xref: /linux/mm/shmem.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36 
37 static struct vfsmount *shm_mnt;
38 
39 #ifdef CONFIG_SHMEM
40 /*
41  * This virtual memory filesystem is heavily based on the ramfs. It
42  * extends ramfs by the ability to use swap and honor resource limits
43  * which makes it a completely usable filesystem.
44  */
45 
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73 
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76 
77 #include "internal.h"
78 
79 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81 
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84 
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87 
88 /*
89  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90  * inode->i_private (with i_mutex making sure that it has only one user at
91  * a time): we would prefer not to enlarge the shmem inode just for that.
92  */
93 struct shmem_falloc {
94 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 	pgoff_t start;		/* start of range currently being fallocated */
96 	pgoff_t next;		/* the next page offset to be fallocated */
97 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
98 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
99 };
100 
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 	return totalram_pages / 2;
105 }
106 
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112 
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 				struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 		struct page **pagep, enum sgp_type sgp,
118 		gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119 
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 		struct page **pagep, enum sgp_type sgp)
122 {
123 	return shmem_getpage_gfp(inode, index, pagep, sgp,
124 		mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126 
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129 	return sb->s_fs_info;
130 }
131 
132 /*
133  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134  * for shared memory and for shared anonymous (/dev/zero) mappings
135  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136  * consistent with the pre-accounting of private mappings ...
137  */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140 	return (flags & VM_NORESERVE) ?
141 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143 
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146 	if (!(flags & VM_NORESERVE))
147 		vm_unacct_memory(VM_ACCT(size));
148 }
149 
150 static inline int shmem_reacct_size(unsigned long flags,
151 		loff_t oldsize, loff_t newsize)
152 {
153 	if (!(flags & VM_NORESERVE)) {
154 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 			return security_vm_enough_memory_mm(current->mm,
156 					VM_ACCT(newsize) - VM_ACCT(oldsize));
157 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 	}
160 	return 0;
161 }
162 
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow large sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171 	if (!(flags & VM_NORESERVE))
172 		return 0;
173 
174 	return security_vm_enough_memory_mm(current->mm,
175 			pages * VM_ACCT(PAGE_SIZE));
176 }
177 
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180 	if (flags & VM_NORESERVE)
181 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183 
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192 
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195 
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 	if (sbinfo->max_inodes) {
200 		spin_lock(&sbinfo->stat_lock);
201 		if (!sbinfo->free_inodes) {
202 			spin_unlock(&sbinfo->stat_lock);
203 			return -ENOSPC;
204 		}
205 		sbinfo->free_inodes--;
206 		spin_unlock(&sbinfo->stat_lock);
207 	}
208 	return 0;
209 }
210 
211 static void shmem_free_inode(struct super_block *sb)
212 {
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 	if (sbinfo->max_inodes) {
215 		spin_lock(&sbinfo->stat_lock);
216 		sbinfo->free_inodes++;
217 		spin_unlock(&sbinfo->stat_lock);
218 	}
219 }
220 
221 /**
222  * shmem_recalc_inode - recalculate the block usage of an inode
223  * @inode: inode to recalc
224  *
225  * We have to calculate the free blocks since the mm can drop
226  * undirtied hole pages behind our back.
227  *
228  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
229  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230  *
231  * It has to be called with the spinlock held.
232  */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	long freed;
237 
238 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 	if (freed > 0) {
240 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 		if (sbinfo->max_blocks)
242 			percpu_counter_add(&sbinfo->used_blocks, -freed);
243 		info->alloced -= freed;
244 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 		shmem_unacct_blocks(info->flags, freed);
246 	}
247 }
248 
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251 	struct shmem_inode_info *info = SHMEM_I(inode);
252 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 	unsigned long flags;
254 
255 	if (shmem_acct_block(info->flags, pages))
256 		return false;
257 	spin_lock_irqsave(&info->lock, flags);
258 	info->alloced += pages;
259 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 	shmem_recalc_inode(inode);
261 	spin_unlock_irqrestore(&info->lock, flags);
262 	inode->i_mapping->nrpages += pages;
263 
264 	if (!sbinfo->max_blocks)
265 		return true;
266 	if (percpu_counter_compare(&sbinfo->used_blocks,
267 				sbinfo->max_blocks - pages) > 0) {
268 		inode->i_mapping->nrpages -= pages;
269 		spin_lock_irqsave(&info->lock, flags);
270 		info->alloced -= pages;
271 		shmem_recalc_inode(inode);
272 		spin_unlock_irqrestore(&info->lock, flags);
273 		shmem_unacct_blocks(info->flags, pages);
274 		return false;
275 	}
276 	percpu_counter_add(&sbinfo->used_blocks, pages);
277 	return true;
278 }
279 
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282 	struct shmem_inode_info *info = SHMEM_I(inode);
283 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&info->lock, flags);
287 	info->alloced -= pages;
288 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 	shmem_recalc_inode(inode);
290 	spin_unlock_irqrestore(&info->lock, flags);
291 
292 	if (sbinfo->max_blocks)
293 		percpu_counter_sub(&sbinfo->used_blocks, pages);
294 	shmem_unacct_blocks(info->flags, pages);
295 }
296 
297 /*
298  * Replace item expected in radix tree by a new item, while holding tree lock.
299  */
300 static int shmem_radix_tree_replace(struct address_space *mapping,
301 			pgoff_t index, void *expected, void *replacement)
302 {
303 	struct radix_tree_node *node;
304 	void **pslot;
305 	void *item;
306 
307 	VM_BUG_ON(!expected);
308 	VM_BUG_ON(!replacement);
309 	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
310 	if (!item)
311 		return -ENOENT;
312 	if (item != expected)
313 		return -ENOENT;
314 	__radix_tree_replace(&mapping->page_tree, node, pslot,
315 			     replacement, NULL, NULL);
316 	return 0;
317 }
318 
319 /*
320  * Sometimes, before we decide whether to proceed or to fail, we must check
321  * that an entry was not already brought back from swap by a racing thread.
322  *
323  * Checking page is not enough: by the time a SwapCache page is locked, it
324  * might be reused, and again be SwapCache, using the same swap as before.
325  */
326 static bool shmem_confirm_swap(struct address_space *mapping,
327 			       pgoff_t index, swp_entry_t swap)
328 {
329 	void *item;
330 
331 	rcu_read_lock();
332 	item = radix_tree_lookup(&mapping->page_tree, index);
333 	rcu_read_unlock();
334 	return item == swp_to_radix_entry(swap);
335 }
336 
337 /*
338  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
339  *
340  * SHMEM_HUGE_NEVER:
341  *	disables huge pages for the mount;
342  * SHMEM_HUGE_ALWAYS:
343  *	enables huge pages for the mount;
344  * SHMEM_HUGE_WITHIN_SIZE:
345  *	only allocate huge pages if the page will be fully within i_size,
346  *	also respect fadvise()/madvise() hints;
347  * SHMEM_HUGE_ADVISE:
348  *	only allocate huge pages if requested with fadvise()/madvise();
349  */
350 
351 #define SHMEM_HUGE_NEVER	0
352 #define SHMEM_HUGE_ALWAYS	1
353 #define SHMEM_HUGE_WITHIN_SIZE	2
354 #define SHMEM_HUGE_ADVISE	3
355 
356 /*
357  * Special values.
358  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
359  *
360  * SHMEM_HUGE_DENY:
361  *	disables huge on shm_mnt and all mounts, for emergency use;
362  * SHMEM_HUGE_FORCE:
363  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
364  *
365  */
366 #define SHMEM_HUGE_DENY		(-1)
367 #define SHMEM_HUGE_FORCE	(-2)
368 
369 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
370 /* ifdef here to avoid bloating shmem.o when not necessary */
371 
372 int shmem_huge __read_mostly;
373 
374 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
375 static int shmem_parse_huge(const char *str)
376 {
377 	if (!strcmp(str, "never"))
378 		return SHMEM_HUGE_NEVER;
379 	if (!strcmp(str, "always"))
380 		return SHMEM_HUGE_ALWAYS;
381 	if (!strcmp(str, "within_size"))
382 		return SHMEM_HUGE_WITHIN_SIZE;
383 	if (!strcmp(str, "advise"))
384 		return SHMEM_HUGE_ADVISE;
385 	if (!strcmp(str, "deny"))
386 		return SHMEM_HUGE_DENY;
387 	if (!strcmp(str, "force"))
388 		return SHMEM_HUGE_FORCE;
389 	return -EINVAL;
390 }
391 
392 static const char *shmem_format_huge(int huge)
393 {
394 	switch (huge) {
395 	case SHMEM_HUGE_NEVER:
396 		return "never";
397 	case SHMEM_HUGE_ALWAYS:
398 		return "always";
399 	case SHMEM_HUGE_WITHIN_SIZE:
400 		return "within_size";
401 	case SHMEM_HUGE_ADVISE:
402 		return "advise";
403 	case SHMEM_HUGE_DENY:
404 		return "deny";
405 	case SHMEM_HUGE_FORCE:
406 		return "force";
407 	default:
408 		VM_BUG_ON(1);
409 		return "bad_val";
410 	}
411 }
412 #endif
413 
414 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
415 		struct shrink_control *sc, unsigned long nr_to_split)
416 {
417 	LIST_HEAD(list), *pos, *next;
418 	struct inode *inode;
419 	struct shmem_inode_info *info;
420 	struct page *page;
421 	unsigned long batch = sc ? sc->nr_to_scan : 128;
422 	int removed = 0, split = 0;
423 
424 	if (list_empty(&sbinfo->shrinklist))
425 		return SHRINK_STOP;
426 
427 	spin_lock(&sbinfo->shrinklist_lock);
428 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
429 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
430 
431 		/* pin the inode */
432 		inode = igrab(&info->vfs_inode);
433 
434 		/* inode is about to be evicted */
435 		if (!inode) {
436 			list_del_init(&info->shrinklist);
437 			removed++;
438 			goto next;
439 		}
440 
441 		/* Check if there's anything to gain */
442 		if (round_up(inode->i_size, PAGE_SIZE) ==
443 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
444 			list_del_init(&info->shrinklist);
445 			removed++;
446 			iput(inode);
447 			goto next;
448 		}
449 
450 		list_move(&info->shrinklist, &list);
451 next:
452 		if (!--batch)
453 			break;
454 	}
455 	spin_unlock(&sbinfo->shrinklist_lock);
456 
457 	list_for_each_safe(pos, next, &list) {
458 		int ret;
459 
460 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
461 		inode = &info->vfs_inode;
462 
463 		if (nr_to_split && split >= nr_to_split) {
464 			iput(inode);
465 			continue;
466 		}
467 
468 		page = find_lock_page(inode->i_mapping,
469 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
470 		if (!page)
471 			goto drop;
472 
473 		if (!PageTransHuge(page)) {
474 			unlock_page(page);
475 			put_page(page);
476 			goto drop;
477 		}
478 
479 		ret = split_huge_page(page);
480 		unlock_page(page);
481 		put_page(page);
482 
483 		if (ret) {
484 			/* split failed: leave it on the list */
485 			iput(inode);
486 			continue;
487 		}
488 
489 		split++;
490 drop:
491 		list_del_init(&info->shrinklist);
492 		removed++;
493 		iput(inode);
494 	}
495 
496 	spin_lock(&sbinfo->shrinklist_lock);
497 	list_splice_tail(&list, &sbinfo->shrinklist);
498 	sbinfo->shrinklist_len -= removed;
499 	spin_unlock(&sbinfo->shrinklist_lock);
500 
501 	return split;
502 }
503 
504 static long shmem_unused_huge_scan(struct super_block *sb,
505 		struct shrink_control *sc)
506 {
507 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
508 
509 	if (!READ_ONCE(sbinfo->shrinklist_len))
510 		return SHRINK_STOP;
511 
512 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
513 }
514 
515 static long shmem_unused_huge_count(struct super_block *sb,
516 		struct shrink_control *sc)
517 {
518 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
519 	return READ_ONCE(sbinfo->shrinklist_len);
520 }
521 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
522 
523 #define shmem_huge SHMEM_HUGE_DENY
524 
525 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
526 		struct shrink_control *sc, unsigned long nr_to_split)
527 {
528 	return 0;
529 }
530 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
531 
532 /*
533  * Like add_to_page_cache_locked, but error if expected item has gone.
534  */
535 static int shmem_add_to_page_cache(struct page *page,
536 				   struct address_space *mapping,
537 				   pgoff_t index, void *expected)
538 {
539 	int error, nr = hpage_nr_pages(page);
540 
541 	VM_BUG_ON_PAGE(PageTail(page), page);
542 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
543 	VM_BUG_ON_PAGE(!PageLocked(page), page);
544 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
545 	VM_BUG_ON(expected && PageTransHuge(page));
546 
547 	page_ref_add(page, nr);
548 	page->mapping = mapping;
549 	page->index = index;
550 
551 	spin_lock_irq(&mapping->tree_lock);
552 	if (PageTransHuge(page)) {
553 		void __rcu **results;
554 		pgoff_t idx;
555 		int i;
556 
557 		error = 0;
558 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
559 					&results, &idx, index, 1) &&
560 				idx < index + HPAGE_PMD_NR) {
561 			error = -EEXIST;
562 		}
563 
564 		if (!error) {
565 			for (i = 0; i < HPAGE_PMD_NR; i++) {
566 				error = radix_tree_insert(&mapping->page_tree,
567 						index + i, page + i);
568 				VM_BUG_ON(error);
569 			}
570 			count_vm_event(THP_FILE_ALLOC);
571 		}
572 	} else if (!expected) {
573 		error = radix_tree_insert(&mapping->page_tree, index, page);
574 	} else {
575 		error = shmem_radix_tree_replace(mapping, index, expected,
576 								 page);
577 	}
578 
579 	if (!error) {
580 		mapping->nrpages += nr;
581 		if (PageTransHuge(page))
582 			__inc_node_page_state(page, NR_SHMEM_THPS);
583 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
584 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
585 		spin_unlock_irq(&mapping->tree_lock);
586 	} else {
587 		page->mapping = NULL;
588 		spin_unlock_irq(&mapping->tree_lock);
589 		page_ref_sub(page, nr);
590 	}
591 	return error;
592 }
593 
594 /*
595  * Like delete_from_page_cache, but substitutes swap for page.
596  */
597 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
598 {
599 	struct address_space *mapping = page->mapping;
600 	int error;
601 
602 	VM_BUG_ON_PAGE(PageCompound(page), page);
603 
604 	spin_lock_irq(&mapping->tree_lock);
605 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
606 	page->mapping = NULL;
607 	mapping->nrpages--;
608 	__dec_node_page_state(page, NR_FILE_PAGES);
609 	__dec_node_page_state(page, NR_SHMEM);
610 	spin_unlock_irq(&mapping->tree_lock);
611 	put_page(page);
612 	BUG_ON(error);
613 }
614 
615 /*
616  * Remove swap entry from radix tree, free the swap and its page cache.
617  */
618 static int shmem_free_swap(struct address_space *mapping,
619 			   pgoff_t index, void *radswap)
620 {
621 	void *old;
622 
623 	spin_lock_irq(&mapping->tree_lock);
624 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
625 	spin_unlock_irq(&mapping->tree_lock);
626 	if (old != radswap)
627 		return -ENOENT;
628 	free_swap_and_cache(radix_to_swp_entry(radswap));
629 	return 0;
630 }
631 
632 /*
633  * Determine (in bytes) how many of the shmem object's pages mapped by the
634  * given offsets are swapped out.
635  *
636  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
637  * as long as the inode doesn't go away and racy results are not a problem.
638  */
639 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
640 						pgoff_t start, pgoff_t end)
641 {
642 	struct radix_tree_iter iter;
643 	void **slot;
644 	struct page *page;
645 	unsigned long swapped = 0;
646 
647 	rcu_read_lock();
648 
649 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
650 		if (iter.index >= end)
651 			break;
652 
653 		page = radix_tree_deref_slot(slot);
654 
655 		if (radix_tree_deref_retry(page)) {
656 			slot = radix_tree_iter_retry(&iter);
657 			continue;
658 		}
659 
660 		if (radix_tree_exceptional_entry(page))
661 			swapped++;
662 
663 		if (need_resched()) {
664 			cond_resched_rcu();
665 			slot = radix_tree_iter_next(&iter);
666 		}
667 	}
668 
669 	rcu_read_unlock();
670 
671 	return swapped << PAGE_SHIFT;
672 }
673 
674 /*
675  * Determine (in bytes) how many of the shmem object's pages mapped by the
676  * given vma is swapped out.
677  *
678  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
679  * as long as the inode doesn't go away and racy results are not a problem.
680  */
681 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
682 {
683 	struct inode *inode = file_inode(vma->vm_file);
684 	struct shmem_inode_info *info = SHMEM_I(inode);
685 	struct address_space *mapping = inode->i_mapping;
686 	unsigned long swapped;
687 
688 	/* Be careful as we don't hold info->lock */
689 	swapped = READ_ONCE(info->swapped);
690 
691 	/*
692 	 * The easier cases are when the shmem object has nothing in swap, or
693 	 * the vma maps it whole. Then we can simply use the stats that we
694 	 * already track.
695 	 */
696 	if (!swapped)
697 		return 0;
698 
699 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
700 		return swapped << PAGE_SHIFT;
701 
702 	/* Here comes the more involved part */
703 	return shmem_partial_swap_usage(mapping,
704 			linear_page_index(vma, vma->vm_start),
705 			linear_page_index(vma, vma->vm_end));
706 }
707 
708 /*
709  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
710  */
711 void shmem_unlock_mapping(struct address_space *mapping)
712 {
713 	struct pagevec pvec;
714 	pgoff_t indices[PAGEVEC_SIZE];
715 	pgoff_t index = 0;
716 
717 	pagevec_init(&pvec, 0);
718 	/*
719 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
720 	 */
721 	while (!mapping_unevictable(mapping)) {
722 		/*
723 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
724 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
725 		 */
726 		pvec.nr = find_get_entries(mapping, index,
727 					   PAGEVEC_SIZE, pvec.pages, indices);
728 		if (!pvec.nr)
729 			break;
730 		index = indices[pvec.nr - 1] + 1;
731 		pagevec_remove_exceptionals(&pvec);
732 		check_move_unevictable_pages(pvec.pages, pvec.nr);
733 		pagevec_release(&pvec);
734 		cond_resched();
735 	}
736 }
737 
738 /*
739  * Remove range of pages and swap entries from radix tree, and free them.
740  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
741  */
742 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
743 								 bool unfalloc)
744 {
745 	struct address_space *mapping = inode->i_mapping;
746 	struct shmem_inode_info *info = SHMEM_I(inode);
747 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
748 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
749 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
750 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
751 	struct pagevec pvec;
752 	pgoff_t indices[PAGEVEC_SIZE];
753 	long nr_swaps_freed = 0;
754 	pgoff_t index;
755 	int i;
756 
757 	if (lend == -1)
758 		end = -1;	/* unsigned, so actually very big */
759 
760 	pagevec_init(&pvec, 0);
761 	index = start;
762 	while (index < end) {
763 		pvec.nr = find_get_entries(mapping, index,
764 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
765 			pvec.pages, indices);
766 		if (!pvec.nr)
767 			break;
768 		for (i = 0; i < pagevec_count(&pvec); i++) {
769 			struct page *page = pvec.pages[i];
770 
771 			index = indices[i];
772 			if (index >= end)
773 				break;
774 
775 			if (radix_tree_exceptional_entry(page)) {
776 				if (unfalloc)
777 					continue;
778 				nr_swaps_freed += !shmem_free_swap(mapping,
779 								index, page);
780 				continue;
781 			}
782 
783 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
784 
785 			if (!trylock_page(page))
786 				continue;
787 
788 			if (PageTransTail(page)) {
789 				/* Middle of THP: zero out the page */
790 				clear_highpage(page);
791 				unlock_page(page);
792 				continue;
793 			} else if (PageTransHuge(page)) {
794 				if (index == round_down(end, HPAGE_PMD_NR)) {
795 					/*
796 					 * Range ends in the middle of THP:
797 					 * zero out the page
798 					 */
799 					clear_highpage(page);
800 					unlock_page(page);
801 					continue;
802 				}
803 				index += HPAGE_PMD_NR - 1;
804 				i += HPAGE_PMD_NR - 1;
805 			}
806 
807 			if (!unfalloc || !PageUptodate(page)) {
808 				VM_BUG_ON_PAGE(PageTail(page), page);
809 				if (page_mapping(page) == mapping) {
810 					VM_BUG_ON_PAGE(PageWriteback(page), page);
811 					truncate_inode_page(mapping, page);
812 				}
813 			}
814 			unlock_page(page);
815 		}
816 		pagevec_remove_exceptionals(&pvec);
817 		pagevec_release(&pvec);
818 		cond_resched();
819 		index++;
820 	}
821 
822 	if (partial_start) {
823 		struct page *page = NULL;
824 		shmem_getpage(inode, start - 1, &page, SGP_READ);
825 		if (page) {
826 			unsigned int top = PAGE_SIZE;
827 			if (start > end) {
828 				top = partial_end;
829 				partial_end = 0;
830 			}
831 			zero_user_segment(page, partial_start, top);
832 			set_page_dirty(page);
833 			unlock_page(page);
834 			put_page(page);
835 		}
836 	}
837 	if (partial_end) {
838 		struct page *page = NULL;
839 		shmem_getpage(inode, end, &page, SGP_READ);
840 		if (page) {
841 			zero_user_segment(page, 0, partial_end);
842 			set_page_dirty(page);
843 			unlock_page(page);
844 			put_page(page);
845 		}
846 	}
847 	if (start >= end)
848 		return;
849 
850 	index = start;
851 	while (index < end) {
852 		cond_resched();
853 
854 		pvec.nr = find_get_entries(mapping, index,
855 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
856 				pvec.pages, indices);
857 		if (!pvec.nr) {
858 			/* If all gone or hole-punch or unfalloc, we're done */
859 			if (index == start || end != -1)
860 				break;
861 			/* But if truncating, restart to make sure all gone */
862 			index = start;
863 			continue;
864 		}
865 		for (i = 0; i < pagevec_count(&pvec); i++) {
866 			struct page *page = pvec.pages[i];
867 
868 			index = indices[i];
869 			if (index >= end)
870 				break;
871 
872 			if (radix_tree_exceptional_entry(page)) {
873 				if (unfalloc)
874 					continue;
875 				if (shmem_free_swap(mapping, index, page)) {
876 					/* Swap was replaced by page: retry */
877 					index--;
878 					break;
879 				}
880 				nr_swaps_freed++;
881 				continue;
882 			}
883 
884 			lock_page(page);
885 
886 			if (PageTransTail(page)) {
887 				/* Middle of THP: zero out the page */
888 				clear_highpage(page);
889 				unlock_page(page);
890 				/*
891 				 * Partial thp truncate due 'start' in middle
892 				 * of THP: don't need to look on these pages
893 				 * again on !pvec.nr restart.
894 				 */
895 				if (index != round_down(end, HPAGE_PMD_NR))
896 					start++;
897 				continue;
898 			} else if (PageTransHuge(page)) {
899 				if (index == round_down(end, HPAGE_PMD_NR)) {
900 					/*
901 					 * Range ends in the middle of THP:
902 					 * zero out the page
903 					 */
904 					clear_highpage(page);
905 					unlock_page(page);
906 					continue;
907 				}
908 				index += HPAGE_PMD_NR - 1;
909 				i += HPAGE_PMD_NR - 1;
910 			}
911 
912 			if (!unfalloc || !PageUptodate(page)) {
913 				VM_BUG_ON_PAGE(PageTail(page), page);
914 				if (page_mapping(page) == mapping) {
915 					VM_BUG_ON_PAGE(PageWriteback(page), page);
916 					truncate_inode_page(mapping, page);
917 				} else {
918 					/* Page was replaced by swap: retry */
919 					unlock_page(page);
920 					index--;
921 					break;
922 				}
923 			}
924 			unlock_page(page);
925 		}
926 		pagevec_remove_exceptionals(&pvec);
927 		pagevec_release(&pvec);
928 		index++;
929 	}
930 
931 	spin_lock_irq(&info->lock);
932 	info->swapped -= nr_swaps_freed;
933 	shmem_recalc_inode(inode);
934 	spin_unlock_irq(&info->lock);
935 }
936 
937 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
938 {
939 	shmem_undo_range(inode, lstart, lend, false);
940 	inode->i_ctime = inode->i_mtime = current_time(inode);
941 }
942 EXPORT_SYMBOL_GPL(shmem_truncate_range);
943 
944 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
945 			 struct kstat *stat)
946 {
947 	struct inode *inode = dentry->d_inode;
948 	struct shmem_inode_info *info = SHMEM_I(inode);
949 
950 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
951 		spin_lock_irq(&info->lock);
952 		shmem_recalc_inode(inode);
953 		spin_unlock_irq(&info->lock);
954 	}
955 	generic_fillattr(inode, stat);
956 	return 0;
957 }
958 
959 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
960 {
961 	struct inode *inode = d_inode(dentry);
962 	struct shmem_inode_info *info = SHMEM_I(inode);
963 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
964 	int error;
965 
966 	error = setattr_prepare(dentry, attr);
967 	if (error)
968 		return error;
969 
970 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
971 		loff_t oldsize = inode->i_size;
972 		loff_t newsize = attr->ia_size;
973 
974 		/* protected by i_mutex */
975 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
976 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
977 			return -EPERM;
978 
979 		if (newsize != oldsize) {
980 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
981 					oldsize, newsize);
982 			if (error)
983 				return error;
984 			i_size_write(inode, newsize);
985 			inode->i_ctime = inode->i_mtime = current_time(inode);
986 		}
987 		if (newsize <= oldsize) {
988 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
989 			if (oldsize > holebegin)
990 				unmap_mapping_range(inode->i_mapping,
991 							holebegin, 0, 1);
992 			if (info->alloced)
993 				shmem_truncate_range(inode,
994 							newsize, (loff_t)-1);
995 			/* unmap again to remove racily COWed private pages */
996 			if (oldsize > holebegin)
997 				unmap_mapping_range(inode->i_mapping,
998 							holebegin, 0, 1);
999 
1000 			/*
1001 			 * Part of the huge page can be beyond i_size: subject
1002 			 * to shrink under memory pressure.
1003 			 */
1004 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1005 				spin_lock(&sbinfo->shrinklist_lock);
1006 				if (list_empty(&info->shrinklist)) {
1007 					list_add_tail(&info->shrinklist,
1008 							&sbinfo->shrinklist);
1009 					sbinfo->shrinklist_len++;
1010 				}
1011 				spin_unlock(&sbinfo->shrinklist_lock);
1012 			}
1013 		}
1014 	}
1015 
1016 	setattr_copy(inode, attr);
1017 	if (attr->ia_valid & ATTR_MODE)
1018 		error = posix_acl_chmod(inode, inode->i_mode);
1019 	return error;
1020 }
1021 
1022 static void shmem_evict_inode(struct inode *inode)
1023 {
1024 	struct shmem_inode_info *info = SHMEM_I(inode);
1025 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1026 
1027 	if (inode->i_mapping->a_ops == &shmem_aops) {
1028 		shmem_unacct_size(info->flags, inode->i_size);
1029 		inode->i_size = 0;
1030 		shmem_truncate_range(inode, 0, (loff_t)-1);
1031 		if (!list_empty(&info->shrinklist)) {
1032 			spin_lock(&sbinfo->shrinklist_lock);
1033 			if (!list_empty(&info->shrinklist)) {
1034 				list_del_init(&info->shrinklist);
1035 				sbinfo->shrinklist_len--;
1036 			}
1037 			spin_unlock(&sbinfo->shrinklist_lock);
1038 		}
1039 		if (!list_empty(&info->swaplist)) {
1040 			mutex_lock(&shmem_swaplist_mutex);
1041 			list_del_init(&info->swaplist);
1042 			mutex_unlock(&shmem_swaplist_mutex);
1043 		}
1044 	}
1045 
1046 	simple_xattrs_free(&info->xattrs);
1047 	WARN_ON(inode->i_blocks);
1048 	shmem_free_inode(inode->i_sb);
1049 	clear_inode(inode);
1050 }
1051 
1052 /*
1053  * If swap found in inode, free it and move page from swapcache to filecache.
1054  */
1055 static int shmem_unuse_inode(struct shmem_inode_info *info,
1056 			     swp_entry_t swap, struct page **pagep)
1057 {
1058 	struct address_space *mapping = info->vfs_inode.i_mapping;
1059 	void *radswap;
1060 	pgoff_t index;
1061 	gfp_t gfp;
1062 	int error = 0;
1063 
1064 	radswap = swp_to_radix_entry(swap);
1065 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
1066 	if (index == -1)
1067 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1068 
1069 	/*
1070 	 * Move _head_ to start search for next from here.
1071 	 * But be careful: shmem_evict_inode checks list_empty without taking
1072 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1073 	 * would appear empty, if it were the only one on shmem_swaplist.
1074 	 */
1075 	if (shmem_swaplist.next != &info->swaplist)
1076 		list_move_tail(&shmem_swaplist, &info->swaplist);
1077 
1078 	gfp = mapping_gfp_mask(mapping);
1079 	if (shmem_should_replace_page(*pagep, gfp)) {
1080 		mutex_unlock(&shmem_swaplist_mutex);
1081 		error = shmem_replace_page(pagep, gfp, info, index);
1082 		mutex_lock(&shmem_swaplist_mutex);
1083 		/*
1084 		 * We needed to drop mutex to make that restrictive page
1085 		 * allocation, but the inode might have been freed while we
1086 		 * dropped it: although a racing shmem_evict_inode() cannot
1087 		 * complete without emptying the radix_tree, our page lock
1088 		 * on this swapcache page is not enough to prevent that -
1089 		 * free_swap_and_cache() of our swap entry will only
1090 		 * trylock_page(), removing swap from radix_tree whatever.
1091 		 *
1092 		 * We must not proceed to shmem_add_to_page_cache() if the
1093 		 * inode has been freed, but of course we cannot rely on
1094 		 * inode or mapping or info to check that.  However, we can
1095 		 * safely check if our swap entry is still in use (and here
1096 		 * it can't have got reused for another page): if it's still
1097 		 * in use, then the inode cannot have been freed yet, and we
1098 		 * can safely proceed (if it's no longer in use, that tells
1099 		 * nothing about the inode, but we don't need to unuse swap).
1100 		 */
1101 		if (!page_swapcount(*pagep))
1102 			error = -ENOENT;
1103 	}
1104 
1105 	/*
1106 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1107 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1108 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1109 	 */
1110 	if (!error)
1111 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1112 						radswap);
1113 	if (error != -ENOMEM) {
1114 		/*
1115 		 * Truncation and eviction use free_swap_and_cache(), which
1116 		 * only does trylock page: if we raced, best clean up here.
1117 		 */
1118 		delete_from_swap_cache(*pagep);
1119 		set_page_dirty(*pagep);
1120 		if (!error) {
1121 			spin_lock_irq(&info->lock);
1122 			info->swapped--;
1123 			spin_unlock_irq(&info->lock);
1124 			swap_free(swap);
1125 		}
1126 	}
1127 	return error;
1128 }
1129 
1130 /*
1131  * Search through swapped inodes to find and replace swap by page.
1132  */
1133 int shmem_unuse(swp_entry_t swap, struct page *page)
1134 {
1135 	struct list_head *this, *next;
1136 	struct shmem_inode_info *info;
1137 	struct mem_cgroup *memcg;
1138 	int error = 0;
1139 
1140 	/*
1141 	 * There's a faint possibility that swap page was replaced before
1142 	 * caller locked it: caller will come back later with the right page.
1143 	 */
1144 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1145 		goto out;
1146 
1147 	/*
1148 	 * Charge page using GFP_KERNEL while we can wait, before taking
1149 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1150 	 * Charged back to the user (not to caller) when swap account is used.
1151 	 */
1152 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1153 			false);
1154 	if (error)
1155 		goto out;
1156 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1157 	error = -EAGAIN;
1158 
1159 	mutex_lock(&shmem_swaplist_mutex);
1160 	list_for_each_safe(this, next, &shmem_swaplist) {
1161 		info = list_entry(this, struct shmem_inode_info, swaplist);
1162 		if (info->swapped)
1163 			error = shmem_unuse_inode(info, swap, &page);
1164 		else
1165 			list_del_init(&info->swaplist);
1166 		cond_resched();
1167 		if (error != -EAGAIN)
1168 			break;
1169 		/* found nothing in this: move on to search the next */
1170 	}
1171 	mutex_unlock(&shmem_swaplist_mutex);
1172 
1173 	if (error) {
1174 		if (error != -ENOMEM)
1175 			error = 0;
1176 		mem_cgroup_cancel_charge(page, memcg, false);
1177 	} else
1178 		mem_cgroup_commit_charge(page, memcg, true, false);
1179 out:
1180 	unlock_page(page);
1181 	put_page(page);
1182 	return error;
1183 }
1184 
1185 /*
1186  * Move the page from the page cache to the swap cache.
1187  */
1188 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1189 {
1190 	struct shmem_inode_info *info;
1191 	struct address_space *mapping;
1192 	struct inode *inode;
1193 	swp_entry_t swap;
1194 	pgoff_t index;
1195 
1196 	VM_BUG_ON_PAGE(PageCompound(page), page);
1197 	BUG_ON(!PageLocked(page));
1198 	mapping = page->mapping;
1199 	index = page->index;
1200 	inode = mapping->host;
1201 	info = SHMEM_I(inode);
1202 	if (info->flags & VM_LOCKED)
1203 		goto redirty;
1204 	if (!total_swap_pages)
1205 		goto redirty;
1206 
1207 	/*
1208 	 * Our capabilities prevent regular writeback or sync from ever calling
1209 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1210 	 * its underlying filesystem, in which case tmpfs should write out to
1211 	 * swap only in response to memory pressure, and not for the writeback
1212 	 * threads or sync.
1213 	 */
1214 	if (!wbc->for_reclaim) {
1215 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1216 		goto redirty;
1217 	}
1218 
1219 	/*
1220 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1221 	 * value into swapfile.c, the only way we can correctly account for a
1222 	 * fallocated page arriving here is now to initialize it and write it.
1223 	 *
1224 	 * That's okay for a page already fallocated earlier, but if we have
1225 	 * not yet completed the fallocation, then (a) we want to keep track
1226 	 * of this page in case we have to undo it, and (b) it may not be a
1227 	 * good idea to continue anyway, once we're pushing into swap.  So
1228 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1229 	 */
1230 	if (!PageUptodate(page)) {
1231 		if (inode->i_private) {
1232 			struct shmem_falloc *shmem_falloc;
1233 			spin_lock(&inode->i_lock);
1234 			shmem_falloc = inode->i_private;
1235 			if (shmem_falloc &&
1236 			    !shmem_falloc->waitq &&
1237 			    index >= shmem_falloc->start &&
1238 			    index < shmem_falloc->next)
1239 				shmem_falloc->nr_unswapped++;
1240 			else
1241 				shmem_falloc = NULL;
1242 			spin_unlock(&inode->i_lock);
1243 			if (shmem_falloc)
1244 				goto redirty;
1245 		}
1246 		clear_highpage(page);
1247 		flush_dcache_page(page);
1248 		SetPageUptodate(page);
1249 	}
1250 
1251 	swap = get_swap_page();
1252 	if (!swap.val)
1253 		goto redirty;
1254 
1255 	if (mem_cgroup_try_charge_swap(page, swap))
1256 		goto free_swap;
1257 
1258 	/*
1259 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1260 	 * if it's not already there.  Do it now before the page is
1261 	 * moved to swap cache, when its pagelock no longer protects
1262 	 * the inode from eviction.  But don't unlock the mutex until
1263 	 * we've incremented swapped, because shmem_unuse_inode() will
1264 	 * prune a !swapped inode from the swaplist under this mutex.
1265 	 */
1266 	mutex_lock(&shmem_swaplist_mutex);
1267 	if (list_empty(&info->swaplist))
1268 		list_add_tail(&info->swaplist, &shmem_swaplist);
1269 
1270 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1271 		spin_lock_irq(&info->lock);
1272 		shmem_recalc_inode(inode);
1273 		info->swapped++;
1274 		spin_unlock_irq(&info->lock);
1275 
1276 		swap_shmem_alloc(swap);
1277 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1278 
1279 		mutex_unlock(&shmem_swaplist_mutex);
1280 		BUG_ON(page_mapped(page));
1281 		swap_writepage(page, wbc);
1282 		return 0;
1283 	}
1284 
1285 	mutex_unlock(&shmem_swaplist_mutex);
1286 free_swap:
1287 	swapcache_free(swap);
1288 redirty:
1289 	set_page_dirty(page);
1290 	if (wbc->for_reclaim)
1291 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1292 	unlock_page(page);
1293 	return 0;
1294 }
1295 
1296 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1297 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1298 {
1299 	char buffer[64];
1300 
1301 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1302 		return;		/* show nothing */
1303 
1304 	mpol_to_str(buffer, sizeof(buffer), mpol);
1305 
1306 	seq_printf(seq, ",mpol=%s", buffer);
1307 }
1308 
1309 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1310 {
1311 	struct mempolicy *mpol = NULL;
1312 	if (sbinfo->mpol) {
1313 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1314 		mpol = sbinfo->mpol;
1315 		mpol_get(mpol);
1316 		spin_unlock(&sbinfo->stat_lock);
1317 	}
1318 	return mpol;
1319 }
1320 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1321 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1322 {
1323 }
1324 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1325 {
1326 	return NULL;
1327 }
1328 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1329 #ifndef CONFIG_NUMA
1330 #define vm_policy vm_private_data
1331 #endif
1332 
1333 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1334 		struct shmem_inode_info *info, pgoff_t index)
1335 {
1336 	/* Create a pseudo vma that just contains the policy */
1337 	vma->vm_start = 0;
1338 	/* Bias interleave by inode number to distribute better across nodes */
1339 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1340 	vma->vm_ops = NULL;
1341 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1342 }
1343 
1344 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1345 {
1346 	/* Drop reference taken by mpol_shared_policy_lookup() */
1347 	mpol_cond_put(vma->vm_policy);
1348 }
1349 
1350 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1351 			struct shmem_inode_info *info, pgoff_t index)
1352 {
1353 	struct vm_area_struct pvma;
1354 	struct page *page;
1355 
1356 	shmem_pseudo_vma_init(&pvma, info, index);
1357 	page = swapin_readahead(swap, gfp, &pvma, 0);
1358 	shmem_pseudo_vma_destroy(&pvma);
1359 
1360 	return page;
1361 }
1362 
1363 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1364 		struct shmem_inode_info *info, pgoff_t index)
1365 {
1366 	struct vm_area_struct pvma;
1367 	struct inode *inode = &info->vfs_inode;
1368 	struct address_space *mapping = inode->i_mapping;
1369 	pgoff_t idx, hindex;
1370 	void __rcu **results;
1371 	struct page *page;
1372 
1373 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1374 		return NULL;
1375 
1376 	hindex = round_down(index, HPAGE_PMD_NR);
1377 	rcu_read_lock();
1378 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1379 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1380 		rcu_read_unlock();
1381 		return NULL;
1382 	}
1383 	rcu_read_unlock();
1384 
1385 	shmem_pseudo_vma_init(&pvma, info, hindex);
1386 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1387 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1388 	shmem_pseudo_vma_destroy(&pvma);
1389 	if (page)
1390 		prep_transhuge_page(page);
1391 	return page;
1392 }
1393 
1394 static struct page *shmem_alloc_page(gfp_t gfp,
1395 			struct shmem_inode_info *info, pgoff_t index)
1396 {
1397 	struct vm_area_struct pvma;
1398 	struct page *page;
1399 
1400 	shmem_pseudo_vma_init(&pvma, info, index);
1401 	page = alloc_page_vma(gfp, &pvma, 0);
1402 	shmem_pseudo_vma_destroy(&pvma);
1403 
1404 	return page;
1405 }
1406 
1407 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1408 		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1409 		pgoff_t index, bool huge)
1410 {
1411 	struct page *page;
1412 	int nr;
1413 	int err = -ENOSPC;
1414 
1415 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1416 		huge = false;
1417 	nr = huge ? HPAGE_PMD_NR : 1;
1418 
1419 	if (shmem_acct_block(info->flags, nr))
1420 		goto failed;
1421 	if (sbinfo->max_blocks) {
1422 		if (percpu_counter_compare(&sbinfo->used_blocks,
1423 					sbinfo->max_blocks - nr) > 0)
1424 			goto unacct;
1425 		percpu_counter_add(&sbinfo->used_blocks, nr);
1426 	}
1427 
1428 	if (huge)
1429 		page = shmem_alloc_hugepage(gfp, info, index);
1430 	else
1431 		page = shmem_alloc_page(gfp, info, index);
1432 	if (page) {
1433 		__SetPageLocked(page);
1434 		__SetPageSwapBacked(page);
1435 		return page;
1436 	}
1437 
1438 	err = -ENOMEM;
1439 	if (sbinfo->max_blocks)
1440 		percpu_counter_add(&sbinfo->used_blocks, -nr);
1441 unacct:
1442 	shmem_unacct_blocks(info->flags, nr);
1443 failed:
1444 	return ERR_PTR(err);
1445 }
1446 
1447 /*
1448  * When a page is moved from swapcache to shmem filecache (either by the
1449  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1450  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1451  * ignorance of the mapping it belongs to.  If that mapping has special
1452  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1453  * we may need to copy to a suitable page before moving to filecache.
1454  *
1455  * In a future release, this may well be extended to respect cpuset and
1456  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1457  * but for now it is a simple matter of zone.
1458  */
1459 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1460 {
1461 	return page_zonenum(page) > gfp_zone(gfp);
1462 }
1463 
1464 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1465 				struct shmem_inode_info *info, pgoff_t index)
1466 {
1467 	struct page *oldpage, *newpage;
1468 	struct address_space *swap_mapping;
1469 	pgoff_t swap_index;
1470 	int error;
1471 
1472 	oldpage = *pagep;
1473 	swap_index = page_private(oldpage);
1474 	swap_mapping = page_mapping(oldpage);
1475 
1476 	/*
1477 	 * We have arrived here because our zones are constrained, so don't
1478 	 * limit chance of success by further cpuset and node constraints.
1479 	 */
1480 	gfp &= ~GFP_CONSTRAINT_MASK;
1481 	newpage = shmem_alloc_page(gfp, info, index);
1482 	if (!newpage)
1483 		return -ENOMEM;
1484 
1485 	get_page(newpage);
1486 	copy_highpage(newpage, oldpage);
1487 	flush_dcache_page(newpage);
1488 
1489 	__SetPageLocked(newpage);
1490 	__SetPageSwapBacked(newpage);
1491 	SetPageUptodate(newpage);
1492 	set_page_private(newpage, swap_index);
1493 	SetPageSwapCache(newpage);
1494 
1495 	/*
1496 	 * Our caller will very soon move newpage out of swapcache, but it's
1497 	 * a nice clean interface for us to replace oldpage by newpage there.
1498 	 */
1499 	spin_lock_irq(&swap_mapping->tree_lock);
1500 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1501 								   newpage);
1502 	if (!error) {
1503 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1504 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1505 	}
1506 	spin_unlock_irq(&swap_mapping->tree_lock);
1507 
1508 	if (unlikely(error)) {
1509 		/*
1510 		 * Is this possible?  I think not, now that our callers check
1511 		 * both PageSwapCache and page_private after getting page lock;
1512 		 * but be defensive.  Reverse old to newpage for clear and free.
1513 		 */
1514 		oldpage = newpage;
1515 	} else {
1516 		mem_cgroup_migrate(oldpage, newpage);
1517 		lru_cache_add_anon(newpage);
1518 		*pagep = newpage;
1519 	}
1520 
1521 	ClearPageSwapCache(oldpage);
1522 	set_page_private(oldpage, 0);
1523 
1524 	unlock_page(oldpage);
1525 	put_page(oldpage);
1526 	put_page(oldpage);
1527 	return error;
1528 }
1529 
1530 /*
1531  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1532  *
1533  * If we allocate a new one we do not mark it dirty. That's up to the
1534  * vm. If we swap it in we mark it dirty since we also free the swap
1535  * entry since a page cannot live in both the swap and page cache.
1536  *
1537  * fault_mm and fault_type are only supplied by shmem_fault:
1538  * otherwise they are NULL.
1539  */
1540 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1541 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1542 	struct mm_struct *fault_mm, int *fault_type)
1543 {
1544 	struct address_space *mapping = inode->i_mapping;
1545 	struct shmem_inode_info *info = SHMEM_I(inode);
1546 	struct shmem_sb_info *sbinfo;
1547 	struct mm_struct *charge_mm;
1548 	struct mem_cgroup *memcg;
1549 	struct page *page;
1550 	swp_entry_t swap;
1551 	enum sgp_type sgp_huge = sgp;
1552 	pgoff_t hindex = index;
1553 	int error;
1554 	int once = 0;
1555 	int alloced = 0;
1556 
1557 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1558 		return -EFBIG;
1559 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1560 		sgp = SGP_CACHE;
1561 repeat:
1562 	swap.val = 0;
1563 	page = find_lock_entry(mapping, index);
1564 	if (radix_tree_exceptional_entry(page)) {
1565 		swap = radix_to_swp_entry(page);
1566 		page = NULL;
1567 	}
1568 
1569 	if (sgp <= SGP_CACHE &&
1570 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1571 		error = -EINVAL;
1572 		goto unlock;
1573 	}
1574 
1575 	if (page && sgp == SGP_WRITE)
1576 		mark_page_accessed(page);
1577 
1578 	/* fallocated page? */
1579 	if (page && !PageUptodate(page)) {
1580 		if (sgp != SGP_READ)
1581 			goto clear;
1582 		unlock_page(page);
1583 		put_page(page);
1584 		page = NULL;
1585 	}
1586 	if (page || (sgp == SGP_READ && !swap.val)) {
1587 		*pagep = page;
1588 		return 0;
1589 	}
1590 
1591 	/*
1592 	 * Fast cache lookup did not find it:
1593 	 * bring it back from swap or allocate.
1594 	 */
1595 	sbinfo = SHMEM_SB(inode->i_sb);
1596 	charge_mm = fault_mm ? : current->mm;
1597 
1598 	if (swap.val) {
1599 		/* Look it up and read it in.. */
1600 		page = lookup_swap_cache(swap);
1601 		if (!page) {
1602 			/* Or update major stats only when swapin succeeds?? */
1603 			if (fault_type) {
1604 				*fault_type |= VM_FAULT_MAJOR;
1605 				count_vm_event(PGMAJFAULT);
1606 				mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1607 			}
1608 			/* Here we actually start the io */
1609 			page = shmem_swapin(swap, gfp, info, index);
1610 			if (!page) {
1611 				error = -ENOMEM;
1612 				goto failed;
1613 			}
1614 		}
1615 
1616 		/* We have to do this with page locked to prevent races */
1617 		lock_page(page);
1618 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1619 		    !shmem_confirm_swap(mapping, index, swap)) {
1620 			error = -EEXIST;	/* try again */
1621 			goto unlock;
1622 		}
1623 		if (!PageUptodate(page)) {
1624 			error = -EIO;
1625 			goto failed;
1626 		}
1627 		wait_on_page_writeback(page);
1628 
1629 		if (shmem_should_replace_page(page, gfp)) {
1630 			error = shmem_replace_page(&page, gfp, info, index);
1631 			if (error)
1632 				goto failed;
1633 		}
1634 
1635 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1636 				false);
1637 		if (!error) {
1638 			error = shmem_add_to_page_cache(page, mapping, index,
1639 						swp_to_radix_entry(swap));
1640 			/*
1641 			 * We already confirmed swap under page lock, and make
1642 			 * no memory allocation here, so usually no possibility
1643 			 * of error; but free_swap_and_cache() only trylocks a
1644 			 * page, so it is just possible that the entry has been
1645 			 * truncated or holepunched since swap was confirmed.
1646 			 * shmem_undo_range() will have done some of the
1647 			 * unaccounting, now delete_from_swap_cache() will do
1648 			 * the rest.
1649 			 * Reset swap.val? No, leave it so "failed" goes back to
1650 			 * "repeat": reading a hole and writing should succeed.
1651 			 */
1652 			if (error) {
1653 				mem_cgroup_cancel_charge(page, memcg, false);
1654 				delete_from_swap_cache(page);
1655 			}
1656 		}
1657 		if (error)
1658 			goto failed;
1659 
1660 		mem_cgroup_commit_charge(page, memcg, true, false);
1661 
1662 		spin_lock_irq(&info->lock);
1663 		info->swapped--;
1664 		shmem_recalc_inode(inode);
1665 		spin_unlock_irq(&info->lock);
1666 
1667 		if (sgp == SGP_WRITE)
1668 			mark_page_accessed(page);
1669 
1670 		delete_from_swap_cache(page);
1671 		set_page_dirty(page);
1672 		swap_free(swap);
1673 
1674 	} else {
1675 		/* shmem_symlink() */
1676 		if (mapping->a_ops != &shmem_aops)
1677 			goto alloc_nohuge;
1678 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1679 			goto alloc_nohuge;
1680 		if (shmem_huge == SHMEM_HUGE_FORCE)
1681 			goto alloc_huge;
1682 		switch (sbinfo->huge) {
1683 			loff_t i_size;
1684 			pgoff_t off;
1685 		case SHMEM_HUGE_NEVER:
1686 			goto alloc_nohuge;
1687 		case SHMEM_HUGE_WITHIN_SIZE:
1688 			off = round_up(index, HPAGE_PMD_NR);
1689 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1690 			if (i_size >= HPAGE_PMD_SIZE &&
1691 					i_size >> PAGE_SHIFT >= off)
1692 				goto alloc_huge;
1693 			/* fallthrough */
1694 		case SHMEM_HUGE_ADVISE:
1695 			if (sgp_huge == SGP_HUGE)
1696 				goto alloc_huge;
1697 			/* TODO: implement fadvise() hints */
1698 			goto alloc_nohuge;
1699 		}
1700 
1701 alloc_huge:
1702 		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1703 				index, true);
1704 		if (IS_ERR(page)) {
1705 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1706 					index, false);
1707 		}
1708 		if (IS_ERR(page)) {
1709 			int retry = 5;
1710 			error = PTR_ERR(page);
1711 			page = NULL;
1712 			if (error != -ENOSPC)
1713 				goto failed;
1714 			/*
1715 			 * Try to reclaim some spece by splitting a huge page
1716 			 * beyond i_size on the filesystem.
1717 			 */
1718 			while (retry--) {
1719 				int ret;
1720 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1721 				if (ret == SHRINK_STOP)
1722 					break;
1723 				if (ret)
1724 					goto alloc_nohuge;
1725 			}
1726 			goto failed;
1727 		}
1728 
1729 		if (PageTransHuge(page))
1730 			hindex = round_down(index, HPAGE_PMD_NR);
1731 		else
1732 			hindex = index;
1733 
1734 		if (sgp == SGP_WRITE)
1735 			__SetPageReferenced(page);
1736 
1737 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1738 				PageTransHuge(page));
1739 		if (error)
1740 			goto unacct;
1741 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1742 				compound_order(page));
1743 		if (!error) {
1744 			error = shmem_add_to_page_cache(page, mapping, hindex,
1745 							NULL);
1746 			radix_tree_preload_end();
1747 		}
1748 		if (error) {
1749 			mem_cgroup_cancel_charge(page, memcg,
1750 					PageTransHuge(page));
1751 			goto unacct;
1752 		}
1753 		mem_cgroup_commit_charge(page, memcg, false,
1754 				PageTransHuge(page));
1755 		lru_cache_add_anon(page);
1756 
1757 		spin_lock_irq(&info->lock);
1758 		info->alloced += 1 << compound_order(page);
1759 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1760 		shmem_recalc_inode(inode);
1761 		spin_unlock_irq(&info->lock);
1762 		alloced = true;
1763 
1764 		if (PageTransHuge(page) &&
1765 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1766 				hindex + HPAGE_PMD_NR - 1) {
1767 			/*
1768 			 * Part of the huge page is beyond i_size: subject
1769 			 * to shrink under memory pressure.
1770 			 */
1771 			spin_lock(&sbinfo->shrinklist_lock);
1772 			if (list_empty(&info->shrinklist)) {
1773 				list_add_tail(&info->shrinklist,
1774 						&sbinfo->shrinklist);
1775 				sbinfo->shrinklist_len++;
1776 			}
1777 			spin_unlock(&sbinfo->shrinklist_lock);
1778 		}
1779 
1780 		/*
1781 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1782 		 */
1783 		if (sgp == SGP_FALLOC)
1784 			sgp = SGP_WRITE;
1785 clear:
1786 		/*
1787 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1788 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1789 		 * it now, lest undo on failure cancel our earlier guarantee.
1790 		 */
1791 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1792 			struct page *head = compound_head(page);
1793 			int i;
1794 
1795 			for (i = 0; i < (1 << compound_order(head)); i++) {
1796 				clear_highpage(head + i);
1797 				flush_dcache_page(head + i);
1798 			}
1799 			SetPageUptodate(head);
1800 		}
1801 	}
1802 
1803 	/* Perhaps the file has been truncated since we checked */
1804 	if (sgp <= SGP_CACHE &&
1805 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1806 		if (alloced) {
1807 			ClearPageDirty(page);
1808 			delete_from_page_cache(page);
1809 			spin_lock_irq(&info->lock);
1810 			shmem_recalc_inode(inode);
1811 			spin_unlock_irq(&info->lock);
1812 		}
1813 		error = -EINVAL;
1814 		goto unlock;
1815 	}
1816 	*pagep = page + index - hindex;
1817 	return 0;
1818 
1819 	/*
1820 	 * Error recovery.
1821 	 */
1822 unacct:
1823 	if (sbinfo->max_blocks)
1824 		percpu_counter_sub(&sbinfo->used_blocks,
1825 				1 << compound_order(page));
1826 	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1827 
1828 	if (PageTransHuge(page)) {
1829 		unlock_page(page);
1830 		put_page(page);
1831 		goto alloc_nohuge;
1832 	}
1833 failed:
1834 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1835 		error = -EEXIST;
1836 unlock:
1837 	if (page) {
1838 		unlock_page(page);
1839 		put_page(page);
1840 	}
1841 	if (error == -ENOSPC && !once++) {
1842 		spin_lock_irq(&info->lock);
1843 		shmem_recalc_inode(inode);
1844 		spin_unlock_irq(&info->lock);
1845 		goto repeat;
1846 	}
1847 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1848 		goto repeat;
1849 	return error;
1850 }
1851 
1852 /*
1853  * This is like autoremove_wake_function, but it removes the wait queue
1854  * entry unconditionally - even if something else had already woken the
1855  * target.
1856  */
1857 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1858 {
1859 	int ret = default_wake_function(wait, mode, sync, key);
1860 	list_del_init(&wait->task_list);
1861 	return ret;
1862 }
1863 
1864 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1865 {
1866 	struct inode *inode = file_inode(vma->vm_file);
1867 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1868 	enum sgp_type sgp;
1869 	int error;
1870 	int ret = VM_FAULT_LOCKED;
1871 
1872 	/*
1873 	 * Trinity finds that probing a hole which tmpfs is punching can
1874 	 * prevent the hole-punch from ever completing: which in turn
1875 	 * locks writers out with its hold on i_mutex.  So refrain from
1876 	 * faulting pages into the hole while it's being punched.  Although
1877 	 * shmem_undo_range() does remove the additions, it may be unable to
1878 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1879 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1880 	 *
1881 	 * It does not matter if we sometimes reach this check just before the
1882 	 * hole-punch begins, so that one fault then races with the punch:
1883 	 * we just need to make racing faults a rare case.
1884 	 *
1885 	 * The implementation below would be much simpler if we just used a
1886 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1887 	 * and bloating every shmem inode for this unlikely case would be sad.
1888 	 */
1889 	if (unlikely(inode->i_private)) {
1890 		struct shmem_falloc *shmem_falloc;
1891 
1892 		spin_lock(&inode->i_lock);
1893 		shmem_falloc = inode->i_private;
1894 		if (shmem_falloc &&
1895 		    shmem_falloc->waitq &&
1896 		    vmf->pgoff >= shmem_falloc->start &&
1897 		    vmf->pgoff < shmem_falloc->next) {
1898 			wait_queue_head_t *shmem_falloc_waitq;
1899 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1900 
1901 			ret = VM_FAULT_NOPAGE;
1902 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1903 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1904 				/* It's polite to up mmap_sem if we can */
1905 				up_read(&vma->vm_mm->mmap_sem);
1906 				ret = VM_FAULT_RETRY;
1907 			}
1908 
1909 			shmem_falloc_waitq = shmem_falloc->waitq;
1910 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1911 					TASK_UNINTERRUPTIBLE);
1912 			spin_unlock(&inode->i_lock);
1913 			schedule();
1914 
1915 			/*
1916 			 * shmem_falloc_waitq points into the shmem_fallocate()
1917 			 * stack of the hole-punching task: shmem_falloc_waitq
1918 			 * is usually invalid by the time we reach here, but
1919 			 * finish_wait() does not dereference it in that case;
1920 			 * though i_lock needed lest racing with wake_up_all().
1921 			 */
1922 			spin_lock(&inode->i_lock);
1923 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1924 			spin_unlock(&inode->i_lock);
1925 			return ret;
1926 		}
1927 		spin_unlock(&inode->i_lock);
1928 	}
1929 
1930 	sgp = SGP_CACHE;
1931 	if (vma->vm_flags & VM_HUGEPAGE)
1932 		sgp = SGP_HUGE;
1933 	else if (vma->vm_flags & VM_NOHUGEPAGE)
1934 		sgp = SGP_NOHUGE;
1935 
1936 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1937 				  gfp, vma->vm_mm, &ret);
1938 	if (error)
1939 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1940 	return ret;
1941 }
1942 
1943 unsigned long shmem_get_unmapped_area(struct file *file,
1944 				      unsigned long uaddr, unsigned long len,
1945 				      unsigned long pgoff, unsigned long flags)
1946 {
1947 	unsigned long (*get_area)(struct file *,
1948 		unsigned long, unsigned long, unsigned long, unsigned long);
1949 	unsigned long addr;
1950 	unsigned long offset;
1951 	unsigned long inflated_len;
1952 	unsigned long inflated_addr;
1953 	unsigned long inflated_offset;
1954 
1955 	if (len > TASK_SIZE)
1956 		return -ENOMEM;
1957 
1958 	get_area = current->mm->get_unmapped_area;
1959 	addr = get_area(file, uaddr, len, pgoff, flags);
1960 
1961 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1962 		return addr;
1963 	if (IS_ERR_VALUE(addr))
1964 		return addr;
1965 	if (addr & ~PAGE_MASK)
1966 		return addr;
1967 	if (addr > TASK_SIZE - len)
1968 		return addr;
1969 
1970 	if (shmem_huge == SHMEM_HUGE_DENY)
1971 		return addr;
1972 	if (len < HPAGE_PMD_SIZE)
1973 		return addr;
1974 	if (flags & MAP_FIXED)
1975 		return addr;
1976 	/*
1977 	 * Our priority is to support MAP_SHARED mapped hugely;
1978 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1979 	 * But if caller specified an address hint, respect that as before.
1980 	 */
1981 	if (uaddr)
1982 		return addr;
1983 
1984 	if (shmem_huge != SHMEM_HUGE_FORCE) {
1985 		struct super_block *sb;
1986 
1987 		if (file) {
1988 			VM_BUG_ON(file->f_op != &shmem_file_operations);
1989 			sb = file_inode(file)->i_sb;
1990 		} else {
1991 			/*
1992 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
1993 			 * for "/dev/zero", to create a shared anonymous object.
1994 			 */
1995 			if (IS_ERR(shm_mnt))
1996 				return addr;
1997 			sb = shm_mnt->mnt_sb;
1998 		}
1999 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2000 			return addr;
2001 	}
2002 
2003 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2004 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2005 		return addr;
2006 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2007 		return addr;
2008 
2009 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2010 	if (inflated_len > TASK_SIZE)
2011 		return addr;
2012 	if (inflated_len < len)
2013 		return addr;
2014 
2015 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2016 	if (IS_ERR_VALUE(inflated_addr))
2017 		return addr;
2018 	if (inflated_addr & ~PAGE_MASK)
2019 		return addr;
2020 
2021 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2022 	inflated_addr += offset - inflated_offset;
2023 	if (inflated_offset > offset)
2024 		inflated_addr += HPAGE_PMD_SIZE;
2025 
2026 	if (inflated_addr > TASK_SIZE - len)
2027 		return addr;
2028 	return inflated_addr;
2029 }
2030 
2031 #ifdef CONFIG_NUMA
2032 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2033 {
2034 	struct inode *inode = file_inode(vma->vm_file);
2035 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2036 }
2037 
2038 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2039 					  unsigned long addr)
2040 {
2041 	struct inode *inode = file_inode(vma->vm_file);
2042 	pgoff_t index;
2043 
2044 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2045 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2046 }
2047 #endif
2048 
2049 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2050 {
2051 	struct inode *inode = file_inode(file);
2052 	struct shmem_inode_info *info = SHMEM_I(inode);
2053 	int retval = -ENOMEM;
2054 
2055 	spin_lock_irq(&info->lock);
2056 	if (lock && !(info->flags & VM_LOCKED)) {
2057 		if (!user_shm_lock(inode->i_size, user))
2058 			goto out_nomem;
2059 		info->flags |= VM_LOCKED;
2060 		mapping_set_unevictable(file->f_mapping);
2061 	}
2062 	if (!lock && (info->flags & VM_LOCKED) && user) {
2063 		user_shm_unlock(inode->i_size, user);
2064 		info->flags &= ~VM_LOCKED;
2065 		mapping_clear_unevictable(file->f_mapping);
2066 	}
2067 	retval = 0;
2068 
2069 out_nomem:
2070 	spin_unlock_irq(&info->lock);
2071 	return retval;
2072 }
2073 
2074 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2075 {
2076 	file_accessed(file);
2077 	vma->vm_ops = &shmem_vm_ops;
2078 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2079 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2080 			(vma->vm_end & HPAGE_PMD_MASK)) {
2081 		khugepaged_enter(vma, vma->vm_flags);
2082 	}
2083 	return 0;
2084 }
2085 
2086 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2087 				     umode_t mode, dev_t dev, unsigned long flags)
2088 {
2089 	struct inode *inode;
2090 	struct shmem_inode_info *info;
2091 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2092 
2093 	if (shmem_reserve_inode(sb))
2094 		return NULL;
2095 
2096 	inode = new_inode(sb);
2097 	if (inode) {
2098 		inode->i_ino = get_next_ino();
2099 		inode_init_owner(inode, dir, mode);
2100 		inode->i_blocks = 0;
2101 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2102 		inode->i_generation = get_seconds();
2103 		info = SHMEM_I(inode);
2104 		memset(info, 0, (char *)inode - (char *)info);
2105 		spin_lock_init(&info->lock);
2106 		info->seals = F_SEAL_SEAL;
2107 		info->flags = flags & VM_NORESERVE;
2108 		INIT_LIST_HEAD(&info->shrinklist);
2109 		INIT_LIST_HEAD(&info->swaplist);
2110 		simple_xattrs_init(&info->xattrs);
2111 		cache_no_acl(inode);
2112 
2113 		switch (mode & S_IFMT) {
2114 		default:
2115 			inode->i_op = &shmem_special_inode_operations;
2116 			init_special_inode(inode, mode, dev);
2117 			break;
2118 		case S_IFREG:
2119 			inode->i_mapping->a_ops = &shmem_aops;
2120 			inode->i_op = &shmem_inode_operations;
2121 			inode->i_fop = &shmem_file_operations;
2122 			mpol_shared_policy_init(&info->policy,
2123 						 shmem_get_sbmpol(sbinfo));
2124 			break;
2125 		case S_IFDIR:
2126 			inc_nlink(inode);
2127 			/* Some things misbehave if size == 0 on a directory */
2128 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2129 			inode->i_op = &shmem_dir_inode_operations;
2130 			inode->i_fop = &simple_dir_operations;
2131 			break;
2132 		case S_IFLNK:
2133 			/*
2134 			 * Must not load anything in the rbtree,
2135 			 * mpol_free_shared_policy will not be called.
2136 			 */
2137 			mpol_shared_policy_init(&info->policy, NULL);
2138 			break;
2139 		}
2140 	} else
2141 		shmem_free_inode(sb);
2142 	return inode;
2143 }
2144 
2145 bool shmem_mapping(struct address_space *mapping)
2146 {
2147 	if (!mapping->host)
2148 		return false;
2149 
2150 	return mapping->host->i_sb->s_op == &shmem_ops;
2151 }
2152 
2153 #ifdef CONFIG_TMPFS
2154 static const struct inode_operations shmem_symlink_inode_operations;
2155 static const struct inode_operations shmem_short_symlink_operations;
2156 
2157 #ifdef CONFIG_TMPFS_XATTR
2158 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2159 #else
2160 #define shmem_initxattrs NULL
2161 #endif
2162 
2163 static int
2164 shmem_write_begin(struct file *file, struct address_space *mapping,
2165 			loff_t pos, unsigned len, unsigned flags,
2166 			struct page **pagep, void **fsdata)
2167 {
2168 	struct inode *inode = mapping->host;
2169 	struct shmem_inode_info *info = SHMEM_I(inode);
2170 	pgoff_t index = pos >> PAGE_SHIFT;
2171 
2172 	/* i_mutex is held by caller */
2173 	if (unlikely(info->seals)) {
2174 		if (info->seals & F_SEAL_WRITE)
2175 			return -EPERM;
2176 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2177 			return -EPERM;
2178 	}
2179 
2180 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2181 }
2182 
2183 static int
2184 shmem_write_end(struct file *file, struct address_space *mapping,
2185 			loff_t pos, unsigned len, unsigned copied,
2186 			struct page *page, void *fsdata)
2187 {
2188 	struct inode *inode = mapping->host;
2189 
2190 	if (pos + copied > inode->i_size)
2191 		i_size_write(inode, pos + copied);
2192 
2193 	if (!PageUptodate(page)) {
2194 		struct page *head = compound_head(page);
2195 		if (PageTransCompound(page)) {
2196 			int i;
2197 
2198 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2199 				if (head + i == page)
2200 					continue;
2201 				clear_highpage(head + i);
2202 				flush_dcache_page(head + i);
2203 			}
2204 		}
2205 		if (copied < PAGE_SIZE) {
2206 			unsigned from = pos & (PAGE_SIZE - 1);
2207 			zero_user_segments(page, 0, from,
2208 					from + copied, PAGE_SIZE);
2209 		}
2210 		SetPageUptodate(head);
2211 	}
2212 	set_page_dirty(page);
2213 	unlock_page(page);
2214 	put_page(page);
2215 
2216 	return copied;
2217 }
2218 
2219 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2220 {
2221 	struct file *file = iocb->ki_filp;
2222 	struct inode *inode = file_inode(file);
2223 	struct address_space *mapping = inode->i_mapping;
2224 	pgoff_t index;
2225 	unsigned long offset;
2226 	enum sgp_type sgp = SGP_READ;
2227 	int error = 0;
2228 	ssize_t retval = 0;
2229 	loff_t *ppos = &iocb->ki_pos;
2230 
2231 	/*
2232 	 * Might this read be for a stacking filesystem?  Then when reading
2233 	 * holes of a sparse file, we actually need to allocate those pages,
2234 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2235 	 */
2236 	if (!iter_is_iovec(to))
2237 		sgp = SGP_CACHE;
2238 
2239 	index = *ppos >> PAGE_SHIFT;
2240 	offset = *ppos & ~PAGE_MASK;
2241 
2242 	for (;;) {
2243 		struct page *page = NULL;
2244 		pgoff_t end_index;
2245 		unsigned long nr, ret;
2246 		loff_t i_size = i_size_read(inode);
2247 
2248 		end_index = i_size >> PAGE_SHIFT;
2249 		if (index > end_index)
2250 			break;
2251 		if (index == end_index) {
2252 			nr = i_size & ~PAGE_MASK;
2253 			if (nr <= offset)
2254 				break;
2255 		}
2256 
2257 		error = shmem_getpage(inode, index, &page, sgp);
2258 		if (error) {
2259 			if (error == -EINVAL)
2260 				error = 0;
2261 			break;
2262 		}
2263 		if (page) {
2264 			if (sgp == SGP_CACHE)
2265 				set_page_dirty(page);
2266 			unlock_page(page);
2267 		}
2268 
2269 		/*
2270 		 * We must evaluate after, since reads (unlike writes)
2271 		 * are called without i_mutex protection against truncate
2272 		 */
2273 		nr = PAGE_SIZE;
2274 		i_size = i_size_read(inode);
2275 		end_index = i_size >> PAGE_SHIFT;
2276 		if (index == end_index) {
2277 			nr = i_size & ~PAGE_MASK;
2278 			if (nr <= offset) {
2279 				if (page)
2280 					put_page(page);
2281 				break;
2282 			}
2283 		}
2284 		nr -= offset;
2285 
2286 		if (page) {
2287 			/*
2288 			 * If users can be writing to this page using arbitrary
2289 			 * virtual addresses, take care about potential aliasing
2290 			 * before reading the page on the kernel side.
2291 			 */
2292 			if (mapping_writably_mapped(mapping))
2293 				flush_dcache_page(page);
2294 			/*
2295 			 * Mark the page accessed if we read the beginning.
2296 			 */
2297 			if (!offset)
2298 				mark_page_accessed(page);
2299 		} else {
2300 			page = ZERO_PAGE(0);
2301 			get_page(page);
2302 		}
2303 
2304 		/*
2305 		 * Ok, we have the page, and it's up-to-date, so
2306 		 * now we can copy it to user space...
2307 		 */
2308 		ret = copy_page_to_iter(page, offset, nr, to);
2309 		retval += ret;
2310 		offset += ret;
2311 		index += offset >> PAGE_SHIFT;
2312 		offset &= ~PAGE_MASK;
2313 
2314 		put_page(page);
2315 		if (!iov_iter_count(to))
2316 			break;
2317 		if (ret < nr) {
2318 			error = -EFAULT;
2319 			break;
2320 		}
2321 		cond_resched();
2322 	}
2323 
2324 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2325 	file_accessed(file);
2326 	return retval ? retval : error;
2327 }
2328 
2329 /*
2330  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2331  */
2332 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2333 				    pgoff_t index, pgoff_t end, int whence)
2334 {
2335 	struct page *page;
2336 	struct pagevec pvec;
2337 	pgoff_t indices[PAGEVEC_SIZE];
2338 	bool done = false;
2339 	int i;
2340 
2341 	pagevec_init(&pvec, 0);
2342 	pvec.nr = 1;		/* start small: we may be there already */
2343 	while (!done) {
2344 		pvec.nr = find_get_entries(mapping, index,
2345 					pvec.nr, pvec.pages, indices);
2346 		if (!pvec.nr) {
2347 			if (whence == SEEK_DATA)
2348 				index = end;
2349 			break;
2350 		}
2351 		for (i = 0; i < pvec.nr; i++, index++) {
2352 			if (index < indices[i]) {
2353 				if (whence == SEEK_HOLE) {
2354 					done = true;
2355 					break;
2356 				}
2357 				index = indices[i];
2358 			}
2359 			page = pvec.pages[i];
2360 			if (page && !radix_tree_exceptional_entry(page)) {
2361 				if (!PageUptodate(page))
2362 					page = NULL;
2363 			}
2364 			if (index >= end ||
2365 			    (page && whence == SEEK_DATA) ||
2366 			    (!page && whence == SEEK_HOLE)) {
2367 				done = true;
2368 				break;
2369 			}
2370 		}
2371 		pagevec_remove_exceptionals(&pvec);
2372 		pagevec_release(&pvec);
2373 		pvec.nr = PAGEVEC_SIZE;
2374 		cond_resched();
2375 	}
2376 	return index;
2377 }
2378 
2379 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2380 {
2381 	struct address_space *mapping = file->f_mapping;
2382 	struct inode *inode = mapping->host;
2383 	pgoff_t start, end;
2384 	loff_t new_offset;
2385 
2386 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2387 		return generic_file_llseek_size(file, offset, whence,
2388 					MAX_LFS_FILESIZE, i_size_read(inode));
2389 	inode_lock(inode);
2390 	/* We're holding i_mutex so we can access i_size directly */
2391 
2392 	if (offset < 0)
2393 		offset = -EINVAL;
2394 	else if (offset >= inode->i_size)
2395 		offset = -ENXIO;
2396 	else {
2397 		start = offset >> PAGE_SHIFT;
2398 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2399 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2400 		new_offset <<= PAGE_SHIFT;
2401 		if (new_offset > offset) {
2402 			if (new_offset < inode->i_size)
2403 				offset = new_offset;
2404 			else if (whence == SEEK_DATA)
2405 				offset = -ENXIO;
2406 			else
2407 				offset = inode->i_size;
2408 		}
2409 	}
2410 
2411 	if (offset >= 0)
2412 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2413 	inode_unlock(inode);
2414 	return offset;
2415 }
2416 
2417 /*
2418  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2419  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2420  */
2421 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2422 #define LAST_SCAN               4       /* about 150ms max */
2423 
2424 static void shmem_tag_pins(struct address_space *mapping)
2425 {
2426 	struct radix_tree_iter iter;
2427 	void **slot;
2428 	pgoff_t start;
2429 	struct page *page;
2430 
2431 	lru_add_drain();
2432 	start = 0;
2433 	rcu_read_lock();
2434 
2435 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2436 		page = radix_tree_deref_slot(slot);
2437 		if (!page || radix_tree_exception(page)) {
2438 			if (radix_tree_deref_retry(page)) {
2439 				slot = radix_tree_iter_retry(&iter);
2440 				continue;
2441 			}
2442 		} else if (page_count(page) - page_mapcount(page) > 1) {
2443 			spin_lock_irq(&mapping->tree_lock);
2444 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2445 					   SHMEM_TAG_PINNED);
2446 			spin_unlock_irq(&mapping->tree_lock);
2447 		}
2448 
2449 		if (need_resched()) {
2450 			cond_resched_rcu();
2451 			slot = radix_tree_iter_next(&iter);
2452 		}
2453 	}
2454 	rcu_read_unlock();
2455 }
2456 
2457 /*
2458  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2459  * via get_user_pages(), drivers might have some pending I/O without any active
2460  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2461  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2462  * them to be dropped.
2463  * The caller must guarantee that no new user will acquire writable references
2464  * to those pages to avoid races.
2465  */
2466 static int shmem_wait_for_pins(struct address_space *mapping)
2467 {
2468 	struct radix_tree_iter iter;
2469 	void **slot;
2470 	pgoff_t start;
2471 	struct page *page;
2472 	int error, scan;
2473 
2474 	shmem_tag_pins(mapping);
2475 
2476 	error = 0;
2477 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2478 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2479 			break;
2480 
2481 		if (!scan)
2482 			lru_add_drain_all();
2483 		else if (schedule_timeout_killable((HZ << scan) / 200))
2484 			scan = LAST_SCAN;
2485 
2486 		start = 0;
2487 		rcu_read_lock();
2488 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2489 					   start, SHMEM_TAG_PINNED) {
2490 
2491 			page = radix_tree_deref_slot(slot);
2492 			if (radix_tree_exception(page)) {
2493 				if (radix_tree_deref_retry(page)) {
2494 					slot = radix_tree_iter_retry(&iter);
2495 					continue;
2496 				}
2497 
2498 				page = NULL;
2499 			}
2500 
2501 			if (page &&
2502 			    page_count(page) - page_mapcount(page) != 1) {
2503 				if (scan < LAST_SCAN)
2504 					goto continue_resched;
2505 
2506 				/*
2507 				 * On the last scan, we clean up all those tags
2508 				 * we inserted; but make a note that we still
2509 				 * found pages pinned.
2510 				 */
2511 				error = -EBUSY;
2512 			}
2513 
2514 			spin_lock_irq(&mapping->tree_lock);
2515 			radix_tree_tag_clear(&mapping->page_tree,
2516 					     iter.index, SHMEM_TAG_PINNED);
2517 			spin_unlock_irq(&mapping->tree_lock);
2518 continue_resched:
2519 			if (need_resched()) {
2520 				cond_resched_rcu();
2521 				slot = radix_tree_iter_next(&iter);
2522 			}
2523 		}
2524 		rcu_read_unlock();
2525 	}
2526 
2527 	return error;
2528 }
2529 
2530 #define F_ALL_SEALS (F_SEAL_SEAL | \
2531 		     F_SEAL_SHRINK | \
2532 		     F_SEAL_GROW | \
2533 		     F_SEAL_WRITE)
2534 
2535 int shmem_add_seals(struct file *file, unsigned int seals)
2536 {
2537 	struct inode *inode = file_inode(file);
2538 	struct shmem_inode_info *info = SHMEM_I(inode);
2539 	int error;
2540 
2541 	/*
2542 	 * SEALING
2543 	 * Sealing allows multiple parties to share a shmem-file but restrict
2544 	 * access to a specific subset of file operations. Seals can only be
2545 	 * added, but never removed. This way, mutually untrusted parties can
2546 	 * share common memory regions with a well-defined policy. A malicious
2547 	 * peer can thus never perform unwanted operations on a shared object.
2548 	 *
2549 	 * Seals are only supported on special shmem-files and always affect
2550 	 * the whole underlying inode. Once a seal is set, it may prevent some
2551 	 * kinds of access to the file. Currently, the following seals are
2552 	 * defined:
2553 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2554 	 *   SEAL_SHRINK: Prevent the file from shrinking
2555 	 *   SEAL_GROW: Prevent the file from growing
2556 	 *   SEAL_WRITE: Prevent write access to the file
2557 	 *
2558 	 * As we don't require any trust relationship between two parties, we
2559 	 * must prevent seals from being removed. Therefore, sealing a file
2560 	 * only adds a given set of seals to the file, it never touches
2561 	 * existing seals. Furthermore, the "setting seals"-operation can be
2562 	 * sealed itself, which basically prevents any further seal from being
2563 	 * added.
2564 	 *
2565 	 * Semantics of sealing are only defined on volatile files. Only
2566 	 * anonymous shmem files support sealing. More importantly, seals are
2567 	 * never written to disk. Therefore, there's no plan to support it on
2568 	 * other file types.
2569 	 */
2570 
2571 	if (file->f_op != &shmem_file_operations)
2572 		return -EINVAL;
2573 	if (!(file->f_mode & FMODE_WRITE))
2574 		return -EPERM;
2575 	if (seals & ~(unsigned int)F_ALL_SEALS)
2576 		return -EINVAL;
2577 
2578 	inode_lock(inode);
2579 
2580 	if (info->seals & F_SEAL_SEAL) {
2581 		error = -EPERM;
2582 		goto unlock;
2583 	}
2584 
2585 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2586 		error = mapping_deny_writable(file->f_mapping);
2587 		if (error)
2588 			goto unlock;
2589 
2590 		error = shmem_wait_for_pins(file->f_mapping);
2591 		if (error) {
2592 			mapping_allow_writable(file->f_mapping);
2593 			goto unlock;
2594 		}
2595 	}
2596 
2597 	info->seals |= seals;
2598 	error = 0;
2599 
2600 unlock:
2601 	inode_unlock(inode);
2602 	return error;
2603 }
2604 EXPORT_SYMBOL_GPL(shmem_add_seals);
2605 
2606 int shmem_get_seals(struct file *file)
2607 {
2608 	if (file->f_op != &shmem_file_operations)
2609 		return -EINVAL;
2610 
2611 	return SHMEM_I(file_inode(file))->seals;
2612 }
2613 EXPORT_SYMBOL_GPL(shmem_get_seals);
2614 
2615 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2616 {
2617 	long error;
2618 
2619 	switch (cmd) {
2620 	case F_ADD_SEALS:
2621 		/* disallow upper 32bit */
2622 		if (arg > UINT_MAX)
2623 			return -EINVAL;
2624 
2625 		error = shmem_add_seals(file, arg);
2626 		break;
2627 	case F_GET_SEALS:
2628 		error = shmem_get_seals(file);
2629 		break;
2630 	default:
2631 		error = -EINVAL;
2632 		break;
2633 	}
2634 
2635 	return error;
2636 }
2637 
2638 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2639 							 loff_t len)
2640 {
2641 	struct inode *inode = file_inode(file);
2642 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2643 	struct shmem_inode_info *info = SHMEM_I(inode);
2644 	struct shmem_falloc shmem_falloc;
2645 	pgoff_t start, index, end;
2646 	int error;
2647 
2648 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2649 		return -EOPNOTSUPP;
2650 
2651 	inode_lock(inode);
2652 
2653 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2654 		struct address_space *mapping = file->f_mapping;
2655 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2656 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2657 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2658 
2659 		/* protected by i_mutex */
2660 		if (info->seals & F_SEAL_WRITE) {
2661 			error = -EPERM;
2662 			goto out;
2663 		}
2664 
2665 		shmem_falloc.waitq = &shmem_falloc_waitq;
2666 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2667 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2668 		spin_lock(&inode->i_lock);
2669 		inode->i_private = &shmem_falloc;
2670 		spin_unlock(&inode->i_lock);
2671 
2672 		if ((u64)unmap_end > (u64)unmap_start)
2673 			unmap_mapping_range(mapping, unmap_start,
2674 					    1 + unmap_end - unmap_start, 0);
2675 		shmem_truncate_range(inode, offset, offset + len - 1);
2676 		/* No need to unmap again: hole-punching leaves COWed pages */
2677 
2678 		spin_lock(&inode->i_lock);
2679 		inode->i_private = NULL;
2680 		wake_up_all(&shmem_falloc_waitq);
2681 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2682 		spin_unlock(&inode->i_lock);
2683 		error = 0;
2684 		goto out;
2685 	}
2686 
2687 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2688 	error = inode_newsize_ok(inode, offset + len);
2689 	if (error)
2690 		goto out;
2691 
2692 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2693 		error = -EPERM;
2694 		goto out;
2695 	}
2696 
2697 	start = offset >> PAGE_SHIFT;
2698 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2700 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2701 		error = -ENOSPC;
2702 		goto out;
2703 	}
2704 
2705 	shmem_falloc.waitq = NULL;
2706 	shmem_falloc.start = start;
2707 	shmem_falloc.next  = start;
2708 	shmem_falloc.nr_falloced = 0;
2709 	shmem_falloc.nr_unswapped = 0;
2710 	spin_lock(&inode->i_lock);
2711 	inode->i_private = &shmem_falloc;
2712 	spin_unlock(&inode->i_lock);
2713 
2714 	for (index = start; index < end; index++) {
2715 		struct page *page;
2716 
2717 		/*
2718 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2719 		 * been interrupted because we are using up too much memory.
2720 		 */
2721 		if (signal_pending(current))
2722 			error = -EINTR;
2723 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2724 			error = -ENOMEM;
2725 		else
2726 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2727 		if (error) {
2728 			/* Remove the !PageUptodate pages we added */
2729 			if (index > start) {
2730 				shmem_undo_range(inode,
2731 				    (loff_t)start << PAGE_SHIFT,
2732 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2733 			}
2734 			goto undone;
2735 		}
2736 
2737 		/*
2738 		 * Inform shmem_writepage() how far we have reached.
2739 		 * No need for lock or barrier: we have the page lock.
2740 		 */
2741 		shmem_falloc.next++;
2742 		if (!PageUptodate(page))
2743 			shmem_falloc.nr_falloced++;
2744 
2745 		/*
2746 		 * If !PageUptodate, leave it that way so that freeable pages
2747 		 * can be recognized if we need to rollback on error later.
2748 		 * But set_page_dirty so that memory pressure will swap rather
2749 		 * than free the pages we are allocating (and SGP_CACHE pages
2750 		 * might still be clean: we now need to mark those dirty too).
2751 		 */
2752 		set_page_dirty(page);
2753 		unlock_page(page);
2754 		put_page(page);
2755 		cond_resched();
2756 	}
2757 
2758 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2759 		i_size_write(inode, offset + len);
2760 	inode->i_ctime = current_time(inode);
2761 undone:
2762 	spin_lock(&inode->i_lock);
2763 	inode->i_private = NULL;
2764 	spin_unlock(&inode->i_lock);
2765 out:
2766 	inode_unlock(inode);
2767 	return error;
2768 }
2769 
2770 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2771 {
2772 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2773 
2774 	buf->f_type = TMPFS_MAGIC;
2775 	buf->f_bsize = PAGE_SIZE;
2776 	buf->f_namelen = NAME_MAX;
2777 	if (sbinfo->max_blocks) {
2778 		buf->f_blocks = sbinfo->max_blocks;
2779 		buf->f_bavail =
2780 		buf->f_bfree  = sbinfo->max_blocks -
2781 				percpu_counter_sum(&sbinfo->used_blocks);
2782 	}
2783 	if (sbinfo->max_inodes) {
2784 		buf->f_files = sbinfo->max_inodes;
2785 		buf->f_ffree = sbinfo->free_inodes;
2786 	}
2787 	/* else leave those fields 0 like simple_statfs */
2788 	return 0;
2789 }
2790 
2791 /*
2792  * File creation. Allocate an inode, and we're done..
2793  */
2794 static int
2795 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2796 {
2797 	struct inode *inode;
2798 	int error = -ENOSPC;
2799 
2800 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2801 	if (inode) {
2802 		error = simple_acl_create(dir, inode);
2803 		if (error)
2804 			goto out_iput;
2805 		error = security_inode_init_security(inode, dir,
2806 						     &dentry->d_name,
2807 						     shmem_initxattrs, NULL);
2808 		if (error && error != -EOPNOTSUPP)
2809 			goto out_iput;
2810 
2811 		error = 0;
2812 		dir->i_size += BOGO_DIRENT_SIZE;
2813 		dir->i_ctime = dir->i_mtime = current_time(dir);
2814 		d_instantiate(dentry, inode);
2815 		dget(dentry); /* Extra count - pin the dentry in core */
2816 	}
2817 	return error;
2818 out_iput:
2819 	iput(inode);
2820 	return error;
2821 }
2822 
2823 static int
2824 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2825 {
2826 	struct inode *inode;
2827 	int error = -ENOSPC;
2828 
2829 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2830 	if (inode) {
2831 		error = security_inode_init_security(inode, dir,
2832 						     NULL,
2833 						     shmem_initxattrs, NULL);
2834 		if (error && error != -EOPNOTSUPP)
2835 			goto out_iput;
2836 		error = simple_acl_create(dir, inode);
2837 		if (error)
2838 			goto out_iput;
2839 		d_tmpfile(dentry, inode);
2840 	}
2841 	return error;
2842 out_iput:
2843 	iput(inode);
2844 	return error;
2845 }
2846 
2847 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2848 {
2849 	int error;
2850 
2851 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2852 		return error;
2853 	inc_nlink(dir);
2854 	return 0;
2855 }
2856 
2857 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2858 		bool excl)
2859 {
2860 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2861 }
2862 
2863 /*
2864  * Link a file..
2865  */
2866 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2867 {
2868 	struct inode *inode = d_inode(old_dentry);
2869 	int ret;
2870 
2871 	/*
2872 	 * No ordinary (disk based) filesystem counts links as inodes;
2873 	 * but each new link needs a new dentry, pinning lowmem, and
2874 	 * tmpfs dentries cannot be pruned until they are unlinked.
2875 	 */
2876 	ret = shmem_reserve_inode(inode->i_sb);
2877 	if (ret)
2878 		goto out;
2879 
2880 	dir->i_size += BOGO_DIRENT_SIZE;
2881 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2882 	inc_nlink(inode);
2883 	ihold(inode);	/* New dentry reference */
2884 	dget(dentry);		/* Extra pinning count for the created dentry */
2885 	d_instantiate(dentry, inode);
2886 out:
2887 	return ret;
2888 }
2889 
2890 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2891 {
2892 	struct inode *inode = d_inode(dentry);
2893 
2894 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2895 		shmem_free_inode(inode->i_sb);
2896 
2897 	dir->i_size -= BOGO_DIRENT_SIZE;
2898 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2899 	drop_nlink(inode);
2900 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2901 	return 0;
2902 }
2903 
2904 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2905 {
2906 	if (!simple_empty(dentry))
2907 		return -ENOTEMPTY;
2908 
2909 	drop_nlink(d_inode(dentry));
2910 	drop_nlink(dir);
2911 	return shmem_unlink(dir, dentry);
2912 }
2913 
2914 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2915 {
2916 	bool old_is_dir = d_is_dir(old_dentry);
2917 	bool new_is_dir = d_is_dir(new_dentry);
2918 
2919 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2920 		if (old_is_dir) {
2921 			drop_nlink(old_dir);
2922 			inc_nlink(new_dir);
2923 		} else {
2924 			drop_nlink(new_dir);
2925 			inc_nlink(old_dir);
2926 		}
2927 	}
2928 	old_dir->i_ctime = old_dir->i_mtime =
2929 	new_dir->i_ctime = new_dir->i_mtime =
2930 	d_inode(old_dentry)->i_ctime =
2931 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2932 
2933 	return 0;
2934 }
2935 
2936 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2937 {
2938 	struct dentry *whiteout;
2939 	int error;
2940 
2941 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2942 	if (!whiteout)
2943 		return -ENOMEM;
2944 
2945 	error = shmem_mknod(old_dir, whiteout,
2946 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2947 	dput(whiteout);
2948 	if (error)
2949 		return error;
2950 
2951 	/*
2952 	 * Cheat and hash the whiteout while the old dentry is still in
2953 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2954 	 *
2955 	 * d_lookup() will consistently find one of them at this point,
2956 	 * not sure which one, but that isn't even important.
2957 	 */
2958 	d_rehash(whiteout);
2959 	return 0;
2960 }
2961 
2962 /*
2963  * The VFS layer already does all the dentry stuff for rename,
2964  * we just have to decrement the usage count for the target if
2965  * it exists so that the VFS layer correctly free's it when it
2966  * gets overwritten.
2967  */
2968 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2969 {
2970 	struct inode *inode = d_inode(old_dentry);
2971 	int they_are_dirs = S_ISDIR(inode->i_mode);
2972 
2973 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2974 		return -EINVAL;
2975 
2976 	if (flags & RENAME_EXCHANGE)
2977 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2978 
2979 	if (!simple_empty(new_dentry))
2980 		return -ENOTEMPTY;
2981 
2982 	if (flags & RENAME_WHITEOUT) {
2983 		int error;
2984 
2985 		error = shmem_whiteout(old_dir, old_dentry);
2986 		if (error)
2987 			return error;
2988 	}
2989 
2990 	if (d_really_is_positive(new_dentry)) {
2991 		(void) shmem_unlink(new_dir, new_dentry);
2992 		if (they_are_dirs) {
2993 			drop_nlink(d_inode(new_dentry));
2994 			drop_nlink(old_dir);
2995 		}
2996 	} else if (they_are_dirs) {
2997 		drop_nlink(old_dir);
2998 		inc_nlink(new_dir);
2999 	}
3000 
3001 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3002 	new_dir->i_size += BOGO_DIRENT_SIZE;
3003 	old_dir->i_ctime = old_dir->i_mtime =
3004 	new_dir->i_ctime = new_dir->i_mtime =
3005 	inode->i_ctime = current_time(old_dir);
3006 	return 0;
3007 }
3008 
3009 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3010 {
3011 	int error;
3012 	int len;
3013 	struct inode *inode;
3014 	struct page *page;
3015 	struct shmem_inode_info *info;
3016 
3017 	len = strlen(symname) + 1;
3018 	if (len > PAGE_SIZE)
3019 		return -ENAMETOOLONG;
3020 
3021 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3022 	if (!inode)
3023 		return -ENOSPC;
3024 
3025 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3026 					     shmem_initxattrs, NULL);
3027 	if (error) {
3028 		if (error != -EOPNOTSUPP) {
3029 			iput(inode);
3030 			return error;
3031 		}
3032 		error = 0;
3033 	}
3034 
3035 	info = SHMEM_I(inode);
3036 	inode->i_size = len-1;
3037 	if (len <= SHORT_SYMLINK_LEN) {
3038 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3039 		if (!inode->i_link) {
3040 			iput(inode);
3041 			return -ENOMEM;
3042 		}
3043 		inode->i_op = &shmem_short_symlink_operations;
3044 	} else {
3045 		inode_nohighmem(inode);
3046 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3047 		if (error) {
3048 			iput(inode);
3049 			return error;
3050 		}
3051 		inode->i_mapping->a_ops = &shmem_aops;
3052 		inode->i_op = &shmem_symlink_inode_operations;
3053 		memcpy(page_address(page), symname, len);
3054 		SetPageUptodate(page);
3055 		set_page_dirty(page);
3056 		unlock_page(page);
3057 		put_page(page);
3058 	}
3059 	dir->i_size += BOGO_DIRENT_SIZE;
3060 	dir->i_ctime = dir->i_mtime = current_time(dir);
3061 	d_instantiate(dentry, inode);
3062 	dget(dentry);
3063 	return 0;
3064 }
3065 
3066 static void shmem_put_link(void *arg)
3067 {
3068 	mark_page_accessed(arg);
3069 	put_page(arg);
3070 }
3071 
3072 static const char *shmem_get_link(struct dentry *dentry,
3073 				  struct inode *inode,
3074 				  struct delayed_call *done)
3075 {
3076 	struct page *page = NULL;
3077 	int error;
3078 	if (!dentry) {
3079 		page = find_get_page(inode->i_mapping, 0);
3080 		if (!page)
3081 			return ERR_PTR(-ECHILD);
3082 		if (!PageUptodate(page)) {
3083 			put_page(page);
3084 			return ERR_PTR(-ECHILD);
3085 		}
3086 	} else {
3087 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3088 		if (error)
3089 			return ERR_PTR(error);
3090 		unlock_page(page);
3091 	}
3092 	set_delayed_call(done, shmem_put_link, page);
3093 	return page_address(page);
3094 }
3095 
3096 #ifdef CONFIG_TMPFS_XATTR
3097 /*
3098  * Superblocks without xattr inode operations may get some security.* xattr
3099  * support from the LSM "for free". As soon as we have any other xattrs
3100  * like ACLs, we also need to implement the security.* handlers at
3101  * filesystem level, though.
3102  */
3103 
3104 /*
3105  * Callback for security_inode_init_security() for acquiring xattrs.
3106  */
3107 static int shmem_initxattrs(struct inode *inode,
3108 			    const struct xattr *xattr_array,
3109 			    void *fs_info)
3110 {
3111 	struct shmem_inode_info *info = SHMEM_I(inode);
3112 	const struct xattr *xattr;
3113 	struct simple_xattr *new_xattr;
3114 	size_t len;
3115 
3116 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3117 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3118 		if (!new_xattr)
3119 			return -ENOMEM;
3120 
3121 		len = strlen(xattr->name) + 1;
3122 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3123 					  GFP_KERNEL);
3124 		if (!new_xattr->name) {
3125 			kfree(new_xattr);
3126 			return -ENOMEM;
3127 		}
3128 
3129 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3130 		       XATTR_SECURITY_PREFIX_LEN);
3131 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3132 		       xattr->name, len);
3133 
3134 		simple_xattr_list_add(&info->xattrs, new_xattr);
3135 	}
3136 
3137 	return 0;
3138 }
3139 
3140 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3141 				   struct dentry *unused, struct inode *inode,
3142 				   const char *name, void *buffer, size_t size)
3143 {
3144 	struct shmem_inode_info *info = SHMEM_I(inode);
3145 
3146 	name = xattr_full_name(handler, name);
3147 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3148 }
3149 
3150 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3151 				   struct dentry *unused, struct inode *inode,
3152 				   const char *name, const void *value,
3153 				   size_t size, int flags)
3154 {
3155 	struct shmem_inode_info *info = SHMEM_I(inode);
3156 
3157 	name = xattr_full_name(handler, name);
3158 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3159 }
3160 
3161 static const struct xattr_handler shmem_security_xattr_handler = {
3162 	.prefix = XATTR_SECURITY_PREFIX,
3163 	.get = shmem_xattr_handler_get,
3164 	.set = shmem_xattr_handler_set,
3165 };
3166 
3167 static const struct xattr_handler shmem_trusted_xattr_handler = {
3168 	.prefix = XATTR_TRUSTED_PREFIX,
3169 	.get = shmem_xattr_handler_get,
3170 	.set = shmem_xattr_handler_set,
3171 };
3172 
3173 static const struct xattr_handler *shmem_xattr_handlers[] = {
3174 #ifdef CONFIG_TMPFS_POSIX_ACL
3175 	&posix_acl_access_xattr_handler,
3176 	&posix_acl_default_xattr_handler,
3177 #endif
3178 	&shmem_security_xattr_handler,
3179 	&shmem_trusted_xattr_handler,
3180 	NULL
3181 };
3182 
3183 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3184 {
3185 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3186 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3187 }
3188 #endif /* CONFIG_TMPFS_XATTR */
3189 
3190 static const struct inode_operations shmem_short_symlink_operations = {
3191 	.readlink	= generic_readlink,
3192 	.get_link	= simple_get_link,
3193 #ifdef CONFIG_TMPFS_XATTR
3194 	.listxattr	= shmem_listxattr,
3195 #endif
3196 };
3197 
3198 static const struct inode_operations shmem_symlink_inode_operations = {
3199 	.readlink	= generic_readlink,
3200 	.get_link	= shmem_get_link,
3201 #ifdef CONFIG_TMPFS_XATTR
3202 	.listxattr	= shmem_listxattr,
3203 #endif
3204 };
3205 
3206 static struct dentry *shmem_get_parent(struct dentry *child)
3207 {
3208 	return ERR_PTR(-ESTALE);
3209 }
3210 
3211 static int shmem_match(struct inode *ino, void *vfh)
3212 {
3213 	__u32 *fh = vfh;
3214 	__u64 inum = fh[2];
3215 	inum = (inum << 32) | fh[1];
3216 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3217 }
3218 
3219 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3220 		struct fid *fid, int fh_len, int fh_type)
3221 {
3222 	struct inode *inode;
3223 	struct dentry *dentry = NULL;
3224 	u64 inum;
3225 
3226 	if (fh_len < 3)
3227 		return NULL;
3228 
3229 	inum = fid->raw[2];
3230 	inum = (inum << 32) | fid->raw[1];
3231 
3232 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3233 			shmem_match, fid->raw);
3234 	if (inode) {
3235 		dentry = d_find_alias(inode);
3236 		iput(inode);
3237 	}
3238 
3239 	return dentry;
3240 }
3241 
3242 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3243 				struct inode *parent)
3244 {
3245 	if (*len < 3) {
3246 		*len = 3;
3247 		return FILEID_INVALID;
3248 	}
3249 
3250 	if (inode_unhashed(inode)) {
3251 		/* Unfortunately insert_inode_hash is not idempotent,
3252 		 * so as we hash inodes here rather than at creation
3253 		 * time, we need a lock to ensure we only try
3254 		 * to do it once
3255 		 */
3256 		static DEFINE_SPINLOCK(lock);
3257 		spin_lock(&lock);
3258 		if (inode_unhashed(inode))
3259 			__insert_inode_hash(inode,
3260 					    inode->i_ino + inode->i_generation);
3261 		spin_unlock(&lock);
3262 	}
3263 
3264 	fh[0] = inode->i_generation;
3265 	fh[1] = inode->i_ino;
3266 	fh[2] = ((__u64)inode->i_ino) >> 32;
3267 
3268 	*len = 3;
3269 	return 1;
3270 }
3271 
3272 static const struct export_operations shmem_export_ops = {
3273 	.get_parent     = shmem_get_parent,
3274 	.encode_fh      = shmem_encode_fh,
3275 	.fh_to_dentry	= shmem_fh_to_dentry,
3276 };
3277 
3278 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3279 			       bool remount)
3280 {
3281 	char *this_char, *value, *rest;
3282 	struct mempolicy *mpol = NULL;
3283 	uid_t uid;
3284 	gid_t gid;
3285 
3286 	while (options != NULL) {
3287 		this_char = options;
3288 		for (;;) {
3289 			/*
3290 			 * NUL-terminate this option: unfortunately,
3291 			 * mount options form a comma-separated list,
3292 			 * but mpol's nodelist may also contain commas.
3293 			 */
3294 			options = strchr(options, ',');
3295 			if (options == NULL)
3296 				break;
3297 			options++;
3298 			if (!isdigit(*options)) {
3299 				options[-1] = '\0';
3300 				break;
3301 			}
3302 		}
3303 		if (!*this_char)
3304 			continue;
3305 		if ((value = strchr(this_char,'=')) != NULL) {
3306 			*value++ = 0;
3307 		} else {
3308 			pr_err("tmpfs: No value for mount option '%s'\n",
3309 			       this_char);
3310 			goto error;
3311 		}
3312 
3313 		if (!strcmp(this_char,"size")) {
3314 			unsigned long long size;
3315 			size = memparse(value,&rest);
3316 			if (*rest == '%') {
3317 				size <<= PAGE_SHIFT;
3318 				size *= totalram_pages;
3319 				do_div(size, 100);
3320 				rest++;
3321 			}
3322 			if (*rest)
3323 				goto bad_val;
3324 			sbinfo->max_blocks =
3325 				DIV_ROUND_UP(size, PAGE_SIZE);
3326 		} else if (!strcmp(this_char,"nr_blocks")) {
3327 			sbinfo->max_blocks = memparse(value, &rest);
3328 			if (*rest)
3329 				goto bad_val;
3330 		} else if (!strcmp(this_char,"nr_inodes")) {
3331 			sbinfo->max_inodes = memparse(value, &rest);
3332 			if (*rest)
3333 				goto bad_val;
3334 		} else if (!strcmp(this_char,"mode")) {
3335 			if (remount)
3336 				continue;
3337 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3338 			if (*rest)
3339 				goto bad_val;
3340 		} else if (!strcmp(this_char,"uid")) {
3341 			if (remount)
3342 				continue;
3343 			uid = simple_strtoul(value, &rest, 0);
3344 			if (*rest)
3345 				goto bad_val;
3346 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3347 			if (!uid_valid(sbinfo->uid))
3348 				goto bad_val;
3349 		} else if (!strcmp(this_char,"gid")) {
3350 			if (remount)
3351 				continue;
3352 			gid = simple_strtoul(value, &rest, 0);
3353 			if (*rest)
3354 				goto bad_val;
3355 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3356 			if (!gid_valid(sbinfo->gid))
3357 				goto bad_val;
3358 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3359 		} else if (!strcmp(this_char, "huge")) {
3360 			int huge;
3361 			huge = shmem_parse_huge(value);
3362 			if (huge < 0)
3363 				goto bad_val;
3364 			if (!has_transparent_hugepage() &&
3365 					huge != SHMEM_HUGE_NEVER)
3366 				goto bad_val;
3367 			sbinfo->huge = huge;
3368 #endif
3369 #ifdef CONFIG_NUMA
3370 		} else if (!strcmp(this_char,"mpol")) {
3371 			mpol_put(mpol);
3372 			mpol = NULL;
3373 			if (mpol_parse_str(value, &mpol))
3374 				goto bad_val;
3375 #endif
3376 		} else {
3377 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3378 			goto error;
3379 		}
3380 	}
3381 	sbinfo->mpol = mpol;
3382 	return 0;
3383 
3384 bad_val:
3385 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3386 	       value, this_char);
3387 error:
3388 	mpol_put(mpol);
3389 	return 1;
3390 
3391 }
3392 
3393 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3394 {
3395 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3396 	struct shmem_sb_info config = *sbinfo;
3397 	unsigned long inodes;
3398 	int error = -EINVAL;
3399 
3400 	config.mpol = NULL;
3401 	if (shmem_parse_options(data, &config, true))
3402 		return error;
3403 
3404 	spin_lock(&sbinfo->stat_lock);
3405 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3406 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3407 		goto out;
3408 	if (config.max_inodes < inodes)
3409 		goto out;
3410 	/*
3411 	 * Those tests disallow limited->unlimited while any are in use;
3412 	 * but we must separately disallow unlimited->limited, because
3413 	 * in that case we have no record of how much is already in use.
3414 	 */
3415 	if (config.max_blocks && !sbinfo->max_blocks)
3416 		goto out;
3417 	if (config.max_inodes && !sbinfo->max_inodes)
3418 		goto out;
3419 
3420 	error = 0;
3421 	sbinfo->huge = config.huge;
3422 	sbinfo->max_blocks  = config.max_blocks;
3423 	sbinfo->max_inodes  = config.max_inodes;
3424 	sbinfo->free_inodes = config.max_inodes - inodes;
3425 
3426 	/*
3427 	 * Preserve previous mempolicy unless mpol remount option was specified.
3428 	 */
3429 	if (config.mpol) {
3430 		mpol_put(sbinfo->mpol);
3431 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3432 	}
3433 out:
3434 	spin_unlock(&sbinfo->stat_lock);
3435 	return error;
3436 }
3437 
3438 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3439 {
3440 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3441 
3442 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3443 		seq_printf(seq, ",size=%luk",
3444 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3445 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3446 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3447 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3448 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3449 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3450 		seq_printf(seq, ",uid=%u",
3451 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3452 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3453 		seq_printf(seq, ",gid=%u",
3454 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3455 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3456 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3457 	if (sbinfo->huge)
3458 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3459 #endif
3460 	shmem_show_mpol(seq, sbinfo->mpol);
3461 	return 0;
3462 }
3463 
3464 #define MFD_NAME_PREFIX "memfd:"
3465 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3466 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3467 
3468 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3469 
3470 SYSCALL_DEFINE2(memfd_create,
3471 		const char __user *, uname,
3472 		unsigned int, flags)
3473 {
3474 	struct shmem_inode_info *info;
3475 	struct file *file;
3476 	int fd, error;
3477 	char *name;
3478 	long len;
3479 
3480 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3481 		return -EINVAL;
3482 
3483 	/* length includes terminating zero */
3484 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3485 	if (len <= 0)
3486 		return -EFAULT;
3487 	if (len > MFD_NAME_MAX_LEN + 1)
3488 		return -EINVAL;
3489 
3490 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3491 	if (!name)
3492 		return -ENOMEM;
3493 
3494 	strcpy(name, MFD_NAME_PREFIX);
3495 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3496 		error = -EFAULT;
3497 		goto err_name;
3498 	}
3499 
3500 	/* terminating-zero may have changed after strnlen_user() returned */
3501 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3502 		error = -EFAULT;
3503 		goto err_name;
3504 	}
3505 
3506 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3507 	if (fd < 0) {
3508 		error = fd;
3509 		goto err_name;
3510 	}
3511 
3512 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3513 	if (IS_ERR(file)) {
3514 		error = PTR_ERR(file);
3515 		goto err_fd;
3516 	}
3517 	info = SHMEM_I(file_inode(file));
3518 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3519 	file->f_flags |= O_RDWR | O_LARGEFILE;
3520 	if (flags & MFD_ALLOW_SEALING)
3521 		info->seals &= ~F_SEAL_SEAL;
3522 
3523 	fd_install(fd, file);
3524 	kfree(name);
3525 	return fd;
3526 
3527 err_fd:
3528 	put_unused_fd(fd);
3529 err_name:
3530 	kfree(name);
3531 	return error;
3532 }
3533 
3534 #endif /* CONFIG_TMPFS */
3535 
3536 static void shmem_put_super(struct super_block *sb)
3537 {
3538 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3539 
3540 	percpu_counter_destroy(&sbinfo->used_blocks);
3541 	mpol_put(sbinfo->mpol);
3542 	kfree(sbinfo);
3543 	sb->s_fs_info = NULL;
3544 }
3545 
3546 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3547 {
3548 	struct inode *inode;
3549 	struct shmem_sb_info *sbinfo;
3550 	int err = -ENOMEM;
3551 
3552 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3553 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3554 				L1_CACHE_BYTES), GFP_KERNEL);
3555 	if (!sbinfo)
3556 		return -ENOMEM;
3557 
3558 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3559 	sbinfo->uid = current_fsuid();
3560 	sbinfo->gid = current_fsgid();
3561 	sb->s_fs_info = sbinfo;
3562 
3563 #ifdef CONFIG_TMPFS
3564 	/*
3565 	 * Per default we only allow half of the physical ram per
3566 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3567 	 * but the internal instance is left unlimited.
3568 	 */
3569 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3570 		sbinfo->max_blocks = shmem_default_max_blocks();
3571 		sbinfo->max_inodes = shmem_default_max_inodes();
3572 		if (shmem_parse_options(data, sbinfo, false)) {
3573 			err = -EINVAL;
3574 			goto failed;
3575 		}
3576 	} else {
3577 		sb->s_flags |= MS_NOUSER;
3578 	}
3579 	sb->s_export_op = &shmem_export_ops;
3580 	sb->s_flags |= MS_NOSEC;
3581 #else
3582 	sb->s_flags |= MS_NOUSER;
3583 #endif
3584 
3585 	spin_lock_init(&sbinfo->stat_lock);
3586 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3587 		goto failed;
3588 	sbinfo->free_inodes = sbinfo->max_inodes;
3589 	spin_lock_init(&sbinfo->shrinklist_lock);
3590 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3591 
3592 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3593 	sb->s_blocksize = PAGE_SIZE;
3594 	sb->s_blocksize_bits = PAGE_SHIFT;
3595 	sb->s_magic = TMPFS_MAGIC;
3596 	sb->s_op = &shmem_ops;
3597 	sb->s_time_gran = 1;
3598 #ifdef CONFIG_TMPFS_XATTR
3599 	sb->s_xattr = shmem_xattr_handlers;
3600 #endif
3601 #ifdef CONFIG_TMPFS_POSIX_ACL
3602 	sb->s_flags |= MS_POSIXACL;
3603 #endif
3604 
3605 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3606 	if (!inode)
3607 		goto failed;
3608 	inode->i_uid = sbinfo->uid;
3609 	inode->i_gid = sbinfo->gid;
3610 	sb->s_root = d_make_root(inode);
3611 	if (!sb->s_root)
3612 		goto failed;
3613 	return 0;
3614 
3615 failed:
3616 	shmem_put_super(sb);
3617 	return err;
3618 }
3619 
3620 static struct kmem_cache *shmem_inode_cachep;
3621 
3622 static struct inode *shmem_alloc_inode(struct super_block *sb)
3623 {
3624 	struct shmem_inode_info *info;
3625 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3626 	if (!info)
3627 		return NULL;
3628 	return &info->vfs_inode;
3629 }
3630 
3631 static void shmem_destroy_callback(struct rcu_head *head)
3632 {
3633 	struct inode *inode = container_of(head, struct inode, i_rcu);
3634 	if (S_ISLNK(inode->i_mode))
3635 		kfree(inode->i_link);
3636 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3637 }
3638 
3639 static void shmem_destroy_inode(struct inode *inode)
3640 {
3641 	if (S_ISREG(inode->i_mode))
3642 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3643 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3644 }
3645 
3646 static void shmem_init_inode(void *foo)
3647 {
3648 	struct shmem_inode_info *info = foo;
3649 	inode_init_once(&info->vfs_inode);
3650 }
3651 
3652 static int shmem_init_inodecache(void)
3653 {
3654 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3655 				sizeof(struct shmem_inode_info),
3656 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3657 	return 0;
3658 }
3659 
3660 static void shmem_destroy_inodecache(void)
3661 {
3662 	kmem_cache_destroy(shmem_inode_cachep);
3663 }
3664 
3665 static const struct address_space_operations shmem_aops = {
3666 	.writepage	= shmem_writepage,
3667 	.set_page_dirty	= __set_page_dirty_no_writeback,
3668 #ifdef CONFIG_TMPFS
3669 	.write_begin	= shmem_write_begin,
3670 	.write_end	= shmem_write_end,
3671 #endif
3672 #ifdef CONFIG_MIGRATION
3673 	.migratepage	= migrate_page,
3674 #endif
3675 	.error_remove_page = generic_error_remove_page,
3676 };
3677 
3678 static const struct file_operations shmem_file_operations = {
3679 	.mmap		= shmem_mmap,
3680 	.get_unmapped_area = shmem_get_unmapped_area,
3681 #ifdef CONFIG_TMPFS
3682 	.llseek		= shmem_file_llseek,
3683 	.read_iter	= shmem_file_read_iter,
3684 	.write_iter	= generic_file_write_iter,
3685 	.fsync		= noop_fsync,
3686 	.splice_read	= generic_file_splice_read,
3687 	.splice_write	= iter_file_splice_write,
3688 	.fallocate	= shmem_fallocate,
3689 #endif
3690 };
3691 
3692 static const struct inode_operations shmem_inode_operations = {
3693 	.getattr	= shmem_getattr,
3694 	.setattr	= shmem_setattr,
3695 #ifdef CONFIG_TMPFS_XATTR
3696 	.listxattr	= shmem_listxattr,
3697 	.set_acl	= simple_set_acl,
3698 #endif
3699 };
3700 
3701 static const struct inode_operations shmem_dir_inode_operations = {
3702 #ifdef CONFIG_TMPFS
3703 	.create		= shmem_create,
3704 	.lookup		= simple_lookup,
3705 	.link		= shmem_link,
3706 	.unlink		= shmem_unlink,
3707 	.symlink	= shmem_symlink,
3708 	.mkdir		= shmem_mkdir,
3709 	.rmdir		= shmem_rmdir,
3710 	.mknod		= shmem_mknod,
3711 	.rename		= shmem_rename2,
3712 	.tmpfile	= shmem_tmpfile,
3713 #endif
3714 #ifdef CONFIG_TMPFS_XATTR
3715 	.listxattr	= shmem_listxattr,
3716 #endif
3717 #ifdef CONFIG_TMPFS_POSIX_ACL
3718 	.setattr	= shmem_setattr,
3719 	.set_acl	= simple_set_acl,
3720 #endif
3721 };
3722 
3723 static const struct inode_operations shmem_special_inode_operations = {
3724 #ifdef CONFIG_TMPFS_XATTR
3725 	.listxattr	= shmem_listxattr,
3726 #endif
3727 #ifdef CONFIG_TMPFS_POSIX_ACL
3728 	.setattr	= shmem_setattr,
3729 	.set_acl	= simple_set_acl,
3730 #endif
3731 };
3732 
3733 static const struct super_operations shmem_ops = {
3734 	.alloc_inode	= shmem_alloc_inode,
3735 	.destroy_inode	= shmem_destroy_inode,
3736 #ifdef CONFIG_TMPFS
3737 	.statfs		= shmem_statfs,
3738 	.remount_fs	= shmem_remount_fs,
3739 	.show_options	= shmem_show_options,
3740 #endif
3741 	.evict_inode	= shmem_evict_inode,
3742 	.drop_inode	= generic_delete_inode,
3743 	.put_super	= shmem_put_super,
3744 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3745 	.nr_cached_objects	= shmem_unused_huge_count,
3746 	.free_cached_objects	= shmem_unused_huge_scan,
3747 #endif
3748 };
3749 
3750 static const struct vm_operations_struct shmem_vm_ops = {
3751 	.fault		= shmem_fault,
3752 	.map_pages	= filemap_map_pages,
3753 #ifdef CONFIG_NUMA
3754 	.set_policy     = shmem_set_policy,
3755 	.get_policy     = shmem_get_policy,
3756 #endif
3757 };
3758 
3759 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3760 	int flags, const char *dev_name, void *data)
3761 {
3762 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3763 }
3764 
3765 static struct file_system_type shmem_fs_type = {
3766 	.owner		= THIS_MODULE,
3767 	.name		= "tmpfs",
3768 	.mount		= shmem_mount,
3769 	.kill_sb	= kill_litter_super,
3770 	.fs_flags	= FS_USERNS_MOUNT,
3771 };
3772 
3773 int __init shmem_init(void)
3774 {
3775 	int error;
3776 
3777 	/* If rootfs called this, don't re-init */
3778 	if (shmem_inode_cachep)
3779 		return 0;
3780 
3781 	error = shmem_init_inodecache();
3782 	if (error)
3783 		goto out3;
3784 
3785 	error = register_filesystem(&shmem_fs_type);
3786 	if (error) {
3787 		pr_err("Could not register tmpfs\n");
3788 		goto out2;
3789 	}
3790 
3791 	shm_mnt = kern_mount(&shmem_fs_type);
3792 	if (IS_ERR(shm_mnt)) {
3793 		error = PTR_ERR(shm_mnt);
3794 		pr_err("Could not kern_mount tmpfs\n");
3795 		goto out1;
3796 	}
3797 
3798 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3799 	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3800 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3801 	else
3802 		shmem_huge = 0; /* just in case it was patched */
3803 #endif
3804 	return 0;
3805 
3806 out1:
3807 	unregister_filesystem(&shmem_fs_type);
3808 out2:
3809 	shmem_destroy_inodecache();
3810 out3:
3811 	shm_mnt = ERR_PTR(error);
3812 	return error;
3813 }
3814 
3815 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3816 static ssize_t shmem_enabled_show(struct kobject *kobj,
3817 		struct kobj_attribute *attr, char *buf)
3818 {
3819 	int values[] = {
3820 		SHMEM_HUGE_ALWAYS,
3821 		SHMEM_HUGE_WITHIN_SIZE,
3822 		SHMEM_HUGE_ADVISE,
3823 		SHMEM_HUGE_NEVER,
3824 		SHMEM_HUGE_DENY,
3825 		SHMEM_HUGE_FORCE,
3826 	};
3827 	int i, count;
3828 
3829 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3830 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3831 
3832 		count += sprintf(buf + count, fmt,
3833 				shmem_format_huge(values[i]));
3834 	}
3835 	buf[count - 1] = '\n';
3836 	return count;
3837 }
3838 
3839 static ssize_t shmem_enabled_store(struct kobject *kobj,
3840 		struct kobj_attribute *attr, const char *buf, size_t count)
3841 {
3842 	char tmp[16];
3843 	int huge;
3844 
3845 	if (count + 1 > sizeof(tmp))
3846 		return -EINVAL;
3847 	memcpy(tmp, buf, count);
3848 	tmp[count] = '\0';
3849 	if (count && tmp[count - 1] == '\n')
3850 		tmp[count - 1] = '\0';
3851 
3852 	huge = shmem_parse_huge(tmp);
3853 	if (huge == -EINVAL)
3854 		return -EINVAL;
3855 	if (!has_transparent_hugepage() &&
3856 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3857 		return -EINVAL;
3858 
3859 	shmem_huge = huge;
3860 	if (shmem_huge < SHMEM_HUGE_DENY)
3861 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3862 	return count;
3863 }
3864 
3865 struct kobj_attribute shmem_enabled_attr =
3866 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3867 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3868 
3869 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3870 bool shmem_huge_enabled(struct vm_area_struct *vma)
3871 {
3872 	struct inode *inode = file_inode(vma->vm_file);
3873 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3874 	loff_t i_size;
3875 	pgoff_t off;
3876 
3877 	if (shmem_huge == SHMEM_HUGE_FORCE)
3878 		return true;
3879 	if (shmem_huge == SHMEM_HUGE_DENY)
3880 		return false;
3881 	switch (sbinfo->huge) {
3882 		case SHMEM_HUGE_NEVER:
3883 			return false;
3884 		case SHMEM_HUGE_ALWAYS:
3885 			return true;
3886 		case SHMEM_HUGE_WITHIN_SIZE:
3887 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3888 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3889 			if (i_size >= HPAGE_PMD_SIZE &&
3890 					i_size >> PAGE_SHIFT >= off)
3891 				return true;
3892 		case SHMEM_HUGE_ADVISE:
3893 			/* TODO: implement fadvise() hints */
3894 			return (vma->vm_flags & VM_HUGEPAGE);
3895 		default:
3896 			VM_BUG_ON(1);
3897 			return false;
3898 	}
3899 }
3900 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3901 
3902 #else /* !CONFIG_SHMEM */
3903 
3904 /*
3905  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3906  *
3907  * This is intended for small system where the benefits of the full
3908  * shmem code (swap-backed and resource-limited) are outweighed by
3909  * their complexity. On systems without swap this code should be
3910  * effectively equivalent, but much lighter weight.
3911  */
3912 
3913 static struct file_system_type shmem_fs_type = {
3914 	.name		= "tmpfs",
3915 	.mount		= ramfs_mount,
3916 	.kill_sb	= kill_litter_super,
3917 	.fs_flags	= FS_USERNS_MOUNT,
3918 };
3919 
3920 int __init shmem_init(void)
3921 {
3922 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3923 
3924 	shm_mnt = kern_mount(&shmem_fs_type);
3925 	BUG_ON(IS_ERR(shm_mnt));
3926 
3927 	return 0;
3928 }
3929 
3930 int shmem_unuse(swp_entry_t swap, struct page *page)
3931 {
3932 	return 0;
3933 }
3934 
3935 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3936 {
3937 	return 0;
3938 }
3939 
3940 void shmem_unlock_mapping(struct address_space *mapping)
3941 {
3942 }
3943 
3944 #ifdef CONFIG_MMU
3945 unsigned long shmem_get_unmapped_area(struct file *file,
3946 				      unsigned long addr, unsigned long len,
3947 				      unsigned long pgoff, unsigned long flags)
3948 {
3949 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3950 }
3951 #endif
3952 
3953 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3954 {
3955 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3956 }
3957 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3958 
3959 #define shmem_vm_ops				generic_file_vm_ops
3960 #define shmem_file_operations			ramfs_file_operations
3961 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3962 #define shmem_acct_size(flags, size)		0
3963 #define shmem_unacct_size(flags, size)		do {} while (0)
3964 
3965 #endif /* CONFIG_SHMEM */
3966 
3967 /* common code */
3968 
3969 static const struct dentry_operations anon_ops = {
3970 	.d_dname = simple_dname
3971 };
3972 
3973 static struct file *__shmem_file_setup(const char *name, loff_t size,
3974 				       unsigned long flags, unsigned int i_flags)
3975 {
3976 	struct file *res;
3977 	struct inode *inode;
3978 	struct path path;
3979 	struct super_block *sb;
3980 	struct qstr this;
3981 
3982 	if (IS_ERR(shm_mnt))
3983 		return ERR_CAST(shm_mnt);
3984 
3985 	if (size < 0 || size > MAX_LFS_FILESIZE)
3986 		return ERR_PTR(-EINVAL);
3987 
3988 	if (shmem_acct_size(flags, size))
3989 		return ERR_PTR(-ENOMEM);
3990 
3991 	res = ERR_PTR(-ENOMEM);
3992 	this.name = name;
3993 	this.len = strlen(name);
3994 	this.hash = 0; /* will go */
3995 	sb = shm_mnt->mnt_sb;
3996 	path.mnt = mntget(shm_mnt);
3997 	path.dentry = d_alloc_pseudo(sb, &this);
3998 	if (!path.dentry)
3999 		goto put_memory;
4000 	d_set_d_op(path.dentry, &anon_ops);
4001 
4002 	res = ERR_PTR(-ENOSPC);
4003 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4004 	if (!inode)
4005 		goto put_memory;
4006 
4007 	inode->i_flags |= i_flags;
4008 	d_instantiate(path.dentry, inode);
4009 	inode->i_size = size;
4010 	clear_nlink(inode);	/* It is unlinked */
4011 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4012 	if (IS_ERR(res))
4013 		goto put_path;
4014 
4015 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4016 		  &shmem_file_operations);
4017 	if (IS_ERR(res))
4018 		goto put_path;
4019 
4020 	return res;
4021 
4022 put_memory:
4023 	shmem_unacct_size(flags, size);
4024 put_path:
4025 	path_put(&path);
4026 	return res;
4027 }
4028 
4029 /**
4030  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4031  * 	kernel internal.  There will be NO LSM permission checks against the
4032  * 	underlying inode.  So users of this interface must do LSM checks at a
4033  *	higher layer.  The users are the big_key and shm implementations.  LSM
4034  *	checks are provided at the key or shm level rather than the inode.
4035  * @name: name for dentry (to be seen in /proc/<pid>/maps
4036  * @size: size to be set for the file
4037  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4038  */
4039 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4040 {
4041 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4042 }
4043 
4044 /**
4045  * shmem_file_setup - get an unlinked file living in tmpfs
4046  * @name: name for dentry (to be seen in /proc/<pid>/maps
4047  * @size: size to be set for the file
4048  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4049  */
4050 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4051 {
4052 	return __shmem_file_setup(name, size, flags, 0);
4053 }
4054 EXPORT_SYMBOL_GPL(shmem_file_setup);
4055 
4056 /**
4057  * shmem_zero_setup - setup a shared anonymous mapping
4058  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4059  */
4060 int shmem_zero_setup(struct vm_area_struct *vma)
4061 {
4062 	struct file *file;
4063 	loff_t size = vma->vm_end - vma->vm_start;
4064 
4065 	/*
4066 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4067 	 * between XFS directory reading and selinux: since this file is only
4068 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4069 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4070 	 */
4071 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4072 	if (IS_ERR(file))
4073 		return PTR_ERR(file);
4074 
4075 	if (vma->vm_file)
4076 		fput(vma->vm_file);
4077 	vma->vm_file = file;
4078 	vma->vm_ops = &shmem_vm_ops;
4079 
4080 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4081 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4082 			(vma->vm_end & HPAGE_PMD_MASK)) {
4083 		khugepaged_enter(vma, vma->vm_flags);
4084 	}
4085 
4086 	return 0;
4087 }
4088 
4089 /**
4090  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4091  * @mapping:	the page's address_space
4092  * @index:	the page index
4093  * @gfp:	the page allocator flags to use if allocating
4094  *
4095  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4096  * with any new page allocations done using the specified allocation flags.
4097  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4098  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4099  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4100  *
4101  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4102  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4103  */
4104 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4105 					 pgoff_t index, gfp_t gfp)
4106 {
4107 #ifdef CONFIG_SHMEM
4108 	struct inode *inode = mapping->host;
4109 	struct page *page;
4110 	int error;
4111 
4112 	BUG_ON(mapping->a_ops != &shmem_aops);
4113 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4114 				  gfp, NULL, NULL);
4115 	if (error)
4116 		page = ERR_PTR(error);
4117 	else
4118 		unlock_page(page);
4119 	return page;
4120 #else
4121 	/*
4122 	 * The tiny !SHMEM case uses ramfs without swap
4123 	 */
4124 	return read_cache_page_gfp(mapping, index, gfp);
4125 #endif
4126 }
4127 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4128