1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/bit_spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/bitops.h> 16 #include <linux/slab.h> 17 #include <linux/seq_file.h> 18 #include <linux/cpu.h> 19 #include <linux/cpuset.h> 20 #include <linux/mempolicy.h> 21 #include <linux/ctype.h> 22 #include <linux/kallsyms.h> 23 24 /* 25 * Lock order: 26 * 1. slab_lock(page) 27 * 2. slab->list_lock 28 * 29 * The slab_lock protects operations on the object of a particular 30 * slab and its metadata in the page struct. If the slab lock 31 * has been taken then no allocations nor frees can be performed 32 * on the objects in the slab nor can the slab be added or removed 33 * from the partial or full lists since this would mean modifying 34 * the page_struct of the slab. 35 * 36 * The list_lock protects the partial and full list on each node and 37 * the partial slab counter. If taken then no new slabs may be added or 38 * removed from the lists nor make the number of partial slabs be modified. 39 * (Note that the total number of slabs is an atomic value that may be 40 * modified without taking the list lock). 41 * 42 * The list_lock is a centralized lock and thus we avoid taking it as 43 * much as possible. As long as SLUB does not have to handle partial 44 * slabs, operations can continue without any centralized lock. F.e. 45 * allocating a long series of objects that fill up slabs does not require 46 * the list lock. 47 * 48 * The lock order is sometimes inverted when we are trying to get a slab 49 * off a list. We take the list_lock and then look for a page on the list 50 * to use. While we do that objects in the slabs may be freed. We can 51 * only operate on the slab if we have also taken the slab_lock. So we use 52 * a slab_trylock() on the slab. If trylock was successful then no frees 53 * can occur anymore and we can use the slab for allocations etc. If the 54 * slab_trylock() does not succeed then frees are in progress in the slab and 55 * we must stay away from it for a while since we may cause a bouncing 56 * cacheline if we try to acquire the lock. So go onto the next slab. 57 * If all pages are busy then we may allocate a new slab instead of reusing 58 * a partial slab. A new slab has noone operating on it and thus there is 59 * no danger of cacheline contention. 60 * 61 * Interrupts are disabled during allocation and deallocation in order to 62 * make the slab allocator safe to use in the context of an irq. In addition 63 * interrupts are disabled to ensure that the processor does not change 64 * while handling per_cpu slabs, due to kernel preemption. 65 * 66 * SLUB assigns one slab for allocation to each processor. 67 * Allocations only occur from these slabs called cpu slabs. 68 * 69 * Slabs with free elements are kept on a partial list and during regular 70 * operations no list for full slabs is used. If an object in a full slab is 71 * freed then the slab will show up again on the partial lists. 72 * We track full slabs for debugging purposes though because otherwise we 73 * cannot scan all objects. 74 * 75 * Slabs are freed when they become empty. Teardown and setup is 76 * minimal so we rely on the page allocators per cpu caches for 77 * fast frees and allocs. 78 * 79 * Overloading of page flags that are otherwise used for LRU management. 80 * 81 * PageActive The slab is frozen and exempt from list processing. 82 * This means that the slab is dedicated to a purpose 83 * such as satisfying allocations for a specific 84 * processor. Objects may be freed in the slab while 85 * it is frozen but slab_free will then skip the usual 86 * list operations. It is up to the processor holding 87 * the slab to integrate the slab into the slab lists 88 * when the slab is no longer needed. 89 * 90 * One use of this flag is to mark slabs that are 91 * used for allocations. Then such a slab becomes a cpu 92 * slab. The cpu slab may be equipped with an additional 93 * freelist that allows lockless access to 94 * free objects in addition to the regular freelist 95 * that requires the slab lock. 96 * 97 * PageError Slab requires special handling due to debug 98 * options set. This moves slab handling out of 99 * the fast path and disables lockless freelists. 100 */ 101 102 #define FROZEN (1 << PG_active) 103 104 #ifdef CONFIG_SLUB_DEBUG 105 #define SLABDEBUG (1 << PG_error) 106 #else 107 #define SLABDEBUG 0 108 #endif 109 110 static inline int SlabFrozen(struct page *page) 111 { 112 return page->flags & FROZEN; 113 } 114 115 static inline void SetSlabFrozen(struct page *page) 116 { 117 page->flags |= FROZEN; 118 } 119 120 static inline void ClearSlabFrozen(struct page *page) 121 { 122 page->flags &= ~FROZEN; 123 } 124 125 static inline int SlabDebug(struct page *page) 126 { 127 return page->flags & SLABDEBUG; 128 } 129 130 static inline void SetSlabDebug(struct page *page) 131 { 132 page->flags |= SLABDEBUG; 133 } 134 135 static inline void ClearSlabDebug(struct page *page) 136 { 137 page->flags &= ~SLABDEBUG; 138 } 139 140 /* 141 * Issues still to be resolved: 142 * 143 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 144 * 145 * - Variable sizing of the per node arrays 146 */ 147 148 /* Enable to test recovery from slab corruption on boot */ 149 #undef SLUB_RESILIENCY_TEST 150 151 #if PAGE_SHIFT <= 12 152 153 /* 154 * Small page size. Make sure that we do not fragment memory 155 */ 156 #define DEFAULT_MAX_ORDER 1 157 #define DEFAULT_MIN_OBJECTS 4 158 159 #else 160 161 /* 162 * Large page machines are customarily able to handle larger 163 * page orders. 164 */ 165 #define DEFAULT_MAX_ORDER 2 166 #define DEFAULT_MIN_OBJECTS 8 167 168 #endif 169 170 /* 171 * Mininum number of partial slabs. These will be left on the partial 172 * lists even if they are empty. kmem_cache_shrink may reclaim them. 173 */ 174 #define MIN_PARTIAL 2 175 176 /* 177 * Maximum number of desirable partial slabs. 178 * The existence of more partial slabs makes kmem_cache_shrink 179 * sort the partial list by the number of objects in the. 180 */ 181 #define MAX_PARTIAL 10 182 183 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 184 SLAB_POISON | SLAB_STORE_USER) 185 186 /* 187 * Set of flags that will prevent slab merging 188 */ 189 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 190 SLAB_TRACE | SLAB_DESTROY_BY_RCU) 191 192 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 193 SLAB_CACHE_DMA) 194 195 #ifndef ARCH_KMALLOC_MINALIGN 196 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 197 #endif 198 199 #ifndef ARCH_SLAB_MINALIGN 200 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 201 #endif 202 203 /* Internal SLUB flags */ 204 #define __OBJECT_POISON 0x80000000 /* Poison object */ 205 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 206 207 /* Not all arches define cache_line_size */ 208 #ifndef cache_line_size 209 #define cache_line_size() L1_CACHE_BYTES 210 #endif 211 212 static int kmem_size = sizeof(struct kmem_cache); 213 214 #ifdef CONFIG_SMP 215 static struct notifier_block slab_notifier; 216 #endif 217 218 static enum { 219 DOWN, /* No slab functionality available */ 220 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 221 UP, /* Everything works but does not show up in sysfs */ 222 SYSFS /* Sysfs up */ 223 } slab_state = DOWN; 224 225 /* A list of all slab caches on the system */ 226 static DECLARE_RWSEM(slub_lock); 227 static LIST_HEAD(slab_caches); 228 229 /* 230 * Tracking user of a slab. 231 */ 232 struct track { 233 void *addr; /* Called from address */ 234 int cpu; /* Was running on cpu */ 235 int pid; /* Pid context */ 236 unsigned long when; /* When did the operation occur */ 237 }; 238 239 enum track_item { TRACK_ALLOC, TRACK_FREE }; 240 241 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) 242 static int sysfs_slab_add(struct kmem_cache *); 243 static int sysfs_slab_alias(struct kmem_cache *, const char *); 244 static void sysfs_slab_remove(struct kmem_cache *); 245 #else 246 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 247 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 248 { return 0; } 249 static inline void sysfs_slab_remove(struct kmem_cache *s) {} 250 #endif 251 252 /******************************************************************** 253 * Core slab cache functions 254 *******************************************************************/ 255 256 int slab_is_available(void) 257 { 258 return slab_state >= UP; 259 } 260 261 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 262 { 263 #ifdef CONFIG_NUMA 264 return s->node[node]; 265 #else 266 return &s->local_node; 267 #endif 268 } 269 270 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 271 { 272 #ifdef CONFIG_SMP 273 return s->cpu_slab[cpu]; 274 #else 275 return &s->cpu_slab; 276 #endif 277 } 278 279 static inline int check_valid_pointer(struct kmem_cache *s, 280 struct page *page, const void *object) 281 { 282 void *base; 283 284 if (!object) 285 return 1; 286 287 base = page_address(page); 288 if (object < base || object >= base + s->objects * s->size || 289 (object - base) % s->size) { 290 return 0; 291 } 292 293 return 1; 294 } 295 296 /* 297 * Slow version of get and set free pointer. 298 * 299 * This version requires touching the cache lines of kmem_cache which 300 * we avoid to do in the fast alloc free paths. There we obtain the offset 301 * from the page struct. 302 */ 303 static inline void *get_freepointer(struct kmem_cache *s, void *object) 304 { 305 return *(void **)(object + s->offset); 306 } 307 308 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 309 { 310 *(void **)(object + s->offset) = fp; 311 } 312 313 /* Loop over all objects in a slab */ 314 #define for_each_object(__p, __s, __addr) \ 315 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\ 316 __p += (__s)->size) 317 318 /* Scan freelist */ 319 #define for_each_free_object(__p, __s, __free) \ 320 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 321 322 /* Determine object index from a given position */ 323 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 324 { 325 return (p - addr) / s->size; 326 } 327 328 #ifdef CONFIG_SLUB_DEBUG 329 /* 330 * Debug settings: 331 */ 332 #ifdef CONFIG_SLUB_DEBUG_ON 333 static int slub_debug = DEBUG_DEFAULT_FLAGS; 334 #else 335 static int slub_debug; 336 #endif 337 338 static char *slub_debug_slabs; 339 340 /* 341 * Object debugging 342 */ 343 static void print_section(char *text, u8 *addr, unsigned int length) 344 { 345 int i, offset; 346 int newline = 1; 347 char ascii[17]; 348 349 ascii[16] = 0; 350 351 for (i = 0; i < length; i++) { 352 if (newline) { 353 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 354 newline = 0; 355 } 356 printk(" %02x", addr[i]); 357 offset = i % 16; 358 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 359 if (offset == 15) { 360 printk(" %s\n",ascii); 361 newline = 1; 362 } 363 } 364 if (!newline) { 365 i %= 16; 366 while (i < 16) { 367 printk(" "); 368 ascii[i] = ' '; 369 i++; 370 } 371 printk(" %s\n", ascii); 372 } 373 } 374 375 static struct track *get_track(struct kmem_cache *s, void *object, 376 enum track_item alloc) 377 { 378 struct track *p; 379 380 if (s->offset) 381 p = object + s->offset + sizeof(void *); 382 else 383 p = object + s->inuse; 384 385 return p + alloc; 386 } 387 388 static void set_track(struct kmem_cache *s, void *object, 389 enum track_item alloc, void *addr) 390 { 391 struct track *p; 392 393 if (s->offset) 394 p = object + s->offset + sizeof(void *); 395 else 396 p = object + s->inuse; 397 398 p += alloc; 399 if (addr) { 400 p->addr = addr; 401 p->cpu = smp_processor_id(); 402 p->pid = current ? current->pid : -1; 403 p->when = jiffies; 404 } else 405 memset(p, 0, sizeof(struct track)); 406 } 407 408 static void init_tracking(struct kmem_cache *s, void *object) 409 { 410 if (!(s->flags & SLAB_STORE_USER)) 411 return; 412 413 set_track(s, object, TRACK_FREE, NULL); 414 set_track(s, object, TRACK_ALLOC, NULL); 415 } 416 417 static void print_track(const char *s, struct track *t) 418 { 419 if (!t->addr) 420 return; 421 422 printk(KERN_ERR "INFO: %s in ", s); 423 __print_symbol("%s", (unsigned long)t->addr); 424 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); 425 } 426 427 static void print_tracking(struct kmem_cache *s, void *object) 428 { 429 if (!(s->flags & SLAB_STORE_USER)) 430 return; 431 432 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 433 print_track("Freed", get_track(s, object, TRACK_FREE)); 434 } 435 436 static void print_page_info(struct page *page) 437 { 438 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n", 439 page, page->inuse, page->freelist, page->flags); 440 441 } 442 443 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 444 { 445 va_list args; 446 char buf[100]; 447 448 va_start(args, fmt); 449 vsnprintf(buf, sizeof(buf), fmt, args); 450 va_end(args); 451 printk(KERN_ERR "========================================" 452 "=====================================\n"); 453 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 454 printk(KERN_ERR "----------------------------------------" 455 "-------------------------------------\n\n"); 456 } 457 458 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 459 { 460 va_list args; 461 char buf[100]; 462 463 va_start(args, fmt); 464 vsnprintf(buf, sizeof(buf), fmt, args); 465 va_end(args); 466 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 467 } 468 469 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 470 { 471 unsigned int off; /* Offset of last byte */ 472 u8 *addr = page_address(page); 473 474 print_tracking(s, p); 475 476 print_page_info(page); 477 478 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 479 p, p - addr, get_freepointer(s, p)); 480 481 if (p > addr + 16) 482 print_section("Bytes b4", p - 16, 16); 483 484 print_section("Object", p, min(s->objsize, 128)); 485 486 if (s->flags & SLAB_RED_ZONE) 487 print_section("Redzone", p + s->objsize, 488 s->inuse - s->objsize); 489 490 if (s->offset) 491 off = s->offset + sizeof(void *); 492 else 493 off = s->inuse; 494 495 if (s->flags & SLAB_STORE_USER) 496 off += 2 * sizeof(struct track); 497 498 if (off != s->size) 499 /* Beginning of the filler is the free pointer */ 500 print_section("Padding", p + off, s->size - off); 501 502 dump_stack(); 503 } 504 505 static void object_err(struct kmem_cache *s, struct page *page, 506 u8 *object, char *reason) 507 { 508 slab_bug(s, reason); 509 print_trailer(s, page, object); 510 } 511 512 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 513 { 514 va_list args; 515 char buf[100]; 516 517 va_start(args, fmt); 518 vsnprintf(buf, sizeof(buf), fmt, args); 519 va_end(args); 520 slab_bug(s, fmt); 521 print_page_info(page); 522 dump_stack(); 523 } 524 525 static void init_object(struct kmem_cache *s, void *object, int active) 526 { 527 u8 *p = object; 528 529 if (s->flags & __OBJECT_POISON) { 530 memset(p, POISON_FREE, s->objsize - 1); 531 p[s->objsize -1] = POISON_END; 532 } 533 534 if (s->flags & SLAB_RED_ZONE) 535 memset(p + s->objsize, 536 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 537 s->inuse - s->objsize); 538 } 539 540 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 541 { 542 while (bytes) { 543 if (*start != (u8)value) 544 return start; 545 start++; 546 bytes--; 547 } 548 return NULL; 549 } 550 551 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 552 void *from, void *to) 553 { 554 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 555 memset(from, data, to - from); 556 } 557 558 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 559 u8 *object, char *what, 560 u8* start, unsigned int value, unsigned int bytes) 561 { 562 u8 *fault; 563 u8 *end; 564 565 fault = check_bytes(start, value, bytes); 566 if (!fault) 567 return 1; 568 569 end = start + bytes; 570 while (end > fault && end[-1] == value) 571 end--; 572 573 slab_bug(s, "%s overwritten", what); 574 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 575 fault, end - 1, fault[0], value); 576 print_trailer(s, page, object); 577 578 restore_bytes(s, what, value, fault, end); 579 return 0; 580 } 581 582 /* 583 * Object layout: 584 * 585 * object address 586 * Bytes of the object to be managed. 587 * If the freepointer may overlay the object then the free 588 * pointer is the first word of the object. 589 * 590 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 591 * 0xa5 (POISON_END) 592 * 593 * object + s->objsize 594 * Padding to reach word boundary. This is also used for Redzoning. 595 * Padding is extended by another word if Redzoning is enabled and 596 * objsize == inuse. 597 * 598 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 599 * 0xcc (RED_ACTIVE) for objects in use. 600 * 601 * object + s->inuse 602 * Meta data starts here. 603 * 604 * A. Free pointer (if we cannot overwrite object on free) 605 * B. Tracking data for SLAB_STORE_USER 606 * C. Padding to reach required alignment boundary or at mininum 607 * one word if debuggin is on to be able to detect writes 608 * before the word boundary. 609 * 610 * Padding is done using 0x5a (POISON_INUSE) 611 * 612 * object + s->size 613 * Nothing is used beyond s->size. 614 * 615 * If slabcaches are merged then the objsize and inuse boundaries are mostly 616 * ignored. And therefore no slab options that rely on these boundaries 617 * may be used with merged slabcaches. 618 */ 619 620 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 621 { 622 unsigned long off = s->inuse; /* The end of info */ 623 624 if (s->offset) 625 /* Freepointer is placed after the object. */ 626 off += sizeof(void *); 627 628 if (s->flags & SLAB_STORE_USER) 629 /* We also have user information there */ 630 off += 2 * sizeof(struct track); 631 632 if (s->size == off) 633 return 1; 634 635 return check_bytes_and_report(s, page, p, "Object padding", 636 p + off, POISON_INUSE, s->size - off); 637 } 638 639 static int slab_pad_check(struct kmem_cache *s, struct page *page) 640 { 641 u8 *start; 642 u8 *fault; 643 u8 *end; 644 int length; 645 int remainder; 646 647 if (!(s->flags & SLAB_POISON)) 648 return 1; 649 650 start = page_address(page); 651 end = start + (PAGE_SIZE << s->order); 652 length = s->objects * s->size; 653 remainder = end - (start + length); 654 if (!remainder) 655 return 1; 656 657 fault = check_bytes(start + length, POISON_INUSE, remainder); 658 if (!fault) 659 return 1; 660 while (end > fault && end[-1] == POISON_INUSE) 661 end--; 662 663 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 664 print_section("Padding", start, length); 665 666 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 667 return 0; 668 } 669 670 static int check_object(struct kmem_cache *s, struct page *page, 671 void *object, int active) 672 { 673 u8 *p = object; 674 u8 *endobject = object + s->objsize; 675 676 if (s->flags & SLAB_RED_ZONE) { 677 unsigned int red = 678 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 679 680 if (!check_bytes_and_report(s, page, object, "Redzone", 681 endobject, red, s->inuse - s->objsize)) 682 return 0; 683 } else { 684 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) 685 check_bytes_and_report(s, page, p, "Alignment padding", endobject, 686 POISON_INUSE, s->inuse - s->objsize); 687 } 688 689 if (s->flags & SLAB_POISON) { 690 if (!active && (s->flags & __OBJECT_POISON) && 691 (!check_bytes_and_report(s, page, p, "Poison", p, 692 POISON_FREE, s->objsize - 1) || 693 !check_bytes_and_report(s, page, p, "Poison", 694 p + s->objsize -1, POISON_END, 1))) 695 return 0; 696 /* 697 * check_pad_bytes cleans up on its own. 698 */ 699 check_pad_bytes(s, page, p); 700 } 701 702 if (!s->offset && active) 703 /* 704 * Object and freepointer overlap. Cannot check 705 * freepointer while object is allocated. 706 */ 707 return 1; 708 709 /* Check free pointer validity */ 710 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 711 object_err(s, page, p, "Freepointer corrupt"); 712 /* 713 * No choice but to zap it and thus loose the remainder 714 * of the free objects in this slab. May cause 715 * another error because the object count is now wrong. 716 */ 717 set_freepointer(s, p, NULL); 718 return 0; 719 } 720 return 1; 721 } 722 723 static int check_slab(struct kmem_cache *s, struct page *page) 724 { 725 VM_BUG_ON(!irqs_disabled()); 726 727 if (!PageSlab(page)) { 728 slab_err(s, page, "Not a valid slab page"); 729 return 0; 730 } 731 if (page->inuse > s->objects) { 732 slab_err(s, page, "inuse %u > max %u", 733 s->name, page->inuse, s->objects); 734 return 0; 735 } 736 /* Slab_pad_check fixes things up after itself */ 737 slab_pad_check(s, page); 738 return 1; 739 } 740 741 /* 742 * Determine if a certain object on a page is on the freelist. Must hold the 743 * slab lock to guarantee that the chains are in a consistent state. 744 */ 745 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 746 { 747 int nr = 0; 748 void *fp = page->freelist; 749 void *object = NULL; 750 751 while (fp && nr <= s->objects) { 752 if (fp == search) 753 return 1; 754 if (!check_valid_pointer(s, page, fp)) { 755 if (object) { 756 object_err(s, page, object, 757 "Freechain corrupt"); 758 set_freepointer(s, object, NULL); 759 break; 760 } else { 761 slab_err(s, page, "Freepointer corrupt"); 762 page->freelist = NULL; 763 page->inuse = s->objects; 764 slab_fix(s, "Freelist cleared"); 765 return 0; 766 } 767 break; 768 } 769 object = fp; 770 fp = get_freepointer(s, object); 771 nr++; 772 } 773 774 if (page->inuse != s->objects - nr) { 775 slab_err(s, page, "Wrong object count. Counter is %d but " 776 "counted were %d", page->inuse, s->objects - nr); 777 page->inuse = s->objects - nr; 778 slab_fix(s, "Object count adjusted."); 779 } 780 return search == NULL; 781 } 782 783 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc) 784 { 785 if (s->flags & SLAB_TRACE) { 786 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 787 s->name, 788 alloc ? "alloc" : "free", 789 object, page->inuse, 790 page->freelist); 791 792 if (!alloc) 793 print_section("Object", (void *)object, s->objsize); 794 795 dump_stack(); 796 } 797 } 798 799 /* 800 * Tracking of fully allocated slabs for debugging purposes. 801 */ 802 static void add_full(struct kmem_cache_node *n, struct page *page) 803 { 804 spin_lock(&n->list_lock); 805 list_add(&page->lru, &n->full); 806 spin_unlock(&n->list_lock); 807 } 808 809 static void remove_full(struct kmem_cache *s, struct page *page) 810 { 811 struct kmem_cache_node *n; 812 813 if (!(s->flags & SLAB_STORE_USER)) 814 return; 815 816 n = get_node(s, page_to_nid(page)); 817 818 spin_lock(&n->list_lock); 819 list_del(&page->lru); 820 spin_unlock(&n->list_lock); 821 } 822 823 static void setup_object_debug(struct kmem_cache *s, struct page *page, 824 void *object) 825 { 826 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 827 return; 828 829 init_object(s, object, 0); 830 init_tracking(s, object); 831 } 832 833 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 834 void *object, void *addr) 835 { 836 if (!check_slab(s, page)) 837 goto bad; 838 839 if (object && !on_freelist(s, page, object)) { 840 object_err(s, page, object, "Object already allocated"); 841 goto bad; 842 } 843 844 if (!check_valid_pointer(s, page, object)) { 845 object_err(s, page, object, "Freelist Pointer check fails"); 846 goto bad; 847 } 848 849 if (object && !check_object(s, page, object, 0)) 850 goto bad; 851 852 /* Success perform special debug activities for allocs */ 853 if (s->flags & SLAB_STORE_USER) 854 set_track(s, object, TRACK_ALLOC, addr); 855 trace(s, page, object, 1); 856 init_object(s, object, 1); 857 return 1; 858 859 bad: 860 if (PageSlab(page)) { 861 /* 862 * If this is a slab page then lets do the best we can 863 * to avoid issues in the future. Marking all objects 864 * as used avoids touching the remaining objects. 865 */ 866 slab_fix(s, "Marking all objects used"); 867 page->inuse = s->objects; 868 page->freelist = NULL; 869 } 870 return 0; 871 } 872 873 static int free_debug_processing(struct kmem_cache *s, struct page *page, 874 void *object, void *addr) 875 { 876 if (!check_slab(s, page)) 877 goto fail; 878 879 if (!check_valid_pointer(s, page, object)) { 880 slab_err(s, page, "Invalid object pointer 0x%p", object); 881 goto fail; 882 } 883 884 if (on_freelist(s, page, object)) { 885 object_err(s, page, object, "Object already free"); 886 goto fail; 887 } 888 889 if (!check_object(s, page, object, 1)) 890 return 0; 891 892 if (unlikely(s != page->slab)) { 893 if (!PageSlab(page)) 894 slab_err(s, page, "Attempt to free object(0x%p) " 895 "outside of slab", object); 896 else 897 if (!page->slab) { 898 printk(KERN_ERR 899 "SLUB <none>: no slab for object 0x%p.\n", 900 object); 901 dump_stack(); 902 } 903 else 904 object_err(s, page, object, 905 "page slab pointer corrupt."); 906 goto fail; 907 } 908 909 /* Special debug activities for freeing objects */ 910 if (!SlabFrozen(page) && !page->freelist) 911 remove_full(s, page); 912 if (s->flags & SLAB_STORE_USER) 913 set_track(s, object, TRACK_FREE, addr); 914 trace(s, page, object, 0); 915 init_object(s, object, 0); 916 return 1; 917 918 fail: 919 slab_fix(s, "Object at 0x%p not freed", object); 920 return 0; 921 } 922 923 static int __init setup_slub_debug(char *str) 924 { 925 slub_debug = DEBUG_DEFAULT_FLAGS; 926 if (*str++ != '=' || !*str) 927 /* 928 * No options specified. Switch on full debugging. 929 */ 930 goto out; 931 932 if (*str == ',') 933 /* 934 * No options but restriction on slabs. This means full 935 * debugging for slabs matching a pattern. 936 */ 937 goto check_slabs; 938 939 slub_debug = 0; 940 if (*str == '-') 941 /* 942 * Switch off all debugging measures. 943 */ 944 goto out; 945 946 /* 947 * Determine which debug features should be switched on 948 */ 949 for ( ;*str && *str != ','; str++) { 950 switch (tolower(*str)) { 951 case 'f': 952 slub_debug |= SLAB_DEBUG_FREE; 953 break; 954 case 'z': 955 slub_debug |= SLAB_RED_ZONE; 956 break; 957 case 'p': 958 slub_debug |= SLAB_POISON; 959 break; 960 case 'u': 961 slub_debug |= SLAB_STORE_USER; 962 break; 963 case 't': 964 slub_debug |= SLAB_TRACE; 965 break; 966 default: 967 printk(KERN_ERR "slub_debug option '%c' " 968 "unknown. skipped\n",*str); 969 } 970 } 971 972 check_slabs: 973 if (*str == ',') 974 slub_debug_slabs = str + 1; 975 out: 976 return 1; 977 } 978 979 __setup("slub_debug", setup_slub_debug); 980 981 static unsigned long kmem_cache_flags(unsigned long objsize, 982 unsigned long flags, const char *name, 983 void (*ctor)(void *, struct kmem_cache *, unsigned long)) 984 { 985 /* 986 * The page->offset field is only 16 bit wide. This is an offset 987 * in units of words from the beginning of an object. If the slab 988 * size is bigger then we cannot move the free pointer behind the 989 * object anymore. 990 * 991 * On 32 bit platforms the limit is 256k. On 64bit platforms 992 * the limit is 512k. 993 * 994 * Debugging or ctor may create a need to move the free 995 * pointer. Fail if this happens. 996 */ 997 if (objsize >= 65535 * sizeof(void *)) { 998 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON | 999 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU)); 1000 BUG_ON(ctor); 1001 } else { 1002 /* 1003 * Enable debugging if selected on the kernel commandline. 1004 */ 1005 if (slub_debug && (!slub_debug_slabs || 1006 strncmp(slub_debug_slabs, name, 1007 strlen(slub_debug_slabs)) == 0)) 1008 flags |= slub_debug; 1009 } 1010 1011 return flags; 1012 } 1013 #else 1014 static inline void setup_object_debug(struct kmem_cache *s, 1015 struct page *page, void *object) {} 1016 1017 static inline int alloc_debug_processing(struct kmem_cache *s, 1018 struct page *page, void *object, void *addr) { return 0; } 1019 1020 static inline int free_debug_processing(struct kmem_cache *s, 1021 struct page *page, void *object, void *addr) { return 0; } 1022 1023 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1024 { return 1; } 1025 static inline int check_object(struct kmem_cache *s, struct page *page, 1026 void *object, int active) { return 1; } 1027 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1028 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1029 unsigned long flags, const char *name, 1030 void (*ctor)(void *, struct kmem_cache *, unsigned long)) 1031 { 1032 return flags; 1033 } 1034 #define slub_debug 0 1035 #endif 1036 /* 1037 * Slab allocation and freeing 1038 */ 1039 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1040 { 1041 struct page * page; 1042 int pages = 1 << s->order; 1043 1044 if (s->order) 1045 flags |= __GFP_COMP; 1046 1047 if (s->flags & SLAB_CACHE_DMA) 1048 flags |= SLUB_DMA; 1049 1050 if (s->flags & SLAB_RECLAIM_ACCOUNT) 1051 flags |= __GFP_RECLAIMABLE; 1052 1053 if (node == -1) 1054 page = alloc_pages(flags, s->order); 1055 else 1056 page = alloc_pages_node(node, flags, s->order); 1057 1058 if (!page) 1059 return NULL; 1060 1061 mod_zone_page_state(page_zone(page), 1062 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1063 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1064 pages); 1065 1066 return page; 1067 } 1068 1069 static void setup_object(struct kmem_cache *s, struct page *page, 1070 void *object) 1071 { 1072 setup_object_debug(s, page, object); 1073 if (unlikely(s->ctor)) 1074 s->ctor(object, s, 0); 1075 } 1076 1077 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1078 { 1079 struct page *page; 1080 struct kmem_cache_node *n; 1081 void *start; 1082 void *end; 1083 void *last; 1084 void *p; 1085 1086 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1087 1088 if (flags & __GFP_WAIT) 1089 local_irq_enable(); 1090 1091 page = allocate_slab(s, 1092 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1093 if (!page) 1094 goto out; 1095 1096 n = get_node(s, page_to_nid(page)); 1097 if (n) 1098 atomic_long_inc(&n->nr_slabs); 1099 page->slab = s; 1100 page->flags |= 1 << PG_slab; 1101 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1102 SLAB_STORE_USER | SLAB_TRACE)) 1103 SetSlabDebug(page); 1104 1105 start = page_address(page); 1106 end = start + s->objects * s->size; 1107 1108 if (unlikely(s->flags & SLAB_POISON)) 1109 memset(start, POISON_INUSE, PAGE_SIZE << s->order); 1110 1111 last = start; 1112 for_each_object(p, s, start) { 1113 setup_object(s, page, last); 1114 set_freepointer(s, last, p); 1115 last = p; 1116 } 1117 setup_object(s, page, last); 1118 set_freepointer(s, last, NULL); 1119 1120 page->freelist = start; 1121 page->inuse = 0; 1122 out: 1123 if (flags & __GFP_WAIT) 1124 local_irq_disable(); 1125 return page; 1126 } 1127 1128 static void __free_slab(struct kmem_cache *s, struct page *page) 1129 { 1130 int pages = 1 << s->order; 1131 1132 if (unlikely(SlabDebug(page))) { 1133 void *p; 1134 1135 slab_pad_check(s, page); 1136 for_each_object(p, s, page_address(page)) 1137 check_object(s, page, p, 0); 1138 ClearSlabDebug(page); 1139 } 1140 1141 mod_zone_page_state(page_zone(page), 1142 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1143 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1144 - pages); 1145 1146 __free_pages(page, s->order); 1147 } 1148 1149 static void rcu_free_slab(struct rcu_head *h) 1150 { 1151 struct page *page; 1152 1153 page = container_of((struct list_head *)h, struct page, lru); 1154 __free_slab(page->slab, page); 1155 } 1156 1157 static void free_slab(struct kmem_cache *s, struct page *page) 1158 { 1159 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1160 /* 1161 * RCU free overloads the RCU head over the LRU 1162 */ 1163 struct rcu_head *head = (void *)&page->lru; 1164 1165 call_rcu(head, rcu_free_slab); 1166 } else 1167 __free_slab(s, page); 1168 } 1169 1170 static void discard_slab(struct kmem_cache *s, struct page *page) 1171 { 1172 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1173 1174 atomic_long_dec(&n->nr_slabs); 1175 reset_page_mapcount(page); 1176 __ClearPageSlab(page); 1177 free_slab(s, page); 1178 } 1179 1180 /* 1181 * Per slab locking using the pagelock 1182 */ 1183 static __always_inline void slab_lock(struct page *page) 1184 { 1185 bit_spin_lock(PG_locked, &page->flags); 1186 } 1187 1188 static __always_inline void slab_unlock(struct page *page) 1189 { 1190 bit_spin_unlock(PG_locked, &page->flags); 1191 } 1192 1193 static __always_inline int slab_trylock(struct page *page) 1194 { 1195 int rc = 1; 1196 1197 rc = bit_spin_trylock(PG_locked, &page->flags); 1198 return rc; 1199 } 1200 1201 /* 1202 * Management of partially allocated slabs 1203 */ 1204 static void add_partial_tail(struct kmem_cache_node *n, struct page *page) 1205 { 1206 spin_lock(&n->list_lock); 1207 n->nr_partial++; 1208 list_add_tail(&page->lru, &n->partial); 1209 spin_unlock(&n->list_lock); 1210 } 1211 1212 static void add_partial(struct kmem_cache_node *n, struct page *page) 1213 { 1214 spin_lock(&n->list_lock); 1215 n->nr_partial++; 1216 list_add(&page->lru, &n->partial); 1217 spin_unlock(&n->list_lock); 1218 } 1219 1220 static void remove_partial(struct kmem_cache *s, 1221 struct page *page) 1222 { 1223 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1224 1225 spin_lock(&n->list_lock); 1226 list_del(&page->lru); 1227 n->nr_partial--; 1228 spin_unlock(&n->list_lock); 1229 } 1230 1231 /* 1232 * Lock slab and remove from the partial list. 1233 * 1234 * Must hold list_lock. 1235 */ 1236 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page) 1237 { 1238 if (slab_trylock(page)) { 1239 list_del(&page->lru); 1240 n->nr_partial--; 1241 SetSlabFrozen(page); 1242 return 1; 1243 } 1244 return 0; 1245 } 1246 1247 /* 1248 * Try to allocate a partial slab from a specific node. 1249 */ 1250 static struct page *get_partial_node(struct kmem_cache_node *n) 1251 { 1252 struct page *page; 1253 1254 /* 1255 * Racy check. If we mistakenly see no partial slabs then we 1256 * just allocate an empty slab. If we mistakenly try to get a 1257 * partial slab and there is none available then get_partials() 1258 * will return NULL. 1259 */ 1260 if (!n || !n->nr_partial) 1261 return NULL; 1262 1263 spin_lock(&n->list_lock); 1264 list_for_each_entry(page, &n->partial, lru) 1265 if (lock_and_freeze_slab(n, page)) 1266 goto out; 1267 page = NULL; 1268 out: 1269 spin_unlock(&n->list_lock); 1270 return page; 1271 } 1272 1273 /* 1274 * Get a page from somewhere. Search in increasing NUMA distances. 1275 */ 1276 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1277 { 1278 #ifdef CONFIG_NUMA 1279 struct zonelist *zonelist; 1280 struct zone **z; 1281 struct page *page; 1282 1283 /* 1284 * The defrag ratio allows a configuration of the tradeoffs between 1285 * inter node defragmentation and node local allocations. A lower 1286 * defrag_ratio increases the tendency to do local allocations 1287 * instead of attempting to obtain partial slabs from other nodes. 1288 * 1289 * If the defrag_ratio is set to 0 then kmalloc() always 1290 * returns node local objects. If the ratio is higher then kmalloc() 1291 * may return off node objects because partial slabs are obtained 1292 * from other nodes and filled up. 1293 * 1294 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes 1295 * defrag_ratio = 1000) then every (well almost) allocation will 1296 * first attempt to defrag slab caches on other nodes. This means 1297 * scanning over all nodes to look for partial slabs which may be 1298 * expensive if we do it every time we are trying to find a slab 1299 * with available objects. 1300 */ 1301 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio) 1302 return NULL; 1303 1304 zonelist = &NODE_DATA(slab_node(current->mempolicy)) 1305 ->node_zonelists[gfp_zone(flags)]; 1306 for (z = zonelist->zones; *z; z++) { 1307 struct kmem_cache_node *n; 1308 1309 n = get_node(s, zone_to_nid(*z)); 1310 1311 if (n && cpuset_zone_allowed_hardwall(*z, flags) && 1312 n->nr_partial > MIN_PARTIAL) { 1313 page = get_partial_node(n); 1314 if (page) 1315 return page; 1316 } 1317 } 1318 #endif 1319 return NULL; 1320 } 1321 1322 /* 1323 * Get a partial page, lock it and return it. 1324 */ 1325 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1326 { 1327 struct page *page; 1328 int searchnode = (node == -1) ? numa_node_id() : node; 1329 1330 page = get_partial_node(get_node(s, searchnode)); 1331 if (page || (flags & __GFP_THISNODE)) 1332 return page; 1333 1334 return get_any_partial(s, flags); 1335 } 1336 1337 /* 1338 * Move a page back to the lists. 1339 * 1340 * Must be called with the slab lock held. 1341 * 1342 * On exit the slab lock will have been dropped. 1343 */ 1344 static void unfreeze_slab(struct kmem_cache *s, struct page *page) 1345 { 1346 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1347 1348 ClearSlabFrozen(page); 1349 if (page->inuse) { 1350 1351 if (page->freelist) 1352 add_partial(n, page); 1353 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER)) 1354 add_full(n, page); 1355 slab_unlock(page); 1356 1357 } else { 1358 if (n->nr_partial < MIN_PARTIAL) { 1359 /* 1360 * Adding an empty slab to the partial slabs in order 1361 * to avoid page allocator overhead. This slab needs 1362 * to come after the other slabs with objects in 1363 * order to fill them up. That way the size of the 1364 * partial list stays small. kmem_cache_shrink can 1365 * reclaim empty slabs from the partial list. 1366 */ 1367 add_partial_tail(n, page); 1368 slab_unlock(page); 1369 } else { 1370 slab_unlock(page); 1371 discard_slab(s, page); 1372 } 1373 } 1374 } 1375 1376 /* 1377 * Remove the cpu slab 1378 */ 1379 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1380 { 1381 struct page *page = c->page; 1382 /* 1383 * Merge cpu freelist into freelist. Typically we get here 1384 * because both freelists are empty. So this is unlikely 1385 * to occur. 1386 */ 1387 while (unlikely(c->freelist)) { 1388 void **object; 1389 1390 /* Retrieve object from cpu_freelist */ 1391 object = c->freelist; 1392 c->freelist = c->freelist[c->offset]; 1393 1394 /* And put onto the regular freelist */ 1395 object[c->offset] = page->freelist; 1396 page->freelist = object; 1397 page->inuse--; 1398 } 1399 c->page = NULL; 1400 unfreeze_slab(s, page); 1401 } 1402 1403 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1404 { 1405 slab_lock(c->page); 1406 deactivate_slab(s, c); 1407 } 1408 1409 /* 1410 * Flush cpu slab. 1411 * Called from IPI handler with interrupts disabled. 1412 */ 1413 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1414 { 1415 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1416 1417 if (likely(c && c->page)) 1418 flush_slab(s, c); 1419 } 1420 1421 static void flush_cpu_slab(void *d) 1422 { 1423 struct kmem_cache *s = d; 1424 1425 __flush_cpu_slab(s, smp_processor_id()); 1426 } 1427 1428 static void flush_all(struct kmem_cache *s) 1429 { 1430 #ifdef CONFIG_SMP 1431 on_each_cpu(flush_cpu_slab, s, 1, 1); 1432 #else 1433 unsigned long flags; 1434 1435 local_irq_save(flags); 1436 flush_cpu_slab(s); 1437 local_irq_restore(flags); 1438 #endif 1439 } 1440 1441 /* 1442 * Check if the objects in a per cpu structure fit numa 1443 * locality expectations. 1444 */ 1445 static inline int node_match(struct kmem_cache_cpu *c, int node) 1446 { 1447 #ifdef CONFIG_NUMA 1448 if (node != -1 && c->node != node) 1449 return 0; 1450 #endif 1451 return 1; 1452 } 1453 1454 /* 1455 * Slow path. The lockless freelist is empty or we need to perform 1456 * debugging duties. 1457 * 1458 * Interrupts are disabled. 1459 * 1460 * Processing is still very fast if new objects have been freed to the 1461 * regular freelist. In that case we simply take over the regular freelist 1462 * as the lockless freelist and zap the regular freelist. 1463 * 1464 * If that is not working then we fall back to the partial lists. We take the 1465 * first element of the freelist as the object to allocate now and move the 1466 * rest of the freelist to the lockless freelist. 1467 * 1468 * And if we were unable to get a new slab from the partial slab lists then 1469 * we need to allocate a new slab. This is slowest path since we may sleep. 1470 */ 1471 static void *__slab_alloc(struct kmem_cache *s, 1472 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c) 1473 { 1474 void **object; 1475 struct page *new; 1476 1477 if (!c->page) 1478 goto new_slab; 1479 1480 slab_lock(c->page); 1481 if (unlikely(!node_match(c, node))) 1482 goto another_slab; 1483 load_freelist: 1484 object = c->page->freelist; 1485 if (unlikely(!object)) 1486 goto another_slab; 1487 if (unlikely(SlabDebug(c->page))) 1488 goto debug; 1489 1490 object = c->page->freelist; 1491 c->freelist = object[c->offset]; 1492 c->page->inuse = s->objects; 1493 c->page->freelist = NULL; 1494 c->node = page_to_nid(c->page); 1495 slab_unlock(c->page); 1496 return object; 1497 1498 another_slab: 1499 deactivate_slab(s, c); 1500 1501 new_slab: 1502 new = get_partial(s, gfpflags, node); 1503 if (new) { 1504 c->page = new; 1505 goto load_freelist; 1506 } 1507 1508 new = new_slab(s, gfpflags, node); 1509 if (new) { 1510 c = get_cpu_slab(s, smp_processor_id()); 1511 if (c->page) { 1512 /* 1513 * Someone else populated the cpu_slab while we 1514 * enabled interrupts, or we have gotten scheduled 1515 * on another cpu. The page may not be on the 1516 * requested node even if __GFP_THISNODE was 1517 * specified. So we need to recheck. 1518 */ 1519 if (node_match(c, node)) { 1520 /* 1521 * Current cpuslab is acceptable and we 1522 * want the current one since its cache hot 1523 */ 1524 discard_slab(s, new); 1525 slab_lock(c->page); 1526 goto load_freelist; 1527 } 1528 /* New slab does not fit our expectations */ 1529 flush_slab(s, c); 1530 } 1531 slab_lock(new); 1532 SetSlabFrozen(new); 1533 c->page = new; 1534 goto load_freelist; 1535 } 1536 return NULL; 1537 debug: 1538 object = c->page->freelist; 1539 if (!alloc_debug_processing(s, c->page, object, addr)) 1540 goto another_slab; 1541 1542 c->page->inuse++; 1543 c->page->freelist = object[c->offset]; 1544 c->node = -1; 1545 slab_unlock(c->page); 1546 return object; 1547 } 1548 1549 /* 1550 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1551 * have the fastpath folded into their functions. So no function call 1552 * overhead for requests that can be satisfied on the fastpath. 1553 * 1554 * The fastpath works by first checking if the lockless freelist can be used. 1555 * If not then __slab_alloc is called for slow processing. 1556 * 1557 * Otherwise we can simply pick the next object from the lockless free list. 1558 */ 1559 static void __always_inline *slab_alloc(struct kmem_cache *s, 1560 gfp_t gfpflags, int node, void *addr) 1561 { 1562 void **object; 1563 unsigned long flags; 1564 struct kmem_cache_cpu *c; 1565 1566 local_irq_save(flags); 1567 c = get_cpu_slab(s, smp_processor_id()); 1568 if (unlikely(!c->freelist || !node_match(c, node))) 1569 1570 object = __slab_alloc(s, gfpflags, node, addr, c); 1571 1572 else { 1573 object = c->freelist; 1574 c->freelist = object[c->offset]; 1575 } 1576 local_irq_restore(flags); 1577 1578 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1579 memset(object, 0, c->objsize); 1580 1581 return object; 1582 } 1583 1584 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1585 { 1586 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); 1587 } 1588 EXPORT_SYMBOL(kmem_cache_alloc); 1589 1590 #ifdef CONFIG_NUMA 1591 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1592 { 1593 return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); 1594 } 1595 EXPORT_SYMBOL(kmem_cache_alloc_node); 1596 #endif 1597 1598 /* 1599 * Slow patch handling. This may still be called frequently since objects 1600 * have a longer lifetime than the cpu slabs in most processing loads. 1601 * 1602 * So we still attempt to reduce cache line usage. Just take the slab 1603 * lock and free the item. If there is no additional partial page 1604 * handling required then we can return immediately. 1605 */ 1606 static void __slab_free(struct kmem_cache *s, struct page *page, 1607 void *x, void *addr, unsigned int offset) 1608 { 1609 void *prior; 1610 void **object = (void *)x; 1611 1612 slab_lock(page); 1613 1614 if (unlikely(SlabDebug(page))) 1615 goto debug; 1616 checks_ok: 1617 prior = object[offset] = page->freelist; 1618 page->freelist = object; 1619 page->inuse--; 1620 1621 if (unlikely(SlabFrozen(page))) 1622 goto out_unlock; 1623 1624 if (unlikely(!page->inuse)) 1625 goto slab_empty; 1626 1627 /* 1628 * Objects left in the slab. If it 1629 * was not on the partial list before 1630 * then add it. 1631 */ 1632 if (unlikely(!prior)) 1633 add_partial(get_node(s, page_to_nid(page)), page); 1634 1635 out_unlock: 1636 slab_unlock(page); 1637 return; 1638 1639 slab_empty: 1640 if (prior) 1641 /* 1642 * Slab still on the partial list. 1643 */ 1644 remove_partial(s, page); 1645 1646 slab_unlock(page); 1647 discard_slab(s, page); 1648 return; 1649 1650 debug: 1651 if (!free_debug_processing(s, page, x, addr)) 1652 goto out_unlock; 1653 goto checks_ok; 1654 } 1655 1656 /* 1657 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1658 * can perform fastpath freeing without additional function calls. 1659 * 1660 * The fastpath is only possible if we are freeing to the current cpu slab 1661 * of this processor. This typically the case if we have just allocated 1662 * the item before. 1663 * 1664 * If fastpath is not possible then fall back to __slab_free where we deal 1665 * with all sorts of special processing. 1666 */ 1667 static void __always_inline slab_free(struct kmem_cache *s, 1668 struct page *page, void *x, void *addr) 1669 { 1670 void **object = (void *)x; 1671 unsigned long flags; 1672 struct kmem_cache_cpu *c; 1673 1674 local_irq_save(flags); 1675 debug_check_no_locks_freed(object, s->objsize); 1676 c = get_cpu_slab(s, smp_processor_id()); 1677 if (likely(page == c->page && c->node >= 0)) { 1678 object[c->offset] = c->freelist; 1679 c->freelist = object; 1680 } else 1681 __slab_free(s, page, x, addr, c->offset); 1682 1683 local_irq_restore(flags); 1684 } 1685 1686 void kmem_cache_free(struct kmem_cache *s, void *x) 1687 { 1688 struct page *page; 1689 1690 page = virt_to_head_page(x); 1691 1692 slab_free(s, page, x, __builtin_return_address(0)); 1693 } 1694 EXPORT_SYMBOL(kmem_cache_free); 1695 1696 /* Figure out on which slab object the object resides */ 1697 static struct page *get_object_page(const void *x) 1698 { 1699 struct page *page = virt_to_head_page(x); 1700 1701 if (!PageSlab(page)) 1702 return NULL; 1703 1704 return page; 1705 } 1706 1707 /* 1708 * Object placement in a slab is made very easy because we always start at 1709 * offset 0. If we tune the size of the object to the alignment then we can 1710 * get the required alignment by putting one properly sized object after 1711 * another. 1712 * 1713 * Notice that the allocation order determines the sizes of the per cpu 1714 * caches. Each processor has always one slab available for allocations. 1715 * Increasing the allocation order reduces the number of times that slabs 1716 * must be moved on and off the partial lists and is therefore a factor in 1717 * locking overhead. 1718 */ 1719 1720 /* 1721 * Mininum / Maximum order of slab pages. This influences locking overhead 1722 * and slab fragmentation. A higher order reduces the number of partial slabs 1723 * and increases the number of allocations possible without having to 1724 * take the list_lock. 1725 */ 1726 static int slub_min_order; 1727 static int slub_max_order = DEFAULT_MAX_ORDER; 1728 static int slub_min_objects = DEFAULT_MIN_OBJECTS; 1729 1730 /* 1731 * Merge control. If this is set then no merging of slab caches will occur. 1732 * (Could be removed. This was introduced to pacify the merge skeptics.) 1733 */ 1734 static int slub_nomerge; 1735 1736 /* 1737 * Calculate the order of allocation given an slab object size. 1738 * 1739 * The order of allocation has significant impact on performance and other 1740 * system components. Generally order 0 allocations should be preferred since 1741 * order 0 does not cause fragmentation in the page allocator. Larger objects 1742 * be problematic to put into order 0 slabs because there may be too much 1743 * unused space left. We go to a higher order if more than 1/8th of the slab 1744 * would be wasted. 1745 * 1746 * In order to reach satisfactory performance we must ensure that a minimum 1747 * number of objects is in one slab. Otherwise we may generate too much 1748 * activity on the partial lists which requires taking the list_lock. This is 1749 * less a concern for large slabs though which are rarely used. 1750 * 1751 * slub_max_order specifies the order where we begin to stop considering the 1752 * number of objects in a slab as critical. If we reach slub_max_order then 1753 * we try to keep the page order as low as possible. So we accept more waste 1754 * of space in favor of a small page order. 1755 * 1756 * Higher order allocations also allow the placement of more objects in a 1757 * slab and thereby reduce object handling overhead. If the user has 1758 * requested a higher mininum order then we start with that one instead of 1759 * the smallest order which will fit the object. 1760 */ 1761 static inline int slab_order(int size, int min_objects, 1762 int max_order, int fract_leftover) 1763 { 1764 int order; 1765 int rem; 1766 int min_order = slub_min_order; 1767 1768 for (order = max(min_order, 1769 fls(min_objects * size - 1) - PAGE_SHIFT); 1770 order <= max_order; order++) { 1771 1772 unsigned long slab_size = PAGE_SIZE << order; 1773 1774 if (slab_size < min_objects * size) 1775 continue; 1776 1777 rem = slab_size % size; 1778 1779 if (rem <= slab_size / fract_leftover) 1780 break; 1781 1782 } 1783 1784 return order; 1785 } 1786 1787 static inline int calculate_order(int size) 1788 { 1789 int order; 1790 int min_objects; 1791 int fraction; 1792 1793 /* 1794 * Attempt to find best configuration for a slab. This 1795 * works by first attempting to generate a layout with 1796 * the best configuration and backing off gradually. 1797 * 1798 * First we reduce the acceptable waste in a slab. Then 1799 * we reduce the minimum objects required in a slab. 1800 */ 1801 min_objects = slub_min_objects; 1802 while (min_objects > 1) { 1803 fraction = 8; 1804 while (fraction >= 4) { 1805 order = slab_order(size, min_objects, 1806 slub_max_order, fraction); 1807 if (order <= slub_max_order) 1808 return order; 1809 fraction /= 2; 1810 } 1811 min_objects /= 2; 1812 } 1813 1814 /* 1815 * We were unable to place multiple objects in a slab. Now 1816 * lets see if we can place a single object there. 1817 */ 1818 order = slab_order(size, 1, slub_max_order, 1); 1819 if (order <= slub_max_order) 1820 return order; 1821 1822 /* 1823 * Doh this slab cannot be placed using slub_max_order. 1824 */ 1825 order = slab_order(size, 1, MAX_ORDER, 1); 1826 if (order <= MAX_ORDER) 1827 return order; 1828 return -ENOSYS; 1829 } 1830 1831 /* 1832 * Figure out what the alignment of the objects will be. 1833 */ 1834 static unsigned long calculate_alignment(unsigned long flags, 1835 unsigned long align, unsigned long size) 1836 { 1837 /* 1838 * If the user wants hardware cache aligned objects then 1839 * follow that suggestion if the object is sufficiently 1840 * large. 1841 * 1842 * The hardware cache alignment cannot override the 1843 * specified alignment though. If that is greater 1844 * then use it. 1845 */ 1846 if ((flags & SLAB_HWCACHE_ALIGN) && 1847 size > cache_line_size() / 2) 1848 return max_t(unsigned long, align, cache_line_size()); 1849 1850 if (align < ARCH_SLAB_MINALIGN) 1851 return ARCH_SLAB_MINALIGN; 1852 1853 return ALIGN(align, sizeof(void *)); 1854 } 1855 1856 static void init_kmem_cache_cpu(struct kmem_cache *s, 1857 struct kmem_cache_cpu *c) 1858 { 1859 c->page = NULL; 1860 c->freelist = NULL; 1861 c->node = 0; 1862 c->offset = s->offset / sizeof(void *); 1863 c->objsize = s->objsize; 1864 } 1865 1866 static void init_kmem_cache_node(struct kmem_cache_node *n) 1867 { 1868 n->nr_partial = 0; 1869 atomic_long_set(&n->nr_slabs, 0); 1870 spin_lock_init(&n->list_lock); 1871 INIT_LIST_HEAD(&n->partial); 1872 #ifdef CONFIG_SLUB_DEBUG 1873 INIT_LIST_HEAD(&n->full); 1874 #endif 1875 } 1876 1877 #ifdef CONFIG_SMP 1878 /* 1879 * Per cpu array for per cpu structures. 1880 * 1881 * The per cpu array places all kmem_cache_cpu structures from one processor 1882 * close together meaning that it becomes possible that multiple per cpu 1883 * structures are contained in one cacheline. This may be particularly 1884 * beneficial for the kmalloc caches. 1885 * 1886 * A desktop system typically has around 60-80 slabs. With 100 here we are 1887 * likely able to get per cpu structures for all caches from the array defined 1888 * here. We must be able to cover all kmalloc caches during bootstrap. 1889 * 1890 * If the per cpu array is exhausted then fall back to kmalloc 1891 * of individual cachelines. No sharing is possible then. 1892 */ 1893 #define NR_KMEM_CACHE_CPU 100 1894 1895 static DEFINE_PER_CPU(struct kmem_cache_cpu, 1896 kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; 1897 1898 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 1899 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE; 1900 1901 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 1902 int cpu, gfp_t flags) 1903 { 1904 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 1905 1906 if (c) 1907 per_cpu(kmem_cache_cpu_free, cpu) = 1908 (void *)c->freelist; 1909 else { 1910 /* Table overflow: So allocate ourselves */ 1911 c = kmalloc_node( 1912 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 1913 flags, cpu_to_node(cpu)); 1914 if (!c) 1915 return NULL; 1916 } 1917 1918 init_kmem_cache_cpu(s, c); 1919 return c; 1920 } 1921 1922 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 1923 { 1924 if (c < per_cpu(kmem_cache_cpu, cpu) || 1925 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 1926 kfree(c); 1927 return; 1928 } 1929 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 1930 per_cpu(kmem_cache_cpu_free, cpu) = c; 1931 } 1932 1933 static void free_kmem_cache_cpus(struct kmem_cache *s) 1934 { 1935 int cpu; 1936 1937 for_each_online_cpu(cpu) { 1938 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1939 1940 if (c) { 1941 s->cpu_slab[cpu] = NULL; 1942 free_kmem_cache_cpu(c, cpu); 1943 } 1944 } 1945 } 1946 1947 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 1948 { 1949 int cpu; 1950 1951 for_each_online_cpu(cpu) { 1952 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1953 1954 if (c) 1955 continue; 1956 1957 c = alloc_kmem_cache_cpu(s, cpu, flags); 1958 if (!c) { 1959 free_kmem_cache_cpus(s); 1960 return 0; 1961 } 1962 s->cpu_slab[cpu] = c; 1963 } 1964 return 1; 1965 } 1966 1967 /* 1968 * Initialize the per cpu array. 1969 */ 1970 static void init_alloc_cpu_cpu(int cpu) 1971 { 1972 int i; 1973 1974 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once)) 1975 return; 1976 1977 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 1978 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 1979 1980 cpu_set(cpu, kmem_cach_cpu_free_init_once); 1981 } 1982 1983 static void __init init_alloc_cpu(void) 1984 { 1985 int cpu; 1986 1987 for_each_online_cpu(cpu) 1988 init_alloc_cpu_cpu(cpu); 1989 } 1990 1991 #else 1992 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 1993 static inline void init_alloc_cpu(void) {} 1994 1995 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 1996 { 1997 init_kmem_cache_cpu(s, &s->cpu_slab); 1998 return 1; 1999 } 2000 #endif 2001 2002 #ifdef CONFIG_NUMA 2003 /* 2004 * No kmalloc_node yet so do it by hand. We know that this is the first 2005 * slab on the node for this slabcache. There are no concurrent accesses 2006 * possible. 2007 * 2008 * Note that this function only works on the kmalloc_node_cache 2009 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2010 * memory on a fresh node that has no slab structures yet. 2011 */ 2012 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, 2013 int node) 2014 { 2015 struct page *page; 2016 struct kmem_cache_node *n; 2017 2018 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2019 2020 page = new_slab(kmalloc_caches, gfpflags, node); 2021 2022 BUG_ON(!page); 2023 if (page_to_nid(page) != node) { 2024 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2025 "node %d\n", node); 2026 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2027 "in order to be able to continue\n"); 2028 } 2029 2030 n = page->freelist; 2031 BUG_ON(!n); 2032 page->freelist = get_freepointer(kmalloc_caches, n); 2033 page->inuse++; 2034 kmalloc_caches->node[node] = n; 2035 #ifdef CONFIG_SLUB_DEBUG 2036 init_object(kmalloc_caches, n, 1); 2037 init_tracking(kmalloc_caches, n); 2038 #endif 2039 init_kmem_cache_node(n); 2040 atomic_long_inc(&n->nr_slabs); 2041 add_partial(n, page); 2042 2043 /* 2044 * new_slab() disables interupts. If we do not reenable interrupts here 2045 * then bootup would continue with interrupts disabled. 2046 */ 2047 local_irq_enable(); 2048 return n; 2049 } 2050 2051 static void free_kmem_cache_nodes(struct kmem_cache *s) 2052 { 2053 int node; 2054 2055 for_each_node_state(node, N_NORMAL_MEMORY) { 2056 struct kmem_cache_node *n = s->node[node]; 2057 if (n && n != &s->local_node) 2058 kmem_cache_free(kmalloc_caches, n); 2059 s->node[node] = NULL; 2060 } 2061 } 2062 2063 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2064 { 2065 int node; 2066 int local_node; 2067 2068 if (slab_state >= UP) 2069 local_node = page_to_nid(virt_to_page(s)); 2070 else 2071 local_node = 0; 2072 2073 for_each_node_state(node, N_NORMAL_MEMORY) { 2074 struct kmem_cache_node *n; 2075 2076 if (local_node == node) 2077 n = &s->local_node; 2078 else { 2079 if (slab_state == DOWN) { 2080 n = early_kmem_cache_node_alloc(gfpflags, 2081 node); 2082 continue; 2083 } 2084 n = kmem_cache_alloc_node(kmalloc_caches, 2085 gfpflags, node); 2086 2087 if (!n) { 2088 free_kmem_cache_nodes(s); 2089 return 0; 2090 } 2091 2092 } 2093 s->node[node] = n; 2094 init_kmem_cache_node(n); 2095 } 2096 return 1; 2097 } 2098 #else 2099 static void free_kmem_cache_nodes(struct kmem_cache *s) 2100 { 2101 } 2102 2103 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2104 { 2105 init_kmem_cache_node(&s->local_node); 2106 return 1; 2107 } 2108 #endif 2109 2110 /* 2111 * calculate_sizes() determines the order and the distribution of data within 2112 * a slab object. 2113 */ 2114 static int calculate_sizes(struct kmem_cache *s) 2115 { 2116 unsigned long flags = s->flags; 2117 unsigned long size = s->objsize; 2118 unsigned long align = s->align; 2119 2120 /* 2121 * Determine if we can poison the object itself. If the user of 2122 * the slab may touch the object after free or before allocation 2123 * then we should never poison the object itself. 2124 */ 2125 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2126 !s->ctor) 2127 s->flags |= __OBJECT_POISON; 2128 else 2129 s->flags &= ~__OBJECT_POISON; 2130 2131 /* 2132 * Round up object size to the next word boundary. We can only 2133 * place the free pointer at word boundaries and this determines 2134 * the possible location of the free pointer. 2135 */ 2136 size = ALIGN(size, sizeof(void *)); 2137 2138 #ifdef CONFIG_SLUB_DEBUG 2139 /* 2140 * If we are Redzoning then check if there is some space between the 2141 * end of the object and the free pointer. If not then add an 2142 * additional word to have some bytes to store Redzone information. 2143 */ 2144 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2145 size += sizeof(void *); 2146 #endif 2147 2148 /* 2149 * With that we have determined the number of bytes in actual use 2150 * by the object. This is the potential offset to the free pointer. 2151 */ 2152 s->inuse = size; 2153 2154 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2155 s->ctor)) { 2156 /* 2157 * Relocate free pointer after the object if it is not 2158 * permitted to overwrite the first word of the object on 2159 * kmem_cache_free. 2160 * 2161 * This is the case if we do RCU, have a constructor or 2162 * destructor or are poisoning the objects. 2163 */ 2164 s->offset = size; 2165 size += sizeof(void *); 2166 } 2167 2168 #ifdef CONFIG_SLUB_DEBUG 2169 if (flags & SLAB_STORE_USER) 2170 /* 2171 * Need to store information about allocs and frees after 2172 * the object. 2173 */ 2174 size += 2 * sizeof(struct track); 2175 2176 if (flags & SLAB_RED_ZONE) 2177 /* 2178 * Add some empty padding so that we can catch 2179 * overwrites from earlier objects rather than let 2180 * tracking information or the free pointer be 2181 * corrupted if an user writes before the start 2182 * of the object. 2183 */ 2184 size += sizeof(void *); 2185 #endif 2186 2187 /* 2188 * Determine the alignment based on various parameters that the 2189 * user specified and the dynamic determination of cache line size 2190 * on bootup. 2191 */ 2192 align = calculate_alignment(flags, align, s->objsize); 2193 2194 /* 2195 * SLUB stores one object immediately after another beginning from 2196 * offset 0. In order to align the objects we have to simply size 2197 * each object to conform to the alignment. 2198 */ 2199 size = ALIGN(size, align); 2200 s->size = size; 2201 2202 s->order = calculate_order(size); 2203 if (s->order < 0) 2204 return 0; 2205 2206 /* 2207 * Determine the number of objects per slab 2208 */ 2209 s->objects = (PAGE_SIZE << s->order) / size; 2210 2211 return !!s->objects; 2212 2213 } 2214 2215 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2216 const char *name, size_t size, 2217 size_t align, unsigned long flags, 2218 void (*ctor)(void *, struct kmem_cache *, unsigned long)) 2219 { 2220 memset(s, 0, kmem_size); 2221 s->name = name; 2222 s->ctor = ctor; 2223 s->objsize = size; 2224 s->align = align; 2225 s->flags = kmem_cache_flags(size, flags, name, ctor); 2226 2227 if (!calculate_sizes(s)) 2228 goto error; 2229 2230 s->refcount = 1; 2231 #ifdef CONFIG_NUMA 2232 s->defrag_ratio = 100; 2233 #endif 2234 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2235 goto error; 2236 2237 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2238 return 1; 2239 free_kmem_cache_nodes(s); 2240 error: 2241 if (flags & SLAB_PANIC) 2242 panic("Cannot create slab %s size=%lu realsize=%u " 2243 "order=%u offset=%u flags=%lx\n", 2244 s->name, (unsigned long)size, s->size, s->order, 2245 s->offset, flags); 2246 return 0; 2247 } 2248 2249 /* 2250 * Check if a given pointer is valid 2251 */ 2252 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2253 { 2254 struct page * page; 2255 2256 page = get_object_page(object); 2257 2258 if (!page || s != page->slab) 2259 /* No slab or wrong slab */ 2260 return 0; 2261 2262 if (!check_valid_pointer(s, page, object)) 2263 return 0; 2264 2265 /* 2266 * We could also check if the object is on the slabs freelist. 2267 * But this would be too expensive and it seems that the main 2268 * purpose of kmem_ptr_valid is to check if the object belongs 2269 * to a certain slab. 2270 */ 2271 return 1; 2272 } 2273 EXPORT_SYMBOL(kmem_ptr_validate); 2274 2275 /* 2276 * Determine the size of a slab object 2277 */ 2278 unsigned int kmem_cache_size(struct kmem_cache *s) 2279 { 2280 return s->objsize; 2281 } 2282 EXPORT_SYMBOL(kmem_cache_size); 2283 2284 const char *kmem_cache_name(struct kmem_cache *s) 2285 { 2286 return s->name; 2287 } 2288 EXPORT_SYMBOL(kmem_cache_name); 2289 2290 /* 2291 * Attempt to free all slabs on a node. Return the number of slabs we 2292 * were unable to free. 2293 */ 2294 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, 2295 struct list_head *list) 2296 { 2297 int slabs_inuse = 0; 2298 unsigned long flags; 2299 struct page *page, *h; 2300 2301 spin_lock_irqsave(&n->list_lock, flags); 2302 list_for_each_entry_safe(page, h, list, lru) 2303 if (!page->inuse) { 2304 list_del(&page->lru); 2305 discard_slab(s, page); 2306 } else 2307 slabs_inuse++; 2308 spin_unlock_irqrestore(&n->list_lock, flags); 2309 return slabs_inuse; 2310 } 2311 2312 /* 2313 * Release all resources used by a slab cache. 2314 */ 2315 static inline int kmem_cache_close(struct kmem_cache *s) 2316 { 2317 int node; 2318 2319 flush_all(s); 2320 2321 /* Attempt to free all objects */ 2322 free_kmem_cache_cpus(s); 2323 for_each_node_state(node, N_NORMAL_MEMORY) { 2324 struct kmem_cache_node *n = get_node(s, node); 2325 2326 n->nr_partial -= free_list(s, n, &n->partial); 2327 if (atomic_long_read(&n->nr_slabs)) 2328 return 1; 2329 } 2330 free_kmem_cache_nodes(s); 2331 return 0; 2332 } 2333 2334 /* 2335 * Close a cache and release the kmem_cache structure 2336 * (must be used for caches created using kmem_cache_create) 2337 */ 2338 void kmem_cache_destroy(struct kmem_cache *s) 2339 { 2340 down_write(&slub_lock); 2341 s->refcount--; 2342 if (!s->refcount) { 2343 list_del(&s->list); 2344 up_write(&slub_lock); 2345 if (kmem_cache_close(s)) 2346 WARN_ON(1); 2347 sysfs_slab_remove(s); 2348 kfree(s); 2349 } else 2350 up_write(&slub_lock); 2351 } 2352 EXPORT_SYMBOL(kmem_cache_destroy); 2353 2354 /******************************************************************** 2355 * Kmalloc subsystem 2356 *******************************************************************/ 2357 2358 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned; 2359 EXPORT_SYMBOL(kmalloc_caches); 2360 2361 #ifdef CONFIG_ZONE_DMA 2362 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT]; 2363 #endif 2364 2365 static int __init setup_slub_min_order(char *str) 2366 { 2367 get_option (&str, &slub_min_order); 2368 2369 return 1; 2370 } 2371 2372 __setup("slub_min_order=", setup_slub_min_order); 2373 2374 static int __init setup_slub_max_order(char *str) 2375 { 2376 get_option (&str, &slub_max_order); 2377 2378 return 1; 2379 } 2380 2381 __setup("slub_max_order=", setup_slub_max_order); 2382 2383 static int __init setup_slub_min_objects(char *str) 2384 { 2385 get_option (&str, &slub_min_objects); 2386 2387 return 1; 2388 } 2389 2390 __setup("slub_min_objects=", setup_slub_min_objects); 2391 2392 static int __init setup_slub_nomerge(char *str) 2393 { 2394 slub_nomerge = 1; 2395 return 1; 2396 } 2397 2398 __setup("slub_nomerge", setup_slub_nomerge); 2399 2400 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2401 const char *name, int size, gfp_t gfp_flags) 2402 { 2403 unsigned int flags = 0; 2404 2405 if (gfp_flags & SLUB_DMA) 2406 flags = SLAB_CACHE_DMA; 2407 2408 down_write(&slub_lock); 2409 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2410 flags, NULL)) 2411 goto panic; 2412 2413 list_add(&s->list, &slab_caches); 2414 up_write(&slub_lock); 2415 if (sysfs_slab_add(s)) 2416 goto panic; 2417 return s; 2418 2419 panic: 2420 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2421 } 2422 2423 #ifdef CONFIG_ZONE_DMA 2424 2425 static void sysfs_add_func(struct work_struct *w) 2426 { 2427 struct kmem_cache *s; 2428 2429 down_write(&slub_lock); 2430 list_for_each_entry(s, &slab_caches, list) { 2431 if (s->flags & __SYSFS_ADD_DEFERRED) { 2432 s->flags &= ~__SYSFS_ADD_DEFERRED; 2433 sysfs_slab_add(s); 2434 } 2435 } 2436 up_write(&slub_lock); 2437 } 2438 2439 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2440 2441 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2442 { 2443 struct kmem_cache *s; 2444 char *text; 2445 size_t realsize; 2446 2447 s = kmalloc_caches_dma[index]; 2448 if (s) 2449 return s; 2450 2451 /* Dynamically create dma cache */ 2452 if (flags & __GFP_WAIT) 2453 down_write(&slub_lock); 2454 else { 2455 if (!down_write_trylock(&slub_lock)) 2456 goto out; 2457 } 2458 2459 if (kmalloc_caches_dma[index]) 2460 goto unlock_out; 2461 2462 realsize = kmalloc_caches[index].objsize; 2463 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize), 2464 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2465 2466 if (!s || !text || !kmem_cache_open(s, flags, text, 2467 realsize, ARCH_KMALLOC_MINALIGN, 2468 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { 2469 kfree(s); 2470 kfree(text); 2471 goto unlock_out; 2472 } 2473 2474 list_add(&s->list, &slab_caches); 2475 kmalloc_caches_dma[index] = s; 2476 2477 schedule_work(&sysfs_add_work); 2478 2479 unlock_out: 2480 up_write(&slub_lock); 2481 out: 2482 return kmalloc_caches_dma[index]; 2483 } 2484 #endif 2485 2486 /* 2487 * Conversion table for small slabs sizes / 8 to the index in the 2488 * kmalloc array. This is necessary for slabs < 192 since we have non power 2489 * of two cache sizes there. The size of larger slabs can be determined using 2490 * fls. 2491 */ 2492 static s8 size_index[24] = { 2493 3, /* 8 */ 2494 4, /* 16 */ 2495 5, /* 24 */ 2496 5, /* 32 */ 2497 6, /* 40 */ 2498 6, /* 48 */ 2499 6, /* 56 */ 2500 6, /* 64 */ 2501 1, /* 72 */ 2502 1, /* 80 */ 2503 1, /* 88 */ 2504 1, /* 96 */ 2505 7, /* 104 */ 2506 7, /* 112 */ 2507 7, /* 120 */ 2508 7, /* 128 */ 2509 2, /* 136 */ 2510 2, /* 144 */ 2511 2, /* 152 */ 2512 2, /* 160 */ 2513 2, /* 168 */ 2514 2, /* 176 */ 2515 2, /* 184 */ 2516 2 /* 192 */ 2517 }; 2518 2519 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2520 { 2521 int index; 2522 2523 if (size <= 192) { 2524 if (!size) 2525 return ZERO_SIZE_PTR; 2526 2527 index = size_index[(size - 1) / 8]; 2528 } else 2529 index = fls(size - 1); 2530 2531 #ifdef CONFIG_ZONE_DMA 2532 if (unlikely((flags & SLUB_DMA))) 2533 return dma_kmalloc_cache(index, flags); 2534 2535 #endif 2536 return &kmalloc_caches[index]; 2537 } 2538 2539 void *__kmalloc(size_t size, gfp_t flags) 2540 { 2541 struct kmem_cache *s; 2542 2543 if (unlikely(size > PAGE_SIZE / 2)) 2544 return (void *)__get_free_pages(flags | __GFP_COMP, 2545 get_order(size)); 2546 2547 s = get_slab(size, flags); 2548 2549 if (unlikely(ZERO_OR_NULL_PTR(s))) 2550 return s; 2551 2552 return slab_alloc(s, flags, -1, __builtin_return_address(0)); 2553 } 2554 EXPORT_SYMBOL(__kmalloc); 2555 2556 #ifdef CONFIG_NUMA 2557 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2558 { 2559 struct kmem_cache *s; 2560 2561 if (unlikely(size > PAGE_SIZE / 2)) 2562 return (void *)__get_free_pages(flags | __GFP_COMP, 2563 get_order(size)); 2564 2565 s = get_slab(size, flags); 2566 2567 if (unlikely(ZERO_OR_NULL_PTR(s))) 2568 return s; 2569 2570 return slab_alloc(s, flags, node, __builtin_return_address(0)); 2571 } 2572 EXPORT_SYMBOL(__kmalloc_node); 2573 #endif 2574 2575 size_t ksize(const void *object) 2576 { 2577 struct page *page; 2578 struct kmem_cache *s; 2579 2580 BUG_ON(!object); 2581 if (unlikely(object == ZERO_SIZE_PTR)) 2582 return 0; 2583 2584 page = get_object_page(object); 2585 BUG_ON(!page); 2586 s = page->slab; 2587 BUG_ON(!s); 2588 2589 /* 2590 * Debugging requires use of the padding between object 2591 * and whatever may come after it. 2592 */ 2593 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2594 return s->objsize; 2595 2596 /* 2597 * If we have the need to store the freelist pointer 2598 * back there or track user information then we can 2599 * only use the space before that information. 2600 */ 2601 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2602 return s->inuse; 2603 2604 /* 2605 * Else we can use all the padding etc for the allocation 2606 */ 2607 return s->size; 2608 } 2609 EXPORT_SYMBOL(ksize); 2610 2611 void kfree(const void *x) 2612 { 2613 struct page *page; 2614 2615 if (unlikely(ZERO_OR_NULL_PTR(x))) 2616 return; 2617 2618 page = virt_to_head_page(x); 2619 if (unlikely(!PageSlab(page))) { 2620 put_page(page); 2621 return; 2622 } 2623 slab_free(page->slab, page, (void *)x, __builtin_return_address(0)); 2624 } 2625 EXPORT_SYMBOL(kfree); 2626 2627 /* 2628 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2629 * the remaining slabs by the number of items in use. The slabs with the 2630 * most items in use come first. New allocations will then fill those up 2631 * and thus they can be removed from the partial lists. 2632 * 2633 * The slabs with the least items are placed last. This results in them 2634 * being allocated from last increasing the chance that the last objects 2635 * are freed in them. 2636 */ 2637 int kmem_cache_shrink(struct kmem_cache *s) 2638 { 2639 int node; 2640 int i; 2641 struct kmem_cache_node *n; 2642 struct page *page; 2643 struct page *t; 2644 struct list_head *slabs_by_inuse = 2645 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL); 2646 unsigned long flags; 2647 2648 if (!slabs_by_inuse) 2649 return -ENOMEM; 2650 2651 flush_all(s); 2652 for_each_node_state(node, N_NORMAL_MEMORY) { 2653 n = get_node(s, node); 2654 2655 if (!n->nr_partial) 2656 continue; 2657 2658 for (i = 0; i < s->objects; i++) 2659 INIT_LIST_HEAD(slabs_by_inuse + i); 2660 2661 spin_lock_irqsave(&n->list_lock, flags); 2662 2663 /* 2664 * Build lists indexed by the items in use in each slab. 2665 * 2666 * Note that concurrent frees may occur while we hold the 2667 * list_lock. page->inuse here is the upper limit. 2668 */ 2669 list_for_each_entry_safe(page, t, &n->partial, lru) { 2670 if (!page->inuse && slab_trylock(page)) { 2671 /* 2672 * Must hold slab lock here because slab_free 2673 * may have freed the last object and be 2674 * waiting to release the slab. 2675 */ 2676 list_del(&page->lru); 2677 n->nr_partial--; 2678 slab_unlock(page); 2679 discard_slab(s, page); 2680 } else { 2681 list_move(&page->lru, 2682 slabs_by_inuse + page->inuse); 2683 } 2684 } 2685 2686 /* 2687 * Rebuild the partial list with the slabs filled up most 2688 * first and the least used slabs at the end. 2689 */ 2690 for (i = s->objects - 1; i >= 0; i--) 2691 list_splice(slabs_by_inuse + i, n->partial.prev); 2692 2693 spin_unlock_irqrestore(&n->list_lock, flags); 2694 } 2695 2696 kfree(slabs_by_inuse); 2697 return 0; 2698 } 2699 EXPORT_SYMBOL(kmem_cache_shrink); 2700 2701 /******************************************************************** 2702 * Basic setup of slabs 2703 *******************************************************************/ 2704 2705 void __init kmem_cache_init(void) 2706 { 2707 int i; 2708 int caches = 0; 2709 2710 init_alloc_cpu(); 2711 2712 #ifdef CONFIG_NUMA 2713 /* 2714 * Must first have the slab cache available for the allocations of the 2715 * struct kmem_cache_node's. There is special bootstrap code in 2716 * kmem_cache_open for slab_state == DOWN. 2717 */ 2718 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 2719 sizeof(struct kmem_cache_node), GFP_KERNEL); 2720 kmalloc_caches[0].refcount = -1; 2721 caches++; 2722 #endif 2723 2724 /* Able to allocate the per node structures */ 2725 slab_state = PARTIAL; 2726 2727 /* Caches that are not of the two-to-the-power-of size */ 2728 if (KMALLOC_MIN_SIZE <= 64) { 2729 create_kmalloc_cache(&kmalloc_caches[1], 2730 "kmalloc-96", 96, GFP_KERNEL); 2731 caches++; 2732 } 2733 if (KMALLOC_MIN_SIZE <= 128) { 2734 create_kmalloc_cache(&kmalloc_caches[2], 2735 "kmalloc-192", 192, GFP_KERNEL); 2736 caches++; 2737 } 2738 2739 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) { 2740 create_kmalloc_cache(&kmalloc_caches[i], 2741 "kmalloc", 1 << i, GFP_KERNEL); 2742 caches++; 2743 } 2744 2745 2746 /* 2747 * Patch up the size_index table if we have strange large alignment 2748 * requirements for the kmalloc array. This is only the case for 2749 * mips it seems. The standard arches will not generate any code here. 2750 * 2751 * Largest permitted alignment is 256 bytes due to the way we 2752 * handle the index determination for the smaller caches. 2753 * 2754 * Make sure that nothing crazy happens if someone starts tinkering 2755 * around with ARCH_KMALLOC_MINALIGN 2756 */ 2757 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 2758 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 2759 2760 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 2761 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 2762 2763 slab_state = UP; 2764 2765 /* Provide the correct kmalloc names now that the caches are up */ 2766 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) 2767 kmalloc_caches[i]. name = 2768 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); 2769 2770 #ifdef CONFIG_SMP 2771 register_cpu_notifier(&slab_notifier); 2772 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 2773 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 2774 #else 2775 kmem_size = sizeof(struct kmem_cache); 2776 #endif 2777 2778 2779 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 2780 " CPUs=%d, Nodes=%d\n", 2781 caches, cache_line_size(), 2782 slub_min_order, slub_max_order, slub_min_objects, 2783 nr_cpu_ids, nr_node_ids); 2784 } 2785 2786 /* 2787 * Find a mergeable slab cache 2788 */ 2789 static int slab_unmergeable(struct kmem_cache *s) 2790 { 2791 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 2792 return 1; 2793 2794 if (s->ctor) 2795 return 1; 2796 2797 /* 2798 * We may have set a slab to be unmergeable during bootstrap. 2799 */ 2800 if (s->refcount < 0) 2801 return 1; 2802 2803 return 0; 2804 } 2805 2806 static struct kmem_cache *find_mergeable(size_t size, 2807 size_t align, unsigned long flags, const char *name, 2808 void (*ctor)(void *, struct kmem_cache *, unsigned long)) 2809 { 2810 struct kmem_cache *s; 2811 2812 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 2813 return NULL; 2814 2815 if (ctor) 2816 return NULL; 2817 2818 size = ALIGN(size, sizeof(void *)); 2819 align = calculate_alignment(flags, align, size); 2820 size = ALIGN(size, align); 2821 flags = kmem_cache_flags(size, flags, name, NULL); 2822 2823 list_for_each_entry(s, &slab_caches, list) { 2824 if (slab_unmergeable(s)) 2825 continue; 2826 2827 if (size > s->size) 2828 continue; 2829 2830 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 2831 continue; 2832 /* 2833 * Check if alignment is compatible. 2834 * Courtesy of Adrian Drzewiecki 2835 */ 2836 if ((s->size & ~(align -1)) != s->size) 2837 continue; 2838 2839 if (s->size - size >= sizeof(void *)) 2840 continue; 2841 2842 return s; 2843 } 2844 return NULL; 2845 } 2846 2847 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 2848 size_t align, unsigned long flags, 2849 void (*ctor)(void *, struct kmem_cache *, unsigned long)) 2850 { 2851 struct kmem_cache *s; 2852 2853 down_write(&slub_lock); 2854 s = find_mergeable(size, align, flags, name, ctor); 2855 if (s) { 2856 int cpu; 2857 2858 s->refcount++; 2859 /* 2860 * Adjust the object sizes so that we clear 2861 * the complete object on kzalloc. 2862 */ 2863 s->objsize = max(s->objsize, (int)size); 2864 2865 /* 2866 * And then we need to update the object size in the 2867 * per cpu structures 2868 */ 2869 for_each_online_cpu(cpu) 2870 get_cpu_slab(s, cpu)->objsize = s->objsize; 2871 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 2872 up_write(&slub_lock); 2873 if (sysfs_slab_alias(s, name)) 2874 goto err; 2875 return s; 2876 } 2877 s = kmalloc(kmem_size, GFP_KERNEL); 2878 if (s) { 2879 if (kmem_cache_open(s, GFP_KERNEL, name, 2880 size, align, flags, ctor)) { 2881 list_add(&s->list, &slab_caches); 2882 up_write(&slub_lock); 2883 if (sysfs_slab_add(s)) 2884 goto err; 2885 return s; 2886 } 2887 kfree(s); 2888 } 2889 up_write(&slub_lock); 2890 2891 err: 2892 if (flags & SLAB_PANIC) 2893 panic("Cannot create slabcache %s\n", name); 2894 else 2895 s = NULL; 2896 return s; 2897 } 2898 EXPORT_SYMBOL(kmem_cache_create); 2899 2900 #ifdef CONFIG_SMP 2901 /* 2902 * Use the cpu notifier to insure that the cpu slabs are flushed when 2903 * necessary. 2904 */ 2905 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 2906 unsigned long action, void *hcpu) 2907 { 2908 long cpu = (long)hcpu; 2909 struct kmem_cache *s; 2910 unsigned long flags; 2911 2912 switch (action) { 2913 case CPU_UP_PREPARE: 2914 case CPU_UP_PREPARE_FROZEN: 2915 init_alloc_cpu_cpu(cpu); 2916 down_read(&slub_lock); 2917 list_for_each_entry(s, &slab_caches, list) 2918 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 2919 GFP_KERNEL); 2920 up_read(&slub_lock); 2921 break; 2922 2923 case CPU_UP_CANCELED: 2924 case CPU_UP_CANCELED_FROZEN: 2925 case CPU_DEAD: 2926 case CPU_DEAD_FROZEN: 2927 down_read(&slub_lock); 2928 list_for_each_entry(s, &slab_caches, list) { 2929 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2930 2931 local_irq_save(flags); 2932 __flush_cpu_slab(s, cpu); 2933 local_irq_restore(flags); 2934 free_kmem_cache_cpu(c, cpu); 2935 s->cpu_slab[cpu] = NULL; 2936 } 2937 up_read(&slub_lock); 2938 break; 2939 default: 2940 break; 2941 } 2942 return NOTIFY_OK; 2943 } 2944 2945 static struct notifier_block __cpuinitdata slab_notifier = 2946 { &slab_cpuup_callback, NULL, 0 }; 2947 2948 #endif 2949 2950 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) 2951 { 2952 struct kmem_cache *s; 2953 2954 if (unlikely(size > PAGE_SIZE / 2)) 2955 return (void *)__get_free_pages(gfpflags | __GFP_COMP, 2956 get_order(size)); 2957 s = get_slab(size, gfpflags); 2958 2959 if (unlikely(ZERO_OR_NULL_PTR(s))) 2960 return s; 2961 2962 return slab_alloc(s, gfpflags, -1, caller); 2963 } 2964 2965 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 2966 int node, void *caller) 2967 { 2968 struct kmem_cache *s; 2969 2970 if (unlikely(size > PAGE_SIZE / 2)) 2971 return (void *)__get_free_pages(gfpflags | __GFP_COMP, 2972 get_order(size)); 2973 s = get_slab(size, gfpflags); 2974 2975 if (unlikely(ZERO_OR_NULL_PTR(s))) 2976 return s; 2977 2978 return slab_alloc(s, gfpflags, node, caller); 2979 } 2980 2981 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) 2982 static int validate_slab(struct kmem_cache *s, struct page *page, 2983 unsigned long *map) 2984 { 2985 void *p; 2986 void *addr = page_address(page); 2987 2988 if (!check_slab(s, page) || 2989 !on_freelist(s, page, NULL)) 2990 return 0; 2991 2992 /* Now we know that a valid freelist exists */ 2993 bitmap_zero(map, s->objects); 2994 2995 for_each_free_object(p, s, page->freelist) { 2996 set_bit(slab_index(p, s, addr), map); 2997 if (!check_object(s, page, p, 0)) 2998 return 0; 2999 } 3000 3001 for_each_object(p, s, addr) 3002 if (!test_bit(slab_index(p, s, addr), map)) 3003 if (!check_object(s, page, p, 1)) 3004 return 0; 3005 return 1; 3006 } 3007 3008 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3009 unsigned long *map) 3010 { 3011 if (slab_trylock(page)) { 3012 validate_slab(s, page, map); 3013 slab_unlock(page); 3014 } else 3015 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3016 s->name, page); 3017 3018 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3019 if (!SlabDebug(page)) 3020 printk(KERN_ERR "SLUB %s: SlabDebug not set " 3021 "on slab 0x%p\n", s->name, page); 3022 } else { 3023 if (SlabDebug(page)) 3024 printk(KERN_ERR "SLUB %s: SlabDebug set on " 3025 "slab 0x%p\n", s->name, page); 3026 } 3027 } 3028 3029 static int validate_slab_node(struct kmem_cache *s, 3030 struct kmem_cache_node *n, unsigned long *map) 3031 { 3032 unsigned long count = 0; 3033 struct page *page; 3034 unsigned long flags; 3035 3036 spin_lock_irqsave(&n->list_lock, flags); 3037 3038 list_for_each_entry(page, &n->partial, lru) { 3039 validate_slab_slab(s, page, map); 3040 count++; 3041 } 3042 if (count != n->nr_partial) 3043 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3044 "counter=%ld\n", s->name, count, n->nr_partial); 3045 3046 if (!(s->flags & SLAB_STORE_USER)) 3047 goto out; 3048 3049 list_for_each_entry(page, &n->full, lru) { 3050 validate_slab_slab(s, page, map); 3051 count++; 3052 } 3053 if (count != atomic_long_read(&n->nr_slabs)) 3054 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3055 "counter=%ld\n", s->name, count, 3056 atomic_long_read(&n->nr_slabs)); 3057 3058 out: 3059 spin_unlock_irqrestore(&n->list_lock, flags); 3060 return count; 3061 } 3062 3063 static long validate_slab_cache(struct kmem_cache *s) 3064 { 3065 int node; 3066 unsigned long count = 0; 3067 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) * 3068 sizeof(unsigned long), GFP_KERNEL); 3069 3070 if (!map) 3071 return -ENOMEM; 3072 3073 flush_all(s); 3074 for_each_node_state(node, N_NORMAL_MEMORY) { 3075 struct kmem_cache_node *n = get_node(s, node); 3076 3077 count += validate_slab_node(s, n, map); 3078 } 3079 kfree(map); 3080 return count; 3081 } 3082 3083 #ifdef SLUB_RESILIENCY_TEST 3084 static void resiliency_test(void) 3085 { 3086 u8 *p; 3087 3088 printk(KERN_ERR "SLUB resiliency testing\n"); 3089 printk(KERN_ERR "-----------------------\n"); 3090 printk(KERN_ERR "A. Corruption after allocation\n"); 3091 3092 p = kzalloc(16, GFP_KERNEL); 3093 p[16] = 0x12; 3094 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3095 " 0x12->0x%p\n\n", p + 16); 3096 3097 validate_slab_cache(kmalloc_caches + 4); 3098 3099 /* Hmmm... The next two are dangerous */ 3100 p = kzalloc(32, GFP_KERNEL); 3101 p[32 + sizeof(void *)] = 0x34; 3102 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3103 " 0x34 -> -0x%p\n", p); 3104 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); 3105 3106 validate_slab_cache(kmalloc_caches + 5); 3107 p = kzalloc(64, GFP_KERNEL); 3108 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3109 *p = 0x56; 3110 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3111 p); 3112 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); 3113 validate_slab_cache(kmalloc_caches + 6); 3114 3115 printk(KERN_ERR "\nB. Corruption after free\n"); 3116 p = kzalloc(128, GFP_KERNEL); 3117 kfree(p); 3118 *p = 0x78; 3119 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3120 validate_slab_cache(kmalloc_caches + 7); 3121 3122 p = kzalloc(256, GFP_KERNEL); 3123 kfree(p); 3124 p[50] = 0x9a; 3125 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 3126 validate_slab_cache(kmalloc_caches + 8); 3127 3128 p = kzalloc(512, GFP_KERNEL); 3129 kfree(p); 3130 p[512] = 0xab; 3131 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3132 validate_slab_cache(kmalloc_caches + 9); 3133 } 3134 #else 3135 static void resiliency_test(void) {}; 3136 #endif 3137 3138 /* 3139 * Generate lists of code addresses where slabcache objects are allocated 3140 * and freed. 3141 */ 3142 3143 struct location { 3144 unsigned long count; 3145 void *addr; 3146 long long sum_time; 3147 long min_time; 3148 long max_time; 3149 long min_pid; 3150 long max_pid; 3151 cpumask_t cpus; 3152 nodemask_t nodes; 3153 }; 3154 3155 struct loc_track { 3156 unsigned long max; 3157 unsigned long count; 3158 struct location *loc; 3159 }; 3160 3161 static void free_loc_track(struct loc_track *t) 3162 { 3163 if (t->max) 3164 free_pages((unsigned long)t->loc, 3165 get_order(sizeof(struct location) * t->max)); 3166 } 3167 3168 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3169 { 3170 struct location *l; 3171 int order; 3172 3173 order = get_order(sizeof(struct location) * max); 3174 3175 l = (void *)__get_free_pages(flags, order); 3176 if (!l) 3177 return 0; 3178 3179 if (t->count) { 3180 memcpy(l, t->loc, sizeof(struct location) * t->count); 3181 free_loc_track(t); 3182 } 3183 t->max = max; 3184 t->loc = l; 3185 return 1; 3186 } 3187 3188 static int add_location(struct loc_track *t, struct kmem_cache *s, 3189 const struct track *track) 3190 { 3191 long start, end, pos; 3192 struct location *l; 3193 void *caddr; 3194 unsigned long age = jiffies - track->when; 3195 3196 start = -1; 3197 end = t->count; 3198 3199 for ( ; ; ) { 3200 pos = start + (end - start + 1) / 2; 3201 3202 /* 3203 * There is nothing at "end". If we end up there 3204 * we need to add something to before end. 3205 */ 3206 if (pos == end) 3207 break; 3208 3209 caddr = t->loc[pos].addr; 3210 if (track->addr == caddr) { 3211 3212 l = &t->loc[pos]; 3213 l->count++; 3214 if (track->when) { 3215 l->sum_time += age; 3216 if (age < l->min_time) 3217 l->min_time = age; 3218 if (age > l->max_time) 3219 l->max_time = age; 3220 3221 if (track->pid < l->min_pid) 3222 l->min_pid = track->pid; 3223 if (track->pid > l->max_pid) 3224 l->max_pid = track->pid; 3225 3226 cpu_set(track->cpu, l->cpus); 3227 } 3228 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3229 return 1; 3230 } 3231 3232 if (track->addr < caddr) 3233 end = pos; 3234 else 3235 start = pos; 3236 } 3237 3238 /* 3239 * Not found. Insert new tracking element. 3240 */ 3241 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3242 return 0; 3243 3244 l = t->loc + pos; 3245 if (pos < t->count) 3246 memmove(l + 1, l, 3247 (t->count - pos) * sizeof(struct location)); 3248 t->count++; 3249 l->count = 1; 3250 l->addr = track->addr; 3251 l->sum_time = age; 3252 l->min_time = age; 3253 l->max_time = age; 3254 l->min_pid = track->pid; 3255 l->max_pid = track->pid; 3256 cpus_clear(l->cpus); 3257 cpu_set(track->cpu, l->cpus); 3258 nodes_clear(l->nodes); 3259 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3260 return 1; 3261 } 3262 3263 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3264 struct page *page, enum track_item alloc) 3265 { 3266 void *addr = page_address(page); 3267 DECLARE_BITMAP(map, s->objects); 3268 void *p; 3269 3270 bitmap_zero(map, s->objects); 3271 for_each_free_object(p, s, page->freelist) 3272 set_bit(slab_index(p, s, addr), map); 3273 3274 for_each_object(p, s, addr) 3275 if (!test_bit(slab_index(p, s, addr), map)) 3276 add_location(t, s, get_track(s, p, alloc)); 3277 } 3278 3279 static int list_locations(struct kmem_cache *s, char *buf, 3280 enum track_item alloc) 3281 { 3282 int n = 0; 3283 unsigned long i; 3284 struct loc_track t = { 0, 0, NULL }; 3285 int node; 3286 3287 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3288 GFP_TEMPORARY)) 3289 return sprintf(buf, "Out of memory\n"); 3290 3291 /* Push back cpu slabs */ 3292 flush_all(s); 3293 3294 for_each_node_state(node, N_NORMAL_MEMORY) { 3295 struct kmem_cache_node *n = get_node(s, node); 3296 unsigned long flags; 3297 struct page *page; 3298 3299 if (!atomic_long_read(&n->nr_slabs)) 3300 continue; 3301 3302 spin_lock_irqsave(&n->list_lock, flags); 3303 list_for_each_entry(page, &n->partial, lru) 3304 process_slab(&t, s, page, alloc); 3305 list_for_each_entry(page, &n->full, lru) 3306 process_slab(&t, s, page, alloc); 3307 spin_unlock_irqrestore(&n->list_lock, flags); 3308 } 3309 3310 for (i = 0; i < t.count; i++) { 3311 struct location *l = &t.loc[i]; 3312 3313 if (n > PAGE_SIZE - 100) 3314 break; 3315 n += sprintf(buf + n, "%7ld ", l->count); 3316 3317 if (l->addr) 3318 n += sprint_symbol(buf + n, (unsigned long)l->addr); 3319 else 3320 n += sprintf(buf + n, "<not-available>"); 3321 3322 if (l->sum_time != l->min_time) { 3323 unsigned long remainder; 3324 3325 n += sprintf(buf + n, " age=%ld/%ld/%ld", 3326 l->min_time, 3327 div_long_long_rem(l->sum_time, l->count, &remainder), 3328 l->max_time); 3329 } else 3330 n += sprintf(buf + n, " age=%ld", 3331 l->min_time); 3332 3333 if (l->min_pid != l->max_pid) 3334 n += sprintf(buf + n, " pid=%ld-%ld", 3335 l->min_pid, l->max_pid); 3336 else 3337 n += sprintf(buf + n, " pid=%ld", 3338 l->min_pid); 3339 3340 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && 3341 n < PAGE_SIZE - 60) { 3342 n += sprintf(buf + n, " cpus="); 3343 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50, 3344 l->cpus); 3345 } 3346 3347 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && 3348 n < PAGE_SIZE - 60) { 3349 n += sprintf(buf + n, " nodes="); 3350 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50, 3351 l->nodes); 3352 } 3353 3354 n += sprintf(buf + n, "\n"); 3355 } 3356 3357 free_loc_track(&t); 3358 if (!t.count) 3359 n += sprintf(buf, "No data\n"); 3360 return n; 3361 } 3362 3363 static unsigned long count_partial(struct kmem_cache_node *n) 3364 { 3365 unsigned long flags; 3366 unsigned long x = 0; 3367 struct page *page; 3368 3369 spin_lock_irqsave(&n->list_lock, flags); 3370 list_for_each_entry(page, &n->partial, lru) 3371 x += page->inuse; 3372 spin_unlock_irqrestore(&n->list_lock, flags); 3373 return x; 3374 } 3375 3376 enum slab_stat_type { 3377 SL_FULL, 3378 SL_PARTIAL, 3379 SL_CPU, 3380 SL_OBJECTS 3381 }; 3382 3383 #define SO_FULL (1 << SL_FULL) 3384 #define SO_PARTIAL (1 << SL_PARTIAL) 3385 #define SO_CPU (1 << SL_CPU) 3386 #define SO_OBJECTS (1 << SL_OBJECTS) 3387 3388 static unsigned long slab_objects(struct kmem_cache *s, 3389 char *buf, unsigned long flags) 3390 { 3391 unsigned long total = 0; 3392 int cpu; 3393 int node; 3394 int x; 3395 unsigned long *nodes; 3396 unsigned long *per_cpu; 3397 3398 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3399 per_cpu = nodes + nr_node_ids; 3400 3401 for_each_possible_cpu(cpu) { 3402 struct page *page; 3403 int node; 3404 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3405 3406 if (!c) 3407 continue; 3408 3409 page = c->page; 3410 node = c->node; 3411 if (node < 0) 3412 continue; 3413 if (page) { 3414 if (flags & SO_CPU) { 3415 int x = 0; 3416 3417 if (flags & SO_OBJECTS) 3418 x = page->inuse; 3419 else 3420 x = 1; 3421 total += x; 3422 nodes[node] += x; 3423 } 3424 per_cpu[node]++; 3425 } 3426 } 3427 3428 for_each_node_state(node, N_NORMAL_MEMORY) { 3429 struct kmem_cache_node *n = get_node(s, node); 3430 3431 if (flags & SO_PARTIAL) { 3432 if (flags & SO_OBJECTS) 3433 x = count_partial(n); 3434 else 3435 x = n->nr_partial; 3436 total += x; 3437 nodes[node] += x; 3438 } 3439 3440 if (flags & SO_FULL) { 3441 int full_slabs = atomic_long_read(&n->nr_slabs) 3442 - per_cpu[node] 3443 - n->nr_partial; 3444 3445 if (flags & SO_OBJECTS) 3446 x = full_slabs * s->objects; 3447 else 3448 x = full_slabs; 3449 total += x; 3450 nodes[node] += x; 3451 } 3452 } 3453 3454 x = sprintf(buf, "%lu", total); 3455 #ifdef CONFIG_NUMA 3456 for_each_node_state(node, N_NORMAL_MEMORY) 3457 if (nodes[node]) 3458 x += sprintf(buf + x, " N%d=%lu", 3459 node, nodes[node]); 3460 #endif 3461 kfree(nodes); 3462 return x + sprintf(buf + x, "\n"); 3463 } 3464 3465 static int any_slab_objects(struct kmem_cache *s) 3466 { 3467 int node; 3468 int cpu; 3469 3470 for_each_possible_cpu(cpu) { 3471 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3472 3473 if (c && c->page) 3474 return 1; 3475 } 3476 3477 for_each_online_node(node) { 3478 struct kmem_cache_node *n = get_node(s, node); 3479 3480 if (!n) 3481 continue; 3482 3483 if (n->nr_partial || atomic_long_read(&n->nr_slabs)) 3484 return 1; 3485 } 3486 return 0; 3487 } 3488 3489 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3490 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3491 3492 struct slab_attribute { 3493 struct attribute attr; 3494 ssize_t (*show)(struct kmem_cache *s, char *buf); 3495 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3496 }; 3497 3498 #define SLAB_ATTR_RO(_name) \ 3499 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3500 3501 #define SLAB_ATTR(_name) \ 3502 static struct slab_attribute _name##_attr = \ 3503 __ATTR(_name, 0644, _name##_show, _name##_store) 3504 3505 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3506 { 3507 return sprintf(buf, "%d\n", s->size); 3508 } 3509 SLAB_ATTR_RO(slab_size); 3510 3511 static ssize_t align_show(struct kmem_cache *s, char *buf) 3512 { 3513 return sprintf(buf, "%d\n", s->align); 3514 } 3515 SLAB_ATTR_RO(align); 3516 3517 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3518 { 3519 return sprintf(buf, "%d\n", s->objsize); 3520 } 3521 SLAB_ATTR_RO(object_size); 3522 3523 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3524 { 3525 return sprintf(buf, "%d\n", s->objects); 3526 } 3527 SLAB_ATTR_RO(objs_per_slab); 3528 3529 static ssize_t order_show(struct kmem_cache *s, char *buf) 3530 { 3531 return sprintf(buf, "%d\n", s->order); 3532 } 3533 SLAB_ATTR_RO(order); 3534 3535 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3536 { 3537 if (s->ctor) { 3538 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3539 3540 return n + sprintf(buf + n, "\n"); 3541 } 3542 return 0; 3543 } 3544 SLAB_ATTR_RO(ctor); 3545 3546 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3547 { 3548 return sprintf(buf, "%d\n", s->refcount - 1); 3549 } 3550 SLAB_ATTR_RO(aliases); 3551 3552 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3553 { 3554 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU); 3555 } 3556 SLAB_ATTR_RO(slabs); 3557 3558 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3559 { 3560 return slab_objects(s, buf, SO_PARTIAL); 3561 } 3562 SLAB_ATTR_RO(partial); 3563 3564 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3565 { 3566 return slab_objects(s, buf, SO_CPU); 3567 } 3568 SLAB_ATTR_RO(cpu_slabs); 3569 3570 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3571 { 3572 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS); 3573 } 3574 SLAB_ATTR_RO(objects); 3575 3576 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3577 { 3578 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3579 } 3580 3581 static ssize_t sanity_checks_store(struct kmem_cache *s, 3582 const char *buf, size_t length) 3583 { 3584 s->flags &= ~SLAB_DEBUG_FREE; 3585 if (buf[0] == '1') 3586 s->flags |= SLAB_DEBUG_FREE; 3587 return length; 3588 } 3589 SLAB_ATTR(sanity_checks); 3590 3591 static ssize_t trace_show(struct kmem_cache *s, char *buf) 3592 { 3593 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 3594 } 3595 3596 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 3597 size_t length) 3598 { 3599 s->flags &= ~SLAB_TRACE; 3600 if (buf[0] == '1') 3601 s->flags |= SLAB_TRACE; 3602 return length; 3603 } 3604 SLAB_ATTR(trace); 3605 3606 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 3607 { 3608 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 3609 } 3610 3611 static ssize_t reclaim_account_store(struct kmem_cache *s, 3612 const char *buf, size_t length) 3613 { 3614 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 3615 if (buf[0] == '1') 3616 s->flags |= SLAB_RECLAIM_ACCOUNT; 3617 return length; 3618 } 3619 SLAB_ATTR(reclaim_account); 3620 3621 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 3622 { 3623 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 3624 } 3625 SLAB_ATTR_RO(hwcache_align); 3626 3627 #ifdef CONFIG_ZONE_DMA 3628 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 3629 { 3630 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 3631 } 3632 SLAB_ATTR_RO(cache_dma); 3633 #endif 3634 3635 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 3636 { 3637 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 3638 } 3639 SLAB_ATTR_RO(destroy_by_rcu); 3640 3641 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 3642 { 3643 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 3644 } 3645 3646 static ssize_t red_zone_store(struct kmem_cache *s, 3647 const char *buf, size_t length) 3648 { 3649 if (any_slab_objects(s)) 3650 return -EBUSY; 3651 3652 s->flags &= ~SLAB_RED_ZONE; 3653 if (buf[0] == '1') 3654 s->flags |= SLAB_RED_ZONE; 3655 calculate_sizes(s); 3656 return length; 3657 } 3658 SLAB_ATTR(red_zone); 3659 3660 static ssize_t poison_show(struct kmem_cache *s, char *buf) 3661 { 3662 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 3663 } 3664 3665 static ssize_t poison_store(struct kmem_cache *s, 3666 const char *buf, size_t length) 3667 { 3668 if (any_slab_objects(s)) 3669 return -EBUSY; 3670 3671 s->flags &= ~SLAB_POISON; 3672 if (buf[0] == '1') 3673 s->flags |= SLAB_POISON; 3674 calculate_sizes(s); 3675 return length; 3676 } 3677 SLAB_ATTR(poison); 3678 3679 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 3680 { 3681 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 3682 } 3683 3684 static ssize_t store_user_store(struct kmem_cache *s, 3685 const char *buf, size_t length) 3686 { 3687 if (any_slab_objects(s)) 3688 return -EBUSY; 3689 3690 s->flags &= ~SLAB_STORE_USER; 3691 if (buf[0] == '1') 3692 s->flags |= SLAB_STORE_USER; 3693 calculate_sizes(s); 3694 return length; 3695 } 3696 SLAB_ATTR(store_user); 3697 3698 static ssize_t validate_show(struct kmem_cache *s, char *buf) 3699 { 3700 return 0; 3701 } 3702 3703 static ssize_t validate_store(struct kmem_cache *s, 3704 const char *buf, size_t length) 3705 { 3706 int ret = -EINVAL; 3707 3708 if (buf[0] == '1') { 3709 ret = validate_slab_cache(s); 3710 if (ret >= 0) 3711 ret = length; 3712 } 3713 return ret; 3714 } 3715 SLAB_ATTR(validate); 3716 3717 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 3718 { 3719 return 0; 3720 } 3721 3722 static ssize_t shrink_store(struct kmem_cache *s, 3723 const char *buf, size_t length) 3724 { 3725 if (buf[0] == '1') { 3726 int rc = kmem_cache_shrink(s); 3727 3728 if (rc) 3729 return rc; 3730 } else 3731 return -EINVAL; 3732 return length; 3733 } 3734 SLAB_ATTR(shrink); 3735 3736 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 3737 { 3738 if (!(s->flags & SLAB_STORE_USER)) 3739 return -ENOSYS; 3740 return list_locations(s, buf, TRACK_ALLOC); 3741 } 3742 SLAB_ATTR_RO(alloc_calls); 3743 3744 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 3745 { 3746 if (!(s->flags & SLAB_STORE_USER)) 3747 return -ENOSYS; 3748 return list_locations(s, buf, TRACK_FREE); 3749 } 3750 SLAB_ATTR_RO(free_calls); 3751 3752 #ifdef CONFIG_NUMA 3753 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf) 3754 { 3755 return sprintf(buf, "%d\n", s->defrag_ratio / 10); 3756 } 3757 3758 static ssize_t defrag_ratio_store(struct kmem_cache *s, 3759 const char *buf, size_t length) 3760 { 3761 int n = simple_strtoul(buf, NULL, 10); 3762 3763 if (n < 100) 3764 s->defrag_ratio = n * 10; 3765 return length; 3766 } 3767 SLAB_ATTR(defrag_ratio); 3768 #endif 3769 3770 static struct attribute * slab_attrs[] = { 3771 &slab_size_attr.attr, 3772 &object_size_attr.attr, 3773 &objs_per_slab_attr.attr, 3774 &order_attr.attr, 3775 &objects_attr.attr, 3776 &slabs_attr.attr, 3777 &partial_attr.attr, 3778 &cpu_slabs_attr.attr, 3779 &ctor_attr.attr, 3780 &aliases_attr.attr, 3781 &align_attr.attr, 3782 &sanity_checks_attr.attr, 3783 &trace_attr.attr, 3784 &hwcache_align_attr.attr, 3785 &reclaim_account_attr.attr, 3786 &destroy_by_rcu_attr.attr, 3787 &red_zone_attr.attr, 3788 &poison_attr.attr, 3789 &store_user_attr.attr, 3790 &validate_attr.attr, 3791 &shrink_attr.attr, 3792 &alloc_calls_attr.attr, 3793 &free_calls_attr.attr, 3794 #ifdef CONFIG_ZONE_DMA 3795 &cache_dma_attr.attr, 3796 #endif 3797 #ifdef CONFIG_NUMA 3798 &defrag_ratio_attr.attr, 3799 #endif 3800 NULL 3801 }; 3802 3803 static struct attribute_group slab_attr_group = { 3804 .attrs = slab_attrs, 3805 }; 3806 3807 static ssize_t slab_attr_show(struct kobject *kobj, 3808 struct attribute *attr, 3809 char *buf) 3810 { 3811 struct slab_attribute *attribute; 3812 struct kmem_cache *s; 3813 int err; 3814 3815 attribute = to_slab_attr(attr); 3816 s = to_slab(kobj); 3817 3818 if (!attribute->show) 3819 return -EIO; 3820 3821 err = attribute->show(s, buf); 3822 3823 return err; 3824 } 3825 3826 static ssize_t slab_attr_store(struct kobject *kobj, 3827 struct attribute *attr, 3828 const char *buf, size_t len) 3829 { 3830 struct slab_attribute *attribute; 3831 struct kmem_cache *s; 3832 int err; 3833 3834 attribute = to_slab_attr(attr); 3835 s = to_slab(kobj); 3836 3837 if (!attribute->store) 3838 return -EIO; 3839 3840 err = attribute->store(s, buf, len); 3841 3842 return err; 3843 } 3844 3845 static struct sysfs_ops slab_sysfs_ops = { 3846 .show = slab_attr_show, 3847 .store = slab_attr_store, 3848 }; 3849 3850 static struct kobj_type slab_ktype = { 3851 .sysfs_ops = &slab_sysfs_ops, 3852 }; 3853 3854 static int uevent_filter(struct kset *kset, struct kobject *kobj) 3855 { 3856 struct kobj_type *ktype = get_ktype(kobj); 3857 3858 if (ktype == &slab_ktype) 3859 return 1; 3860 return 0; 3861 } 3862 3863 static struct kset_uevent_ops slab_uevent_ops = { 3864 .filter = uevent_filter, 3865 }; 3866 3867 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops); 3868 3869 #define ID_STR_LENGTH 64 3870 3871 /* Create a unique string id for a slab cache: 3872 * format 3873 * :[flags-]size:[memory address of kmemcache] 3874 */ 3875 static char *create_unique_id(struct kmem_cache *s) 3876 { 3877 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 3878 char *p = name; 3879 3880 BUG_ON(!name); 3881 3882 *p++ = ':'; 3883 /* 3884 * First flags affecting slabcache operations. We will only 3885 * get here for aliasable slabs so we do not need to support 3886 * too many flags. The flags here must cover all flags that 3887 * are matched during merging to guarantee that the id is 3888 * unique. 3889 */ 3890 if (s->flags & SLAB_CACHE_DMA) 3891 *p++ = 'd'; 3892 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3893 *p++ = 'a'; 3894 if (s->flags & SLAB_DEBUG_FREE) 3895 *p++ = 'F'; 3896 if (p != name + 1) 3897 *p++ = '-'; 3898 p += sprintf(p, "%07d", s->size); 3899 BUG_ON(p > name + ID_STR_LENGTH - 1); 3900 return name; 3901 } 3902 3903 static int sysfs_slab_add(struct kmem_cache *s) 3904 { 3905 int err; 3906 const char *name; 3907 int unmergeable; 3908 3909 if (slab_state < SYSFS) 3910 /* Defer until later */ 3911 return 0; 3912 3913 unmergeable = slab_unmergeable(s); 3914 if (unmergeable) { 3915 /* 3916 * Slabcache can never be merged so we can use the name proper. 3917 * This is typically the case for debug situations. In that 3918 * case we can catch duplicate names easily. 3919 */ 3920 sysfs_remove_link(&slab_subsys.kobj, s->name); 3921 name = s->name; 3922 } else { 3923 /* 3924 * Create a unique name for the slab as a target 3925 * for the symlinks. 3926 */ 3927 name = create_unique_id(s); 3928 } 3929 3930 kobj_set_kset_s(s, slab_subsys); 3931 kobject_set_name(&s->kobj, name); 3932 kobject_init(&s->kobj); 3933 err = kobject_add(&s->kobj); 3934 if (err) 3935 return err; 3936 3937 err = sysfs_create_group(&s->kobj, &slab_attr_group); 3938 if (err) 3939 return err; 3940 kobject_uevent(&s->kobj, KOBJ_ADD); 3941 if (!unmergeable) { 3942 /* Setup first alias */ 3943 sysfs_slab_alias(s, s->name); 3944 kfree(name); 3945 } 3946 return 0; 3947 } 3948 3949 static void sysfs_slab_remove(struct kmem_cache *s) 3950 { 3951 kobject_uevent(&s->kobj, KOBJ_REMOVE); 3952 kobject_del(&s->kobj); 3953 } 3954 3955 /* 3956 * Need to buffer aliases during bootup until sysfs becomes 3957 * available lest we loose that information. 3958 */ 3959 struct saved_alias { 3960 struct kmem_cache *s; 3961 const char *name; 3962 struct saved_alias *next; 3963 }; 3964 3965 static struct saved_alias *alias_list; 3966 3967 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 3968 { 3969 struct saved_alias *al; 3970 3971 if (slab_state == SYSFS) { 3972 /* 3973 * If we have a leftover link then remove it. 3974 */ 3975 sysfs_remove_link(&slab_subsys.kobj, name); 3976 return sysfs_create_link(&slab_subsys.kobj, 3977 &s->kobj, name); 3978 } 3979 3980 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 3981 if (!al) 3982 return -ENOMEM; 3983 3984 al->s = s; 3985 al->name = name; 3986 al->next = alias_list; 3987 alias_list = al; 3988 return 0; 3989 } 3990 3991 static int __init slab_sysfs_init(void) 3992 { 3993 struct kmem_cache *s; 3994 int err; 3995 3996 err = subsystem_register(&slab_subsys); 3997 if (err) { 3998 printk(KERN_ERR "Cannot register slab subsystem.\n"); 3999 return -ENOSYS; 4000 } 4001 4002 slab_state = SYSFS; 4003 4004 list_for_each_entry(s, &slab_caches, list) { 4005 err = sysfs_slab_add(s); 4006 if (err) 4007 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4008 " to sysfs\n", s->name); 4009 } 4010 4011 while (alias_list) { 4012 struct saved_alias *al = alias_list; 4013 4014 alias_list = alias_list->next; 4015 err = sysfs_slab_alias(al->s, al->name); 4016 if (err) 4017 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4018 " %s to sysfs\n", s->name); 4019 kfree(al); 4020 } 4021 4022 resiliency_test(); 4023 return 0; 4024 } 4025 4026 __initcall(slab_sysfs_init); 4027 #endif 4028