xref: /linux/mm/page_alloc.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/nodemask.h>
36 #include <linux/vmalloc.h>
37 
38 #include <asm/tlbflush.h>
39 #include "internal.h"
40 
41 /*
42  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43  * initializer cleaner
44  */
45 nodemask_t node_online_map = { { [0] = 1UL } };
46 EXPORT_SYMBOL(node_online_map);
47 nodemask_t node_possible_map = NODE_MASK_ALL;
48 EXPORT_SYMBOL(node_possible_map);
49 struct pglist_data *pgdat_list;
50 unsigned long totalram_pages;
51 unsigned long totalhigh_pages;
52 long nr_swap_pages;
53 
54 /*
55  * results with 256, 32 in the lowmem_reserve sysctl:
56  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57  *	1G machine -> (16M dma, 784M normal, 224M high)
58  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61  */
62 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63 
64 EXPORT_SYMBOL(totalram_pages);
65 EXPORT_SYMBOL(nr_swap_pages);
66 
67 /*
68  * Used by page_zone() to look up the address of the struct zone whose
69  * id is encoded in the upper bits of page->flags
70  */
71 struct zone *zone_table[1 << ZONETABLE_SHIFT];
72 EXPORT_SYMBOL(zone_table);
73 
74 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75 int min_free_kbytes = 1024;
76 
77 unsigned long __initdata nr_kernel_pages;
78 unsigned long __initdata nr_all_pages;
79 
80 /*
81  * Temporary debugging check for pages not lying within a given zone.
82  */
83 static int bad_range(struct zone *zone, struct page *page)
84 {
85 	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86 		return 1;
87 	if (page_to_pfn(page) < zone->zone_start_pfn)
88 		return 1;
89 #ifdef CONFIG_HOLES_IN_ZONE
90 	if (!pfn_valid(page_to_pfn(page)))
91 		return 1;
92 #endif
93 	if (zone != page_zone(page))
94 		return 1;
95 	return 0;
96 }
97 
98 static void bad_page(const char *function, struct page *page)
99 {
100 	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 		function, current->comm, page);
102 	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 		page->mapping, page_mapcount(page), page_count(page));
105 	printk(KERN_EMERG "Backtrace:\n");
106 	dump_stack();
107 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 	page->flags &= ~(1 << PG_lru	|
109 			1 << PG_private |
110 			1 << PG_locked	|
111 			1 << PG_active	|
112 			1 << PG_dirty	|
113 			1 << PG_reclaim |
114 			1 << PG_slab    |
115 			1 << PG_swapcache |
116 			1 << PG_writeback);
117 	set_page_count(page, 0);
118 	reset_page_mapcount(page);
119 	page->mapping = NULL;
120 	tainted |= TAINT_BAD_PAGE;
121 }
122 
123 #ifndef CONFIG_HUGETLB_PAGE
124 #define prep_compound_page(page, order) do { } while (0)
125 #define destroy_compound_page(page, order) do { } while (0)
126 #else
127 /*
128  * Higher-order pages are called "compound pages".  They are structured thusly:
129  *
130  * The first PAGE_SIZE page is called the "head page".
131  *
132  * The remaining PAGE_SIZE pages are called "tail pages".
133  *
134  * All pages have PG_compound set.  All pages have their ->private pointing at
135  * the head page (even the head page has this).
136  *
137  * The first tail page's ->mapping, if non-zero, holds the address of the
138  * compound page's put_page() function.
139  *
140  * The order of the allocation is stored in the first tail page's ->index
141  * This is only for debug at present.  This usage means that zero-order pages
142  * may not be compound.
143  */
144 static void prep_compound_page(struct page *page, unsigned long order)
145 {
146 	int i;
147 	int nr_pages = 1 << order;
148 
149 	page[1].mapping = NULL;
150 	page[1].index = order;
151 	for (i = 0; i < nr_pages; i++) {
152 		struct page *p = page + i;
153 
154 		SetPageCompound(p);
155 		p->private = (unsigned long)page;
156 	}
157 }
158 
159 static void destroy_compound_page(struct page *page, unsigned long order)
160 {
161 	int i;
162 	int nr_pages = 1 << order;
163 
164 	if (!PageCompound(page))
165 		return;
166 
167 	if (page[1].index != order)
168 		bad_page(__FUNCTION__, page);
169 
170 	for (i = 0; i < nr_pages; i++) {
171 		struct page *p = page + i;
172 
173 		if (!PageCompound(p))
174 			bad_page(__FUNCTION__, page);
175 		if (p->private != (unsigned long)page)
176 			bad_page(__FUNCTION__, page);
177 		ClearPageCompound(p);
178 	}
179 }
180 #endif		/* CONFIG_HUGETLB_PAGE */
181 
182 /*
183  * function for dealing with page's order in buddy system.
184  * zone->lock is already acquired when we use these.
185  * So, we don't need atomic page->flags operations here.
186  */
187 static inline unsigned long page_order(struct page *page) {
188 	return page->private;
189 }
190 
191 static inline void set_page_order(struct page *page, int order) {
192 	page->private = order;
193 	__SetPagePrivate(page);
194 }
195 
196 static inline void rmv_page_order(struct page *page)
197 {
198 	__ClearPagePrivate(page);
199 	page->private = 0;
200 }
201 
202 /*
203  * Locate the struct page for both the matching buddy in our
204  * pair (buddy1) and the combined O(n+1) page they form (page).
205  *
206  * 1) Any buddy B1 will have an order O twin B2 which satisfies
207  * the following equation:
208  *     B2 = B1 ^ (1 << O)
209  * For example, if the starting buddy (buddy2) is #8 its order
210  * 1 buddy is #10:
211  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
212  *
213  * 2) Any buddy B will have an order O+1 parent P which
214  * satisfies the following equation:
215  *     P = B & ~(1 << O)
216  *
217  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
218  */
219 static inline struct page *
220 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
221 {
222 	unsigned long buddy_idx = page_idx ^ (1 << order);
223 
224 	return page + (buddy_idx - page_idx);
225 }
226 
227 static inline unsigned long
228 __find_combined_index(unsigned long page_idx, unsigned int order)
229 {
230 	return (page_idx & ~(1 << order));
231 }
232 
233 /*
234  * This function checks whether a page is free && is the buddy
235  * we can do coalesce a page and its buddy if
236  * (a) the buddy is free &&
237  * (b) the buddy is on the buddy system &&
238  * (c) a page and its buddy have the same order.
239  * for recording page's order, we use page->private and PG_private.
240  *
241  */
242 static inline int page_is_buddy(struct page *page, int order)
243 {
244        if (PagePrivate(page)           &&
245            (page_order(page) == order) &&
246            !PageReserved(page)         &&
247             page_count(page) == 0)
248                return 1;
249        return 0;
250 }
251 
252 /*
253  * Freeing function for a buddy system allocator.
254  *
255  * The concept of a buddy system is to maintain direct-mapped table
256  * (containing bit values) for memory blocks of various "orders".
257  * The bottom level table contains the map for the smallest allocatable
258  * units of memory (here, pages), and each level above it describes
259  * pairs of units from the levels below, hence, "buddies".
260  * At a high level, all that happens here is marking the table entry
261  * at the bottom level available, and propagating the changes upward
262  * as necessary, plus some accounting needed to play nicely with other
263  * parts of the VM system.
264  * At each level, we keep a list of pages, which are heads of continuous
265  * free pages of length of (1 << order) and marked with PG_Private.Page's
266  * order is recorded in page->private field.
267  * So when we are allocating or freeing one, we can derive the state of the
268  * other.  That is, if we allocate a small block, and both were
269  * free, the remainder of the region must be split into blocks.
270  * If a block is freed, and its buddy is also free, then this
271  * triggers coalescing into a block of larger size.
272  *
273  * -- wli
274  */
275 
276 static inline void __free_pages_bulk (struct page *page,
277 		struct zone *zone, unsigned int order)
278 {
279 	unsigned long page_idx;
280 	int order_size = 1 << order;
281 
282 	if (unlikely(order))
283 		destroy_compound_page(page, order);
284 
285 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
286 
287 	BUG_ON(page_idx & (order_size - 1));
288 	BUG_ON(bad_range(zone, page));
289 
290 	zone->free_pages += order_size;
291 	while (order < MAX_ORDER-1) {
292 		unsigned long combined_idx;
293 		struct free_area *area;
294 		struct page *buddy;
295 
296 		combined_idx = __find_combined_index(page_idx, order);
297 		buddy = __page_find_buddy(page, page_idx, order);
298 
299 		if (bad_range(zone, buddy))
300 			break;
301 		if (!page_is_buddy(buddy, order))
302 			break;		/* Move the buddy up one level. */
303 		list_del(&buddy->lru);
304 		area = zone->free_area + order;
305 		area->nr_free--;
306 		rmv_page_order(buddy);
307 		page = page + (combined_idx - page_idx);
308 		page_idx = combined_idx;
309 		order++;
310 	}
311 	set_page_order(page, order);
312 	list_add(&page->lru, &zone->free_area[order].free_list);
313 	zone->free_area[order].nr_free++;
314 }
315 
316 static inline void free_pages_check(const char *function, struct page *page)
317 {
318 	if (	page_mapcount(page) ||
319 		page->mapping != NULL ||
320 		page_count(page) != 0 ||
321 		(page->flags & (
322 			1 << PG_lru	|
323 			1 << PG_private |
324 			1 << PG_locked	|
325 			1 << PG_active	|
326 			1 << PG_reclaim	|
327 			1 << PG_slab	|
328 			1 << PG_swapcache |
329 			1 << PG_writeback )))
330 		bad_page(function, page);
331 	if (PageDirty(page))
332 		ClearPageDirty(page);
333 }
334 
335 /*
336  * Frees a list of pages.
337  * Assumes all pages on list are in same zone, and of same order.
338  * count is the number of pages to free, or 0 for all on the list.
339  *
340  * If the zone was previously in an "all pages pinned" state then look to
341  * see if this freeing clears that state.
342  *
343  * And clear the zone's pages_scanned counter, to hold off the "all pages are
344  * pinned" detection logic.
345  */
346 static int
347 free_pages_bulk(struct zone *zone, int count,
348 		struct list_head *list, unsigned int order)
349 {
350 	unsigned long flags;
351 	struct page *page = NULL;
352 	int ret = 0;
353 
354 	spin_lock_irqsave(&zone->lock, flags);
355 	zone->all_unreclaimable = 0;
356 	zone->pages_scanned = 0;
357 	while (!list_empty(list) && count--) {
358 		page = list_entry(list->prev, struct page, lru);
359 		/* have to delete it as __free_pages_bulk list manipulates */
360 		list_del(&page->lru);
361 		__free_pages_bulk(page, zone, order);
362 		ret++;
363 	}
364 	spin_unlock_irqrestore(&zone->lock, flags);
365 	return ret;
366 }
367 
368 void __free_pages_ok(struct page *page, unsigned int order)
369 {
370 	LIST_HEAD(list);
371 	int i;
372 
373 	arch_free_page(page, order);
374 
375 	mod_page_state(pgfree, 1 << order);
376 
377 #ifndef CONFIG_MMU
378 	if (order > 0)
379 		for (i = 1 ; i < (1 << order) ; ++i)
380 			__put_page(page + i);
381 #endif
382 
383 	for (i = 0 ; i < (1 << order) ; ++i)
384 		free_pages_check(__FUNCTION__, page + i);
385 	list_add(&page->lru, &list);
386 	kernel_map_pages(page, 1<<order, 0);
387 	free_pages_bulk(page_zone(page), 1, &list, order);
388 }
389 
390 
391 /*
392  * The order of subdivision here is critical for the IO subsystem.
393  * Please do not alter this order without good reasons and regression
394  * testing. Specifically, as large blocks of memory are subdivided,
395  * the order in which smaller blocks are delivered depends on the order
396  * they're subdivided in this function. This is the primary factor
397  * influencing the order in which pages are delivered to the IO
398  * subsystem according to empirical testing, and this is also justified
399  * by considering the behavior of a buddy system containing a single
400  * large block of memory acted on by a series of small allocations.
401  * This behavior is a critical factor in sglist merging's success.
402  *
403  * -- wli
404  */
405 static inline struct page *
406 expand(struct zone *zone, struct page *page,
407  	int low, int high, struct free_area *area)
408 {
409 	unsigned long size = 1 << high;
410 
411 	while (high > low) {
412 		area--;
413 		high--;
414 		size >>= 1;
415 		BUG_ON(bad_range(zone, &page[size]));
416 		list_add(&page[size].lru, &area->free_list);
417 		area->nr_free++;
418 		set_page_order(&page[size], high);
419 	}
420 	return page;
421 }
422 
423 void set_page_refs(struct page *page, int order)
424 {
425 #ifdef CONFIG_MMU
426 	set_page_count(page, 1);
427 #else
428 	int i;
429 
430 	/*
431 	 * We need to reference all the pages for this order, otherwise if
432 	 * anyone accesses one of the pages with (get/put) it will be freed.
433 	 * - eg: access_process_vm()
434 	 */
435 	for (i = 0; i < (1 << order); i++)
436 		set_page_count(page + i, 1);
437 #endif /* CONFIG_MMU */
438 }
439 
440 /*
441  * This page is about to be returned from the page allocator
442  */
443 static void prep_new_page(struct page *page, int order)
444 {
445 	if (	page_mapcount(page) ||
446 		page->mapping != NULL ||
447 		page_count(page) != 0 ||
448 		(page->flags & (
449 			1 << PG_lru	|
450 			1 << PG_private	|
451 			1 << PG_locked	|
452 			1 << PG_active	|
453 			1 << PG_dirty	|
454 			1 << PG_reclaim	|
455 			1 << PG_slab    |
456 			1 << PG_swapcache |
457 			1 << PG_writeback )))
458 		bad_page(__FUNCTION__, page);
459 
460 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
461 			1 << PG_referenced | 1 << PG_arch_1 |
462 			1 << PG_checked | 1 << PG_mappedtodisk);
463 	page->private = 0;
464 	set_page_refs(page, order);
465 	kernel_map_pages(page, 1 << order, 1);
466 }
467 
468 /*
469  * Do the hard work of removing an element from the buddy allocator.
470  * Call me with the zone->lock already held.
471  */
472 static struct page *__rmqueue(struct zone *zone, unsigned int order)
473 {
474 	struct free_area * area;
475 	unsigned int current_order;
476 	struct page *page;
477 
478 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
479 		area = zone->free_area + current_order;
480 		if (list_empty(&area->free_list))
481 			continue;
482 
483 		page = list_entry(area->free_list.next, struct page, lru);
484 		list_del(&page->lru);
485 		rmv_page_order(page);
486 		area->nr_free--;
487 		zone->free_pages -= 1UL << order;
488 		return expand(zone, page, order, current_order, area);
489 	}
490 
491 	return NULL;
492 }
493 
494 /*
495  * Obtain a specified number of elements from the buddy allocator, all under
496  * a single hold of the lock, for efficiency.  Add them to the supplied list.
497  * Returns the number of new pages which were placed at *list.
498  */
499 static int rmqueue_bulk(struct zone *zone, unsigned int order,
500 			unsigned long count, struct list_head *list)
501 {
502 	unsigned long flags;
503 	int i;
504 	int allocated = 0;
505 	struct page *page;
506 
507 	spin_lock_irqsave(&zone->lock, flags);
508 	for (i = 0; i < count; ++i) {
509 		page = __rmqueue(zone, order);
510 		if (page == NULL)
511 			break;
512 		allocated++;
513 		list_add_tail(&page->lru, list);
514 	}
515 	spin_unlock_irqrestore(&zone->lock, flags);
516 	return allocated;
517 }
518 
519 #ifdef CONFIG_NUMA
520 /* Called from the slab reaper to drain remote pagesets */
521 void drain_remote_pages(void)
522 {
523 	struct zone *zone;
524 	int i;
525 	unsigned long flags;
526 
527 	local_irq_save(flags);
528 	for_each_zone(zone) {
529 		struct per_cpu_pageset *pset;
530 
531 		/* Do not drain local pagesets */
532 		if (zone->zone_pgdat->node_id == numa_node_id())
533 			continue;
534 
535 		pset = zone->pageset[smp_processor_id()];
536 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
537 			struct per_cpu_pages *pcp;
538 
539 			pcp = &pset->pcp[i];
540 			if (pcp->count)
541 				pcp->count -= free_pages_bulk(zone, pcp->count,
542 						&pcp->list, 0);
543 		}
544 	}
545 	local_irq_restore(flags);
546 }
547 #endif
548 
549 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
550 static void __drain_pages(unsigned int cpu)
551 {
552 	struct zone *zone;
553 	int i;
554 
555 	for_each_zone(zone) {
556 		struct per_cpu_pageset *pset;
557 
558 		pset = zone_pcp(zone, cpu);
559 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
560 			struct per_cpu_pages *pcp;
561 
562 			pcp = &pset->pcp[i];
563 			pcp->count -= free_pages_bulk(zone, pcp->count,
564 						&pcp->list, 0);
565 		}
566 	}
567 }
568 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
569 
570 #ifdef CONFIG_PM
571 
572 void mark_free_pages(struct zone *zone)
573 {
574 	unsigned long zone_pfn, flags;
575 	int order;
576 	struct list_head *curr;
577 
578 	if (!zone->spanned_pages)
579 		return;
580 
581 	spin_lock_irqsave(&zone->lock, flags);
582 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
583 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
584 
585 	for (order = MAX_ORDER - 1; order >= 0; --order)
586 		list_for_each(curr, &zone->free_area[order].free_list) {
587 			unsigned long start_pfn, i;
588 
589 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
590 
591 			for (i=0; i < (1<<order); i++)
592 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
593 	}
594 	spin_unlock_irqrestore(&zone->lock, flags);
595 }
596 
597 /*
598  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
599  */
600 void drain_local_pages(void)
601 {
602 	unsigned long flags;
603 
604 	local_irq_save(flags);
605 	__drain_pages(smp_processor_id());
606 	local_irq_restore(flags);
607 }
608 #endif /* CONFIG_PM */
609 
610 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
611 {
612 #ifdef CONFIG_NUMA
613 	unsigned long flags;
614 	int cpu;
615 	pg_data_t *pg = z->zone_pgdat;
616 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
617 	struct per_cpu_pageset *p;
618 
619 	local_irq_save(flags);
620 	cpu = smp_processor_id();
621 	p = zone_pcp(z,cpu);
622 	if (pg == orig) {
623 		p->numa_hit++;
624 	} else {
625 		p->numa_miss++;
626 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
627 	}
628 	if (pg == NODE_DATA(numa_node_id()))
629 		p->local_node++;
630 	else
631 		p->other_node++;
632 	local_irq_restore(flags);
633 #endif
634 }
635 
636 /*
637  * Free a 0-order page
638  */
639 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
640 static void fastcall free_hot_cold_page(struct page *page, int cold)
641 {
642 	struct zone *zone = page_zone(page);
643 	struct per_cpu_pages *pcp;
644 	unsigned long flags;
645 
646 	arch_free_page(page, 0);
647 
648 	kernel_map_pages(page, 1, 0);
649 	inc_page_state(pgfree);
650 	if (PageAnon(page))
651 		page->mapping = NULL;
652 	free_pages_check(__FUNCTION__, page);
653 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
654 	local_irq_save(flags);
655 	list_add(&page->lru, &pcp->list);
656 	pcp->count++;
657 	if (pcp->count >= pcp->high)
658 		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
659 	local_irq_restore(flags);
660 	put_cpu();
661 }
662 
663 void fastcall free_hot_page(struct page *page)
664 {
665 	free_hot_cold_page(page, 0);
666 }
667 
668 void fastcall free_cold_page(struct page *page)
669 {
670 	free_hot_cold_page(page, 1);
671 }
672 
673 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
674 {
675 	int i;
676 
677 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
678 	for(i = 0; i < (1 << order); i++)
679 		clear_highpage(page + i);
680 }
681 
682 /*
683  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
684  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
685  * or two.
686  */
687 static struct page *
688 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
689 {
690 	unsigned long flags;
691 	struct page *page = NULL;
692 	int cold = !!(gfp_flags & __GFP_COLD);
693 
694 	if (order == 0) {
695 		struct per_cpu_pages *pcp;
696 
697 		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
698 		local_irq_save(flags);
699 		if (pcp->count <= pcp->low)
700 			pcp->count += rmqueue_bulk(zone, 0,
701 						pcp->batch, &pcp->list);
702 		if (pcp->count) {
703 			page = list_entry(pcp->list.next, struct page, lru);
704 			list_del(&page->lru);
705 			pcp->count--;
706 		}
707 		local_irq_restore(flags);
708 		put_cpu();
709 	}
710 
711 	if (page == NULL) {
712 		spin_lock_irqsave(&zone->lock, flags);
713 		page = __rmqueue(zone, order);
714 		spin_unlock_irqrestore(&zone->lock, flags);
715 	}
716 
717 	if (page != NULL) {
718 		BUG_ON(bad_range(zone, page));
719 		mod_page_state_zone(zone, pgalloc, 1 << order);
720 		prep_new_page(page, order);
721 
722 		if (gfp_flags & __GFP_ZERO)
723 			prep_zero_page(page, order, gfp_flags);
724 
725 		if (order && (gfp_flags & __GFP_COMP))
726 			prep_compound_page(page, order);
727 	}
728 	return page;
729 }
730 
731 /*
732  * Return 1 if free pages are above 'mark'. This takes into account the order
733  * of the allocation.
734  */
735 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
736 		      int classzone_idx, int can_try_harder, int gfp_high)
737 {
738 	/* free_pages my go negative - that's OK */
739 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
740 	int o;
741 
742 	if (gfp_high)
743 		min -= min / 2;
744 	if (can_try_harder)
745 		min -= min / 4;
746 
747 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
748 		return 0;
749 	for (o = 0; o < order; o++) {
750 		/* At the next order, this order's pages become unavailable */
751 		free_pages -= z->free_area[o].nr_free << o;
752 
753 		/* Require fewer higher order pages to be free */
754 		min >>= 1;
755 
756 		if (free_pages <= min)
757 			return 0;
758 	}
759 	return 1;
760 }
761 
762 static inline int
763 should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
764 {
765 	if (!z->reclaim_pages)
766 		return 0;
767 	if (gfp_mask & __GFP_NORECLAIM)
768 		return 0;
769 	return 1;
770 }
771 
772 /*
773  * This is the 'heart' of the zoned buddy allocator.
774  */
775 struct page * fastcall
776 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
777 		struct zonelist *zonelist)
778 {
779 	const int wait = gfp_mask & __GFP_WAIT;
780 	struct zone **zones, *z;
781 	struct page *page;
782 	struct reclaim_state reclaim_state;
783 	struct task_struct *p = current;
784 	int i;
785 	int classzone_idx;
786 	int do_retry;
787 	int can_try_harder;
788 	int did_some_progress;
789 
790 	might_sleep_if(wait);
791 
792 	/*
793 	 * The caller may dip into page reserves a bit more if the caller
794 	 * cannot run direct reclaim, or is the caller has realtime scheduling
795 	 * policy
796 	 */
797 	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
798 
799 	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
800 
801 	if (unlikely(zones[0] == NULL)) {
802 		/* Should this ever happen?? */
803 		return NULL;
804 	}
805 
806 	classzone_idx = zone_idx(zones[0]);
807 
808 restart:
809 	/* Go through the zonelist once, looking for a zone with enough free */
810 	for (i = 0; (z = zones[i]) != NULL; i++) {
811 		int do_reclaim = should_reclaim_zone(z, gfp_mask);
812 
813 		if (!cpuset_zone_allowed(z))
814 			continue;
815 
816 		/*
817 		 * If the zone is to attempt early page reclaim then this loop
818 		 * will try to reclaim pages and check the watermark a second
819 		 * time before giving up and falling back to the next zone.
820 		 */
821 zone_reclaim_retry:
822 		if (!zone_watermark_ok(z, order, z->pages_low,
823 				       classzone_idx, 0, 0)) {
824 			if (!do_reclaim)
825 				continue;
826 			else {
827 				zone_reclaim(z, gfp_mask, order);
828 				/* Only try reclaim once */
829 				do_reclaim = 0;
830 				goto zone_reclaim_retry;
831 			}
832 		}
833 
834 		page = buffered_rmqueue(z, order, gfp_mask);
835 		if (page)
836 			goto got_pg;
837 	}
838 
839 	for (i = 0; (z = zones[i]) != NULL; i++)
840 		wakeup_kswapd(z, order);
841 
842 	/*
843 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
844 	 * coming from realtime tasks to go deeper into reserves
845 	 *
846 	 * This is the last chance, in general, before the goto nopage.
847 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
848 	 */
849 	for (i = 0; (z = zones[i]) != NULL; i++) {
850 		if (!zone_watermark_ok(z, order, z->pages_min,
851 				       classzone_idx, can_try_harder,
852 				       gfp_mask & __GFP_HIGH))
853 			continue;
854 
855 		if (wait && !cpuset_zone_allowed(z))
856 			continue;
857 
858 		page = buffered_rmqueue(z, order, gfp_mask);
859 		if (page)
860 			goto got_pg;
861 	}
862 
863 	/* This allocation should allow future memory freeing. */
864 
865 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
866 			&& !in_interrupt()) {
867 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
868 			/* go through the zonelist yet again, ignoring mins */
869 			for (i = 0; (z = zones[i]) != NULL; i++) {
870 				if (!cpuset_zone_allowed(z))
871 					continue;
872 				page = buffered_rmqueue(z, order, gfp_mask);
873 				if (page)
874 					goto got_pg;
875 			}
876 		}
877 		goto nopage;
878 	}
879 
880 	/* Atomic allocations - we can't balance anything */
881 	if (!wait)
882 		goto nopage;
883 
884 rebalance:
885 	cond_resched();
886 
887 	/* We now go into synchronous reclaim */
888 	p->flags |= PF_MEMALLOC;
889 	reclaim_state.reclaimed_slab = 0;
890 	p->reclaim_state = &reclaim_state;
891 
892 	did_some_progress = try_to_free_pages(zones, gfp_mask);
893 
894 	p->reclaim_state = NULL;
895 	p->flags &= ~PF_MEMALLOC;
896 
897 	cond_resched();
898 
899 	if (likely(did_some_progress)) {
900 		for (i = 0; (z = zones[i]) != NULL; i++) {
901 			if (!zone_watermark_ok(z, order, z->pages_min,
902 					       classzone_idx, can_try_harder,
903 					       gfp_mask & __GFP_HIGH))
904 				continue;
905 
906 			if (!cpuset_zone_allowed(z))
907 				continue;
908 
909 			page = buffered_rmqueue(z, order, gfp_mask);
910 			if (page)
911 				goto got_pg;
912 		}
913 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
914 		/*
915 		 * Go through the zonelist yet one more time, keep
916 		 * very high watermark here, this is only to catch
917 		 * a parallel oom killing, we must fail if we're still
918 		 * under heavy pressure.
919 		 */
920 		for (i = 0; (z = zones[i]) != NULL; i++) {
921 			if (!zone_watermark_ok(z, order, z->pages_high,
922 					       classzone_idx, 0, 0))
923 				continue;
924 
925 			if (!cpuset_zone_allowed(z))
926 				continue;
927 
928 			page = buffered_rmqueue(z, order, gfp_mask);
929 			if (page)
930 				goto got_pg;
931 		}
932 
933 		out_of_memory(gfp_mask, order);
934 		goto restart;
935 	}
936 
937 	/*
938 	 * Don't let big-order allocations loop unless the caller explicitly
939 	 * requests that.  Wait for some write requests to complete then retry.
940 	 *
941 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
942 	 * <= 3, but that may not be true in other implementations.
943 	 */
944 	do_retry = 0;
945 	if (!(gfp_mask & __GFP_NORETRY)) {
946 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
947 			do_retry = 1;
948 		if (gfp_mask & __GFP_NOFAIL)
949 			do_retry = 1;
950 	}
951 	if (do_retry) {
952 		blk_congestion_wait(WRITE, HZ/50);
953 		goto rebalance;
954 	}
955 
956 nopage:
957 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
958 		printk(KERN_WARNING "%s: page allocation failure."
959 			" order:%d, mode:0x%x\n",
960 			p->comm, order, gfp_mask);
961 		dump_stack();
962 		show_mem();
963 	}
964 	return NULL;
965 got_pg:
966 	zone_statistics(zonelist, z);
967 	return page;
968 }
969 
970 EXPORT_SYMBOL(__alloc_pages);
971 
972 /*
973  * Common helper functions.
974  */
975 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
976 {
977 	struct page * page;
978 	page = alloc_pages(gfp_mask, order);
979 	if (!page)
980 		return 0;
981 	return (unsigned long) page_address(page);
982 }
983 
984 EXPORT_SYMBOL(__get_free_pages);
985 
986 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
987 {
988 	struct page * page;
989 
990 	/*
991 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
992 	 * a highmem page
993 	 */
994 	BUG_ON(gfp_mask & __GFP_HIGHMEM);
995 
996 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
997 	if (page)
998 		return (unsigned long) page_address(page);
999 	return 0;
1000 }
1001 
1002 EXPORT_SYMBOL(get_zeroed_page);
1003 
1004 void __pagevec_free(struct pagevec *pvec)
1005 {
1006 	int i = pagevec_count(pvec);
1007 
1008 	while (--i >= 0)
1009 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1010 }
1011 
1012 fastcall void __free_pages(struct page *page, unsigned int order)
1013 {
1014 	if (!PageReserved(page) && put_page_testzero(page)) {
1015 		if (order == 0)
1016 			free_hot_page(page);
1017 		else
1018 			__free_pages_ok(page, order);
1019 	}
1020 }
1021 
1022 EXPORT_SYMBOL(__free_pages);
1023 
1024 fastcall void free_pages(unsigned long addr, unsigned int order)
1025 {
1026 	if (addr != 0) {
1027 		BUG_ON(!virt_addr_valid((void *)addr));
1028 		__free_pages(virt_to_page((void *)addr), order);
1029 	}
1030 }
1031 
1032 EXPORT_SYMBOL(free_pages);
1033 
1034 /*
1035  * Total amount of free (allocatable) RAM:
1036  */
1037 unsigned int nr_free_pages(void)
1038 {
1039 	unsigned int sum = 0;
1040 	struct zone *zone;
1041 
1042 	for_each_zone(zone)
1043 		sum += zone->free_pages;
1044 
1045 	return sum;
1046 }
1047 
1048 EXPORT_SYMBOL(nr_free_pages);
1049 
1050 #ifdef CONFIG_NUMA
1051 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1052 {
1053 	unsigned int i, sum = 0;
1054 
1055 	for (i = 0; i < MAX_NR_ZONES; i++)
1056 		sum += pgdat->node_zones[i].free_pages;
1057 
1058 	return sum;
1059 }
1060 #endif
1061 
1062 static unsigned int nr_free_zone_pages(int offset)
1063 {
1064 	pg_data_t *pgdat;
1065 	unsigned int sum = 0;
1066 
1067 	for_each_pgdat(pgdat) {
1068 		struct zonelist *zonelist = pgdat->node_zonelists + offset;
1069 		struct zone **zonep = zonelist->zones;
1070 		struct zone *zone;
1071 
1072 		for (zone = *zonep++; zone; zone = *zonep++) {
1073 			unsigned long size = zone->present_pages;
1074 			unsigned long high = zone->pages_high;
1075 			if (size > high)
1076 				sum += size - high;
1077 		}
1078 	}
1079 
1080 	return sum;
1081 }
1082 
1083 /*
1084  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1085  */
1086 unsigned int nr_free_buffer_pages(void)
1087 {
1088 	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1089 }
1090 
1091 /*
1092  * Amount of free RAM allocatable within all zones
1093  */
1094 unsigned int nr_free_pagecache_pages(void)
1095 {
1096 	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1097 }
1098 
1099 #ifdef CONFIG_HIGHMEM
1100 unsigned int nr_free_highpages (void)
1101 {
1102 	pg_data_t *pgdat;
1103 	unsigned int pages = 0;
1104 
1105 	for_each_pgdat(pgdat)
1106 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1107 
1108 	return pages;
1109 }
1110 #endif
1111 
1112 #ifdef CONFIG_NUMA
1113 static void show_node(struct zone *zone)
1114 {
1115 	printk("Node %d ", zone->zone_pgdat->node_id);
1116 }
1117 #else
1118 #define show_node(zone)	do { } while (0)
1119 #endif
1120 
1121 /*
1122  * Accumulate the page_state information across all CPUs.
1123  * The result is unavoidably approximate - it can change
1124  * during and after execution of this function.
1125  */
1126 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1127 
1128 atomic_t nr_pagecache = ATOMIC_INIT(0);
1129 EXPORT_SYMBOL(nr_pagecache);
1130 #ifdef CONFIG_SMP
1131 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1132 #endif
1133 
1134 void __get_page_state(struct page_state *ret, int nr)
1135 {
1136 	int cpu = 0;
1137 
1138 	memset(ret, 0, sizeof(*ret));
1139 
1140 	cpu = first_cpu(cpu_online_map);
1141 	while (cpu < NR_CPUS) {
1142 		unsigned long *in, *out, off;
1143 
1144 		in = (unsigned long *)&per_cpu(page_states, cpu);
1145 
1146 		cpu = next_cpu(cpu, cpu_online_map);
1147 
1148 		if (cpu < NR_CPUS)
1149 			prefetch(&per_cpu(page_states, cpu));
1150 
1151 		out = (unsigned long *)ret;
1152 		for (off = 0; off < nr; off++)
1153 			*out++ += *in++;
1154 	}
1155 }
1156 
1157 void get_page_state(struct page_state *ret)
1158 {
1159 	int nr;
1160 
1161 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1162 	nr /= sizeof(unsigned long);
1163 
1164 	__get_page_state(ret, nr + 1);
1165 }
1166 
1167 void get_full_page_state(struct page_state *ret)
1168 {
1169 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1170 }
1171 
1172 unsigned long __read_page_state(unsigned long offset)
1173 {
1174 	unsigned long ret = 0;
1175 	int cpu;
1176 
1177 	for_each_online_cpu(cpu) {
1178 		unsigned long in;
1179 
1180 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1181 		ret += *((unsigned long *)in);
1182 	}
1183 	return ret;
1184 }
1185 
1186 void __mod_page_state(unsigned long offset, unsigned long delta)
1187 {
1188 	unsigned long flags;
1189 	void* ptr;
1190 
1191 	local_irq_save(flags);
1192 	ptr = &__get_cpu_var(page_states);
1193 	*(unsigned long*)(ptr + offset) += delta;
1194 	local_irq_restore(flags);
1195 }
1196 
1197 EXPORT_SYMBOL(__mod_page_state);
1198 
1199 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1200 			unsigned long *free, struct pglist_data *pgdat)
1201 {
1202 	struct zone *zones = pgdat->node_zones;
1203 	int i;
1204 
1205 	*active = 0;
1206 	*inactive = 0;
1207 	*free = 0;
1208 	for (i = 0; i < MAX_NR_ZONES; i++) {
1209 		*active += zones[i].nr_active;
1210 		*inactive += zones[i].nr_inactive;
1211 		*free += zones[i].free_pages;
1212 	}
1213 }
1214 
1215 void get_zone_counts(unsigned long *active,
1216 		unsigned long *inactive, unsigned long *free)
1217 {
1218 	struct pglist_data *pgdat;
1219 
1220 	*active = 0;
1221 	*inactive = 0;
1222 	*free = 0;
1223 	for_each_pgdat(pgdat) {
1224 		unsigned long l, m, n;
1225 		__get_zone_counts(&l, &m, &n, pgdat);
1226 		*active += l;
1227 		*inactive += m;
1228 		*free += n;
1229 	}
1230 }
1231 
1232 void si_meminfo(struct sysinfo *val)
1233 {
1234 	val->totalram = totalram_pages;
1235 	val->sharedram = 0;
1236 	val->freeram = nr_free_pages();
1237 	val->bufferram = nr_blockdev_pages();
1238 #ifdef CONFIG_HIGHMEM
1239 	val->totalhigh = totalhigh_pages;
1240 	val->freehigh = nr_free_highpages();
1241 #else
1242 	val->totalhigh = 0;
1243 	val->freehigh = 0;
1244 #endif
1245 	val->mem_unit = PAGE_SIZE;
1246 }
1247 
1248 EXPORT_SYMBOL(si_meminfo);
1249 
1250 #ifdef CONFIG_NUMA
1251 void si_meminfo_node(struct sysinfo *val, int nid)
1252 {
1253 	pg_data_t *pgdat = NODE_DATA(nid);
1254 
1255 	val->totalram = pgdat->node_present_pages;
1256 	val->freeram = nr_free_pages_pgdat(pgdat);
1257 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1258 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1259 	val->mem_unit = PAGE_SIZE;
1260 }
1261 #endif
1262 
1263 #define K(x) ((x) << (PAGE_SHIFT-10))
1264 
1265 /*
1266  * Show free area list (used inside shift_scroll-lock stuff)
1267  * We also calculate the percentage fragmentation. We do this by counting the
1268  * memory on each free list with the exception of the first item on the list.
1269  */
1270 void show_free_areas(void)
1271 {
1272 	struct page_state ps;
1273 	int cpu, temperature;
1274 	unsigned long active;
1275 	unsigned long inactive;
1276 	unsigned long free;
1277 	struct zone *zone;
1278 
1279 	for_each_zone(zone) {
1280 		show_node(zone);
1281 		printk("%s per-cpu:", zone->name);
1282 
1283 		if (!zone->present_pages) {
1284 			printk(" empty\n");
1285 			continue;
1286 		} else
1287 			printk("\n");
1288 
1289 		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1290 			struct per_cpu_pageset *pageset;
1291 
1292 			if (!cpu_possible(cpu))
1293 				continue;
1294 
1295 			pageset = zone_pcp(zone, cpu);
1296 
1297 			for (temperature = 0; temperature < 2; temperature++)
1298 				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1299 					cpu,
1300 					temperature ? "cold" : "hot",
1301 					pageset->pcp[temperature].low,
1302 					pageset->pcp[temperature].high,
1303 					pageset->pcp[temperature].batch,
1304 					pageset->pcp[temperature].count);
1305 		}
1306 	}
1307 
1308 	get_page_state(&ps);
1309 	get_zone_counts(&active, &inactive, &free);
1310 
1311 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1312 		K(nr_free_pages()),
1313 		K(nr_free_highpages()));
1314 
1315 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1316 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1317 		active,
1318 		inactive,
1319 		ps.nr_dirty,
1320 		ps.nr_writeback,
1321 		ps.nr_unstable,
1322 		nr_free_pages(),
1323 		ps.nr_slab,
1324 		ps.nr_mapped,
1325 		ps.nr_page_table_pages);
1326 
1327 	for_each_zone(zone) {
1328 		int i;
1329 
1330 		show_node(zone);
1331 		printk("%s"
1332 			" free:%lukB"
1333 			" min:%lukB"
1334 			" low:%lukB"
1335 			" high:%lukB"
1336 			" active:%lukB"
1337 			" inactive:%lukB"
1338 			" present:%lukB"
1339 			" pages_scanned:%lu"
1340 			" all_unreclaimable? %s"
1341 			"\n",
1342 			zone->name,
1343 			K(zone->free_pages),
1344 			K(zone->pages_min),
1345 			K(zone->pages_low),
1346 			K(zone->pages_high),
1347 			K(zone->nr_active),
1348 			K(zone->nr_inactive),
1349 			K(zone->present_pages),
1350 			zone->pages_scanned,
1351 			(zone->all_unreclaimable ? "yes" : "no")
1352 			);
1353 		printk("lowmem_reserve[]:");
1354 		for (i = 0; i < MAX_NR_ZONES; i++)
1355 			printk(" %lu", zone->lowmem_reserve[i]);
1356 		printk("\n");
1357 	}
1358 
1359 	for_each_zone(zone) {
1360  		unsigned long nr, flags, order, total = 0;
1361 
1362 		show_node(zone);
1363 		printk("%s: ", zone->name);
1364 		if (!zone->present_pages) {
1365 			printk("empty\n");
1366 			continue;
1367 		}
1368 
1369 		spin_lock_irqsave(&zone->lock, flags);
1370 		for (order = 0; order < MAX_ORDER; order++) {
1371 			nr = zone->free_area[order].nr_free;
1372 			total += nr << order;
1373 			printk("%lu*%lukB ", nr, K(1UL) << order);
1374 		}
1375 		spin_unlock_irqrestore(&zone->lock, flags);
1376 		printk("= %lukB\n", K(total));
1377 	}
1378 
1379 	show_swap_cache_info();
1380 }
1381 
1382 /*
1383  * Builds allocation fallback zone lists.
1384  */
1385 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1386 {
1387 	switch (k) {
1388 		struct zone *zone;
1389 	default:
1390 		BUG();
1391 	case ZONE_HIGHMEM:
1392 		zone = pgdat->node_zones + ZONE_HIGHMEM;
1393 		if (zone->present_pages) {
1394 #ifndef CONFIG_HIGHMEM
1395 			BUG();
1396 #endif
1397 			zonelist->zones[j++] = zone;
1398 		}
1399 	case ZONE_NORMAL:
1400 		zone = pgdat->node_zones + ZONE_NORMAL;
1401 		if (zone->present_pages)
1402 			zonelist->zones[j++] = zone;
1403 	case ZONE_DMA:
1404 		zone = pgdat->node_zones + ZONE_DMA;
1405 		if (zone->present_pages)
1406 			zonelist->zones[j++] = zone;
1407 	}
1408 
1409 	return j;
1410 }
1411 
1412 #ifdef CONFIG_NUMA
1413 #define MAX_NODE_LOAD (num_online_nodes())
1414 static int __initdata node_load[MAX_NUMNODES];
1415 /**
1416  * find_next_best_node - find the next node that should appear in a given node's fallback list
1417  * @node: node whose fallback list we're appending
1418  * @used_node_mask: nodemask_t of already used nodes
1419  *
1420  * We use a number of factors to determine which is the next node that should
1421  * appear on a given node's fallback list.  The node should not have appeared
1422  * already in @node's fallback list, and it should be the next closest node
1423  * according to the distance array (which contains arbitrary distance values
1424  * from each node to each node in the system), and should also prefer nodes
1425  * with no CPUs, since presumably they'll have very little allocation pressure
1426  * on them otherwise.
1427  * It returns -1 if no node is found.
1428  */
1429 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1430 {
1431 	int i, n, val;
1432 	int min_val = INT_MAX;
1433 	int best_node = -1;
1434 
1435 	for_each_online_node(i) {
1436 		cpumask_t tmp;
1437 
1438 		/* Start from local node */
1439 		n = (node+i) % num_online_nodes();
1440 
1441 		/* Don't want a node to appear more than once */
1442 		if (node_isset(n, *used_node_mask))
1443 			continue;
1444 
1445 		/* Use the local node if we haven't already */
1446 		if (!node_isset(node, *used_node_mask)) {
1447 			best_node = node;
1448 			break;
1449 		}
1450 
1451 		/* Use the distance array to find the distance */
1452 		val = node_distance(node, n);
1453 
1454 		/* Give preference to headless and unused nodes */
1455 		tmp = node_to_cpumask(n);
1456 		if (!cpus_empty(tmp))
1457 			val += PENALTY_FOR_NODE_WITH_CPUS;
1458 
1459 		/* Slight preference for less loaded node */
1460 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1461 		val += node_load[n];
1462 
1463 		if (val < min_val) {
1464 			min_val = val;
1465 			best_node = n;
1466 		}
1467 	}
1468 
1469 	if (best_node >= 0)
1470 		node_set(best_node, *used_node_mask);
1471 
1472 	return best_node;
1473 }
1474 
1475 static void __init build_zonelists(pg_data_t *pgdat)
1476 {
1477 	int i, j, k, node, local_node;
1478 	int prev_node, load;
1479 	struct zonelist *zonelist;
1480 	nodemask_t used_mask;
1481 
1482 	/* initialize zonelists */
1483 	for (i = 0; i < GFP_ZONETYPES; i++) {
1484 		zonelist = pgdat->node_zonelists + i;
1485 		zonelist->zones[0] = NULL;
1486 	}
1487 
1488 	/* NUMA-aware ordering of nodes */
1489 	local_node = pgdat->node_id;
1490 	load = num_online_nodes();
1491 	prev_node = local_node;
1492 	nodes_clear(used_mask);
1493 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1494 		/*
1495 		 * We don't want to pressure a particular node.
1496 		 * So adding penalty to the first node in same
1497 		 * distance group to make it round-robin.
1498 		 */
1499 		if (node_distance(local_node, node) !=
1500 				node_distance(local_node, prev_node))
1501 			node_load[node] += load;
1502 		prev_node = node;
1503 		load--;
1504 		for (i = 0; i < GFP_ZONETYPES; i++) {
1505 			zonelist = pgdat->node_zonelists + i;
1506 			for (j = 0; zonelist->zones[j] != NULL; j++);
1507 
1508 			k = ZONE_NORMAL;
1509 			if (i & __GFP_HIGHMEM)
1510 				k = ZONE_HIGHMEM;
1511 			if (i & __GFP_DMA)
1512 				k = ZONE_DMA;
1513 
1514 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1515 			zonelist->zones[j] = NULL;
1516 		}
1517 	}
1518 }
1519 
1520 #else	/* CONFIG_NUMA */
1521 
1522 static void __init build_zonelists(pg_data_t *pgdat)
1523 {
1524 	int i, j, k, node, local_node;
1525 
1526 	local_node = pgdat->node_id;
1527 	for (i = 0; i < GFP_ZONETYPES; i++) {
1528 		struct zonelist *zonelist;
1529 
1530 		zonelist = pgdat->node_zonelists + i;
1531 
1532 		j = 0;
1533 		k = ZONE_NORMAL;
1534 		if (i & __GFP_HIGHMEM)
1535 			k = ZONE_HIGHMEM;
1536 		if (i & __GFP_DMA)
1537 			k = ZONE_DMA;
1538 
1539  		j = build_zonelists_node(pgdat, zonelist, j, k);
1540  		/*
1541  		 * Now we build the zonelist so that it contains the zones
1542  		 * of all the other nodes.
1543  		 * We don't want to pressure a particular node, so when
1544  		 * building the zones for node N, we make sure that the
1545  		 * zones coming right after the local ones are those from
1546  		 * node N+1 (modulo N)
1547  		 */
1548 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1549 			if (!node_online(node))
1550 				continue;
1551 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1552 		}
1553 		for (node = 0; node < local_node; node++) {
1554 			if (!node_online(node))
1555 				continue;
1556 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1557 		}
1558 
1559 		zonelist->zones[j] = NULL;
1560 	}
1561 }
1562 
1563 #endif	/* CONFIG_NUMA */
1564 
1565 void __init build_all_zonelists(void)
1566 {
1567 	int i;
1568 
1569 	for_each_online_node(i)
1570 		build_zonelists(NODE_DATA(i));
1571 	printk("Built %i zonelists\n", num_online_nodes());
1572 	cpuset_init_current_mems_allowed();
1573 }
1574 
1575 /*
1576  * Helper functions to size the waitqueue hash table.
1577  * Essentially these want to choose hash table sizes sufficiently
1578  * large so that collisions trying to wait on pages are rare.
1579  * But in fact, the number of active page waitqueues on typical
1580  * systems is ridiculously low, less than 200. So this is even
1581  * conservative, even though it seems large.
1582  *
1583  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1584  * waitqueues, i.e. the size of the waitq table given the number of pages.
1585  */
1586 #define PAGES_PER_WAITQUEUE	256
1587 
1588 static inline unsigned long wait_table_size(unsigned long pages)
1589 {
1590 	unsigned long size = 1;
1591 
1592 	pages /= PAGES_PER_WAITQUEUE;
1593 
1594 	while (size < pages)
1595 		size <<= 1;
1596 
1597 	/*
1598 	 * Once we have dozens or even hundreds of threads sleeping
1599 	 * on IO we've got bigger problems than wait queue collision.
1600 	 * Limit the size of the wait table to a reasonable size.
1601 	 */
1602 	size = min(size, 4096UL);
1603 
1604 	return max(size, 4UL);
1605 }
1606 
1607 /*
1608  * This is an integer logarithm so that shifts can be used later
1609  * to extract the more random high bits from the multiplicative
1610  * hash function before the remainder is taken.
1611  */
1612 static inline unsigned long wait_table_bits(unsigned long size)
1613 {
1614 	return ffz(~size);
1615 }
1616 
1617 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1618 
1619 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1620 		unsigned long *zones_size, unsigned long *zholes_size)
1621 {
1622 	unsigned long realtotalpages, totalpages = 0;
1623 	int i;
1624 
1625 	for (i = 0; i < MAX_NR_ZONES; i++)
1626 		totalpages += zones_size[i];
1627 	pgdat->node_spanned_pages = totalpages;
1628 
1629 	realtotalpages = totalpages;
1630 	if (zholes_size)
1631 		for (i = 0; i < MAX_NR_ZONES; i++)
1632 			realtotalpages -= zholes_size[i];
1633 	pgdat->node_present_pages = realtotalpages;
1634 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1635 }
1636 
1637 
1638 /*
1639  * Initially all pages are reserved - free ones are freed
1640  * up by free_all_bootmem() once the early boot process is
1641  * done. Non-atomic initialization, single-pass.
1642  */
1643 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1644 		unsigned long start_pfn)
1645 {
1646 	struct page *page;
1647 	unsigned long end_pfn = start_pfn + size;
1648 	unsigned long pfn;
1649 
1650 	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1651 		if (!early_pfn_valid(pfn))
1652 			continue;
1653 		if (!early_pfn_in_nid(pfn, nid))
1654 			continue;
1655 		page = pfn_to_page(pfn);
1656 		set_page_links(page, zone, nid, pfn);
1657 		set_page_count(page, 0);
1658 		reset_page_mapcount(page);
1659 		SetPageReserved(page);
1660 		INIT_LIST_HEAD(&page->lru);
1661 #ifdef WANT_PAGE_VIRTUAL
1662 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1663 		if (!is_highmem_idx(zone))
1664 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1665 #endif
1666 	}
1667 }
1668 
1669 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1670 				unsigned long size)
1671 {
1672 	int order;
1673 	for (order = 0; order < MAX_ORDER ; order++) {
1674 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1675 		zone->free_area[order].nr_free = 0;
1676 	}
1677 }
1678 
1679 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1680 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1681 		unsigned long size)
1682 {
1683 	unsigned long snum = pfn_to_section_nr(pfn);
1684 	unsigned long end = pfn_to_section_nr(pfn + size);
1685 
1686 	if (FLAGS_HAS_NODE)
1687 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1688 	else
1689 		for (; snum <= end; snum++)
1690 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1691 }
1692 
1693 #ifndef __HAVE_ARCH_MEMMAP_INIT
1694 #define memmap_init(size, nid, zone, start_pfn) \
1695 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1696 #endif
1697 
1698 static int __devinit zone_batchsize(struct zone *zone)
1699 {
1700 	int batch;
1701 
1702 	/*
1703 	 * The per-cpu-pages pools are set to around 1000th of the
1704 	 * size of the zone.  But no more than 1/4 of a meg - there's
1705 	 * no point in going beyond the size of L2 cache.
1706 	 *
1707 	 * OK, so we don't know how big the cache is.  So guess.
1708 	 */
1709 	batch = zone->present_pages / 1024;
1710 	if (batch * PAGE_SIZE > 256 * 1024)
1711 		batch = (256 * 1024) / PAGE_SIZE;
1712 	batch /= 4;		/* We effectively *= 4 below */
1713 	if (batch < 1)
1714 		batch = 1;
1715 
1716 	/*
1717 	 * Clamp the batch to a 2^n - 1 value. Having a power
1718 	 * of 2 value was found to be more likely to have
1719 	 * suboptimal cache aliasing properties in some cases.
1720 	 *
1721 	 * For example if 2 tasks are alternately allocating
1722 	 * batches of pages, one task can end up with a lot
1723 	 * of pages of one half of the possible page colors
1724 	 * and the other with pages of the other colors.
1725 	 */
1726 	batch = (1 << fls(batch + batch/2)) - 1;
1727 	return batch;
1728 }
1729 
1730 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1731 {
1732 	struct per_cpu_pages *pcp;
1733 
1734 	pcp = &p->pcp[0];		/* hot */
1735 	pcp->count = 0;
1736 	pcp->low = 2 * batch;
1737 	pcp->high = 6 * batch;
1738 	pcp->batch = max(1UL, 1 * batch);
1739 	INIT_LIST_HEAD(&pcp->list);
1740 
1741 	pcp = &p->pcp[1];		/* cold*/
1742 	pcp->count = 0;
1743 	pcp->low = 0;
1744 	pcp->high = 2 * batch;
1745 	pcp->batch = max(1UL, 1 * batch);
1746 	INIT_LIST_HEAD(&pcp->list);
1747 }
1748 
1749 #ifdef CONFIG_NUMA
1750 /*
1751  * Boot pageset table. One per cpu which is going to be used for all
1752  * zones and all nodes. The parameters will be set in such a way
1753  * that an item put on a list will immediately be handed over to
1754  * the buddy list. This is safe since pageset manipulation is done
1755  * with interrupts disabled.
1756  *
1757  * Some NUMA counter updates may also be caught by the boot pagesets.
1758  *
1759  * The boot_pagesets must be kept even after bootup is complete for
1760  * unused processors and/or zones. They do play a role for bootstrapping
1761  * hotplugged processors.
1762  *
1763  * zoneinfo_show() and maybe other functions do
1764  * not check if the processor is online before following the pageset pointer.
1765  * Other parts of the kernel may not check if the zone is available.
1766  */
1767 static struct per_cpu_pageset
1768 	boot_pageset[NR_CPUS];
1769 
1770 /*
1771  * Dynamically allocate memory for the
1772  * per cpu pageset array in struct zone.
1773  */
1774 static int __devinit process_zones(int cpu)
1775 {
1776 	struct zone *zone, *dzone;
1777 
1778 	for_each_zone(zone) {
1779 
1780 		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1781 					 GFP_KERNEL, cpu_to_node(cpu));
1782 		if (!zone->pageset[cpu])
1783 			goto bad;
1784 
1785 		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1786 	}
1787 
1788 	return 0;
1789 bad:
1790 	for_each_zone(dzone) {
1791 		if (dzone == zone)
1792 			break;
1793 		kfree(dzone->pageset[cpu]);
1794 		dzone->pageset[cpu] = NULL;
1795 	}
1796 	return -ENOMEM;
1797 }
1798 
1799 static inline void free_zone_pagesets(int cpu)
1800 {
1801 #ifdef CONFIG_NUMA
1802 	struct zone *zone;
1803 
1804 	for_each_zone(zone) {
1805 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1806 
1807 		zone_pcp(zone, cpu) = NULL;
1808 		kfree(pset);
1809 	}
1810 #endif
1811 }
1812 
1813 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1814 		unsigned long action,
1815 		void *hcpu)
1816 {
1817 	int cpu = (long)hcpu;
1818 	int ret = NOTIFY_OK;
1819 
1820 	switch (action) {
1821 		case CPU_UP_PREPARE:
1822 			if (process_zones(cpu))
1823 				ret = NOTIFY_BAD;
1824 			break;
1825 #ifdef CONFIG_HOTPLUG_CPU
1826 		case CPU_DEAD:
1827 			free_zone_pagesets(cpu);
1828 			break;
1829 #endif
1830 		default:
1831 			break;
1832 	}
1833 	return ret;
1834 }
1835 
1836 static struct notifier_block pageset_notifier =
1837 	{ &pageset_cpuup_callback, NULL, 0 };
1838 
1839 void __init setup_per_cpu_pageset()
1840 {
1841 	int err;
1842 
1843 	/* Initialize per_cpu_pageset for cpu 0.
1844 	 * A cpuup callback will do this for every cpu
1845 	 * as it comes online
1846 	 */
1847 	err = process_zones(smp_processor_id());
1848 	BUG_ON(err);
1849 	register_cpu_notifier(&pageset_notifier);
1850 }
1851 
1852 #endif
1853 
1854 /*
1855  * Set up the zone data structures:
1856  *   - mark all pages reserved
1857  *   - mark all memory queues empty
1858  *   - clear the memory bitmaps
1859  */
1860 static void __init free_area_init_core(struct pglist_data *pgdat,
1861 		unsigned long *zones_size, unsigned long *zholes_size)
1862 {
1863 	unsigned long i, j;
1864 	const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1865 	int cpu, nid = pgdat->node_id;
1866 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1867 
1868 	pgdat->nr_zones = 0;
1869 	init_waitqueue_head(&pgdat->kswapd_wait);
1870 	pgdat->kswapd_max_order = 0;
1871 
1872 	for (j = 0; j < MAX_NR_ZONES; j++) {
1873 		struct zone *zone = pgdat->node_zones + j;
1874 		unsigned long size, realsize;
1875 		unsigned long batch;
1876 
1877 		realsize = size = zones_size[j];
1878 		if (zholes_size)
1879 			realsize -= zholes_size[j];
1880 
1881 		if (j == ZONE_DMA || j == ZONE_NORMAL)
1882 			nr_kernel_pages += realsize;
1883 		nr_all_pages += realsize;
1884 
1885 		zone->spanned_pages = size;
1886 		zone->present_pages = realsize;
1887 		zone->name = zone_names[j];
1888 		spin_lock_init(&zone->lock);
1889 		spin_lock_init(&zone->lru_lock);
1890 		zone->zone_pgdat = pgdat;
1891 		zone->free_pages = 0;
1892 
1893 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1894 
1895 		batch = zone_batchsize(zone);
1896 
1897 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1898 #ifdef CONFIG_NUMA
1899 			/* Early boot. Slab allocator not functional yet */
1900 			zone->pageset[cpu] = &boot_pageset[cpu];
1901 			setup_pageset(&boot_pageset[cpu],0);
1902 #else
1903 			setup_pageset(zone_pcp(zone,cpu), batch);
1904 #endif
1905 		}
1906 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1907 				zone_names[j], realsize, batch);
1908 		INIT_LIST_HEAD(&zone->active_list);
1909 		INIT_LIST_HEAD(&zone->inactive_list);
1910 		zone->nr_scan_active = 0;
1911 		zone->nr_scan_inactive = 0;
1912 		zone->nr_active = 0;
1913 		zone->nr_inactive = 0;
1914 		atomic_set(&zone->reclaim_in_progress, -1);
1915 		if (!size)
1916 			continue;
1917 
1918 		/*
1919 		 * The per-page waitqueue mechanism uses hashed waitqueues
1920 		 * per zone.
1921 		 */
1922 		zone->wait_table_size = wait_table_size(size);
1923 		zone->wait_table_bits =
1924 			wait_table_bits(zone->wait_table_size);
1925 		zone->wait_table = (wait_queue_head_t *)
1926 			alloc_bootmem_node(pgdat, zone->wait_table_size
1927 						* sizeof(wait_queue_head_t));
1928 
1929 		for(i = 0; i < zone->wait_table_size; ++i)
1930 			init_waitqueue_head(zone->wait_table + i);
1931 
1932 		pgdat->nr_zones = j+1;
1933 
1934 		zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1935 		zone->zone_start_pfn = zone_start_pfn;
1936 
1937 		if ((zone_start_pfn) & (zone_required_alignment-1))
1938 			printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1939 
1940 		memmap_init(size, nid, j, zone_start_pfn);
1941 
1942 		zonetable_add(zone, nid, j, zone_start_pfn, size);
1943 
1944 		zone_start_pfn += size;
1945 
1946 		zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1947 	}
1948 }
1949 
1950 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1951 {
1952 	/* Skip empty nodes */
1953 	if (!pgdat->node_spanned_pages)
1954 		return;
1955 
1956 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1957 	/* ia64 gets its own node_mem_map, before this, without bootmem */
1958 	if (!pgdat->node_mem_map) {
1959 		unsigned long size;
1960 		struct page *map;
1961 
1962 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1963 		map = alloc_remap(pgdat->node_id, size);
1964 		if (!map)
1965 			map = alloc_bootmem_node(pgdat, size);
1966 		pgdat->node_mem_map = map;
1967 	}
1968 #ifdef CONFIG_FLATMEM
1969 	/*
1970 	 * With no DISCONTIG, the global mem_map is just set as node 0's
1971 	 */
1972 	if (pgdat == NODE_DATA(0))
1973 		mem_map = NODE_DATA(0)->node_mem_map;
1974 #endif
1975 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
1976 }
1977 
1978 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1979 		unsigned long *zones_size, unsigned long node_start_pfn,
1980 		unsigned long *zholes_size)
1981 {
1982 	pgdat->node_id = nid;
1983 	pgdat->node_start_pfn = node_start_pfn;
1984 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1985 
1986 	alloc_node_mem_map(pgdat);
1987 
1988 	free_area_init_core(pgdat, zones_size, zholes_size);
1989 }
1990 
1991 #ifndef CONFIG_NEED_MULTIPLE_NODES
1992 static bootmem_data_t contig_bootmem_data;
1993 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1994 
1995 EXPORT_SYMBOL(contig_page_data);
1996 #endif
1997 
1998 void __init free_area_init(unsigned long *zones_size)
1999 {
2000 	free_area_init_node(0, NODE_DATA(0), zones_size,
2001 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2002 }
2003 
2004 #ifdef CONFIG_PROC_FS
2005 
2006 #include <linux/seq_file.h>
2007 
2008 static void *frag_start(struct seq_file *m, loff_t *pos)
2009 {
2010 	pg_data_t *pgdat;
2011 	loff_t node = *pos;
2012 
2013 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2014 		--node;
2015 
2016 	return pgdat;
2017 }
2018 
2019 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2020 {
2021 	pg_data_t *pgdat = (pg_data_t *)arg;
2022 
2023 	(*pos)++;
2024 	return pgdat->pgdat_next;
2025 }
2026 
2027 static void frag_stop(struct seq_file *m, void *arg)
2028 {
2029 }
2030 
2031 /*
2032  * This walks the free areas for each zone.
2033  */
2034 static int frag_show(struct seq_file *m, void *arg)
2035 {
2036 	pg_data_t *pgdat = (pg_data_t *)arg;
2037 	struct zone *zone;
2038 	struct zone *node_zones = pgdat->node_zones;
2039 	unsigned long flags;
2040 	int order;
2041 
2042 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2043 		if (!zone->present_pages)
2044 			continue;
2045 
2046 		spin_lock_irqsave(&zone->lock, flags);
2047 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2048 		for (order = 0; order < MAX_ORDER; ++order)
2049 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2050 		spin_unlock_irqrestore(&zone->lock, flags);
2051 		seq_putc(m, '\n');
2052 	}
2053 	return 0;
2054 }
2055 
2056 struct seq_operations fragmentation_op = {
2057 	.start	= frag_start,
2058 	.next	= frag_next,
2059 	.stop	= frag_stop,
2060 	.show	= frag_show,
2061 };
2062 
2063 /*
2064  * Output information about zones in @pgdat.
2065  */
2066 static int zoneinfo_show(struct seq_file *m, void *arg)
2067 {
2068 	pg_data_t *pgdat = arg;
2069 	struct zone *zone;
2070 	struct zone *node_zones = pgdat->node_zones;
2071 	unsigned long flags;
2072 
2073 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2074 		int i;
2075 
2076 		if (!zone->present_pages)
2077 			continue;
2078 
2079 		spin_lock_irqsave(&zone->lock, flags);
2080 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2081 		seq_printf(m,
2082 			   "\n  pages free     %lu"
2083 			   "\n        min      %lu"
2084 			   "\n        low      %lu"
2085 			   "\n        high     %lu"
2086 			   "\n        active   %lu"
2087 			   "\n        inactive %lu"
2088 			   "\n        scanned  %lu (a: %lu i: %lu)"
2089 			   "\n        spanned  %lu"
2090 			   "\n        present  %lu",
2091 			   zone->free_pages,
2092 			   zone->pages_min,
2093 			   zone->pages_low,
2094 			   zone->pages_high,
2095 			   zone->nr_active,
2096 			   zone->nr_inactive,
2097 			   zone->pages_scanned,
2098 			   zone->nr_scan_active, zone->nr_scan_inactive,
2099 			   zone->spanned_pages,
2100 			   zone->present_pages);
2101 		seq_printf(m,
2102 			   "\n        protection: (%lu",
2103 			   zone->lowmem_reserve[0]);
2104 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2105 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2106 		seq_printf(m,
2107 			   ")"
2108 			   "\n  pagesets");
2109 		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2110 			struct per_cpu_pageset *pageset;
2111 			int j;
2112 
2113 			pageset = zone_pcp(zone, i);
2114 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2115 				if (pageset->pcp[j].count)
2116 					break;
2117 			}
2118 			if (j == ARRAY_SIZE(pageset->pcp))
2119 				continue;
2120 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2121 				seq_printf(m,
2122 					   "\n    cpu: %i pcp: %i"
2123 					   "\n              count: %i"
2124 					   "\n              low:   %i"
2125 					   "\n              high:  %i"
2126 					   "\n              batch: %i",
2127 					   i, j,
2128 					   pageset->pcp[j].count,
2129 					   pageset->pcp[j].low,
2130 					   pageset->pcp[j].high,
2131 					   pageset->pcp[j].batch);
2132 			}
2133 #ifdef CONFIG_NUMA
2134 			seq_printf(m,
2135 				   "\n            numa_hit:       %lu"
2136 				   "\n            numa_miss:      %lu"
2137 				   "\n            numa_foreign:   %lu"
2138 				   "\n            interleave_hit: %lu"
2139 				   "\n            local_node:     %lu"
2140 				   "\n            other_node:     %lu",
2141 				   pageset->numa_hit,
2142 				   pageset->numa_miss,
2143 				   pageset->numa_foreign,
2144 				   pageset->interleave_hit,
2145 				   pageset->local_node,
2146 				   pageset->other_node);
2147 #endif
2148 		}
2149 		seq_printf(m,
2150 			   "\n  all_unreclaimable: %u"
2151 			   "\n  prev_priority:     %i"
2152 			   "\n  temp_priority:     %i"
2153 			   "\n  start_pfn:         %lu",
2154 			   zone->all_unreclaimable,
2155 			   zone->prev_priority,
2156 			   zone->temp_priority,
2157 			   zone->zone_start_pfn);
2158 		spin_unlock_irqrestore(&zone->lock, flags);
2159 		seq_putc(m, '\n');
2160 	}
2161 	return 0;
2162 }
2163 
2164 struct seq_operations zoneinfo_op = {
2165 	.start	= frag_start, /* iterate over all zones. The same as in
2166 			       * fragmentation. */
2167 	.next	= frag_next,
2168 	.stop	= frag_stop,
2169 	.show	= zoneinfo_show,
2170 };
2171 
2172 static char *vmstat_text[] = {
2173 	"nr_dirty",
2174 	"nr_writeback",
2175 	"nr_unstable",
2176 	"nr_page_table_pages",
2177 	"nr_mapped",
2178 	"nr_slab",
2179 
2180 	"pgpgin",
2181 	"pgpgout",
2182 	"pswpin",
2183 	"pswpout",
2184 	"pgalloc_high",
2185 
2186 	"pgalloc_normal",
2187 	"pgalloc_dma",
2188 	"pgfree",
2189 	"pgactivate",
2190 	"pgdeactivate",
2191 
2192 	"pgfault",
2193 	"pgmajfault",
2194 	"pgrefill_high",
2195 	"pgrefill_normal",
2196 	"pgrefill_dma",
2197 
2198 	"pgsteal_high",
2199 	"pgsteal_normal",
2200 	"pgsteal_dma",
2201 	"pgscan_kswapd_high",
2202 	"pgscan_kswapd_normal",
2203 
2204 	"pgscan_kswapd_dma",
2205 	"pgscan_direct_high",
2206 	"pgscan_direct_normal",
2207 	"pgscan_direct_dma",
2208 	"pginodesteal",
2209 
2210 	"slabs_scanned",
2211 	"kswapd_steal",
2212 	"kswapd_inodesteal",
2213 	"pageoutrun",
2214 	"allocstall",
2215 
2216 	"pgrotated",
2217 	"nr_bounce",
2218 };
2219 
2220 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2221 {
2222 	struct page_state *ps;
2223 
2224 	if (*pos >= ARRAY_SIZE(vmstat_text))
2225 		return NULL;
2226 
2227 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2228 	m->private = ps;
2229 	if (!ps)
2230 		return ERR_PTR(-ENOMEM);
2231 	get_full_page_state(ps);
2232 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2233 	ps->pgpgout /= 2;
2234 	return (unsigned long *)ps + *pos;
2235 }
2236 
2237 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2238 {
2239 	(*pos)++;
2240 	if (*pos >= ARRAY_SIZE(vmstat_text))
2241 		return NULL;
2242 	return (unsigned long *)m->private + *pos;
2243 }
2244 
2245 static int vmstat_show(struct seq_file *m, void *arg)
2246 {
2247 	unsigned long *l = arg;
2248 	unsigned long off = l - (unsigned long *)m->private;
2249 
2250 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2251 	return 0;
2252 }
2253 
2254 static void vmstat_stop(struct seq_file *m, void *arg)
2255 {
2256 	kfree(m->private);
2257 	m->private = NULL;
2258 }
2259 
2260 struct seq_operations vmstat_op = {
2261 	.start	= vmstat_start,
2262 	.next	= vmstat_next,
2263 	.stop	= vmstat_stop,
2264 	.show	= vmstat_show,
2265 };
2266 
2267 #endif /* CONFIG_PROC_FS */
2268 
2269 #ifdef CONFIG_HOTPLUG_CPU
2270 static int page_alloc_cpu_notify(struct notifier_block *self,
2271 				 unsigned long action, void *hcpu)
2272 {
2273 	int cpu = (unsigned long)hcpu;
2274 	long *count;
2275 	unsigned long *src, *dest;
2276 
2277 	if (action == CPU_DEAD) {
2278 		int i;
2279 
2280 		/* Drain local pagecache count. */
2281 		count = &per_cpu(nr_pagecache_local, cpu);
2282 		atomic_add(*count, &nr_pagecache);
2283 		*count = 0;
2284 		local_irq_disable();
2285 		__drain_pages(cpu);
2286 
2287 		/* Add dead cpu's page_states to our own. */
2288 		dest = (unsigned long *)&__get_cpu_var(page_states);
2289 		src = (unsigned long *)&per_cpu(page_states, cpu);
2290 
2291 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2292 				i++) {
2293 			dest[i] += src[i];
2294 			src[i] = 0;
2295 		}
2296 
2297 		local_irq_enable();
2298 	}
2299 	return NOTIFY_OK;
2300 }
2301 #endif /* CONFIG_HOTPLUG_CPU */
2302 
2303 void __init page_alloc_init(void)
2304 {
2305 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2306 }
2307 
2308 /*
2309  * setup_per_zone_lowmem_reserve - called whenever
2310  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2311  *	has a correct pages reserved value, so an adequate number of
2312  *	pages are left in the zone after a successful __alloc_pages().
2313  */
2314 static void setup_per_zone_lowmem_reserve(void)
2315 {
2316 	struct pglist_data *pgdat;
2317 	int j, idx;
2318 
2319 	for_each_pgdat(pgdat) {
2320 		for (j = 0; j < MAX_NR_ZONES; j++) {
2321 			struct zone *zone = pgdat->node_zones + j;
2322 			unsigned long present_pages = zone->present_pages;
2323 
2324 			zone->lowmem_reserve[j] = 0;
2325 
2326 			for (idx = j-1; idx >= 0; idx--) {
2327 				struct zone *lower_zone;
2328 
2329 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2330 					sysctl_lowmem_reserve_ratio[idx] = 1;
2331 
2332 				lower_zone = pgdat->node_zones + idx;
2333 				lower_zone->lowmem_reserve[j] = present_pages /
2334 					sysctl_lowmem_reserve_ratio[idx];
2335 				present_pages += lower_zone->present_pages;
2336 			}
2337 		}
2338 	}
2339 }
2340 
2341 /*
2342  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2343  *	that the pages_{min,low,high} values for each zone are set correctly
2344  *	with respect to min_free_kbytes.
2345  */
2346 static void setup_per_zone_pages_min(void)
2347 {
2348 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2349 	unsigned long lowmem_pages = 0;
2350 	struct zone *zone;
2351 	unsigned long flags;
2352 
2353 	/* Calculate total number of !ZONE_HIGHMEM pages */
2354 	for_each_zone(zone) {
2355 		if (!is_highmem(zone))
2356 			lowmem_pages += zone->present_pages;
2357 	}
2358 
2359 	for_each_zone(zone) {
2360 		spin_lock_irqsave(&zone->lru_lock, flags);
2361 		if (is_highmem(zone)) {
2362 			/*
2363 			 * Often, highmem doesn't need to reserve any pages.
2364 			 * But the pages_min/low/high values are also used for
2365 			 * batching up page reclaim activity so we need a
2366 			 * decent value here.
2367 			 */
2368 			int min_pages;
2369 
2370 			min_pages = zone->present_pages / 1024;
2371 			if (min_pages < SWAP_CLUSTER_MAX)
2372 				min_pages = SWAP_CLUSTER_MAX;
2373 			if (min_pages > 128)
2374 				min_pages = 128;
2375 			zone->pages_min = min_pages;
2376 		} else {
2377 			/* if it's a lowmem zone, reserve a number of pages
2378 			 * proportionate to the zone's size.
2379 			 */
2380 			zone->pages_min = (pages_min * zone->present_pages) /
2381 			                   lowmem_pages;
2382 		}
2383 
2384 		/*
2385 		 * When interpreting these watermarks, just keep in mind that:
2386 		 * zone->pages_min == (zone->pages_min * 4) / 4;
2387 		 */
2388 		zone->pages_low   = (zone->pages_min * 5) / 4;
2389 		zone->pages_high  = (zone->pages_min * 6) / 4;
2390 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2391 	}
2392 }
2393 
2394 /*
2395  * Initialise min_free_kbytes.
2396  *
2397  * For small machines we want it small (128k min).  For large machines
2398  * we want it large (64MB max).  But it is not linear, because network
2399  * bandwidth does not increase linearly with machine size.  We use
2400  *
2401  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2402  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2403  *
2404  * which yields
2405  *
2406  * 16MB:	512k
2407  * 32MB:	724k
2408  * 64MB:	1024k
2409  * 128MB:	1448k
2410  * 256MB:	2048k
2411  * 512MB:	2896k
2412  * 1024MB:	4096k
2413  * 2048MB:	5792k
2414  * 4096MB:	8192k
2415  * 8192MB:	11584k
2416  * 16384MB:	16384k
2417  */
2418 static int __init init_per_zone_pages_min(void)
2419 {
2420 	unsigned long lowmem_kbytes;
2421 
2422 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2423 
2424 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2425 	if (min_free_kbytes < 128)
2426 		min_free_kbytes = 128;
2427 	if (min_free_kbytes > 65536)
2428 		min_free_kbytes = 65536;
2429 	setup_per_zone_pages_min();
2430 	setup_per_zone_lowmem_reserve();
2431 	return 0;
2432 }
2433 module_init(init_per_zone_pages_min)
2434 
2435 /*
2436  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2437  *	that we can call two helper functions whenever min_free_kbytes
2438  *	changes.
2439  */
2440 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2441 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2442 {
2443 	proc_dointvec(table, write, file, buffer, length, ppos);
2444 	setup_per_zone_pages_min();
2445 	return 0;
2446 }
2447 
2448 /*
2449  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2450  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2451  *	whenever sysctl_lowmem_reserve_ratio changes.
2452  *
2453  * The reserve ratio obviously has absolutely no relation with the
2454  * pages_min watermarks. The lowmem reserve ratio can only make sense
2455  * if in function of the boot time zone sizes.
2456  */
2457 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2458 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2459 {
2460 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2461 	setup_per_zone_lowmem_reserve();
2462 	return 0;
2463 }
2464 
2465 __initdata int hashdist = HASHDIST_DEFAULT;
2466 
2467 #ifdef CONFIG_NUMA
2468 static int __init set_hashdist(char *str)
2469 {
2470 	if (!str)
2471 		return 0;
2472 	hashdist = simple_strtoul(str, &str, 0);
2473 	return 1;
2474 }
2475 __setup("hashdist=", set_hashdist);
2476 #endif
2477 
2478 /*
2479  * allocate a large system hash table from bootmem
2480  * - it is assumed that the hash table must contain an exact power-of-2
2481  *   quantity of entries
2482  * - limit is the number of hash buckets, not the total allocation size
2483  */
2484 void *__init alloc_large_system_hash(const char *tablename,
2485 				     unsigned long bucketsize,
2486 				     unsigned long numentries,
2487 				     int scale,
2488 				     int flags,
2489 				     unsigned int *_hash_shift,
2490 				     unsigned int *_hash_mask,
2491 				     unsigned long limit)
2492 {
2493 	unsigned long long max = limit;
2494 	unsigned long log2qty, size;
2495 	void *table = NULL;
2496 
2497 	/* allow the kernel cmdline to have a say */
2498 	if (!numentries) {
2499 		/* round applicable memory size up to nearest megabyte */
2500 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2501 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2502 		numentries >>= 20 - PAGE_SHIFT;
2503 		numentries <<= 20 - PAGE_SHIFT;
2504 
2505 		/* limit to 1 bucket per 2^scale bytes of low memory */
2506 		if (scale > PAGE_SHIFT)
2507 			numentries >>= (scale - PAGE_SHIFT);
2508 		else
2509 			numentries <<= (PAGE_SHIFT - scale);
2510 	}
2511 	/* rounded up to nearest power of 2 in size */
2512 	numentries = 1UL << (long_log2(numentries) + 1);
2513 
2514 	/* limit allocation size to 1/16 total memory by default */
2515 	if (max == 0) {
2516 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2517 		do_div(max, bucketsize);
2518 	}
2519 
2520 	if (numentries > max)
2521 		numentries = max;
2522 
2523 	log2qty = long_log2(numentries);
2524 
2525 	do {
2526 		size = bucketsize << log2qty;
2527 		if (flags & HASH_EARLY)
2528 			table = alloc_bootmem(size);
2529 		else if (hashdist)
2530 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2531 		else {
2532 			unsigned long order;
2533 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2534 				;
2535 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2536 		}
2537 	} while (!table && size > PAGE_SIZE && --log2qty);
2538 
2539 	if (!table)
2540 		panic("Failed to allocate %s hash table\n", tablename);
2541 
2542 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2543 	       tablename,
2544 	       (1U << log2qty),
2545 	       long_log2(size) - PAGE_SHIFT,
2546 	       size);
2547 
2548 	if (_hash_shift)
2549 		*_hash_shift = log2qty;
2550 	if (_hash_mask)
2551 		*_hash_mask = (1 << log2qty) - 1;
2552 
2553 	return table;
2554 }
2555