1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 #include <linux/khugepaged.h> 36 37 static struct vfsmount *shm_mnt; 38 39 #ifdef CONFIG_SHMEM 40 /* 41 * This virtual memory filesystem is heavily based on the ramfs. It 42 * extends ramfs by the ability to use swap and honor resource limits 43 * which makes it a completely usable filesystem. 44 */ 45 46 #include <linux/xattr.h> 47 #include <linux/exportfs.h> 48 #include <linux/posix_acl.h> 49 #include <linux/posix_acl_xattr.h> 50 #include <linux/mman.h> 51 #include <linux/string.h> 52 #include <linux/slab.h> 53 #include <linux/backing-dev.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/writeback.h> 56 #include <linux/blkdev.h> 57 #include <linux/pagevec.h> 58 #include <linux/percpu_counter.h> 59 #include <linux/falloc.h> 60 #include <linux/splice.h> 61 #include <linux/security.h> 62 #include <linux/swapops.h> 63 #include <linux/mempolicy.h> 64 #include <linux/namei.h> 65 #include <linux/ctype.h> 66 #include <linux/migrate.h> 67 #include <linux/highmem.h> 68 #include <linux/seq_file.h> 69 #include <linux/magic.h> 70 #include <linux/syscalls.h> 71 #include <linux/fcntl.h> 72 #include <uapi/linux/memfd.h> 73 74 #include <asm/uaccess.h> 75 #include <asm/pgtable.h> 76 77 #include "internal.h" 78 79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 81 82 /* Pretend that each entry is of this size in directory's i_size */ 83 #define BOGO_DIRENT_SIZE 20 84 85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 86 #define SHORT_SYMLINK_LEN 128 87 88 /* 89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 90 * inode->i_private (with i_mutex making sure that it has only one user at 91 * a time): we would prefer not to enlarge the shmem inode just for that. 92 */ 93 struct shmem_falloc { 94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 95 pgoff_t start; /* start of range currently being fallocated */ 96 pgoff_t next; /* the next page offset to be fallocated */ 97 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 99 }; 100 101 #ifdef CONFIG_TMPFS 102 static unsigned long shmem_default_max_blocks(void) 103 { 104 return totalram_pages / 2; 105 } 106 107 static unsigned long shmem_default_max_inodes(void) 108 { 109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 110 } 111 #endif 112 113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 114 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 115 struct shmem_inode_info *info, pgoff_t index); 116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 117 struct page **pagep, enum sgp_type sgp, 118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type); 119 120 int shmem_getpage(struct inode *inode, pgoff_t index, 121 struct page **pagep, enum sgp_type sgp) 122 { 123 return shmem_getpage_gfp(inode, index, pagep, sgp, 124 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 125 } 126 127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 128 { 129 return sb->s_fs_info; 130 } 131 132 /* 133 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 134 * for shared memory and for shared anonymous (/dev/zero) mappings 135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 136 * consistent with the pre-accounting of private mappings ... 137 */ 138 static inline int shmem_acct_size(unsigned long flags, loff_t size) 139 { 140 return (flags & VM_NORESERVE) ? 141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 142 } 143 144 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 145 { 146 if (!(flags & VM_NORESERVE)) 147 vm_unacct_memory(VM_ACCT(size)); 148 } 149 150 static inline int shmem_reacct_size(unsigned long flags, 151 loff_t oldsize, loff_t newsize) 152 { 153 if (!(flags & VM_NORESERVE)) { 154 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 155 return security_vm_enough_memory_mm(current->mm, 156 VM_ACCT(newsize) - VM_ACCT(oldsize)); 157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 159 } 160 return 0; 161 } 162 163 /* 164 * ... whereas tmpfs objects are accounted incrementally as 165 * pages are allocated, in order to allow large sparse files. 166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 168 */ 169 static inline int shmem_acct_block(unsigned long flags, long pages) 170 { 171 if (!(flags & VM_NORESERVE)) 172 return 0; 173 174 return security_vm_enough_memory_mm(current->mm, 175 pages * VM_ACCT(PAGE_SIZE)); 176 } 177 178 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 179 { 180 if (flags & VM_NORESERVE) 181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 182 } 183 184 static const struct super_operations shmem_ops; 185 static const struct address_space_operations shmem_aops; 186 static const struct file_operations shmem_file_operations; 187 static const struct inode_operations shmem_inode_operations; 188 static const struct inode_operations shmem_dir_inode_operations; 189 static const struct inode_operations shmem_special_inode_operations; 190 static const struct vm_operations_struct shmem_vm_ops; 191 static struct file_system_type shmem_fs_type; 192 193 static LIST_HEAD(shmem_swaplist); 194 static DEFINE_MUTEX(shmem_swaplist_mutex); 195 196 static int shmem_reserve_inode(struct super_block *sb) 197 { 198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 199 if (sbinfo->max_inodes) { 200 spin_lock(&sbinfo->stat_lock); 201 if (!sbinfo->free_inodes) { 202 spin_unlock(&sbinfo->stat_lock); 203 return -ENOSPC; 204 } 205 sbinfo->free_inodes--; 206 spin_unlock(&sbinfo->stat_lock); 207 } 208 return 0; 209 } 210 211 static void shmem_free_inode(struct super_block *sb) 212 { 213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 214 if (sbinfo->max_inodes) { 215 spin_lock(&sbinfo->stat_lock); 216 sbinfo->free_inodes++; 217 spin_unlock(&sbinfo->stat_lock); 218 } 219 } 220 221 /** 222 * shmem_recalc_inode - recalculate the block usage of an inode 223 * @inode: inode to recalc 224 * 225 * We have to calculate the free blocks since the mm can drop 226 * undirtied hole pages behind our back. 227 * 228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 230 * 231 * It has to be called with the spinlock held. 232 */ 233 static void shmem_recalc_inode(struct inode *inode) 234 { 235 struct shmem_inode_info *info = SHMEM_I(inode); 236 long freed; 237 238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 239 if (freed > 0) { 240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 241 if (sbinfo->max_blocks) 242 percpu_counter_add(&sbinfo->used_blocks, -freed); 243 info->alloced -= freed; 244 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 245 shmem_unacct_blocks(info->flags, freed); 246 } 247 } 248 249 bool shmem_charge(struct inode *inode, long pages) 250 { 251 struct shmem_inode_info *info = SHMEM_I(inode); 252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 253 unsigned long flags; 254 255 if (shmem_acct_block(info->flags, pages)) 256 return false; 257 spin_lock_irqsave(&info->lock, flags); 258 info->alloced += pages; 259 inode->i_blocks += pages * BLOCKS_PER_PAGE; 260 shmem_recalc_inode(inode); 261 spin_unlock_irqrestore(&info->lock, flags); 262 inode->i_mapping->nrpages += pages; 263 264 if (!sbinfo->max_blocks) 265 return true; 266 if (percpu_counter_compare(&sbinfo->used_blocks, 267 sbinfo->max_blocks - pages) > 0) { 268 inode->i_mapping->nrpages -= pages; 269 spin_lock_irqsave(&info->lock, flags); 270 info->alloced -= pages; 271 shmem_recalc_inode(inode); 272 spin_unlock_irqrestore(&info->lock, flags); 273 shmem_unacct_blocks(info->flags, pages); 274 return false; 275 } 276 percpu_counter_add(&sbinfo->used_blocks, pages); 277 return true; 278 } 279 280 void shmem_uncharge(struct inode *inode, long pages) 281 { 282 struct shmem_inode_info *info = SHMEM_I(inode); 283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 284 unsigned long flags; 285 286 spin_lock_irqsave(&info->lock, flags); 287 info->alloced -= pages; 288 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 289 shmem_recalc_inode(inode); 290 spin_unlock_irqrestore(&info->lock, flags); 291 292 if (sbinfo->max_blocks) 293 percpu_counter_sub(&sbinfo->used_blocks, pages); 294 shmem_unacct_blocks(info->flags, pages); 295 } 296 297 /* 298 * Replace item expected in radix tree by a new item, while holding tree lock. 299 */ 300 static int shmem_radix_tree_replace(struct address_space *mapping, 301 pgoff_t index, void *expected, void *replacement) 302 { 303 struct radix_tree_node *node; 304 void **pslot; 305 void *item; 306 307 VM_BUG_ON(!expected); 308 VM_BUG_ON(!replacement); 309 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot); 310 if (!item) 311 return -ENOENT; 312 if (item != expected) 313 return -ENOENT; 314 __radix_tree_replace(&mapping->page_tree, node, pslot, 315 replacement, NULL, NULL); 316 return 0; 317 } 318 319 /* 320 * Sometimes, before we decide whether to proceed or to fail, we must check 321 * that an entry was not already brought back from swap by a racing thread. 322 * 323 * Checking page is not enough: by the time a SwapCache page is locked, it 324 * might be reused, and again be SwapCache, using the same swap as before. 325 */ 326 static bool shmem_confirm_swap(struct address_space *mapping, 327 pgoff_t index, swp_entry_t swap) 328 { 329 void *item; 330 331 rcu_read_lock(); 332 item = radix_tree_lookup(&mapping->page_tree, index); 333 rcu_read_unlock(); 334 return item == swp_to_radix_entry(swap); 335 } 336 337 /* 338 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 339 * 340 * SHMEM_HUGE_NEVER: 341 * disables huge pages for the mount; 342 * SHMEM_HUGE_ALWAYS: 343 * enables huge pages for the mount; 344 * SHMEM_HUGE_WITHIN_SIZE: 345 * only allocate huge pages if the page will be fully within i_size, 346 * also respect fadvise()/madvise() hints; 347 * SHMEM_HUGE_ADVISE: 348 * only allocate huge pages if requested with fadvise()/madvise(); 349 */ 350 351 #define SHMEM_HUGE_NEVER 0 352 #define SHMEM_HUGE_ALWAYS 1 353 #define SHMEM_HUGE_WITHIN_SIZE 2 354 #define SHMEM_HUGE_ADVISE 3 355 356 /* 357 * Special values. 358 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 359 * 360 * SHMEM_HUGE_DENY: 361 * disables huge on shm_mnt and all mounts, for emergency use; 362 * SHMEM_HUGE_FORCE: 363 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 364 * 365 */ 366 #define SHMEM_HUGE_DENY (-1) 367 #define SHMEM_HUGE_FORCE (-2) 368 369 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 370 /* ifdef here to avoid bloating shmem.o when not necessary */ 371 372 int shmem_huge __read_mostly; 373 374 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 375 static int shmem_parse_huge(const char *str) 376 { 377 if (!strcmp(str, "never")) 378 return SHMEM_HUGE_NEVER; 379 if (!strcmp(str, "always")) 380 return SHMEM_HUGE_ALWAYS; 381 if (!strcmp(str, "within_size")) 382 return SHMEM_HUGE_WITHIN_SIZE; 383 if (!strcmp(str, "advise")) 384 return SHMEM_HUGE_ADVISE; 385 if (!strcmp(str, "deny")) 386 return SHMEM_HUGE_DENY; 387 if (!strcmp(str, "force")) 388 return SHMEM_HUGE_FORCE; 389 return -EINVAL; 390 } 391 392 static const char *shmem_format_huge(int huge) 393 { 394 switch (huge) { 395 case SHMEM_HUGE_NEVER: 396 return "never"; 397 case SHMEM_HUGE_ALWAYS: 398 return "always"; 399 case SHMEM_HUGE_WITHIN_SIZE: 400 return "within_size"; 401 case SHMEM_HUGE_ADVISE: 402 return "advise"; 403 case SHMEM_HUGE_DENY: 404 return "deny"; 405 case SHMEM_HUGE_FORCE: 406 return "force"; 407 default: 408 VM_BUG_ON(1); 409 return "bad_val"; 410 } 411 } 412 #endif 413 414 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 415 struct shrink_control *sc, unsigned long nr_to_split) 416 { 417 LIST_HEAD(list), *pos, *next; 418 struct inode *inode; 419 struct shmem_inode_info *info; 420 struct page *page; 421 unsigned long batch = sc ? sc->nr_to_scan : 128; 422 int removed = 0, split = 0; 423 424 if (list_empty(&sbinfo->shrinklist)) 425 return SHRINK_STOP; 426 427 spin_lock(&sbinfo->shrinklist_lock); 428 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 429 info = list_entry(pos, struct shmem_inode_info, shrinklist); 430 431 /* pin the inode */ 432 inode = igrab(&info->vfs_inode); 433 434 /* inode is about to be evicted */ 435 if (!inode) { 436 list_del_init(&info->shrinklist); 437 removed++; 438 goto next; 439 } 440 441 /* Check if there's anything to gain */ 442 if (round_up(inode->i_size, PAGE_SIZE) == 443 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 444 list_del_init(&info->shrinklist); 445 removed++; 446 iput(inode); 447 goto next; 448 } 449 450 list_move(&info->shrinklist, &list); 451 next: 452 if (!--batch) 453 break; 454 } 455 spin_unlock(&sbinfo->shrinklist_lock); 456 457 list_for_each_safe(pos, next, &list) { 458 int ret; 459 460 info = list_entry(pos, struct shmem_inode_info, shrinklist); 461 inode = &info->vfs_inode; 462 463 if (nr_to_split && split >= nr_to_split) { 464 iput(inode); 465 continue; 466 } 467 468 page = find_lock_page(inode->i_mapping, 469 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 470 if (!page) 471 goto drop; 472 473 if (!PageTransHuge(page)) { 474 unlock_page(page); 475 put_page(page); 476 goto drop; 477 } 478 479 ret = split_huge_page(page); 480 unlock_page(page); 481 put_page(page); 482 483 if (ret) { 484 /* split failed: leave it on the list */ 485 iput(inode); 486 continue; 487 } 488 489 split++; 490 drop: 491 list_del_init(&info->shrinklist); 492 removed++; 493 iput(inode); 494 } 495 496 spin_lock(&sbinfo->shrinklist_lock); 497 list_splice_tail(&list, &sbinfo->shrinklist); 498 sbinfo->shrinklist_len -= removed; 499 spin_unlock(&sbinfo->shrinklist_lock); 500 501 return split; 502 } 503 504 static long shmem_unused_huge_scan(struct super_block *sb, 505 struct shrink_control *sc) 506 { 507 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 508 509 if (!READ_ONCE(sbinfo->shrinklist_len)) 510 return SHRINK_STOP; 511 512 return shmem_unused_huge_shrink(sbinfo, sc, 0); 513 } 514 515 static long shmem_unused_huge_count(struct super_block *sb, 516 struct shrink_control *sc) 517 { 518 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 519 return READ_ONCE(sbinfo->shrinklist_len); 520 } 521 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 522 523 #define shmem_huge SHMEM_HUGE_DENY 524 525 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 526 struct shrink_control *sc, unsigned long nr_to_split) 527 { 528 return 0; 529 } 530 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 531 532 /* 533 * Like add_to_page_cache_locked, but error if expected item has gone. 534 */ 535 static int shmem_add_to_page_cache(struct page *page, 536 struct address_space *mapping, 537 pgoff_t index, void *expected) 538 { 539 int error, nr = hpage_nr_pages(page); 540 541 VM_BUG_ON_PAGE(PageTail(page), page); 542 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 543 VM_BUG_ON_PAGE(!PageLocked(page), page); 544 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 545 VM_BUG_ON(expected && PageTransHuge(page)); 546 547 page_ref_add(page, nr); 548 page->mapping = mapping; 549 page->index = index; 550 551 spin_lock_irq(&mapping->tree_lock); 552 if (PageTransHuge(page)) { 553 void __rcu **results; 554 pgoff_t idx; 555 int i; 556 557 error = 0; 558 if (radix_tree_gang_lookup_slot(&mapping->page_tree, 559 &results, &idx, index, 1) && 560 idx < index + HPAGE_PMD_NR) { 561 error = -EEXIST; 562 } 563 564 if (!error) { 565 for (i = 0; i < HPAGE_PMD_NR; i++) { 566 error = radix_tree_insert(&mapping->page_tree, 567 index + i, page + i); 568 VM_BUG_ON(error); 569 } 570 count_vm_event(THP_FILE_ALLOC); 571 } 572 } else if (!expected) { 573 error = radix_tree_insert(&mapping->page_tree, index, page); 574 } else { 575 error = shmem_radix_tree_replace(mapping, index, expected, 576 page); 577 } 578 579 if (!error) { 580 mapping->nrpages += nr; 581 if (PageTransHuge(page)) 582 __inc_node_page_state(page, NR_SHMEM_THPS); 583 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 584 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 585 spin_unlock_irq(&mapping->tree_lock); 586 } else { 587 page->mapping = NULL; 588 spin_unlock_irq(&mapping->tree_lock); 589 page_ref_sub(page, nr); 590 } 591 return error; 592 } 593 594 /* 595 * Like delete_from_page_cache, but substitutes swap for page. 596 */ 597 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 598 { 599 struct address_space *mapping = page->mapping; 600 int error; 601 602 VM_BUG_ON_PAGE(PageCompound(page), page); 603 604 spin_lock_irq(&mapping->tree_lock); 605 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 606 page->mapping = NULL; 607 mapping->nrpages--; 608 __dec_node_page_state(page, NR_FILE_PAGES); 609 __dec_node_page_state(page, NR_SHMEM); 610 spin_unlock_irq(&mapping->tree_lock); 611 put_page(page); 612 BUG_ON(error); 613 } 614 615 /* 616 * Remove swap entry from radix tree, free the swap and its page cache. 617 */ 618 static int shmem_free_swap(struct address_space *mapping, 619 pgoff_t index, void *radswap) 620 { 621 void *old; 622 623 spin_lock_irq(&mapping->tree_lock); 624 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 625 spin_unlock_irq(&mapping->tree_lock); 626 if (old != radswap) 627 return -ENOENT; 628 free_swap_and_cache(radix_to_swp_entry(radswap)); 629 return 0; 630 } 631 632 /* 633 * Determine (in bytes) how many of the shmem object's pages mapped by the 634 * given offsets are swapped out. 635 * 636 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 637 * as long as the inode doesn't go away and racy results are not a problem. 638 */ 639 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 640 pgoff_t start, pgoff_t end) 641 { 642 struct radix_tree_iter iter; 643 void **slot; 644 struct page *page; 645 unsigned long swapped = 0; 646 647 rcu_read_lock(); 648 649 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 650 if (iter.index >= end) 651 break; 652 653 page = radix_tree_deref_slot(slot); 654 655 if (radix_tree_deref_retry(page)) { 656 slot = radix_tree_iter_retry(&iter); 657 continue; 658 } 659 660 if (radix_tree_exceptional_entry(page)) 661 swapped++; 662 663 if (need_resched()) { 664 cond_resched_rcu(); 665 slot = radix_tree_iter_next(&iter); 666 } 667 } 668 669 rcu_read_unlock(); 670 671 return swapped << PAGE_SHIFT; 672 } 673 674 /* 675 * Determine (in bytes) how many of the shmem object's pages mapped by the 676 * given vma is swapped out. 677 * 678 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 679 * as long as the inode doesn't go away and racy results are not a problem. 680 */ 681 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 682 { 683 struct inode *inode = file_inode(vma->vm_file); 684 struct shmem_inode_info *info = SHMEM_I(inode); 685 struct address_space *mapping = inode->i_mapping; 686 unsigned long swapped; 687 688 /* Be careful as we don't hold info->lock */ 689 swapped = READ_ONCE(info->swapped); 690 691 /* 692 * The easier cases are when the shmem object has nothing in swap, or 693 * the vma maps it whole. Then we can simply use the stats that we 694 * already track. 695 */ 696 if (!swapped) 697 return 0; 698 699 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 700 return swapped << PAGE_SHIFT; 701 702 /* Here comes the more involved part */ 703 return shmem_partial_swap_usage(mapping, 704 linear_page_index(vma, vma->vm_start), 705 linear_page_index(vma, vma->vm_end)); 706 } 707 708 /* 709 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 710 */ 711 void shmem_unlock_mapping(struct address_space *mapping) 712 { 713 struct pagevec pvec; 714 pgoff_t indices[PAGEVEC_SIZE]; 715 pgoff_t index = 0; 716 717 pagevec_init(&pvec, 0); 718 /* 719 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 720 */ 721 while (!mapping_unevictable(mapping)) { 722 /* 723 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 724 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 725 */ 726 pvec.nr = find_get_entries(mapping, index, 727 PAGEVEC_SIZE, pvec.pages, indices); 728 if (!pvec.nr) 729 break; 730 index = indices[pvec.nr - 1] + 1; 731 pagevec_remove_exceptionals(&pvec); 732 check_move_unevictable_pages(pvec.pages, pvec.nr); 733 pagevec_release(&pvec); 734 cond_resched(); 735 } 736 } 737 738 /* 739 * Remove range of pages and swap entries from radix tree, and free them. 740 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 741 */ 742 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 743 bool unfalloc) 744 { 745 struct address_space *mapping = inode->i_mapping; 746 struct shmem_inode_info *info = SHMEM_I(inode); 747 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 748 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 749 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 750 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 751 struct pagevec pvec; 752 pgoff_t indices[PAGEVEC_SIZE]; 753 long nr_swaps_freed = 0; 754 pgoff_t index; 755 int i; 756 757 if (lend == -1) 758 end = -1; /* unsigned, so actually very big */ 759 760 pagevec_init(&pvec, 0); 761 index = start; 762 while (index < end) { 763 pvec.nr = find_get_entries(mapping, index, 764 min(end - index, (pgoff_t)PAGEVEC_SIZE), 765 pvec.pages, indices); 766 if (!pvec.nr) 767 break; 768 for (i = 0; i < pagevec_count(&pvec); i++) { 769 struct page *page = pvec.pages[i]; 770 771 index = indices[i]; 772 if (index >= end) 773 break; 774 775 if (radix_tree_exceptional_entry(page)) { 776 if (unfalloc) 777 continue; 778 nr_swaps_freed += !shmem_free_swap(mapping, 779 index, page); 780 continue; 781 } 782 783 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 784 785 if (!trylock_page(page)) 786 continue; 787 788 if (PageTransTail(page)) { 789 /* Middle of THP: zero out the page */ 790 clear_highpage(page); 791 unlock_page(page); 792 continue; 793 } else if (PageTransHuge(page)) { 794 if (index == round_down(end, HPAGE_PMD_NR)) { 795 /* 796 * Range ends in the middle of THP: 797 * zero out the page 798 */ 799 clear_highpage(page); 800 unlock_page(page); 801 continue; 802 } 803 index += HPAGE_PMD_NR - 1; 804 i += HPAGE_PMD_NR - 1; 805 } 806 807 if (!unfalloc || !PageUptodate(page)) { 808 VM_BUG_ON_PAGE(PageTail(page), page); 809 if (page_mapping(page) == mapping) { 810 VM_BUG_ON_PAGE(PageWriteback(page), page); 811 truncate_inode_page(mapping, page); 812 } 813 } 814 unlock_page(page); 815 } 816 pagevec_remove_exceptionals(&pvec); 817 pagevec_release(&pvec); 818 cond_resched(); 819 index++; 820 } 821 822 if (partial_start) { 823 struct page *page = NULL; 824 shmem_getpage(inode, start - 1, &page, SGP_READ); 825 if (page) { 826 unsigned int top = PAGE_SIZE; 827 if (start > end) { 828 top = partial_end; 829 partial_end = 0; 830 } 831 zero_user_segment(page, partial_start, top); 832 set_page_dirty(page); 833 unlock_page(page); 834 put_page(page); 835 } 836 } 837 if (partial_end) { 838 struct page *page = NULL; 839 shmem_getpage(inode, end, &page, SGP_READ); 840 if (page) { 841 zero_user_segment(page, 0, partial_end); 842 set_page_dirty(page); 843 unlock_page(page); 844 put_page(page); 845 } 846 } 847 if (start >= end) 848 return; 849 850 index = start; 851 while (index < end) { 852 cond_resched(); 853 854 pvec.nr = find_get_entries(mapping, index, 855 min(end - index, (pgoff_t)PAGEVEC_SIZE), 856 pvec.pages, indices); 857 if (!pvec.nr) { 858 /* If all gone or hole-punch or unfalloc, we're done */ 859 if (index == start || end != -1) 860 break; 861 /* But if truncating, restart to make sure all gone */ 862 index = start; 863 continue; 864 } 865 for (i = 0; i < pagevec_count(&pvec); i++) { 866 struct page *page = pvec.pages[i]; 867 868 index = indices[i]; 869 if (index >= end) 870 break; 871 872 if (radix_tree_exceptional_entry(page)) { 873 if (unfalloc) 874 continue; 875 if (shmem_free_swap(mapping, index, page)) { 876 /* Swap was replaced by page: retry */ 877 index--; 878 break; 879 } 880 nr_swaps_freed++; 881 continue; 882 } 883 884 lock_page(page); 885 886 if (PageTransTail(page)) { 887 /* Middle of THP: zero out the page */ 888 clear_highpage(page); 889 unlock_page(page); 890 /* 891 * Partial thp truncate due 'start' in middle 892 * of THP: don't need to look on these pages 893 * again on !pvec.nr restart. 894 */ 895 if (index != round_down(end, HPAGE_PMD_NR)) 896 start++; 897 continue; 898 } else if (PageTransHuge(page)) { 899 if (index == round_down(end, HPAGE_PMD_NR)) { 900 /* 901 * Range ends in the middle of THP: 902 * zero out the page 903 */ 904 clear_highpage(page); 905 unlock_page(page); 906 continue; 907 } 908 index += HPAGE_PMD_NR - 1; 909 i += HPAGE_PMD_NR - 1; 910 } 911 912 if (!unfalloc || !PageUptodate(page)) { 913 VM_BUG_ON_PAGE(PageTail(page), page); 914 if (page_mapping(page) == mapping) { 915 VM_BUG_ON_PAGE(PageWriteback(page), page); 916 truncate_inode_page(mapping, page); 917 } else { 918 /* Page was replaced by swap: retry */ 919 unlock_page(page); 920 index--; 921 break; 922 } 923 } 924 unlock_page(page); 925 } 926 pagevec_remove_exceptionals(&pvec); 927 pagevec_release(&pvec); 928 index++; 929 } 930 931 spin_lock_irq(&info->lock); 932 info->swapped -= nr_swaps_freed; 933 shmem_recalc_inode(inode); 934 spin_unlock_irq(&info->lock); 935 } 936 937 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 938 { 939 shmem_undo_range(inode, lstart, lend, false); 940 inode->i_ctime = inode->i_mtime = current_time(inode); 941 } 942 EXPORT_SYMBOL_GPL(shmem_truncate_range); 943 944 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 945 struct kstat *stat) 946 { 947 struct inode *inode = dentry->d_inode; 948 struct shmem_inode_info *info = SHMEM_I(inode); 949 950 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 951 spin_lock_irq(&info->lock); 952 shmem_recalc_inode(inode); 953 spin_unlock_irq(&info->lock); 954 } 955 generic_fillattr(inode, stat); 956 return 0; 957 } 958 959 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 960 { 961 struct inode *inode = d_inode(dentry); 962 struct shmem_inode_info *info = SHMEM_I(inode); 963 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 964 int error; 965 966 error = setattr_prepare(dentry, attr); 967 if (error) 968 return error; 969 970 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 971 loff_t oldsize = inode->i_size; 972 loff_t newsize = attr->ia_size; 973 974 /* protected by i_mutex */ 975 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 976 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 977 return -EPERM; 978 979 if (newsize != oldsize) { 980 error = shmem_reacct_size(SHMEM_I(inode)->flags, 981 oldsize, newsize); 982 if (error) 983 return error; 984 i_size_write(inode, newsize); 985 inode->i_ctime = inode->i_mtime = current_time(inode); 986 } 987 if (newsize <= oldsize) { 988 loff_t holebegin = round_up(newsize, PAGE_SIZE); 989 if (oldsize > holebegin) 990 unmap_mapping_range(inode->i_mapping, 991 holebegin, 0, 1); 992 if (info->alloced) 993 shmem_truncate_range(inode, 994 newsize, (loff_t)-1); 995 /* unmap again to remove racily COWed private pages */ 996 if (oldsize > holebegin) 997 unmap_mapping_range(inode->i_mapping, 998 holebegin, 0, 1); 999 1000 /* 1001 * Part of the huge page can be beyond i_size: subject 1002 * to shrink under memory pressure. 1003 */ 1004 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1005 spin_lock(&sbinfo->shrinklist_lock); 1006 if (list_empty(&info->shrinklist)) { 1007 list_add_tail(&info->shrinklist, 1008 &sbinfo->shrinklist); 1009 sbinfo->shrinklist_len++; 1010 } 1011 spin_unlock(&sbinfo->shrinklist_lock); 1012 } 1013 } 1014 } 1015 1016 setattr_copy(inode, attr); 1017 if (attr->ia_valid & ATTR_MODE) 1018 error = posix_acl_chmod(inode, inode->i_mode); 1019 return error; 1020 } 1021 1022 static void shmem_evict_inode(struct inode *inode) 1023 { 1024 struct shmem_inode_info *info = SHMEM_I(inode); 1025 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1026 1027 if (inode->i_mapping->a_ops == &shmem_aops) { 1028 shmem_unacct_size(info->flags, inode->i_size); 1029 inode->i_size = 0; 1030 shmem_truncate_range(inode, 0, (loff_t)-1); 1031 if (!list_empty(&info->shrinklist)) { 1032 spin_lock(&sbinfo->shrinklist_lock); 1033 if (!list_empty(&info->shrinklist)) { 1034 list_del_init(&info->shrinklist); 1035 sbinfo->shrinklist_len--; 1036 } 1037 spin_unlock(&sbinfo->shrinklist_lock); 1038 } 1039 if (!list_empty(&info->swaplist)) { 1040 mutex_lock(&shmem_swaplist_mutex); 1041 list_del_init(&info->swaplist); 1042 mutex_unlock(&shmem_swaplist_mutex); 1043 } 1044 } 1045 1046 simple_xattrs_free(&info->xattrs); 1047 WARN_ON(inode->i_blocks); 1048 shmem_free_inode(inode->i_sb); 1049 clear_inode(inode); 1050 } 1051 1052 /* 1053 * If swap found in inode, free it and move page from swapcache to filecache. 1054 */ 1055 static int shmem_unuse_inode(struct shmem_inode_info *info, 1056 swp_entry_t swap, struct page **pagep) 1057 { 1058 struct address_space *mapping = info->vfs_inode.i_mapping; 1059 void *radswap; 1060 pgoff_t index; 1061 gfp_t gfp; 1062 int error = 0; 1063 1064 radswap = swp_to_radix_entry(swap); 1065 index = radix_tree_locate_item(&mapping->page_tree, radswap); 1066 if (index == -1) 1067 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1068 1069 /* 1070 * Move _head_ to start search for next from here. 1071 * But be careful: shmem_evict_inode checks list_empty without taking 1072 * mutex, and there's an instant in list_move_tail when info->swaplist 1073 * would appear empty, if it were the only one on shmem_swaplist. 1074 */ 1075 if (shmem_swaplist.next != &info->swaplist) 1076 list_move_tail(&shmem_swaplist, &info->swaplist); 1077 1078 gfp = mapping_gfp_mask(mapping); 1079 if (shmem_should_replace_page(*pagep, gfp)) { 1080 mutex_unlock(&shmem_swaplist_mutex); 1081 error = shmem_replace_page(pagep, gfp, info, index); 1082 mutex_lock(&shmem_swaplist_mutex); 1083 /* 1084 * We needed to drop mutex to make that restrictive page 1085 * allocation, but the inode might have been freed while we 1086 * dropped it: although a racing shmem_evict_inode() cannot 1087 * complete without emptying the radix_tree, our page lock 1088 * on this swapcache page is not enough to prevent that - 1089 * free_swap_and_cache() of our swap entry will only 1090 * trylock_page(), removing swap from radix_tree whatever. 1091 * 1092 * We must not proceed to shmem_add_to_page_cache() if the 1093 * inode has been freed, but of course we cannot rely on 1094 * inode or mapping or info to check that. However, we can 1095 * safely check if our swap entry is still in use (and here 1096 * it can't have got reused for another page): if it's still 1097 * in use, then the inode cannot have been freed yet, and we 1098 * can safely proceed (if it's no longer in use, that tells 1099 * nothing about the inode, but we don't need to unuse swap). 1100 */ 1101 if (!page_swapcount(*pagep)) 1102 error = -ENOENT; 1103 } 1104 1105 /* 1106 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1107 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1108 * beneath us (pagelock doesn't help until the page is in pagecache). 1109 */ 1110 if (!error) 1111 error = shmem_add_to_page_cache(*pagep, mapping, index, 1112 radswap); 1113 if (error != -ENOMEM) { 1114 /* 1115 * Truncation and eviction use free_swap_and_cache(), which 1116 * only does trylock page: if we raced, best clean up here. 1117 */ 1118 delete_from_swap_cache(*pagep); 1119 set_page_dirty(*pagep); 1120 if (!error) { 1121 spin_lock_irq(&info->lock); 1122 info->swapped--; 1123 spin_unlock_irq(&info->lock); 1124 swap_free(swap); 1125 } 1126 } 1127 return error; 1128 } 1129 1130 /* 1131 * Search through swapped inodes to find and replace swap by page. 1132 */ 1133 int shmem_unuse(swp_entry_t swap, struct page *page) 1134 { 1135 struct list_head *this, *next; 1136 struct shmem_inode_info *info; 1137 struct mem_cgroup *memcg; 1138 int error = 0; 1139 1140 /* 1141 * There's a faint possibility that swap page was replaced before 1142 * caller locked it: caller will come back later with the right page. 1143 */ 1144 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1145 goto out; 1146 1147 /* 1148 * Charge page using GFP_KERNEL while we can wait, before taking 1149 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1150 * Charged back to the user (not to caller) when swap account is used. 1151 */ 1152 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1153 false); 1154 if (error) 1155 goto out; 1156 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1157 error = -EAGAIN; 1158 1159 mutex_lock(&shmem_swaplist_mutex); 1160 list_for_each_safe(this, next, &shmem_swaplist) { 1161 info = list_entry(this, struct shmem_inode_info, swaplist); 1162 if (info->swapped) 1163 error = shmem_unuse_inode(info, swap, &page); 1164 else 1165 list_del_init(&info->swaplist); 1166 cond_resched(); 1167 if (error != -EAGAIN) 1168 break; 1169 /* found nothing in this: move on to search the next */ 1170 } 1171 mutex_unlock(&shmem_swaplist_mutex); 1172 1173 if (error) { 1174 if (error != -ENOMEM) 1175 error = 0; 1176 mem_cgroup_cancel_charge(page, memcg, false); 1177 } else 1178 mem_cgroup_commit_charge(page, memcg, true, false); 1179 out: 1180 unlock_page(page); 1181 put_page(page); 1182 return error; 1183 } 1184 1185 /* 1186 * Move the page from the page cache to the swap cache. 1187 */ 1188 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1189 { 1190 struct shmem_inode_info *info; 1191 struct address_space *mapping; 1192 struct inode *inode; 1193 swp_entry_t swap; 1194 pgoff_t index; 1195 1196 VM_BUG_ON_PAGE(PageCompound(page), page); 1197 BUG_ON(!PageLocked(page)); 1198 mapping = page->mapping; 1199 index = page->index; 1200 inode = mapping->host; 1201 info = SHMEM_I(inode); 1202 if (info->flags & VM_LOCKED) 1203 goto redirty; 1204 if (!total_swap_pages) 1205 goto redirty; 1206 1207 /* 1208 * Our capabilities prevent regular writeback or sync from ever calling 1209 * shmem_writepage; but a stacking filesystem might use ->writepage of 1210 * its underlying filesystem, in which case tmpfs should write out to 1211 * swap only in response to memory pressure, and not for the writeback 1212 * threads or sync. 1213 */ 1214 if (!wbc->for_reclaim) { 1215 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1216 goto redirty; 1217 } 1218 1219 /* 1220 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1221 * value into swapfile.c, the only way we can correctly account for a 1222 * fallocated page arriving here is now to initialize it and write it. 1223 * 1224 * That's okay for a page already fallocated earlier, but if we have 1225 * not yet completed the fallocation, then (a) we want to keep track 1226 * of this page in case we have to undo it, and (b) it may not be a 1227 * good idea to continue anyway, once we're pushing into swap. So 1228 * reactivate the page, and let shmem_fallocate() quit when too many. 1229 */ 1230 if (!PageUptodate(page)) { 1231 if (inode->i_private) { 1232 struct shmem_falloc *shmem_falloc; 1233 spin_lock(&inode->i_lock); 1234 shmem_falloc = inode->i_private; 1235 if (shmem_falloc && 1236 !shmem_falloc->waitq && 1237 index >= shmem_falloc->start && 1238 index < shmem_falloc->next) 1239 shmem_falloc->nr_unswapped++; 1240 else 1241 shmem_falloc = NULL; 1242 spin_unlock(&inode->i_lock); 1243 if (shmem_falloc) 1244 goto redirty; 1245 } 1246 clear_highpage(page); 1247 flush_dcache_page(page); 1248 SetPageUptodate(page); 1249 } 1250 1251 swap = get_swap_page(); 1252 if (!swap.val) 1253 goto redirty; 1254 1255 if (mem_cgroup_try_charge_swap(page, swap)) 1256 goto free_swap; 1257 1258 /* 1259 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1260 * if it's not already there. Do it now before the page is 1261 * moved to swap cache, when its pagelock no longer protects 1262 * the inode from eviction. But don't unlock the mutex until 1263 * we've incremented swapped, because shmem_unuse_inode() will 1264 * prune a !swapped inode from the swaplist under this mutex. 1265 */ 1266 mutex_lock(&shmem_swaplist_mutex); 1267 if (list_empty(&info->swaplist)) 1268 list_add_tail(&info->swaplist, &shmem_swaplist); 1269 1270 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1271 spin_lock_irq(&info->lock); 1272 shmem_recalc_inode(inode); 1273 info->swapped++; 1274 spin_unlock_irq(&info->lock); 1275 1276 swap_shmem_alloc(swap); 1277 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1278 1279 mutex_unlock(&shmem_swaplist_mutex); 1280 BUG_ON(page_mapped(page)); 1281 swap_writepage(page, wbc); 1282 return 0; 1283 } 1284 1285 mutex_unlock(&shmem_swaplist_mutex); 1286 free_swap: 1287 swapcache_free(swap); 1288 redirty: 1289 set_page_dirty(page); 1290 if (wbc->for_reclaim) 1291 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1292 unlock_page(page); 1293 return 0; 1294 } 1295 1296 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1297 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1298 { 1299 char buffer[64]; 1300 1301 if (!mpol || mpol->mode == MPOL_DEFAULT) 1302 return; /* show nothing */ 1303 1304 mpol_to_str(buffer, sizeof(buffer), mpol); 1305 1306 seq_printf(seq, ",mpol=%s", buffer); 1307 } 1308 1309 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1310 { 1311 struct mempolicy *mpol = NULL; 1312 if (sbinfo->mpol) { 1313 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1314 mpol = sbinfo->mpol; 1315 mpol_get(mpol); 1316 spin_unlock(&sbinfo->stat_lock); 1317 } 1318 return mpol; 1319 } 1320 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1321 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1322 { 1323 } 1324 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1325 { 1326 return NULL; 1327 } 1328 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1329 #ifndef CONFIG_NUMA 1330 #define vm_policy vm_private_data 1331 #endif 1332 1333 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1334 struct shmem_inode_info *info, pgoff_t index) 1335 { 1336 /* Create a pseudo vma that just contains the policy */ 1337 vma->vm_start = 0; 1338 /* Bias interleave by inode number to distribute better across nodes */ 1339 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1340 vma->vm_ops = NULL; 1341 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1342 } 1343 1344 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1345 { 1346 /* Drop reference taken by mpol_shared_policy_lookup() */ 1347 mpol_cond_put(vma->vm_policy); 1348 } 1349 1350 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1351 struct shmem_inode_info *info, pgoff_t index) 1352 { 1353 struct vm_area_struct pvma; 1354 struct page *page; 1355 1356 shmem_pseudo_vma_init(&pvma, info, index); 1357 page = swapin_readahead(swap, gfp, &pvma, 0); 1358 shmem_pseudo_vma_destroy(&pvma); 1359 1360 return page; 1361 } 1362 1363 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1364 struct shmem_inode_info *info, pgoff_t index) 1365 { 1366 struct vm_area_struct pvma; 1367 struct inode *inode = &info->vfs_inode; 1368 struct address_space *mapping = inode->i_mapping; 1369 pgoff_t idx, hindex; 1370 void __rcu **results; 1371 struct page *page; 1372 1373 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1374 return NULL; 1375 1376 hindex = round_down(index, HPAGE_PMD_NR); 1377 rcu_read_lock(); 1378 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, 1379 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1380 rcu_read_unlock(); 1381 return NULL; 1382 } 1383 rcu_read_unlock(); 1384 1385 shmem_pseudo_vma_init(&pvma, info, hindex); 1386 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1387 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1388 shmem_pseudo_vma_destroy(&pvma); 1389 if (page) 1390 prep_transhuge_page(page); 1391 return page; 1392 } 1393 1394 static struct page *shmem_alloc_page(gfp_t gfp, 1395 struct shmem_inode_info *info, pgoff_t index) 1396 { 1397 struct vm_area_struct pvma; 1398 struct page *page; 1399 1400 shmem_pseudo_vma_init(&pvma, info, index); 1401 page = alloc_page_vma(gfp, &pvma, 0); 1402 shmem_pseudo_vma_destroy(&pvma); 1403 1404 return page; 1405 } 1406 1407 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1408 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo, 1409 pgoff_t index, bool huge) 1410 { 1411 struct page *page; 1412 int nr; 1413 int err = -ENOSPC; 1414 1415 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1416 huge = false; 1417 nr = huge ? HPAGE_PMD_NR : 1; 1418 1419 if (shmem_acct_block(info->flags, nr)) 1420 goto failed; 1421 if (sbinfo->max_blocks) { 1422 if (percpu_counter_compare(&sbinfo->used_blocks, 1423 sbinfo->max_blocks - nr) > 0) 1424 goto unacct; 1425 percpu_counter_add(&sbinfo->used_blocks, nr); 1426 } 1427 1428 if (huge) 1429 page = shmem_alloc_hugepage(gfp, info, index); 1430 else 1431 page = shmem_alloc_page(gfp, info, index); 1432 if (page) { 1433 __SetPageLocked(page); 1434 __SetPageSwapBacked(page); 1435 return page; 1436 } 1437 1438 err = -ENOMEM; 1439 if (sbinfo->max_blocks) 1440 percpu_counter_add(&sbinfo->used_blocks, -nr); 1441 unacct: 1442 shmem_unacct_blocks(info->flags, nr); 1443 failed: 1444 return ERR_PTR(err); 1445 } 1446 1447 /* 1448 * When a page is moved from swapcache to shmem filecache (either by the 1449 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1450 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1451 * ignorance of the mapping it belongs to. If that mapping has special 1452 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1453 * we may need to copy to a suitable page before moving to filecache. 1454 * 1455 * In a future release, this may well be extended to respect cpuset and 1456 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1457 * but for now it is a simple matter of zone. 1458 */ 1459 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1460 { 1461 return page_zonenum(page) > gfp_zone(gfp); 1462 } 1463 1464 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1465 struct shmem_inode_info *info, pgoff_t index) 1466 { 1467 struct page *oldpage, *newpage; 1468 struct address_space *swap_mapping; 1469 pgoff_t swap_index; 1470 int error; 1471 1472 oldpage = *pagep; 1473 swap_index = page_private(oldpage); 1474 swap_mapping = page_mapping(oldpage); 1475 1476 /* 1477 * We have arrived here because our zones are constrained, so don't 1478 * limit chance of success by further cpuset and node constraints. 1479 */ 1480 gfp &= ~GFP_CONSTRAINT_MASK; 1481 newpage = shmem_alloc_page(gfp, info, index); 1482 if (!newpage) 1483 return -ENOMEM; 1484 1485 get_page(newpage); 1486 copy_highpage(newpage, oldpage); 1487 flush_dcache_page(newpage); 1488 1489 __SetPageLocked(newpage); 1490 __SetPageSwapBacked(newpage); 1491 SetPageUptodate(newpage); 1492 set_page_private(newpage, swap_index); 1493 SetPageSwapCache(newpage); 1494 1495 /* 1496 * Our caller will very soon move newpage out of swapcache, but it's 1497 * a nice clean interface for us to replace oldpage by newpage there. 1498 */ 1499 spin_lock_irq(&swap_mapping->tree_lock); 1500 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1501 newpage); 1502 if (!error) { 1503 __inc_node_page_state(newpage, NR_FILE_PAGES); 1504 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1505 } 1506 spin_unlock_irq(&swap_mapping->tree_lock); 1507 1508 if (unlikely(error)) { 1509 /* 1510 * Is this possible? I think not, now that our callers check 1511 * both PageSwapCache and page_private after getting page lock; 1512 * but be defensive. Reverse old to newpage for clear and free. 1513 */ 1514 oldpage = newpage; 1515 } else { 1516 mem_cgroup_migrate(oldpage, newpage); 1517 lru_cache_add_anon(newpage); 1518 *pagep = newpage; 1519 } 1520 1521 ClearPageSwapCache(oldpage); 1522 set_page_private(oldpage, 0); 1523 1524 unlock_page(oldpage); 1525 put_page(oldpage); 1526 put_page(oldpage); 1527 return error; 1528 } 1529 1530 /* 1531 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1532 * 1533 * If we allocate a new one we do not mark it dirty. That's up to the 1534 * vm. If we swap it in we mark it dirty since we also free the swap 1535 * entry since a page cannot live in both the swap and page cache. 1536 * 1537 * fault_mm and fault_type are only supplied by shmem_fault: 1538 * otherwise they are NULL. 1539 */ 1540 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1541 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1542 struct mm_struct *fault_mm, int *fault_type) 1543 { 1544 struct address_space *mapping = inode->i_mapping; 1545 struct shmem_inode_info *info = SHMEM_I(inode); 1546 struct shmem_sb_info *sbinfo; 1547 struct mm_struct *charge_mm; 1548 struct mem_cgroup *memcg; 1549 struct page *page; 1550 swp_entry_t swap; 1551 enum sgp_type sgp_huge = sgp; 1552 pgoff_t hindex = index; 1553 int error; 1554 int once = 0; 1555 int alloced = 0; 1556 1557 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1558 return -EFBIG; 1559 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1560 sgp = SGP_CACHE; 1561 repeat: 1562 swap.val = 0; 1563 page = find_lock_entry(mapping, index); 1564 if (radix_tree_exceptional_entry(page)) { 1565 swap = radix_to_swp_entry(page); 1566 page = NULL; 1567 } 1568 1569 if (sgp <= SGP_CACHE && 1570 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1571 error = -EINVAL; 1572 goto unlock; 1573 } 1574 1575 if (page && sgp == SGP_WRITE) 1576 mark_page_accessed(page); 1577 1578 /* fallocated page? */ 1579 if (page && !PageUptodate(page)) { 1580 if (sgp != SGP_READ) 1581 goto clear; 1582 unlock_page(page); 1583 put_page(page); 1584 page = NULL; 1585 } 1586 if (page || (sgp == SGP_READ && !swap.val)) { 1587 *pagep = page; 1588 return 0; 1589 } 1590 1591 /* 1592 * Fast cache lookup did not find it: 1593 * bring it back from swap or allocate. 1594 */ 1595 sbinfo = SHMEM_SB(inode->i_sb); 1596 charge_mm = fault_mm ? : current->mm; 1597 1598 if (swap.val) { 1599 /* Look it up and read it in.. */ 1600 page = lookup_swap_cache(swap); 1601 if (!page) { 1602 /* Or update major stats only when swapin succeeds?? */ 1603 if (fault_type) { 1604 *fault_type |= VM_FAULT_MAJOR; 1605 count_vm_event(PGMAJFAULT); 1606 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT); 1607 } 1608 /* Here we actually start the io */ 1609 page = shmem_swapin(swap, gfp, info, index); 1610 if (!page) { 1611 error = -ENOMEM; 1612 goto failed; 1613 } 1614 } 1615 1616 /* We have to do this with page locked to prevent races */ 1617 lock_page(page); 1618 if (!PageSwapCache(page) || page_private(page) != swap.val || 1619 !shmem_confirm_swap(mapping, index, swap)) { 1620 error = -EEXIST; /* try again */ 1621 goto unlock; 1622 } 1623 if (!PageUptodate(page)) { 1624 error = -EIO; 1625 goto failed; 1626 } 1627 wait_on_page_writeback(page); 1628 1629 if (shmem_should_replace_page(page, gfp)) { 1630 error = shmem_replace_page(&page, gfp, info, index); 1631 if (error) 1632 goto failed; 1633 } 1634 1635 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1636 false); 1637 if (!error) { 1638 error = shmem_add_to_page_cache(page, mapping, index, 1639 swp_to_radix_entry(swap)); 1640 /* 1641 * We already confirmed swap under page lock, and make 1642 * no memory allocation here, so usually no possibility 1643 * of error; but free_swap_and_cache() only trylocks a 1644 * page, so it is just possible that the entry has been 1645 * truncated or holepunched since swap was confirmed. 1646 * shmem_undo_range() will have done some of the 1647 * unaccounting, now delete_from_swap_cache() will do 1648 * the rest. 1649 * Reset swap.val? No, leave it so "failed" goes back to 1650 * "repeat": reading a hole and writing should succeed. 1651 */ 1652 if (error) { 1653 mem_cgroup_cancel_charge(page, memcg, false); 1654 delete_from_swap_cache(page); 1655 } 1656 } 1657 if (error) 1658 goto failed; 1659 1660 mem_cgroup_commit_charge(page, memcg, true, false); 1661 1662 spin_lock_irq(&info->lock); 1663 info->swapped--; 1664 shmem_recalc_inode(inode); 1665 spin_unlock_irq(&info->lock); 1666 1667 if (sgp == SGP_WRITE) 1668 mark_page_accessed(page); 1669 1670 delete_from_swap_cache(page); 1671 set_page_dirty(page); 1672 swap_free(swap); 1673 1674 } else { 1675 /* shmem_symlink() */ 1676 if (mapping->a_ops != &shmem_aops) 1677 goto alloc_nohuge; 1678 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1679 goto alloc_nohuge; 1680 if (shmem_huge == SHMEM_HUGE_FORCE) 1681 goto alloc_huge; 1682 switch (sbinfo->huge) { 1683 loff_t i_size; 1684 pgoff_t off; 1685 case SHMEM_HUGE_NEVER: 1686 goto alloc_nohuge; 1687 case SHMEM_HUGE_WITHIN_SIZE: 1688 off = round_up(index, HPAGE_PMD_NR); 1689 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1690 if (i_size >= HPAGE_PMD_SIZE && 1691 i_size >> PAGE_SHIFT >= off) 1692 goto alloc_huge; 1693 /* fallthrough */ 1694 case SHMEM_HUGE_ADVISE: 1695 if (sgp_huge == SGP_HUGE) 1696 goto alloc_huge; 1697 /* TODO: implement fadvise() hints */ 1698 goto alloc_nohuge; 1699 } 1700 1701 alloc_huge: 1702 page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1703 index, true); 1704 if (IS_ERR(page)) { 1705 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1706 index, false); 1707 } 1708 if (IS_ERR(page)) { 1709 int retry = 5; 1710 error = PTR_ERR(page); 1711 page = NULL; 1712 if (error != -ENOSPC) 1713 goto failed; 1714 /* 1715 * Try to reclaim some spece by splitting a huge page 1716 * beyond i_size on the filesystem. 1717 */ 1718 while (retry--) { 1719 int ret; 1720 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1721 if (ret == SHRINK_STOP) 1722 break; 1723 if (ret) 1724 goto alloc_nohuge; 1725 } 1726 goto failed; 1727 } 1728 1729 if (PageTransHuge(page)) 1730 hindex = round_down(index, HPAGE_PMD_NR); 1731 else 1732 hindex = index; 1733 1734 if (sgp == SGP_WRITE) 1735 __SetPageReferenced(page); 1736 1737 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1738 PageTransHuge(page)); 1739 if (error) 1740 goto unacct; 1741 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1742 compound_order(page)); 1743 if (!error) { 1744 error = shmem_add_to_page_cache(page, mapping, hindex, 1745 NULL); 1746 radix_tree_preload_end(); 1747 } 1748 if (error) { 1749 mem_cgroup_cancel_charge(page, memcg, 1750 PageTransHuge(page)); 1751 goto unacct; 1752 } 1753 mem_cgroup_commit_charge(page, memcg, false, 1754 PageTransHuge(page)); 1755 lru_cache_add_anon(page); 1756 1757 spin_lock_irq(&info->lock); 1758 info->alloced += 1 << compound_order(page); 1759 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1760 shmem_recalc_inode(inode); 1761 spin_unlock_irq(&info->lock); 1762 alloced = true; 1763 1764 if (PageTransHuge(page) && 1765 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1766 hindex + HPAGE_PMD_NR - 1) { 1767 /* 1768 * Part of the huge page is beyond i_size: subject 1769 * to shrink under memory pressure. 1770 */ 1771 spin_lock(&sbinfo->shrinklist_lock); 1772 if (list_empty(&info->shrinklist)) { 1773 list_add_tail(&info->shrinklist, 1774 &sbinfo->shrinklist); 1775 sbinfo->shrinklist_len++; 1776 } 1777 spin_unlock(&sbinfo->shrinklist_lock); 1778 } 1779 1780 /* 1781 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1782 */ 1783 if (sgp == SGP_FALLOC) 1784 sgp = SGP_WRITE; 1785 clear: 1786 /* 1787 * Let SGP_WRITE caller clear ends if write does not fill page; 1788 * but SGP_FALLOC on a page fallocated earlier must initialize 1789 * it now, lest undo on failure cancel our earlier guarantee. 1790 */ 1791 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1792 struct page *head = compound_head(page); 1793 int i; 1794 1795 for (i = 0; i < (1 << compound_order(head)); i++) { 1796 clear_highpage(head + i); 1797 flush_dcache_page(head + i); 1798 } 1799 SetPageUptodate(head); 1800 } 1801 } 1802 1803 /* Perhaps the file has been truncated since we checked */ 1804 if (sgp <= SGP_CACHE && 1805 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1806 if (alloced) { 1807 ClearPageDirty(page); 1808 delete_from_page_cache(page); 1809 spin_lock_irq(&info->lock); 1810 shmem_recalc_inode(inode); 1811 spin_unlock_irq(&info->lock); 1812 } 1813 error = -EINVAL; 1814 goto unlock; 1815 } 1816 *pagep = page + index - hindex; 1817 return 0; 1818 1819 /* 1820 * Error recovery. 1821 */ 1822 unacct: 1823 if (sbinfo->max_blocks) 1824 percpu_counter_sub(&sbinfo->used_blocks, 1825 1 << compound_order(page)); 1826 shmem_unacct_blocks(info->flags, 1 << compound_order(page)); 1827 1828 if (PageTransHuge(page)) { 1829 unlock_page(page); 1830 put_page(page); 1831 goto alloc_nohuge; 1832 } 1833 failed: 1834 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1835 error = -EEXIST; 1836 unlock: 1837 if (page) { 1838 unlock_page(page); 1839 put_page(page); 1840 } 1841 if (error == -ENOSPC && !once++) { 1842 spin_lock_irq(&info->lock); 1843 shmem_recalc_inode(inode); 1844 spin_unlock_irq(&info->lock); 1845 goto repeat; 1846 } 1847 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1848 goto repeat; 1849 return error; 1850 } 1851 1852 /* 1853 * This is like autoremove_wake_function, but it removes the wait queue 1854 * entry unconditionally - even if something else had already woken the 1855 * target. 1856 */ 1857 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) 1858 { 1859 int ret = default_wake_function(wait, mode, sync, key); 1860 list_del_init(&wait->task_list); 1861 return ret; 1862 } 1863 1864 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1865 { 1866 struct inode *inode = file_inode(vma->vm_file); 1867 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1868 enum sgp_type sgp; 1869 int error; 1870 int ret = VM_FAULT_LOCKED; 1871 1872 /* 1873 * Trinity finds that probing a hole which tmpfs is punching can 1874 * prevent the hole-punch from ever completing: which in turn 1875 * locks writers out with its hold on i_mutex. So refrain from 1876 * faulting pages into the hole while it's being punched. Although 1877 * shmem_undo_range() does remove the additions, it may be unable to 1878 * keep up, as each new page needs its own unmap_mapping_range() call, 1879 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1880 * 1881 * It does not matter if we sometimes reach this check just before the 1882 * hole-punch begins, so that one fault then races with the punch: 1883 * we just need to make racing faults a rare case. 1884 * 1885 * The implementation below would be much simpler if we just used a 1886 * standard mutex or completion: but we cannot take i_mutex in fault, 1887 * and bloating every shmem inode for this unlikely case would be sad. 1888 */ 1889 if (unlikely(inode->i_private)) { 1890 struct shmem_falloc *shmem_falloc; 1891 1892 spin_lock(&inode->i_lock); 1893 shmem_falloc = inode->i_private; 1894 if (shmem_falloc && 1895 shmem_falloc->waitq && 1896 vmf->pgoff >= shmem_falloc->start && 1897 vmf->pgoff < shmem_falloc->next) { 1898 wait_queue_head_t *shmem_falloc_waitq; 1899 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1900 1901 ret = VM_FAULT_NOPAGE; 1902 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1903 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1904 /* It's polite to up mmap_sem if we can */ 1905 up_read(&vma->vm_mm->mmap_sem); 1906 ret = VM_FAULT_RETRY; 1907 } 1908 1909 shmem_falloc_waitq = shmem_falloc->waitq; 1910 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1911 TASK_UNINTERRUPTIBLE); 1912 spin_unlock(&inode->i_lock); 1913 schedule(); 1914 1915 /* 1916 * shmem_falloc_waitq points into the shmem_fallocate() 1917 * stack of the hole-punching task: shmem_falloc_waitq 1918 * is usually invalid by the time we reach here, but 1919 * finish_wait() does not dereference it in that case; 1920 * though i_lock needed lest racing with wake_up_all(). 1921 */ 1922 spin_lock(&inode->i_lock); 1923 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1924 spin_unlock(&inode->i_lock); 1925 return ret; 1926 } 1927 spin_unlock(&inode->i_lock); 1928 } 1929 1930 sgp = SGP_CACHE; 1931 if (vma->vm_flags & VM_HUGEPAGE) 1932 sgp = SGP_HUGE; 1933 else if (vma->vm_flags & VM_NOHUGEPAGE) 1934 sgp = SGP_NOHUGE; 1935 1936 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 1937 gfp, vma->vm_mm, &ret); 1938 if (error) 1939 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1940 return ret; 1941 } 1942 1943 unsigned long shmem_get_unmapped_area(struct file *file, 1944 unsigned long uaddr, unsigned long len, 1945 unsigned long pgoff, unsigned long flags) 1946 { 1947 unsigned long (*get_area)(struct file *, 1948 unsigned long, unsigned long, unsigned long, unsigned long); 1949 unsigned long addr; 1950 unsigned long offset; 1951 unsigned long inflated_len; 1952 unsigned long inflated_addr; 1953 unsigned long inflated_offset; 1954 1955 if (len > TASK_SIZE) 1956 return -ENOMEM; 1957 1958 get_area = current->mm->get_unmapped_area; 1959 addr = get_area(file, uaddr, len, pgoff, flags); 1960 1961 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1962 return addr; 1963 if (IS_ERR_VALUE(addr)) 1964 return addr; 1965 if (addr & ~PAGE_MASK) 1966 return addr; 1967 if (addr > TASK_SIZE - len) 1968 return addr; 1969 1970 if (shmem_huge == SHMEM_HUGE_DENY) 1971 return addr; 1972 if (len < HPAGE_PMD_SIZE) 1973 return addr; 1974 if (flags & MAP_FIXED) 1975 return addr; 1976 /* 1977 * Our priority is to support MAP_SHARED mapped hugely; 1978 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 1979 * But if caller specified an address hint, respect that as before. 1980 */ 1981 if (uaddr) 1982 return addr; 1983 1984 if (shmem_huge != SHMEM_HUGE_FORCE) { 1985 struct super_block *sb; 1986 1987 if (file) { 1988 VM_BUG_ON(file->f_op != &shmem_file_operations); 1989 sb = file_inode(file)->i_sb; 1990 } else { 1991 /* 1992 * Called directly from mm/mmap.c, or drivers/char/mem.c 1993 * for "/dev/zero", to create a shared anonymous object. 1994 */ 1995 if (IS_ERR(shm_mnt)) 1996 return addr; 1997 sb = shm_mnt->mnt_sb; 1998 } 1999 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2000 return addr; 2001 } 2002 2003 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2004 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2005 return addr; 2006 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2007 return addr; 2008 2009 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2010 if (inflated_len > TASK_SIZE) 2011 return addr; 2012 if (inflated_len < len) 2013 return addr; 2014 2015 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2016 if (IS_ERR_VALUE(inflated_addr)) 2017 return addr; 2018 if (inflated_addr & ~PAGE_MASK) 2019 return addr; 2020 2021 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2022 inflated_addr += offset - inflated_offset; 2023 if (inflated_offset > offset) 2024 inflated_addr += HPAGE_PMD_SIZE; 2025 2026 if (inflated_addr > TASK_SIZE - len) 2027 return addr; 2028 return inflated_addr; 2029 } 2030 2031 #ifdef CONFIG_NUMA 2032 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2033 { 2034 struct inode *inode = file_inode(vma->vm_file); 2035 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2036 } 2037 2038 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2039 unsigned long addr) 2040 { 2041 struct inode *inode = file_inode(vma->vm_file); 2042 pgoff_t index; 2043 2044 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2045 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2046 } 2047 #endif 2048 2049 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2050 { 2051 struct inode *inode = file_inode(file); 2052 struct shmem_inode_info *info = SHMEM_I(inode); 2053 int retval = -ENOMEM; 2054 2055 spin_lock_irq(&info->lock); 2056 if (lock && !(info->flags & VM_LOCKED)) { 2057 if (!user_shm_lock(inode->i_size, user)) 2058 goto out_nomem; 2059 info->flags |= VM_LOCKED; 2060 mapping_set_unevictable(file->f_mapping); 2061 } 2062 if (!lock && (info->flags & VM_LOCKED) && user) { 2063 user_shm_unlock(inode->i_size, user); 2064 info->flags &= ~VM_LOCKED; 2065 mapping_clear_unevictable(file->f_mapping); 2066 } 2067 retval = 0; 2068 2069 out_nomem: 2070 spin_unlock_irq(&info->lock); 2071 return retval; 2072 } 2073 2074 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2075 { 2076 file_accessed(file); 2077 vma->vm_ops = &shmem_vm_ops; 2078 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2079 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2080 (vma->vm_end & HPAGE_PMD_MASK)) { 2081 khugepaged_enter(vma, vma->vm_flags); 2082 } 2083 return 0; 2084 } 2085 2086 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2087 umode_t mode, dev_t dev, unsigned long flags) 2088 { 2089 struct inode *inode; 2090 struct shmem_inode_info *info; 2091 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2092 2093 if (shmem_reserve_inode(sb)) 2094 return NULL; 2095 2096 inode = new_inode(sb); 2097 if (inode) { 2098 inode->i_ino = get_next_ino(); 2099 inode_init_owner(inode, dir, mode); 2100 inode->i_blocks = 0; 2101 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2102 inode->i_generation = get_seconds(); 2103 info = SHMEM_I(inode); 2104 memset(info, 0, (char *)inode - (char *)info); 2105 spin_lock_init(&info->lock); 2106 info->seals = F_SEAL_SEAL; 2107 info->flags = flags & VM_NORESERVE; 2108 INIT_LIST_HEAD(&info->shrinklist); 2109 INIT_LIST_HEAD(&info->swaplist); 2110 simple_xattrs_init(&info->xattrs); 2111 cache_no_acl(inode); 2112 2113 switch (mode & S_IFMT) { 2114 default: 2115 inode->i_op = &shmem_special_inode_operations; 2116 init_special_inode(inode, mode, dev); 2117 break; 2118 case S_IFREG: 2119 inode->i_mapping->a_ops = &shmem_aops; 2120 inode->i_op = &shmem_inode_operations; 2121 inode->i_fop = &shmem_file_operations; 2122 mpol_shared_policy_init(&info->policy, 2123 shmem_get_sbmpol(sbinfo)); 2124 break; 2125 case S_IFDIR: 2126 inc_nlink(inode); 2127 /* Some things misbehave if size == 0 on a directory */ 2128 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2129 inode->i_op = &shmem_dir_inode_operations; 2130 inode->i_fop = &simple_dir_operations; 2131 break; 2132 case S_IFLNK: 2133 /* 2134 * Must not load anything in the rbtree, 2135 * mpol_free_shared_policy will not be called. 2136 */ 2137 mpol_shared_policy_init(&info->policy, NULL); 2138 break; 2139 } 2140 } else 2141 shmem_free_inode(sb); 2142 return inode; 2143 } 2144 2145 bool shmem_mapping(struct address_space *mapping) 2146 { 2147 if (!mapping->host) 2148 return false; 2149 2150 return mapping->host->i_sb->s_op == &shmem_ops; 2151 } 2152 2153 #ifdef CONFIG_TMPFS 2154 static const struct inode_operations shmem_symlink_inode_operations; 2155 static const struct inode_operations shmem_short_symlink_operations; 2156 2157 #ifdef CONFIG_TMPFS_XATTR 2158 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2159 #else 2160 #define shmem_initxattrs NULL 2161 #endif 2162 2163 static int 2164 shmem_write_begin(struct file *file, struct address_space *mapping, 2165 loff_t pos, unsigned len, unsigned flags, 2166 struct page **pagep, void **fsdata) 2167 { 2168 struct inode *inode = mapping->host; 2169 struct shmem_inode_info *info = SHMEM_I(inode); 2170 pgoff_t index = pos >> PAGE_SHIFT; 2171 2172 /* i_mutex is held by caller */ 2173 if (unlikely(info->seals)) { 2174 if (info->seals & F_SEAL_WRITE) 2175 return -EPERM; 2176 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2177 return -EPERM; 2178 } 2179 2180 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2181 } 2182 2183 static int 2184 shmem_write_end(struct file *file, struct address_space *mapping, 2185 loff_t pos, unsigned len, unsigned copied, 2186 struct page *page, void *fsdata) 2187 { 2188 struct inode *inode = mapping->host; 2189 2190 if (pos + copied > inode->i_size) 2191 i_size_write(inode, pos + copied); 2192 2193 if (!PageUptodate(page)) { 2194 struct page *head = compound_head(page); 2195 if (PageTransCompound(page)) { 2196 int i; 2197 2198 for (i = 0; i < HPAGE_PMD_NR; i++) { 2199 if (head + i == page) 2200 continue; 2201 clear_highpage(head + i); 2202 flush_dcache_page(head + i); 2203 } 2204 } 2205 if (copied < PAGE_SIZE) { 2206 unsigned from = pos & (PAGE_SIZE - 1); 2207 zero_user_segments(page, 0, from, 2208 from + copied, PAGE_SIZE); 2209 } 2210 SetPageUptodate(head); 2211 } 2212 set_page_dirty(page); 2213 unlock_page(page); 2214 put_page(page); 2215 2216 return copied; 2217 } 2218 2219 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2220 { 2221 struct file *file = iocb->ki_filp; 2222 struct inode *inode = file_inode(file); 2223 struct address_space *mapping = inode->i_mapping; 2224 pgoff_t index; 2225 unsigned long offset; 2226 enum sgp_type sgp = SGP_READ; 2227 int error = 0; 2228 ssize_t retval = 0; 2229 loff_t *ppos = &iocb->ki_pos; 2230 2231 /* 2232 * Might this read be for a stacking filesystem? Then when reading 2233 * holes of a sparse file, we actually need to allocate those pages, 2234 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2235 */ 2236 if (!iter_is_iovec(to)) 2237 sgp = SGP_CACHE; 2238 2239 index = *ppos >> PAGE_SHIFT; 2240 offset = *ppos & ~PAGE_MASK; 2241 2242 for (;;) { 2243 struct page *page = NULL; 2244 pgoff_t end_index; 2245 unsigned long nr, ret; 2246 loff_t i_size = i_size_read(inode); 2247 2248 end_index = i_size >> PAGE_SHIFT; 2249 if (index > end_index) 2250 break; 2251 if (index == end_index) { 2252 nr = i_size & ~PAGE_MASK; 2253 if (nr <= offset) 2254 break; 2255 } 2256 2257 error = shmem_getpage(inode, index, &page, sgp); 2258 if (error) { 2259 if (error == -EINVAL) 2260 error = 0; 2261 break; 2262 } 2263 if (page) { 2264 if (sgp == SGP_CACHE) 2265 set_page_dirty(page); 2266 unlock_page(page); 2267 } 2268 2269 /* 2270 * We must evaluate after, since reads (unlike writes) 2271 * are called without i_mutex protection against truncate 2272 */ 2273 nr = PAGE_SIZE; 2274 i_size = i_size_read(inode); 2275 end_index = i_size >> PAGE_SHIFT; 2276 if (index == end_index) { 2277 nr = i_size & ~PAGE_MASK; 2278 if (nr <= offset) { 2279 if (page) 2280 put_page(page); 2281 break; 2282 } 2283 } 2284 nr -= offset; 2285 2286 if (page) { 2287 /* 2288 * If users can be writing to this page using arbitrary 2289 * virtual addresses, take care about potential aliasing 2290 * before reading the page on the kernel side. 2291 */ 2292 if (mapping_writably_mapped(mapping)) 2293 flush_dcache_page(page); 2294 /* 2295 * Mark the page accessed if we read the beginning. 2296 */ 2297 if (!offset) 2298 mark_page_accessed(page); 2299 } else { 2300 page = ZERO_PAGE(0); 2301 get_page(page); 2302 } 2303 2304 /* 2305 * Ok, we have the page, and it's up-to-date, so 2306 * now we can copy it to user space... 2307 */ 2308 ret = copy_page_to_iter(page, offset, nr, to); 2309 retval += ret; 2310 offset += ret; 2311 index += offset >> PAGE_SHIFT; 2312 offset &= ~PAGE_MASK; 2313 2314 put_page(page); 2315 if (!iov_iter_count(to)) 2316 break; 2317 if (ret < nr) { 2318 error = -EFAULT; 2319 break; 2320 } 2321 cond_resched(); 2322 } 2323 2324 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2325 file_accessed(file); 2326 return retval ? retval : error; 2327 } 2328 2329 /* 2330 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2331 */ 2332 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2333 pgoff_t index, pgoff_t end, int whence) 2334 { 2335 struct page *page; 2336 struct pagevec pvec; 2337 pgoff_t indices[PAGEVEC_SIZE]; 2338 bool done = false; 2339 int i; 2340 2341 pagevec_init(&pvec, 0); 2342 pvec.nr = 1; /* start small: we may be there already */ 2343 while (!done) { 2344 pvec.nr = find_get_entries(mapping, index, 2345 pvec.nr, pvec.pages, indices); 2346 if (!pvec.nr) { 2347 if (whence == SEEK_DATA) 2348 index = end; 2349 break; 2350 } 2351 for (i = 0; i < pvec.nr; i++, index++) { 2352 if (index < indices[i]) { 2353 if (whence == SEEK_HOLE) { 2354 done = true; 2355 break; 2356 } 2357 index = indices[i]; 2358 } 2359 page = pvec.pages[i]; 2360 if (page && !radix_tree_exceptional_entry(page)) { 2361 if (!PageUptodate(page)) 2362 page = NULL; 2363 } 2364 if (index >= end || 2365 (page && whence == SEEK_DATA) || 2366 (!page && whence == SEEK_HOLE)) { 2367 done = true; 2368 break; 2369 } 2370 } 2371 pagevec_remove_exceptionals(&pvec); 2372 pagevec_release(&pvec); 2373 pvec.nr = PAGEVEC_SIZE; 2374 cond_resched(); 2375 } 2376 return index; 2377 } 2378 2379 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2380 { 2381 struct address_space *mapping = file->f_mapping; 2382 struct inode *inode = mapping->host; 2383 pgoff_t start, end; 2384 loff_t new_offset; 2385 2386 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2387 return generic_file_llseek_size(file, offset, whence, 2388 MAX_LFS_FILESIZE, i_size_read(inode)); 2389 inode_lock(inode); 2390 /* We're holding i_mutex so we can access i_size directly */ 2391 2392 if (offset < 0) 2393 offset = -EINVAL; 2394 else if (offset >= inode->i_size) 2395 offset = -ENXIO; 2396 else { 2397 start = offset >> PAGE_SHIFT; 2398 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2399 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2400 new_offset <<= PAGE_SHIFT; 2401 if (new_offset > offset) { 2402 if (new_offset < inode->i_size) 2403 offset = new_offset; 2404 else if (whence == SEEK_DATA) 2405 offset = -ENXIO; 2406 else 2407 offset = inode->i_size; 2408 } 2409 } 2410 2411 if (offset >= 0) 2412 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2413 inode_unlock(inode); 2414 return offset; 2415 } 2416 2417 /* 2418 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2419 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2420 */ 2421 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2422 #define LAST_SCAN 4 /* about 150ms max */ 2423 2424 static void shmem_tag_pins(struct address_space *mapping) 2425 { 2426 struct radix_tree_iter iter; 2427 void **slot; 2428 pgoff_t start; 2429 struct page *page; 2430 2431 lru_add_drain(); 2432 start = 0; 2433 rcu_read_lock(); 2434 2435 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2436 page = radix_tree_deref_slot(slot); 2437 if (!page || radix_tree_exception(page)) { 2438 if (radix_tree_deref_retry(page)) { 2439 slot = radix_tree_iter_retry(&iter); 2440 continue; 2441 } 2442 } else if (page_count(page) - page_mapcount(page) > 1) { 2443 spin_lock_irq(&mapping->tree_lock); 2444 radix_tree_tag_set(&mapping->page_tree, iter.index, 2445 SHMEM_TAG_PINNED); 2446 spin_unlock_irq(&mapping->tree_lock); 2447 } 2448 2449 if (need_resched()) { 2450 cond_resched_rcu(); 2451 slot = radix_tree_iter_next(&iter); 2452 } 2453 } 2454 rcu_read_unlock(); 2455 } 2456 2457 /* 2458 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2459 * via get_user_pages(), drivers might have some pending I/O without any active 2460 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2461 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2462 * them to be dropped. 2463 * The caller must guarantee that no new user will acquire writable references 2464 * to those pages to avoid races. 2465 */ 2466 static int shmem_wait_for_pins(struct address_space *mapping) 2467 { 2468 struct radix_tree_iter iter; 2469 void **slot; 2470 pgoff_t start; 2471 struct page *page; 2472 int error, scan; 2473 2474 shmem_tag_pins(mapping); 2475 2476 error = 0; 2477 for (scan = 0; scan <= LAST_SCAN; scan++) { 2478 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 2479 break; 2480 2481 if (!scan) 2482 lru_add_drain_all(); 2483 else if (schedule_timeout_killable((HZ << scan) / 200)) 2484 scan = LAST_SCAN; 2485 2486 start = 0; 2487 rcu_read_lock(); 2488 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2489 start, SHMEM_TAG_PINNED) { 2490 2491 page = radix_tree_deref_slot(slot); 2492 if (radix_tree_exception(page)) { 2493 if (radix_tree_deref_retry(page)) { 2494 slot = radix_tree_iter_retry(&iter); 2495 continue; 2496 } 2497 2498 page = NULL; 2499 } 2500 2501 if (page && 2502 page_count(page) - page_mapcount(page) != 1) { 2503 if (scan < LAST_SCAN) 2504 goto continue_resched; 2505 2506 /* 2507 * On the last scan, we clean up all those tags 2508 * we inserted; but make a note that we still 2509 * found pages pinned. 2510 */ 2511 error = -EBUSY; 2512 } 2513 2514 spin_lock_irq(&mapping->tree_lock); 2515 radix_tree_tag_clear(&mapping->page_tree, 2516 iter.index, SHMEM_TAG_PINNED); 2517 spin_unlock_irq(&mapping->tree_lock); 2518 continue_resched: 2519 if (need_resched()) { 2520 cond_resched_rcu(); 2521 slot = radix_tree_iter_next(&iter); 2522 } 2523 } 2524 rcu_read_unlock(); 2525 } 2526 2527 return error; 2528 } 2529 2530 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2531 F_SEAL_SHRINK | \ 2532 F_SEAL_GROW | \ 2533 F_SEAL_WRITE) 2534 2535 int shmem_add_seals(struct file *file, unsigned int seals) 2536 { 2537 struct inode *inode = file_inode(file); 2538 struct shmem_inode_info *info = SHMEM_I(inode); 2539 int error; 2540 2541 /* 2542 * SEALING 2543 * Sealing allows multiple parties to share a shmem-file but restrict 2544 * access to a specific subset of file operations. Seals can only be 2545 * added, but never removed. This way, mutually untrusted parties can 2546 * share common memory regions with a well-defined policy. A malicious 2547 * peer can thus never perform unwanted operations on a shared object. 2548 * 2549 * Seals are only supported on special shmem-files and always affect 2550 * the whole underlying inode. Once a seal is set, it may prevent some 2551 * kinds of access to the file. Currently, the following seals are 2552 * defined: 2553 * SEAL_SEAL: Prevent further seals from being set on this file 2554 * SEAL_SHRINK: Prevent the file from shrinking 2555 * SEAL_GROW: Prevent the file from growing 2556 * SEAL_WRITE: Prevent write access to the file 2557 * 2558 * As we don't require any trust relationship between two parties, we 2559 * must prevent seals from being removed. Therefore, sealing a file 2560 * only adds a given set of seals to the file, it never touches 2561 * existing seals. Furthermore, the "setting seals"-operation can be 2562 * sealed itself, which basically prevents any further seal from being 2563 * added. 2564 * 2565 * Semantics of sealing are only defined on volatile files. Only 2566 * anonymous shmem files support sealing. More importantly, seals are 2567 * never written to disk. Therefore, there's no plan to support it on 2568 * other file types. 2569 */ 2570 2571 if (file->f_op != &shmem_file_operations) 2572 return -EINVAL; 2573 if (!(file->f_mode & FMODE_WRITE)) 2574 return -EPERM; 2575 if (seals & ~(unsigned int)F_ALL_SEALS) 2576 return -EINVAL; 2577 2578 inode_lock(inode); 2579 2580 if (info->seals & F_SEAL_SEAL) { 2581 error = -EPERM; 2582 goto unlock; 2583 } 2584 2585 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2586 error = mapping_deny_writable(file->f_mapping); 2587 if (error) 2588 goto unlock; 2589 2590 error = shmem_wait_for_pins(file->f_mapping); 2591 if (error) { 2592 mapping_allow_writable(file->f_mapping); 2593 goto unlock; 2594 } 2595 } 2596 2597 info->seals |= seals; 2598 error = 0; 2599 2600 unlock: 2601 inode_unlock(inode); 2602 return error; 2603 } 2604 EXPORT_SYMBOL_GPL(shmem_add_seals); 2605 2606 int shmem_get_seals(struct file *file) 2607 { 2608 if (file->f_op != &shmem_file_operations) 2609 return -EINVAL; 2610 2611 return SHMEM_I(file_inode(file))->seals; 2612 } 2613 EXPORT_SYMBOL_GPL(shmem_get_seals); 2614 2615 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2616 { 2617 long error; 2618 2619 switch (cmd) { 2620 case F_ADD_SEALS: 2621 /* disallow upper 32bit */ 2622 if (arg > UINT_MAX) 2623 return -EINVAL; 2624 2625 error = shmem_add_seals(file, arg); 2626 break; 2627 case F_GET_SEALS: 2628 error = shmem_get_seals(file); 2629 break; 2630 default: 2631 error = -EINVAL; 2632 break; 2633 } 2634 2635 return error; 2636 } 2637 2638 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2639 loff_t len) 2640 { 2641 struct inode *inode = file_inode(file); 2642 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2643 struct shmem_inode_info *info = SHMEM_I(inode); 2644 struct shmem_falloc shmem_falloc; 2645 pgoff_t start, index, end; 2646 int error; 2647 2648 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2649 return -EOPNOTSUPP; 2650 2651 inode_lock(inode); 2652 2653 if (mode & FALLOC_FL_PUNCH_HOLE) { 2654 struct address_space *mapping = file->f_mapping; 2655 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2656 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2657 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2658 2659 /* protected by i_mutex */ 2660 if (info->seals & F_SEAL_WRITE) { 2661 error = -EPERM; 2662 goto out; 2663 } 2664 2665 shmem_falloc.waitq = &shmem_falloc_waitq; 2666 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2667 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2668 spin_lock(&inode->i_lock); 2669 inode->i_private = &shmem_falloc; 2670 spin_unlock(&inode->i_lock); 2671 2672 if ((u64)unmap_end > (u64)unmap_start) 2673 unmap_mapping_range(mapping, unmap_start, 2674 1 + unmap_end - unmap_start, 0); 2675 shmem_truncate_range(inode, offset, offset + len - 1); 2676 /* No need to unmap again: hole-punching leaves COWed pages */ 2677 2678 spin_lock(&inode->i_lock); 2679 inode->i_private = NULL; 2680 wake_up_all(&shmem_falloc_waitq); 2681 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list)); 2682 spin_unlock(&inode->i_lock); 2683 error = 0; 2684 goto out; 2685 } 2686 2687 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2688 error = inode_newsize_ok(inode, offset + len); 2689 if (error) 2690 goto out; 2691 2692 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2693 error = -EPERM; 2694 goto out; 2695 } 2696 2697 start = offset >> PAGE_SHIFT; 2698 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2699 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2700 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2701 error = -ENOSPC; 2702 goto out; 2703 } 2704 2705 shmem_falloc.waitq = NULL; 2706 shmem_falloc.start = start; 2707 shmem_falloc.next = start; 2708 shmem_falloc.nr_falloced = 0; 2709 shmem_falloc.nr_unswapped = 0; 2710 spin_lock(&inode->i_lock); 2711 inode->i_private = &shmem_falloc; 2712 spin_unlock(&inode->i_lock); 2713 2714 for (index = start; index < end; index++) { 2715 struct page *page; 2716 2717 /* 2718 * Good, the fallocate(2) manpage permits EINTR: we may have 2719 * been interrupted because we are using up too much memory. 2720 */ 2721 if (signal_pending(current)) 2722 error = -EINTR; 2723 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2724 error = -ENOMEM; 2725 else 2726 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2727 if (error) { 2728 /* Remove the !PageUptodate pages we added */ 2729 if (index > start) { 2730 shmem_undo_range(inode, 2731 (loff_t)start << PAGE_SHIFT, 2732 ((loff_t)index << PAGE_SHIFT) - 1, true); 2733 } 2734 goto undone; 2735 } 2736 2737 /* 2738 * Inform shmem_writepage() how far we have reached. 2739 * No need for lock or barrier: we have the page lock. 2740 */ 2741 shmem_falloc.next++; 2742 if (!PageUptodate(page)) 2743 shmem_falloc.nr_falloced++; 2744 2745 /* 2746 * If !PageUptodate, leave it that way so that freeable pages 2747 * can be recognized if we need to rollback on error later. 2748 * But set_page_dirty so that memory pressure will swap rather 2749 * than free the pages we are allocating (and SGP_CACHE pages 2750 * might still be clean: we now need to mark those dirty too). 2751 */ 2752 set_page_dirty(page); 2753 unlock_page(page); 2754 put_page(page); 2755 cond_resched(); 2756 } 2757 2758 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2759 i_size_write(inode, offset + len); 2760 inode->i_ctime = current_time(inode); 2761 undone: 2762 spin_lock(&inode->i_lock); 2763 inode->i_private = NULL; 2764 spin_unlock(&inode->i_lock); 2765 out: 2766 inode_unlock(inode); 2767 return error; 2768 } 2769 2770 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2771 { 2772 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2773 2774 buf->f_type = TMPFS_MAGIC; 2775 buf->f_bsize = PAGE_SIZE; 2776 buf->f_namelen = NAME_MAX; 2777 if (sbinfo->max_blocks) { 2778 buf->f_blocks = sbinfo->max_blocks; 2779 buf->f_bavail = 2780 buf->f_bfree = sbinfo->max_blocks - 2781 percpu_counter_sum(&sbinfo->used_blocks); 2782 } 2783 if (sbinfo->max_inodes) { 2784 buf->f_files = sbinfo->max_inodes; 2785 buf->f_ffree = sbinfo->free_inodes; 2786 } 2787 /* else leave those fields 0 like simple_statfs */ 2788 return 0; 2789 } 2790 2791 /* 2792 * File creation. Allocate an inode, and we're done.. 2793 */ 2794 static int 2795 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2796 { 2797 struct inode *inode; 2798 int error = -ENOSPC; 2799 2800 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2801 if (inode) { 2802 error = simple_acl_create(dir, inode); 2803 if (error) 2804 goto out_iput; 2805 error = security_inode_init_security(inode, dir, 2806 &dentry->d_name, 2807 shmem_initxattrs, NULL); 2808 if (error && error != -EOPNOTSUPP) 2809 goto out_iput; 2810 2811 error = 0; 2812 dir->i_size += BOGO_DIRENT_SIZE; 2813 dir->i_ctime = dir->i_mtime = current_time(dir); 2814 d_instantiate(dentry, inode); 2815 dget(dentry); /* Extra count - pin the dentry in core */ 2816 } 2817 return error; 2818 out_iput: 2819 iput(inode); 2820 return error; 2821 } 2822 2823 static int 2824 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2825 { 2826 struct inode *inode; 2827 int error = -ENOSPC; 2828 2829 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2830 if (inode) { 2831 error = security_inode_init_security(inode, dir, 2832 NULL, 2833 shmem_initxattrs, NULL); 2834 if (error && error != -EOPNOTSUPP) 2835 goto out_iput; 2836 error = simple_acl_create(dir, inode); 2837 if (error) 2838 goto out_iput; 2839 d_tmpfile(dentry, inode); 2840 } 2841 return error; 2842 out_iput: 2843 iput(inode); 2844 return error; 2845 } 2846 2847 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2848 { 2849 int error; 2850 2851 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2852 return error; 2853 inc_nlink(dir); 2854 return 0; 2855 } 2856 2857 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2858 bool excl) 2859 { 2860 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2861 } 2862 2863 /* 2864 * Link a file.. 2865 */ 2866 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2867 { 2868 struct inode *inode = d_inode(old_dentry); 2869 int ret; 2870 2871 /* 2872 * No ordinary (disk based) filesystem counts links as inodes; 2873 * but each new link needs a new dentry, pinning lowmem, and 2874 * tmpfs dentries cannot be pruned until they are unlinked. 2875 */ 2876 ret = shmem_reserve_inode(inode->i_sb); 2877 if (ret) 2878 goto out; 2879 2880 dir->i_size += BOGO_DIRENT_SIZE; 2881 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2882 inc_nlink(inode); 2883 ihold(inode); /* New dentry reference */ 2884 dget(dentry); /* Extra pinning count for the created dentry */ 2885 d_instantiate(dentry, inode); 2886 out: 2887 return ret; 2888 } 2889 2890 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2891 { 2892 struct inode *inode = d_inode(dentry); 2893 2894 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2895 shmem_free_inode(inode->i_sb); 2896 2897 dir->i_size -= BOGO_DIRENT_SIZE; 2898 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2899 drop_nlink(inode); 2900 dput(dentry); /* Undo the count from "create" - this does all the work */ 2901 return 0; 2902 } 2903 2904 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2905 { 2906 if (!simple_empty(dentry)) 2907 return -ENOTEMPTY; 2908 2909 drop_nlink(d_inode(dentry)); 2910 drop_nlink(dir); 2911 return shmem_unlink(dir, dentry); 2912 } 2913 2914 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2915 { 2916 bool old_is_dir = d_is_dir(old_dentry); 2917 bool new_is_dir = d_is_dir(new_dentry); 2918 2919 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2920 if (old_is_dir) { 2921 drop_nlink(old_dir); 2922 inc_nlink(new_dir); 2923 } else { 2924 drop_nlink(new_dir); 2925 inc_nlink(old_dir); 2926 } 2927 } 2928 old_dir->i_ctime = old_dir->i_mtime = 2929 new_dir->i_ctime = new_dir->i_mtime = 2930 d_inode(old_dentry)->i_ctime = 2931 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2932 2933 return 0; 2934 } 2935 2936 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2937 { 2938 struct dentry *whiteout; 2939 int error; 2940 2941 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2942 if (!whiteout) 2943 return -ENOMEM; 2944 2945 error = shmem_mknod(old_dir, whiteout, 2946 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2947 dput(whiteout); 2948 if (error) 2949 return error; 2950 2951 /* 2952 * Cheat and hash the whiteout while the old dentry is still in 2953 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2954 * 2955 * d_lookup() will consistently find one of them at this point, 2956 * not sure which one, but that isn't even important. 2957 */ 2958 d_rehash(whiteout); 2959 return 0; 2960 } 2961 2962 /* 2963 * The VFS layer already does all the dentry stuff for rename, 2964 * we just have to decrement the usage count for the target if 2965 * it exists so that the VFS layer correctly free's it when it 2966 * gets overwritten. 2967 */ 2968 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2969 { 2970 struct inode *inode = d_inode(old_dentry); 2971 int they_are_dirs = S_ISDIR(inode->i_mode); 2972 2973 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2974 return -EINVAL; 2975 2976 if (flags & RENAME_EXCHANGE) 2977 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2978 2979 if (!simple_empty(new_dentry)) 2980 return -ENOTEMPTY; 2981 2982 if (flags & RENAME_WHITEOUT) { 2983 int error; 2984 2985 error = shmem_whiteout(old_dir, old_dentry); 2986 if (error) 2987 return error; 2988 } 2989 2990 if (d_really_is_positive(new_dentry)) { 2991 (void) shmem_unlink(new_dir, new_dentry); 2992 if (they_are_dirs) { 2993 drop_nlink(d_inode(new_dentry)); 2994 drop_nlink(old_dir); 2995 } 2996 } else if (they_are_dirs) { 2997 drop_nlink(old_dir); 2998 inc_nlink(new_dir); 2999 } 3000 3001 old_dir->i_size -= BOGO_DIRENT_SIZE; 3002 new_dir->i_size += BOGO_DIRENT_SIZE; 3003 old_dir->i_ctime = old_dir->i_mtime = 3004 new_dir->i_ctime = new_dir->i_mtime = 3005 inode->i_ctime = current_time(old_dir); 3006 return 0; 3007 } 3008 3009 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3010 { 3011 int error; 3012 int len; 3013 struct inode *inode; 3014 struct page *page; 3015 struct shmem_inode_info *info; 3016 3017 len = strlen(symname) + 1; 3018 if (len > PAGE_SIZE) 3019 return -ENAMETOOLONG; 3020 3021 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3022 if (!inode) 3023 return -ENOSPC; 3024 3025 error = security_inode_init_security(inode, dir, &dentry->d_name, 3026 shmem_initxattrs, NULL); 3027 if (error) { 3028 if (error != -EOPNOTSUPP) { 3029 iput(inode); 3030 return error; 3031 } 3032 error = 0; 3033 } 3034 3035 info = SHMEM_I(inode); 3036 inode->i_size = len-1; 3037 if (len <= SHORT_SYMLINK_LEN) { 3038 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3039 if (!inode->i_link) { 3040 iput(inode); 3041 return -ENOMEM; 3042 } 3043 inode->i_op = &shmem_short_symlink_operations; 3044 } else { 3045 inode_nohighmem(inode); 3046 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3047 if (error) { 3048 iput(inode); 3049 return error; 3050 } 3051 inode->i_mapping->a_ops = &shmem_aops; 3052 inode->i_op = &shmem_symlink_inode_operations; 3053 memcpy(page_address(page), symname, len); 3054 SetPageUptodate(page); 3055 set_page_dirty(page); 3056 unlock_page(page); 3057 put_page(page); 3058 } 3059 dir->i_size += BOGO_DIRENT_SIZE; 3060 dir->i_ctime = dir->i_mtime = current_time(dir); 3061 d_instantiate(dentry, inode); 3062 dget(dentry); 3063 return 0; 3064 } 3065 3066 static void shmem_put_link(void *arg) 3067 { 3068 mark_page_accessed(arg); 3069 put_page(arg); 3070 } 3071 3072 static const char *shmem_get_link(struct dentry *dentry, 3073 struct inode *inode, 3074 struct delayed_call *done) 3075 { 3076 struct page *page = NULL; 3077 int error; 3078 if (!dentry) { 3079 page = find_get_page(inode->i_mapping, 0); 3080 if (!page) 3081 return ERR_PTR(-ECHILD); 3082 if (!PageUptodate(page)) { 3083 put_page(page); 3084 return ERR_PTR(-ECHILD); 3085 } 3086 } else { 3087 error = shmem_getpage(inode, 0, &page, SGP_READ); 3088 if (error) 3089 return ERR_PTR(error); 3090 unlock_page(page); 3091 } 3092 set_delayed_call(done, shmem_put_link, page); 3093 return page_address(page); 3094 } 3095 3096 #ifdef CONFIG_TMPFS_XATTR 3097 /* 3098 * Superblocks without xattr inode operations may get some security.* xattr 3099 * support from the LSM "for free". As soon as we have any other xattrs 3100 * like ACLs, we also need to implement the security.* handlers at 3101 * filesystem level, though. 3102 */ 3103 3104 /* 3105 * Callback for security_inode_init_security() for acquiring xattrs. 3106 */ 3107 static int shmem_initxattrs(struct inode *inode, 3108 const struct xattr *xattr_array, 3109 void *fs_info) 3110 { 3111 struct shmem_inode_info *info = SHMEM_I(inode); 3112 const struct xattr *xattr; 3113 struct simple_xattr *new_xattr; 3114 size_t len; 3115 3116 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3117 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3118 if (!new_xattr) 3119 return -ENOMEM; 3120 3121 len = strlen(xattr->name) + 1; 3122 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3123 GFP_KERNEL); 3124 if (!new_xattr->name) { 3125 kfree(new_xattr); 3126 return -ENOMEM; 3127 } 3128 3129 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3130 XATTR_SECURITY_PREFIX_LEN); 3131 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3132 xattr->name, len); 3133 3134 simple_xattr_list_add(&info->xattrs, new_xattr); 3135 } 3136 3137 return 0; 3138 } 3139 3140 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3141 struct dentry *unused, struct inode *inode, 3142 const char *name, void *buffer, size_t size) 3143 { 3144 struct shmem_inode_info *info = SHMEM_I(inode); 3145 3146 name = xattr_full_name(handler, name); 3147 return simple_xattr_get(&info->xattrs, name, buffer, size); 3148 } 3149 3150 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3151 struct dentry *unused, struct inode *inode, 3152 const char *name, const void *value, 3153 size_t size, int flags) 3154 { 3155 struct shmem_inode_info *info = SHMEM_I(inode); 3156 3157 name = xattr_full_name(handler, name); 3158 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3159 } 3160 3161 static const struct xattr_handler shmem_security_xattr_handler = { 3162 .prefix = XATTR_SECURITY_PREFIX, 3163 .get = shmem_xattr_handler_get, 3164 .set = shmem_xattr_handler_set, 3165 }; 3166 3167 static const struct xattr_handler shmem_trusted_xattr_handler = { 3168 .prefix = XATTR_TRUSTED_PREFIX, 3169 .get = shmem_xattr_handler_get, 3170 .set = shmem_xattr_handler_set, 3171 }; 3172 3173 static const struct xattr_handler *shmem_xattr_handlers[] = { 3174 #ifdef CONFIG_TMPFS_POSIX_ACL 3175 &posix_acl_access_xattr_handler, 3176 &posix_acl_default_xattr_handler, 3177 #endif 3178 &shmem_security_xattr_handler, 3179 &shmem_trusted_xattr_handler, 3180 NULL 3181 }; 3182 3183 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3184 { 3185 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3186 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3187 } 3188 #endif /* CONFIG_TMPFS_XATTR */ 3189 3190 static const struct inode_operations shmem_short_symlink_operations = { 3191 .readlink = generic_readlink, 3192 .get_link = simple_get_link, 3193 #ifdef CONFIG_TMPFS_XATTR 3194 .listxattr = shmem_listxattr, 3195 #endif 3196 }; 3197 3198 static const struct inode_operations shmem_symlink_inode_operations = { 3199 .readlink = generic_readlink, 3200 .get_link = shmem_get_link, 3201 #ifdef CONFIG_TMPFS_XATTR 3202 .listxattr = shmem_listxattr, 3203 #endif 3204 }; 3205 3206 static struct dentry *shmem_get_parent(struct dentry *child) 3207 { 3208 return ERR_PTR(-ESTALE); 3209 } 3210 3211 static int shmem_match(struct inode *ino, void *vfh) 3212 { 3213 __u32 *fh = vfh; 3214 __u64 inum = fh[2]; 3215 inum = (inum << 32) | fh[1]; 3216 return ino->i_ino == inum && fh[0] == ino->i_generation; 3217 } 3218 3219 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3220 struct fid *fid, int fh_len, int fh_type) 3221 { 3222 struct inode *inode; 3223 struct dentry *dentry = NULL; 3224 u64 inum; 3225 3226 if (fh_len < 3) 3227 return NULL; 3228 3229 inum = fid->raw[2]; 3230 inum = (inum << 32) | fid->raw[1]; 3231 3232 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3233 shmem_match, fid->raw); 3234 if (inode) { 3235 dentry = d_find_alias(inode); 3236 iput(inode); 3237 } 3238 3239 return dentry; 3240 } 3241 3242 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3243 struct inode *parent) 3244 { 3245 if (*len < 3) { 3246 *len = 3; 3247 return FILEID_INVALID; 3248 } 3249 3250 if (inode_unhashed(inode)) { 3251 /* Unfortunately insert_inode_hash is not idempotent, 3252 * so as we hash inodes here rather than at creation 3253 * time, we need a lock to ensure we only try 3254 * to do it once 3255 */ 3256 static DEFINE_SPINLOCK(lock); 3257 spin_lock(&lock); 3258 if (inode_unhashed(inode)) 3259 __insert_inode_hash(inode, 3260 inode->i_ino + inode->i_generation); 3261 spin_unlock(&lock); 3262 } 3263 3264 fh[0] = inode->i_generation; 3265 fh[1] = inode->i_ino; 3266 fh[2] = ((__u64)inode->i_ino) >> 32; 3267 3268 *len = 3; 3269 return 1; 3270 } 3271 3272 static const struct export_operations shmem_export_ops = { 3273 .get_parent = shmem_get_parent, 3274 .encode_fh = shmem_encode_fh, 3275 .fh_to_dentry = shmem_fh_to_dentry, 3276 }; 3277 3278 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3279 bool remount) 3280 { 3281 char *this_char, *value, *rest; 3282 struct mempolicy *mpol = NULL; 3283 uid_t uid; 3284 gid_t gid; 3285 3286 while (options != NULL) { 3287 this_char = options; 3288 for (;;) { 3289 /* 3290 * NUL-terminate this option: unfortunately, 3291 * mount options form a comma-separated list, 3292 * but mpol's nodelist may also contain commas. 3293 */ 3294 options = strchr(options, ','); 3295 if (options == NULL) 3296 break; 3297 options++; 3298 if (!isdigit(*options)) { 3299 options[-1] = '\0'; 3300 break; 3301 } 3302 } 3303 if (!*this_char) 3304 continue; 3305 if ((value = strchr(this_char,'=')) != NULL) { 3306 *value++ = 0; 3307 } else { 3308 pr_err("tmpfs: No value for mount option '%s'\n", 3309 this_char); 3310 goto error; 3311 } 3312 3313 if (!strcmp(this_char,"size")) { 3314 unsigned long long size; 3315 size = memparse(value,&rest); 3316 if (*rest == '%') { 3317 size <<= PAGE_SHIFT; 3318 size *= totalram_pages; 3319 do_div(size, 100); 3320 rest++; 3321 } 3322 if (*rest) 3323 goto bad_val; 3324 sbinfo->max_blocks = 3325 DIV_ROUND_UP(size, PAGE_SIZE); 3326 } else if (!strcmp(this_char,"nr_blocks")) { 3327 sbinfo->max_blocks = memparse(value, &rest); 3328 if (*rest) 3329 goto bad_val; 3330 } else if (!strcmp(this_char,"nr_inodes")) { 3331 sbinfo->max_inodes = memparse(value, &rest); 3332 if (*rest) 3333 goto bad_val; 3334 } else if (!strcmp(this_char,"mode")) { 3335 if (remount) 3336 continue; 3337 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3338 if (*rest) 3339 goto bad_val; 3340 } else if (!strcmp(this_char,"uid")) { 3341 if (remount) 3342 continue; 3343 uid = simple_strtoul(value, &rest, 0); 3344 if (*rest) 3345 goto bad_val; 3346 sbinfo->uid = make_kuid(current_user_ns(), uid); 3347 if (!uid_valid(sbinfo->uid)) 3348 goto bad_val; 3349 } else if (!strcmp(this_char,"gid")) { 3350 if (remount) 3351 continue; 3352 gid = simple_strtoul(value, &rest, 0); 3353 if (*rest) 3354 goto bad_val; 3355 sbinfo->gid = make_kgid(current_user_ns(), gid); 3356 if (!gid_valid(sbinfo->gid)) 3357 goto bad_val; 3358 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3359 } else if (!strcmp(this_char, "huge")) { 3360 int huge; 3361 huge = shmem_parse_huge(value); 3362 if (huge < 0) 3363 goto bad_val; 3364 if (!has_transparent_hugepage() && 3365 huge != SHMEM_HUGE_NEVER) 3366 goto bad_val; 3367 sbinfo->huge = huge; 3368 #endif 3369 #ifdef CONFIG_NUMA 3370 } else if (!strcmp(this_char,"mpol")) { 3371 mpol_put(mpol); 3372 mpol = NULL; 3373 if (mpol_parse_str(value, &mpol)) 3374 goto bad_val; 3375 #endif 3376 } else { 3377 pr_err("tmpfs: Bad mount option %s\n", this_char); 3378 goto error; 3379 } 3380 } 3381 sbinfo->mpol = mpol; 3382 return 0; 3383 3384 bad_val: 3385 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3386 value, this_char); 3387 error: 3388 mpol_put(mpol); 3389 return 1; 3390 3391 } 3392 3393 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3394 { 3395 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3396 struct shmem_sb_info config = *sbinfo; 3397 unsigned long inodes; 3398 int error = -EINVAL; 3399 3400 config.mpol = NULL; 3401 if (shmem_parse_options(data, &config, true)) 3402 return error; 3403 3404 spin_lock(&sbinfo->stat_lock); 3405 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3406 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3407 goto out; 3408 if (config.max_inodes < inodes) 3409 goto out; 3410 /* 3411 * Those tests disallow limited->unlimited while any are in use; 3412 * but we must separately disallow unlimited->limited, because 3413 * in that case we have no record of how much is already in use. 3414 */ 3415 if (config.max_blocks && !sbinfo->max_blocks) 3416 goto out; 3417 if (config.max_inodes && !sbinfo->max_inodes) 3418 goto out; 3419 3420 error = 0; 3421 sbinfo->huge = config.huge; 3422 sbinfo->max_blocks = config.max_blocks; 3423 sbinfo->max_inodes = config.max_inodes; 3424 sbinfo->free_inodes = config.max_inodes - inodes; 3425 3426 /* 3427 * Preserve previous mempolicy unless mpol remount option was specified. 3428 */ 3429 if (config.mpol) { 3430 mpol_put(sbinfo->mpol); 3431 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3432 } 3433 out: 3434 spin_unlock(&sbinfo->stat_lock); 3435 return error; 3436 } 3437 3438 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3439 { 3440 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3441 3442 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3443 seq_printf(seq, ",size=%luk", 3444 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3445 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3446 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3447 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3448 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3449 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3450 seq_printf(seq, ",uid=%u", 3451 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3452 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3453 seq_printf(seq, ",gid=%u", 3454 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3455 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3456 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3457 if (sbinfo->huge) 3458 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3459 #endif 3460 shmem_show_mpol(seq, sbinfo->mpol); 3461 return 0; 3462 } 3463 3464 #define MFD_NAME_PREFIX "memfd:" 3465 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3466 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3467 3468 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 3469 3470 SYSCALL_DEFINE2(memfd_create, 3471 const char __user *, uname, 3472 unsigned int, flags) 3473 { 3474 struct shmem_inode_info *info; 3475 struct file *file; 3476 int fd, error; 3477 char *name; 3478 long len; 3479 3480 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3481 return -EINVAL; 3482 3483 /* length includes terminating zero */ 3484 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3485 if (len <= 0) 3486 return -EFAULT; 3487 if (len > MFD_NAME_MAX_LEN + 1) 3488 return -EINVAL; 3489 3490 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 3491 if (!name) 3492 return -ENOMEM; 3493 3494 strcpy(name, MFD_NAME_PREFIX); 3495 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3496 error = -EFAULT; 3497 goto err_name; 3498 } 3499 3500 /* terminating-zero may have changed after strnlen_user() returned */ 3501 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3502 error = -EFAULT; 3503 goto err_name; 3504 } 3505 3506 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3507 if (fd < 0) { 3508 error = fd; 3509 goto err_name; 3510 } 3511 3512 file = shmem_file_setup(name, 0, VM_NORESERVE); 3513 if (IS_ERR(file)) { 3514 error = PTR_ERR(file); 3515 goto err_fd; 3516 } 3517 info = SHMEM_I(file_inode(file)); 3518 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3519 file->f_flags |= O_RDWR | O_LARGEFILE; 3520 if (flags & MFD_ALLOW_SEALING) 3521 info->seals &= ~F_SEAL_SEAL; 3522 3523 fd_install(fd, file); 3524 kfree(name); 3525 return fd; 3526 3527 err_fd: 3528 put_unused_fd(fd); 3529 err_name: 3530 kfree(name); 3531 return error; 3532 } 3533 3534 #endif /* CONFIG_TMPFS */ 3535 3536 static void shmem_put_super(struct super_block *sb) 3537 { 3538 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3539 3540 percpu_counter_destroy(&sbinfo->used_blocks); 3541 mpol_put(sbinfo->mpol); 3542 kfree(sbinfo); 3543 sb->s_fs_info = NULL; 3544 } 3545 3546 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3547 { 3548 struct inode *inode; 3549 struct shmem_sb_info *sbinfo; 3550 int err = -ENOMEM; 3551 3552 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3553 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3554 L1_CACHE_BYTES), GFP_KERNEL); 3555 if (!sbinfo) 3556 return -ENOMEM; 3557 3558 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3559 sbinfo->uid = current_fsuid(); 3560 sbinfo->gid = current_fsgid(); 3561 sb->s_fs_info = sbinfo; 3562 3563 #ifdef CONFIG_TMPFS 3564 /* 3565 * Per default we only allow half of the physical ram per 3566 * tmpfs instance, limiting inodes to one per page of lowmem; 3567 * but the internal instance is left unlimited. 3568 */ 3569 if (!(sb->s_flags & MS_KERNMOUNT)) { 3570 sbinfo->max_blocks = shmem_default_max_blocks(); 3571 sbinfo->max_inodes = shmem_default_max_inodes(); 3572 if (shmem_parse_options(data, sbinfo, false)) { 3573 err = -EINVAL; 3574 goto failed; 3575 } 3576 } else { 3577 sb->s_flags |= MS_NOUSER; 3578 } 3579 sb->s_export_op = &shmem_export_ops; 3580 sb->s_flags |= MS_NOSEC; 3581 #else 3582 sb->s_flags |= MS_NOUSER; 3583 #endif 3584 3585 spin_lock_init(&sbinfo->stat_lock); 3586 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3587 goto failed; 3588 sbinfo->free_inodes = sbinfo->max_inodes; 3589 spin_lock_init(&sbinfo->shrinklist_lock); 3590 INIT_LIST_HEAD(&sbinfo->shrinklist); 3591 3592 sb->s_maxbytes = MAX_LFS_FILESIZE; 3593 sb->s_blocksize = PAGE_SIZE; 3594 sb->s_blocksize_bits = PAGE_SHIFT; 3595 sb->s_magic = TMPFS_MAGIC; 3596 sb->s_op = &shmem_ops; 3597 sb->s_time_gran = 1; 3598 #ifdef CONFIG_TMPFS_XATTR 3599 sb->s_xattr = shmem_xattr_handlers; 3600 #endif 3601 #ifdef CONFIG_TMPFS_POSIX_ACL 3602 sb->s_flags |= MS_POSIXACL; 3603 #endif 3604 3605 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3606 if (!inode) 3607 goto failed; 3608 inode->i_uid = sbinfo->uid; 3609 inode->i_gid = sbinfo->gid; 3610 sb->s_root = d_make_root(inode); 3611 if (!sb->s_root) 3612 goto failed; 3613 return 0; 3614 3615 failed: 3616 shmem_put_super(sb); 3617 return err; 3618 } 3619 3620 static struct kmem_cache *shmem_inode_cachep; 3621 3622 static struct inode *shmem_alloc_inode(struct super_block *sb) 3623 { 3624 struct shmem_inode_info *info; 3625 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3626 if (!info) 3627 return NULL; 3628 return &info->vfs_inode; 3629 } 3630 3631 static void shmem_destroy_callback(struct rcu_head *head) 3632 { 3633 struct inode *inode = container_of(head, struct inode, i_rcu); 3634 if (S_ISLNK(inode->i_mode)) 3635 kfree(inode->i_link); 3636 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3637 } 3638 3639 static void shmem_destroy_inode(struct inode *inode) 3640 { 3641 if (S_ISREG(inode->i_mode)) 3642 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3643 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3644 } 3645 3646 static void shmem_init_inode(void *foo) 3647 { 3648 struct shmem_inode_info *info = foo; 3649 inode_init_once(&info->vfs_inode); 3650 } 3651 3652 static int shmem_init_inodecache(void) 3653 { 3654 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3655 sizeof(struct shmem_inode_info), 3656 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3657 return 0; 3658 } 3659 3660 static void shmem_destroy_inodecache(void) 3661 { 3662 kmem_cache_destroy(shmem_inode_cachep); 3663 } 3664 3665 static const struct address_space_operations shmem_aops = { 3666 .writepage = shmem_writepage, 3667 .set_page_dirty = __set_page_dirty_no_writeback, 3668 #ifdef CONFIG_TMPFS 3669 .write_begin = shmem_write_begin, 3670 .write_end = shmem_write_end, 3671 #endif 3672 #ifdef CONFIG_MIGRATION 3673 .migratepage = migrate_page, 3674 #endif 3675 .error_remove_page = generic_error_remove_page, 3676 }; 3677 3678 static const struct file_operations shmem_file_operations = { 3679 .mmap = shmem_mmap, 3680 .get_unmapped_area = shmem_get_unmapped_area, 3681 #ifdef CONFIG_TMPFS 3682 .llseek = shmem_file_llseek, 3683 .read_iter = shmem_file_read_iter, 3684 .write_iter = generic_file_write_iter, 3685 .fsync = noop_fsync, 3686 .splice_read = generic_file_splice_read, 3687 .splice_write = iter_file_splice_write, 3688 .fallocate = shmem_fallocate, 3689 #endif 3690 }; 3691 3692 static const struct inode_operations shmem_inode_operations = { 3693 .getattr = shmem_getattr, 3694 .setattr = shmem_setattr, 3695 #ifdef CONFIG_TMPFS_XATTR 3696 .listxattr = shmem_listxattr, 3697 .set_acl = simple_set_acl, 3698 #endif 3699 }; 3700 3701 static const struct inode_operations shmem_dir_inode_operations = { 3702 #ifdef CONFIG_TMPFS 3703 .create = shmem_create, 3704 .lookup = simple_lookup, 3705 .link = shmem_link, 3706 .unlink = shmem_unlink, 3707 .symlink = shmem_symlink, 3708 .mkdir = shmem_mkdir, 3709 .rmdir = shmem_rmdir, 3710 .mknod = shmem_mknod, 3711 .rename = shmem_rename2, 3712 .tmpfile = shmem_tmpfile, 3713 #endif 3714 #ifdef CONFIG_TMPFS_XATTR 3715 .listxattr = shmem_listxattr, 3716 #endif 3717 #ifdef CONFIG_TMPFS_POSIX_ACL 3718 .setattr = shmem_setattr, 3719 .set_acl = simple_set_acl, 3720 #endif 3721 }; 3722 3723 static const struct inode_operations shmem_special_inode_operations = { 3724 #ifdef CONFIG_TMPFS_XATTR 3725 .listxattr = shmem_listxattr, 3726 #endif 3727 #ifdef CONFIG_TMPFS_POSIX_ACL 3728 .setattr = shmem_setattr, 3729 .set_acl = simple_set_acl, 3730 #endif 3731 }; 3732 3733 static const struct super_operations shmem_ops = { 3734 .alloc_inode = shmem_alloc_inode, 3735 .destroy_inode = shmem_destroy_inode, 3736 #ifdef CONFIG_TMPFS 3737 .statfs = shmem_statfs, 3738 .remount_fs = shmem_remount_fs, 3739 .show_options = shmem_show_options, 3740 #endif 3741 .evict_inode = shmem_evict_inode, 3742 .drop_inode = generic_delete_inode, 3743 .put_super = shmem_put_super, 3744 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3745 .nr_cached_objects = shmem_unused_huge_count, 3746 .free_cached_objects = shmem_unused_huge_scan, 3747 #endif 3748 }; 3749 3750 static const struct vm_operations_struct shmem_vm_ops = { 3751 .fault = shmem_fault, 3752 .map_pages = filemap_map_pages, 3753 #ifdef CONFIG_NUMA 3754 .set_policy = shmem_set_policy, 3755 .get_policy = shmem_get_policy, 3756 #endif 3757 }; 3758 3759 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3760 int flags, const char *dev_name, void *data) 3761 { 3762 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3763 } 3764 3765 static struct file_system_type shmem_fs_type = { 3766 .owner = THIS_MODULE, 3767 .name = "tmpfs", 3768 .mount = shmem_mount, 3769 .kill_sb = kill_litter_super, 3770 .fs_flags = FS_USERNS_MOUNT, 3771 }; 3772 3773 int __init shmem_init(void) 3774 { 3775 int error; 3776 3777 /* If rootfs called this, don't re-init */ 3778 if (shmem_inode_cachep) 3779 return 0; 3780 3781 error = shmem_init_inodecache(); 3782 if (error) 3783 goto out3; 3784 3785 error = register_filesystem(&shmem_fs_type); 3786 if (error) { 3787 pr_err("Could not register tmpfs\n"); 3788 goto out2; 3789 } 3790 3791 shm_mnt = kern_mount(&shmem_fs_type); 3792 if (IS_ERR(shm_mnt)) { 3793 error = PTR_ERR(shm_mnt); 3794 pr_err("Could not kern_mount tmpfs\n"); 3795 goto out1; 3796 } 3797 3798 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3799 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY) 3800 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3801 else 3802 shmem_huge = 0; /* just in case it was patched */ 3803 #endif 3804 return 0; 3805 3806 out1: 3807 unregister_filesystem(&shmem_fs_type); 3808 out2: 3809 shmem_destroy_inodecache(); 3810 out3: 3811 shm_mnt = ERR_PTR(error); 3812 return error; 3813 } 3814 3815 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3816 static ssize_t shmem_enabled_show(struct kobject *kobj, 3817 struct kobj_attribute *attr, char *buf) 3818 { 3819 int values[] = { 3820 SHMEM_HUGE_ALWAYS, 3821 SHMEM_HUGE_WITHIN_SIZE, 3822 SHMEM_HUGE_ADVISE, 3823 SHMEM_HUGE_NEVER, 3824 SHMEM_HUGE_DENY, 3825 SHMEM_HUGE_FORCE, 3826 }; 3827 int i, count; 3828 3829 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3830 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3831 3832 count += sprintf(buf + count, fmt, 3833 shmem_format_huge(values[i])); 3834 } 3835 buf[count - 1] = '\n'; 3836 return count; 3837 } 3838 3839 static ssize_t shmem_enabled_store(struct kobject *kobj, 3840 struct kobj_attribute *attr, const char *buf, size_t count) 3841 { 3842 char tmp[16]; 3843 int huge; 3844 3845 if (count + 1 > sizeof(tmp)) 3846 return -EINVAL; 3847 memcpy(tmp, buf, count); 3848 tmp[count] = '\0'; 3849 if (count && tmp[count - 1] == '\n') 3850 tmp[count - 1] = '\0'; 3851 3852 huge = shmem_parse_huge(tmp); 3853 if (huge == -EINVAL) 3854 return -EINVAL; 3855 if (!has_transparent_hugepage() && 3856 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3857 return -EINVAL; 3858 3859 shmem_huge = huge; 3860 if (shmem_huge < SHMEM_HUGE_DENY) 3861 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3862 return count; 3863 } 3864 3865 struct kobj_attribute shmem_enabled_attr = 3866 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3867 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3868 3869 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3870 bool shmem_huge_enabled(struct vm_area_struct *vma) 3871 { 3872 struct inode *inode = file_inode(vma->vm_file); 3873 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3874 loff_t i_size; 3875 pgoff_t off; 3876 3877 if (shmem_huge == SHMEM_HUGE_FORCE) 3878 return true; 3879 if (shmem_huge == SHMEM_HUGE_DENY) 3880 return false; 3881 switch (sbinfo->huge) { 3882 case SHMEM_HUGE_NEVER: 3883 return false; 3884 case SHMEM_HUGE_ALWAYS: 3885 return true; 3886 case SHMEM_HUGE_WITHIN_SIZE: 3887 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3888 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3889 if (i_size >= HPAGE_PMD_SIZE && 3890 i_size >> PAGE_SHIFT >= off) 3891 return true; 3892 case SHMEM_HUGE_ADVISE: 3893 /* TODO: implement fadvise() hints */ 3894 return (vma->vm_flags & VM_HUGEPAGE); 3895 default: 3896 VM_BUG_ON(1); 3897 return false; 3898 } 3899 } 3900 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 3901 3902 #else /* !CONFIG_SHMEM */ 3903 3904 /* 3905 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3906 * 3907 * This is intended for small system where the benefits of the full 3908 * shmem code (swap-backed and resource-limited) are outweighed by 3909 * their complexity. On systems without swap this code should be 3910 * effectively equivalent, but much lighter weight. 3911 */ 3912 3913 static struct file_system_type shmem_fs_type = { 3914 .name = "tmpfs", 3915 .mount = ramfs_mount, 3916 .kill_sb = kill_litter_super, 3917 .fs_flags = FS_USERNS_MOUNT, 3918 }; 3919 3920 int __init shmem_init(void) 3921 { 3922 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3923 3924 shm_mnt = kern_mount(&shmem_fs_type); 3925 BUG_ON(IS_ERR(shm_mnt)); 3926 3927 return 0; 3928 } 3929 3930 int shmem_unuse(swp_entry_t swap, struct page *page) 3931 { 3932 return 0; 3933 } 3934 3935 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3936 { 3937 return 0; 3938 } 3939 3940 void shmem_unlock_mapping(struct address_space *mapping) 3941 { 3942 } 3943 3944 #ifdef CONFIG_MMU 3945 unsigned long shmem_get_unmapped_area(struct file *file, 3946 unsigned long addr, unsigned long len, 3947 unsigned long pgoff, unsigned long flags) 3948 { 3949 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 3950 } 3951 #endif 3952 3953 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3954 { 3955 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3956 } 3957 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3958 3959 #define shmem_vm_ops generic_file_vm_ops 3960 #define shmem_file_operations ramfs_file_operations 3961 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3962 #define shmem_acct_size(flags, size) 0 3963 #define shmem_unacct_size(flags, size) do {} while (0) 3964 3965 #endif /* CONFIG_SHMEM */ 3966 3967 /* common code */ 3968 3969 static const struct dentry_operations anon_ops = { 3970 .d_dname = simple_dname 3971 }; 3972 3973 static struct file *__shmem_file_setup(const char *name, loff_t size, 3974 unsigned long flags, unsigned int i_flags) 3975 { 3976 struct file *res; 3977 struct inode *inode; 3978 struct path path; 3979 struct super_block *sb; 3980 struct qstr this; 3981 3982 if (IS_ERR(shm_mnt)) 3983 return ERR_CAST(shm_mnt); 3984 3985 if (size < 0 || size > MAX_LFS_FILESIZE) 3986 return ERR_PTR(-EINVAL); 3987 3988 if (shmem_acct_size(flags, size)) 3989 return ERR_PTR(-ENOMEM); 3990 3991 res = ERR_PTR(-ENOMEM); 3992 this.name = name; 3993 this.len = strlen(name); 3994 this.hash = 0; /* will go */ 3995 sb = shm_mnt->mnt_sb; 3996 path.mnt = mntget(shm_mnt); 3997 path.dentry = d_alloc_pseudo(sb, &this); 3998 if (!path.dentry) 3999 goto put_memory; 4000 d_set_d_op(path.dentry, &anon_ops); 4001 4002 res = ERR_PTR(-ENOSPC); 4003 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4004 if (!inode) 4005 goto put_memory; 4006 4007 inode->i_flags |= i_flags; 4008 d_instantiate(path.dentry, inode); 4009 inode->i_size = size; 4010 clear_nlink(inode); /* It is unlinked */ 4011 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4012 if (IS_ERR(res)) 4013 goto put_path; 4014 4015 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4016 &shmem_file_operations); 4017 if (IS_ERR(res)) 4018 goto put_path; 4019 4020 return res; 4021 4022 put_memory: 4023 shmem_unacct_size(flags, size); 4024 put_path: 4025 path_put(&path); 4026 return res; 4027 } 4028 4029 /** 4030 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4031 * kernel internal. There will be NO LSM permission checks against the 4032 * underlying inode. So users of this interface must do LSM checks at a 4033 * higher layer. The users are the big_key and shm implementations. LSM 4034 * checks are provided at the key or shm level rather than the inode. 4035 * @name: name for dentry (to be seen in /proc/<pid>/maps 4036 * @size: size to be set for the file 4037 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4038 */ 4039 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4040 { 4041 return __shmem_file_setup(name, size, flags, S_PRIVATE); 4042 } 4043 4044 /** 4045 * shmem_file_setup - get an unlinked file living in tmpfs 4046 * @name: name for dentry (to be seen in /proc/<pid>/maps 4047 * @size: size to be set for the file 4048 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4049 */ 4050 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4051 { 4052 return __shmem_file_setup(name, size, flags, 0); 4053 } 4054 EXPORT_SYMBOL_GPL(shmem_file_setup); 4055 4056 /** 4057 * shmem_zero_setup - setup a shared anonymous mapping 4058 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4059 */ 4060 int shmem_zero_setup(struct vm_area_struct *vma) 4061 { 4062 struct file *file; 4063 loff_t size = vma->vm_end - vma->vm_start; 4064 4065 /* 4066 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4067 * between XFS directory reading and selinux: since this file is only 4068 * accessible to the user through its mapping, use S_PRIVATE flag to 4069 * bypass file security, in the same way as shmem_kernel_file_setup(). 4070 */ 4071 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 4072 if (IS_ERR(file)) 4073 return PTR_ERR(file); 4074 4075 if (vma->vm_file) 4076 fput(vma->vm_file); 4077 vma->vm_file = file; 4078 vma->vm_ops = &shmem_vm_ops; 4079 4080 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4081 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4082 (vma->vm_end & HPAGE_PMD_MASK)) { 4083 khugepaged_enter(vma, vma->vm_flags); 4084 } 4085 4086 return 0; 4087 } 4088 4089 /** 4090 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4091 * @mapping: the page's address_space 4092 * @index: the page index 4093 * @gfp: the page allocator flags to use if allocating 4094 * 4095 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4096 * with any new page allocations done using the specified allocation flags. 4097 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4098 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4099 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4100 * 4101 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4102 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4103 */ 4104 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4105 pgoff_t index, gfp_t gfp) 4106 { 4107 #ifdef CONFIG_SHMEM 4108 struct inode *inode = mapping->host; 4109 struct page *page; 4110 int error; 4111 4112 BUG_ON(mapping->a_ops != &shmem_aops); 4113 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4114 gfp, NULL, NULL); 4115 if (error) 4116 page = ERR_PTR(error); 4117 else 4118 unlock_page(page); 4119 return page; 4120 #else 4121 /* 4122 * The tiny !SHMEM case uses ramfs without swap 4123 */ 4124 return read_cache_page_gfp(mapping, index, gfp); 4125 #endif 4126 } 4127 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4128