1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 akpm@zip.com.au 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include <linux/pagevec.h> 18 #include <linux/pagemap.h> 19 20 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 21 { 22 } 23 EXPORT_SYMBOL(default_unplug_io_fn); 24 25 struct backing_dev_info default_backing_dev_info = { 26 .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE, 27 .state = 0, 28 .capabilities = BDI_CAP_MAP_COPY, 29 .unplug_io_fn = default_unplug_io_fn, 30 }; 31 EXPORT_SYMBOL_GPL(default_backing_dev_info); 32 33 /* 34 * Initialise a struct file's readahead state. Assumes that the caller has 35 * memset *ra to zero. 36 */ 37 void 38 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 39 { 40 ra->ra_pages = mapping->backing_dev_info->ra_pages; 41 ra->prev_pos = -1; 42 } 43 EXPORT_SYMBOL_GPL(file_ra_state_init); 44 45 #define list_to_page(head) (list_entry((head)->prev, struct page, lru)) 46 47 /** 48 * read_cache_pages - populate an address space with some pages & start reads against them 49 * @mapping: the address_space 50 * @pages: The address of a list_head which contains the target pages. These 51 * pages have their ->index populated and are otherwise uninitialised. 52 * @filler: callback routine for filling a single page. 53 * @data: private data for the callback routine. 54 * 55 * Hides the details of the LRU cache etc from the filesystems. 56 */ 57 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 58 int (*filler)(void *, struct page *), void *data) 59 { 60 struct page *page; 61 int ret = 0; 62 63 while (!list_empty(pages)) { 64 page = list_to_page(pages); 65 list_del(&page->lru); 66 if (add_to_page_cache_lru(page, mapping, 67 page->index, GFP_KERNEL)) { 68 page_cache_release(page); 69 continue; 70 } 71 page_cache_release(page); 72 73 ret = filler(data, page); 74 if (unlikely(ret)) { 75 put_pages_list(pages); 76 break; 77 } 78 task_io_account_read(PAGE_CACHE_SIZE); 79 } 80 return ret; 81 } 82 83 EXPORT_SYMBOL(read_cache_pages); 84 85 static int read_pages(struct address_space *mapping, struct file *filp, 86 struct list_head *pages, unsigned nr_pages) 87 { 88 unsigned page_idx; 89 int ret; 90 91 if (mapping->a_ops->readpages) { 92 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 93 /* Clean up the remaining pages */ 94 put_pages_list(pages); 95 goto out; 96 } 97 98 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 99 struct page *page = list_to_page(pages); 100 list_del(&page->lru); 101 if (!add_to_page_cache_lru(page, mapping, 102 page->index, GFP_KERNEL)) { 103 mapping->a_ops->readpage(filp, page); 104 } 105 page_cache_release(page); 106 } 107 ret = 0; 108 out: 109 return ret; 110 } 111 112 /* 113 * do_page_cache_readahead actually reads a chunk of disk. It allocates all 114 * the pages first, then submits them all for I/O. This avoids the very bad 115 * behaviour which would occur if page allocations are causing VM writeback. 116 * We really don't want to intermingle reads and writes like that. 117 * 118 * Returns the number of pages requested, or the maximum amount of I/O allowed. 119 * 120 * do_page_cache_readahead() returns -1 if it encountered request queue 121 * congestion. 122 */ 123 static int 124 __do_page_cache_readahead(struct address_space *mapping, struct file *filp, 125 pgoff_t offset, unsigned long nr_to_read, 126 unsigned long lookahead_size) 127 { 128 struct inode *inode = mapping->host; 129 struct page *page; 130 unsigned long end_index; /* The last page we want to read */ 131 LIST_HEAD(page_pool); 132 int page_idx; 133 int ret = 0; 134 loff_t isize = i_size_read(inode); 135 136 if (isize == 0) 137 goto out; 138 139 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 140 141 /* 142 * Preallocate as many pages as we will need. 143 */ 144 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 145 pgoff_t page_offset = offset + page_idx; 146 147 if (page_offset > end_index) 148 break; 149 150 rcu_read_lock(); 151 page = radix_tree_lookup(&mapping->page_tree, page_offset); 152 rcu_read_unlock(); 153 if (page) 154 continue; 155 156 page = page_cache_alloc_cold(mapping); 157 if (!page) 158 break; 159 page->index = page_offset; 160 list_add(&page->lru, &page_pool); 161 if (page_idx == nr_to_read - lookahead_size) 162 SetPageReadahead(page); 163 ret++; 164 } 165 166 /* 167 * Now start the IO. We ignore I/O errors - if the page is not 168 * uptodate then the caller will launch readpage again, and 169 * will then handle the error. 170 */ 171 if (ret) 172 read_pages(mapping, filp, &page_pool, ret); 173 BUG_ON(!list_empty(&page_pool)); 174 out: 175 return ret; 176 } 177 178 /* 179 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 180 * memory at once. 181 */ 182 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 183 pgoff_t offset, unsigned long nr_to_read) 184 { 185 int ret = 0; 186 187 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 188 return -EINVAL; 189 190 while (nr_to_read) { 191 int err; 192 193 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE; 194 195 if (this_chunk > nr_to_read) 196 this_chunk = nr_to_read; 197 err = __do_page_cache_readahead(mapping, filp, 198 offset, this_chunk, 0); 199 if (err < 0) { 200 ret = err; 201 break; 202 } 203 ret += err; 204 offset += this_chunk; 205 nr_to_read -= this_chunk; 206 } 207 return ret; 208 } 209 210 /* 211 * This version skips the IO if the queue is read-congested, and will tell the 212 * block layer to abandon the readahead if request allocation would block. 213 * 214 * force_page_cache_readahead() will ignore queue congestion and will block on 215 * request queues. 216 */ 217 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 218 pgoff_t offset, unsigned long nr_to_read) 219 { 220 if (bdi_read_congested(mapping->backing_dev_info)) 221 return -1; 222 223 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0); 224 } 225 226 /* 227 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a 228 * sensible upper limit. 229 */ 230 unsigned long max_sane_readahead(unsigned long nr) 231 { 232 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE) 233 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); 234 } 235 236 /* 237 * Submit IO for the read-ahead request in file_ra_state. 238 */ 239 static unsigned long ra_submit(struct file_ra_state *ra, 240 struct address_space *mapping, struct file *filp) 241 { 242 int actual; 243 244 actual = __do_page_cache_readahead(mapping, filp, 245 ra->start, ra->size, ra->async_size); 246 247 return actual; 248 } 249 250 /* 251 * Set the initial window size, round to next power of 2 and square 252 * for small size, x 4 for medium, and x 2 for large 253 * for 128k (32 page) max ra 254 * 1-8 page = 32k initial, > 8 page = 128k initial 255 */ 256 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 257 { 258 unsigned long newsize = roundup_pow_of_two(size); 259 260 if (newsize <= max / 32) 261 newsize = newsize * 4; 262 else if (newsize <= max / 4) 263 newsize = newsize * 2; 264 else 265 newsize = max; 266 267 return newsize; 268 } 269 270 /* 271 * Get the previous window size, ramp it up, and 272 * return it as the new window size. 273 */ 274 static unsigned long get_next_ra_size(struct file_ra_state *ra, 275 unsigned long max) 276 { 277 unsigned long cur = ra->size; 278 unsigned long newsize; 279 280 if (cur < max / 16) 281 newsize = 4 * cur; 282 else 283 newsize = 2 * cur; 284 285 return min(newsize, max); 286 } 287 288 /* 289 * On-demand readahead design. 290 * 291 * The fields in struct file_ra_state represent the most-recently-executed 292 * readahead attempt: 293 * 294 * |<----- async_size ---------| 295 * |------------------- size -------------------->| 296 * |==================#===========================| 297 * ^start ^page marked with PG_readahead 298 * 299 * To overlap application thinking time and disk I/O time, we do 300 * `readahead pipelining': Do not wait until the application consumed all 301 * readahead pages and stalled on the missing page at readahead_index; 302 * Instead, submit an asynchronous readahead I/O as soon as there are 303 * only async_size pages left in the readahead window. Normally async_size 304 * will be equal to size, for maximum pipelining. 305 * 306 * In interleaved sequential reads, concurrent streams on the same fd can 307 * be invalidating each other's readahead state. So we flag the new readahead 308 * page at (start+size-async_size) with PG_readahead, and use it as readahead 309 * indicator. The flag won't be set on already cached pages, to avoid the 310 * readahead-for-nothing fuss, saving pointless page cache lookups. 311 * 312 * prev_pos tracks the last visited byte in the _previous_ read request. 313 * It should be maintained by the caller, and will be used for detecting 314 * small random reads. Note that the readahead algorithm checks loosely 315 * for sequential patterns. Hence interleaved reads might be served as 316 * sequential ones. 317 * 318 * There is a special-case: if the first page which the application tries to 319 * read happens to be the first page of the file, it is assumed that a linear 320 * read is about to happen and the window is immediately set to the initial size 321 * based on I/O request size and the max_readahead. 322 * 323 * The code ramps up the readahead size aggressively at first, but slow down as 324 * it approaches max_readhead. 325 */ 326 327 /* 328 * A minimal readahead algorithm for trivial sequential/random reads. 329 */ 330 static unsigned long 331 ondemand_readahead(struct address_space *mapping, 332 struct file_ra_state *ra, struct file *filp, 333 bool hit_readahead_marker, pgoff_t offset, 334 unsigned long req_size) 335 { 336 int max = ra->ra_pages; /* max readahead pages */ 337 pgoff_t prev_offset; 338 int sequential; 339 340 /* 341 * It's the expected callback offset, assume sequential access. 342 * Ramp up sizes, and push forward the readahead window. 343 */ 344 if (offset && (offset == (ra->start + ra->size - ra->async_size) || 345 offset == (ra->start + ra->size))) { 346 ra->start += ra->size; 347 ra->size = get_next_ra_size(ra, max); 348 ra->async_size = ra->size; 349 goto readit; 350 } 351 352 prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT; 353 sequential = offset - prev_offset <= 1UL || req_size > max; 354 355 /* 356 * Standalone, small read. 357 * Read as is, and do not pollute the readahead state. 358 */ 359 if (!hit_readahead_marker && !sequential) { 360 return __do_page_cache_readahead(mapping, filp, 361 offset, req_size, 0); 362 } 363 364 /* 365 * Hit a marked page without valid readahead state. 366 * E.g. interleaved reads. 367 * Query the pagecache for async_size, which normally equals to 368 * readahead size. Ramp it up and use it as the new readahead size. 369 */ 370 if (hit_readahead_marker) { 371 pgoff_t start; 372 373 read_lock_irq(&mapping->tree_lock); 374 start = radix_tree_next_hole(&mapping->page_tree, offset, max+1); 375 read_unlock_irq(&mapping->tree_lock); 376 377 if (!start || start - offset > max) 378 return 0; 379 380 ra->start = start; 381 ra->size = start - offset; /* old async_size */ 382 ra->size = get_next_ra_size(ra, max); 383 ra->async_size = ra->size; 384 goto readit; 385 } 386 387 /* 388 * It may be one of 389 * - first read on start of file 390 * - sequential cache miss 391 * - oversize random read 392 * Start readahead for it. 393 */ 394 ra->start = offset; 395 ra->size = get_init_ra_size(req_size, max); 396 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 397 398 readit: 399 return ra_submit(ra, mapping, filp); 400 } 401 402 /** 403 * page_cache_sync_readahead - generic file readahead 404 * @mapping: address_space which holds the pagecache and I/O vectors 405 * @ra: file_ra_state which holds the readahead state 406 * @filp: passed on to ->readpage() and ->readpages() 407 * @offset: start offset into @mapping, in pagecache page-sized units 408 * @req_size: hint: total size of the read which the caller is performing in 409 * pagecache pages 410 * 411 * page_cache_sync_readahead() should be called when a cache miss happened: 412 * it will submit the read. The readahead logic may decide to piggyback more 413 * pages onto the read request if access patterns suggest it will improve 414 * performance. 415 */ 416 void page_cache_sync_readahead(struct address_space *mapping, 417 struct file_ra_state *ra, struct file *filp, 418 pgoff_t offset, unsigned long req_size) 419 { 420 /* no read-ahead */ 421 if (!ra->ra_pages) 422 return; 423 424 /* do read-ahead */ 425 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 426 } 427 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 428 429 /** 430 * page_cache_async_readahead - file readahead for marked pages 431 * @mapping: address_space which holds the pagecache and I/O vectors 432 * @ra: file_ra_state which holds the readahead state 433 * @filp: passed on to ->readpage() and ->readpages() 434 * @page: the page at @offset which has the PG_readahead flag set 435 * @offset: start offset into @mapping, in pagecache page-sized units 436 * @req_size: hint: total size of the read which the caller is performing in 437 * pagecache pages 438 * 439 * page_cache_async_ondemand() should be called when a page is used which 440 * has the PG_readahead flag: this is a marker to suggest that the application 441 * has used up enough of the readahead window that we should start pulling in 442 * more pages. */ 443 void 444 page_cache_async_readahead(struct address_space *mapping, 445 struct file_ra_state *ra, struct file *filp, 446 struct page *page, pgoff_t offset, 447 unsigned long req_size) 448 { 449 /* no read-ahead */ 450 if (!ra->ra_pages) 451 return; 452 453 /* 454 * Same bit is used for PG_readahead and PG_reclaim. 455 */ 456 if (PageWriteback(page)) 457 return; 458 459 ClearPageReadahead(page); 460 461 /* 462 * Defer asynchronous read-ahead on IO congestion. 463 */ 464 if (bdi_read_congested(mapping->backing_dev_info)) 465 return; 466 467 /* do read-ahead */ 468 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 469 } 470 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 471