xref: /linux/mm/shmem.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/config.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/fs.h>
30 #include <linux/mm.h>
31 #include <linux/mman.h>
32 #include <linux/file.h>
33 #include <linux/swap.h>
34 #include <linux/pagemap.h>
35 #include <linux/string.h>
36 #include <linux/slab.h>
37 #include <linux/backing-dev.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/mount.h>
40 #include <linux/writeback.h>
41 #include <linux/vfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/security.h>
44 #include <linux/swapops.h>
45 #include <linux/mempolicy.h>
46 #include <linux/namei.h>
47 #include <linux/ctype.h>
48 #include <linux/migrate.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/div64.h>
52 #include <asm/pgtable.h>
53 
54 /* This magic number is used in glibc for posix shared memory */
55 #define TMPFS_MAGIC	0x01021994
56 
57 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
58 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
59 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
60 
61 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
62 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
63 
64 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
65 
66 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
67 #define SHMEM_PAGEIN	 VM_READ
68 #define SHMEM_TRUNCATE	 VM_WRITE
69 
70 /* Definition to limit shmem_truncate's steps between cond_rescheds */
71 #define LATENCY_LIMIT	 64
72 
73 /* Pretend that each entry is of this size in directory's i_size */
74 #define BOGO_DIRENT_SIZE 20
75 
76 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
77 enum sgp_type {
78 	SGP_QUICK,	/* don't try more than file page cache lookup */
79 	SGP_READ,	/* don't exceed i_size, don't allocate page */
80 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
81 	SGP_WRITE,	/* may exceed i_size, may allocate page */
82 };
83 
84 static int shmem_getpage(struct inode *inode, unsigned long idx,
85 			 struct page **pagep, enum sgp_type sgp, int *type);
86 
87 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
88 {
89 	/*
90 	 * The above definition of ENTRIES_PER_PAGE, and the use of
91 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
92 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
93 	 */
94 	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
95 }
96 
97 static inline void shmem_dir_free(struct page *page)
98 {
99 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
100 }
101 
102 static struct page **shmem_dir_map(struct page *page)
103 {
104 	return (struct page **)kmap_atomic(page, KM_USER0);
105 }
106 
107 static inline void shmem_dir_unmap(struct page **dir)
108 {
109 	kunmap_atomic(dir, KM_USER0);
110 }
111 
112 static swp_entry_t *shmem_swp_map(struct page *page)
113 {
114 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
115 }
116 
117 static inline void shmem_swp_balance_unmap(void)
118 {
119 	/*
120 	 * When passing a pointer to an i_direct entry, to code which
121 	 * also handles indirect entries and so will shmem_swp_unmap,
122 	 * we must arrange for the preempt count to remain in balance.
123 	 * What kmap_atomic of a lowmem page does depends on config
124 	 * and architecture, so pretend to kmap_atomic some lowmem page.
125 	 */
126 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
127 }
128 
129 static inline void shmem_swp_unmap(swp_entry_t *entry)
130 {
131 	kunmap_atomic(entry, KM_USER1);
132 }
133 
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 	return sb->s_fs_info;
137 }
138 
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 	return (flags & VM_ACCOUNT)?
148 		security_vm_enough_memory(VM_ACCT(size)): 0;
149 }
150 
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 	if (flags & VM_ACCOUNT)
154 		vm_unacct_memory(VM_ACCT(size));
155 }
156 
157 /*
158  * ... whereas tmpfs objects are accounted incrementally as
159  * pages are allocated, in order to allow huge sparse files.
160  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
161  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
162  */
163 static inline int shmem_acct_block(unsigned long flags)
164 {
165 	return (flags & VM_ACCOUNT)?
166 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
167 }
168 
169 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
170 {
171 	if (!(flags & VM_ACCOUNT))
172 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
173 }
174 
175 static struct super_operations shmem_ops;
176 static const struct address_space_operations shmem_aops;
177 static struct file_operations shmem_file_operations;
178 static struct inode_operations shmem_inode_operations;
179 static struct inode_operations shmem_dir_inode_operations;
180 static struct vm_operations_struct shmem_vm_ops;
181 
182 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
183 	.ra_pages	= 0,	/* No readahead */
184 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
185 	.unplug_io_fn	= default_unplug_io_fn,
186 };
187 
188 static LIST_HEAD(shmem_swaplist);
189 static DEFINE_SPINLOCK(shmem_swaplist_lock);
190 
191 static void shmem_free_blocks(struct inode *inode, long pages)
192 {
193 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
194 	if (sbinfo->max_blocks) {
195 		spin_lock(&sbinfo->stat_lock);
196 		sbinfo->free_blocks += pages;
197 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
198 		spin_unlock(&sbinfo->stat_lock);
199 	}
200 }
201 
202 /*
203  * shmem_recalc_inode - recalculate the size of an inode
204  *
205  * @inode: inode to recalc
206  *
207  * We have to calculate the free blocks since the mm can drop
208  * undirtied hole pages behind our back.
209  *
210  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
211  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
212  *
213  * It has to be called with the spinlock held.
214  */
215 static void shmem_recalc_inode(struct inode *inode)
216 {
217 	struct shmem_inode_info *info = SHMEM_I(inode);
218 	long freed;
219 
220 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
221 	if (freed > 0) {
222 		info->alloced -= freed;
223 		shmem_unacct_blocks(info->flags, freed);
224 		shmem_free_blocks(inode, freed);
225 	}
226 }
227 
228 /*
229  * shmem_swp_entry - find the swap vector position in the info structure
230  *
231  * @info:  info structure for the inode
232  * @index: index of the page to find
233  * @page:  optional page to add to the structure. Has to be preset to
234  *         all zeros
235  *
236  * If there is no space allocated yet it will return NULL when
237  * page is NULL, else it will use the page for the needed block,
238  * setting it to NULL on return to indicate that it has been used.
239  *
240  * The swap vector is organized the following way:
241  *
242  * There are SHMEM_NR_DIRECT entries directly stored in the
243  * shmem_inode_info structure. So small files do not need an addional
244  * allocation.
245  *
246  * For pages with index > SHMEM_NR_DIRECT there is the pointer
247  * i_indirect which points to a page which holds in the first half
248  * doubly indirect blocks, in the second half triple indirect blocks:
249  *
250  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
251  * following layout (for SHMEM_NR_DIRECT == 16):
252  *
253  * i_indirect -> dir --> 16-19
254  * 	      |	     +-> 20-23
255  * 	      |
256  * 	      +-->dir2 --> 24-27
257  * 	      |	       +-> 28-31
258  * 	      |	       +-> 32-35
259  * 	      |	       +-> 36-39
260  * 	      |
261  * 	      +-->dir3 --> 40-43
262  * 	       	       +-> 44-47
263  * 	      	       +-> 48-51
264  * 	      	       +-> 52-55
265  */
266 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
267 {
268 	unsigned long offset;
269 	struct page **dir;
270 	struct page *subdir;
271 
272 	if (index < SHMEM_NR_DIRECT) {
273 		shmem_swp_balance_unmap();
274 		return info->i_direct+index;
275 	}
276 	if (!info->i_indirect) {
277 		if (page) {
278 			info->i_indirect = *page;
279 			*page = NULL;
280 		}
281 		return NULL;			/* need another page */
282 	}
283 
284 	index -= SHMEM_NR_DIRECT;
285 	offset = index % ENTRIES_PER_PAGE;
286 	index /= ENTRIES_PER_PAGE;
287 	dir = shmem_dir_map(info->i_indirect);
288 
289 	if (index >= ENTRIES_PER_PAGE/2) {
290 		index -= ENTRIES_PER_PAGE/2;
291 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
292 		index %= ENTRIES_PER_PAGE;
293 		subdir = *dir;
294 		if (!subdir) {
295 			if (page) {
296 				*dir = *page;
297 				*page = NULL;
298 			}
299 			shmem_dir_unmap(dir);
300 			return NULL;		/* need another page */
301 		}
302 		shmem_dir_unmap(dir);
303 		dir = shmem_dir_map(subdir);
304 	}
305 
306 	dir += index;
307 	subdir = *dir;
308 	if (!subdir) {
309 		if (!page || !(subdir = *page)) {
310 			shmem_dir_unmap(dir);
311 			return NULL;		/* need a page */
312 		}
313 		*dir = subdir;
314 		*page = NULL;
315 	}
316 	shmem_dir_unmap(dir);
317 	return shmem_swp_map(subdir) + offset;
318 }
319 
320 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
321 {
322 	long incdec = value? 1: -1;
323 
324 	entry->val = value;
325 	info->swapped += incdec;
326 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
327 		struct page *page = kmap_atomic_to_page(entry);
328 		set_page_private(page, page_private(page) + incdec);
329 	}
330 }
331 
332 /*
333  * shmem_swp_alloc - get the position of the swap entry for the page.
334  *                   If it does not exist allocate the entry.
335  *
336  * @info:	info structure for the inode
337  * @index:	index of the page to find
338  * @sgp:	check and recheck i_size? skip allocation?
339  */
340 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
341 {
342 	struct inode *inode = &info->vfs_inode;
343 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
344 	struct page *page = NULL;
345 	swp_entry_t *entry;
346 
347 	if (sgp != SGP_WRITE &&
348 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
349 		return ERR_PTR(-EINVAL);
350 
351 	while (!(entry = shmem_swp_entry(info, index, &page))) {
352 		if (sgp == SGP_READ)
353 			return shmem_swp_map(ZERO_PAGE(0));
354 		/*
355 		 * Test free_blocks against 1 not 0, since we have 1 data
356 		 * page (and perhaps indirect index pages) yet to allocate:
357 		 * a waste to allocate index if we cannot allocate data.
358 		 */
359 		if (sbinfo->max_blocks) {
360 			spin_lock(&sbinfo->stat_lock);
361 			if (sbinfo->free_blocks <= 1) {
362 				spin_unlock(&sbinfo->stat_lock);
363 				return ERR_PTR(-ENOSPC);
364 			}
365 			sbinfo->free_blocks--;
366 			inode->i_blocks += BLOCKS_PER_PAGE;
367 			spin_unlock(&sbinfo->stat_lock);
368 		}
369 
370 		spin_unlock(&info->lock);
371 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
372 		if (page)
373 			set_page_private(page, 0);
374 		spin_lock(&info->lock);
375 
376 		if (!page) {
377 			shmem_free_blocks(inode, 1);
378 			return ERR_PTR(-ENOMEM);
379 		}
380 		if (sgp != SGP_WRITE &&
381 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
382 			entry = ERR_PTR(-EINVAL);
383 			break;
384 		}
385 		if (info->next_index <= index)
386 			info->next_index = index + 1;
387 	}
388 	if (page) {
389 		/* another task gave its page, or truncated the file */
390 		shmem_free_blocks(inode, 1);
391 		shmem_dir_free(page);
392 	}
393 	if (info->next_index <= index && !IS_ERR(entry))
394 		info->next_index = index + 1;
395 	return entry;
396 }
397 
398 /*
399  * shmem_free_swp - free some swap entries in a directory
400  *
401  * @dir:   pointer to the directory
402  * @edir:  pointer after last entry of the directory
403  */
404 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
405 {
406 	swp_entry_t *ptr;
407 	int freed = 0;
408 
409 	for (ptr = dir; ptr < edir; ptr++) {
410 		if (ptr->val) {
411 			free_swap_and_cache(*ptr);
412 			*ptr = (swp_entry_t){0};
413 			freed++;
414 		}
415 	}
416 	return freed;
417 }
418 
419 static int shmem_map_and_free_swp(struct page *subdir,
420 		int offset, int limit, struct page ***dir)
421 {
422 	swp_entry_t *ptr;
423 	int freed = 0;
424 
425 	ptr = shmem_swp_map(subdir);
426 	for (; offset < limit; offset += LATENCY_LIMIT) {
427 		int size = limit - offset;
428 		if (size > LATENCY_LIMIT)
429 			size = LATENCY_LIMIT;
430 		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
431 		if (need_resched()) {
432 			shmem_swp_unmap(ptr);
433 			if (*dir) {
434 				shmem_dir_unmap(*dir);
435 				*dir = NULL;
436 			}
437 			cond_resched();
438 			ptr = shmem_swp_map(subdir);
439 		}
440 	}
441 	shmem_swp_unmap(ptr);
442 	return freed;
443 }
444 
445 static void shmem_free_pages(struct list_head *next)
446 {
447 	struct page *page;
448 	int freed = 0;
449 
450 	do {
451 		page = container_of(next, struct page, lru);
452 		next = next->next;
453 		shmem_dir_free(page);
454 		freed++;
455 		if (freed >= LATENCY_LIMIT) {
456 			cond_resched();
457 			freed = 0;
458 		}
459 	} while (next);
460 }
461 
462 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
463 {
464 	struct shmem_inode_info *info = SHMEM_I(inode);
465 	unsigned long idx;
466 	unsigned long size;
467 	unsigned long limit;
468 	unsigned long stage;
469 	unsigned long diroff;
470 	struct page **dir;
471 	struct page *topdir;
472 	struct page *middir;
473 	struct page *subdir;
474 	swp_entry_t *ptr;
475 	LIST_HEAD(pages_to_free);
476 	long nr_pages_to_free = 0;
477 	long nr_swaps_freed = 0;
478 	int offset;
479 	int freed;
480 	int punch_hole = 0;
481 
482 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
483 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
484 	if (idx >= info->next_index)
485 		return;
486 
487 	spin_lock(&info->lock);
488 	info->flags |= SHMEM_TRUNCATE;
489 	if (likely(end == (loff_t) -1)) {
490 		limit = info->next_index;
491 		info->next_index = idx;
492 	} else {
493 		limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
494 		if (limit > info->next_index)
495 			limit = info->next_index;
496 		punch_hole = 1;
497 	}
498 
499 	topdir = info->i_indirect;
500 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
501 		info->i_indirect = NULL;
502 		nr_pages_to_free++;
503 		list_add(&topdir->lru, &pages_to_free);
504 	}
505 	spin_unlock(&info->lock);
506 
507 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
508 		ptr = info->i_direct;
509 		size = limit;
510 		if (size > SHMEM_NR_DIRECT)
511 			size = SHMEM_NR_DIRECT;
512 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
513 	}
514 	if (!topdir)
515 		goto done2;
516 
517 	BUG_ON(limit <= SHMEM_NR_DIRECT);
518 	limit -= SHMEM_NR_DIRECT;
519 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
520 	offset = idx % ENTRIES_PER_PAGE;
521 	idx -= offset;
522 
523 	dir = shmem_dir_map(topdir);
524 	stage = ENTRIES_PER_PAGEPAGE/2;
525 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
526 		middir = topdir;
527 		diroff = idx/ENTRIES_PER_PAGE;
528 	} else {
529 		dir += ENTRIES_PER_PAGE/2;
530 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
531 		while (stage <= idx)
532 			stage += ENTRIES_PER_PAGEPAGE;
533 		middir = *dir;
534 		if (*dir) {
535 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
536 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
537 			if (!diroff && !offset) {
538 				*dir = NULL;
539 				nr_pages_to_free++;
540 				list_add(&middir->lru, &pages_to_free);
541 			}
542 			shmem_dir_unmap(dir);
543 			dir = shmem_dir_map(middir);
544 		} else {
545 			diroff = 0;
546 			offset = 0;
547 			idx = stage;
548 		}
549 	}
550 
551 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
552 		if (unlikely(idx == stage)) {
553 			shmem_dir_unmap(dir);
554 			dir = shmem_dir_map(topdir) +
555 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
556 			while (!*dir) {
557 				dir++;
558 				idx += ENTRIES_PER_PAGEPAGE;
559 				if (idx >= limit)
560 					goto done1;
561 			}
562 			stage = idx + ENTRIES_PER_PAGEPAGE;
563 			middir = *dir;
564 			*dir = NULL;
565 			nr_pages_to_free++;
566 			list_add(&middir->lru, &pages_to_free);
567 			shmem_dir_unmap(dir);
568 			cond_resched();
569 			dir = shmem_dir_map(middir);
570 			diroff = 0;
571 		}
572 		subdir = dir[diroff];
573 		if (subdir && page_private(subdir)) {
574 			size = limit - idx;
575 			if (size > ENTRIES_PER_PAGE)
576 				size = ENTRIES_PER_PAGE;
577 			freed = shmem_map_and_free_swp(subdir,
578 						offset, size, &dir);
579 			if (!dir)
580 				dir = shmem_dir_map(middir);
581 			nr_swaps_freed += freed;
582 			if (offset)
583 				spin_lock(&info->lock);
584 			set_page_private(subdir, page_private(subdir) - freed);
585 			if (offset)
586 				spin_unlock(&info->lock);
587 			if (!punch_hole)
588 				BUG_ON(page_private(subdir) > offset);
589 		}
590 		if (offset)
591 			offset = 0;
592 		else if (subdir && !page_private(subdir)) {
593 			dir[diroff] = NULL;
594 			nr_pages_to_free++;
595 			list_add(&subdir->lru, &pages_to_free);
596 		}
597 	}
598 done1:
599 	shmem_dir_unmap(dir);
600 done2:
601 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
602 		/*
603 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
604 		 * may have swizzled a page in from swap since vmtruncate or
605 		 * generic_delete_inode did it, before we lowered next_index.
606 		 * Also, though shmem_getpage checks i_size before adding to
607 		 * cache, no recheck after: so fix the narrow window there too.
608 		 */
609 		truncate_inode_pages_range(inode->i_mapping, start, end);
610 	}
611 
612 	spin_lock(&info->lock);
613 	info->flags &= ~SHMEM_TRUNCATE;
614 	info->swapped -= nr_swaps_freed;
615 	if (nr_pages_to_free)
616 		shmem_free_blocks(inode, nr_pages_to_free);
617 	shmem_recalc_inode(inode);
618 	spin_unlock(&info->lock);
619 
620 	/*
621 	 * Empty swap vector directory pages to be freed?
622 	 */
623 	if (!list_empty(&pages_to_free)) {
624 		pages_to_free.prev->next = NULL;
625 		shmem_free_pages(pages_to_free.next);
626 	}
627 }
628 
629 static void shmem_truncate(struct inode *inode)
630 {
631 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
632 }
633 
634 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
635 {
636 	struct inode *inode = dentry->d_inode;
637 	struct page *page = NULL;
638 	int error;
639 
640 	if (attr->ia_valid & ATTR_SIZE) {
641 		if (attr->ia_size < inode->i_size) {
642 			/*
643 			 * If truncating down to a partial page, then
644 			 * if that page is already allocated, hold it
645 			 * in memory until the truncation is over, so
646 			 * truncate_partial_page cannnot miss it were
647 			 * it assigned to swap.
648 			 */
649 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
650 				(void) shmem_getpage(inode,
651 					attr->ia_size>>PAGE_CACHE_SHIFT,
652 						&page, SGP_READ, NULL);
653 			}
654 			/*
655 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
656 			 * detect if any pages might have been added to cache
657 			 * after truncate_inode_pages.  But we needn't bother
658 			 * if it's being fully truncated to zero-length: the
659 			 * nrpages check is efficient enough in that case.
660 			 */
661 			if (attr->ia_size) {
662 				struct shmem_inode_info *info = SHMEM_I(inode);
663 				spin_lock(&info->lock);
664 				info->flags &= ~SHMEM_PAGEIN;
665 				spin_unlock(&info->lock);
666 			}
667 		}
668 	}
669 
670 	error = inode_change_ok(inode, attr);
671 	if (!error)
672 		error = inode_setattr(inode, attr);
673 	if (page)
674 		page_cache_release(page);
675 	return error;
676 }
677 
678 static void shmem_delete_inode(struct inode *inode)
679 {
680 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
681 	struct shmem_inode_info *info = SHMEM_I(inode);
682 
683 	if (inode->i_op->truncate == shmem_truncate) {
684 		truncate_inode_pages(inode->i_mapping, 0);
685 		shmem_unacct_size(info->flags, inode->i_size);
686 		inode->i_size = 0;
687 		shmem_truncate(inode);
688 		if (!list_empty(&info->swaplist)) {
689 			spin_lock(&shmem_swaplist_lock);
690 			list_del_init(&info->swaplist);
691 			spin_unlock(&shmem_swaplist_lock);
692 		}
693 	}
694 	BUG_ON(inode->i_blocks);
695 	if (sbinfo->max_inodes) {
696 		spin_lock(&sbinfo->stat_lock);
697 		sbinfo->free_inodes++;
698 		spin_unlock(&sbinfo->stat_lock);
699 	}
700 	clear_inode(inode);
701 }
702 
703 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
704 {
705 	swp_entry_t *ptr;
706 
707 	for (ptr = dir; ptr < edir; ptr++) {
708 		if (ptr->val == entry.val)
709 			return ptr - dir;
710 	}
711 	return -1;
712 }
713 
714 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
715 {
716 	struct inode *inode;
717 	unsigned long idx;
718 	unsigned long size;
719 	unsigned long limit;
720 	unsigned long stage;
721 	struct page **dir;
722 	struct page *subdir;
723 	swp_entry_t *ptr;
724 	int offset;
725 
726 	idx = 0;
727 	ptr = info->i_direct;
728 	spin_lock(&info->lock);
729 	limit = info->next_index;
730 	size = limit;
731 	if (size > SHMEM_NR_DIRECT)
732 		size = SHMEM_NR_DIRECT;
733 	offset = shmem_find_swp(entry, ptr, ptr+size);
734 	if (offset >= 0) {
735 		shmem_swp_balance_unmap();
736 		goto found;
737 	}
738 	if (!info->i_indirect)
739 		goto lost2;
740 
741 	dir = shmem_dir_map(info->i_indirect);
742 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
743 
744 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
745 		if (unlikely(idx == stage)) {
746 			shmem_dir_unmap(dir-1);
747 			dir = shmem_dir_map(info->i_indirect) +
748 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
749 			while (!*dir) {
750 				dir++;
751 				idx += ENTRIES_PER_PAGEPAGE;
752 				if (idx >= limit)
753 					goto lost1;
754 			}
755 			stage = idx + ENTRIES_PER_PAGEPAGE;
756 			subdir = *dir;
757 			shmem_dir_unmap(dir);
758 			dir = shmem_dir_map(subdir);
759 		}
760 		subdir = *dir;
761 		if (subdir && page_private(subdir)) {
762 			ptr = shmem_swp_map(subdir);
763 			size = limit - idx;
764 			if (size > ENTRIES_PER_PAGE)
765 				size = ENTRIES_PER_PAGE;
766 			offset = shmem_find_swp(entry, ptr, ptr+size);
767 			if (offset >= 0) {
768 				shmem_dir_unmap(dir);
769 				goto found;
770 			}
771 			shmem_swp_unmap(ptr);
772 		}
773 	}
774 lost1:
775 	shmem_dir_unmap(dir-1);
776 lost2:
777 	spin_unlock(&info->lock);
778 	return 0;
779 found:
780 	idx += offset;
781 	inode = &info->vfs_inode;
782 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
783 		info->flags |= SHMEM_PAGEIN;
784 		shmem_swp_set(info, ptr + offset, 0);
785 	}
786 	shmem_swp_unmap(ptr);
787 	spin_unlock(&info->lock);
788 	/*
789 	 * Decrement swap count even when the entry is left behind:
790 	 * try_to_unuse will skip over mms, then reincrement count.
791 	 */
792 	swap_free(entry);
793 	return 1;
794 }
795 
796 /*
797  * shmem_unuse() search for an eventually swapped out shmem page.
798  */
799 int shmem_unuse(swp_entry_t entry, struct page *page)
800 {
801 	struct list_head *p, *next;
802 	struct shmem_inode_info *info;
803 	int found = 0;
804 
805 	spin_lock(&shmem_swaplist_lock);
806 	list_for_each_safe(p, next, &shmem_swaplist) {
807 		info = list_entry(p, struct shmem_inode_info, swaplist);
808 		if (!info->swapped)
809 			list_del_init(&info->swaplist);
810 		else if (shmem_unuse_inode(info, entry, page)) {
811 			/* move head to start search for next from here */
812 			list_move_tail(&shmem_swaplist, &info->swaplist);
813 			found = 1;
814 			break;
815 		}
816 	}
817 	spin_unlock(&shmem_swaplist_lock);
818 	return found;
819 }
820 
821 /*
822  * Move the page from the page cache to the swap cache.
823  */
824 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
825 {
826 	struct shmem_inode_info *info;
827 	swp_entry_t *entry, swap;
828 	struct address_space *mapping;
829 	unsigned long index;
830 	struct inode *inode;
831 
832 	BUG_ON(!PageLocked(page));
833 	BUG_ON(page_mapped(page));
834 
835 	mapping = page->mapping;
836 	index = page->index;
837 	inode = mapping->host;
838 	info = SHMEM_I(inode);
839 	if (info->flags & VM_LOCKED)
840 		goto redirty;
841 	swap = get_swap_page();
842 	if (!swap.val)
843 		goto redirty;
844 
845 	spin_lock(&info->lock);
846 	shmem_recalc_inode(inode);
847 	if (index >= info->next_index) {
848 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
849 		goto unlock;
850 	}
851 	entry = shmem_swp_entry(info, index, NULL);
852 	BUG_ON(!entry);
853 	BUG_ON(entry->val);
854 
855 	if (move_to_swap_cache(page, swap) == 0) {
856 		shmem_swp_set(info, entry, swap.val);
857 		shmem_swp_unmap(entry);
858 		spin_unlock(&info->lock);
859 		if (list_empty(&info->swaplist)) {
860 			spin_lock(&shmem_swaplist_lock);
861 			/* move instead of add in case we're racing */
862 			list_move_tail(&info->swaplist, &shmem_swaplist);
863 			spin_unlock(&shmem_swaplist_lock);
864 		}
865 		unlock_page(page);
866 		return 0;
867 	}
868 
869 	shmem_swp_unmap(entry);
870 unlock:
871 	spin_unlock(&info->lock);
872 	swap_free(swap);
873 redirty:
874 	set_page_dirty(page);
875 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
876 }
877 
878 #ifdef CONFIG_NUMA
879 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
880 {
881 	char *nodelist = strchr(value, ':');
882 	int err = 1;
883 
884 	if (nodelist) {
885 		/* NUL-terminate policy string */
886 		*nodelist++ = '\0';
887 		if (nodelist_parse(nodelist, *policy_nodes))
888 			goto out;
889 	}
890 	if (!strcmp(value, "default")) {
891 		*policy = MPOL_DEFAULT;
892 		/* Don't allow a nodelist */
893 		if (!nodelist)
894 			err = 0;
895 	} else if (!strcmp(value, "prefer")) {
896 		*policy = MPOL_PREFERRED;
897 		/* Insist on a nodelist of one node only */
898 		if (nodelist) {
899 			char *rest = nodelist;
900 			while (isdigit(*rest))
901 				rest++;
902 			if (!*rest)
903 				err = 0;
904 		}
905 	} else if (!strcmp(value, "bind")) {
906 		*policy = MPOL_BIND;
907 		/* Insist on a nodelist */
908 		if (nodelist)
909 			err = 0;
910 	} else if (!strcmp(value, "interleave")) {
911 		*policy = MPOL_INTERLEAVE;
912 		/* Default to nodes online if no nodelist */
913 		if (!nodelist)
914 			*policy_nodes = node_online_map;
915 		err = 0;
916 	}
917 out:
918 	/* Restore string for error message */
919 	if (nodelist)
920 		*--nodelist = ':';
921 	return err;
922 }
923 
924 static struct page *shmem_swapin_async(struct shared_policy *p,
925 				       swp_entry_t entry, unsigned long idx)
926 {
927 	struct page *page;
928 	struct vm_area_struct pvma;
929 
930 	/* Create a pseudo vma that just contains the policy */
931 	memset(&pvma, 0, sizeof(struct vm_area_struct));
932 	pvma.vm_end = PAGE_SIZE;
933 	pvma.vm_pgoff = idx;
934 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
935 	page = read_swap_cache_async(entry, &pvma, 0);
936 	mpol_free(pvma.vm_policy);
937 	return page;
938 }
939 
940 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
941 			  unsigned long idx)
942 {
943 	struct shared_policy *p = &info->policy;
944 	int i, num;
945 	struct page *page;
946 	unsigned long offset;
947 
948 	num = valid_swaphandles(entry, &offset);
949 	for (i = 0; i < num; offset++, i++) {
950 		page = shmem_swapin_async(p,
951 				swp_entry(swp_type(entry), offset), idx);
952 		if (!page)
953 			break;
954 		page_cache_release(page);
955 	}
956 	lru_add_drain();	/* Push any new pages onto the LRU now */
957 	return shmem_swapin_async(p, entry, idx);
958 }
959 
960 static struct page *
961 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
962 		 unsigned long idx)
963 {
964 	struct vm_area_struct pvma;
965 	struct page *page;
966 
967 	memset(&pvma, 0, sizeof(struct vm_area_struct));
968 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
969 	pvma.vm_pgoff = idx;
970 	pvma.vm_end = PAGE_SIZE;
971 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
972 	mpol_free(pvma.vm_policy);
973 	return page;
974 }
975 #else
976 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
977 {
978 	return 1;
979 }
980 
981 static inline struct page *
982 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
983 {
984 	swapin_readahead(entry, 0, NULL);
985 	return read_swap_cache_async(entry, NULL, 0);
986 }
987 
988 static inline struct page *
989 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
990 {
991 	return alloc_page(gfp | __GFP_ZERO);
992 }
993 #endif
994 
995 /*
996  * shmem_getpage - either get the page from swap or allocate a new one
997  *
998  * If we allocate a new one we do not mark it dirty. That's up to the
999  * vm. If we swap it in we mark it dirty since we also free the swap
1000  * entry since a page cannot live in both the swap and page cache
1001  */
1002 static int shmem_getpage(struct inode *inode, unsigned long idx,
1003 			struct page **pagep, enum sgp_type sgp, int *type)
1004 {
1005 	struct address_space *mapping = inode->i_mapping;
1006 	struct shmem_inode_info *info = SHMEM_I(inode);
1007 	struct shmem_sb_info *sbinfo;
1008 	struct page *filepage = *pagep;
1009 	struct page *swappage;
1010 	swp_entry_t *entry;
1011 	swp_entry_t swap;
1012 	int error;
1013 
1014 	if (idx >= SHMEM_MAX_INDEX)
1015 		return -EFBIG;
1016 	/*
1017 	 * Normally, filepage is NULL on entry, and either found
1018 	 * uptodate immediately, or allocated and zeroed, or read
1019 	 * in under swappage, which is then assigned to filepage.
1020 	 * But shmem_prepare_write passes in a locked filepage,
1021 	 * which may be found not uptodate by other callers too,
1022 	 * and may need to be copied from the swappage read in.
1023 	 */
1024 repeat:
1025 	if (!filepage)
1026 		filepage = find_lock_page(mapping, idx);
1027 	if (filepage && PageUptodate(filepage))
1028 		goto done;
1029 	error = 0;
1030 	if (sgp == SGP_QUICK)
1031 		goto failed;
1032 
1033 	spin_lock(&info->lock);
1034 	shmem_recalc_inode(inode);
1035 	entry = shmem_swp_alloc(info, idx, sgp);
1036 	if (IS_ERR(entry)) {
1037 		spin_unlock(&info->lock);
1038 		error = PTR_ERR(entry);
1039 		goto failed;
1040 	}
1041 	swap = *entry;
1042 
1043 	if (swap.val) {
1044 		/* Look it up and read it in.. */
1045 		swappage = lookup_swap_cache(swap);
1046 		if (!swappage) {
1047 			shmem_swp_unmap(entry);
1048 			/* here we actually do the io */
1049 			if (type && *type == VM_FAULT_MINOR) {
1050 				__count_vm_event(PGMAJFAULT);
1051 				*type = VM_FAULT_MAJOR;
1052 			}
1053 			spin_unlock(&info->lock);
1054 			swappage = shmem_swapin(info, swap, idx);
1055 			if (!swappage) {
1056 				spin_lock(&info->lock);
1057 				entry = shmem_swp_alloc(info, idx, sgp);
1058 				if (IS_ERR(entry))
1059 					error = PTR_ERR(entry);
1060 				else {
1061 					if (entry->val == swap.val)
1062 						error = -ENOMEM;
1063 					shmem_swp_unmap(entry);
1064 				}
1065 				spin_unlock(&info->lock);
1066 				if (error)
1067 					goto failed;
1068 				goto repeat;
1069 			}
1070 			wait_on_page_locked(swappage);
1071 			page_cache_release(swappage);
1072 			goto repeat;
1073 		}
1074 
1075 		/* We have to do this with page locked to prevent races */
1076 		if (TestSetPageLocked(swappage)) {
1077 			shmem_swp_unmap(entry);
1078 			spin_unlock(&info->lock);
1079 			wait_on_page_locked(swappage);
1080 			page_cache_release(swappage);
1081 			goto repeat;
1082 		}
1083 		if (PageWriteback(swappage)) {
1084 			shmem_swp_unmap(entry);
1085 			spin_unlock(&info->lock);
1086 			wait_on_page_writeback(swappage);
1087 			unlock_page(swappage);
1088 			page_cache_release(swappage);
1089 			goto repeat;
1090 		}
1091 		if (!PageUptodate(swappage)) {
1092 			shmem_swp_unmap(entry);
1093 			spin_unlock(&info->lock);
1094 			unlock_page(swappage);
1095 			page_cache_release(swappage);
1096 			error = -EIO;
1097 			goto failed;
1098 		}
1099 
1100 		if (filepage) {
1101 			shmem_swp_set(info, entry, 0);
1102 			shmem_swp_unmap(entry);
1103 			delete_from_swap_cache(swappage);
1104 			spin_unlock(&info->lock);
1105 			copy_highpage(filepage, swappage);
1106 			unlock_page(swappage);
1107 			page_cache_release(swappage);
1108 			flush_dcache_page(filepage);
1109 			SetPageUptodate(filepage);
1110 			set_page_dirty(filepage);
1111 			swap_free(swap);
1112 		} else if (!(error = move_from_swap_cache(
1113 				swappage, idx, mapping))) {
1114 			info->flags |= SHMEM_PAGEIN;
1115 			shmem_swp_set(info, entry, 0);
1116 			shmem_swp_unmap(entry);
1117 			spin_unlock(&info->lock);
1118 			filepage = swappage;
1119 			swap_free(swap);
1120 		} else {
1121 			shmem_swp_unmap(entry);
1122 			spin_unlock(&info->lock);
1123 			unlock_page(swappage);
1124 			page_cache_release(swappage);
1125 			if (error == -ENOMEM) {
1126 				/* let kswapd refresh zone for GFP_ATOMICs */
1127 				blk_congestion_wait(WRITE, HZ/50);
1128 			}
1129 			goto repeat;
1130 		}
1131 	} else if (sgp == SGP_READ && !filepage) {
1132 		shmem_swp_unmap(entry);
1133 		filepage = find_get_page(mapping, idx);
1134 		if (filepage &&
1135 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1136 			spin_unlock(&info->lock);
1137 			wait_on_page_locked(filepage);
1138 			page_cache_release(filepage);
1139 			filepage = NULL;
1140 			goto repeat;
1141 		}
1142 		spin_unlock(&info->lock);
1143 	} else {
1144 		shmem_swp_unmap(entry);
1145 		sbinfo = SHMEM_SB(inode->i_sb);
1146 		if (sbinfo->max_blocks) {
1147 			spin_lock(&sbinfo->stat_lock);
1148 			if (sbinfo->free_blocks == 0 ||
1149 			    shmem_acct_block(info->flags)) {
1150 				spin_unlock(&sbinfo->stat_lock);
1151 				spin_unlock(&info->lock);
1152 				error = -ENOSPC;
1153 				goto failed;
1154 			}
1155 			sbinfo->free_blocks--;
1156 			inode->i_blocks += BLOCKS_PER_PAGE;
1157 			spin_unlock(&sbinfo->stat_lock);
1158 		} else if (shmem_acct_block(info->flags)) {
1159 			spin_unlock(&info->lock);
1160 			error = -ENOSPC;
1161 			goto failed;
1162 		}
1163 
1164 		if (!filepage) {
1165 			spin_unlock(&info->lock);
1166 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1167 						    info,
1168 						    idx);
1169 			if (!filepage) {
1170 				shmem_unacct_blocks(info->flags, 1);
1171 				shmem_free_blocks(inode, 1);
1172 				error = -ENOMEM;
1173 				goto failed;
1174 			}
1175 
1176 			spin_lock(&info->lock);
1177 			entry = shmem_swp_alloc(info, idx, sgp);
1178 			if (IS_ERR(entry))
1179 				error = PTR_ERR(entry);
1180 			else {
1181 				swap = *entry;
1182 				shmem_swp_unmap(entry);
1183 			}
1184 			if (error || swap.val || 0 != add_to_page_cache_lru(
1185 					filepage, mapping, idx, GFP_ATOMIC)) {
1186 				spin_unlock(&info->lock);
1187 				page_cache_release(filepage);
1188 				shmem_unacct_blocks(info->flags, 1);
1189 				shmem_free_blocks(inode, 1);
1190 				filepage = NULL;
1191 				if (error)
1192 					goto failed;
1193 				goto repeat;
1194 			}
1195 			info->flags |= SHMEM_PAGEIN;
1196 		}
1197 
1198 		info->alloced++;
1199 		spin_unlock(&info->lock);
1200 		flush_dcache_page(filepage);
1201 		SetPageUptodate(filepage);
1202 	}
1203 done:
1204 	if (*pagep != filepage) {
1205 		unlock_page(filepage);
1206 		*pagep = filepage;
1207 	}
1208 	return 0;
1209 
1210 failed:
1211 	if (*pagep != filepage) {
1212 		unlock_page(filepage);
1213 		page_cache_release(filepage);
1214 	}
1215 	return error;
1216 }
1217 
1218 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1219 {
1220 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1221 	struct page *page = NULL;
1222 	unsigned long idx;
1223 	int error;
1224 
1225 	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1226 	idx += vma->vm_pgoff;
1227 	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1228 	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1229 		return NOPAGE_SIGBUS;
1230 
1231 	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1232 	if (error)
1233 		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1234 
1235 	mark_page_accessed(page);
1236 	return page;
1237 }
1238 
1239 static int shmem_populate(struct vm_area_struct *vma,
1240 	unsigned long addr, unsigned long len,
1241 	pgprot_t prot, unsigned long pgoff, int nonblock)
1242 {
1243 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1244 	struct mm_struct *mm = vma->vm_mm;
1245 	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1246 	unsigned long size;
1247 
1248 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1249 	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1250 		return -EINVAL;
1251 
1252 	while ((long) len > 0) {
1253 		struct page *page = NULL;
1254 		int err;
1255 		/*
1256 		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1257 		 */
1258 		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1259 		if (err)
1260 			return err;
1261 		/* Page may still be null, but only if nonblock was set. */
1262 		if (page) {
1263 			mark_page_accessed(page);
1264 			err = install_page(mm, vma, addr, page, prot);
1265 			if (err) {
1266 				page_cache_release(page);
1267 				return err;
1268 			}
1269 		} else if (vma->vm_flags & VM_NONLINEAR) {
1270 			/* No page was found just because we can't read it in
1271 			 * now (being here implies nonblock != 0), but the page
1272 			 * may exist, so set the PTE to fault it in later. */
1273     			err = install_file_pte(mm, vma, addr, pgoff, prot);
1274 			if (err)
1275 	    			return err;
1276 		}
1277 
1278 		len -= PAGE_SIZE;
1279 		addr += PAGE_SIZE;
1280 		pgoff++;
1281 	}
1282 	return 0;
1283 }
1284 
1285 #ifdef CONFIG_NUMA
1286 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1287 {
1288 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1289 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1290 }
1291 
1292 struct mempolicy *
1293 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1294 {
1295 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1296 	unsigned long idx;
1297 
1298 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1299 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1300 }
1301 #endif
1302 
1303 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1304 {
1305 	struct inode *inode = file->f_dentry->d_inode;
1306 	struct shmem_inode_info *info = SHMEM_I(inode);
1307 	int retval = -ENOMEM;
1308 
1309 	spin_lock(&info->lock);
1310 	if (lock && !(info->flags & VM_LOCKED)) {
1311 		if (!user_shm_lock(inode->i_size, user))
1312 			goto out_nomem;
1313 		info->flags |= VM_LOCKED;
1314 	}
1315 	if (!lock && (info->flags & VM_LOCKED) && user) {
1316 		user_shm_unlock(inode->i_size, user);
1317 		info->flags &= ~VM_LOCKED;
1318 	}
1319 	retval = 0;
1320 out_nomem:
1321 	spin_unlock(&info->lock);
1322 	return retval;
1323 }
1324 
1325 int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1326 {
1327 	file_accessed(file);
1328 	vma->vm_ops = &shmem_vm_ops;
1329 	return 0;
1330 }
1331 
1332 static struct inode *
1333 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1334 {
1335 	struct inode *inode;
1336 	struct shmem_inode_info *info;
1337 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1338 
1339 	if (sbinfo->max_inodes) {
1340 		spin_lock(&sbinfo->stat_lock);
1341 		if (!sbinfo->free_inodes) {
1342 			spin_unlock(&sbinfo->stat_lock);
1343 			return NULL;
1344 		}
1345 		sbinfo->free_inodes--;
1346 		spin_unlock(&sbinfo->stat_lock);
1347 	}
1348 
1349 	inode = new_inode(sb);
1350 	if (inode) {
1351 		inode->i_mode = mode;
1352 		inode->i_uid = current->fsuid;
1353 		inode->i_gid = current->fsgid;
1354 		inode->i_blksize = PAGE_CACHE_SIZE;
1355 		inode->i_blocks = 0;
1356 		inode->i_mapping->a_ops = &shmem_aops;
1357 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1358 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1359 		info = SHMEM_I(inode);
1360 		memset(info, 0, (char *)inode - (char *)info);
1361 		spin_lock_init(&info->lock);
1362 		INIT_LIST_HEAD(&info->swaplist);
1363 
1364 		switch (mode & S_IFMT) {
1365 		default:
1366 			init_special_inode(inode, mode, dev);
1367 			break;
1368 		case S_IFREG:
1369 			inode->i_op = &shmem_inode_operations;
1370 			inode->i_fop = &shmem_file_operations;
1371 			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1372 							&sbinfo->policy_nodes);
1373 			break;
1374 		case S_IFDIR:
1375 			inode->i_nlink++;
1376 			/* Some things misbehave if size == 0 on a directory */
1377 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1378 			inode->i_op = &shmem_dir_inode_operations;
1379 			inode->i_fop = &simple_dir_operations;
1380 			break;
1381 		case S_IFLNK:
1382 			/*
1383 			 * Must not load anything in the rbtree,
1384 			 * mpol_free_shared_policy will not be called.
1385 			 */
1386 			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1387 						NULL);
1388 			break;
1389 		}
1390 	} else if (sbinfo->max_inodes) {
1391 		spin_lock(&sbinfo->stat_lock);
1392 		sbinfo->free_inodes++;
1393 		spin_unlock(&sbinfo->stat_lock);
1394 	}
1395 	return inode;
1396 }
1397 
1398 #ifdef CONFIG_TMPFS
1399 static struct inode_operations shmem_symlink_inode_operations;
1400 static struct inode_operations shmem_symlink_inline_operations;
1401 
1402 /*
1403  * Normally tmpfs makes no use of shmem_prepare_write, but it
1404  * lets a tmpfs file be used read-write below the loop driver.
1405  */
1406 static int
1407 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1408 {
1409 	struct inode *inode = page->mapping->host;
1410 	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1411 }
1412 
1413 static ssize_t
1414 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1415 {
1416 	struct inode	*inode = file->f_dentry->d_inode;
1417 	loff_t		pos;
1418 	unsigned long	written;
1419 	ssize_t		err;
1420 
1421 	if ((ssize_t) count < 0)
1422 		return -EINVAL;
1423 
1424 	if (!access_ok(VERIFY_READ, buf, count))
1425 		return -EFAULT;
1426 
1427 	mutex_lock(&inode->i_mutex);
1428 
1429 	pos = *ppos;
1430 	written = 0;
1431 
1432 	err = generic_write_checks(file, &pos, &count, 0);
1433 	if (err || !count)
1434 		goto out;
1435 
1436 	err = remove_suid(file->f_dentry);
1437 	if (err)
1438 		goto out;
1439 
1440 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1441 
1442 	do {
1443 		struct page *page = NULL;
1444 		unsigned long bytes, index, offset;
1445 		char *kaddr;
1446 		int left;
1447 
1448 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1449 		index = pos >> PAGE_CACHE_SHIFT;
1450 		bytes = PAGE_CACHE_SIZE - offset;
1451 		if (bytes > count)
1452 			bytes = count;
1453 
1454 		/*
1455 		 * We don't hold page lock across copy from user -
1456 		 * what would it guard against? - so no deadlock here.
1457 		 * But it still may be a good idea to prefault below.
1458 		 */
1459 
1460 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1461 		if (err)
1462 			break;
1463 
1464 		left = bytes;
1465 		if (PageHighMem(page)) {
1466 			volatile unsigned char dummy;
1467 			__get_user(dummy, buf);
1468 			__get_user(dummy, buf + bytes - 1);
1469 
1470 			kaddr = kmap_atomic(page, KM_USER0);
1471 			left = __copy_from_user_inatomic(kaddr + offset,
1472 							buf, bytes);
1473 			kunmap_atomic(kaddr, KM_USER0);
1474 		}
1475 		if (left) {
1476 			kaddr = kmap(page);
1477 			left = __copy_from_user(kaddr + offset, buf, bytes);
1478 			kunmap(page);
1479 		}
1480 
1481 		written += bytes;
1482 		count -= bytes;
1483 		pos += bytes;
1484 		buf += bytes;
1485 		if (pos > inode->i_size)
1486 			i_size_write(inode, pos);
1487 
1488 		flush_dcache_page(page);
1489 		set_page_dirty(page);
1490 		mark_page_accessed(page);
1491 		page_cache_release(page);
1492 
1493 		if (left) {
1494 			pos -= left;
1495 			written -= left;
1496 			err = -EFAULT;
1497 			break;
1498 		}
1499 
1500 		/*
1501 		 * Our dirty pages are not counted in nr_dirty,
1502 		 * and we do not attempt to balance dirty pages.
1503 		 */
1504 
1505 		cond_resched();
1506 	} while (count);
1507 
1508 	*ppos = pos;
1509 	if (written)
1510 		err = written;
1511 out:
1512 	mutex_unlock(&inode->i_mutex);
1513 	return err;
1514 }
1515 
1516 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1517 {
1518 	struct inode *inode = filp->f_dentry->d_inode;
1519 	struct address_space *mapping = inode->i_mapping;
1520 	unsigned long index, offset;
1521 
1522 	index = *ppos >> PAGE_CACHE_SHIFT;
1523 	offset = *ppos & ~PAGE_CACHE_MASK;
1524 
1525 	for (;;) {
1526 		struct page *page = NULL;
1527 		unsigned long end_index, nr, ret;
1528 		loff_t i_size = i_size_read(inode);
1529 
1530 		end_index = i_size >> PAGE_CACHE_SHIFT;
1531 		if (index > end_index)
1532 			break;
1533 		if (index == end_index) {
1534 			nr = i_size & ~PAGE_CACHE_MASK;
1535 			if (nr <= offset)
1536 				break;
1537 		}
1538 
1539 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1540 		if (desc->error) {
1541 			if (desc->error == -EINVAL)
1542 				desc->error = 0;
1543 			break;
1544 		}
1545 
1546 		/*
1547 		 * We must evaluate after, since reads (unlike writes)
1548 		 * are called without i_mutex protection against truncate
1549 		 */
1550 		nr = PAGE_CACHE_SIZE;
1551 		i_size = i_size_read(inode);
1552 		end_index = i_size >> PAGE_CACHE_SHIFT;
1553 		if (index == end_index) {
1554 			nr = i_size & ~PAGE_CACHE_MASK;
1555 			if (nr <= offset) {
1556 				if (page)
1557 					page_cache_release(page);
1558 				break;
1559 			}
1560 		}
1561 		nr -= offset;
1562 
1563 		if (page) {
1564 			/*
1565 			 * If users can be writing to this page using arbitrary
1566 			 * virtual addresses, take care about potential aliasing
1567 			 * before reading the page on the kernel side.
1568 			 */
1569 			if (mapping_writably_mapped(mapping))
1570 				flush_dcache_page(page);
1571 			/*
1572 			 * Mark the page accessed if we read the beginning.
1573 			 */
1574 			if (!offset)
1575 				mark_page_accessed(page);
1576 		} else {
1577 			page = ZERO_PAGE(0);
1578 			page_cache_get(page);
1579 		}
1580 
1581 		/*
1582 		 * Ok, we have the page, and it's up-to-date, so
1583 		 * now we can copy it to user space...
1584 		 *
1585 		 * The actor routine returns how many bytes were actually used..
1586 		 * NOTE! This may not be the same as how much of a user buffer
1587 		 * we filled up (we may be padding etc), so we can only update
1588 		 * "pos" here (the actor routine has to update the user buffer
1589 		 * pointers and the remaining count).
1590 		 */
1591 		ret = actor(desc, page, offset, nr);
1592 		offset += ret;
1593 		index += offset >> PAGE_CACHE_SHIFT;
1594 		offset &= ~PAGE_CACHE_MASK;
1595 
1596 		page_cache_release(page);
1597 		if (ret != nr || !desc->count)
1598 			break;
1599 
1600 		cond_resched();
1601 	}
1602 
1603 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1604 	file_accessed(filp);
1605 }
1606 
1607 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1608 {
1609 	read_descriptor_t desc;
1610 
1611 	if ((ssize_t) count < 0)
1612 		return -EINVAL;
1613 	if (!access_ok(VERIFY_WRITE, buf, count))
1614 		return -EFAULT;
1615 	if (!count)
1616 		return 0;
1617 
1618 	desc.written = 0;
1619 	desc.count = count;
1620 	desc.arg.buf = buf;
1621 	desc.error = 0;
1622 
1623 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1624 	if (desc.written)
1625 		return desc.written;
1626 	return desc.error;
1627 }
1628 
1629 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1630 			 size_t count, read_actor_t actor, void *target)
1631 {
1632 	read_descriptor_t desc;
1633 
1634 	if (!count)
1635 		return 0;
1636 
1637 	desc.written = 0;
1638 	desc.count = count;
1639 	desc.arg.data = target;
1640 	desc.error = 0;
1641 
1642 	do_shmem_file_read(in_file, ppos, &desc, actor);
1643 	if (desc.written)
1644 		return desc.written;
1645 	return desc.error;
1646 }
1647 
1648 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1649 {
1650 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1651 
1652 	buf->f_type = TMPFS_MAGIC;
1653 	buf->f_bsize = PAGE_CACHE_SIZE;
1654 	buf->f_namelen = NAME_MAX;
1655 	spin_lock(&sbinfo->stat_lock);
1656 	if (sbinfo->max_blocks) {
1657 		buf->f_blocks = sbinfo->max_blocks;
1658 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1659 	}
1660 	if (sbinfo->max_inodes) {
1661 		buf->f_files = sbinfo->max_inodes;
1662 		buf->f_ffree = sbinfo->free_inodes;
1663 	}
1664 	/* else leave those fields 0 like simple_statfs */
1665 	spin_unlock(&sbinfo->stat_lock);
1666 	return 0;
1667 }
1668 
1669 /*
1670  * File creation. Allocate an inode, and we're done..
1671  */
1672 static int
1673 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1674 {
1675 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1676 	int error = -ENOSPC;
1677 
1678 	if (inode) {
1679 		error = security_inode_init_security(inode, dir, NULL, NULL,
1680 						     NULL);
1681 		if (error) {
1682 			if (error != -EOPNOTSUPP) {
1683 				iput(inode);
1684 				return error;
1685 			}
1686 			error = 0;
1687 		}
1688 		if (dir->i_mode & S_ISGID) {
1689 			inode->i_gid = dir->i_gid;
1690 			if (S_ISDIR(mode))
1691 				inode->i_mode |= S_ISGID;
1692 		}
1693 		dir->i_size += BOGO_DIRENT_SIZE;
1694 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1695 		d_instantiate(dentry, inode);
1696 		dget(dentry); /* Extra count - pin the dentry in core */
1697 	}
1698 	return error;
1699 }
1700 
1701 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1702 {
1703 	int error;
1704 
1705 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1706 		return error;
1707 	dir->i_nlink++;
1708 	return 0;
1709 }
1710 
1711 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1712 		struct nameidata *nd)
1713 {
1714 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1715 }
1716 
1717 /*
1718  * Link a file..
1719  */
1720 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1721 {
1722 	struct inode *inode = old_dentry->d_inode;
1723 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1724 
1725 	/*
1726 	 * No ordinary (disk based) filesystem counts links as inodes;
1727 	 * but each new link needs a new dentry, pinning lowmem, and
1728 	 * tmpfs dentries cannot be pruned until they are unlinked.
1729 	 */
1730 	if (sbinfo->max_inodes) {
1731 		spin_lock(&sbinfo->stat_lock);
1732 		if (!sbinfo->free_inodes) {
1733 			spin_unlock(&sbinfo->stat_lock);
1734 			return -ENOSPC;
1735 		}
1736 		sbinfo->free_inodes--;
1737 		spin_unlock(&sbinfo->stat_lock);
1738 	}
1739 
1740 	dir->i_size += BOGO_DIRENT_SIZE;
1741 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1742 	inode->i_nlink++;
1743 	atomic_inc(&inode->i_count);	/* New dentry reference */
1744 	dget(dentry);		/* Extra pinning count for the created dentry */
1745 	d_instantiate(dentry, inode);
1746 	return 0;
1747 }
1748 
1749 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1750 {
1751 	struct inode *inode = dentry->d_inode;
1752 
1753 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1754 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1755 		if (sbinfo->max_inodes) {
1756 			spin_lock(&sbinfo->stat_lock);
1757 			sbinfo->free_inodes++;
1758 			spin_unlock(&sbinfo->stat_lock);
1759 		}
1760 	}
1761 
1762 	dir->i_size -= BOGO_DIRENT_SIZE;
1763 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1764 	inode->i_nlink--;
1765 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1766 	return 0;
1767 }
1768 
1769 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1770 {
1771 	if (!simple_empty(dentry))
1772 		return -ENOTEMPTY;
1773 
1774 	dentry->d_inode->i_nlink--;
1775 	dir->i_nlink--;
1776 	return shmem_unlink(dir, dentry);
1777 }
1778 
1779 /*
1780  * The VFS layer already does all the dentry stuff for rename,
1781  * we just have to decrement the usage count for the target if
1782  * it exists so that the VFS layer correctly free's it when it
1783  * gets overwritten.
1784  */
1785 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1786 {
1787 	struct inode *inode = old_dentry->d_inode;
1788 	int they_are_dirs = S_ISDIR(inode->i_mode);
1789 
1790 	if (!simple_empty(new_dentry))
1791 		return -ENOTEMPTY;
1792 
1793 	if (new_dentry->d_inode) {
1794 		(void) shmem_unlink(new_dir, new_dentry);
1795 		if (they_are_dirs)
1796 			old_dir->i_nlink--;
1797 	} else if (they_are_dirs) {
1798 		old_dir->i_nlink--;
1799 		new_dir->i_nlink++;
1800 	}
1801 
1802 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1803 	new_dir->i_size += BOGO_DIRENT_SIZE;
1804 	old_dir->i_ctime = old_dir->i_mtime =
1805 	new_dir->i_ctime = new_dir->i_mtime =
1806 	inode->i_ctime = CURRENT_TIME;
1807 	return 0;
1808 }
1809 
1810 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1811 {
1812 	int error;
1813 	int len;
1814 	struct inode *inode;
1815 	struct page *page = NULL;
1816 	char *kaddr;
1817 	struct shmem_inode_info *info;
1818 
1819 	len = strlen(symname) + 1;
1820 	if (len > PAGE_CACHE_SIZE)
1821 		return -ENAMETOOLONG;
1822 
1823 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1824 	if (!inode)
1825 		return -ENOSPC;
1826 
1827 	error = security_inode_init_security(inode, dir, NULL, NULL,
1828 					     NULL);
1829 	if (error) {
1830 		if (error != -EOPNOTSUPP) {
1831 			iput(inode);
1832 			return error;
1833 		}
1834 		error = 0;
1835 	}
1836 
1837 	info = SHMEM_I(inode);
1838 	inode->i_size = len-1;
1839 	if (len <= (char *)inode - (char *)info) {
1840 		/* do it inline */
1841 		memcpy(info, symname, len);
1842 		inode->i_op = &shmem_symlink_inline_operations;
1843 	} else {
1844 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1845 		if (error) {
1846 			iput(inode);
1847 			return error;
1848 		}
1849 		inode->i_op = &shmem_symlink_inode_operations;
1850 		kaddr = kmap_atomic(page, KM_USER0);
1851 		memcpy(kaddr, symname, len);
1852 		kunmap_atomic(kaddr, KM_USER0);
1853 		set_page_dirty(page);
1854 		page_cache_release(page);
1855 	}
1856 	if (dir->i_mode & S_ISGID)
1857 		inode->i_gid = dir->i_gid;
1858 	dir->i_size += BOGO_DIRENT_SIZE;
1859 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1860 	d_instantiate(dentry, inode);
1861 	dget(dentry);
1862 	return 0;
1863 }
1864 
1865 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1866 {
1867 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1868 	return NULL;
1869 }
1870 
1871 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1872 {
1873 	struct page *page = NULL;
1874 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1875 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1876 	return page;
1877 }
1878 
1879 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1880 {
1881 	if (!IS_ERR(nd_get_link(nd))) {
1882 		struct page *page = cookie;
1883 		kunmap(page);
1884 		mark_page_accessed(page);
1885 		page_cache_release(page);
1886 	}
1887 }
1888 
1889 static struct inode_operations shmem_symlink_inline_operations = {
1890 	.readlink	= generic_readlink,
1891 	.follow_link	= shmem_follow_link_inline,
1892 };
1893 
1894 static struct inode_operations shmem_symlink_inode_operations = {
1895 	.truncate	= shmem_truncate,
1896 	.readlink	= generic_readlink,
1897 	.follow_link	= shmem_follow_link,
1898 	.put_link	= shmem_put_link,
1899 };
1900 
1901 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
1902 	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
1903 	int *policy, nodemask_t *policy_nodes)
1904 {
1905 	char *this_char, *value, *rest;
1906 
1907 	while (options != NULL) {
1908 		this_char = options;
1909 		for (;;) {
1910 			/*
1911 			 * NUL-terminate this option: unfortunately,
1912 			 * mount options form a comma-separated list,
1913 			 * but mpol's nodelist may also contain commas.
1914 			 */
1915 			options = strchr(options, ',');
1916 			if (options == NULL)
1917 				break;
1918 			options++;
1919 			if (!isdigit(*options)) {
1920 				options[-1] = '\0';
1921 				break;
1922 			}
1923 		}
1924 		if (!*this_char)
1925 			continue;
1926 		if ((value = strchr(this_char,'=')) != NULL) {
1927 			*value++ = 0;
1928 		} else {
1929 			printk(KERN_ERR
1930 			    "tmpfs: No value for mount option '%s'\n",
1931 			    this_char);
1932 			return 1;
1933 		}
1934 
1935 		if (!strcmp(this_char,"size")) {
1936 			unsigned long long size;
1937 			size = memparse(value,&rest);
1938 			if (*rest == '%') {
1939 				size <<= PAGE_SHIFT;
1940 				size *= totalram_pages;
1941 				do_div(size, 100);
1942 				rest++;
1943 			}
1944 			if (*rest)
1945 				goto bad_val;
1946 			*blocks = size >> PAGE_CACHE_SHIFT;
1947 		} else if (!strcmp(this_char,"nr_blocks")) {
1948 			*blocks = memparse(value,&rest);
1949 			if (*rest)
1950 				goto bad_val;
1951 		} else if (!strcmp(this_char,"nr_inodes")) {
1952 			*inodes = memparse(value,&rest);
1953 			if (*rest)
1954 				goto bad_val;
1955 		} else if (!strcmp(this_char,"mode")) {
1956 			if (!mode)
1957 				continue;
1958 			*mode = simple_strtoul(value,&rest,8);
1959 			if (*rest)
1960 				goto bad_val;
1961 		} else if (!strcmp(this_char,"uid")) {
1962 			if (!uid)
1963 				continue;
1964 			*uid = simple_strtoul(value,&rest,0);
1965 			if (*rest)
1966 				goto bad_val;
1967 		} else if (!strcmp(this_char,"gid")) {
1968 			if (!gid)
1969 				continue;
1970 			*gid = simple_strtoul(value,&rest,0);
1971 			if (*rest)
1972 				goto bad_val;
1973 		} else if (!strcmp(this_char,"mpol")) {
1974 			if (shmem_parse_mpol(value,policy,policy_nodes))
1975 				goto bad_val;
1976 		} else {
1977 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1978 			       this_char);
1979 			return 1;
1980 		}
1981 	}
1982 	return 0;
1983 
1984 bad_val:
1985 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1986 	       value, this_char);
1987 	return 1;
1988 
1989 }
1990 
1991 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1992 {
1993 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1994 	unsigned long max_blocks = sbinfo->max_blocks;
1995 	unsigned long max_inodes = sbinfo->max_inodes;
1996 	int policy = sbinfo->policy;
1997 	nodemask_t policy_nodes = sbinfo->policy_nodes;
1998 	unsigned long blocks;
1999 	unsigned long inodes;
2000 	int error = -EINVAL;
2001 
2002 	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2003 				&max_inodes, &policy, &policy_nodes))
2004 		return error;
2005 
2006 	spin_lock(&sbinfo->stat_lock);
2007 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2008 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2009 	if (max_blocks < blocks)
2010 		goto out;
2011 	if (max_inodes < inodes)
2012 		goto out;
2013 	/*
2014 	 * Those tests also disallow limited->unlimited while any are in
2015 	 * use, so i_blocks will always be zero when max_blocks is zero;
2016 	 * but we must separately disallow unlimited->limited, because
2017 	 * in that case we have no record of how much is already in use.
2018 	 */
2019 	if (max_blocks && !sbinfo->max_blocks)
2020 		goto out;
2021 	if (max_inodes && !sbinfo->max_inodes)
2022 		goto out;
2023 
2024 	error = 0;
2025 	sbinfo->max_blocks  = max_blocks;
2026 	sbinfo->free_blocks = max_blocks - blocks;
2027 	sbinfo->max_inodes  = max_inodes;
2028 	sbinfo->free_inodes = max_inodes - inodes;
2029 	sbinfo->policy = policy;
2030 	sbinfo->policy_nodes = policy_nodes;
2031 out:
2032 	spin_unlock(&sbinfo->stat_lock);
2033 	return error;
2034 }
2035 #endif
2036 
2037 static void shmem_put_super(struct super_block *sb)
2038 {
2039 	kfree(sb->s_fs_info);
2040 	sb->s_fs_info = NULL;
2041 }
2042 
2043 static int shmem_fill_super(struct super_block *sb,
2044 			    void *data, int silent)
2045 {
2046 	struct inode *inode;
2047 	struct dentry *root;
2048 	int mode   = S_IRWXUGO | S_ISVTX;
2049 	uid_t uid = current->fsuid;
2050 	gid_t gid = current->fsgid;
2051 	int err = -ENOMEM;
2052 	struct shmem_sb_info *sbinfo;
2053 	unsigned long blocks = 0;
2054 	unsigned long inodes = 0;
2055 	int policy = MPOL_DEFAULT;
2056 	nodemask_t policy_nodes = node_online_map;
2057 
2058 #ifdef CONFIG_TMPFS
2059 	/*
2060 	 * Per default we only allow half of the physical ram per
2061 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2062 	 * but the internal instance is left unlimited.
2063 	 */
2064 	if (!(sb->s_flags & MS_NOUSER)) {
2065 		blocks = totalram_pages / 2;
2066 		inodes = totalram_pages - totalhigh_pages;
2067 		if (inodes > blocks)
2068 			inodes = blocks;
2069 		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2070 					&inodes, &policy, &policy_nodes))
2071 			return -EINVAL;
2072 	}
2073 #else
2074 	sb->s_flags |= MS_NOUSER;
2075 #endif
2076 
2077 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2078 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2079 				L1_CACHE_BYTES), GFP_KERNEL);
2080 	if (!sbinfo)
2081 		return -ENOMEM;
2082 
2083 	spin_lock_init(&sbinfo->stat_lock);
2084 	sbinfo->max_blocks = blocks;
2085 	sbinfo->free_blocks = blocks;
2086 	sbinfo->max_inodes = inodes;
2087 	sbinfo->free_inodes = inodes;
2088 	sbinfo->policy = policy;
2089 	sbinfo->policy_nodes = policy_nodes;
2090 
2091 	sb->s_fs_info = sbinfo;
2092 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2093 	sb->s_blocksize = PAGE_CACHE_SIZE;
2094 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2095 	sb->s_magic = TMPFS_MAGIC;
2096 	sb->s_op = &shmem_ops;
2097 	sb->s_time_gran = 1;
2098 
2099 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2100 	if (!inode)
2101 		goto failed;
2102 	inode->i_uid = uid;
2103 	inode->i_gid = gid;
2104 	root = d_alloc_root(inode);
2105 	if (!root)
2106 		goto failed_iput;
2107 	sb->s_root = root;
2108 	return 0;
2109 
2110 failed_iput:
2111 	iput(inode);
2112 failed:
2113 	shmem_put_super(sb);
2114 	return err;
2115 }
2116 
2117 static struct kmem_cache *shmem_inode_cachep;
2118 
2119 static struct inode *shmem_alloc_inode(struct super_block *sb)
2120 {
2121 	struct shmem_inode_info *p;
2122 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2123 	if (!p)
2124 		return NULL;
2125 	return &p->vfs_inode;
2126 }
2127 
2128 static void shmem_destroy_inode(struct inode *inode)
2129 {
2130 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2131 		/* only struct inode is valid if it's an inline symlink */
2132 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2133 	}
2134 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2135 }
2136 
2137 static void init_once(void *foo, struct kmem_cache *cachep,
2138 		      unsigned long flags)
2139 {
2140 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2141 
2142 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2143 	    SLAB_CTOR_CONSTRUCTOR) {
2144 		inode_init_once(&p->vfs_inode);
2145 	}
2146 }
2147 
2148 static int init_inodecache(void)
2149 {
2150 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2151 				sizeof(struct shmem_inode_info),
2152 				0, 0, init_once, NULL);
2153 	if (shmem_inode_cachep == NULL)
2154 		return -ENOMEM;
2155 	return 0;
2156 }
2157 
2158 static void destroy_inodecache(void)
2159 {
2160 	if (kmem_cache_destroy(shmem_inode_cachep))
2161 		printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2162 }
2163 
2164 static const struct address_space_operations shmem_aops = {
2165 	.writepage	= shmem_writepage,
2166 	.set_page_dirty	= __set_page_dirty_nobuffers,
2167 #ifdef CONFIG_TMPFS
2168 	.prepare_write	= shmem_prepare_write,
2169 	.commit_write	= simple_commit_write,
2170 #endif
2171 	.migratepage	= migrate_page,
2172 };
2173 
2174 static struct file_operations shmem_file_operations = {
2175 	.mmap		= shmem_mmap,
2176 #ifdef CONFIG_TMPFS
2177 	.llseek		= generic_file_llseek,
2178 	.read		= shmem_file_read,
2179 	.write		= shmem_file_write,
2180 	.fsync		= simple_sync_file,
2181 	.sendfile	= shmem_file_sendfile,
2182 #endif
2183 };
2184 
2185 static struct inode_operations shmem_inode_operations = {
2186 	.truncate	= shmem_truncate,
2187 	.setattr	= shmem_notify_change,
2188 	.truncate_range	= shmem_truncate_range,
2189 };
2190 
2191 static struct inode_operations shmem_dir_inode_operations = {
2192 #ifdef CONFIG_TMPFS
2193 	.create		= shmem_create,
2194 	.lookup		= simple_lookup,
2195 	.link		= shmem_link,
2196 	.unlink		= shmem_unlink,
2197 	.symlink	= shmem_symlink,
2198 	.mkdir		= shmem_mkdir,
2199 	.rmdir		= shmem_rmdir,
2200 	.mknod		= shmem_mknod,
2201 	.rename		= shmem_rename,
2202 #endif
2203 };
2204 
2205 static struct super_operations shmem_ops = {
2206 	.alloc_inode	= shmem_alloc_inode,
2207 	.destroy_inode	= shmem_destroy_inode,
2208 #ifdef CONFIG_TMPFS
2209 	.statfs		= shmem_statfs,
2210 	.remount_fs	= shmem_remount_fs,
2211 #endif
2212 	.delete_inode	= shmem_delete_inode,
2213 	.drop_inode	= generic_delete_inode,
2214 	.put_super	= shmem_put_super,
2215 };
2216 
2217 static struct vm_operations_struct shmem_vm_ops = {
2218 	.nopage		= shmem_nopage,
2219 	.populate	= shmem_populate,
2220 #ifdef CONFIG_NUMA
2221 	.set_policy     = shmem_set_policy,
2222 	.get_policy     = shmem_get_policy,
2223 #endif
2224 };
2225 
2226 
2227 static int shmem_get_sb(struct file_system_type *fs_type,
2228 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2229 {
2230 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2231 }
2232 
2233 static struct file_system_type tmpfs_fs_type = {
2234 	.owner		= THIS_MODULE,
2235 	.name		= "tmpfs",
2236 	.get_sb		= shmem_get_sb,
2237 	.kill_sb	= kill_litter_super,
2238 };
2239 static struct vfsmount *shm_mnt;
2240 
2241 static int __init init_tmpfs(void)
2242 {
2243 	int error;
2244 
2245 	error = init_inodecache();
2246 	if (error)
2247 		goto out3;
2248 
2249 	error = register_filesystem(&tmpfs_fs_type);
2250 	if (error) {
2251 		printk(KERN_ERR "Could not register tmpfs\n");
2252 		goto out2;
2253 	}
2254 
2255 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2256 				tmpfs_fs_type.name, NULL);
2257 	if (IS_ERR(shm_mnt)) {
2258 		error = PTR_ERR(shm_mnt);
2259 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2260 		goto out1;
2261 	}
2262 	return 0;
2263 
2264 out1:
2265 	unregister_filesystem(&tmpfs_fs_type);
2266 out2:
2267 	destroy_inodecache();
2268 out3:
2269 	shm_mnt = ERR_PTR(error);
2270 	return error;
2271 }
2272 module_init(init_tmpfs)
2273 
2274 /*
2275  * shmem_file_setup - get an unlinked file living in tmpfs
2276  *
2277  * @name: name for dentry (to be seen in /proc/<pid>/maps
2278  * @size: size to be set for the file
2279  *
2280  */
2281 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2282 {
2283 	int error;
2284 	struct file *file;
2285 	struct inode *inode;
2286 	struct dentry *dentry, *root;
2287 	struct qstr this;
2288 
2289 	if (IS_ERR(shm_mnt))
2290 		return (void *)shm_mnt;
2291 
2292 	if (size < 0 || size > SHMEM_MAX_BYTES)
2293 		return ERR_PTR(-EINVAL);
2294 
2295 	if (shmem_acct_size(flags, size))
2296 		return ERR_PTR(-ENOMEM);
2297 
2298 	error = -ENOMEM;
2299 	this.name = name;
2300 	this.len = strlen(name);
2301 	this.hash = 0; /* will go */
2302 	root = shm_mnt->mnt_root;
2303 	dentry = d_alloc(root, &this);
2304 	if (!dentry)
2305 		goto put_memory;
2306 
2307 	error = -ENFILE;
2308 	file = get_empty_filp();
2309 	if (!file)
2310 		goto put_dentry;
2311 
2312 	error = -ENOSPC;
2313 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2314 	if (!inode)
2315 		goto close_file;
2316 
2317 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2318 	d_instantiate(dentry, inode);
2319 	inode->i_size = size;
2320 	inode->i_nlink = 0;	/* It is unlinked */
2321 	file->f_vfsmnt = mntget(shm_mnt);
2322 	file->f_dentry = dentry;
2323 	file->f_mapping = inode->i_mapping;
2324 	file->f_op = &shmem_file_operations;
2325 	file->f_mode = FMODE_WRITE | FMODE_READ;
2326 	return file;
2327 
2328 close_file:
2329 	put_filp(file);
2330 put_dentry:
2331 	dput(dentry);
2332 put_memory:
2333 	shmem_unacct_size(flags, size);
2334 	return ERR_PTR(error);
2335 }
2336 
2337 /*
2338  * shmem_zero_setup - setup a shared anonymous mapping
2339  *
2340  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2341  */
2342 int shmem_zero_setup(struct vm_area_struct *vma)
2343 {
2344 	struct file *file;
2345 	loff_t size = vma->vm_end - vma->vm_start;
2346 
2347 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2348 	if (IS_ERR(file))
2349 		return PTR_ERR(file);
2350 
2351 	if (vma->vm_file)
2352 		fput(vma->vm_file);
2353 	vma->vm_file = file;
2354 	vma->vm_ops = &shmem_vm_ops;
2355 	return 0;
2356 }
2357