1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_NOSWAP 16 135 #define SHMEM_SEEN_QUOTA 32 136 }; 137 138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 139 static unsigned long huge_shmem_orders_always __read_mostly; 140 static unsigned long huge_shmem_orders_madvise __read_mostly; 141 static unsigned long huge_shmem_orders_inherit __read_mostly; 142 static unsigned long huge_shmem_orders_within_size __read_mostly; 143 static bool shmem_orders_configured __initdata; 144 #endif 145 146 #ifdef CONFIG_TMPFS 147 static unsigned long shmem_default_max_blocks(void) 148 { 149 return totalram_pages() / 2; 150 } 151 152 static unsigned long shmem_default_max_inodes(void) 153 { 154 unsigned long nr_pages = totalram_pages(); 155 156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 157 ULONG_MAX / BOGO_INODE_SIZE); 158 } 159 #endif 160 161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 163 struct vm_area_struct *vma, vm_fault_t *fault_type); 164 165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 166 { 167 return sb->s_fs_info; 168 } 169 170 /* 171 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 172 * for shared memory and for shared anonymous (/dev/zero) mappings 173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 174 * consistent with the pre-accounting of private mappings ... 175 */ 176 static inline int shmem_acct_size(unsigned long flags, loff_t size) 177 { 178 return (flags & VM_NORESERVE) ? 179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 180 } 181 182 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 183 { 184 if (!(flags & VM_NORESERVE)) 185 vm_unacct_memory(VM_ACCT(size)); 186 } 187 188 static inline int shmem_reacct_size(unsigned long flags, 189 loff_t oldsize, loff_t newsize) 190 { 191 if (!(flags & VM_NORESERVE)) { 192 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 193 return security_vm_enough_memory_mm(current->mm, 194 VM_ACCT(newsize) - VM_ACCT(oldsize)); 195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 197 } 198 return 0; 199 } 200 201 /* 202 * ... whereas tmpfs objects are accounted incrementally as 203 * pages are allocated, in order to allow large sparse files. 204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 206 */ 207 static inline int shmem_acct_blocks(unsigned long flags, long pages) 208 { 209 if (!(flags & VM_NORESERVE)) 210 return 0; 211 212 return security_vm_enough_memory_mm(current->mm, 213 pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 217 { 218 if (flags & VM_NORESERVE) 219 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 220 } 221 222 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 int err = -ENOSPC; 227 228 if (shmem_acct_blocks(info->flags, pages)) 229 return err; 230 231 might_sleep(); /* when quotas */ 232 if (sbinfo->max_blocks) { 233 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 234 sbinfo->max_blocks, pages)) 235 goto unacct; 236 237 err = dquot_alloc_block_nodirty(inode, pages); 238 if (err) { 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 goto unacct; 241 } 242 } else { 243 err = dquot_alloc_block_nodirty(inode, pages); 244 if (err) 245 goto unacct; 246 } 247 248 return 0; 249 250 unacct: 251 shmem_unacct_blocks(info->flags, pages); 252 return err; 253 } 254 255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 256 { 257 struct shmem_inode_info *info = SHMEM_I(inode); 258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 259 260 might_sleep(); /* when quotas */ 261 dquot_free_block_nodirty(inode, pages); 262 263 if (sbinfo->max_blocks) 264 percpu_counter_sub(&sbinfo->used_blocks, pages); 265 shmem_unacct_blocks(info->flags, pages); 266 } 267 268 static const struct super_operations shmem_ops; 269 static const struct address_space_operations shmem_aops; 270 static const struct file_operations shmem_file_operations; 271 static const struct inode_operations shmem_inode_operations; 272 static const struct inode_operations shmem_dir_inode_operations; 273 static const struct inode_operations shmem_special_inode_operations; 274 static const struct vm_operations_struct shmem_vm_ops; 275 static const struct vm_operations_struct shmem_anon_vm_ops; 276 static struct file_system_type shmem_fs_type; 277 278 bool shmem_mapping(struct address_space *mapping) 279 { 280 return mapping->a_ops == &shmem_aops; 281 } 282 EXPORT_SYMBOL_GPL(shmem_mapping); 283 284 bool vma_is_anon_shmem(struct vm_area_struct *vma) 285 { 286 return vma->vm_ops == &shmem_anon_vm_ops; 287 } 288 289 bool vma_is_shmem(struct vm_area_struct *vma) 290 { 291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 292 } 293 294 static LIST_HEAD(shmem_swaplist); 295 static DEFINE_SPINLOCK(shmem_swaplist_lock); 296 297 #ifdef CONFIG_TMPFS_QUOTA 298 299 static int shmem_enable_quotas(struct super_block *sb, 300 unsigned short quota_types) 301 { 302 int type, err = 0; 303 304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 306 if (!(quota_types & (1 << type))) 307 continue; 308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 309 DQUOT_USAGE_ENABLED | 310 DQUOT_LIMITS_ENABLED); 311 if (err) 312 goto out_err; 313 } 314 return 0; 315 316 out_err: 317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 318 type, err); 319 for (type--; type >= 0; type--) 320 dquot_quota_off(sb, type); 321 return err; 322 } 323 324 static void shmem_disable_quotas(struct super_block *sb) 325 { 326 int type; 327 328 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 329 dquot_quota_off(sb, type); 330 } 331 332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 333 { 334 return SHMEM_I(inode)->i_dquot; 335 } 336 #endif /* CONFIG_TMPFS_QUOTA */ 337 338 /* 339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 340 * produces a novel ino for the newly allocated inode. 341 * 342 * It may also be called when making a hard link to permit the space needed by 343 * each dentry. However, in that case, no new inode number is needed since that 344 * internally draws from another pool of inode numbers (currently global 345 * get_next_ino()). This case is indicated by passing NULL as inop. 346 */ 347 #define SHMEM_INO_BATCH 1024 348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 349 { 350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 351 ino_t ino; 352 353 if (!(sb->s_flags & SB_KERNMOUNT)) { 354 raw_spin_lock(&sbinfo->stat_lock); 355 if (sbinfo->max_inodes) { 356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 357 raw_spin_unlock(&sbinfo->stat_lock); 358 return -ENOSPC; 359 } 360 sbinfo->free_ispace -= BOGO_INODE_SIZE; 361 } 362 if (inop) { 363 ino = sbinfo->next_ino++; 364 if (unlikely(is_zero_ino(ino))) 365 ino = sbinfo->next_ino++; 366 if (unlikely(!sbinfo->full_inums && 367 ino > UINT_MAX)) { 368 /* 369 * Emulate get_next_ino uint wraparound for 370 * compatibility 371 */ 372 if (IS_ENABLED(CONFIG_64BIT)) 373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 374 __func__, MINOR(sb->s_dev)); 375 sbinfo->next_ino = 1; 376 ino = sbinfo->next_ino++; 377 } 378 *inop = ino; 379 } 380 raw_spin_unlock(&sbinfo->stat_lock); 381 } else if (inop) { 382 /* 383 * __shmem_file_setup, one of our callers, is lock-free: it 384 * doesn't hold stat_lock in shmem_reserve_inode since 385 * max_inodes is always 0, and is called from potentially 386 * unknown contexts. As such, use a per-cpu batched allocator 387 * which doesn't require the per-sb stat_lock unless we are at 388 * the batch boundary. 389 * 390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 391 * shmem mounts are not exposed to userspace, so we don't need 392 * to worry about things like glibc compatibility. 393 */ 394 ino_t *next_ino; 395 396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 397 ino = *next_ino; 398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 399 raw_spin_lock(&sbinfo->stat_lock); 400 ino = sbinfo->next_ino; 401 sbinfo->next_ino += SHMEM_INO_BATCH; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 if (unlikely(is_zero_ino(ino))) 404 ino++; 405 } 406 *inop = ino; 407 *next_ino = ++ino; 408 put_cpu(); 409 } 410 411 return 0; 412 } 413 414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 415 { 416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 417 if (sbinfo->max_inodes) { 418 raw_spin_lock(&sbinfo->stat_lock); 419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 420 raw_spin_unlock(&sbinfo->stat_lock); 421 } 422 } 423 424 /** 425 * shmem_recalc_inode - recalculate the block usage of an inode 426 * @inode: inode to recalc 427 * @alloced: the change in number of pages allocated to inode 428 * @swapped: the change in number of pages swapped from inode 429 * 430 * We have to calculate the free blocks since the mm can drop 431 * undirtied hole pages behind our back. 432 * 433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 435 * 436 * Return: true if swapped was incremented from 0, for shmem_writeout(). 437 */ 438 static bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 439 { 440 struct shmem_inode_info *info = SHMEM_I(inode); 441 bool first_swapped = false; 442 long freed; 443 444 spin_lock(&info->lock); 445 info->alloced += alloced; 446 info->swapped += swapped; 447 freed = info->alloced - info->swapped - 448 READ_ONCE(inode->i_mapping->nrpages); 449 /* 450 * Special case: whereas normally shmem_recalc_inode() is called 451 * after i_mapping->nrpages has already been adjusted (up or down), 452 * shmem_writeout() has to raise swapped before nrpages is lowered - 453 * to stop a racing shmem_recalc_inode() from thinking that a page has 454 * been freed. Compensate here, to avoid the need for a followup call. 455 */ 456 if (swapped > 0) { 457 if (info->swapped == swapped) 458 first_swapped = true; 459 freed += swapped; 460 } 461 if (freed > 0) 462 info->alloced -= freed; 463 spin_unlock(&info->lock); 464 465 /* The quota case may block */ 466 if (freed > 0) 467 shmem_inode_unacct_blocks(inode, freed); 468 return first_swapped; 469 } 470 471 bool shmem_charge(struct inode *inode, long pages) 472 { 473 struct address_space *mapping = inode->i_mapping; 474 475 if (shmem_inode_acct_blocks(inode, pages)) 476 return false; 477 478 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 479 xa_lock_irq(&mapping->i_pages); 480 mapping->nrpages += pages; 481 xa_unlock_irq(&mapping->i_pages); 482 483 shmem_recalc_inode(inode, pages, 0); 484 return true; 485 } 486 487 void shmem_uncharge(struct inode *inode, long pages) 488 { 489 /* pages argument is currently unused: keep it to help debugging */ 490 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 491 492 shmem_recalc_inode(inode, 0, 0); 493 } 494 495 /* 496 * Replace item expected in xarray by a new item, while holding xa_lock. 497 */ 498 static int shmem_replace_entry(struct address_space *mapping, 499 pgoff_t index, void *expected, void *replacement) 500 { 501 XA_STATE(xas, &mapping->i_pages, index); 502 void *item; 503 504 VM_BUG_ON(!expected); 505 VM_BUG_ON(!replacement); 506 item = xas_load(&xas); 507 if (item != expected) 508 return -ENOENT; 509 xas_store(&xas, replacement); 510 return 0; 511 } 512 513 /* 514 * Sometimes, before we decide whether to proceed or to fail, we must check 515 * that an entry was not already brought back from swap by a racing thread. 516 * 517 * Checking folio is not enough: by the time a swapcache folio is locked, it 518 * might be reused, and again be swapcache, using the same swap as before. 519 */ 520 static bool shmem_confirm_swap(struct address_space *mapping, 521 pgoff_t index, swp_entry_t swap) 522 { 523 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 524 } 525 526 /* 527 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 528 * 529 * SHMEM_HUGE_NEVER: 530 * disables huge pages for the mount; 531 * SHMEM_HUGE_ALWAYS: 532 * enables huge pages for the mount; 533 * SHMEM_HUGE_WITHIN_SIZE: 534 * only allocate huge pages if the page will be fully within i_size, 535 * also respect madvise() hints; 536 * SHMEM_HUGE_ADVISE: 537 * only allocate huge pages if requested with madvise(); 538 */ 539 540 #define SHMEM_HUGE_NEVER 0 541 #define SHMEM_HUGE_ALWAYS 1 542 #define SHMEM_HUGE_WITHIN_SIZE 2 543 #define SHMEM_HUGE_ADVISE 3 544 545 /* 546 * Special values. 547 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 548 * 549 * SHMEM_HUGE_DENY: 550 * disables huge on shm_mnt and all mounts, for emergency use; 551 * SHMEM_HUGE_FORCE: 552 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 553 * 554 */ 555 #define SHMEM_HUGE_DENY (-1) 556 #define SHMEM_HUGE_FORCE (-2) 557 558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 559 /* ifdef here to avoid bloating shmem.o when not necessary */ 560 561 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 562 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER; 563 564 /** 565 * shmem_mapping_size_orders - Get allowable folio orders for the given file size. 566 * @mapping: Target address_space. 567 * @index: The page index. 568 * @write_end: end of a write, could extend inode size. 569 * 570 * This returns huge orders for folios (when supported) based on the file size 571 * which the mapping currently allows at the given index. The index is relevant 572 * due to alignment considerations the mapping might have. The returned order 573 * may be less than the size passed. 574 * 575 * Return: The orders. 576 */ 577 static inline unsigned int 578 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end) 579 { 580 unsigned int order; 581 size_t size; 582 583 if (!mapping_large_folio_support(mapping) || !write_end) 584 return 0; 585 586 /* Calculate the write size based on the write_end */ 587 size = write_end - (index << PAGE_SHIFT); 588 order = filemap_get_order(size); 589 if (!order) 590 return 0; 591 592 /* If we're not aligned, allocate a smaller folio */ 593 if (index & ((1UL << order) - 1)) 594 order = __ffs(index); 595 596 order = min_t(size_t, order, MAX_PAGECACHE_ORDER); 597 return order > 0 ? BIT(order + 1) - 1 : 0; 598 } 599 600 static unsigned int shmem_get_orders_within_size(struct inode *inode, 601 unsigned long within_size_orders, pgoff_t index, 602 loff_t write_end) 603 { 604 pgoff_t aligned_index; 605 unsigned long order; 606 loff_t i_size; 607 608 order = highest_order(within_size_orders); 609 while (within_size_orders) { 610 aligned_index = round_up(index + 1, 1 << order); 611 i_size = max(write_end, i_size_read(inode)); 612 i_size = round_up(i_size, PAGE_SIZE); 613 if (i_size >> PAGE_SHIFT >= aligned_index) 614 return within_size_orders; 615 616 order = next_order(&within_size_orders, order); 617 } 618 619 return 0; 620 } 621 622 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 623 loff_t write_end, bool shmem_huge_force, 624 struct vm_area_struct *vma, 625 vm_flags_t vm_flags) 626 { 627 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 628 0 : BIT(HPAGE_PMD_ORDER); 629 unsigned long within_size_orders; 630 631 if (!S_ISREG(inode->i_mode)) 632 return 0; 633 if (shmem_huge == SHMEM_HUGE_DENY) 634 return 0; 635 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 636 return maybe_pmd_order; 637 638 /* 639 * The huge order allocation for anon shmem is controlled through 640 * the mTHP interface, so we still use PMD-sized huge order to 641 * check whether global control is enabled. 642 * 643 * For tmpfs mmap()'s huge order, we still use PMD-sized order to 644 * allocate huge pages due to lack of a write size hint. 645 * 646 * Otherwise, tmpfs will allow getting a highest order hint based on 647 * the size of write and fallocate paths, then will try each allowable 648 * huge orders. 649 */ 650 switch (SHMEM_SB(inode->i_sb)->huge) { 651 case SHMEM_HUGE_ALWAYS: 652 if (vma) 653 return maybe_pmd_order; 654 655 return shmem_mapping_size_orders(inode->i_mapping, index, write_end); 656 case SHMEM_HUGE_WITHIN_SIZE: 657 if (vma) 658 within_size_orders = maybe_pmd_order; 659 else 660 within_size_orders = shmem_mapping_size_orders(inode->i_mapping, 661 index, write_end); 662 663 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders, 664 index, write_end); 665 if (within_size_orders > 0) 666 return within_size_orders; 667 668 fallthrough; 669 case SHMEM_HUGE_ADVISE: 670 if (vm_flags & VM_HUGEPAGE) 671 return maybe_pmd_order; 672 fallthrough; 673 default: 674 return 0; 675 } 676 } 677 678 static int shmem_parse_huge(const char *str) 679 { 680 int huge; 681 682 if (!str) 683 return -EINVAL; 684 685 if (!strcmp(str, "never")) 686 huge = SHMEM_HUGE_NEVER; 687 else if (!strcmp(str, "always")) 688 huge = SHMEM_HUGE_ALWAYS; 689 else if (!strcmp(str, "within_size")) 690 huge = SHMEM_HUGE_WITHIN_SIZE; 691 else if (!strcmp(str, "advise")) 692 huge = SHMEM_HUGE_ADVISE; 693 else if (!strcmp(str, "deny")) 694 huge = SHMEM_HUGE_DENY; 695 else if (!strcmp(str, "force")) 696 huge = SHMEM_HUGE_FORCE; 697 else 698 return -EINVAL; 699 700 if (!has_transparent_hugepage() && 701 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 702 return -EINVAL; 703 704 /* Do not override huge allocation policy with non-PMD sized mTHP */ 705 if (huge == SHMEM_HUGE_FORCE && 706 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 707 return -EINVAL; 708 709 return huge; 710 } 711 712 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 713 static const char *shmem_format_huge(int huge) 714 { 715 switch (huge) { 716 case SHMEM_HUGE_NEVER: 717 return "never"; 718 case SHMEM_HUGE_ALWAYS: 719 return "always"; 720 case SHMEM_HUGE_WITHIN_SIZE: 721 return "within_size"; 722 case SHMEM_HUGE_ADVISE: 723 return "advise"; 724 case SHMEM_HUGE_DENY: 725 return "deny"; 726 case SHMEM_HUGE_FORCE: 727 return "force"; 728 default: 729 VM_BUG_ON(1); 730 return "bad_val"; 731 } 732 } 733 #endif 734 735 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 736 struct shrink_control *sc, unsigned long nr_to_free) 737 { 738 LIST_HEAD(list), *pos, *next; 739 struct inode *inode; 740 struct shmem_inode_info *info; 741 struct folio *folio; 742 unsigned long batch = sc ? sc->nr_to_scan : 128; 743 unsigned long split = 0, freed = 0; 744 745 if (list_empty(&sbinfo->shrinklist)) 746 return SHRINK_STOP; 747 748 spin_lock(&sbinfo->shrinklist_lock); 749 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 750 info = list_entry(pos, struct shmem_inode_info, shrinklist); 751 752 /* pin the inode */ 753 inode = igrab(&info->vfs_inode); 754 755 /* inode is about to be evicted */ 756 if (!inode) { 757 list_del_init(&info->shrinklist); 758 goto next; 759 } 760 761 list_move(&info->shrinklist, &list); 762 next: 763 sbinfo->shrinklist_len--; 764 if (!--batch) 765 break; 766 } 767 spin_unlock(&sbinfo->shrinklist_lock); 768 769 list_for_each_safe(pos, next, &list) { 770 pgoff_t next, end; 771 loff_t i_size; 772 int ret; 773 774 info = list_entry(pos, struct shmem_inode_info, shrinklist); 775 inode = &info->vfs_inode; 776 777 if (nr_to_free && freed >= nr_to_free) 778 goto move_back; 779 780 i_size = i_size_read(inode); 781 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 782 if (!folio || xa_is_value(folio)) 783 goto drop; 784 785 /* No large folio at the end of the file: nothing to split */ 786 if (!folio_test_large(folio)) { 787 folio_put(folio); 788 goto drop; 789 } 790 791 /* Check if there is anything to gain from splitting */ 792 next = folio_next_index(folio); 793 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 794 if (end <= folio->index || end >= next) { 795 folio_put(folio); 796 goto drop; 797 } 798 799 /* 800 * Move the inode on the list back to shrinklist if we failed 801 * to lock the page at this time. 802 * 803 * Waiting for the lock may lead to deadlock in the 804 * reclaim path. 805 */ 806 if (!folio_trylock(folio)) { 807 folio_put(folio); 808 goto move_back; 809 } 810 811 ret = split_folio(folio); 812 folio_unlock(folio); 813 folio_put(folio); 814 815 /* If split failed move the inode on the list back to shrinklist */ 816 if (ret) 817 goto move_back; 818 819 freed += next - end; 820 split++; 821 drop: 822 list_del_init(&info->shrinklist); 823 goto put; 824 move_back: 825 /* 826 * Make sure the inode is either on the global list or deleted 827 * from any local list before iput() since it could be deleted 828 * in another thread once we put the inode (then the local list 829 * is corrupted). 830 */ 831 spin_lock(&sbinfo->shrinklist_lock); 832 list_move(&info->shrinklist, &sbinfo->shrinklist); 833 sbinfo->shrinklist_len++; 834 spin_unlock(&sbinfo->shrinklist_lock); 835 put: 836 iput(inode); 837 } 838 839 return split; 840 } 841 842 static long shmem_unused_huge_scan(struct super_block *sb, 843 struct shrink_control *sc) 844 { 845 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 846 847 if (!READ_ONCE(sbinfo->shrinklist_len)) 848 return SHRINK_STOP; 849 850 return shmem_unused_huge_shrink(sbinfo, sc, 0); 851 } 852 853 static long shmem_unused_huge_count(struct super_block *sb, 854 struct shrink_control *sc) 855 { 856 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 857 return READ_ONCE(sbinfo->shrinklist_len); 858 } 859 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 860 861 #define shmem_huge SHMEM_HUGE_DENY 862 863 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 864 struct shrink_control *sc, unsigned long nr_to_free) 865 { 866 return 0; 867 } 868 869 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 870 loff_t write_end, bool shmem_huge_force, 871 struct vm_area_struct *vma, 872 vm_flags_t vm_flags) 873 { 874 return 0; 875 } 876 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 877 878 static void shmem_update_stats(struct folio *folio, int nr_pages) 879 { 880 if (folio_test_pmd_mappable(folio)) 881 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 882 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 883 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 884 } 885 886 /* 887 * Somewhat like filemap_add_folio, but error if expected item has gone. 888 */ 889 static int shmem_add_to_page_cache(struct folio *folio, 890 struct address_space *mapping, 891 pgoff_t index, void *expected, gfp_t gfp) 892 { 893 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 894 long nr = folio_nr_pages(folio); 895 896 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 897 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 898 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 899 900 folio_ref_add(folio, nr); 901 folio->mapping = mapping; 902 folio->index = index; 903 904 gfp &= GFP_RECLAIM_MASK; 905 folio_throttle_swaprate(folio, gfp); 906 907 do { 908 xas_lock_irq(&xas); 909 if (expected != xas_find_conflict(&xas)) { 910 xas_set_err(&xas, -EEXIST); 911 goto unlock; 912 } 913 if (expected && xas_find_conflict(&xas)) { 914 xas_set_err(&xas, -EEXIST); 915 goto unlock; 916 } 917 xas_store(&xas, folio); 918 if (xas_error(&xas)) 919 goto unlock; 920 shmem_update_stats(folio, nr); 921 mapping->nrpages += nr; 922 unlock: 923 xas_unlock_irq(&xas); 924 } while (xas_nomem(&xas, gfp)); 925 926 if (xas_error(&xas)) { 927 folio->mapping = NULL; 928 folio_ref_sub(folio, nr); 929 return xas_error(&xas); 930 } 931 932 return 0; 933 } 934 935 /* 936 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 937 */ 938 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 939 { 940 struct address_space *mapping = folio->mapping; 941 long nr = folio_nr_pages(folio); 942 int error; 943 944 xa_lock_irq(&mapping->i_pages); 945 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 946 folio->mapping = NULL; 947 mapping->nrpages -= nr; 948 shmem_update_stats(folio, -nr); 949 xa_unlock_irq(&mapping->i_pages); 950 folio_put_refs(folio, nr); 951 BUG_ON(error); 952 } 953 954 /* 955 * Remove swap entry from page cache, free the swap and its page cache. Returns 956 * the number of pages being freed. 0 means entry not found in XArray (0 pages 957 * being freed). 958 */ 959 static long shmem_free_swap(struct address_space *mapping, 960 pgoff_t index, void *radswap) 961 { 962 int order = xa_get_order(&mapping->i_pages, index); 963 void *old; 964 965 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 966 if (old != radswap) 967 return 0; 968 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 969 970 return 1 << order; 971 } 972 973 /* 974 * Determine (in bytes) how many of the shmem object's pages mapped by the 975 * given offsets are swapped out. 976 * 977 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 978 * as long as the inode doesn't go away and racy results are not a problem. 979 */ 980 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 981 pgoff_t start, pgoff_t end) 982 { 983 XA_STATE(xas, &mapping->i_pages, start); 984 struct page *page; 985 unsigned long swapped = 0; 986 unsigned long max = end - 1; 987 988 rcu_read_lock(); 989 xas_for_each(&xas, page, max) { 990 if (xas_retry(&xas, page)) 991 continue; 992 if (xa_is_value(page)) 993 swapped += 1 << xas_get_order(&xas); 994 if (xas.xa_index == max) 995 break; 996 if (need_resched()) { 997 xas_pause(&xas); 998 cond_resched_rcu(); 999 } 1000 } 1001 rcu_read_unlock(); 1002 1003 return swapped << PAGE_SHIFT; 1004 } 1005 1006 /* 1007 * Determine (in bytes) how many of the shmem object's pages mapped by the 1008 * given vma is swapped out. 1009 * 1010 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1011 * as long as the inode doesn't go away and racy results are not a problem. 1012 */ 1013 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1014 { 1015 struct inode *inode = file_inode(vma->vm_file); 1016 struct shmem_inode_info *info = SHMEM_I(inode); 1017 struct address_space *mapping = inode->i_mapping; 1018 unsigned long swapped; 1019 1020 /* Be careful as we don't hold info->lock */ 1021 swapped = READ_ONCE(info->swapped); 1022 1023 /* 1024 * The easier cases are when the shmem object has nothing in swap, or 1025 * the vma maps it whole. Then we can simply use the stats that we 1026 * already track. 1027 */ 1028 if (!swapped) 1029 return 0; 1030 1031 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1032 return swapped << PAGE_SHIFT; 1033 1034 /* Here comes the more involved part */ 1035 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1036 vma->vm_pgoff + vma_pages(vma)); 1037 } 1038 1039 /* 1040 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1041 */ 1042 void shmem_unlock_mapping(struct address_space *mapping) 1043 { 1044 struct folio_batch fbatch; 1045 pgoff_t index = 0; 1046 1047 folio_batch_init(&fbatch); 1048 /* 1049 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1050 */ 1051 while (!mapping_unevictable(mapping) && 1052 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1053 check_move_unevictable_folios(&fbatch); 1054 folio_batch_release(&fbatch); 1055 cond_resched(); 1056 } 1057 } 1058 1059 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1060 { 1061 struct folio *folio; 1062 1063 /* 1064 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1065 * beyond i_size, and reports fallocated folios as holes. 1066 */ 1067 folio = filemap_get_entry(inode->i_mapping, index); 1068 if (!folio) 1069 return folio; 1070 if (!xa_is_value(folio)) { 1071 folio_lock(folio); 1072 if (folio->mapping == inode->i_mapping) 1073 return folio; 1074 /* The folio has been swapped out */ 1075 folio_unlock(folio); 1076 folio_put(folio); 1077 } 1078 /* 1079 * But read a folio back from swap if any of it is within i_size 1080 * (although in some cases this is just a waste of time). 1081 */ 1082 folio = NULL; 1083 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1084 return folio; 1085 } 1086 1087 /* 1088 * Remove range of pages and swap entries from page cache, and free them. 1089 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1090 */ 1091 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 1092 bool unfalloc) 1093 { 1094 struct address_space *mapping = inode->i_mapping; 1095 struct shmem_inode_info *info = SHMEM_I(inode); 1096 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1097 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1098 struct folio_batch fbatch; 1099 pgoff_t indices[PAGEVEC_SIZE]; 1100 struct folio *folio; 1101 bool same_folio; 1102 long nr_swaps_freed = 0; 1103 pgoff_t index; 1104 int i; 1105 1106 if (lend == -1) 1107 end = -1; /* unsigned, so actually very big */ 1108 1109 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1110 info->fallocend = start; 1111 1112 folio_batch_init(&fbatch); 1113 index = start; 1114 while (index < end && find_lock_entries(mapping, &index, end - 1, 1115 &fbatch, indices)) { 1116 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1117 folio = fbatch.folios[i]; 1118 1119 if (xa_is_value(folio)) { 1120 if (unfalloc) 1121 continue; 1122 nr_swaps_freed += shmem_free_swap(mapping, 1123 indices[i], folio); 1124 continue; 1125 } 1126 1127 if (!unfalloc || !folio_test_uptodate(folio)) 1128 truncate_inode_folio(mapping, folio); 1129 folio_unlock(folio); 1130 } 1131 folio_batch_remove_exceptionals(&fbatch); 1132 folio_batch_release(&fbatch); 1133 cond_resched(); 1134 } 1135 1136 /* 1137 * When undoing a failed fallocate, we want none of the partial folio 1138 * zeroing and splitting below, but shall want to truncate the whole 1139 * folio when !uptodate indicates that it was added by this fallocate, 1140 * even when [lstart, lend] covers only a part of the folio. 1141 */ 1142 if (unfalloc) 1143 goto whole_folios; 1144 1145 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1146 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1147 if (folio) { 1148 same_folio = lend < folio_pos(folio) + folio_size(folio); 1149 folio_mark_dirty(folio); 1150 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1151 start = folio_next_index(folio); 1152 if (same_folio) 1153 end = folio->index; 1154 } 1155 folio_unlock(folio); 1156 folio_put(folio); 1157 folio = NULL; 1158 } 1159 1160 if (!same_folio) 1161 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1162 if (folio) { 1163 folio_mark_dirty(folio); 1164 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1165 end = folio->index; 1166 folio_unlock(folio); 1167 folio_put(folio); 1168 } 1169 1170 whole_folios: 1171 1172 index = start; 1173 while (index < end) { 1174 cond_resched(); 1175 1176 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1177 indices)) { 1178 /* If all gone or hole-punch or unfalloc, we're done */ 1179 if (index == start || end != -1) 1180 break; 1181 /* But if truncating, restart to make sure all gone */ 1182 index = start; 1183 continue; 1184 } 1185 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1186 folio = fbatch.folios[i]; 1187 1188 if (xa_is_value(folio)) { 1189 long swaps_freed; 1190 1191 if (unfalloc) 1192 continue; 1193 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1194 if (!swaps_freed) { 1195 /* Swap was replaced by page: retry */ 1196 index = indices[i]; 1197 break; 1198 } 1199 nr_swaps_freed += swaps_freed; 1200 continue; 1201 } 1202 1203 folio_lock(folio); 1204 1205 if (!unfalloc || !folio_test_uptodate(folio)) { 1206 if (folio_mapping(folio) != mapping) { 1207 /* Page was replaced by swap: retry */ 1208 folio_unlock(folio); 1209 index = indices[i]; 1210 break; 1211 } 1212 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1213 folio); 1214 1215 if (!folio_test_large(folio)) { 1216 truncate_inode_folio(mapping, folio); 1217 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1218 /* 1219 * If we split a page, reset the loop so 1220 * that we pick up the new sub pages. 1221 * Otherwise the THP was entirely 1222 * dropped or the target range was 1223 * zeroed, so just continue the loop as 1224 * is. 1225 */ 1226 if (!folio_test_large(folio)) { 1227 folio_unlock(folio); 1228 index = start; 1229 break; 1230 } 1231 } 1232 } 1233 folio_unlock(folio); 1234 } 1235 folio_batch_remove_exceptionals(&fbatch); 1236 folio_batch_release(&fbatch); 1237 } 1238 1239 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1240 } 1241 1242 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1243 { 1244 shmem_undo_range(inode, lstart, lend, false); 1245 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1246 inode_inc_iversion(inode); 1247 } 1248 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1249 1250 static int shmem_getattr(struct mnt_idmap *idmap, 1251 const struct path *path, struct kstat *stat, 1252 u32 request_mask, unsigned int query_flags) 1253 { 1254 struct inode *inode = path->dentry->d_inode; 1255 struct shmem_inode_info *info = SHMEM_I(inode); 1256 1257 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1258 shmem_recalc_inode(inode, 0, 0); 1259 1260 if (info->fsflags & FS_APPEND_FL) 1261 stat->attributes |= STATX_ATTR_APPEND; 1262 if (info->fsflags & FS_IMMUTABLE_FL) 1263 stat->attributes |= STATX_ATTR_IMMUTABLE; 1264 if (info->fsflags & FS_NODUMP_FL) 1265 stat->attributes |= STATX_ATTR_NODUMP; 1266 stat->attributes_mask |= (STATX_ATTR_APPEND | 1267 STATX_ATTR_IMMUTABLE | 1268 STATX_ATTR_NODUMP); 1269 generic_fillattr(idmap, request_mask, inode, stat); 1270 1271 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1272 stat->blksize = HPAGE_PMD_SIZE; 1273 1274 if (request_mask & STATX_BTIME) { 1275 stat->result_mask |= STATX_BTIME; 1276 stat->btime.tv_sec = info->i_crtime.tv_sec; 1277 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1278 } 1279 1280 return 0; 1281 } 1282 1283 static int shmem_setattr(struct mnt_idmap *idmap, 1284 struct dentry *dentry, struct iattr *attr) 1285 { 1286 struct inode *inode = d_inode(dentry); 1287 struct shmem_inode_info *info = SHMEM_I(inode); 1288 int error; 1289 bool update_mtime = false; 1290 bool update_ctime = true; 1291 1292 error = setattr_prepare(idmap, dentry, attr); 1293 if (error) 1294 return error; 1295 1296 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1297 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1298 return -EPERM; 1299 } 1300 } 1301 1302 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1303 loff_t oldsize = inode->i_size; 1304 loff_t newsize = attr->ia_size; 1305 1306 /* protected by i_rwsem */ 1307 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1308 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1309 return -EPERM; 1310 1311 if (newsize != oldsize) { 1312 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1313 oldsize, newsize); 1314 if (error) 1315 return error; 1316 i_size_write(inode, newsize); 1317 update_mtime = true; 1318 } else { 1319 update_ctime = false; 1320 } 1321 if (newsize <= oldsize) { 1322 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1323 if (oldsize > holebegin) 1324 unmap_mapping_range(inode->i_mapping, 1325 holebegin, 0, 1); 1326 if (info->alloced) 1327 shmem_truncate_range(inode, 1328 newsize, (loff_t)-1); 1329 /* unmap again to remove racily COWed private pages */ 1330 if (oldsize > holebegin) 1331 unmap_mapping_range(inode->i_mapping, 1332 holebegin, 0, 1); 1333 } 1334 } 1335 1336 if (is_quota_modification(idmap, inode, attr)) { 1337 error = dquot_initialize(inode); 1338 if (error) 1339 return error; 1340 } 1341 1342 /* Transfer quota accounting */ 1343 if (i_uid_needs_update(idmap, attr, inode) || 1344 i_gid_needs_update(idmap, attr, inode)) { 1345 error = dquot_transfer(idmap, inode, attr); 1346 if (error) 1347 return error; 1348 } 1349 1350 setattr_copy(idmap, inode, attr); 1351 if (attr->ia_valid & ATTR_MODE) 1352 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1353 if (!error && update_ctime) { 1354 inode_set_ctime_current(inode); 1355 if (update_mtime) 1356 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1357 inode_inc_iversion(inode); 1358 } 1359 return error; 1360 } 1361 1362 static void shmem_evict_inode(struct inode *inode) 1363 { 1364 struct shmem_inode_info *info = SHMEM_I(inode); 1365 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1366 size_t freed = 0; 1367 1368 if (shmem_mapping(inode->i_mapping)) { 1369 shmem_unacct_size(info->flags, inode->i_size); 1370 inode->i_size = 0; 1371 mapping_set_exiting(inode->i_mapping); 1372 shmem_truncate_range(inode, 0, (loff_t)-1); 1373 if (!list_empty(&info->shrinklist)) { 1374 spin_lock(&sbinfo->shrinklist_lock); 1375 if (!list_empty(&info->shrinklist)) { 1376 list_del_init(&info->shrinklist); 1377 sbinfo->shrinklist_len--; 1378 } 1379 spin_unlock(&sbinfo->shrinklist_lock); 1380 } 1381 while (!list_empty(&info->swaplist)) { 1382 /* Wait while shmem_unuse() is scanning this inode... */ 1383 wait_var_event(&info->stop_eviction, 1384 !atomic_read(&info->stop_eviction)); 1385 spin_lock(&shmem_swaplist_lock); 1386 /* ...but beware of the race if we peeked too early */ 1387 if (!atomic_read(&info->stop_eviction)) 1388 list_del_init(&info->swaplist); 1389 spin_unlock(&shmem_swaplist_lock); 1390 } 1391 } 1392 1393 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1394 shmem_free_inode(inode->i_sb, freed); 1395 WARN_ON(inode->i_blocks); 1396 clear_inode(inode); 1397 #ifdef CONFIG_TMPFS_QUOTA 1398 dquot_free_inode(inode); 1399 dquot_drop(inode); 1400 #endif 1401 } 1402 1403 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1404 pgoff_t start, struct folio_batch *fbatch, 1405 pgoff_t *indices, unsigned int type) 1406 { 1407 XA_STATE(xas, &mapping->i_pages, start); 1408 struct folio *folio; 1409 swp_entry_t entry; 1410 1411 rcu_read_lock(); 1412 xas_for_each(&xas, folio, ULONG_MAX) { 1413 if (xas_retry(&xas, folio)) 1414 continue; 1415 1416 if (!xa_is_value(folio)) 1417 continue; 1418 1419 entry = radix_to_swp_entry(folio); 1420 /* 1421 * swapin error entries can be found in the mapping. But they're 1422 * deliberately ignored here as we've done everything we can do. 1423 */ 1424 if (swp_type(entry) != type) 1425 continue; 1426 1427 indices[folio_batch_count(fbatch)] = xas.xa_index; 1428 if (!folio_batch_add(fbatch, folio)) 1429 break; 1430 1431 if (need_resched()) { 1432 xas_pause(&xas); 1433 cond_resched_rcu(); 1434 } 1435 } 1436 rcu_read_unlock(); 1437 1438 return folio_batch_count(fbatch); 1439 } 1440 1441 /* 1442 * Move the swapped pages for an inode to page cache. Returns the count 1443 * of pages swapped in, or the error in case of failure. 1444 */ 1445 static int shmem_unuse_swap_entries(struct inode *inode, 1446 struct folio_batch *fbatch, pgoff_t *indices) 1447 { 1448 int i = 0; 1449 int ret = 0; 1450 int error = 0; 1451 struct address_space *mapping = inode->i_mapping; 1452 1453 for (i = 0; i < folio_batch_count(fbatch); i++) { 1454 struct folio *folio = fbatch->folios[i]; 1455 1456 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1457 mapping_gfp_mask(mapping), NULL, NULL); 1458 if (error == 0) { 1459 folio_unlock(folio); 1460 folio_put(folio); 1461 ret++; 1462 } 1463 if (error == -ENOMEM) 1464 break; 1465 error = 0; 1466 } 1467 return error ? error : ret; 1468 } 1469 1470 /* 1471 * If swap found in inode, free it and move page from swapcache to filecache. 1472 */ 1473 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1474 { 1475 struct address_space *mapping = inode->i_mapping; 1476 pgoff_t start = 0; 1477 struct folio_batch fbatch; 1478 pgoff_t indices[PAGEVEC_SIZE]; 1479 int ret = 0; 1480 1481 do { 1482 folio_batch_init(&fbatch); 1483 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1484 indices, type)) { 1485 ret = 0; 1486 break; 1487 } 1488 1489 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1490 if (ret < 0) 1491 break; 1492 1493 start = indices[folio_batch_count(&fbatch) - 1]; 1494 } while (true); 1495 1496 return ret; 1497 } 1498 1499 /* 1500 * Read all the shared memory data that resides in the swap 1501 * device 'type' back into memory, so the swap device can be 1502 * unused. 1503 */ 1504 int shmem_unuse(unsigned int type) 1505 { 1506 struct shmem_inode_info *info, *next; 1507 int error = 0; 1508 1509 if (list_empty(&shmem_swaplist)) 1510 return 0; 1511 1512 spin_lock(&shmem_swaplist_lock); 1513 start_over: 1514 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1515 if (!info->swapped) { 1516 list_del_init(&info->swaplist); 1517 continue; 1518 } 1519 /* 1520 * Drop the swaplist mutex while searching the inode for swap; 1521 * but before doing so, make sure shmem_evict_inode() will not 1522 * remove placeholder inode from swaplist, nor let it be freed 1523 * (igrab() would protect from unlink, but not from unmount). 1524 */ 1525 atomic_inc(&info->stop_eviction); 1526 spin_unlock(&shmem_swaplist_lock); 1527 1528 error = shmem_unuse_inode(&info->vfs_inode, type); 1529 cond_resched(); 1530 1531 spin_lock(&shmem_swaplist_lock); 1532 if (atomic_dec_and_test(&info->stop_eviction)) 1533 wake_up_var(&info->stop_eviction); 1534 if (error) 1535 break; 1536 if (list_empty(&info->swaplist)) 1537 goto start_over; 1538 next = list_next_entry(info, swaplist); 1539 if (!info->swapped) 1540 list_del_init(&info->swaplist); 1541 } 1542 spin_unlock(&shmem_swaplist_lock); 1543 1544 return error; 1545 } 1546 1547 /** 1548 * shmem_writeout - Write the folio to swap 1549 * @folio: The folio to write 1550 * @plug: swap plug 1551 * @folio_list: list to put back folios on split 1552 * 1553 * Move the folio from the page cache to the swap cache. 1554 */ 1555 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1556 struct list_head *folio_list) 1557 { 1558 struct address_space *mapping = folio->mapping; 1559 struct inode *inode = mapping->host; 1560 struct shmem_inode_info *info = SHMEM_I(inode); 1561 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1562 pgoff_t index; 1563 int nr_pages; 1564 bool split = false; 1565 1566 if ((info->flags & VM_LOCKED) || sbinfo->noswap) 1567 goto redirty; 1568 1569 if (!total_swap_pages) 1570 goto redirty; 1571 1572 /* 1573 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1574 * split when swapping. 1575 * 1576 * And shrinkage of pages beyond i_size does not split swap, so 1577 * swapout of a large folio crossing i_size needs to split too 1578 * (unless fallocate has been used to preallocate beyond EOF). 1579 */ 1580 if (folio_test_large(folio)) { 1581 index = shmem_fallocend(inode, 1582 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1583 if ((index > folio->index && index < folio_next_index(folio)) || 1584 !IS_ENABLED(CONFIG_THP_SWAP)) 1585 split = true; 1586 } 1587 1588 if (split) { 1589 try_split: 1590 /* Ensure the subpages are still dirty */ 1591 folio_test_set_dirty(folio); 1592 if (split_folio_to_list(folio, folio_list)) 1593 goto redirty; 1594 folio_clear_dirty(folio); 1595 } 1596 1597 index = folio->index; 1598 nr_pages = folio_nr_pages(folio); 1599 1600 /* 1601 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1602 * value into swapfile.c, the only way we can correctly account for a 1603 * fallocated folio arriving here is now to initialize it and write it. 1604 * 1605 * That's okay for a folio already fallocated earlier, but if we have 1606 * not yet completed the fallocation, then (a) we want to keep track 1607 * of this folio in case we have to undo it, and (b) it may not be a 1608 * good idea to continue anyway, once we're pushing into swap. So 1609 * reactivate the folio, and let shmem_fallocate() quit when too many. 1610 */ 1611 if (!folio_test_uptodate(folio)) { 1612 if (inode->i_private) { 1613 struct shmem_falloc *shmem_falloc; 1614 spin_lock(&inode->i_lock); 1615 shmem_falloc = inode->i_private; 1616 if (shmem_falloc && 1617 !shmem_falloc->waitq && 1618 index >= shmem_falloc->start && 1619 index < shmem_falloc->next) 1620 shmem_falloc->nr_unswapped += nr_pages; 1621 else 1622 shmem_falloc = NULL; 1623 spin_unlock(&inode->i_lock); 1624 if (shmem_falloc) 1625 goto redirty; 1626 } 1627 folio_zero_range(folio, 0, folio_size(folio)); 1628 flush_dcache_folio(folio); 1629 folio_mark_uptodate(folio); 1630 } 1631 1632 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) { 1633 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1634 int error; 1635 1636 /* 1637 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1638 * if it's not already there. Do it now before the folio is 1639 * removed from page cache, when its pagelock no longer 1640 * protects the inode from eviction. And do it now, after 1641 * we've incremented swapped, because shmem_unuse() will 1642 * prune a !swapped inode from the swaplist. 1643 */ 1644 if (first_swapped) { 1645 spin_lock(&shmem_swaplist_lock); 1646 if (list_empty(&info->swaplist)) 1647 list_add(&info->swaplist, &shmem_swaplist); 1648 spin_unlock(&shmem_swaplist_lock); 1649 } 1650 1651 swap_shmem_alloc(folio->swap, nr_pages); 1652 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1653 1654 BUG_ON(folio_mapped(folio)); 1655 error = swap_writeout(folio, plug); 1656 if (error != AOP_WRITEPAGE_ACTIVATE) { 1657 /* folio has been unlocked */ 1658 return error; 1659 } 1660 1661 /* 1662 * The intention here is to avoid holding on to the swap when 1663 * zswap was unable to compress and unable to writeback; but 1664 * it will be appropriate if other reactivate cases are added. 1665 */ 1666 error = shmem_add_to_page_cache(folio, mapping, index, 1667 swp_to_radix_entry(folio->swap), 1668 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1669 /* Swap entry might be erased by racing shmem_free_swap() */ 1670 if (!error) { 1671 shmem_recalc_inode(inode, 0, -nr_pages); 1672 swap_free_nr(folio->swap, nr_pages); 1673 } 1674 1675 /* 1676 * The delete_from_swap_cache() below could be left for 1677 * shrink_folio_list()'s folio_free_swap() to dispose of; 1678 * but I'm a little nervous about letting this folio out of 1679 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1680 * e.g. folio_mapping(folio) might give an unexpected answer. 1681 */ 1682 delete_from_swap_cache(folio); 1683 goto redirty; 1684 } 1685 if (nr_pages > 1) 1686 goto try_split; 1687 redirty: 1688 folio_mark_dirty(folio); 1689 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1690 } 1691 EXPORT_SYMBOL_GPL(shmem_writeout); 1692 1693 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1694 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1695 { 1696 char buffer[64]; 1697 1698 if (!mpol || mpol->mode == MPOL_DEFAULT) 1699 return; /* show nothing */ 1700 1701 mpol_to_str(buffer, sizeof(buffer), mpol); 1702 1703 seq_printf(seq, ",mpol=%s", buffer); 1704 } 1705 1706 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1707 { 1708 struct mempolicy *mpol = NULL; 1709 if (sbinfo->mpol) { 1710 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1711 mpol = sbinfo->mpol; 1712 mpol_get(mpol); 1713 raw_spin_unlock(&sbinfo->stat_lock); 1714 } 1715 return mpol; 1716 } 1717 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1718 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1719 { 1720 } 1721 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1722 { 1723 return NULL; 1724 } 1725 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1726 1727 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1728 pgoff_t index, unsigned int order, pgoff_t *ilx); 1729 1730 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1731 struct shmem_inode_info *info, pgoff_t index) 1732 { 1733 struct mempolicy *mpol; 1734 pgoff_t ilx; 1735 struct folio *folio; 1736 1737 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1738 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1739 mpol_cond_put(mpol); 1740 1741 return folio; 1742 } 1743 1744 /* 1745 * Make sure huge_gfp is always more limited than limit_gfp. 1746 * Some of the flags set permissions, while others set limitations. 1747 */ 1748 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1749 { 1750 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1751 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1752 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1753 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1754 1755 /* Allow allocations only from the originally specified zones. */ 1756 result |= zoneflags; 1757 1758 /* 1759 * Minimize the result gfp by taking the union with the deny flags, 1760 * and the intersection of the allow flags. 1761 */ 1762 result |= (limit_gfp & denyflags); 1763 result |= (huge_gfp & limit_gfp) & allowflags; 1764 1765 return result; 1766 } 1767 1768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1769 bool shmem_hpage_pmd_enabled(void) 1770 { 1771 if (shmem_huge == SHMEM_HUGE_DENY) 1772 return false; 1773 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1774 return true; 1775 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1776 return true; 1777 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1778 return true; 1779 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1780 shmem_huge != SHMEM_HUGE_NEVER) 1781 return true; 1782 1783 return false; 1784 } 1785 1786 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1787 struct vm_area_struct *vma, pgoff_t index, 1788 loff_t write_end, bool shmem_huge_force) 1789 { 1790 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1791 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1792 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1793 unsigned int global_orders; 1794 1795 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags))) 1796 return 0; 1797 1798 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1799 shmem_huge_force, vma, vm_flags); 1800 /* Tmpfs huge pages allocation */ 1801 if (!vma || !vma_is_anon_shmem(vma)) 1802 return global_orders; 1803 1804 /* 1805 * Following the 'deny' semantics of the top level, force the huge 1806 * option off from all mounts. 1807 */ 1808 if (shmem_huge == SHMEM_HUGE_DENY) 1809 return 0; 1810 1811 /* 1812 * Only allow inherit orders if the top-level value is 'force', which 1813 * means non-PMD sized THP can not override 'huge' mount option now. 1814 */ 1815 if (shmem_huge == SHMEM_HUGE_FORCE) 1816 return READ_ONCE(huge_shmem_orders_inherit); 1817 1818 /* Allow mTHP that will be fully within i_size. */ 1819 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1820 1821 if (vm_flags & VM_HUGEPAGE) 1822 mask |= READ_ONCE(huge_shmem_orders_madvise); 1823 1824 if (global_orders > 0) 1825 mask |= READ_ONCE(huge_shmem_orders_inherit); 1826 1827 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1828 } 1829 1830 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1831 struct address_space *mapping, pgoff_t index, 1832 unsigned long orders) 1833 { 1834 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1835 pgoff_t aligned_index; 1836 unsigned long pages; 1837 int order; 1838 1839 if (vma) { 1840 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1841 if (!orders) 1842 return 0; 1843 } 1844 1845 /* Find the highest order that can add into the page cache */ 1846 order = highest_order(orders); 1847 while (orders) { 1848 pages = 1UL << order; 1849 aligned_index = round_down(index, pages); 1850 /* 1851 * Check for conflict before waiting on a huge allocation. 1852 * Conflict might be that a huge page has just been allocated 1853 * and added to page cache by a racing thread, or that there 1854 * is already at least one small page in the huge extent. 1855 * Be careful to retry when appropriate, but not forever! 1856 * Elsewhere -EEXIST would be the right code, but not here. 1857 */ 1858 if (!xa_find(&mapping->i_pages, &aligned_index, 1859 aligned_index + pages - 1, XA_PRESENT)) 1860 break; 1861 order = next_order(&orders, order); 1862 } 1863 1864 return orders; 1865 } 1866 #else 1867 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1868 struct address_space *mapping, pgoff_t index, 1869 unsigned long orders) 1870 { 1871 return 0; 1872 } 1873 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1874 1875 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1876 struct shmem_inode_info *info, pgoff_t index) 1877 { 1878 struct mempolicy *mpol; 1879 pgoff_t ilx; 1880 struct folio *folio; 1881 1882 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1883 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1884 mpol_cond_put(mpol); 1885 1886 return folio; 1887 } 1888 1889 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1890 gfp_t gfp, struct inode *inode, pgoff_t index, 1891 struct mm_struct *fault_mm, unsigned long orders) 1892 { 1893 struct address_space *mapping = inode->i_mapping; 1894 struct shmem_inode_info *info = SHMEM_I(inode); 1895 unsigned long suitable_orders = 0; 1896 struct folio *folio = NULL; 1897 long pages; 1898 int error, order; 1899 1900 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1901 orders = 0; 1902 1903 if (orders > 0) { 1904 suitable_orders = shmem_suitable_orders(inode, vmf, 1905 mapping, index, orders); 1906 1907 order = highest_order(suitable_orders); 1908 while (suitable_orders) { 1909 pages = 1UL << order; 1910 index = round_down(index, pages); 1911 folio = shmem_alloc_folio(gfp, order, info, index); 1912 if (folio) 1913 goto allocated; 1914 1915 if (pages == HPAGE_PMD_NR) 1916 count_vm_event(THP_FILE_FALLBACK); 1917 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1918 order = next_order(&suitable_orders, order); 1919 } 1920 } else { 1921 pages = 1; 1922 folio = shmem_alloc_folio(gfp, 0, info, index); 1923 } 1924 if (!folio) 1925 return ERR_PTR(-ENOMEM); 1926 1927 allocated: 1928 __folio_set_locked(folio); 1929 __folio_set_swapbacked(folio); 1930 1931 gfp &= GFP_RECLAIM_MASK; 1932 error = mem_cgroup_charge(folio, fault_mm, gfp); 1933 if (error) { 1934 if (xa_find(&mapping->i_pages, &index, 1935 index + pages - 1, XA_PRESENT)) { 1936 error = -EEXIST; 1937 } else if (pages > 1) { 1938 if (pages == HPAGE_PMD_NR) { 1939 count_vm_event(THP_FILE_FALLBACK); 1940 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1941 } 1942 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1943 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1944 } 1945 goto unlock; 1946 } 1947 1948 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1949 if (error) 1950 goto unlock; 1951 1952 error = shmem_inode_acct_blocks(inode, pages); 1953 if (error) { 1954 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1955 long freed; 1956 /* 1957 * Try to reclaim some space by splitting a few 1958 * large folios beyond i_size on the filesystem. 1959 */ 1960 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1961 /* 1962 * And do a shmem_recalc_inode() to account for freed pages: 1963 * except our folio is there in cache, so not quite balanced. 1964 */ 1965 spin_lock(&info->lock); 1966 freed = pages + info->alloced - info->swapped - 1967 READ_ONCE(mapping->nrpages); 1968 if (freed > 0) 1969 info->alloced -= freed; 1970 spin_unlock(&info->lock); 1971 if (freed > 0) 1972 shmem_inode_unacct_blocks(inode, freed); 1973 error = shmem_inode_acct_blocks(inode, pages); 1974 if (error) { 1975 filemap_remove_folio(folio); 1976 goto unlock; 1977 } 1978 } 1979 1980 shmem_recalc_inode(inode, pages, 0); 1981 folio_add_lru(folio); 1982 return folio; 1983 1984 unlock: 1985 folio_unlock(folio); 1986 folio_put(folio); 1987 return ERR_PTR(error); 1988 } 1989 1990 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 1991 struct vm_area_struct *vma, pgoff_t index, 1992 swp_entry_t entry, int order, gfp_t gfp) 1993 { 1994 struct shmem_inode_info *info = SHMEM_I(inode); 1995 struct folio *new; 1996 void *shadow; 1997 int nr_pages; 1998 1999 /* 2000 * We have arrived here because our zones are constrained, so don't 2001 * limit chance of success with further cpuset and node constraints. 2002 */ 2003 gfp &= ~GFP_CONSTRAINT_MASK; 2004 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) { 2005 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2006 2007 gfp = limit_gfp_mask(huge_gfp, gfp); 2008 } 2009 2010 new = shmem_alloc_folio(gfp, order, info, index); 2011 if (!new) 2012 return ERR_PTR(-ENOMEM); 2013 2014 nr_pages = folio_nr_pages(new); 2015 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2016 gfp, entry)) { 2017 folio_put(new); 2018 return ERR_PTR(-ENOMEM); 2019 } 2020 2021 /* 2022 * Prevent parallel swapin from proceeding with the swap cache flag. 2023 * 2024 * Of course there is another possible concurrent scenario as well, 2025 * that is to say, the swap cache flag of a large folio has already 2026 * been set by swapcache_prepare(), while another thread may have 2027 * already split the large swap entry stored in the shmem mapping. 2028 * In this case, shmem_add_to_page_cache() will help identify the 2029 * concurrent swapin and return -EEXIST. 2030 */ 2031 if (swapcache_prepare(entry, nr_pages)) { 2032 folio_put(new); 2033 return ERR_PTR(-EEXIST); 2034 } 2035 2036 __folio_set_locked(new); 2037 __folio_set_swapbacked(new); 2038 new->swap = entry; 2039 2040 memcg1_swapin(entry, nr_pages); 2041 shadow = get_shadow_from_swap_cache(entry); 2042 if (shadow) 2043 workingset_refault(new, shadow); 2044 folio_add_lru(new); 2045 swap_read_folio(new, NULL); 2046 return new; 2047 } 2048 2049 /* 2050 * When a page is moved from swapcache to shmem filecache (either by the 2051 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2052 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2053 * ignorance of the mapping it belongs to. If that mapping has special 2054 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2055 * we may need to copy to a suitable page before moving to filecache. 2056 * 2057 * In a future release, this may well be extended to respect cpuset and 2058 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2059 * but for now it is a simple matter of zone. 2060 */ 2061 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2062 { 2063 return folio_zonenum(folio) > gfp_zone(gfp); 2064 } 2065 2066 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2067 struct shmem_inode_info *info, pgoff_t index, 2068 struct vm_area_struct *vma) 2069 { 2070 struct folio *new, *old = *foliop; 2071 swp_entry_t entry = old->swap; 2072 struct address_space *swap_mapping = swap_address_space(entry); 2073 pgoff_t swap_index = swap_cache_index(entry); 2074 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 2075 int nr_pages = folio_nr_pages(old); 2076 int error = 0, i; 2077 2078 /* 2079 * We have arrived here because our zones are constrained, so don't 2080 * limit chance of success by further cpuset and node constraints. 2081 */ 2082 gfp &= ~GFP_CONSTRAINT_MASK; 2083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2084 if (nr_pages > 1) { 2085 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2086 2087 gfp = limit_gfp_mask(huge_gfp, gfp); 2088 } 2089 #endif 2090 2091 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2092 if (!new) 2093 return -ENOMEM; 2094 2095 folio_ref_add(new, nr_pages); 2096 folio_copy(new, old); 2097 flush_dcache_folio(new); 2098 2099 __folio_set_locked(new); 2100 __folio_set_swapbacked(new); 2101 folio_mark_uptodate(new); 2102 new->swap = entry; 2103 folio_set_swapcache(new); 2104 2105 /* Swap cache still stores N entries instead of a high-order entry */ 2106 xa_lock_irq(&swap_mapping->i_pages); 2107 for (i = 0; i < nr_pages; i++) { 2108 void *item = xas_load(&xas); 2109 2110 if (item != old) { 2111 error = -ENOENT; 2112 break; 2113 } 2114 2115 xas_store(&xas, new); 2116 xas_next(&xas); 2117 } 2118 if (!error) { 2119 mem_cgroup_replace_folio(old, new); 2120 shmem_update_stats(new, nr_pages); 2121 shmem_update_stats(old, -nr_pages); 2122 } 2123 xa_unlock_irq(&swap_mapping->i_pages); 2124 2125 if (unlikely(error)) { 2126 /* 2127 * Is this possible? I think not, now that our callers 2128 * check both the swapcache flag and folio->private 2129 * after getting the folio lock; but be defensive. 2130 * Reverse old to newpage for clear and free. 2131 */ 2132 old = new; 2133 } else { 2134 folio_add_lru(new); 2135 *foliop = new; 2136 } 2137 2138 folio_clear_swapcache(old); 2139 old->private = NULL; 2140 2141 folio_unlock(old); 2142 /* 2143 * The old folio are removed from swap cache, drop the 'nr_pages' 2144 * reference, as well as one temporary reference getting from swap 2145 * cache. 2146 */ 2147 folio_put_refs(old, nr_pages + 1); 2148 return error; 2149 } 2150 2151 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2152 struct folio *folio, swp_entry_t swap, 2153 bool skip_swapcache) 2154 { 2155 struct address_space *mapping = inode->i_mapping; 2156 swp_entry_t swapin_error; 2157 void *old; 2158 int nr_pages; 2159 2160 swapin_error = make_poisoned_swp_entry(); 2161 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2162 swp_to_radix_entry(swap), 2163 swp_to_radix_entry(swapin_error), 0); 2164 if (old != swp_to_radix_entry(swap)) 2165 return; 2166 2167 nr_pages = folio_nr_pages(folio); 2168 folio_wait_writeback(folio); 2169 if (!skip_swapcache) 2170 delete_from_swap_cache(folio); 2171 /* 2172 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2173 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2174 * in shmem_evict_inode(). 2175 */ 2176 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2177 swap_free_nr(swap, nr_pages); 2178 } 2179 2180 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2181 swp_entry_t swap, gfp_t gfp) 2182 { 2183 struct address_space *mapping = inode->i_mapping; 2184 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2185 int split_order = 0, entry_order; 2186 int i; 2187 2188 /* Convert user data gfp flags to xarray node gfp flags */ 2189 gfp &= GFP_RECLAIM_MASK; 2190 2191 for (;;) { 2192 void *old = NULL; 2193 int cur_order; 2194 pgoff_t swap_index; 2195 2196 xas_lock_irq(&xas); 2197 old = xas_load(&xas); 2198 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2199 xas_set_err(&xas, -EEXIST); 2200 goto unlock; 2201 } 2202 2203 entry_order = xas_get_order(&xas); 2204 2205 if (!entry_order) 2206 goto unlock; 2207 2208 /* Try to split large swap entry in pagecache */ 2209 cur_order = entry_order; 2210 swap_index = round_down(index, 1 << entry_order); 2211 2212 split_order = xas_try_split_min_order(cur_order); 2213 2214 while (cur_order > 0) { 2215 pgoff_t aligned_index = 2216 round_down(index, 1 << cur_order); 2217 pgoff_t swap_offset = aligned_index - swap_index; 2218 2219 xas_set_order(&xas, index, split_order); 2220 xas_try_split(&xas, old, cur_order); 2221 if (xas_error(&xas)) 2222 goto unlock; 2223 2224 /* 2225 * Re-set the swap entry after splitting, and the swap 2226 * offset of the original large entry must be continuous. 2227 */ 2228 for (i = 0; i < 1 << cur_order; 2229 i += (1 << split_order)) { 2230 swp_entry_t tmp; 2231 2232 tmp = swp_entry(swp_type(swap), 2233 swp_offset(swap) + swap_offset + 2234 i); 2235 __xa_store(&mapping->i_pages, aligned_index + i, 2236 swp_to_radix_entry(tmp), 0); 2237 } 2238 cur_order = split_order; 2239 split_order = xas_try_split_min_order(split_order); 2240 } 2241 2242 unlock: 2243 xas_unlock_irq(&xas); 2244 2245 if (!xas_nomem(&xas, gfp)) 2246 break; 2247 } 2248 2249 if (xas_error(&xas)) 2250 return xas_error(&xas); 2251 2252 return entry_order; 2253 } 2254 2255 /* 2256 * Swap in the folio pointed to by *foliop. 2257 * Caller has to make sure that *foliop contains a valid swapped folio. 2258 * Returns 0 and the folio in foliop if success. On failure, returns the 2259 * error code and NULL in *foliop. 2260 */ 2261 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2262 struct folio **foliop, enum sgp_type sgp, 2263 gfp_t gfp, struct vm_area_struct *vma, 2264 vm_fault_t *fault_type) 2265 { 2266 struct address_space *mapping = inode->i_mapping; 2267 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2268 struct shmem_inode_info *info = SHMEM_I(inode); 2269 struct swap_info_struct *si; 2270 struct folio *folio = NULL; 2271 bool skip_swapcache = false; 2272 swp_entry_t swap; 2273 int error, nr_pages, order, split_order; 2274 2275 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2276 swap = radix_to_swp_entry(*foliop); 2277 *foliop = NULL; 2278 2279 if (is_poisoned_swp_entry(swap)) 2280 return -EIO; 2281 2282 si = get_swap_device(swap); 2283 if (!si) { 2284 if (!shmem_confirm_swap(mapping, index, swap)) 2285 return -EEXIST; 2286 else 2287 return -EINVAL; 2288 } 2289 2290 /* Look it up and read it in.. */ 2291 folio = swap_cache_get_folio(swap, NULL, 0); 2292 order = xa_get_order(&mapping->i_pages, index); 2293 if (!folio) { 2294 int nr_pages = 1 << order; 2295 bool fallback_order0 = false; 2296 2297 /* Or update major stats only when swapin succeeds?? */ 2298 if (fault_type) { 2299 *fault_type |= VM_FAULT_MAJOR; 2300 count_vm_event(PGMAJFAULT); 2301 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2302 } 2303 2304 /* 2305 * If uffd is active for the vma, we need per-page fault 2306 * fidelity to maintain the uffd semantics, then fallback 2307 * to swapin order-0 folio, as well as for zswap case. 2308 * Any existing sub folio in the swap cache also blocks 2309 * mTHP swapin. 2310 */ 2311 if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) || 2312 !zswap_never_enabled() || 2313 non_swapcache_batch(swap, nr_pages) != nr_pages)) 2314 fallback_order0 = true; 2315 2316 /* Skip swapcache for synchronous device. */ 2317 if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2318 folio = shmem_swap_alloc_folio(inode, vma, index, swap, order, gfp); 2319 if (!IS_ERR(folio)) { 2320 skip_swapcache = true; 2321 goto alloced; 2322 } 2323 2324 /* 2325 * Fallback to swapin order-0 folio unless the swap entry 2326 * already exists. 2327 */ 2328 error = PTR_ERR(folio); 2329 folio = NULL; 2330 if (error == -EEXIST) 2331 goto failed; 2332 } 2333 2334 /* 2335 * Now swap device can only swap in order 0 folio, then we 2336 * should split the large swap entry stored in the pagecache 2337 * if necessary. 2338 */ 2339 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2340 if (split_order < 0) { 2341 error = split_order; 2342 goto failed; 2343 } 2344 2345 /* 2346 * If the large swap entry has already been split, it is 2347 * necessary to recalculate the new swap entry based on 2348 * the old order alignment. 2349 */ 2350 if (split_order > 0) { 2351 pgoff_t offset = index - round_down(index, 1 << split_order); 2352 2353 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2354 } 2355 2356 /* Here we actually start the io */ 2357 folio = shmem_swapin_cluster(swap, gfp, info, index); 2358 if (!folio) { 2359 error = -ENOMEM; 2360 goto failed; 2361 } 2362 } else if (order != folio_order(folio)) { 2363 /* 2364 * Swap readahead may swap in order 0 folios into swapcache 2365 * asynchronously, while the shmem mapping can still stores 2366 * large swap entries. In such cases, we should split the 2367 * large swap entry to prevent possible data corruption. 2368 */ 2369 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2370 if (split_order < 0) { 2371 folio_put(folio); 2372 folio = NULL; 2373 error = split_order; 2374 goto failed; 2375 } 2376 2377 /* 2378 * If the large swap entry has already been split, it is 2379 * necessary to recalculate the new swap entry based on 2380 * the old order alignment. 2381 */ 2382 if (split_order > 0) { 2383 pgoff_t offset = index - round_down(index, 1 << split_order); 2384 2385 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2386 } 2387 } 2388 2389 alloced: 2390 /* We have to do this with folio locked to prevent races */ 2391 folio_lock(folio); 2392 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2393 folio->swap.val != swap.val || 2394 !shmem_confirm_swap(mapping, index, swap) || 2395 xa_get_order(&mapping->i_pages, index) != folio_order(folio)) { 2396 error = -EEXIST; 2397 goto unlock; 2398 } 2399 if (!folio_test_uptodate(folio)) { 2400 error = -EIO; 2401 goto failed; 2402 } 2403 folio_wait_writeback(folio); 2404 nr_pages = folio_nr_pages(folio); 2405 2406 /* 2407 * Some architectures may have to restore extra metadata to the 2408 * folio after reading from swap. 2409 */ 2410 arch_swap_restore(folio_swap(swap, folio), folio); 2411 2412 if (shmem_should_replace_folio(folio, gfp)) { 2413 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2414 if (error) 2415 goto failed; 2416 } 2417 2418 error = shmem_add_to_page_cache(folio, mapping, 2419 round_down(index, nr_pages), 2420 swp_to_radix_entry(swap), gfp); 2421 if (error) 2422 goto failed; 2423 2424 shmem_recalc_inode(inode, 0, -nr_pages); 2425 2426 if (sgp == SGP_WRITE) 2427 folio_mark_accessed(folio); 2428 2429 if (skip_swapcache) { 2430 folio->swap.val = 0; 2431 swapcache_clear(si, swap, nr_pages); 2432 } else { 2433 delete_from_swap_cache(folio); 2434 } 2435 folio_mark_dirty(folio); 2436 swap_free_nr(swap, nr_pages); 2437 put_swap_device(si); 2438 2439 *foliop = folio; 2440 return 0; 2441 failed: 2442 if (!shmem_confirm_swap(mapping, index, swap)) 2443 error = -EEXIST; 2444 if (error == -EIO) 2445 shmem_set_folio_swapin_error(inode, index, folio, swap, 2446 skip_swapcache); 2447 unlock: 2448 if (skip_swapcache) 2449 swapcache_clear(si, swap, folio_nr_pages(folio)); 2450 if (folio) { 2451 folio_unlock(folio); 2452 folio_put(folio); 2453 } 2454 put_swap_device(si); 2455 2456 return error; 2457 } 2458 2459 /* 2460 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2461 * 2462 * If we allocate a new one we do not mark it dirty. That's up to the 2463 * vm. If we swap it in we mark it dirty since we also free the swap 2464 * entry since a page cannot live in both the swap and page cache. 2465 * 2466 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2467 */ 2468 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2469 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2470 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2471 { 2472 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2473 struct mm_struct *fault_mm; 2474 struct folio *folio; 2475 int error; 2476 bool alloced; 2477 unsigned long orders = 0; 2478 2479 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2480 return -EINVAL; 2481 2482 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2483 return -EFBIG; 2484 repeat: 2485 if (sgp <= SGP_CACHE && 2486 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2487 return -EINVAL; 2488 2489 alloced = false; 2490 fault_mm = vma ? vma->vm_mm : NULL; 2491 2492 folio = filemap_get_entry(inode->i_mapping, index); 2493 if (folio && vma && userfaultfd_minor(vma)) { 2494 if (!xa_is_value(folio)) 2495 folio_put(folio); 2496 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2497 return 0; 2498 } 2499 2500 if (xa_is_value(folio)) { 2501 error = shmem_swapin_folio(inode, index, &folio, 2502 sgp, gfp, vma, fault_type); 2503 if (error == -EEXIST) 2504 goto repeat; 2505 2506 *foliop = folio; 2507 return error; 2508 } 2509 2510 if (folio) { 2511 folio_lock(folio); 2512 2513 /* Has the folio been truncated or swapped out? */ 2514 if (unlikely(folio->mapping != inode->i_mapping)) { 2515 folio_unlock(folio); 2516 folio_put(folio); 2517 goto repeat; 2518 } 2519 if (sgp == SGP_WRITE) 2520 folio_mark_accessed(folio); 2521 if (folio_test_uptodate(folio)) 2522 goto out; 2523 /* fallocated folio */ 2524 if (sgp != SGP_READ) 2525 goto clear; 2526 folio_unlock(folio); 2527 folio_put(folio); 2528 } 2529 2530 /* 2531 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2532 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2533 */ 2534 *foliop = NULL; 2535 if (sgp == SGP_READ) 2536 return 0; 2537 if (sgp == SGP_NOALLOC) 2538 return -ENOENT; 2539 2540 /* 2541 * Fast cache lookup and swap lookup did not find it: allocate. 2542 */ 2543 2544 if (vma && userfaultfd_missing(vma)) { 2545 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2546 return 0; 2547 } 2548 2549 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2550 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2551 if (orders > 0) { 2552 gfp_t huge_gfp; 2553 2554 huge_gfp = vma_thp_gfp_mask(vma); 2555 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2556 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2557 inode, index, fault_mm, orders); 2558 if (!IS_ERR(folio)) { 2559 if (folio_test_pmd_mappable(folio)) 2560 count_vm_event(THP_FILE_ALLOC); 2561 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2562 goto alloced; 2563 } 2564 if (PTR_ERR(folio) == -EEXIST) 2565 goto repeat; 2566 } 2567 2568 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2569 if (IS_ERR(folio)) { 2570 error = PTR_ERR(folio); 2571 if (error == -EEXIST) 2572 goto repeat; 2573 folio = NULL; 2574 goto unlock; 2575 } 2576 2577 alloced: 2578 alloced = true; 2579 if (folio_test_large(folio) && 2580 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2581 folio_next_index(folio)) { 2582 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2583 struct shmem_inode_info *info = SHMEM_I(inode); 2584 /* 2585 * Part of the large folio is beyond i_size: subject 2586 * to shrink under memory pressure. 2587 */ 2588 spin_lock(&sbinfo->shrinklist_lock); 2589 /* 2590 * _careful to defend against unlocked access to 2591 * ->shrink_list in shmem_unused_huge_shrink() 2592 */ 2593 if (list_empty_careful(&info->shrinklist)) { 2594 list_add_tail(&info->shrinklist, 2595 &sbinfo->shrinklist); 2596 sbinfo->shrinklist_len++; 2597 } 2598 spin_unlock(&sbinfo->shrinklist_lock); 2599 } 2600 2601 if (sgp == SGP_WRITE) 2602 folio_set_referenced(folio); 2603 /* 2604 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2605 */ 2606 if (sgp == SGP_FALLOC) 2607 sgp = SGP_WRITE; 2608 clear: 2609 /* 2610 * Let SGP_WRITE caller clear ends if write does not fill folio; 2611 * but SGP_FALLOC on a folio fallocated earlier must initialize 2612 * it now, lest undo on failure cancel our earlier guarantee. 2613 */ 2614 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2615 long i, n = folio_nr_pages(folio); 2616 2617 for (i = 0; i < n; i++) 2618 clear_highpage(folio_page(folio, i)); 2619 flush_dcache_folio(folio); 2620 folio_mark_uptodate(folio); 2621 } 2622 2623 /* Perhaps the file has been truncated since we checked */ 2624 if (sgp <= SGP_CACHE && 2625 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2626 error = -EINVAL; 2627 goto unlock; 2628 } 2629 out: 2630 *foliop = folio; 2631 return 0; 2632 2633 /* 2634 * Error recovery. 2635 */ 2636 unlock: 2637 if (alloced) 2638 filemap_remove_folio(folio); 2639 shmem_recalc_inode(inode, 0, 0); 2640 if (folio) { 2641 folio_unlock(folio); 2642 folio_put(folio); 2643 } 2644 return error; 2645 } 2646 2647 /** 2648 * shmem_get_folio - find, and lock a shmem folio. 2649 * @inode: inode to search 2650 * @index: the page index. 2651 * @write_end: end of a write, could extend inode size 2652 * @foliop: pointer to the folio if found 2653 * @sgp: SGP_* flags to control behavior 2654 * 2655 * Looks up the page cache entry at @inode & @index. If a folio is 2656 * present, it is returned locked with an increased refcount. 2657 * 2658 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2659 * before unlocking the folio to ensure that the folio is not reclaimed. 2660 * There is no need to reserve space before calling folio_mark_dirty(). 2661 * 2662 * When no folio is found, the behavior depends on @sgp: 2663 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2664 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2665 * - for all other flags a new folio is allocated, inserted into the 2666 * page cache and returned locked in @foliop. 2667 * 2668 * Context: May sleep. 2669 * Return: 0 if successful, else a negative error code. 2670 */ 2671 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2672 struct folio **foliop, enum sgp_type sgp) 2673 { 2674 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2675 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2676 } 2677 EXPORT_SYMBOL_GPL(shmem_get_folio); 2678 2679 /* 2680 * This is like autoremove_wake_function, but it removes the wait queue 2681 * entry unconditionally - even if something else had already woken the 2682 * target. 2683 */ 2684 static int synchronous_wake_function(wait_queue_entry_t *wait, 2685 unsigned int mode, int sync, void *key) 2686 { 2687 int ret = default_wake_function(wait, mode, sync, key); 2688 list_del_init(&wait->entry); 2689 return ret; 2690 } 2691 2692 /* 2693 * Trinity finds that probing a hole which tmpfs is punching can 2694 * prevent the hole-punch from ever completing: which in turn 2695 * locks writers out with its hold on i_rwsem. So refrain from 2696 * faulting pages into the hole while it's being punched. Although 2697 * shmem_undo_range() does remove the additions, it may be unable to 2698 * keep up, as each new page needs its own unmap_mapping_range() call, 2699 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2700 * 2701 * It does not matter if we sometimes reach this check just before the 2702 * hole-punch begins, so that one fault then races with the punch: 2703 * we just need to make racing faults a rare case. 2704 * 2705 * The implementation below would be much simpler if we just used a 2706 * standard mutex or completion: but we cannot take i_rwsem in fault, 2707 * and bloating every shmem inode for this unlikely case would be sad. 2708 */ 2709 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2710 { 2711 struct shmem_falloc *shmem_falloc; 2712 struct file *fpin = NULL; 2713 vm_fault_t ret = 0; 2714 2715 spin_lock(&inode->i_lock); 2716 shmem_falloc = inode->i_private; 2717 if (shmem_falloc && 2718 shmem_falloc->waitq && 2719 vmf->pgoff >= shmem_falloc->start && 2720 vmf->pgoff < shmem_falloc->next) { 2721 wait_queue_head_t *shmem_falloc_waitq; 2722 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2723 2724 ret = VM_FAULT_NOPAGE; 2725 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2726 shmem_falloc_waitq = shmem_falloc->waitq; 2727 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2728 TASK_UNINTERRUPTIBLE); 2729 spin_unlock(&inode->i_lock); 2730 schedule(); 2731 2732 /* 2733 * shmem_falloc_waitq points into the shmem_fallocate() 2734 * stack of the hole-punching task: shmem_falloc_waitq 2735 * is usually invalid by the time we reach here, but 2736 * finish_wait() does not dereference it in that case; 2737 * though i_lock needed lest racing with wake_up_all(). 2738 */ 2739 spin_lock(&inode->i_lock); 2740 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2741 } 2742 spin_unlock(&inode->i_lock); 2743 if (fpin) { 2744 fput(fpin); 2745 ret = VM_FAULT_RETRY; 2746 } 2747 return ret; 2748 } 2749 2750 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2751 { 2752 struct inode *inode = file_inode(vmf->vma->vm_file); 2753 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2754 struct folio *folio = NULL; 2755 vm_fault_t ret = 0; 2756 int err; 2757 2758 /* 2759 * Trinity finds that probing a hole which tmpfs is punching can 2760 * prevent the hole-punch from ever completing: noted in i_private. 2761 */ 2762 if (unlikely(inode->i_private)) { 2763 ret = shmem_falloc_wait(vmf, inode); 2764 if (ret) 2765 return ret; 2766 } 2767 2768 WARN_ON_ONCE(vmf->page != NULL); 2769 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2770 gfp, vmf, &ret); 2771 if (err) 2772 return vmf_error(err); 2773 if (folio) { 2774 vmf->page = folio_file_page(folio, vmf->pgoff); 2775 ret |= VM_FAULT_LOCKED; 2776 } 2777 return ret; 2778 } 2779 2780 unsigned long shmem_get_unmapped_area(struct file *file, 2781 unsigned long uaddr, unsigned long len, 2782 unsigned long pgoff, unsigned long flags) 2783 { 2784 unsigned long addr; 2785 unsigned long offset; 2786 unsigned long inflated_len; 2787 unsigned long inflated_addr; 2788 unsigned long inflated_offset; 2789 unsigned long hpage_size; 2790 2791 if (len > TASK_SIZE) 2792 return -ENOMEM; 2793 2794 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2795 flags); 2796 2797 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2798 return addr; 2799 if (IS_ERR_VALUE(addr)) 2800 return addr; 2801 if (addr & ~PAGE_MASK) 2802 return addr; 2803 if (addr > TASK_SIZE - len) 2804 return addr; 2805 2806 if (shmem_huge == SHMEM_HUGE_DENY) 2807 return addr; 2808 if (flags & MAP_FIXED) 2809 return addr; 2810 /* 2811 * Our priority is to support MAP_SHARED mapped hugely; 2812 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2813 * But if caller specified an address hint and we allocated area there 2814 * successfully, respect that as before. 2815 */ 2816 if (uaddr == addr) 2817 return addr; 2818 2819 hpage_size = HPAGE_PMD_SIZE; 2820 if (shmem_huge != SHMEM_HUGE_FORCE) { 2821 struct super_block *sb; 2822 unsigned long __maybe_unused hpage_orders; 2823 int order = 0; 2824 2825 if (file) { 2826 VM_BUG_ON(file->f_op != &shmem_file_operations); 2827 sb = file_inode(file)->i_sb; 2828 } else { 2829 /* 2830 * Called directly from mm/mmap.c, or drivers/char/mem.c 2831 * for "/dev/zero", to create a shared anonymous object. 2832 */ 2833 if (IS_ERR(shm_mnt)) 2834 return addr; 2835 sb = shm_mnt->mnt_sb; 2836 2837 /* 2838 * Find the highest mTHP order used for anonymous shmem to 2839 * provide a suitable alignment address. 2840 */ 2841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2842 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2843 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2844 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2845 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2846 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2847 2848 if (hpage_orders > 0) { 2849 order = highest_order(hpage_orders); 2850 hpage_size = PAGE_SIZE << order; 2851 } 2852 #endif 2853 } 2854 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2855 return addr; 2856 } 2857 2858 if (len < hpage_size) 2859 return addr; 2860 2861 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2862 if (offset && offset + len < 2 * hpage_size) 2863 return addr; 2864 if ((addr & (hpage_size - 1)) == offset) 2865 return addr; 2866 2867 inflated_len = len + hpage_size - PAGE_SIZE; 2868 if (inflated_len > TASK_SIZE) 2869 return addr; 2870 if (inflated_len < len) 2871 return addr; 2872 2873 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2874 inflated_len, 0, flags); 2875 if (IS_ERR_VALUE(inflated_addr)) 2876 return addr; 2877 if (inflated_addr & ~PAGE_MASK) 2878 return addr; 2879 2880 inflated_offset = inflated_addr & (hpage_size - 1); 2881 inflated_addr += offset - inflated_offset; 2882 if (inflated_offset > offset) 2883 inflated_addr += hpage_size; 2884 2885 if (inflated_addr > TASK_SIZE - len) 2886 return addr; 2887 return inflated_addr; 2888 } 2889 2890 #ifdef CONFIG_NUMA 2891 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2892 { 2893 struct inode *inode = file_inode(vma->vm_file); 2894 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2895 } 2896 2897 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2898 unsigned long addr, pgoff_t *ilx) 2899 { 2900 struct inode *inode = file_inode(vma->vm_file); 2901 pgoff_t index; 2902 2903 /* 2904 * Bias interleave by inode number to distribute better across nodes; 2905 * but this interface is independent of which page order is used, so 2906 * supplies only that bias, letting caller apply the offset (adjusted 2907 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2908 */ 2909 *ilx = inode->i_ino; 2910 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2911 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2912 } 2913 2914 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2915 pgoff_t index, unsigned int order, pgoff_t *ilx) 2916 { 2917 struct mempolicy *mpol; 2918 2919 /* Bias interleave by inode number to distribute better across nodes */ 2920 *ilx = info->vfs_inode.i_ino + (index >> order); 2921 2922 mpol = mpol_shared_policy_lookup(&info->policy, index); 2923 return mpol ? mpol : get_task_policy(current); 2924 } 2925 #else 2926 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2927 pgoff_t index, unsigned int order, pgoff_t *ilx) 2928 { 2929 *ilx = 0; 2930 return NULL; 2931 } 2932 #endif /* CONFIG_NUMA */ 2933 2934 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2935 { 2936 struct inode *inode = file_inode(file); 2937 struct shmem_inode_info *info = SHMEM_I(inode); 2938 int retval = -ENOMEM; 2939 2940 /* 2941 * What serializes the accesses to info->flags? 2942 * ipc_lock_object() when called from shmctl_do_lock(), 2943 * no serialization needed when called from shm_destroy(). 2944 */ 2945 if (lock && !(info->flags & VM_LOCKED)) { 2946 if (!user_shm_lock(inode->i_size, ucounts)) 2947 goto out_nomem; 2948 info->flags |= VM_LOCKED; 2949 mapping_set_unevictable(file->f_mapping); 2950 } 2951 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2952 user_shm_unlock(inode->i_size, ucounts); 2953 info->flags &= ~VM_LOCKED; 2954 mapping_clear_unevictable(file->f_mapping); 2955 } 2956 retval = 0; 2957 2958 out_nomem: 2959 return retval; 2960 } 2961 2962 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2963 { 2964 struct inode *inode = file_inode(file); 2965 2966 file_accessed(file); 2967 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2968 if (inode->i_nlink) 2969 vma->vm_ops = &shmem_vm_ops; 2970 else 2971 vma->vm_ops = &shmem_anon_vm_ops; 2972 return 0; 2973 } 2974 2975 static int shmem_file_open(struct inode *inode, struct file *file) 2976 { 2977 file->f_mode |= FMODE_CAN_ODIRECT; 2978 return generic_file_open(inode, file); 2979 } 2980 2981 #ifdef CONFIG_TMPFS_XATTR 2982 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2983 2984 #if IS_ENABLED(CONFIG_UNICODE) 2985 /* 2986 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2987 * 2988 * The casefold file attribute needs some special checks. I can just be added to 2989 * an empty dir, and can't be removed from a non-empty dir. 2990 */ 2991 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2992 struct dentry *dentry, unsigned int *i_flags) 2993 { 2994 unsigned int old = inode->i_flags; 2995 struct super_block *sb = inode->i_sb; 2996 2997 if (fsflags & FS_CASEFOLD_FL) { 2998 if (!(old & S_CASEFOLD)) { 2999 if (!sb->s_encoding) 3000 return -EOPNOTSUPP; 3001 3002 if (!S_ISDIR(inode->i_mode)) 3003 return -ENOTDIR; 3004 3005 if (dentry && !simple_empty(dentry)) 3006 return -ENOTEMPTY; 3007 } 3008 3009 *i_flags = *i_flags | S_CASEFOLD; 3010 } else if (old & S_CASEFOLD) { 3011 if (dentry && !simple_empty(dentry)) 3012 return -ENOTEMPTY; 3013 } 3014 3015 return 0; 3016 } 3017 #else 3018 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3019 struct dentry *dentry, unsigned int *i_flags) 3020 { 3021 if (fsflags & FS_CASEFOLD_FL) 3022 return -EOPNOTSUPP; 3023 3024 return 0; 3025 } 3026 #endif 3027 3028 /* 3029 * chattr's fsflags are unrelated to extended attributes, 3030 * but tmpfs has chosen to enable them under the same config option. 3031 */ 3032 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3033 { 3034 unsigned int i_flags = 0; 3035 int ret; 3036 3037 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3038 if (ret) 3039 return ret; 3040 3041 if (fsflags & FS_NOATIME_FL) 3042 i_flags |= S_NOATIME; 3043 if (fsflags & FS_APPEND_FL) 3044 i_flags |= S_APPEND; 3045 if (fsflags & FS_IMMUTABLE_FL) 3046 i_flags |= S_IMMUTABLE; 3047 /* 3048 * But FS_NODUMP_FL does not require any action in i_flags. 3049 */ 3050 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3051 3052 return 0; 3053 } 3054 #else 3055 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3056 { 3057 } 3058 #define shmem_initxattrs NULL 3059 #endif 3060 3061 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3062 { 3063 return &SHMEM_I(inode)->dir_offsets; 3064 } 3065 3066 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3067 struct super_block *sb, 3068 struct inode *dir, umode_t mode, 3069 dev_t dev, unsigned long flags) 3070 { 3071 struct inode *inode; 3072 struct shmem_inode_info *info; 3073 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3074 ino_t ino; 3075 int err; 3076 3077 err = shmem_reserve_inode(sb, &ino); 3078 if (err) 3079 return ERR_PTR(err); 3080 3081 inode = new_inode(sb); 3082 if (!inode) { 3083 shmem_free_inode(sb, 0); 3084 return ERR_PTR(-ENOSPC); 3085 } 3086 3087 inode->i_ino = ino; 3088 inode_init_owner(idmap, inode, dir, mode); 3089 inode->i_blocks = 0; 3090 simple_inode_init_ts(inode); 3091 inode->i_generation = get_random_u32(); 3092 info = SHMEM_I(inode); 3093 memset(info, 0, (char *)inode - (char *)info); 3094 spin_lock_init(&info->lock); 3095 atomic_set(&info->stop_eviction, 0); 3096 info->seals = F_SEAL_SEAL; 3097 info->flags = flags & VM_NORESERVE; 3098 info->i_crtime = inode_get_mtime(inode); 3099 info->fsflags = (dir == NULL) ? 0 : 3100 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3101 if (info->fsflags) 3102 shmem_set_inode_flags(inode, info->fsflags, NULL); 3103 INIT_LIST_HEAD(&info->shrinklist); 3104 INIT_LIST_HEAD(&info->swaplist); 3105 simple_xattrs_init(&info->xattrs); 3106 cache_no_acl(inode); 3107 if (sbinfo->noswap) 3108 mapping_set_unevictable(inode->i_mapping); 3109 3110 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3111 if (sbinfo->huge) 3112 mapping_set_large_folios(inode->i_mapping); 3113 3114 switch (mode & S_IFMT) { 3115 default: 3116 inode->i_op = &shmem_special_inode_operations; 3117 init_special_inode(inode, mode, dev); 3118 break; 3119 case S_IFREG: 3120 inode->i_mapping->a_ops = &shmem_aops; 3121 inode->i_op = &shmem_inode_operations; 3122 inode->i_fop = &shmem_file_operations; 3123 mpol_shared_policy_init(&info->policy, 3124 shmem_get_sbmpol(sbinfo)); 3125 break; 3126 case S_IFDIR: 3127 inc_nlink(inode); 3128 /* Some things misbehave if size == 0 on a directory */ 3129 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3130 inode->i_op = &shmem_dir_inode_operations; 3131 inode->i_fop = &simple_offset_dir_operations; 3132 simple_offset_init(shmem_get_offset_ctx(inode)); 3133 break; 3134 case S_IFLNK: 3135 /* 3136 * Must not load anything in the rbtree, 3137 * mpol_free_shared_policy will not be called. 3138 */ 3139 mpol_shared_policy_init(&info->policy, NULL); 3140 break; 3141 } 3142 3143 lockdep_annotate_inode_mutex_key(inode); 3144 return inode; 3145 } 3146 3147 #ifdef CONFIG_TMPFS_QUOTA 3148 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3149 struct super_block *sb, struct inode *dir, 3150 umode_t mode, dev_t dev, unsigned long flags) 3151 { 3152 int err; 3153 struct inode *inode; 3154 3155 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3156 if (IS_ERR(inode)) 3157 return inode; 3158 3159 err = dquot_initialize(inode); 3160 if (err) 3161 goto errout; 3162 3163 err = dquot_alloc_inode(inode); 3164 if (err) { 3165 dquot_drop(inode); 3166 goto errout; 3167 } 3168 return inode; 3169 3170 errout: 3171 inode->i_flags |= S_NOQUOTA; 3172 iput(inode); 3173 return ERR_PTR(err); 3174 } 3175 #else 3176 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3177 struct super_block *sb, struct inode *dir, 3178 umode_t mode, dev_t dev, unsigned long flags) 3179 { 3180 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3181 } 3182 #endif /* CONFIG_TMPFS_QUOTA */ 3183 3184 #ifdef CONFIG_USERFAULTFD 3185 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3186 struct vm_area_struct *dst_vma, 3187 unsigned long dst_addr, 3188 unsigned long src_addr, 3189 uffd_flags_t flags, 3190 struct folio **foliop) 3191 { 3192 struct inode *inode = file_inode(dst_vma->vm_file); 3193 struct shmem_inode_info *info = SHMEM_I(inode); 3194 struct address_space *mapping = inode->i_mapping; 3195 gfp_t gfp = mapping_gfp_mask(mapping); 3196 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3197 void *page_kaddr; 3198 struct folio *folio; 3199 int ret; 3200 pgoff_t max_off; 3201 3202 if (shmem_inode_acct_blocks(inode, 1)) { 3203 /* 3204 * We may have got a page, returned -ENOENT triggering a retry, 3205 * and now we find ourselves with -ENOMEM. Release the page, to 3206 * avoid a BUG_ON in our caller. 3207 */ 3208 if (unlikely(*foliop)) { 3209 folio_put(*foliop); 3210 *foliop = NULL; 3211 } 3212 return -ENOMEM; 3213 } 3214 3215 if (!*foliop) { 3216 ret = -ENOMEM; 3217 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3218 if (!folio) 3219 goto out_unacct_blocks; 3220 3221 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3222 page_kaddr = kmap_local_folio(folio, 0); 3223 /* 3224 * The read mmap_lock is held here. Despite the 3225 * mmap_lock being read recursive a deadlock is still 3226 * possible if a writer has taken a lock. For example: 3227 * 3228 * process A thread 1 takes read lock on own mmap_lock 3229 * process A thread 2 calls mmap, blocks taking write lock 3230 * process B thread 1 takes page fault, read lock on own mmap lock 3231 * process B thread 2 calls mmap, blocks taking write lock 3232 * process A thread 1 blocks taking read lock on process B 3233 * process B thread 1 blocks taking read lock on process A 3234 * 3235 * Disable page faults to prevent potential deadlock 3236 * and retry the copy outside the mmap_lock. 3237 */ 3238 pagefault_disable(); 3239 ret = copy_from_user(page_kaddr, 3240 (const void __user *)src_addr, 3241 PAGE_SIZE); 3242 pagefault_enable(); 3243 kunmap_local(page_kaddr); 3244 3245 /* fallback to copy_from_user outside mmap_lock */ 3246 if (unlikely(ret)) { 3247 *foliop = folio; 3248 ret = -ENOENT; 3249 /* don't free the page */ 3250 goto out_unacct_blocks; 3251 } 3252 3253 flush_dcache_folio(folio); 3254 } else { /* ZEROPAGE */ 3255 clear_user_highpage(&folio->page, dst_addr); 3256 } 3257 } else { 3258 folio = *foliop; 3259 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3260 *foliop = NULL; 3261 } 3262 3263 VM_BUG_ON(folio_test_locked(folio)); 3264 VM_BUG_ON(folio_test_swapbacked(folio)); 3265 __folio_set_locked(folio); 3266 __folio_set_swapbacked(folio); 3267 __folio_mark_uptodate(folio); 3268 3269 ret = -EFAULT; 3270 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3271 if (unlikely(pgoff >= max_off)) 3272 goto out_release; 3273 3274 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3275 if (ret) 3276 goto out_release; 3277 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3278 if (ret) 3279 goto out_release; 3280 3281 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3282 &folio->page, true, flags); 3283 if (ret) 3284 goto out_delete_from_cache; 3285 3286 shmem_recalc_inode(inode, 1, 0); 3287 folio_unlock(folio); 3288 return 0; 3289 out_delete_from_cache: 3290 filemap_remove_folio(folio); 3291 out_release: 3292 folio_unlock(folio); 3293 folio_put(folio); 3294 out_unacct_blocks: 3295 shmem_inode_unacct_blocks(inode, 1); 3296 return ret; 3297 } 3298 #endif /* CONFIG_USERFAULTFD */ 3299 3300 #ifdef CONFIG_TMPFS 3301 static const struct inode_operations shmem_symlink_inode_operations; 3302 static const struct inode_operations shmem_short_symlink_operations; 3303 3304 static int 3305 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3306 loff_t pos, unsigned len, 3307 struct folio **foliop, void **fsdata) 3308 { 3309 struct inode *inode = mapping->host; 3310 struct shmem_inode_info *info = SHMEM_I(inode); 3311 pgoff_t index = pos >> PAGE_SHIFT; 3312 struct folio *folio; 3313 int ret = 0; 3314 3315 /* i_rwsem is held by caller */ 3316 if (unlikely(info->seals & (F_SEAL_GROW | 3317 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3318 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3319 return -EPERM; 3320 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3321 return -EPERM; 3322 } 3323 3324 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3325 if (ret) 3326 return ret; 3327 3328 if (folio_contain_hwpoisoned_page(folio)) { 3329 folio_unlock(folio); 3330 folio_put(folio); 3331 return -EIO; 3332 } 3333 3334 *foliop = folio; 3335 return 0; 3336 } 3337 3338 static int 3339 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3340 loff_t pos, unsigned len, unsigned copied, 3341 struct folio *folio, void *fsdata) 3342 { 3343 struct inode *inode = mapping->host; 3344 3345 if (pos + copied > inode->i_size) 3346 i_size_write(inode, pos + copied); 3347 3348 if (!folio_test_uptodate(folio)) { 3349 if (copied < folio_size(folio)) { 3350 size_t from = offset_in_folio(folio, pos); 3351 folio_zero_segments(folio, 0, from, 3352 from + copied, folio_size(folio)); 3353 } 3354 folio_mark_uptodate(folio); 3355 } 3356 folio_mark_dirty(folio); 3357 folio_unlock(folio); 3358 folio_put(folio); 3359 3360 return copied; 3361 } 3362 3363 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3364 { 3365 struct file *file = iocb->ki_filp; 3366 struct inode *inode = file_inode(file); 3367 struct address_space *mapping = inode->i_mapping; 3368 pgoff_t index; 3369 unsigned long offset; 3370 int error = 0; 3371 ssize_t retval = 0; 3372 3373 for (;;) { 3374 struct folio *folio = NULL; 3375 struct page *page = NULL; 3376 unsigned long nr, ret; 3377 loff_t end_offset, i_size = i_size_read(inode); 3378 bool fallback_page_copy = false; 3379 size_t fsize; 3380 3381 if (unlikely(iocb->ki_pos >= i_size)) 3382 break; 3383 3384 index = iocb->ki_pos >> PAGE_SHIFT; 3385 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3386 if (error) { 3387 if (error == -EINVAL) 3388 error = 0; 3389 break; 3390 } 3391 if (folio) { 3392 folio_unlock(folio); 3393 3394 page = folio_file_page(folio, index); 3395 if (PageHWPoison(page)) { 3396 folio_put(folio); 3397 error = -EIO; 3398 break; 3399 } 3400 3401 if (folio_test_large(folio) && 3402 folio_test_has_hwpoisoned(folio)) 3403 fallback_page_copy = true; 3404 } 3405 3406 /* 3407 * We must evaluate after, since reads (unlike writes) 3408 * are called without i_rwsem protection against truncate 3409 */ 3410 i_size = i_size_read(inode); 3411 if (unlikely(iocb->ki_pos >= i_size)) { 3412 if (folio) 3413 folio_put(folio); 3414 break; 3415 } 3416 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3417 if (folio && likely(!fallback_page_copy)) 3418 fsize = folio_size(folio); 3419 else 3420 fsize = PAGE_SIZE; 3421 offset = iocb->ki_pos & (fsize - 1); 3422 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3423 3424 if (folio) { 3425 /* 3426 * If users can be writing to this page using arbitrary 3427 * virtual addresses, take care about potential aliasing 3428 * before reading the page on the kernel side. 3429 */ 3430 if (mapping_writably_mapped(mapping)) { 3431 if (likely(!fallback_page_copy)) 3432 flush_dcache_folio(folio); 3433 else 3434 flush_dcache_page(page); 3435 } 3436 3437 /* 3438 * Mark the folio accessed if we read the beginning. 3439 */ 3440 if (!offset) 3441 folio_mark_accessed(folio); 3442 /* 3443 * Ok, we have the page, and it's up-to-date, so 3444 * now we can copy it to user space... 3445 */ 3446 if (likely(!fallback_page_copy)) 3447 ret = copy_folio_to_iter(folio, offset, nr, to); 3448 else 3449 ret = copy_page_to_iter(page, offset, nr, to); 3450 folio_put(folio); 3451 } else if (user_backed_iter(to)) { 3452 /* 3453 * Copy to user tends to be so well optimized, but 3454 * clear_user() not so much, that it is noticeably 3455 * faster to copy the zero page instead of clearing. 3456 */ 3457 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3458 } else { 3459 /* 3460 * But submitting the same page twice in a row to 3461 * splice() - or others? - can result in confusion: 3462 * so don't attempt that optimization on pipes etc. 3463 */ 3464 ret = iov_iter_zero(nr, to); 3465 } 3466 3467 retval += ret; 3468 iocb->ki_pos += ret; 3469 3470 if (!iov_iter_count(to)) 3471 break; 3472 if (ret < nr) { 3473 error = -EFAULT; 3474 break; 3475 } 3476 cond_resched(); 3477 } 3478 3479 file_accessed(file); 3480 return retval ? retval : error; 3481 } 3482 3483 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3484 { 3485 struct file *file = iocb->ki_filp; 3486 struct inode *inode = file->f_mapping->host; 3487 ssize_t ret; 3488 3489 inode_lock(inode); 3490 ret = generic_write_checks(iocb, from); 3491 if (ret <= 0) 3492 goto unlock; 3493 ret = file_remove_privs(file); 3494 if (ret) 3495 goto unlock; 3496 ret = file_update_time(file); 3497 if (ret) 3498 goto unlock; 3499 ret = generic_perform_write(iocb, from); 3500 unlock: 3501 inode_unlock(inode); 3502 return ret; 3503 } 3504 3505 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3506 struct pipe_buffer *buf) 3507 { 3508 return true; 3509 } 3510 3511 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3512 struct pipe_buffer *buf) 3513 { 3514 } 3515 3516 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3517 struct pipe_buffer *buf) 3518 { 3519 return false; 3520 } 3521 3522 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3523 .release = zero_pipe_buf_release, 3524 .try_steal = zero_pipe_buf_try_steal, 3525 .get = zero_pipe_buf_get, 3526 }; 3527 3528 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3529 loff_t fpos, size_t size) 3530 { 3531 size_t offset = fpos & ~PAGE_MASK; 3532 3533 size = min_t(size_t, size, PAGE_SIZE - offset); 3534 3535 if (!pipe_is_full(pipe)) { 3536 struct pipe_buffer *buf = pipe_head_buf(pipe); 3537 3538 *buf = (struct pipe_buffer) { 3539 .ops = &zero_pipe_buf_ops, 3540 .page = ZERO_PAGE(0), 3541 .offset = offset, 3542 .len = size, 3543 }; 3544 pipe->head++; 3545 } 3546 3547 return size; 3548 } 3549 3550 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3551 struct pipe_inode_info *pipe, 3552 size_t len, unsigned int flags) 3553 { 3554 struct inode *inode = file_inode(in); 3555 struct address_space *mapping = inode->i_mapping; 3556 struct folio *folio = NULL; 3557 size_t total_spliced = 0, used, npages, n, part; 3558 loff_t isize; 3559 int error = 0; 3560 3561 /* Work out how much data we can actually add into the pipe */ 3562 used = pipe_buf_usage(pipe); 3563 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3564 len = min_t(size_t, len, npages * PAGE_SIZE); 3565 3566 do { 3567 bool fallback_page_splice = false; 3568 struct page *page = NULL; 3569 pgoff_t index; 3570 size_t size; 3571 3572 if (*ppos >= i_size_read(inode)) 3573 break; 3574 3575 index = *ppos >> PAGE_SHIFT; 3576 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3577 if (error) { 3578 if (error == -EINVAL) 3579 error = 0; 3580 break; 3581 } 3582 if (folio) { 3583 folio_unlock(folio); 3584 3585 page = folio_file_page(folio, index); 3586 if (PageHWPoison(page)) { 3587 error = -EIO; 3588 break; 3589 } 3590 3591 if (folio_test_large(folio) && 3592 folio_test_has_hwpoisoned(folio)) 3593 fallback_page_splice = true; 3594 } 3595 3596 /* 3597 * i_size must be checked after we know the pages are Uptodate. 3598 * 3599 * Checking i_size after the check allows us to calculate 3600 * the correct value for "nr", which means the zero-filled 3601 * part of the page is not copied back to userspace (unless 3602 * another truncate extends the file - this is desired though). 3603 */ 3604 isize = i_size_read(inode); 3605 if (unlikely(*ppos >= isize)) 3606 break; 3607 /* 3608 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3609 * pages. 3610 */ 3611 size = len; 3612 if (unlikely(fallback_page_splice)) { 3613 size_t offset = *ppos & ~PAGE_MASK; 3614 3615 size = umin(size, PAGE_SIZE - offset); 3616 } 3617 part = min_t(loff_t, isize - *ppos, size); 3618 3619 if (folio) { 3620 /* 3621 * If users can be writing to this page using arbitrary 3622 * virtual addresses, take care about potential aliasing 3623 * before reading the page on the kernel side. 3624 */ 3625 if (mapping_writably_mapped(mapping)) { 3626 if (likely(!fallback_page_splice)) 3627 flush_dcache_folio(folio); 3628 else 3629 flush_dcache_page(page); 3630 } 3631 folio_mark_accessed(folio); 3632 /* 3633 * Ok, we have the page, and it's up-to-date, so we can 3634 * now splice it into the pipe. 3635 */ 3636 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3637 folio_put(folio); 3638 folio = NULL; 3639 } else { 3640 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3641 } 3642 3643 if (!n) 3644 break; 3645 len -= n; 3646 total_spliced += n; 3647 *ppos += n; 3648 in->f_ra.prev_pos = *ppos; 3649 if (pipe_is_full(pipe)) 3650 break; 3651 3652 cond_resched(); 3653 } while (len); 3654 3655 if (folio) 3656 folio_put(folio); 3657 3658 file_accessed(in); 3659 return total_spliced ? total_spliced : error; 3660 } 3661 3662 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3663 { 3664 struct address_space *mapping = file->f_mapping; 3665 struct inode *inode = mapping->host; 3666 3667 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3668 return generic_file_llseek_size(file, offset, whence, 3669 MAX_LFS_FILESIZE, i_size_read(inode)); 3670 if (offset < 0) 3671 return -ENXIO; 3672 3673 inode_lock(inode); 3674 /* We're holding i_rwsem so we can access i_size directly */ 3675 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3676 if (offset >= 0) 3677 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3678 inode_unlock(inode); 3679 return offset; 3680 } 3681 3682 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3683 loff_t len) 3684 { 3685 struct inode *inode = file_inode(file); 3686 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3687 struct shmem_inode_info *info = SHMEM_I(inode); 3688 struct shmem_falloc shmem_falloc; 3689 pgoff_t start, index, end, undo_fallocend; 3690 int error; 3691 3692 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3693 return -EOPNOTSUPP; 3694 3695 inode_lock(inode); 3696 3697 if (mode & FALLOC_FL_PUNCH_HOLE) { 3698 struct address_space *mapping = file->f_mapping; 3699 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3700 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3701 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3702 3703 /* protected by i_rwsem */ 3704 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3705 error = -EPERM; 3706 goto out; 3707 } 3708 3709 shmem_falloc.waitq = &shmem_falloc_waitq; 3710 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3711 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3712 spin_lock(&inode->i_lock); 3713 inode->i_private = &shmem_falloc; 3714 spin_unlock(&inode->i_lock); 3715 3716 if ((u64)unmap_end > (u64)unmap_start) 3717 unmap_mapping_range(mapping, unmap_start, 3718 1 + unmap_end - unmap_start, 0); 3719 shmem_truncate_range(inode, offset, offset + len - 1); 3720 /* No need to unmap again: hole-punching leaves COWed pages */ 3721 3722 spin_lock(&inode->i_lock); 3723 inode->i_private = NULL; 3724 wake_up_all(&shmem_falloc_waitq); 3725 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3726 spin_unlock(&inode->i_lock); 3727 error = 0; 3728 goto out; 3729 } 3730 3731 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3732 error = inode_newsize_ok(inode, offset + len); 3733 if (error) 3734 goto out; 3735 3736 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3737 error = -EPERM; 3738 goto out; 3739 } 3740 3741 start = offset >> PAGE_SHIFT; 3742 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3743 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3744 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3745 error = -ENOSPC; 3746 goto out; 3747 } 3748 3749 shmem_falloc.waitq = NULL; 3750 shmem_falloc.start = start; 3751 shmem_falloc.next = start; 3752 shmem_falloc.nr_falloced = 0; 3753 shmem_falloc.nr_unswapped = 0; 3754 spin_lock(&inode->i_lock); 3755 inode->i_private = &shmem_falloc; 3756 spin_unlock(&inode->i_lock); 3757 3758 /* 3759 * info->fallocend is only relevant when huge pages might be 3760 * involved: to prevent split_huge_page() freeing fallocated 3761 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3762 */ 3763 undo_fallocend = info->fallocend; 3764 if (info->fallocend < end) 3765 info->fallocend = end; 3766 3767 for (index = start; index < end; ) { 3768 struct folio *folio; 3769 3770 /* 3771 * Check for fatal signal so that we abort early in OOM 3772 * situations. We don't want to abort in case of non-fatal 3773 * signals as large fallocate can take noticeable time and 3774 * e.g. periodic timers may result in fallocate constantly 3775 * restarting. 3776 */ 3777 if (fatal_signal_pending(current)) 3778 error = -EINTR; 3779 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3780 error = -ENOMEM; 3781 else 3782 error = shmem_get_folio(inode, index, offset + len, 3783 &folio, SGP_FALLOC); 3784 if (error) { 3785 info->fallocend = undo_fallocend; 3786 /* Remove the !uptodate folios we added */ 3787 if (index > start) { 3788 shmem_undo_range(inode, 3789 (loff_t)start << PAGE_SHIFT, 3790 ((loff_t)index << PAGE_SHIFT) - 1, true); 3791 } 3792 goto undone; 3793 } 3794 3795 /* 3796 * Here is a more important optimization than it appears: 3797 * a second SGP_FALLOC on the same large folio will clear it, 3798 * making it uptodate and un-undoable if we fail later. 3799 */ 3800 index = folio_next_index(folio); 3801 /* Beware 32-bit wraparound */ 3802 if (!index) 3803 index--; 3804 3805 /* 3806 * Inform shmem_writeout() how far we have reached. 3807 * No need for lock or barrier: we have the page lock. 3808 */ 3809 if (!folio_test_uptodate(folio)) 3810 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3811 shmem_falloc.next = index; 3812 3813 /* 3814 * If !uptodate, leave it that way so that freeable folios 3815 * can be recognized if we need to rollback on error later. 3816 * But mark it dirty so that memory pressure will swap rather 3817 * than free the folios we are allocating (and SGP_CACHE folios 3818 * might still be clean: we now need to mark those dirty too). 3819 */ 3820 folio_mark_dirty(folio); 3821 folio_unlock(folio); 3822 folio_put(folio); 3823 cond_resched(); 3824 } 3825 3826 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3827 i_size_write(inode, offset + len); 3828 undone: 3829 spin_lock(&inode->i_lock); 3830 inode->i_private = NULL; 3831 spin_unlock(&inode->i_lock); 3832 out: 3833 if (!error) 3834 file_modified(file); 3835 inode_unlock(inode); 3836 return error; 3837 } 3838 3839 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3840 { 3841 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3842 3843 buf->f_type = TMPFS_MAGIC; 3844 buf->f_bsize = PAGE_SIZE; 3845 buf->f_namelen = NAME_MAX; 3846 if (sbinfo->max_blocks) { 3847 buf->f_blocks = sbinfo->max_blocks; 3848 buf->f_bavail = 3849 buf->f_bfree = sbinfo->max_blocks - 3850 percpu_counter_sum(&sbinfo->used_blocks); 3851 } 3852 if (sbinfo->max_inodes) { 3853 buf->f_files = sbinfo->max_inodes; 3854 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3855 } 3856 /* else leave those fields 0 like simple_statfs */ 3857 3858 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3859 3860 return 0; 3861 } 3862 3863 /* 3864 * File creation. Allocate an inode, and we're done.. 3865 */ 3866 static int 3867 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3868 struct dentry *dentry, umode_t mode, dev_t dev) 3869 { 3870 struct inode *inode; 3871 int error; 3872 3873 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3874 return -EINVAL; 3875 3876 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3877 if (IS_ERR(inode)) 3878 return PTR_ERR(inode); 3879 3880 error = simple_acl_create(dir, inode); 3881 if (error) 3882 goto out_iput; 3883 error = security_inode_init_security(inode, dir, &dentry->d_name, 3884 shmem_initxattrs, NULL); 3885 if (error && error != -EOPNOTSUPP) 3886 goto out_iput; 3887 3888 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3889 if (error) 3890 goto out_iput; 3891 3892 dir->i_size += BOGO_DIRENT_SIZE; 3893 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3894 inode_inc_iversion(dir); 3895 3896 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3897 d_add(dentry, inode); 3898 else 3899 d_instantiate(dentry, inode); 3900 3901 dget(dentry); /* Extra count - pin the dentry in core */ 3902 return error; 3903 3904 out_iput: 3905 iput(inode); 3906 return error; 3907 } 3908 3909 static int 3910 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3911 struct file *file, umode_t mode) 3912 { 3913 struct inode *inode; 3914 int error; 3915 3916 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3917 if (IS_ERR(inode)) { 3918 error = PTR_ERR(inode); 3919 goto err_out; 3920 } 3921 error = security_inode_init_security(inode, dir, NULL, 3922 shmem_initxattrs, NULL); 3923 if (error && error != -EOPNOTSUPP) 3924 goto out_iput; 3925 error = simple_acl_create(dir, inode); 3926 if (error) 3927 goto out_iput; 3928 d_tmpfile(file, inode); 3929 3930 err_out: 3931 return finish_open_simple(file, error); 3932 out_iput: 3933 iput(inode); 3934 return error; 3935 } 3936 3937 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3938 struct dentry *dentry, umode_t mode) 3939 { 3940 int error; 3941 3942 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3943 if (error) 3944 return ERR_PTR(error); 3945 inc_nlink(dir); 3946 return NULL; 3947 } 3948 3949 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3950 struct dentry *dentry, umode_t mode, bool excl) 3951 { 3952 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3953 } 3954 3955 /* 3956 * Link a file.. 3957 */ 3958 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3959 struct dentry *dentry) 3960 { 3961 struct inode *inode = d_inode(old_dentry); 3962 int ret = 0; 3963 3964 /* 3965 * No ordinary (disk based) filesystem counts links as inodes; 3966 * but each new link needs a new dentry, pinning lowmem, and 3967 * tmpfs dentries cannot be pruned until they are unlinked. 3968 * But if an O_TMPFILE file is linked into the tmpfs, the 3969 * first link must skip that, to get the accounting right. 3970 */ 3971 if (inode->i_nlink) { 3972 ret = shmem_reserve_inode(inode->i_sb, NULL); 3973 if (ret) 3974 goto out; 3975 } 3976 3977 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3978 if (ret) { 3979 if (inode->i_nlink) 3980 shmem_free_inode(inode->i_sb, 0); 3981 goto out; 3982 } 3983 3984 dir->i_size += BOGO_DIRENT_SIZE; 3985 inode_set_mtime_to_ts(dir, 3986 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3987 inode_inc_iversion(dir); 3988 inc_nlink(inode); 3989 ihold(inode); /* New dentry reference */ 3990 dget(dentry); /* Extra pinning count for the created dentry */ 3991 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3992 d_add(dentry, inode); 3993 else 3994 d_instantiate(dentry, inode); 3995 out: 3996 return ret; 3997 } 3998 3999 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 4000 { 4001 struct inode *inode = d_inode(dentry); 4002 4003 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 4004 shmem_free_inode(inode->i_sb, 0); 4005 4006 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4007 4008 dir->i_size -= BOGO_DIRENT_SIZE; 4009 inode_set_mtime_to_ts(dir, 4010 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 4011 inode_inc_iversion(dir); 4012 drop_nlink(inode); 4013 dput(dentry); /* Undo the count from "create" - does all the work */ 4014 4015 /* 4016 * For now, VFS can't deal with case-insensitive negative dentries, so 4017 * we invalidate them 4018 */ 4019 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4020 d_invalidate(dentry); 4021 4022 return 0; 4023 } 4024 4025 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 4026 { 4027 if (!simple_empty(dentry)) 4028 return -ENOTEMPTY; 4029 4030 drop_nlink(d_inode(dentry)); 4031 drop_nlink(dir); 4032 return shmem_unlink(dir, dentry); 4033 } 4034 4035 static int shmem_whiteout(struct mnt_idmap *idmap, 4036 struct inode *old_dir, struct dentry *old_dentry) 4037 { 4038 struct dentry *whiteout; 4039 int error; 4040 4041 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4042 if (!whiteout) 4043 return -ENOMEM; 4044 4045 error = shmem_mknod(idmap, old_dir, whiteout, 4046 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4047 dput(whiteout); 4048 if (error) 4049 return error; 4050 4051 /* 4052 * Cheat and hash the whiteout while the old dentry is still in 4053 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 4054 * 4055 * d_lookup() will consistently find one of them at this point, 4056 * not sure which one, but that isn't even important. 4057 */ 4058 d_rehash(whiteout); 4059 return 0; 4060 } 4061 4062 /* 4063 * The VFS layer already does all the dentry stuff for rename, 4064 * we just have to decrement the usage count for the target if 4065 * it exists so that the VFS layer correctly free's it when it 4066 * gets overwritten. 4067 */ 4068 static int shmem_rename2(struct mnt_idmap *idmap, 4069 struct inode *old_dir, struct dentry *old_dentry, 4070 struct inode *new_dir, struct dentry *new_dentry, 4071 unsigned int flags) 4072 { 4073 struct inode *inode = d_inode(old_dentry); 4074 int they_are_dirs = S_ISDIR(inode->i_mode); 4075 int error; 4076 4077 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4078 return -EINVAL; 4079 4080 if (flags & RENAME_EXCHANGE) 4081 return simple_offset_rename_exchange(old_dir, old_dentry, 4082 new_dir, new_dentry); 4083 4084 if (!simple_empty(new_dentry)) 4085 return -ENOTEMPTY; 4086 4087 if (flags & RENAME_WHITEOUT) { 4088 error = shmem_whiteout(idmap, old_dir, old_dentry); 4089 if (error) 4090 return error; 4091 } 4092 4093 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4094 if (error) 4095 return error; 4096 4097 if (d_really_is_positive(new_dentry)) { 4098 (void) shmem_unlink(new_dir, new_dentry); 4099 if (they_are_dirs) { 4100 drop_nlink(d_inode(new_dentry)); 4101 drop_nlink(old_dir); 4102 } 4103 } else if (they_are_dirs) { 4104 drop_nlink(old_dir); 4105 inc_nlink(new_dir); 4106 } 4107 4108 old_dir->i_size -= BOGO_DIRENT_SIZE; 4109 new_dir->i_size += BOGO_DIRENT_SIZE; 4110 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4111 inode_inc_iversion(old_dir); 4112 inode_inc_iversion(new_dir); 4113 return 0; 4114 } 4115 4116 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4117 struct dentry *dentry, const char *symname) 4118 { 4119 int error; 4120 int len; 4121 struct inode *inode; 4122 struct folio *folio; 4123 char *link; 4124 4125 len = strlen(symname) + 1; 4126 if (len > PAGE_SIZE) 4127 return -ENAMETOOLONG; 4128 4129 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4130 VM_NORESERVE); 4131 if (IS_ERR(inode)) 4132 return PTR_ERR(inode); 4133 4134 error = security_inode_init_security(inode, dir, &dentry->d_name, 4135 shmem_initxattrs, NULL); 4136 if (error && error != -EOPNOTSUPP) 4137 goto out_iput; 4138 4139 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4140 if (error) 4141 goto out_iput; 4142 4143 inode->i_size = len-1; 4144 if (len <= SHORT_SYMLINK_LEN) { 4145 link = kmemdup(symname, len, GFP_KERNEL); 4146 if (!link) { 4147 error = -ENOMEM; 4148 goto out_remove_offset; 4149 } 4150 inode->i_op = &shmem_short_symlink_operations; 4151 inode_set_cached_link(inode, link, len - 1); 4152 } else { 4153 inode_nohighmem(inode); 4154 inode->i_mapping->a_ops = &shmem_aops; 4155 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4156 if (error) 4157 goto out_remove_offset; 4158 inode->i_op = &shmem_symlink_inode_operations; 4159 memcpy(folio_address(folio), symname, len); 4160 folio_mark_uptodate(folio); 4161 folio_mark_dirty(folio); 4162 folio_unlock(folio); 4163 folio_put(folio); 4164 } 4165 dir->i_size += BOGO_DIRENT_SIZE; 4166 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4167 inode_inc_iversion(dir); 4168 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4169 d_add(dentry, inode); 4170 else 4171 d_instantiate(dentry, inode); 4172 dget(dentry); 4173 return 0; 4174 4175 out_remove_offset: 4176 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4177 out_iput: 4178 iput(inode); 4179 return error; 4180 } 4181 4182 static void shmem_put_link(void *arg) 4183 { 4184 folio_mark_accessed(arg); 4185 folio_put(arg); 4186 } 4187 4188 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4189 struct delayed_call *done) 4190 { 4191 struct folio *folio = NULL; 4192 int error; 4193 4194 if (!dentry) { 4195 folio = filemap_get_folio(inode->i_mapping, 0); 4196 if (IS_ERR(folio)) 4197 return ERR_PTR(-ECHILD); 4198 if (PageHWPoison(folio_page(folio, 0)) || 4199 !folio_test_uptodate(folio)) { 4200 folio_put(folio); 4201 return ERR_PTR(-ECHILD); 4202 } 4203 } else { 4204 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4205 if (error) 4206 return ERR_PTR(error); 4207 if (!folio) 4208 return ERR_PTR(-ECHILD); 4209 if (PageHWPoison(folio_page(folio, 0))) { 4210 folio_unlock(folio); 4211 folio_put(folio); 4212 return ERR_PTR(-ECHILD); 4213 } 4214 folio_unlock(folio); 4215 } 4216 set_delayed_call(done, shmem_put_link, folio); 4217 return folio_address(folio); 4218 } 4219 4220 #ifdef CONFIG_TMPFS_XATTR 4221 4222 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4223 { 4224 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4225 4226 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4227 4228 return 0; 4229 } 4230 4231 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4232 struct dentry *dentry, struct file_kattr *fa) 4233 { 4234 struct inode *inode = d_inode(dentry); 4235 struct shmem_inode_info *info = SHMEM_I(inode); 4236 int ret, flags; 4237 4238 if (fileattr_has_fsx(fa)) 4239 return -EOPNOTSUPP; 4240 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4241 return -EOPNOTSUPP; 4242 4243 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4244 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4245 4246 ret = shmem_set_inode_flags(inode, flags, dentry); 4247 4248 if (ret) 4249 return ret; 4250 4251 info->fsflags = flags; 4252 4253 inode_set_ctime_current(inode); 4254 inode_inc_iversion(inode); 4255 return 0; 4256 } 4257 4258 /* 4259 * Superblocks without xattr inode operations may get some security.* xattr 4260 * support from the LSM "for free". As soon as we have any other xattrs 4261 * like ACLs, we also need to implement the security.* handlers at 4262 * filesystem level, though. 4263 */ 4264 4265 /* 4266 * Callback for security_inode_init_security() for acquiring xattrs. 4267 */ 4268 static int shmem_initxattrs(struct inode *inode, 4269 const struct xattr *xattr_array, void *fs_info) 4270 { 4271 struct shmem_inode_info *info = SHMEM_I(inode); 4272 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4273 const struct xattr *xattr; 4274 struct simple_xattr *new_xattr; 4275 size_t ispace = 0; 4276 size_t len; 4277 4278 if (sbinfo->max_inodes) { 4279 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4280 ispace += simple_xattr_space(xattr->name, 4281 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4282 } 4283 if (ispace) { 4284 raw_spin_lock(&sbinfo->stat_lock); 4285 if (sbinfo->free_ispace < ispace) 4286 ispace = 0; 4287 else 4288 sbinfo->free_ispace -= ispace; 4289 raw_spin_unlock(&sbinfo->stat_lock); 4290 if (!ispace) 4291 return -ENOSPC; 4292 } 4293 } 4294 4295 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4296 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4297 if (!new_xattr) 4298 break; 4299 4300 len = strlen(xattr->name) + 1; 4301 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4302 GFP_KERNEL_ACCOUNT); 4303 if (!new_xattr->name) { 4304 kvfree(new_xattr); 4305 break; 4306 } 4307 4308 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4309 XATTR_SECURITY_PREFIX_LEN); 4310 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4311 xattr->name, len); 4312 4313 simple_xattr_add(&info->xattrs, new_xattr); 4314 } 4315 4316 if (xattr->name != NULL) { 4317 if (ispace) { 4318 raw_spin_lock(&sbinfo->stat_lock); 4319 sbinfo->free_ispace += ispace; 4320 raw_spin_unlock(&sbinfo->stat_lock); 4321 } 4322 simple_xattrs_free(&info->xattrs, NULL); 4323 return -ENOMEM; 4324 } 4325 4326 return 0; 4327 } 4328 4329 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4330 struct dentry *unused, struct inode *inode, 4331 const char *name, void *buffer, size_t size) 4332 { 4333 struct shmem_inode_info *info = SHMEM_I(inode); 4334 4335 name = xattr_full_name(handler, name); 4336 return simple_xattr_get(&info->xattrs, name, buffer, size); 4337 } 4338 4339 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4340 struct mnt_idmap *idmap, 4341 struct dentry *unused, struct inode *inode, 4342 const char *name, const void *value, 4343 size_t size, int flags) 4344 { 4345 struct shmem_inode_info *info = SHMEM_I(inode); 4346 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4347 struct simple_xattr *old_xattr; 4348 size_t ispace = 0; 4349 4350 name = xattr_full_name(handler, name); 4351 if (value && sbinfo->max_inodes) { 4352 ispace = simple_xattr_space(name, size); 4353 raw_spin_lock(&sbinfo->stat_lock); 4354 if (sbinfo->free_ispace < ispace) 4355 ispace = 0; 4356 else 4357 sbinfo->free_ispace -= ispace; 4358 raw_spin_unlock(&sbinfo->stat_lock); 4359 if (!ispace) 4360 return -ENOSPC; 4361 } 4362 4363 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4364 if (!IS_ERR(old_xattr)) { 4365 ispace = 0; 4366 if (old_xattr && sbinfo->max_inodes) 4367 ispace = simple_xattr_space(old_xattr->name, 4368 old_xattr->size); 4369 simple_xattr_free(old_xattr); 4370 old_xattr = NULL; 4371 inode_set_ctime_current(inode); 4372 inode_inc_iversion(inode); 4373 } 4374 if (ispace) { 4375 raw_spin_lock(&sbinfo->stat_lock); 4376 sbinfo->free_ispace += ispace; 4377 raw_spin_unlock(&sbinfo->stat_lock); 4378 } 4379 return PTR_ERR(old_xattr); 4380 } 4381 4382 static const struct xattr_handler shmem_security_xattr_handler = { 4383 .prefix = XATTR_SECURITY_PREFIX, 4384 .get = shmem_xattr_handler_get, 4385 .set = shmem_xattr_handler_set, 4386 }; 4387 4388 static const struct xattr_handler shmem_trusted_xattr_handler = { 4389 .prefix = XATTR_TRUSTED_PREFIX, 4390 .get = shmem_xattr_handler_get, 4391 .set = shmem_xattr_handler_set, 4392 }; 4393 4394 static const struct xattr_handler shmem_user_xattr_handler = { 4395 .prefix = XATTR_USER_PREFIX, 4396 .get = shmem_xattr_handler_get, 4397 .set = shmem_xattr_handler_set, 4398 }; 4399 4400 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4401 &shmem_security_xattr_handler, 4402 &shmem_trusted_xattr_handler, 4403 &shmem_user_xattr_handler, 4404 NULL 4405 }; 4406 4407 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4408 { 4409 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4410 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4411 } 4412 #endif /* CONFIG_TMPFS_XATTR */ 4413 4414 static const struct inode_operations shmem_short_symlink_operations = { 4415 .getattr = shmem_getattr, 4416 .setattr = shmem_setattr, 4417 .get_link = simple_get_link, 4418 #ifdef CONFIG_TMPFS_XATTR 4419 .listxattr = shmem_listxattr, 4420 #endif 4421 }; 4422 4423 static const struct inode_operations shmem_symlink_inode_operations = { 4424 .getattr = shmem_getattr, 4425 .setattr = shmem_setattr, 4426 .get_link = shmem_get_link, 4427 #ifdef CONFIG_TMPFS_XATTR 4428 .listxattr = shmem_listxattr, 4429 #endif 4430 }; 4431 4432 static struct dentry *shmem_get_parent(struct dentry *child) 4433 { 4434 return ERR_PTR(-ESTALE); 4435 } 4436 4437 static int shmem_match(struct inode *ino, void *vfh) 4438 { 4439 __u32 *fh = vfh; 4440 __u64 inum = fh[2]; 4441 inum = (inum << 32) | fh[1]; 4442 return ino->i_ino == inum && fh[0] == ino->i_generation; 4443 } 4444 4445 /* Find any alias of inode, but prefer a hashed alias */ 4446 static struct dentry *shmem_find_alias(struct inode *inode) 4447 { 4448 struct dentry *alias = d_find_alias(inode); 4449 4450 return alias ?: d_find_any_alias(inode); 4451 } 4452 4453 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4454 struct fid *fid, int fh_len, int fh_type) 4455 { 4456 struct inode *inode; 4457 struct dentry *dentry = NULL; 4458 u64 inum; 4459 4460 if (fh_len < 3) 4461 return NULL; 4462 4463 inum = fid->raw[2]; 4464 inum = (inum << 32) | fid->raw[1]; 4465 4466 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4467 shmem_match, fid->raw); 4468 if (inode) { 4469 dentry = shmem_find_alias(inode); 4470 iput(inode); 4471 } 4472 4473 return dentry; 4474 } 4475 4476 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4477 struct inode *parent) 4478 { 4479 if (*len < 3) { 4480 *len = 3; 4481 return FILEID_INVALID; 4482 } 4483 4484 if (inode_unhashed(inode)) { 4485 /* Unfortunately insert_inode_hash is not idempotent, 4486 * so as we hash inodes here rather than at creation 4487 * time, we need a lock to ensure we only try 4488 * to do it once 4489 */ 4490 static DEFINE_SPINLOCK(lock); 4491 spin_lock(&lock); 4492 if (inode_unhashed(inode)) 4493 __insert_inode_hash(inode, 4494 inode->i_ino + inode->i_generation); 4495 spin_unlock(&lock); 4496 } 4497 4498 fh[0] = inode->i_generation; 4499 fh[1] = inode->i_ino; 4500 fh[2] = ((__u64)inode->i_ino) >> 32; 4501 4502 *len = 3; 4503 return 1; 4504 } 4505 4506 static const struct export_operations shmem_export_ops = { 4507 .get_parent = shmem_get_parent, 4508 .encode_fh = shmem_encode_fh, 4509 .fh_to_dentry = shmem_fh_to_dentry, 4510 }; 4511 4512 enum shmem_param { 4513 Opt_gid, 4514 Opt_huge, 4515 Opt_mode, 4516 Opt_mpol, 4517 Opt_nr_blocks, 4518 Opt_nr_inodes, 4519 Opt_size, 4520 Opt_uid, 4521 Opt_inode32, 4522 Opt_inode64, 4523 Opt_noswap, 4524 Opt_quota, 4525 Opt_usrquota, 4526 Opt_grpquota, 4527 Opt_usrquota_block_hardlimit, 4528 Opt_usrquota_inode_hardlimit, 4529 Opt_grpquota_block_hardlimit, 4530 Opt_grpquota_inode_hardlimit, 4531 Opt_casefold_version, 4532 Opt_casefold, 4533 Opt_strict_encoding, 4534 }; 4535 4536 static const struct constant_table shmem_param_enums_huge[] = { 4537 {"never", SHMEM_HUGE_NEVER }, 4538 {"always", SHMEM_HUGE_ALWAYS }, 4539 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4540 {"advise", SHMEM_HUGE_ADVISE }, 4541 {} 4542 }; 4543 4544 const struct fs_parameter_spec shmem_fs_parameters[] = { 4545 fsparam_gid ("gid", Opt_gid), 4546 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4547 fsparam_u32oct("mode", Opt_mode), 4548 fsparam_string("mpol", Opt_mpol), 4549 fsparam_string("nr_blocks", Opt_nr_blocks), 4550 fsparam_string("nr_inodes", Opt_nr_inodes), 4551 fsparam_string("size", Opt_size), 4552 fsparam_uid ("uid", Opt_uid), 4553 fsparam_flag ("inode32", Opt_inode32), 4554 fsparam_flag ("inode64", Opt_inode64), 4555 fsparam_flag ("noswap", Opt_noswap), 4556 #ifdef CONFIG_TMPFS_QUOTA 4557 fsparam_flag ("quota", Opt_quota), 4558 fsparam_flag ("usrquota", Opt_usrquota), 4559 fsparam_flag ("grpquota", Opt_grpquota), 4560 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4561 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4562 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4563 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4564 #endif 4565 fsparam_string("casefold", Opt_casefold_version), 4566 fsparam_flag ("casefold", Opt_casefold), 4567 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4568 {} 4569 }; 4570 4571 #if IS_ENABLED(CONFIG_UNICODE) 4572 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4573 bool latest_version) 4574 { 4575 struct shmem_options *ctx = fc->fs_private; 4576 int version = UTF8_LATEST; 4577 struct unicode_map *encoding; 4578 char *version_str = param->string + 5; 4579 4580 if (!latest_version) { 4581 if (strncmp(param->string, "utf8-", 5)) 4582 return invalfc(fc, "Only UTF-8 encodings are supported " 4583 "in the format: utf8-<version number>"); 4584 4585 version = utf8_parse_version(version_str); 4586 if (version < 0) 4587 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4588 } 4589 4590 encoding = utf8_load(version); 4591 4592 if (IS_ERR(encoding)) { 4593 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4594 unicode_major(version), unicode_minor(version), 4595 unicode_rev(version)); 4596 } 4597 4598 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4599 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4600 4601 ctx->encoding = encoding; 4602 4603 return 0; 4604 } 4605 #else 4606 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4607 bool latest_version) 4608 { 4609 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4610 } 4611 #endif 4612 4613 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4614 { 4615 struct shmem_options *ctx = fc->fs_private; 4616 struct fs_parse_result result; 4617 unsigned long long size; 4618 char *rest; 4619 int opt; 4620 kuid_t kuid; 4621 kgid_t kgid; 4622 4623 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4624 if (opt < 0) 4625 return opt; 4626 4627 switch (opt) { 4628 case Opt_size: 4629 size = memparse(param->string, &rest); 4630 if (*rest == '%') { 4631 size <<= PAGE_SHIFT; 4632 size *= totalram_pages(); 4633 do_div(size, 100); 4634 rest++; 4635 } 4636 if (*rest) 4637 goto bad_value; 4638 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4639 ctx->seen |= SHMEM_SEEN_BLOCKS; 4640 break; 4641 case Opt_nr_blocks: 4642 ctx->blocks = memparse(param->string, &rest); 4643 if (*rest || ctx->blocks > LONG_MAX) 4644 goto bad_value; 4645 ctx->seen |= SHMEM_SEEN_BLOCKS; 4646 break; 4647 case Opt_nr_inodes: 4648 ctx->inodes = memparse(param->string, &rest); 4649 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4650 goto bad_value; 4651 ctx->seen |= SHMEM_SEEN_INODES; 4652 break; 4653 case Opt_mode: 4654 ctx->mode = result.uint_32 & 07777; 4655 break; 4656 case Opt_uid: 4657 kuid = result.uid; 4658 4659 /* 4660 * The requested uid must be representable in the 4661 * filesystem's idmapping. 4662 */ 4663 if (!kuid_has_mapping(fc->user_ns, kuid)) 4664 goto bad_value; 4665 4666 ctx->uid = kuid; 4667 break; 4668 case Opt_gid: 4669 kgid = result.gid; 4670 4671 /* 4672 * The requested gid must be representable in the 4673 * filesystem's idmapping. 4674 */ 4675 if (!kgid_has_mapping(fc->user_ns, kgid)) 4676 goto bad_value; 4677 4678 ctx->gid = kgid; 4679 break; 4680 case Opt_huge: 4681 ctx->huge = result.uint_32; 4682 if (ctx->huge != SHMEM_HUGE_NEVER && 4683 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4684 has_transparent_hugepage())) 4685 goto unsupported_parameter; 4686 ctx->seen |= SHMEM_SEEN_HUGE; 4687 break; 4688 case Opt_mpol: 4689 if (IS_ENABLED(CONFIG_NUMA)) { 4690 mpol_put(ctx->mpol); 4691 ctx->mpol = NULL; 4692 if (mpol_parse_str(param->string, &ctx->mpol)) 4693 goto bad_value; 4694 break; 4695 } 4696 goto unsupported_parameter; 4697 case Opt_inode32: 4698 ctx->full_inums = false; 4699 ctx->seen |= SHMEM_SEEN_INUMS; 4700 break; 4701 case Opt_inode64: 4702 if (sizeof(ino_t) < 8) { 4703 return invalfc(fc, 4704 "Cannot use inode64 with <64bit inums in kernel\n"); 4705 } 4706 ctx->full_inums = true; 4707 ctx->seen |= SHMEM_SEEN_INUMS; 4708 break; 4709 case Opt_noswap: 4710 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4711 return invalfc(fc, 4712 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4713 } 4714 ctx->noswap = true; 4715 ctx->seen |= SHMEM_SEEN_NOSWAP; 4716 break; 4717 case Opt_quota: 4718 if (fc->user_ns != &init_user_ns) 4719 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4720 ctx->seen |= SHMEM_SEEN_QUOTA; 4721 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4722 break; 4723 case Opt_usrquota: 4724 if (fc->user_ns != &init_user_ns) 4725 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4726 ctx->seen |= SHMEM_SEEN_QUOTA; 4727 ctx->quota_types |= QTYPE_MASK_USR; 4728 break; 4729 case Opt_grpquota: 4730 if (fc->user_ns != &init_user_ns) 4731 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4732 ctx->seen |= SHMEM_SEEN_QUOTA; 4733 ctx->quota_types |= QTYPE_MASK_GRP; 4734 break; 4735 case Opt_usrquota_block_hardlimit: 4736 size = memparse(param->string, &rest); 4737 if (*rest || !size) 4738 goto bad_value; 4739 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4740 return invalfc(fc, 4741 "User quota block hardlimit too large."); 4742 ctx->qlimits.usrquota_bhardlimit = size; 4743 break; 4744 case Opt_grpquota_block_hardlimit: 4745 size = memparse(param->string, &rest); 4746 if (*rest || !size) 4747 goto bad_value; 4748 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4749 return invalfc(fc, 4750 "Group quota block hardlimit too large."); 4751 ctx->qlimits.grpquota_bhardlimit = size; 4752 break; 4753 case Opt_usrquota_inode_hardlimit: 4754 size = memparse(param->string, &rest); 4755 if (*rest || !size) 4756 goto bad_value; 4757 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4758 return invalfc(fc, 4759 "User quota inode hardlimit too large."); 4760 ctx->qlimits.usrquota_ihardlimit = size; 4761 break; 4762 case Opt_grpquota_inode_hardlimit: 4763 size = memparse(param->string, &rest); 4764 if (*rest || !size) 4765 goto bad_value; 4766 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4767 return invalfc(fc, 4768 "Group quota inode hardlimit too large."); 4769 ctx->qlimits.grpquota_ihardlimit = size; 4770 break; 4771 case Opt_casefold_version: 4772 return shmem_parse_opt_casefold(fc, param, false); 4773 case Opt_casefold: 4774 return shmem_parse_opt_casefold(fc, param, true); 4775 case Opt_strict_encoding: 4776 #if IS_ENABLED(CONFIG_UNICODE) 4777 ctx->strict_encoding = true; 4778 break; 4779 #else 4780 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4781 #endif 4782 } 4783 return 0; 4784 4785 unsupported_parameter: 4786 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4787 bad_value: 4788 return invalfc(fc, "Bad value for '%s'", param->key); 4789 } 4790 4791 static char *shmem_next_opt(char **s) 4792 { 4793 char *sbegin = *s; 4794 char *p; 4795 4796 if (sbegin == NULL) 4797 return NULL; 4798 4799 /* 4800 * NUL-terminate this option: unfortunately, 4801 * mount options form a comma-separated list, 4802 * but mpol's nodelist may also contain commas. 4803 */ 4804 for (;;) { 4805 p = strchr(*s, ','); 4806 if (p == NULL) 4807 break; 4808 *s = p + 1; 4809 if (!isdigit(*(p+1))) { 4810 *p = '\0'; 4811 return sbegin; 4812 } 4813 } 4814 4815 *s = NULL; 4816 return sbegin; 4817 } 4818 4819 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4820 { 4821 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4822 } 4823 4824 /* 4825 * Reconfigure a shmem filesystem. 4826 */ 4827 static int shmem_reconfigure(struct fs_context *fc) 4828 { 4829 struct shmem_options *ctx = fc->fs_private; 4830 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4831 unsigned long used_isp; 4832 struct mempolicy *mpol = NULL; 4833 const char *err; 4834 4835 raw_spin_lock(&sbinfo->stat_lock); 4836 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4837 4838 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4839 if (!sbinfo->max_blocks) { 4840 err = "Cannot retroactively limit size"; 4841 goto out; 4842 } 4843 if (percpu_counter_compare(&sbinfo->used_blocks, 4844 ctx->blocks) > 0) { 4845 err = "Too small a size for current use"; 4846 goto out; 4847 } 4848 } 4849 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4850 if (!sbinfo->max_inodes) { 4851 err = "Cannot retroactively limit inodes"; 4852 goto out; 4853 } 4854 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4855 err = "Too few inodes for current use"; 4856 goto out; 4857 } 4858 } 4859 4860 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4861 sbinfo->next_ino > UINT_MAX) { 4862 err = "Current inum too high to switch to 32-bit inums"; 4863 goto out; 4864 } 4865 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4866 err = "Cannot disable swap on remount"; 4867 goto out; 4868 } 4869 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4870 err = "Cannot enable swap on remount if it was disabled on first mount"; 4871 goto out; 4872 } 4873 4874 if (ctx->seen & SHMEM_SEEN_QUOTA && 4875 !sb_any_quota_loaded(fc->root->d_sb)) { 4876 err = "Cannot enable quota on remount"; 4877 goto out; 4878 } 4879 4880 #ifdef CONFIG_TMPFS_QUOTA 4881 #define CHANGED_LIMIT(name) \ 4882 (ctx->qlimits.name## hardlimit && \ 4883 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4884 4885 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4886 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4887 err = "Cannot change global quota limit on remount"; 4888 goto out; 4889 } 4890 #endif /* CONFIG_TMPFS_QUOTA */ 4891 4892 if (ctx->seen & SHMEM_SEEN_HUGE) 4893 sbinfo->huge = ctx->huge; 4894 if (ctx->seen & SHMEM_SEEN_INUMS) 4895 sbinfo->full_inums = ctx->full_inums; 4896 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4897 sbinfo->max_blocks = ctx->blocks; 4898 if (ctx->seen & SHMEM_SEEN_INODES) { 4899 sbinfo->max_inodes = ctx->inodes; 4900 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4901 } 4902 4903 /* 4904 * Preserve previous mempolicy unless mpol remount option was specified. 4905 */ 4906 if (ctx->mpol) { 4907 mpol = sbinfo->mpol; 4908 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4909 ctx->mpol = NULL; 4910 } 4911 4912 if (ctx->noswap) 4913 sbinfo->noswap = true; 4914 4915 raw_spin_unlock(&sbinfo->stat_lock); 4916 mpol_put(mpol); 4917 return 0; 4918 out: 4919 raw_spin_unlock(&sbinfo->stat_lock); 4920 return invalfc(fc, "%s", err); 4921 } 4922 4923 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4924 { 4925 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4926 struct mempolicy *mpol; 4927 4928 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4929 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4930 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4931 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4932 if (sbinfo->mode != (0777 | S_ISVTX)) 4933 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4934 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4935 seq_printf(seq, ",uid=%u", 4936 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4937 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4938 seq_printf(seq, ",gid=%u", 4939 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4940 4941 /* 4942 * Showing inode{64,32} might be useful even if it's the system default, 4943 * since then people don't have to resort to checking both here and 4944 * /proc/config.gz to confirm 64-bit inums were successfully applied 4945 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4946 * 4947 * We hide it when inode64 isn't the default and we are using 32-bit 4948 * inodes, since that probably just means the feature isn't even under 4949 * consideration. 4950 * 4951 * As such: 4952 * 4953 * +-----------------+-----------------+ 4954 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4955 * +------------------+-----------------+-----------------+ 4956 * | full_inums=true | show | show | 4957 * | full_inums=false | show | hide | 4958 * +------------------+-----------------+-----------------+ 4959 * 4960 */ 4961 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4962 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4963 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4964 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4965 if (sbinfo->huge) 4966 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4967 #endif 4968 mpol = shmem_get_sbmpol(sbinfo); 4969 shmem_show_mpol(seq, mpol); 4970 mpol_put(mpol); 4971 if (sbinfo->noswap) 4972 seq_printf(seq, ",noswap"); 4973 #ifdef CONFIG_TMPFS_QUOTA 4974 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4975 seq_printf(seq, ",usrquota"); 4976 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4977 seq_printf(seq, ",grpquota"); 4978 if (sbinfo->qlimits.usrquota_bhardlimit) 4979 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4980 sbinfo->qlimits.usrquota_bhardlimit); 4981 if (sbinfo->qlimits.grpquota_bhardlimit) 4982 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4983 sbinfo->qlimits.grpquota_bhardlimit); 4984 if (sbinfo->qlimits.usrquota_ihardlimit) 4985 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4986 sbinfo->qlimits.usrquota_ihardlimit); 4987 if (sbinfo->qlimits.grpquota_ihardlimit) 4988 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4989 sbinfo->qlimits.grpquota_ihardlimit); 4990 #endif 4991 return 0; 4992 } 4993 4994 #endif /* CONFIG_TMPFS */ 4995 4996 static void shmem_put_super(struct super_block *sb) 4997 { 4998 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4999 5000 #if IS_ENABLED(CONFIG_UNICODE) 5001 if (sb->s_encoding) 5002 utf8_unload(sb->s_encoding); 5003 #endif 5004 5005 #ifdef CONFIG_TMPFS_QUOTA 5006 shmem_disable_quotas(sb); 5007 #endif 5008 free_percpu(sbinfo->ino_batch); 5009 percpu_counter_destroy(&sbinfo->used_blocks); 5010 mpol_put(sbinfo->mpol); 5011 kfree(sbinfo); 5012 sb->s_fs_info = NULL; 5013 } 5014 5015 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 5016 static const struct dentry_operations shmem_ci_dentry_ops = { 5017 .d_hash = generic_ci_d_hash, 5018 .d_compare = generic_ci_d_compare, 5019 }; 5020 #endif 5021 5022 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 5023 { 5024 struct shmem_options *ctx = fc->fs_private; 5025 struct inode *inode; 5026 struct shmem_sb_info *sbinfo; 5027 int error = -ENOMEM; 5028 5029 /* Round up to L1_CACHE_BYTES to resist false sharing */ 5030 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 5031 L1_CACHE_BYTES), GFP_KERNEL); 5032 if (!sbinfo) 5033 return error; 5034 5035 sb->s_fs_info = sbinfo; 5036 5037 #ifdef CONFIG_TMPFS 5038 /* 5039 * Per default we only allow half of the physical ram per 5040 * tmpfs instance, limiting inodes to one per page of lowmem; 5041 * but the internal instance is left unlimited. 5042 */ 5043 if (!(sb->s_flags & SB_KERNMOUNT)) { 5044 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5045 ctx->blocks = shmem_default_max_blocks(); 5046 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5047 ctx->inodes = shmem_default_max_inodes(); 5048 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5049 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5050 sbinfo->noswap = ctx->noswap; 5051 } else { 5052 sb->s_flags |= SB_NOUSER; 5053 } 5054 sb->s_export_op = &shmem_export_ops; 5055 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 5056 5057 #if IS_ENABLED(CONFIG_UNICODE) 5058 if (!ctx->encoding && ctx->strict_encoding) { 5059 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5060 error = -EINVAL; 5061 goto failed; 5062 } 5063 5064 if (ctx->encoding) { 5065 sb->s_encoding = ctx->encoding; 5066 set_default_d_op(sb, &shmem_ci_dentry_ops); 5067 if (ctx->strict_encoding) 5068 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5069 } 5070 #endif 5071 5072 #else 5073 sb->s_flags |= SB_NOUSER; 5074 #endif /* CONFIG_TMPFS */ 5075 sb->s_d_flags |= DCACHE_DONTCACHE; 5076 sbinfo->max_blocks = ctx->blocks; 5077 sbinfo->max_inodes = ctx->inodes; 5078 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5079 if (sb->s_flags & SB_KERNMOUNT) { 5080 sbinfo->ino_batch = alloc_percpu(ino_t); 5081 if (!sbinfo->ino_batch) 5082 goto failed; 5083 } 5084 sbinfo->uid = ctx->uid; 5085 sbinfo->gid = ctx->gid; 5086 sbinfo->full_inums = ctx->full_inums; 5087 sbinfo->mode = ctx->mode; 5088 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5089 if (ctx->seen & SHMEM_SEEN_HUGE) 5090 sbinfo->huge = ctx->huge; 5091 else 5092 sbinfo->huge = tmpfs_huge; 5093 #endif 5094 sbinfo->mpol = ctx->mpol; 5095 ctx->mpol = NULL; 5096 5097 raw_spin_lock_init(&sbinfo->stat_lock); 5098 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5099 goto failed; 5100 spin_lock_init(&sbinfo->shrinklist_lock); 5101 INIT_LIST_HEAD(&sbinfo->shrinklist); 5102 5103 sb->s_maxbytes = MAX_LFS_FILESIZE; 5104 sb->s_blocksize = PAGE_SIZE; 5105 sb->s_blocksize_bits = PAGE_SHIFT; 5106 sb->s_magic = TMPFS_MAGIC; 5107 sb->s_op = &shmem_ops; 5108 sb->s_time_gran = 1; 5109 #ifdef CONFIG_TMPFS_XATTR 5110 sb->s_xattr = shmem_xattr_handlers; 5111 #endif 5112 #ifdef CONFIG_TMPFS_POSIX_ACL 5113 sb->s_flags |= SB_POSIXACL; 5114 #endif 5115 uuid_t uuid; 5116 uuid_gen(&uuid); 5117 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5118 5119 #ifdef CONFIG_TMPFS_QUOTA 5120 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5121 sb->dq_op = &shmem_quota_operations; 5122 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5123 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5124 5125 /* Copy the default limits from ctx into sbinfo */ 5126 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5127 sizeof(struct shmem_quota_limits)); 5128 5129 if (shmem_enable_quotas(sb, ctx->quota_types)) 5130 goto failed; 5131 } 5132 #endif /* CONFIG_TMPFS_QUOTA */ 5133 5134 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5135 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5136 if (IS_ERR(inode)) { 5137 error = PTR_ERR(inode); 5138 goto failed; 5139 } 5140 inode->i_uid = sbinfo->uid; 5141 inode->i_gid = sbinfo->gid; 5142 sb->s_root = d_make_root(inode); 5143 if (!sb->s_root) 5144 goto failed; 5145 return 0; 5146 5147 failed: 5148 shmem_put_super(sb); 5149 return error; 5150 } 5151 5152 static int shmem_get_tree(struct fs_context *fc) 5153 { 5154 return get_tree_nodev(fc, shmem_fill_super); 5155 } 5156 5157 static void shmem_free_fc(struct fs_context *fc) 5158 { 5159 struct shmem_options *ctx = fc->fs_private; 5160 5161 if (ctx) { 5162 mpol_put(ctx->mpol); 5163 kfree(ctx); 5164 } 5165 } 5166 5167 static const struct fs_context_operations shmem_fs_context_ops = { 5168 .free = shmem_free_fc, 5169 .get_tree = shmem_get_tree, 5170 #ifdef CONFIG_TMPFS 5171 .parse_monolithic = shmem_parse_monolithic, 5172 .parse_param = shmem_parse_one, 5173 .reconfigure = shmem_reconfigure, 5174 #endif 5175 }; 5176 5177 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5178 5179 static struct inode *shmem_alloc_inode(struct super_block *sb) 5180 { 5181 struct shmem_inode_info *info; 5182 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5183 if (!info) 5184 return NULL; 5185 return &info->vfs_inode; 5186 } 5187 5188 static void shmem_free_in_core_inode(struct inode *inode) 5189 { 5190 if (S_ISLNK(inode->i_mode)) 5191 kfree(inode->i_link); 5192 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5193 } 5194 5195 static void shmem_destroy_inode(struct inode *inode) 5196 { 5197 if (S_ISREG(inode->i_mode)) 5198 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5199 if (S_ISDIR(inode->i_mode)) 5200 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5201 } 5202 5203 static void shmem_init_inode(void *foo) 5204 { 5205 struct shmem_inode_info *info = foo; 5206 inode_init_once(&info->vfs_inode); 5207 } 5208 5209 static void __init shmem_init_inodecache(void) 5210 { 5211 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5212 sizeof(struct shmem_inode_info), 5213 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5214 } 5215 5216 static void __init shmem_destroy_inodecache(void) 5217 { 5218 kmem_cache_destroy(shmem_inode_cachep); 5219 } 5220 5221 /* Keep the page in page cache instead of truncating it */ 5222 static int shmem_error_remove_folio(struct address_space *mapping, 5223 struct folio *folio) 5224 { 5225 return 0; 5226 } 5227 5228 static const struct address_space_operations shmem_aops = { 5229 .dirty_folio = noop_dirty_folio, 5230 #ifdef CONFIG_TMPFS 5231 .write_begin = shmem_write_begin, 5232 .write_end = shmem_write_end, 5233 #endif 5234 #ifdef CONFIG_MIGRATION 5235 .migrate_folio = migrate_folio, 5236 #endif 5237 .error_remove_folio = shmem_error_remove_folio, 5238 }; 5239 5240 static const struct file_operations shmem_file_operations = { 5241 .mmap = shmem_mmap, 5242 .open = shmem_file_open, 5243 .get_unmapped_area = shmem_get_unmapped_area, 5244 #ifdef CONFIG_TMPFS 5245 .llseek = shmem_file_llseek, 5246 .read_iter = shmem_file_read_iter, 5247 .write_iter = shmem_file_write_iter, 5248 .fsync = noop_fsync, 5249 .splice_read = shmem_file_splice_read, 5250 .splice_write = iter_file_splice_write, 5251 .fallocate = shmem_fallocate, 5252 #endif 5253 }; 5254 5255 static const struct inode_operations shmem_inode_operations = { 5256 .getattr = shmem_getattr, 5257 .setattr = shmem_setattr, 5258 #ifdef CONFIG_TMPFS_XATTR 5259 .listxattr = shmem_listxattr, 5260 .set_acl = simple_set_acl, 5261 .fileattr_get = shmem_fileattr_get, 5262 .fileattr_set = shmem_fileattr_set, 5263 #endif 5264 }; 5265 5266 static const struct inode_operations shmem_dir_inode_operations = { 5267 #ifdef CONFIG_TMPFS 5268 .getattr = shmem_getattr, 5269 .create = shmem_create, 5270 .lookup = simple_lookup, 5271 .link = shmem_link, 5272 .unlink = shmem_unlink, 5273 .symlink = shmem_symlink, 5274 .mkdir = shmem_mkdir, 5275 .rmdir = shmem_rmdir, 5276 .mknod = shmem_mknod, 5277 .rename = shmem_rename2, 5278 .tmpfile = shmem_tmpfile, 5279 .get_offset_ctx = shmem_get_offset_ctx, 5280 #endif 5281 #ifdef CONFIG_TMPFS_XATTR 5282 .listxattr = shmem_listxattr, 5283 .fileattr_get = shmem_fileattr_get, 5284 .fileattr_set = shmem_fileattr_set, 5285 #endif 5286 #ifdef CONFIG_TMPFS_POSIX_ACL 5287 .setattr = shmem_setattr, 5288 .set_acl = simple_set_acl, 5289 #endif 5290 }; 5291 5292 static const struct inode_operations shmem_special_inode_operations = { 5293 .getattr = shmem_getattr, 5294 #ifdef CONFIG_TMPFS_XATTR 5295 .listxattr = shmem_listxattr, 5296 #endif 5297 #ifdef CONFIG_TMPFS_POSIX_ACL 5298 .setattr = shmem_setattr, 5299 .set_acl = simple_set_acl, 5300 #endif 5301 }; 5302 5303 static const struct super_operations shmem_ops = { 5304 .alloc_inode = shmem_alloc_inode, 5305 .free_inode = shmem_free_in_core_inode, 5306 .destroy_inode = shmem_destroy_inode, 5307 #ifdef CONFIG_TMPFS 5308 .statfs = shmem_statfs, 5309 .show_options = shmem_show_options, 5310 #endif 5311 #ifdef CONFIG_TMPFS_QUOTA 5312 .get_dquots = shmem_get_dquots, 5313 #endif 5314 .evict_inode = shmem_evict_inode, 5315 .drop_inode = generic_delete_inode, 5316 .put_super = shmem_put_super, 5317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5318 .nr_cached_objects = shmem_unused_huge_count, 5319 .free_cached_objects = shmem_unused_huge_scan, 5320 #endif 5321 }; 5322 5323 static const struct vm_operations_struct shmem_vm_ops = { 5324 .fault = shmem_fault, 5325 .map_pages = filemap_map_pages, 5326 #ifdef CONFIG_NUMA 5327 .set_policy = shmem_set_policy, 5328 .get_policy = shmem_get_policy, 5329 #endif 5330 }; 5331 5332 static const struct vm_operations_struct shmem_anon_vm_ops = { 5333 .fault = shmem_fault, 5334 .map_pages = filemap_map_pages, 5335 #ifdef CONFIG_NUMA 5336 .set_policy = shmem_set_policy, 5337 .get_policy = shmem_get_policy, 5338 #endif 5339 }; 5340 5341 int shmem_init_fs_context(struct fs_context *fc) 5342 { 5343 struct shmem_options *ctx; 5344 5345 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5346 if (!ctx) 5347 return -ENOMEM; 5348 5349 ctx->mode = 0777 | S_ISVTX; 5350 ctx->uid = current_fsuid(); 5351 ctx->gid = current_fsgid(); 5352 5353 #if IS_ENABLED(CONFIG_UNICODE) 5354 ctx->encoding = NULL; 5355 #endif 5356 5357 fc->fs_private = ctx; 5358 fc->ops = &shmem_fs_context_ops; 5359 return 0; 5360 } 5361 5362 static struct file_system_type shmem_fs_type = { 5363 .owner = THIS_MODULE, 5364 .name = "tmpfs", 5365 .init_fs_context = shmem_init_fs_context, 5366 #ifdef CONFIG_TMPFS 5367 .parameters = shmem_fs_parameters, 5368 #endif 5369 .kill_sb = kill_litter_super, 5370 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5371 }; 5372 5373 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5374 5375 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5376 { \ 5377 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5378 .show = _show, \ 5379 .store = _store, \ 5380 } 5381 5382 #define TMPFS_ATTR_W(_name, _store) \ 5383 static struct kobj_attribute tmpfs_attr_##_name = \ 5384 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5385 5386 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5387 static struct kobj_attribute tmpfs_attr_##_name = \ 5388 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5389 5390 #define TMPFS_ATTR_RO(_name, _show) \ 5391 static struct kobj_attribute tmpfs_attr_##_name = \ 5392 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5393 5394 #if IS_ENABLED(CONFIG_UNICODE) 5395 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5396 char *buf) 5397 { 5398 return sysfs_emit(buf, "supported\n"); 5399 } 5400 TMPFS_ATTR_RO(casefold, casefold_show); 5401 #endif 5402 5403 static struct attribute *tmpfs_attributes[] = { 5404 #if IS_ENABLED(CONFIG_UNICODE) 5405 &tmpfs_attr_casefold.attr, 5406 #endif 5407 NULL 5408 }; 5409 5410 static const struct attribute_group tmpfs_attribute_group = { 5411 .attrs = tmpfs_attributes, 5412 .name = "features" 5413 }; 5414 5415 static struct kobject *tmpfs_kobj; 5416 5417 static int __init tmpfs_sysfs_init(void) 5418 { 5419 int ret; 5420 5421 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5422 if (!tmpfs_kobj) 5423 return -ENOMEM; 5424 5425 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5426 if (ret) 5427 kobject_put(tmpfs_kobj); 5428 5429 return ret; 5430 } 5431 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5432 5433 void __init shmem_init(void) 5434 { 5435 int error; 5436 5437 shmem_init_inodecache(); 5438 5439 #ifdef CONFIG_TMPFS_QUOTA 5440 register_quota_format(&shmem_quota_format); 5441 #endif 5442 5443 error = register_filesystem(&shmem_fs_type); 5444 if (error) { 5445 pr_err("Could not register tmpfs\n"); 5446 goto out2; 5447 } 5448 5449 shm_mnt = kern_mount(&shmem_fs_type); 5450 if (IS_ERR(shm_mnt)) { 5451 error = PTR_ERR(shm_mnt); 5452 pr_err("Could not kern_mount tmpfs\n"); 5453 goto out1; 5454 } 5455 5456 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5457 error = tmpfs_sysfs_init(); 5458 if (error) { 5459 pr_err("Could not init tmpfs sysfs\n"); 5460 goto out1; 5461 } 5462 #endif 5463 5464 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5465 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5466 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5467 else 5468 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5469 5470 /* 5471 * Default to setting PMD-sized THP to inherit the global setting and 5472 * disable all other multi-size THPs. 5473 */ 5474 if (!shmem_orders_configured) 5475 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5476 #endif 5477 return; 5478 5479 out1: 5480 unregister_filesystem(&shmem_fs_type); 5481 out2: 5482 #ifdef CONFIG_TMPFS_QUOTA 5483 unregister_quota_format(&shmem_quota_format); 5484 #endif 5485 shmem_destroy_inodecache(); 5486 shm_mnt = ERR_PTR(error); 5487 } 5488 5489 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5490 static ssize_t shmem_enabled_show(struct kobject *kobj, 5491 struct kobj_attribute *attr, char *buf) 5492 { 5493 static const int values[] = { 5494 SHMEM_HUGE_ALWAYS, 5495 SHMEM_HUGE_WITHIN_SIZE, 5496 SHMEM_HUGE_ADVISE, 5497 SHMEM_HUGE_NEVER, 5498 SHMEM_HUGE_DENY, 5499 SHMEM_HUGE_FORCE, 5500 }; 5501 int len = 0; 5502 int i; 5503 5504 for (i = 0; i < ARRAY_SIZE(values); i++) { 5505 len += sysfs_emit_at(buf, len, 5506 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5507 i ? " " : "", shmem_format_huge(values[i])); 5508 } 5509 len += sysfs_emit_at(buf, len, "\n"); 5510 5511 return len; 5512 } 5513 5514 static ssize_t shmem_enabled_store(struct kobject *kobj, 5515 struct kobj_attribute *attr, const char *buf, size_t count) 5516 { 5517 char tmp[16]; 5518 int huge, err; 5519 5520 if (count + 1 > sizeof(tmp)) 5521 return -EINVAL; 5522 memcpy(tmp, buf, count); 5523 tmp[count] = '\0'; 5524 if (count && tmp[count - 1] == '\n') 5525 tmp[count - 1] = '\0'; 5526 5527 huge = shmem_parse_huge(tmp); 5528 if (huge == -EINVAL) 5529 return huge; 5530 5531 shmem_huge = huge; 5532 if (shmem_huge > SHMEM_HUGE_DENY) 5533 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5534 5535 err = start_stop_khugepaged(); 5536 return err ? err : count; 5537 } 5538 5539 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5540 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5541 5542 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5543 struct kobj_attribute *attr, char *buf) 5544 { 5545 int order = to_thpsize(kobj)->order; 5546 const char *output; 5547 5548 if (test_bit(order, &huge_shmem_orders_always)) 5549 output = "[always] inherit within_size advise never"; 5550 else if (test_bit(order, &huge_shmem_orders_inherit)) 5551 output = "always [inherit] within_size advise never"; 5552 else if (test_bit(order, &huge_shmem_orders_within_size)) 5553 output = "always inherit [within_size] advise never"; 5554 else if (test_bit(order, &huge_shmem_orders_madvise)) 5555 output = "always inherit within_size [advise] never"; 5556 else 5557 output = "always inherit within_size advise [never]"; 5558 5559 return sysfs_emit(buf, "%s\n", output); 5560 } 5561 5562 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5563 struct kobj_attribute *attr, 5564 const char *buf, size_t count) 5565 { 5566 int order = to_thpsize(kobj)->order; 5567 ssize_t ret = count; 5568 5569 if (sysfs_streq(buf, "always")) { 5570 spin_lock(&huge_shmem_orders_lock); 5571 clear_bit(order, &huge_shmem_orders_inherit); 5572 clear_bit(order, &huge_shmem_orders_madvise); 5573 clear_bit(order, &huge_shmem_orders_within_size); 5574 set_bit(order, &huge_shmem_orders_always); 5575 spin_unlock(&huge_shmem_orders_lock); 5576 } else if (sysfs_streq(buf, "inherit")) { 5577 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5578 if (shmem_huge == SHMEM_HUGE_FORCE && 5579 order != HPAGE_PMD_ORDER) 5580 return -EINVAL; 5581 5582 spin_lock(&huge_shmem_orders_lock); 5583 clear_bit(order, &huge_shmem_orders_always); 5584 clear_bit(order, &huge_shmem_orders_madvise); 5585 clear_bit(order, &huge_shmem_orders_within_size); 5586 set_bit(order, &huge_shmem_orders_inherit); 5587 spin_unlock(&huge_shmem_orders_lock); 5588 } else if (sysfs_streq(buf, "within_size")) { 5589 spin_lock(&huge_shmem_orders_lock); 5590 clear_bit(order, &huge_shmem_orders_always); 5591 clear_bit(order, &huge_shmem_orders_inherit); 5592 clear_bit(order, &huge_shmem_orders_madvise); 5593 set_bit(order, &huge_shmem_orders_within_size); 5594 spin_unlock(&huge_shmem_orders_lock); 5595 } else if (sysfs_streq(buf, "advise")) { 5596 spin_lock(&huge_shmem_orders_lock); 5597 clear_bit(order, &huge_shmem_orders_always); 5598 clear_bit(order, &huge_shmem_orders_inherit); 5599 clear_bit(order, &huge_shmem_orders_within_size); 5600 set_bit(order, &huge_shmem_orders_madvise); 5601 spin_unlock(&huge_shmem_orders_lock); 5602 } else if (sysfs_streq(buf, "never")) { 5603 spin_lock(&huge_shmem_orders_lock); 5604 clear_bit(order, &huge_shmem_orders_always); 5605 clear_bit(order, &huge_shmem_orders_inherit); 5606 clear_bit(order, &huge_shmem_orders_within_size); 5607 clear_bit(order, &huge_shmem_orders_madvise); 5608 spin_unlock(&huge_shmem_orders_lock); 5609 } else { 5610 ret = -EINVAL; 5611 } 5612 5613 if (ret > 0) { 5614 int err = start_stop_khugepaged(); 5615 5616 if (err) 5617 ret = err; 5618 } 5619 return ret; 5620 } 5621 5622 struct kobj_attribute thpsize_shmem_enabled_attr = 5623 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5624 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5625 5626 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5627 5628 static int __init setup_transparent_hugepage_shmem(char *str) 5629 { 5630 int huge; 5631 5632 huge = shmem_parse_huge(str); 5633 if (huge == -EINVAL) { 5634 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5635 return huge; 5636 } 5637 5638 shmem_huge = huge; 5639 return 1; 5640 } 5641 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5642 5643 static int __init setup_transparent_hugepage_tmpfs(char *str) 5644 { 5645 int huge; 5646 5647 huge = shmem_parse_huge(str); 5648 if (huge < 0) { 5649 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5650 return huge; 5651 } 5652 5653 tmpfs_huge = huge; 5654 return 1; 5655 } 5656 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5657 5658 static char str_dup[PAGE_SIZE] __initdata; 5659 static int __init setup_thp_shmem(char *str) 5660 { 5661 char *token, *range, *policy, *subtoken; 5662 unsigned long always, inherit, madvise, within_size; 5663 char *start_size, *end_size; 5664 int start, end, nr; 5665 char *p; 5666 5667 if (!str || strlen(str) + 1 > PAGE_SIZE) 5668 goto err; 5669 strscpy(str_dup, str); 5670 5671 always = huge_shmem_orders_always; 5672 inherit = huge_shmem_orders_inherit; 5673 madvise = huge_shmem_orders_madvise; 5674 within_size = huge_shmem_orders_within_size; 5675 p = str_dup; 5676 while ((token = strsep(&p, ";")) != NULL) { 5677 range = strsep(&token, ":"); 5678 policy = token; 5679 5680 if (!policy) 5681 goto err; 5682 5683 while ((subtoken = strsep(&range, ",")) != NULL) { 5684 if (strchr(subtoken, '-')) { 5685 start_size = strsep(&subtoken, "-"); 5686 end_size = subtoken; 5687 5688 start = get_order_from_str(start_size, 5689 THP_ORDERS_ALL_FILE_DEFAULT); 5690 end = get_order_from_str(end_size, 5691 THP_ORDERS_ALL_FILE_DEFAULT); 5692 } else { 5693 start_size = end_size = subtoken; 5694 start = end = get_order_from_str(subtoken, 5695 THP_ORDERS_ALL_FILE_DEFAULT); 5696 } 5697 5698 if (start < 0) { 5699 pr_err("invalid size %s in thp_shmem boot parameter\n", 5700 start_size); 5701 goto err; 5702 } 5703 5704 if (end < 0) { 5705 pr_err("invalid size %s in thp_shmem boot parameter\n", 5706 end_size); 5707 goto err; 5708 } 5709 5710 if (start > end) 5711 goto err; 5712 5713 nr = end - start + 1; 5714 if (!strcmp(policy, "always")) { 5715 bitmap_set(&always, start, nr); 5716 bitmap_clear(&inherit, start, nr); 5717 bitmap_clear(&madvise, start, nr); 5718 bitmap_clear(&within_size, start, nr); 5719 } else if (!strcmp(policy, "advise")) { 5720 bitmap_set(&madvise, start, nr); 5721 bitmap_clear(&inherit, start, nr); 5722 bitmap_clear(&always, start, nr); 5723 bitmap_clear(&within_size, start, nr); 5724 } else if (!strcmp(policy, "inherit")) { 5725 bitmap_set(&inherit, start, nr); 5726 bitmap_clear(&madvise, start, nr); 5727 bitmap_clear(&always, start, nr); 5728 bitmap_clear(&within_size, start, nr); 5729 } else if (!strcmp(policy, "within_size")) { 5730 bitmap_set(&within_size, start, nr); 5731 bitmap_clear(&inherit, start, nr); 5732 bitmap_clear(&madvise, start, nr); 5733 bitmap_clear(&always, start, nr); 5734 } else if (!strcmp(policy, "never")) { 5735 bitmap_clear(&inherit, start, nr); 5736 bitmap_clear(&madvise, start, nr); 5737 bitmap_clear(&always, start, nr); 5738 bitmap_clear(&within_size, start, nr); 5739 } else { 5740 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5741 goto err; 5742 } 5743 } 5744 } 5745 5746 huge_shmem_orders_always = always; 5747 huge_shmem_orders_madvise = madvise; 5748 huge_shmem_orders_inherit = inherit; 5749 huge_shmem_orders_within_size = within_size; 5750 shmem_orders_configured = true; 5751 return 1; 5752 5753 err: 5754 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5755 return 0; 5756 } 5757 __setup("thp_shmem=", setup_thp_shmem); 5758 5759 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5760 5761 #else /* !CONFIG_SHMEM */ 5762 5763 /* 5764 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5765 * 5766 * This is intended for small system where the benefits of the full 5767 * shmem code (swap-backed and resource-limited) are outweighed by 5768 * their complexity. On systems without swap this code should be 5769 * effectively equivalent, but much lighter weight. 5770 */ 5771 5772 static struct file_system_type shmem_fs_type = { 5773 .name = "tmpfs", 5774 .init_fs_context = ramfs_init_fs_context, 5775 .parameters = ramfs_fs_parameters, 5776 .kill_sb = ramfs_kill_sb, 5777 .fs_flags = FS_USERNS_MOUNT, 5778 }; 5779 5780 void __init shmem_init(void) 5781 { 5782 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5783 5784 shm_mnt = kern_mount(&shmem_fs_type); 5785 BUG_ON(IS_ERR(shm_mnt)); 5786 } 5787 5788 int shmem_unuse(unsigned int type) 5789 { 5790 return 0; 5791 } 5792 5793 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5794 { 5795 return 0; 5796 } 5797 5798 void shmem_unlock_mapping(struct address_space *mapping) 5799 { 5800 } 5801 5802 #ifdef CONFIG_MMU 5803 unsigned long shmem_get_unmapped_area(struct file *file, 5804 unsigned long addr, unsigned long len, 5805 unsigned long pgoff, unsigned long flags) 5806 { 5807 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5808 } 5809 #endif 5810 5811 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5812 { 5813 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5814 } 5815 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5816 5817 #define shmem_vm_ops generic_file_vm_ops 5818 #define shmem_anon_vm_ops generic_file_vm_ops 5819 #define shmem_file_operations ramfs_file_operations 5820 #define shmem_acct_size(flags, size) 0 5821 #define shmem_unacct_size(flags, size) do {} while (0) 5822 5823 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5824 struct super_block *sb, struct inode *dir, 5825 umode_t mode, dev_t dev, unsigned long flags) 5826 { 5827 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5828 return inode ? inode : ERR_PTR(-ENOSPC); 5829 } 5830 5831 #endif /* CONFIG_SHMEM */ 5832 5833 /* common code */ 5834 5835 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5836 loff_t size, unsigned long flags, unsigned int i_flags) 5837 { 5838 struct inode *inode; 5839 struct file *res; 5840 5841 if (IS_ERR(mnt)) 5842 return ERR_CAST(mnt); 5843 5844 if (size < 0 || size > MAX_LFS_FILESIZE) 5845 return ERR_PTR(-EINVAL); 5846 5847 if (is_idmapped_mnt(mnt)) 5848 return ERR_PTR(-EINVAL); 5849 5850 if (shmem_acct_size(flags, size)) 5851 return ERR_PTR(-ENOMEM); 5852 5853 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5854 S_IFREG | S_IRWXUGO, 0, flags); 5855 if (IS_ERR(inode)) { 5856 shmem_unacct_size(flags, size); 5857 return ERR_CAST(inode); 5858 } 5859 inode->i_flags |= i_flags; 5860 inode->i_size = size; 5861 clear_nlink(inode); /* It is unlinked */ 5862 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5863 if (!IS_ERR(res)) 5864 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5865 &shmem_file_operations); 5866 if (IS_ERR(res)) 5867 iput(inode); 5868 return res; 5869 } 5870 5871 /** 5872 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5873 * kernel internal. There will be NO LSM permission checks against the 5874 * underlying inode. So users of this interface must do LSM checks at a 5875 * higher layer. The users are the big_key and shm implementations. LSM 5876 * checks are provided at the key or shm level rather than the inode. 5877 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5878 * @size: size to be set for the file 5879 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5880 */ 5881 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5882 { 5883 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5884 } 5885 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5886 5887 /** 5888 * shmem_file_setup - get an unlinked file living in tmpfs 5889 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5890 * @size: size to be set for the file 5891 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5892 */ 5893 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5894 { 5895 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5896 } 5897 EXPORT_SYMBOL_GPL(shmem_file_setup); 5898 5899 /** 5900 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5901 * @mnt: the tmpfs mount where the file will be created 5902 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5903 * @size: size to be set for the file 5904 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5905 */ 5906 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5907 loff_t size, unsigned long flags) 5908 { 5909 return __shmem_file_setup(mnt, name, size, flags, 0); 5910 } 5911 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5912 5913 /** 5914 * shmem_zero_setup - setup a shared anonymous mapping 5915 * @vma: the vma to be mmapped is prepared by do_mmap 5916 */ 5917 int shmem_zero_setup(struct vm_area_struct *vma) 5918 { 5919 struct file *file; 5920 loff_t size = vma->vm_end - vma->vm_start; 5921 5922 /* 5923 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5924 * between XFS directory reading and selinux: since this file is only 5925 * accessible to the user through its mapping, use S_PRIVATE flag to 5926 * bypass file security, in the same way as shmem_kernel_file_setup(). 5927 */ 5928 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5929 if (IS_ERR(file)) 5930 return PTR_ERR(file); 5931 5932 if (vma->vm_file) 5933 fput(vma->vm_file); 5934 vma->vm_file = file; 5935 vma->vm_ops = &shmem_anon_vm_ops; 5936 5937 return 0; 5938 } 5939 5940 /** 5941 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5942 * @mapping: the folio's address_space 5943 * @index: the folio index 5944 * @gfp: the page allocator flags to use if allocating 5945 * 5946 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5947 * with any new page allocations done using the specified allocation flags. 5948 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5949 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5950 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5951 * 5952 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5953 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5954 */ 5955 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5956 pgoff_t index, gfp_t gfp) 5957 { 5958 #ifdef CONFIG_SHMEM 5959 struct inode *inode = mapping->host; 5960 struct folio *folio; 5961 int error; 5962 5963 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE, 5964 gfp, NULL, NULL); 5965 if (error) 5966 return ERR_PTR(error); 5967 5968 folio_unlock(folio); 5969 return folio; 5970 #else 5971 /* 5972 * The tiny !SHMEM case uses ramfs without swap 5973 */ 5974 return mapping_read_folio_gfp(mapping, index, gfp); 5975 #endif 5976 } 5977 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5978 5979 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5980 pgoff_t index, gfp_t gfp) 5981 { 5982 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5983 struct page *page; 5984 5985 if (IS_ERR(folio)) 5986 return &folio->page; 5987 5988 page = folio_file_page(folio, index); 5989 if (PageHWPoison(page)) { 5990 folio_put(folio); 5991 return ERR_PTR(-EIO); 5992 } 5993 5994 return page; 5995 } 5996 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5997