n->list_lock, flags);
3060 	return count;
3061 }
3062 
3063 static long validate_slab_cache(struct kmem_cache *s)
3064 {
3065 	int node;
3066 	unsigned long count = 0;
3067 	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3068 				sizeof(unsigned long), GFP_KERNEL);
3069 
3070 	if (!map)
3071 		return -ENOMEM;
3072 
3073 	flush_all(s);
3074 	for_each_node_state(node, N_NORMAL_MEMORY) {
3075 		struct kmem_cache_node *n = get_node(s, node);
3076 
3077 		count += validate_slab_node(s, n, map);
3078 	}
3079 	kfree(map);
3080 	return count;
3081 }
3082 
3083 #ifdef SLUB_RESILIENCY_TEST
3084 static void resiliency_test(void)
3085 {
3086 	u8 *p;
3087 
3088 	printk(KERN_ERR "SLUB resiliency testing\n");
3089 	printk(KERN_ERR "-----------------------\n");
3090 	printk(KERN_ERR "A. Corruption after allocation\n");
3091 
3092 	p = kzalloc(16, GFP_KERNEL);
3093 	p[16] = 0x12;
3094 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3095 			" 0x12->0x%p\n\n", p + 16);
3096 
3097 	validate_slab_cache(kmalloc_caches + 4);
3098 
3099 	/* Hmmm... The next two are dangerous */
3100 	p = kzalloc(32, GFP_KERNEL);
3101 	p[32 + sizeof(void *)] = 0x34;
3102 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3103 		 	" 0x34 -> -0x%p\n", p);
3104 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3105 
3106 	validate_slab_cache(kmalloc_caches + 5);
3107 	p = kzalloc(64, GFP_KERNEL);
3108 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3109 	*p = 0x56;
3110 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3111 									p);
3112 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3113 	validate_slab_cache(kmalloc_caches + 6);
3114 
3115 	printk(KERN_ERR "\nB. Corruption after free\n");
3116 	p = kzalloc(128, GFP_KERNEL);
3117 	kfree(p);
3118 	*p = 0x78;
3119 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3120 	validate_slab_cache(kmalloc_caches + 7);
3121 
3122 	p = kzalloc(256, GFP_KERNEL);
3123 	kfree(p);
3124 	p[50] = 0x9a;
3125 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3126 	validate_slab_cache(kmalloc_caches + 8);
3127 
3128 	p = kzalloc(512, GFP_KERNEL);
3129 	kfree(p);
3130 	p[512] = 0xab;
3131 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3132 	validate_slab_cache(kmalloc_caches + 9);
3133 }
3134 #else
3135 static void resiliency_test(void) {};
3136 #endif
3137 
3138 /*
3139  * Generate lists of code addresses where slabcache objects are allocated
3140  * and freed.
3141  */
3142 
3143 struct location {
3144 	unsigned long count;
3145 	void *addr;
3146 	long long sum_time;
3147 	long min_time;
3148 	long max_time;
3149 	long min_pid;
3150 	long max_pid;
3151 	cpumask_t cpus;
3152 	nodemask_t nodes;
3153 };
3154 
3155 struct loc_track {
3156 	unsigned long max;
3157 	unsigned long count;
3158 	struct location *loc;
3159 };
3160 
3161 static void free_loc_track(struct loc_track *t)
3162 {
3163 	if (t->max)
3164 		free_pages((unsigned long)t->loc,
3165 			get_order(sizeof(struct location) * t->max));
3166 }
3167 
3168 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3169 {
3170 	struct location *l;
3171 	int order;
3172 
3173 	order = get_order(sizeof(struct location) * max);
3174 
3175 	l = (void *)__get_free_pages(flags, order);
3176 	if (!l)
3177 		return 0;
3178 
3179 	if (t->count) {
3180 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3181 		free_loc_track(t);
3182 	}
3183 	t->max = max;
3184 	t->loc = l;
3185 	return 1;
3186 }
3187 
3188 static int add_location(struct loc_track *t, struct kmem_cache *s,
3189 				const struct track *track)
3190 {
3191 	long start, end, pos;
3192 	struct location *l;
3193 	void *caddr;
3194 	unsigned long age = jiffies - track->when;
3195 
3196 	start = -1;
3197 	end = t->count;
3198 
3199 	for ( ; ; ) {
3200 		pos = start + (end - start + 1) / 2;
3201 
3202 		/*
3203 		 * There is nothing at "end". If we end up there
3204 		 * we need to add something to before end.
3205 		 */
3206 		if (pos == end)
3207 			break;
3208 
3209 		caddr = t->loc[pos].addr;
3210 		if (track->addr == caddr) {
3211 
3212 			l = &t->loc[pos];
3213 			l->count++;
3214 			if (track->when) {
3215 				l->sum_time += age;
3216 				if (age < l->min_time)
3217 					l->min_time = age;
3218 				if (age > l->max_time)
3219 					l->max_time = age;
3220 
3221 				if (track->pid < l->min_pid)
3222 					l->min_pid = track->pid;
3223 				if (track->pid > l->max_pid)
3224 					l->max_pid = track->pid;
3225 
3226 				cpu_set(track->cpu, l->cpus);
3227 			}
3228 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3229 			return 1;
3230 		}
3231 
3232 		if (track->addr < caddr)
3233 			end = pos;
3234 		else
3235 			start = pos;
3236 	}
3237 
3238 	/*
3239 	 * Not found. Insert new tracking element.
3240 	 */
3241 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3242 		return 0;
3243 
3244 	l = t->loc + pos;
3245 	if (pos < t->count)
3246 		memmove(l + 1, l,
3247 			(t->count - pos) * sizeof(struct location));
3248 	t->count++;
3249 	l->count = 1;
3250 	l->addr = track->addr;
3251 	l->sum_time = age;
3252 	l->min_time = age;
3253 	l->max_time = age;
3254 	l->min_pid = track->pid;
3255 	l->max_pid = track->pid;
3256 	cpus_clear(l->cpus);
3257 	cpu_set(track->cpu, l->cpus);
3258 	nodes_clear(l->nodes);
3259 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3260 	return 1;
3261 }
3262 
3263 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3264 		struct page *page, enum track_item alloc)
3265 {
3266 	void *addr = page_address(page);
3267 	DECLARE_BITMAP(map, s->objects);
3268 	void *p;
3269 
3270 	bitmap_zero(map, s->objects);
3271 	for_each_free_object(p, s, page->freelist)
3272 		set_bit(slab_index(p, s, addr), map);
3273 
3274 	for_each_object(p, s, addr)
3275 		if (!test_bit(slab_index(p, s, addr), map))
3276 			add_location(t, s, get_track(s, p, alloc));
3277 }
3278 
3279 static int list_locations(struct kmem_cache *s, char *buf,
3280 					enum track_item alloc)
3281 {
3282 	int n = 0;
3283 	unsigned long i;
3284 	struct loc_track t = { 0, 0, NULL };
3285 	int node;
3286 
3287 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3288 			GFP_TEMPORARY))
3289 		return sprintf(buf, "Out of memory\n");
3290 
3291 	/* Push back cpu slabs */
3292 	flush_all(s);
3293 
3294 	for_each_node_state(node, N_NORMAL_MEMORY) {
3295 		struct kmem_cache_node *n = get_node(s, node);
3296 		unsigned long flags;
3297 		struct page *page;
3298 
3299 		if (!atomic_long_read(&n->nr_slabs))
3300 			continue;
3301 
3302 		spin_lock_irqsave(&n->list_lock, flags);
3303 		list_for_each_entry(page, &n->partial, lru)
3304 			process_slab(&t, s, page, alloc);
3305 		list_for_each_entry(page, &n->full, lru)
3306 			process_slab(&t, s, page, alloc);
3307 		spin_unlock_irqrestore(&n->list_lock, flags);
3308 	}
3309 
3310 	for (i = 0; i < t.count; i++) {
3311 		struct location *l = &t.loc[i];
3312 
3313 		if (n > PAGE_SIZE - 100)
3314 			break;
3315 		n += sprintf(buf + n, "%7ld ", l->count);
3316 
3317 		if (l->addr)
3318 			n += sprint_symbol(buf + n, (unsigned long)l->addr);
3319 		else
3320 			n += sprintf(buf + n, "<not-available>");
3321 
3322 		if (l->sum_time != l->min_time) {
3323 			unsigned long remainder;
3324 
3325 			n += sprintf(buf + n, " age=%ld/%ld/%ld",
3326 			l->min_time,
3327 			div_long_long_rem(l->sum_time, l->count, &remainder),
3328 			l->max_time);
3329 		} else
3330 			n += sprintf(buf + n, " age=%ld",
3331 				l->min_time);
3332 
3333 		if (l->min_pid != l->max_pid)
3334 			n += sprintf(buf + n, " pid=%ld-%ld",
3335 				l->min_pid, l->max_pid);
3336 		else
3337 			n += sprintf(buf + n, " pid=%ld",
3338 				l->min_pid);
3339 
3340 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3341 				n < PAGE_SIZE - 60) {
3342 			n += sprintf(buf + n, " cpus=");
3343 			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3344 					l->cpus);
3345 		}
3346 
3347 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3348 				n < PAGE_SIZE - 60) {
3349 			n += sprintf(buf + n, " nodes=");
3350 			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3351 					l->nodes);
3352 		}
3353 
3354 		n += sprintf(buf + n, "\n");
3355 	}
3356 
3357 	free_loc_track(&t);
3358 	if (!t.count)
3359 		n += sprintf(buf, "No data\n");
3360 	return n;
3361 }
3362 
3363 static unsigned long count_partial(struct kmem_cache_node *n)
3364 {
3365 	unsigned long flags;
3366 	unsigned long x = 0;
3367 	struct page *page;
3368 
3369 	spin_lock_irqsave(&n->list_lock, flags);
3370 	list_for_each_entry(page, &n->partial, lru)
3371 		x += page->inuse;
3372 	spin_unlock_irqrestore(&n->list_lock, flags);
3373 	return x;
3374 }
3375 
3376 enum slab_stat_type {
3377 	SL_FULL,
3378 	SL_PARTIAL,
3379 	SL_CPU,
3380 	SL_OBJECTS
3381 };
3382 
3383 #define SO_FULL		(1 << SL_FULL)
3384 #define SO_PARTIAL	(1 << SL_PARTIAL)
3385 #define SO_CPU		(1 << SL_CPU)
3386 #define SO_OBJECTS	(1 << SL_OBJECTS)
3387 
3388 static unsigned long slab_objects(struct kmem_cache *s,
3389 			char *buf, unsigned long flags)
3390 {
3391 	unsigned long total = 0;
3392 	int cpu;
3393 	int node;
3394 	int x;
3395 	unsigned long *nodes;
3396 	unsigned long *per_cpu;
3397 
3398 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3399 	per_cpu = nodes + nr_node_ids;
3400 
3401 	for_each_possible_cpu(cpu) {
3402 		struct page *page;
3403 		int node;
3404 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3405 
3406 		if (!c)
3407 			continue;
3408 
3409 		page = c->page;
3410 		node = c->node;
3411 		if (node < 0)
3412 			continue;
3413 		if (page) {
3414 			if (flags & SO_CPU) {
3415 				int x = 0;
3416 
3417 				if (flags & SO_OBJECTS)
3418 					x = page->inuse;
3419 				else
3420 					x = 1;
3421 				total += x;
3422 				nodes[node] += x;
3423 			}
3424 			per_cpu[node]++;
3425 		}
3426 	}
3427 
3428 	for_each_node_state(node, N_NORMAL_MEMORY) {
3429 		struct kmem_cache_node *n = get_node(s, node);
3430 
3431 		if (flags & SO_PARTIAL) {
3432 			if (flags & SO_OBJECTS)
3433 				x = count_partial(n);
3434 			else
3435 				x = n->nr_partial;
3436 			total += x;
3437 			nodes[node] += x;
3438 		}
3439 
3440 		if (flags & SO_FULL) {
3441 			int full_slabs = atomic_long_read(&n->nr_slabs)
3442 					- per_cpu[node]
3443 					- n->nr_partial;
3444 
3445 			if (flags & SO_OBJECTS)
3446 				x = full_slabs * s->objects;
3447 			else
3448 				x = full_slabs;
3449 			total += x;
3450 			nodes[node] += x;
3451 		}
3452 	}
3453 
3454 	x = sprintf(buf, "%lu", total);
3455 #ifdef CONFIG_NUMA
3456 	for_each_node_state(node, N_NORMAL_MEMORY)
3457 		if (nodes[node])
3458 			x += sprintf(buf + x, " N%d=%lu",
3459 					node, nodes[node]);
3460 #endif
3461 	kfree(nodes);
3462 	return x + sprintf(buf + x, "\n");
3463 }
3464 
3465 static int any_slab_objects(struct kmem_cache *s)
3466 {
3467 	int node;
3468 	int cpu;
3469 
3470 	for_each_possible_cpu(cpu) {
3471 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3472 
3473 		if (c && c->page)
3474 			return 1;
3475 	}
3476 
3477 	for_each_online_node(node) {
3478 		struct kmem_cache_node *n = get_node(s, node);
3479 
3480 		if (!n)
3481 			continue;
3482 
3483 		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3484 			return 1;
3485 	}
3486 	return 0;
3487 }
3488 
3489 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3490 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3491 
3492 struct slab_attribute {
3493 	struct attribute attr;
3494 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3495 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3496 };
3497 
3498 #define SLAB_ATTR_RO(_name) \
3499 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3500 
3501 #define SLAB_ATTR(_name) \
3502 	static struct slab_attribute _name##_attr =  \
3503 	__ATTR(_name, 0644, _name##_show, _name##_store)
3504 
3505 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3506 {
3507 	return sprintf(buf, "%d\n", s->size);
3508 }
3509 SLAB_ATTR_RO(slab_size);
3510 
3511 static ssize_t align_show(struct kmem_cache *s, char *buf)
3512 {
3513 	return sprintf(buf, "%d\n", s->align);
3514 }
3515 SLAB_ATTR_RO(align);
3516 
3517 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3518 {
3519 	return sprintf(buf, "%d\n", s->objsize);
3520 }
3521 SLAB_ATTR_RO(object_size);
3522 
3523 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3524 {
3525 	return sprintf(buf, "%d\n", s->objects);
3526 }
3527 SLAB_ATTR_RO(objs_per_slab);
3528 
3529 static ssize_t order_show(struct kmem_cache *s, char *buf)
3530 {
3531 	return sprintf(buf, "%d\n", s->order);
3532 }
3533 SLAB_ATTR_RO(order);
3534 
3535 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3536 {
3537 	if (s->ctor) {
3538 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3539 
3540 		return n + sprintf(buf + n, "\n");
3541 	}
3542 	return 0;
3543 }
3544 SLAB_ATTR_RO(ctor);
3545 
3546 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3547 {
3548 	return sprintf(buf, "%d\n", s->refcount - 1);
3549 }
3550 SLAB_ATTR_RO(aliases);
3551 
3552 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3553 {
3554 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3555 }
3556 SLAB_ATTR_RO(slabs);
3557 
3558 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3559 {
3560 	return slab_objects(s, buf, SO_PARTIAL);
3561 }
3562 SLAB_ATTR_RO(partial);
3563 
3564 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3565 {
3566 	return slab_objects(s, buf, SO_CPU);
3567 }
3568 SLAB_ATTR_RO(cpu_slabs);
3569 
3570 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3571 {
3572 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3573 }
3574 SLAB_ATTR_RO(objects);
3575 
3576 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3577 {
3578 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3579 }
3580 
3581 static ssize_t sanity_checks_store(struct kmem_cache *s,
3582 				const char *buf, size_t length)
3583 {
3584 	s->flags &= ~SLAB_DEBUG_FREE;
3585 	if (buf[0] == '1')
3586 		s->flags |= SLAB_DEBUG_FREE;
3587 	return length;
3588 }
3589 SLAB_ATTR(sanity_checks);
3590 
3591 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3592 {
3593 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3594 }
3595 
3596 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3597 							size_t length)
3598 {
3599 	s->flags &= ~SLAB_TRACE;
3600 	if (buf[0] == '1')
3601 		s->flags |= SLAB_TRACE;
3602 	return length;
3603 }
3604 SLAB_ATTR(trace);
3605 
3606 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3607 {
3608 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3609 }
3610 
3611 static ssize_t reclaim_account_store(struct kmem_cache *s,
3612 				const char *buf, size_t length)
3613 {
3614 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3615 	if (buf[0] == '1')
3616 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3617 	return length;
3618 }
3619 SLAB_ATTR(reclaim_account);
3620 
3621 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3622 {
3623 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3624 }
3625 SLAB_ATTR_RO(hwcache_align);
3626 
3627 #ifdef CONFIG_ZONE_DMA
3628 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3629 {
3630 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3631 }
3632 SLAB_ATTR_RO(cache_dma);
3633 #endif
3634 
3635 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3636 {
3637 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3638 }
3639 SLAB_ATTR_RO(destroy_by_rcu);
3640 
3641 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3642 {
3643 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3644 }
3645 
3646 static ssize_t red_zone_store(struct kmem_cache *s,
3647 				const char *buf, size_t length)
3648 {
3649 	if (any_slab_objects(s))
3650 		return -EBUSY;
3651 
3652 	s->flags &= ~SLAB_RED_ZONE;
3653 	if (buf[0] == '1')
3654 		s->flags |= SLAB_RED_ZONE;
3655 	calculate_sizes(s);
3656 	return length;
3657 }
3658 SLAB_ATTR(red_zone);
3659 
3660 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3661 {
3662 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3663 }
3664 
3665 static ssize_t poison_store(struct kmem_cache *s,
3666 				const char *buf, size_t length)
3667 {
3668 	if (any_slab_objects(s))
3669 		return -EBUSY;
3670 
3671 	s->flags &= ~SLAB_POISON;
3672 	if (buf[0] == '1')
3673 		s->flags |= SLAB_POISON;
3674 	calculate_sizes(s);
3675 	return length;
3676 }
3677 SLAB_ATTR(poison);
3678 
3679 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3680 {
3681 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3682 }
3683 
3684 static ssize_t store_user_store(struct kmem_cache *s,
3685 				const char *buf, size_t length)
3686 {
3687 	if (any_slab_objects(s))
3688 		return -EBUSY;
3689 
3690 	s->flags &= ~SLAB_STORE_USER;
3691 	if (buf[0] == '1')
3692 		s->flags |= SLAB_STORE_USER;
3693 	calculate_sizes(s);
3694 	return length;
3695 }
3696 SLAB_ATTR(store_user);
3697 
3698 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3699 {
3700 	return 0;
3701 }
3702 
3703 static ssize_t validate_store(struct kmem_cache *s,
3704 			const char *buf, size_t length)
3705 {
3706 	int ret = -EINVAL;
3707 
3708 	if (buf[0] == '1') {
3709 		ret = validate_slab_cache(s);
3710 		if (ret >= 0)
3711 			ret = length;
3712 	}
3713 	return ret;
3714 }
3715 SLAB_ATTR(validate);
3716 
3717 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3718 {
3719 	return 0;
3720 }
3721 
3722 static ssize_t shrink_store(struct kmem_cache *s,
3723 			const char *buf, size_t length)
3724 {
3725 	if (buf[0] == '1') {
3726 		int rc = kmem_cache_shrink(s);
3727 
3728 		if (rc)
3729 			return rc;
3730 	} else
3731 		return -EINVAL;
3732 	return length;
3733 }
3734 SLAB_ATTR(shrink);
3735 
3736 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3737 {
3738 	if (!(s->flags & SLAB_STORE_USER))
3739 		return -ENOSYS;
3740 	return list_locations(s, buf, TRACK_ALLOC);
3741 }
3742 SLAB_ATTR_RO(alloc_calls);
3743 
3744 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3745 {
3746 	if (!(s->flags & SLAB_STORE_USER))
3747 		return -ENOSYS;
3748 	return list_locations(s, buf, TRACK_FREE);
3749 }
3750 SLAB_ATTR_RO(free_calls);
3751 
3752 #ifdef CONFIG_NUMA
3753 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3754 {
3755 	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3756 }
3757 
3758 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3759 				const char *buf, size_t length)
3760 {
3761 	int n = simple_strtoul(buf, NULL, 10);
3762 
3763 	if (n < 100)
3764 		s->defrag_ratio = n * 10;
3765 	return length;
3766 }
3767 SLAB_ATTR(defrag_ratio);
3768 #endif
3769 
3770 static struct attribute * slab_attrs[] = {
3771 	&slab_size_attr.attr,
3772 	&object_size_attr.attr,
3773 	&objs_per_slab_attr.attr,
3774 	&order_attr.attr,
3775 	&objects_attr.attr,
3776 	&slabs_attr.attr,
3777 	&partial_attr.attr,
3778 	&cpu_slabs_attr.attr,
3779 	&ctor_attr.attr,
3780 	&aliases_attr.attr,
3781 	&align_attr.attr,
3782 	&sanity_checks_attr.attr,
3783 	&trace_attr.attr,
3784 	&hwcache_align_attr.attr,
3785 	&reclaim_account_attr.attr,
3786 	&destroy_by_rcu_attr.attr,
3787 	&red_zone_attr.attr,
3788 	&poison_attr.attr,
3789 	&store_user_attr.attr,
3790 	&validate_attr.attr,
3791 	&shrink_attr.attr,
3792 	&alloc_calls_attr.attr,
3793 	&free_calls_attr.attr,
3794 #ifdef CONFIG_ZONE_DMA
3795 	&cache_dma_attr.attr,
3796 #endif
3797 #ifdef CONFIG_NUMA
3798 	&defrag_ratio_attr.attr,
3799 #endif
3800 	NULL
3801 };
3802 
3803 static struct attribute_group slab_attr_group = {
3804 	.attrs = slab_attrs,
3805 };
3806 
3807 static ssize_t slab_attr_show(struct kobject *kobj,
3808 				struct attribute *attr,
3809 				char *buf)
3810 {
3811 	struct slab_attribute *attribute;
3812 	struct kmem_cache *s;
3813 	int err;
3814 
3815 	attribute = to_slab_attr(attr);
3816 	s = to_slab(kobj);
3817 
3818 	if (!attribute->show)
3819 		return -EIO;
3820 
3821 	err = attribute->show(s, buf);
3822 
3823 	return err;
3824 }
3825 
3826 static ssize_t slab_attr_store(struct kobject *kobj,
3827 				struct attribute *attr,
3828 				const char *buf, size_t len)
3829 {
3830 	struct slab_attribute *attribute;
3831 	struct kmem_cache *s;
3832 	int err;
3833 
3834 	attribute = to_slab_attr(attr);
3835 	s = to_slab(kobj);
3836 
3837 	if (!attribute->store)
3838 		return -EIO;
3839 
3840 	err = attribute->store(s, buf, len);
3841 
3842 	return err;
3843 }
3844 
3845 static struct sysfs_ops slab_sysfs_ops = {
3846 	.show = slab_attr_show,
3847 	.store = slab_attr_store,
3848 };
3849 
3850 static struct kobj_type slab_ktype = {
3851 	.sysfs_ops = &slab_sysfs_ops,
3852 };
3853 
3854 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3855 {
3856 	struct kobj_type *ktype = get_ktype(kobj);
3857 
3858 	if (ktype == &slab_ktype)
3859 		return 1;
3860 	return 0;
3861 }
3862 
3863 static struct kset_uevent_ops slab_uevent_ops = {
3864 	.filter = uevent_filter,
3865 };
3866 
3867 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3868 
3869 #define ID_STR_LENGTH 64
3870 
3871 /* Create a unique string id for a slab cache:
3872  * format
3873  * :[flags-]size:[memory address of kmemcache]
3874  */
3875 static char *create_unique_id(struct kmem_cache *s)
3876 {
3877 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3878 	char *p = name;
3879 
3880 	BUG_ON(!name);
3881 
3882 	*p++ = ':';
3883 	/*
3884 	 * First flags affecting slabcache operations. We will only
3885 	 * get here for aliasable slabs so we do not need to support
3886 	 * too many flags. The flags here must cover all flags that
3887 	 * are matched during merging to guarantee that the id is
3888 	 * unique.
3889 	 */
3890 	if (s->flags & SLAB_CACHE_DMA)
3891 		*p++ = 'd';
3892 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3893 		*p++ = 'a';
3894 	if (s->flags & SLAB_DEBUG_FREE)
3895 		*p++ = 'F';
3896 	if (p != name + 1)
3897 		*p++ = '-';
3898 	p += sprintf(p, "%07d", s->size);
3899 	BUG_ON(p > name + ID_STR_LENGTH - 1);
3900 	return name;
3901 }
3902 
3903 static int sysfs_slab_add(struct kmem_cache *s)
3904 {
3905 	int err;
3906 	const char *name;
3907 	int unmergeable;
3908 
3909 	if (slab_state < SYSFS)
3910 		/* Defer until later */
3911 		return 0;
3912 
3913 	unmergeable = slab_unmergeable(s);
3914 	if (unmergeable) {
3915 		/*
3916 		 * Slabcache can never be merged so we can use the name proper.
3917 		 * This is typically the case for debug situations. In that
3918 		 * case we can catch duplicate names easily.
3919 		 */
3920 		sysfs_remove_link(&slab_subsys.kobj, s->name);
3921 		name = s->name;
3922 	} else {
3923 		/*
3924 		 * Create a unique name for the slab as a target
3925 		 * for the symlinks.
3926 		 */
3927 		name = create_unique_id(s);
3928 	}
3929 
3930 	kobj_set_kset_s(s, slab_subsys);
3931 	kobject_set_name(&s->kobj, name);
3932 	kobject_init(&s->kobj);
3933 	err = kobject_add(&s->kobj);
3934 	if (err)
3935 		return err;
3936 
3937 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
3938 	if (err)
3939 		return err;
3940 	kobject_uevent(&s->kobj, KOBJ_ADD);
3941 	if (!unmergeable) {
3942 		/* Setup first alias */
3943 		sysfs_slab_alias(s, s->name);
3944 		kfree(name);
3945 	}
3946 	return 0;
3947 }
3948 
3949 static void sysfs_slab_remove(struct kmem_cache *s)
3950 {
3951 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
3952 	kobject_del(&s->kobj);
3953 }
3954 
3955 /*
3956  * Need to buffer aliases during bootup until sysfs becomes
3957  * available lest we loose that information.
3958  */
3959 struct saved_alias {
3960 	struct kmem_cache *s;
3961 	const char *name;
3962 	struct saved_alias *next;
3963 };
3964 
3965 static struct saved_alias *alias_list;
3966 
3967 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3968 {
3969 	struct saved_alias *al;
3970 
3971 	if (slab_state == SYSFS) {
3972 		/*
3973 		 * If we have a leftover link then remove it.
3974 		 */
3975 		sysfs_remove_link(&slab_subsys.kobj, name);
3976 		return sysfs_create_link(&slab_subsys.kobj,
3977 						&s->kobj, name);
3978 	}
3979 
3980 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3981 	if (!al)
3982 		return -ENOMEM;
3983 
3984 	al->s = s;
3985 	al->name = name;
3986 	al->next = alias_list;
3987 	alias_list = al;
3988 	return 0;
3989 }
3990 
3991 static int __init slab_sysfs_init(void)
3992 {
3993 	struct kmem_cache *s;
3994 	int err;
3995 
3996 	err = subsystem_register(&slab_subsys);
3997 	if (err) {
3998 		printk(KERN_ERR "Cannot register slab subsystem.\n");
3999 		return -ENOSYS;
4000 	}
4001 
4002 	slab_state = SYSFS;
4003 
4004 	list_for_each_entry(s, &slab_caches, list) {
4005 		err = sysfs_slab_add(s);
4006 		if (err)
4007 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4008 						" to sysfs\n", s->name);
4009 	}
4010 
4011 	while (alias_list) {
4012 		struct saved_alias *al = alias_list;
4013 
4014 		alias_list = alias_list->next;
4015 		err = sysfs_slab_alias(al->s, al->name);
4016 		if (err)
4017 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4018 					" %s to sysfs\n", s->name);
4019 		kfree(al);
4020 	}
4021 
4022 	resiliency_test();
4023 	return 0;
4024 }
4025 
4026 __initcall(slab_sysfs_init);
4027 #endif
4028