1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 */ 40 41 #include <linux/mm.h> 42 #include <linux/pagemap.h> 43 #include <linux/swap.h> 44 #include <linux/swapops.h> 45 #include <linux/slab.h> 46 #include <linux/init.h> 47 #include <linux/rmap.h> 48 #include <linux/rcupdate.h> 49 #include <linux/module.h> 50 #include <linux/kallsyms.h> 51 52 #include <asm/tlbflush.h> 53 54 struct kmem_cache *anon_vma_cachep; 55 56 /* This must be called under the mmap_sem. */ 57 int anon_vma_prepare(struct vm_area_struct *vma) 58 { 59 struct anon_vma *anon_vma = vma->anon_vma; 60 61 might_sleep(); 62 if (unlikely(!anon_vma)) { 63 struct mm_struct *mm = vma->vm_mm; 64 struct anon_vma *allocated, *locked; 65 66 anon_vma = find_mergeable_anon_vma(vma); 67 if (anon_vma) { 68 allocated = NULL; 69 locked = anon_vma; 70 spin_lock(&locked->lock); 71 } else { 72 anon_vma = anon_vma_alloc(); 73 if (unlikely(!anon_vma)) 74 return -ENOMEM; 75 allocated = anon_vma; 76 locked = NULL; 77 } 78 79 /* page_table_lock to protect against threads */ 80 spin_lock(&mm->page_table_lock); 81 if (likely(!vma->anon_vma)) { 82 vma->anon_vma = anon_vma; 83 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 84 allocated = NULL; 85 } 86 spin_unlock(&mm->page_table_lock); 87 88 if (locked) 89 spin_unlock(&locked->lock); 90 if (unlikely(allocated)) 91 anon_vma_free(allocated); 92 } 93 return 0; 94 } 95 96 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 97 { 98 BUG_ON(vma->anon_vma != next->anon_vma); 99 list_del(&next->anon_vma_node); 100 } 101 102 void __anon_vma_link(struct vm_area_struct *vma) 103 { 104 struct anon_vma *anon_vma = vma->anon_vma; 105 106 if (anon_vma) 107 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 108 } 109 110 void anon_vma_link(struct vm_area_struct *vma) 111 { 112 struct anon_vma *anon_vma = vma->anon_vma; 113 114 if (anon_vma) { 115 spin_lock(&anon_vma->lock); 116 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 117 spin_unlock(&anon_vma->lock); 118 } 119 } 120 121 void anon_vma_unlink(struct vm_area_struct *vma) 122 { 123 struct anon_vma *anon_vma = vma->anon_vma; 124 int empty; 125 126 if (!anon_vma) 127 return; 128 129 spin_lock(&anon_vma->lock); 130 list_del(&vma->anon_vma_node); 131 132 /* We must garbage collect the anon_vma if it's empty */ 133 empty = list_empty(&anon_vma->head); 134 spin_unlock(&anon_vma->lock); 135 136 if (empty) 137 anon_vma_free(anon_vma); 138 } 139 140 static void anon_vma_ctor(void *data, struct kmem_cache *cachep, 141 unsigned long flags) 142 { 143 struct anon_vma *anon_vma = data; 144 145 spin_lock_init(&anon_vma->lock); 146 INIT_LIST_HEAD(&anon_vma->head); 147 } 148 149 void __init anon_vma_init(void) 150 { 151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 153 } 154 155 /* 156 * Getting a lock on a stable anon_vma from a page off the LRU is 157 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 158 */ 159 static struct anon_vma *page_lock_anon_vma(struct page *page) 160 { 161 struct anon_vma *anon_vma; 162 unsigned long anon_mapping; 163 164 rcu_read_lock(); 165 anon_mapping = (unsigned long) page->mapping; 166 if (!(anon_mapping & PAGE_MAPPING_ANON)) 167 goto out; 168 if (!page_mapped(page)) 169 goto out; 170 171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 172 spin_lock(&anon_vma->lock); 173 return anon_vma; 174 out: 175 rcu_read_unlock(); 176 return NULL; 177 } 178 179 static void page_unlock_anon_vma(struct anon_vma *anon_vma) 180 { 181 spin_unlock(&anon_vma->lock); 182 rcu_read_unlock(); 183 } 184 185 /* 186 * At what user virtual address is page expected in vma? 187 */ 188 static inline unsigned long 189 vma_address(struct page *page, struct vm_area_struct *vma) 190 { 191 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 192 unsigned long address; 193 194 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 195 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 196 /* page should be within any vma from prio_tree_next */ 197 BUG_ON(!PageAnon(page)); 198 return -EFAULT; 199 } 200 return address; 201 } 202 203 /* 204 * At what user virtual address is page expected in vma? checking that the 205 * page matches the vma: currently only used on anon pages, by unuse_vma; 206 */ 207 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 208 { 209 if (PageAnon(page)) { 210 if ((void *)vma->anon_vma != 211 (void *)page->mapping - PAGE_MAPPING_ANON) 212 return -EFAULT; 213 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 214 if (!vma->vm_file || 215 vma->vm_file->f_mapping != page->mapping) 216 return -EFAULT; 217 } else 218 return -EFAULT; 219 return vma_address(page, vma); 220 } 221 222 /* 223 * Check that @page is mapped at @address into @mm. 224 * 225 * On success returns with pte mapped and locked. 226 */ 227 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 228 unsigned long address, spinlock_t **ptlp) 229 { 230 pgd_t *pgd; 231 pud_t *pud; 232 pmd_t *pmd; 233 pte_t *pte; 234 spinlock_t *ptl; 235 236 pgd = pgd_offset(mm, address); 237 if (!pgd_present(*pgd)) 238 return NULL; 239 240 pud = pud_offset(pgd, address); 241 if (!pud_present(*pud)) 242 return NULL; 243 244 pmd = pmd_offset(pud, address); 245 if (!pmd_present(*pmd)) 246 return NULL; 247 248 pte = pte_offset_map(pmd, address); 249 /* Make a quick check before getting the lock */ 250 if (!pte_present(*pte)) { 251 pte_unmap(pte); 252 return NULL; 253 } 254 255 ptl = pte_lockptr(mm, pmd); 256 spin_lock(ptl); 257 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 258 *ptlp = ptl; 259 return pte; 260 } 261 pte_unmap_unlock(pte, ptl); 262 return NULL; 263 } 264 265 /* 266 * Subfunctions of page_referenced: page_referenced_one called 267 * repeatedly from either page_referenced_anon or page_referenced_file. 268 */ 269 static int page_referenced_one(struct page *page, 270 struct vm_area_struct *vma, unsigned int *mapcount) 271 { 272 struct mm_struct *mm = vma->vm_mm; 273 unsigned long address; 274 pte_t *pte; 275 spinlock_t *ptl; 276 int referenced = 0; 277 278 address = vma_address(page, vma); 279 if (address == -EFAULT) 280 goto out; 281 282 pte = page_check_address(page, mm, address, &ptl); 283 if (!pte) 284 goto out; 285 286 if (ptep_clear_flush_young(vma, address, pte)) 287 referenced++; 288 289 /* Pretend the page is referenced if the task has the 290 swap token and is in the middle of a page fault. */ 291 if (mm != current->mm && has_swap_token(mm) && 292 rwsem_is_locked(&mm->mmap_sem)) 293 referenced++; 294 295 (*mapcount)--; 296 pte_unmap_unlock(pte, ptl); 297 out: 298 return referenced; 299 } 300 301 static int page_referenced_anon(struct page *page) 302 { 303 unsigned int mapcount; 304 struct anon_vma *anon_vma; 305 struct vm_area_struct *vma; 306 int referenced = 0; 307 308 anon_vma = page_lock_anon_vma(page); 309 if (!anon_vma) 310 return referenced; 311 312 mapcount = page_mapcount(page); 313 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 314 referenced += page_referenced_one(page, vma, &mapcount); 315 if (!mapcount) 316 break; 317 } 318 319 page_unlock_anon_vma(anon_vma); 320 return referenced; 321 } 322 323 /** 324 * page_referenced_file - referenced check for object-based rmap 325 * @page: the page we're checking references on. 326 * 327 * For an object-based mapped page, find all the places it is mapped and 328 * check/clear the referenced flag. This is done by following the page->mapping 329 * pointer, then walking the chain of vmas it holds. It returns the number 330 * of references it found. 331 * 332 * This function is only called from page_referenced for object-based pages. 333 */ 334 static int page_referenced_file(struct page *page) 335 { 336 unsigned int mapcount; 337 struct address_space *mapping = page->mapping; 338 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 339 struct vm_area_struct *vma; 340 struct prio_tree_iter iter; 341 int referenced = 0; 342 343 /* 344 * The caller's checks on page->mapping and !PageAnon have made 345 * sure that this is a file page: the check for page->mapping 346 * excludes the case just before it gets set on an anon page. 347 */ 348 BUG_ON(PageAnon(page)); 349 350 /* 351 * The page lock not only makes sure that page->mapping cannot 352 * suddenly be NULLified by truncation, it makes sure that the 353 * structure at mapping cannot be freed and reused yet, 354 * so we can safely take mapping->i_mmap_lock. 355 */ 356 BUG_ON(!PageLocked(page)); 357 358 spin_lock(&mapping->i_mmap_lock); 359 360 /* 361 * i_mmap_lock does not stabilize mapcount at all, but mapcount 362 * is more likely to be accurate if we note it after spinning. 363 */ 364 mapcount = page_mapcount(page); 365 366 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 367 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 368 == (VM_LOCKED|VM_MAYSHARE)) { 369 referenced++; 370 break; 371 } 372 referenced += page_referenced_one(page, vma, &mapcount); 373 if (!mapcount) 374 break; 375 } 376 377 spin_unlock(&mapping->i_mmap_lock); 378 return referenced; 379 } 380 381 /** 382 * page_referenced - test if the page was referenced 383 * @page: the page to test 384 * @is_locked: caller holds lock on the page 385 * 386 * Quick test_and_clear_referenced for all mappings to a page, 387 * returns the number of ptes which referenced the page. 388 */ 389 int page_referenced(struct page *page, int is_locked) 390 { 391 int referenced = 0; 392 393 if (page_test_and_clear_young(page)) 394 referenced++; 395 396 if (TestClearPageReferenced(page)) 397 referenced++; 398 399 if (page_mapped(page) && page->mapping) { 400 if (PageAnon(page)) 401 referenced += page_referenced_anon(page); 402 else if (is_locked) 403 referenced += page_referenced_file(page); 404 else if (TestSetPageLocked(page)) 405 referenced++; 406 else { 407 if (page->mapping) 408 referenced += page_referenced_file(page); 409 unlock_page(page); 410 } 411 } 412 return referenced; 413 } 414 415 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) 416 { 417 struct mm_struct *mm = vma->vm_mm; 418 unsigned long address; 419 pte_t *pte; 420 spinlock_t *ptl; 421 int ret = 0; 422 423 address = vma_address(page, vma); 424 if (address == -EFAULT) 425 goto out; 426 427 pte = page_check_address(page, mm, address, &ptl); 428 if (!pte) 429 goto out; 430 431 if (pte_dirty(*pte) || pte_write(*pte)) { 432 pte_t entry; 433 434 flush_cache_page(vma, address, pte_pfn(*pte)); 435 entry = ptep_clear_flush(vma, address, pte); 436 entry = pte_wrprotect(entry); 437 entry = pte_mkclean(entry); 438 set_pte_at(mm, address, pte, entry); 439 ret = 1; 440 } 441 442 pte_unmap_unlock(pte, ptl); 443 out: 444 return ret; 445 } 446 447 static int page_mkclean_file(struct address_space *mapping, struct page *page) 448 { 449 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 450 struct vm_area_struct *vma; 451 struct prio_tree_iter iter; 452 int ret = 0; 453 454 BUG_ON(PageAnon(page)); 455 456 spin_lock(&mapping->i_mmap_lock); 457 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 458 if (vma->vm_flags & VM_SHARED) 459 ret += page_mkclean_one(page, vma); 460 } 461 spin_unlock(&mapping->i_mmap_lock); 462 return ret; 463 } 464 465 int page_mkclean(struct page *page) 466 { 467 int ret = 0; 468 469 BUG_ON(!PageLocked(page)); 470 471 if (page_mapped(page)) { 472 struct address_space *mapping = page_mapping(page); 473 if (mapping) 474 ret = page_mkclean_file(mapping, page); 475 if (page_test_dirty(page)) { 476 page_clear_dirty(page); 477 ret = 1; 478 } 479 } 480 481 return ret; 482 } 483 EXPORT_SYMBOL_GPL(page_mkclean); 484 485 /** 486 * page_set_anon_rmap - setup new anonymous rmap 487 * @page: the page to add the mapping to 488 * @vma: the vm area in which the mapping is added 489 * @address: the user virtual address mapped 490 */ 491 static void __page_set_anon_rmap(struct page *page, 492 struct vm_area_struct *vma, unsigned long address) 493 { 494 struct anon_vma *anon_vma = vma->anon_vma; 495 496 BUG_ON(!anon_vma); 497 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 498 page->mapping = (struct address_space *) anon_vma; 499 500 page->index = linear_page_index(vma, address); 501 502 /* 503 * nr_mapped state can be updated without turning off 504 * interrupts because it is not modified via interrupt. 505 */ 506 __inc_zone_page_state(page, NR_ANON_PAGES); 507 } 508 509 /** 510 * page_set_anon_rmap - sanity check anonymous rmap addition 511 * @page: the page to add the mapping to 512 * @vma: the vm area in which the mapping is added 513 * @address: the user virtual address mapped 514 */ 515 static void __page_check_anon_rmap(struct page *page, 516 struct vm_area_struct *vma, unsigned long address) 517 { 518 #ifdef CONFIG_DEBUG_VM 519 /* 520 * The page's anon-rmap details (mapping and index) are guaranteed to 521 * be set up correctly at this point. 522 * 523 * We have exclusion against page_add_anon_rmap because the caller 524 * always holds the page locked, except if called from page_dup_rmap, 525 * in which case the page is already known to be setup. 526 * 527 * We have exclusion against page_add_new_anon_rmap because those pages 528 * are initially only visible via the pagetables, and the pte is locked 529 * over the call to page_add_new_anon_rmap. 530 */ 531 struct anon_vma *anon_vma = vma->anon_vma; 532 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 533 BUG_ON(page->mapping != (struct address_space *)anon_vma); 534 BUG_ON(page->index != linear_page_index(vma, address)); 535 #endif 536 } 537 538 /** 539 * page_add_anon_rmap - add pte mapping to an anonymous page 540 * @page: the page to add the mapping to 541 * @vma: the vm area in which the mapping is added 542 * @address: the user virtual address mapped 543 * 544 * The caller needs to hold the pte lock and the page must be locked. 545 */ 546 void page_add_anon_rmap(struct page *page, 547 struct vm_area_struct *vma, unsigned long address) 548 { 549 VM_BUG_ON(!PageLocked(page)); 550 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 551 if (atomic_inc_and_test(&page->_mapcount)) 552 __page_set_anon_rmap(page, vma, address); 553 else 554 __page_check_anon_rmap(page, vma, address); 555 } 556 557 /* 558 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 559 * @page: the page to add the mapping to 560 * @vma: the vm area in which the mapping is added 561 * @address: the user virtual address mapped 562 * 563 * Same as page_add_anon_rmap but must only be called on *new* pages. 564 * This means the inc-and-test can be bypassed. 565 * Page does not have to be locked. 566 */ 567 void page_add_new_anon_rmap(struct page *page, 568 struct vm_area_struct *vma, unsigned long address) 569 { 570 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 571 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ 572 __page_set_anon_rmap(page, vma, address); 573 } 574 575 /** 576 * page_add_file_rmap - add pte mapping to a file page 577 * @page: the page to add the mapping to 578 * 579 * The caller needs to hold the pte lock. 580 */ 581 void page_add_file_rmap(struct page *page) 582 { 583 if (atomic_inc_and_test(&page->_mapcount)) 584 __inc_zone_page_state(page, NR_FILE_MAPPED); 585 } 586 587 #ifdef CONFIG_DEBUG_VM 588 /** 589 * page_dup_rmap - duplicate pte mapping to a page 590 * @page: the page to add the mapping to 591 * 592 * For copy_page_range only: minimal extract from page_add_file_rmap / 593 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's 594 * quicker. 595 * 596 * The caller needs to hold the pte lock. 597 */ 598 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) 599 { 600 BUG_ON(page_mapcount(page) == 0); 601 if (PageAnon(page)) 602 __page_check_anon_rmap(page, vma, address); 603 atomic_inc(&page->_mapcount); 604 } 605 #endif 606 607 /** 608 * page_remove_rmap - take down pte mapping from a page 609 * @page: page to remove mapping from 610 * 611 * The caller needs to hold the pte lock. 612 */ 613 void page_remove_rmap(struct page *page, struct vm_area_struct *vma) 614 { 615 if (atomic_add_negative(-1, &page->_mapcount)) { 616 if (unlikely(page_mapcount(page) < 0)) { 617 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); 618 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page)); 619 printk (KERN_EMERG " page->flags = %lx\n", page->flags); 620 printk (KERN_EMERG " page->count = %x\n", page_count(page)); 621 printk (KERN_EMERG " page->mapping = %p\n", page->mapping); 622 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops); 623 if (vma->vm_ops) { 624 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage); 625 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault); 626 } 627 if (vma->vm_file && vma->vm_file->f_op) 628 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap); 629 BUG(); 630 } 631 632 /* 633 * It would be tidy to reset the PageAnon mapping here, 634 * but that might overwrite a racing page_add_anon_rmap 635 * which increments mapcount after us but sets mapping 636 * before us: so leave the reset to free_hot_cold_page, 637 * and remember that it's only reliable while mapped. 638 * Leaving it set also helps swapoff to reinstate ptes 639 * faster for those pages still in swapcache. 640 */ 641 if (page_test_dirty(page)) { 642 page_clear_dirty(page); 643 set_page_dirty(page); 644 } 645 __dec_zone_page_state(page, 646 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); 647 } 648 } 649 650 /* 651 * Subfunctions of try_to_unmap: try_to_unmap_one called 652 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 653 */ 654 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 655 int migration) 656 { 657 struct mm_struct *mm = vma->vm_mm; 658 unsigned long address; 659 pte_t *pte; 660 pte_t pteval; 661 spinlock_t *ptl; 662 int ret = SWAP_AGAIN; 663 664 address = vma_address(page, vma); 665 if (address == -EFAULT) 666 goto out; 667 668 pte = page_check_address(page, mm, address, &ptl); 669 if (!pte) 670 goto out; 671 672 /* 673 * If the page is mlock()d, we cannot swap it out. 674 * If it's recently referenced (perhaps page_referenced 675 * skipped over this mm) then we should reactivate it. 676 */ 677 if (!migration && ((vma->vm_flags & VM_LOCKED) || 678 (ptep_clear_flush_young(vma, address, pte)))) { 679 ret = SWAP_FAIL; 680 goto out_unmap; 681 } 682 683 /* Nuke the page table entry. */ 684 flush_cache_page(vma, address, page_to_pfn(page)); 685 pteval = ptep_clear_flush(vma, address, pte); 686 687 /* Move the dirty bit to the physical page now the pte is gone. */ 688 if (pte_dirty(pteval)) 689 set_page_dirty(page); 690 691 /* Update high watermark before we lower rss */ 692 update_hiwater_rss(mm); 693 694 if (PageAnon(page)) { 695 swp_entry_t entry = { .val = page_private(page) }; 696 697 if (PageSwapCache(page)) { 698 /* 699 * Store the swap location in the pte. 700 * See handle_pte_fault() ... 701 */ 702 swap_duplicate(entry); 703 if (list_empty(&mm->mmlist)) { 704 spin_lock(&mmlist_lock); 705 if (list_empty(&mm->mmlist)) 706 list_add(&mm->mmlist, &init_mm.mmlist); 707 spin_unlock(&mmlist_lock); 708 } 709 dec_mm_counter(mm, anon_rss); 710 #ifdef CONFIG_MIGRATION 711 } else { 712 /* 713 * Store the pfn of the page in a special migration 714 * pte. do_swap_page() will wait until the migration 715 * pte is removed and then restart fault handling. 716 */ 717 BUG_ON(!migration); 718 entry = make_migration_entry(page, pte_write(pteval)); 719 #endif 720 } 721 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 722 BUG_ON(pte_file(*pte)); 723 } else 724 #ifdef CONFIG_MIGRATION 725 if (migration) { 726 /* Establish migration entry for a file page */ 727 swp_entry_t entry; 728 entry = make_migration_entry(page, pte_write(pteval)); 729 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 730 } else 731 #endif 732 dec_mm_counter(mm, file_rss); 733 734 735 page_remove_rmap(page, vma); 736 page_cache_release(page); 737 738 out_unmap: 739 pte_unmap_unlock(pte, ptl); 740 out: 741 return ret; 742 } 743 744 /* 745 * objrmap doesn't work for nonlinear VMAs because the assumption that 746 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 747 * Consequently, given a particular page and its ->index, we cannot locate the 748 * ptes which are mapping that page without an exhaustive linear search. 749 * 750 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 751 * maps the file to which the target page belongs. The ->vm_private_data field 752 * holds the current cursor into that scan. Successive searches will circulate 753 * around the vma's virtual address space. 754 * 755 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 756 * more scanning pressure is placed against them as well. Eventually pages 757 * will become fully unmapped and are eligible for eviction. 758 * 759 * For very sparsely populated VMAs this is a little inefficient - chances are 760 * there there won't be many ptes located within the scan cluster. In this case 761 * maybe we could scan further - to the end of the pte page, perhaps. 762 */ 763 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 764 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 765 766 static void try_to_unmap_cluster(unsigned long cursor, 767 unsigned int *mapcount, struct vm_area_struct *vma) 768 { 769 struct mm_struct *mm = vma->vm_mm; 770 pgd_t *pgd; 771 pud_t *pud; 772 pmd_t *pmd; 773 pte_t *pte; 774 pte_t pteval; 775 spinlock_t *ptl; 776 struct page *page; 777 unsigned long address; 778 unsigned long end; 779 780 address = (vma->vm_start + cursor) & CLUSTER_MASK; 781 end = address + CLUSTER_SIZE; 782 if (address < vma->vm_start) 783 address = vma->vm_start; 784 if (end > vma->vm_end) 785 end = vma->vm_end; 786 787 pgd = pgd_offset(mm, address); 788 if (!pgd_present(*pgd)) 789 return; 790 791 pud = pud_offset(pgd, address); 792 if (!pud_present(*pud)) 793 return; 794 795 pmd = pmd_offset(pud, address); 796 if (!pmd_present(*pmd)) 797 return; 798 799 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 800 801 /* Update high watermark before we lower rss */ 802 update_hiwater_rss(mm); 803 804 for (; address < end; pte++, address += PAGE_SIZE) { 805 if (!pte_present(*pte)) 806 continue; 807 page = vm_normal_page(vma, address, *pte); 808 BUG_ON(!page || PageAnon(page)); 809 810 if (ptep_clear_flush_young(vma, address, pte)) 811 continue; 812 813 /* Nuke the page table entry. */ 814 flush_cache_page(vma, address, pte_pfn(*pte)); 815 pteval = ptep_clear_flush(vma, address, pte); 816 817 /* If nonlinear, store the file page offset in the pte. */ 818 if (page->index != linear_page_index(vma, address)) 819 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 820 821 /* Move the dirty bit to the physical page now the pte is gone. */ 822 if (pte_dirty(pteval)) 823 set_page_dirty(page); 824 825 page_remove_rmap(page, vma); 826 page_cache_release(page); 827 dec_mm_counter(mm, file_rss); 828 (*mapcount)--; 829 } 830 pte_unmap_unlock(pte - 1, ptl); 831 } 832 833 static int try_to_unmap_anon(struct page *page, int migration) 834 { 835 struct anon_vma *anon_vma; 836 struct vm_area_struct *vma; 837 int ret = SWAP_AGAIN; 838 839 anon_vma = page_lock_anon_vma(page); 840 if (!anon_vma) 841 return ret; 842 843 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 844 ret = try_to_unmap_one(page, vma, migration); 845 if (ret == SWAP_FAIL || !page_mapped(page)) 846 break; 847 } 848 849 page_unlock_anon_vma(anon_vma); 850 return ret; 851 } 852 853 /** 854 * try_to_unmap_file - unmap file page using the object-based rmap method 855 * @page: the page to unmap 856 * 857 * Find all the mappings of a page using the mapping pointer and the vma chains 858 * contained in the address_space struct it points to. 859 * 860 * This function is only called from try_to_unmap for object-based pages. 861 */ 862 static int try_to_unmap_file(struct page *page, int migration) 863 { 864 struct address_space *mapping = page->mapping; 865 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 866 struct vm_area_struct *vma; 867 struct prio_tree_iter iter; 868 int ret = SWAP_AGAIN; 869 unsigned long cursor; 870 unsigned long max_nl_cursor = 0; 871 unsigned long max_nl_size = 0; 872 unsigned int mapcount; 873 874 spin_lock(&mapping->i_mmap_lock); 875 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 876 ret = try_to_unmap_one(page, vma, migration); 877 if (ret == SWAP_FAIL || !page_mapped(page)) 878 goto out; 879 } 880 881 if (list_empty(&mapping->i_mmap_nonlinear)) 882 goto out; 883 884 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 885 shared.vm_set.list) { 886 if ((vma->vm_flags & VM_LOCKED) && !migration) 887 continue; 888 cursor = (unsigned long) vma->vm_private_data; 889 if (cursor > max_nl_cursor) 890 max_nl_cursor = cursor; 891 cursor = vma->vm_end - vma->vm_start; 892 if (cursor > max_nl_size) 893 max_nl_size = cursor; 894 } 895 896 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 897 ret = SWAP_FAIL; 898 goto out; 899 } 900 901 /* 902 * We don't try to search for this page in the nonlinear vmas, 903 * and page_referenced wouldn't have found it anyway. Instead 904 * just walk the nonlinear vmas trying to age and unmap some. 905 * The mapcount of the page we came in with is irrelevant, 906 * but even so use it as a guide to how hard we should try? 907 */ 908 mapcount = page_mapcount(page); 909 if (!mapcount) 910 goto out; 911 cond_resched_lock(&mapping->i_mmap_lock); 912 913 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 914 if (max_nl_cursor == 0) 915 max_nl_cursor = CLUSTER_SIZE; 916 917 do { 918 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 919 shared.vm_set.list) { 920 if ((vma->vm_flags & VM_LOCKED) && !migration) 921 continue; 922 cursor = (unsigned long) vma->vm_private_data; 923 while ( cursor < max_nl_cursor && 924 cursor < vma->vm_end - vma->vm_start) { 925 try_to_unmap_cluster(cursor, &mapcount, vma); 926 cursor += CLUSTER_SIZE; 927 vma->vm_private_data = (void *) cursor; 928 if ((int)mapcount <= 0) 929 goto out; 930 } 931 vma->vm_private_data = (void *) max_nl_cursor; 932 } 933 cond_resched_lock(&mapping->i_mmap_lock); 934 max_nl_cursor += CLUSTER_SIZE; 935 } while (max_nl_cursor <= max_nl_size); 936 937 /* 938 * Don't loop forever (perhaps all the remaining pages are 939 * in locked vmas). Reset cursor on all unreserved nonlinear 940 * vmas, now forgetting on which ones it had fallen behind. 941 */ 942 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 943 vma->vm_private_data = NULL; 944 out: 945 spin_unlock(&mapping->i_mmap_lock); 946 return ret; 947 } 948 949 /** 950 * try_to_unmap - try to remove all page table mappings to a page 951 * @page: the page to get unmapped 952 * 953 * Tries to remove all the page table entries which are mapping this 954 * page, used in the pageout path. Caller must hold the page lock. 955 * Return values are: 956 * 957 * SWAP_SUCCESS - we succeeded in removing all mappings 958 * SWAP_AGAIN - we missed a mapping, try again later 959 * SWAP_FAIL - the page is unswappable 960 */ 961 int try_to_unmap(struct page *page, int migration) 962 { 963 int ret; 964 965 BUG_ON(!PageLocked(page)); 966 967 if (PageAnon(page)) 968 ret = try_to_unmap_anon(page, migration); 969 else 970 ret = try_to_unmap_file(page, migration); 971 972 if (!page_mapped(page)) 973 ret = SWAP_SUCCESS; 974 return ret; 975 } 976 977