xref: /linux/mm/readahead.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	akpm@zip.com.au
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 
20 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
21 {
22 }
23 EXPORT_SYMBOL(default_unplug_io_fn);
24 
25 struct backing_dev_info default_backing_dev_info = {
26 	.ra_pages	= VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
27 	.state		= 0,
28 	.capabilities	= BDI_CAP_MAP_COPY,
29 	.unplug_io_fn	= default_unplug_io_fn,
30 };
31 EXPORT_SYMBOL_GPL(default_backing_dev_info);
32 
33 /*
34  * Initialise a struct file's readahead state.  Assumes that the caller has
35  * memset *ra to zero.
36  */
37 void
38 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
39 {
40 	ra->ra_pages = mapping->backing_dev_info->ra_pages;
41 	ra->prev_pos = -1;
42 }
43 EXPORT_SYMBOL_GPL(file_ra_state_init);
44 
45 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
46 
47 /**
48  * read_cache_pages - populate an address space with some pages & start reads against them
49  * @mapping: the address_space
50  * @pages: The address of a list_head which contains the target pages.  These
51  *   pages have their ->index populated and are otherwise uninitialised.
52  * @filler: callback routine for filling a single page.
53  * @data: private data for the callback routine.
54  *
55  * Hides the details of the LRU cache etc from the filesystems.
56  */
57 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
58 			int (*filler)(void *, struct page *), void *data)
59 {
60 	struct page *page;
61 	int ret = 0;
62 
63 	while (!list_empty(pages)) {
64 		page = list_to_page(pages);
65 		list_del(&page->lru);
66 		if (add_to_page_cache_lru(page, mapping,
67 					page->index, GFP_KERNEL)) {
68 			page_cache_release(page);
69 			continue;
70 		}
71 		page_cache_release(page);
72 
73 		ret = filler(data, page);
74 		if (unlikely(ret)) {
75 			put_pages_list(pages);
76 			break;
77 		}
78 		task_io_account_read(PAGE_CACHE_SIZE);
79 	}
80 	return ret;
81 }
82 
83 EXPORT_SYMBOL(read_cache_pages);
84 
85 static int read_pages(struct address_space *mapping, struct file *filp,
86 		struct list_head *pages, unsigned nr_pages)
87 {
88 	unsigned page_idx;
89 	int ret;
90 
91 	if (mapping->a_ops->readpages) {
92 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
93 		/* Clean up the remaining pages */
94 		put_pages_list(pages);
95 		goto out;
96 	}
97 
98 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
99 		struct page *page = list_to_page(pages);
100 		list_del(&page->lru);
101 		if (!add_to_page_cache_lru(page, mapping,
102 					page->index, GFP_KERNEL)) {
103 			mapping->a_ops->readpage(filp, page);
104 		}
105 		page_cache_release(page);
106 	}
107 	ret = 0;
108 out:
109 	return ret;
110 }
111 
112 /*
113  * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
114  * the pages first, then submits them all for I/O. This avoids the very bad
115  * behaviour which would occur if page allocations are causing VM writeback.
116  * We really don't want to intermingle reads and writes like that.
117  *
118  * Returns the number of pages requested, or the maximum amount of I/O allowed.
119  *
120  * do_page_cache_readahead() returns -1 if it encountered request queue
121  * congestion.
122  */
123 static int
124 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
125 			pgoff_t offset, unsigned long nr_to_read,
126 			unsigned long lookahead_size)
127 {
128 	struct inode *inode = mapping->host;
129 	struct page *page;
130 	unsigned long end_index;	/* The last page we want to read */
131 	LIST_HEAD(page_pool);
132 	int page_idx;
133 	int ret = 0;
134 	loff_t isize = i_size_read(inode);
135 
136 	if (isize == 0)
137 		goto out;
138 
139 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
140 
141 	/*
142 	 * Preallocate as many pages as we will need.
143 	 */
144 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
145 		pgoff_t page_offset = offset + page_idx;
146 
147 		if (page_offset > end_index)
148 			break;
149 
150 		rcu_read_lock();
151 		page = radix_tree_lookup(&mapping->page_tree, page_offset);
152 		rcu_read_unlock();
153 		if (page)
154 			continue;
155 
156 		page = page_cache_alloc_cold(mapping);
157 		if (!page)
158 			break;
159 		page->index = page_offset;
160 		list_add(&page->lru, &page_pool);
161 		if (page_idx == nr_to_read - lookahead_size)
162 			SetPageReadahead(page);
163 		ret++;
164 	}
165 
166 	/*
167 	 * Now start the IO.  We ignore I/O errors - if the page is not
168 	 * uptodate then the caller will launch readpage again, and
169 	 * will then handle the error.
170 	 */
171 	if (ret)
172 		read_pages(mapping, filp, &page_pool, ret);
173 	BUG_ON(!list_empty(&page_pool));
174 out:
175 	return ret;
176 }
177 
178 /*
179  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
180  * memory at once.
181  */
182 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
183 		pgoff_t offset, unsigned long nr_to_read)
184 {
185 	int ret = 0;
186 
187 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
188 		return -EINVAL;
189 
190 	while (nr_to_read) {
191 		int err;
192 
193 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
194 
195 		if (this_chunk > nr_to_read)
196 			this_chunk = nr_to_read;
197 		err = __do_page_cache_readahead(mapping, filp,
198 						offset, this_chunk, 0);
199 		if (err < 0) {
200 			ret = err;
201 			break;
202 		}
203 		ret += err;
204 		offset += this_chunk;
205 		nr_to_read -= this_chunk;
206 	}
207 	return ret;
208 }
209 
210 /*
211  * This version skips the IO if the queue is read-congested, and will tell the
212  * block layer to abandon the readahead if request allocation would block.
213  *
214  * force_page_cache_readahead() will ignore queue congestion and will block on
215  * request queues.
216  */
217 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
218 			pgoff_t offset, unsigned long nr_to_read)
219 {
220 	if (bdi_read_congested(mapping->backing_dev_info))
221 		return -1;
222 
223 	return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
224 }
225 
226 /*
227  * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
228  * sensible upper limit.
229  */
230 unsigned long max_sane_readahead(unsigned long nr)
231 {
232 	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
233 		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
234 }
235 
236 /*
237  * Submit IO for the read-ahead request in file_ra_state.
238  */
239 static unsigned long ra_submit(struct file_ra_state *ra,
240 		       struct address_space *mapping, struct file *filp)
241 {
242 	int actual;
243 
244 	actual = __do_page_cache_readahead(mapping, filp,
245 					ra->start, ra->size, ra->async_size);
246 
247 	return actual;
248 }
249 
250 /*
251  * Set the initial window size, round to next power of 2 and square
252  * for small size, x 4 for medium, and x 2 for large
253  * for 128k (32 page) max ra
254  * 1-8 page = 32k initial, > 8 page = 128k initial
255  */
256 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
257 {
258 	unsigned long newsize = roundup_pow_of_two(size);
259 
260 	if (newsize <= max / 32)
261 		newsize = newsize * 4;
262 	else if (newsize <= max / 4)
263 		newsize = newsize * 2;
264 	else
265 		newsize = max;
266 
267 	return newsize;
268 }
269 
270 /*
271  *  Get the previous window size, ramp it up, and
272  *  return it as the new window size.
273  */
274 static unsigned long get_next_ra_size(struct file_ra_state *ra,
275 						unsigned long max)
276 {
277 	unsigned long cur = ra->size;
278 	unsigned long newsize;
279 
280 	if (cur < max / 16)
281 		newsize = 4 * cur;
282 	else
283 		newsize = 2 * cur;
284 
285 	return min(newsize, max);
286 }
287 
288 /*
289  * On-demand readahead design.
290  *
291  * The fields in struct file_ra_state represent the most-recently-executed
292  * readahead attempt:
293  *
294  *                        |<----- async_size ---------|
295  *     |------------------- size -------------------->|
296  *     |==================#===========================|
297  *     ^start             ^page marked with PG_readahead
298  *
299  * To overlap application thinking time and disk I/O time, we do
300  * `readahead pipelining': Do not wait until the application consumed all
301  * readahead pages and stalled on the missing page at readahead_index;
302  * Instead, submit an asynchronous readahead I/O as soon as there are
303  * only async_size pages left in the readahead window. Normally async_size
304  * will be equal to size, for maximum pipelining.
305  *
306  * In interleaved sequential reads, concurrent streams on the same fd can
307  * be invalidating each other's readahead state. So we flag the new readahead
308  * page at (start+size-async_size) with PG_readahead, and use it as readahead
309  * indicator. The flag won't be set on already cached pages, to avoid the
310  * readahead-for-nothing fuss, saving pointless page cache lookups.
311  *
312  * prev_pos tracks the last visited byte in the _previous_ read request.
313  * It should be maintained by the caller, and will be used for detecting
314  * small random reads. Note that the readahead algorithm checks loosely
315  * for sequential patterns. Hence interleaved reads might be served as
316  * sequential ones.
317  *
318  * There is a special-case: if the first page which the application tries to
319  * read happens to be the first page of the file, it is assumed that a linear
320  * read is about to happen and the window is immediately set to the initial size
321  * based on I/O request size and the max_readahead.
322  *
323  * The code ramps up the readahead size aggressively at first, but slow down as
324  * it approaches max_readhead.
325  */
326 
327 /*
328  * A minimal readahead algorithm for trivial sequential/random reads.
329  */
330 static unsigned long
331 ondemand_readahead(struct address_space *mapping,
332 		   struct file_ra_state *ra, struct file *filp,
333 		   bool hit_readahead_marker, pgoff_t offset,
334 		   unsigned long req_size)
335 {
336 	int	max = ra->ra_pages;	/* max readahead pages */
337 	pgoff_t prev_offset;
338 	int	sequential;
339 
340 	/*
341 	 * It's the expected callback offset, assume sequential access.
342 	 * Ramp up sizes, and push forward the readahead window.
343 	 */
344 	if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
345 			offset == (ra->start + ra->size))) {
346 		ra->start += ra->size;
347 		ra->size = get_next_ra_size(ra, max);
348 		ra->async_size = ra->size;
349 		goto readit;
350 	}
351 
352 	prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
353 	sequential = offset - prev_offset <= 1UL || req_size > max;
354 
355 	/*
356 	 * Standalone, small read.
357 	 * Read as is, and do not pollute the readahead state.
358 	 */
359 	if (!hit_readahead_marker && !sequential) {
360 		return __do_page_cache_readahead(mapping, filp,
361 						offset, req_size, 0);
362 	}
363 
364 	/*
365 	 * Hit a marked page without valid readahead state.
366 	 * E.g. interleaved reads.
367 	 * Query the pagecache for async_size, which normally equals to
368 	 * readahead size. Ramp it up and use it as the new readahead size.
369 	 */
370 	if (hit_readahead_marker) {
371 		pgoff_t start;
372 
373 		read_lock_irq(&mapping->tree_lock);
374 		start = radix_tree_next_hole(&mapping->page_tree, offset, max+1);
375 		read_unlock_irq(&mapping->tree_lock);
376 
377 		if (!start || start - offset > max)
378 			return 0;
379 
380 		ra->start = start;
381 		ra->size = start - offset;	/* old async_size */
382 		ra->size = get_next_ra_size(ra, max);
383 		ra->async_size = ra->size;
384 		goto readit;
385 	}
386 
387 	/*
388 	 * It may be one of
389 	 * 	- first read on start of file
390 	 * 	- sequential cache miss
391 	 * 	- oversize random read
392 	 * Start readahead for it.
393 	 */
394 	ra->start = offset;
395 	ra->size = get_init_ra_size(req_size, max);
396 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
397 
398 readit:
399 	return ra_submit(ra, mapping, filp);
400 }
401 
402 /**
403  * page_cache_sync_readahead - generic file readahead
404  * @mapping: address_space which holds the pagecache and I/O vectors
405  * @ra: file_ra_state which holds the readahead state
406  * @filp: passed on to ->readpage() and ->readpages()
407  * @offset: start offset into @mapping, in pagecache page-sized units
408  * @req_size: hint: total size of the read which the caller is performing in
409  *            pagecache pages
410  *
411  * page_cache_sync_readahead() should be called when a cache miss happened:
412  * it will submit the read.  The readahead logic may decide to piggyback more
413  * pages onto the read request if access patterns suggest it will improve
414  * performance.
415  */
416 void page_cache_sync_readahead(struct address_space *mapping,
417 			       struct file_ra_state *ra, struct file *filp,
418 			       pgoff_t offset, unsigned long req_size)
419 {
420 	/* no read-ahead */
421 	if (!ra->ra_pages)
422 		return;
423 
424 	/* do read-ahead */
425 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
426 }
427 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
428 
429 /**
430  * page_cache_async_readahead - file readahead for marked pages
431  * @mapping: address_space which holds the pagecache and I/O vectors
432  * @ra: file_ra_state which holds the readahead state
433  * @filp: passed on to ->readpage() and ->readpages()
434  * @page: the page at @offset which has the PG_readahead flag set
435  * @offset: start offset into @mapping, in pagecache page-sized units
436  * @req_size: hint: total size of the read which the caller is performing in
437  *            pagecache pages
438  *
439  * page_cache_async_ondemand() should be called when a page is used which
440  * has the PG_readahead flag: this is a marker to suggest that the application
441  * has used up enough of the readahead window that we should start pulling in
442  * more pages. */
443 void
444 page_cache_async_readahead(struct address_space *mapping,
445 			   struct file_ra_state *ra, struct file *filp,
446 			   struct page *page, pgoff_t offset,
447 			   unsigned long req_size)
448 {
449 	/* no read-ahead */
450 	if (!ra->ra_pages)
451 		return;
452 
453 	/*
454 	 * Same bit is used for PG_readahead and PG_reclaim.
455 	 */
456 	if (PageWriteback(page))
457 		return;
458 
459 	ClearPageReadahead(page);
460 
461 	/*
462 	 * Defer asynchronous read-ahead on IO congestion.
463 	 */
464 	if (bdi_read_congested(mapping->backing_dev_info))
465 		return;
466 
467 	/* do read-ahead */
468 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
469 }
470 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
471