xref: /linux/mm/page_alloc.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page_ext.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/page_owner.h>
63 
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68 
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
72 
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77 
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83  * defined in <linux/topology.h>.
84  */
85 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 int _node_numa_mem_[MAX_NUMNODES];
88 #endif
89 
90 /*
91  * Array of node states.
92  */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 	[N_POSSIBLE] = NODE_MASK_ALL,
95 	[N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 	[N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 	[N_CPU] = { { [0] = 1UL } },
105 #endif	/* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108 
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111 
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 /*
115  * When calculating the number of globally allowed dirty pages, there
116  * is a certain number of per-zone reserves that should not be
117  * considered dirtyable memory.  This is the sum of those reserves
118  * over all existing zones that contribute dirtyable memory.
119  */
120 unsigned long dirty_balance_reserve __read_mostly;
121 
122 int percpu_pagelist_fraction;
123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
124 
125 #ifdef CONFIG_PM_SLEEP
126 /*
127  * The following functions are used by the suspend/hibernate code to temporarily
128  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129  * while devices are suspended.  To avoid races with the suspend/hibernate code,
130  * they should always be called with pm_mutex held (gfp_allowed_mask also should
131  * only be modified with pm_mutex held, unless the suspend/hibernate code is
132  * guaranteed not to run in parallel with that modification).
133  */
134 
135 static gfp_t saved_gfp_mask;
136 
137 void pm_restore_gfp_mask(void)
138 {
139 	WARN_ON(!mutex_is_locked(&pm_mutex));
140 	if (saved_gfp_mask) {
141 		gfp_allowed_mask = saved_gfp_mask;
142 		saved_gfp_mask = 0;
143 	}
144 }
145 
146 void pm_restrict_gfp_mask(void)
147 {
148 	WARN_ON(!mutex_is_locked(&pm_mutex));
149 	WARN_ON(saved_gfp_mask);
150 	saved_gfp_mask = gfp_allowed_mask;
151 	gfp_allowed_mask &= ~GFP_IOFS;
152 }
153 
154 bool pm_suspended_storage(void)
155 {
156 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
157 		return false;
158 	return true;
159 }
160 #endif /* CONFIG_PM_SLEEP */
161 
162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163 int pageblock_order __read_mostly;
164 #endif
165 
166 static void __free_pages_ok(struct page *page, unsigned int order);
167 
168 /*
169  * results with 256, 32 in the lowmem_reserve sysctl:
170  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171  *	1G machine -> (16M dma, 784M normal, 224M high)
172  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175  *
176  * TBD: should special case ZONE_DMA32 machines here - in those we normally
177  * don't need any ZONE_NORMAL reservation
178  */
179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
180 #ifdef CONFIG_ZONE_DMA
181 	 256,
182 #endif
183 #ifdef CONFIG_ZONE_DMA32
184 	 256,
185 #endif
186 #ifdef CONFIG_HIGHMEM
187 	 32,
188 #endif
189 	 32,
190 };
191 
192 EXPORT_SYMBOL(totalram_pages);
193 
194 static char * const zone_names[MAX_NR_ZONES] = {
195 #ifdef CONFIG_ZONE_DMA
196 	 "DMA",
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 	 "DMA32",
200 #endif
201 	 "Normal",
202 #ifdef CONFIG_HIGHMEM
203 	 "HighMem",
204 #endif
205 	 "Movable",
206 };
207 
208 int min_free_kbytes = 1024;
209 int user_min_free_kbytes = -1;
210 
211 static unsigned long __meminitdata nr_kernel_pages;
212 static unsigned long __meminitdata nr_all_pages;
213 static unsigned long __meminitdata dma_reserve;
214 
215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __initdata required_kernelcore;
219 static unsigned long __initdata required_movablecore;
220 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
221 
222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 int movable_zone;
224 EXPORT_SYMBOL(movable_zone);
225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
226 
227 #if MAX_NUMNODES > 1
228 int nr_node_ids __read_mostly = MAX_NUMNODES;
229 int nr_online_nodes __read_mostly = 1;
230 EXPORT_SYMBOL(nr_node_ids);
231 EXPORT_SYMBOL(nr_online_nodes);
232 #endif
233 
234 int page_group_by_mobility_disabled __read_mostly;
235 
236 void set_pageblock_migratetype(struct page *page, int migratetype)
237 {
238 	if (unlikely(page_group_by_mobility_disabled &&
239 		     migratetype < MIGRATE_PCPTYPES))
240 		migratetype = MIGRATE_UNMOVABLE;
241 
242 	set_pageblock_flags_group(page, (unsigned long)migratetype,
243 					PB_migrate, PB_migrate_end);
244 }
245 
246 bool oom_killer_disabled __read_mostly;
247 
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 	int ret = 0;
252 	unsigned seq;
253 	unsigned long pfn = page_to_pfn(page);
254 	unsigned long sp, start_pfn;
255 
256 	do {
257 		seq = zone_span_seqbegin(zone);
258 		start_pfn = zone->zone_start_pfn;
259 		sp = zone->spanned_pages;
260 		if (!zone_spans_pfn(zone, pfn))
261 			ret = 1;
262 	} while (zone_span_seqretry(zone, seq));
263 
264 	if (ret)
265 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 			pfn, zone_to_nid(zone), zone->name,
267 			start_pfn, start_pfn + sp);
268 
269 	return ret;
270 }
271 
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 	if (!pfn_valid_within(page_to_pfn(page)))
275 		return 0;
276 	if (zone != page_zone(page))
277 		return 0;
278 
279 	return 1;
280 }
281 /*
282  * Temporary debugging check for pages not lying within a given zone.
283  */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 	if (page_outside_zone_boundaries(zone, page))
287 		return 1;
288 	if (!page_is_consistent(zone, page))
289 		return 1;
290 
291 	return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 	return 0;
297 }
298 #endif
299 
300 static void bad_page(struct page *page, const char *reason,
301 		unsigned long bad_flags)
302 {
303 	static unsigned long resume;
304 	static unsigned long nr_shown;
305 	static unsigned long nr_unshown;
306 
307 	/* Don't complain about poisoned pages */
308 	if (PageHWPoison(page)) {
309 		page_mapcount_reset(page); /* remove PageBuddy */
310 		return;
311 	}
312 
313 	/*
314 	 * Allow a burst of 60 reports, then keep quiet for that minute;
315 	 * or allow a steady drip of one report per second.
316 	 */
317 	if (nr_shown == 60) {
318 		if (time_before(jiffies, resume)) {
319 			nr_unshown++;
320 			goto out;
321 		}
322 		if (nr_unshown) {
323 			printk(KERN_ALERT
324 			      "BUG: Bad page state: %lu messages suppressed\n",
325 				nr_unshown);
326 			nr_unshown = 0;
327 		}
328 		nr_shown = 0;
329 	}
330 	if (nr_shown++ == 0)
331 		resume = jiffies + 60 * HZ;
332 
333 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
334 		current->comm, page_to_pfn(page));
335 	dump_page_badflags(page, reason, bad_flags);
336 
337 	print_modules();
338 	dump_stack();
339 out:
340 	/* Leave bad fields for debug, except PageBuddy could make trouble */
341 	page_mapcount_reset(page); /* remove PageBuddy */
342 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344 
345 /*
346  * Higher-order pages are called "compound pages".  They are structured thusly:
347  *
348  * The first PAGE_SIZE page is called the "head page".
349  *
350  * The remaining PAGE_SIZE pages are called "tail pages".
351  *
352  * All pages have PG_compound set.  All tail pages have their ->first_page
353  * pointing at the head page.
354  *
355  * The first tail page's ->lru.next holds the address of the compound page's
356  * put_page() function.  Its ->lru.prev holds the order of allocation.
357  * This usage means that zero-order pages may not be compound.
358  */
359 
360 static void free_compound_page(struct page *page)
361 {
362 	__free_pages_ok(page, compound_order(page));
363 }
364 
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 
370 	set_compound_page_dtor(page, free_compound_page);
371 	set_compound_order(page, order);
372 	__SetPageHead(page);
373 	for (i = 1; i < nr_pages; i++) {
374 		struct page *p = page + i;
375 		set_page_count(p, 0);
376 		p->first_page = page;
377 		/* Make sure p->first_page is always valid for PageTail() */
378 		smp_wmb();
379 		__SetPageTail(p);
380 	}
381 }
382 
383 /* update __split_huge_page_refcount if you change this function */
384 static int destroy_compound_page(struct page *page, unsigned long order)
385 {
386 	int i;
387 	int nr_pages = 1 << order;
388 	int bad = 0;
389 
390 	if (unlikely(compound_order(page) != order)) {
391 		bad_page(page, "wrong compound order", 0);
392 		bad++;
393 	}
394 
395 	__ClearPageHead(page);
396 
397 	for (i = 1; i < nr_pages; i++) {
398 		struct page *p = page + i;
399 
400 		if (unlikely(!PageTail(p))) {
401 			bad_page(page, "PageTail not set", 0);
402 			bad++;
403 		} else if (unlikely(p->first_page != page)) {
404 			bad_page(page, "first_page not consistent", 0);
405 			bad++;
406 		}
407 		__ClearPageTail(p);
408 	}
409 
410 	return bad;
411 }
412 
413 static inline void prep_zero_page(struct page *page, unsigned int order,
414 							gfp_t gfp_flags)
415 {
416 	int i;
417 
418 	/*
419 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
420 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 	 */
422 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
423 	for (i = 0; i < (1 << order); i++)
424 		clear_highpage(page + i);
425 }
426 
427 #ifdef CONFIG_DEBUG_PAGEALLOC
428 unsigned int _debug_guardpage_minorder;
429 bool _debug_pagealloc_enabled __read_mostly;
430 bool _debug_guardpage_enabled __read_mostly;
431 
432 static int __init early_debug_pagealloc(char *buf)
433 {
434 	if (!buf)
435 		return -EINVAL;
436 
437 	if (strcmp(buf, "on") == 0)
438 		_debug_pagealloc_enabled = true;
439 
440 	return 0;
441 }
442 early_param("debug_pagealloc", early_debug_pagealloc);
443 
444 static bool need_debug_guardpage(void)
445 {
446 	/* If we don't use debug_pagealloc, we don't need guard page */
447 	if (!debug_pagealloc_enabled())
448 		return false;
449 
450 	return true;
451 }
452 
453 static void init_debug_guardpage(void)
454 {
455 	if (!debug_pagealloc_enabled())
456 		return;
457 
458 	_debug_guardpage_enabled = true;
459 }
460 
461 struct page_ext_operations debug_guardpage_ops = {
462 	.need = need_debug_guardpage,
463 	.init = init_debug_guardpage,
464 };
465 
466 static int __init debug_guardpage_minorder_setup(char *buf)
467 {
468 	unsigned long res;
469 
470 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
471 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
472 		return 0;
473 	}
474 	_debug_guardpage_minorder = res;
475 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
476 	return 0;
477 }
478 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
479 
480 static inline void set_page_guard(struct zone *zone, struct page *page,
481 				unsigned int order, int migratetype)
482 {
483 	struct page_ext *page_ext;
484 
485 	if (!debug_guardpage_enabled())
486 		return;
487 
488 	page_ext = lookup_page_ext(page);
489 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
490 
491 	INIT_LIST_HEAD(&page->lru);
492 	set_page_private(page, order);
493 	/* Guard pages are not available for any usage */
494 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
495 }
496 
497 static inline void clear_page_guard(struct zone *zone, struct page *page,
498 				unsigned int order, int migratetype)
499 {
500 	struct page_ext *page_ext;
501 
502 	if (!debug_guardpage_enabled())
503 		return;
504 
505 	page_ext = lookup_page_ext(page);
506 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
507 
508 	set_page_private(page, 0);
509 	if (!is_migrate_isolate(migratetype))
510 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
511 }
512 #else
513 struct page_ext_operations debug_guardpage_ops = { NULL, };
514 static inline void set_page_guard(struct zone *zone, struct page *page,
515 				unsigned int order, int migratetype) {}
516 static inline void clear_page_guard(struct zone *zone, struct page *page,
517 				unsigned int order, int migratetype) {}
518 #endif
519 
520 static inline void set_page_order(struct page *page, unsigned int order)
521 {
522 	set_page_private(page, order);
523 	__SetPageBuddy(page);
524 }
525 
526 static inline void rmv_page_order(struct page *page)
527 {
528 	__ClearPageBuddy(page);
529 	set_page_private(page, 0);
530 }
531 
532 /*
533  * This function checks whether a page is free && is the buddy
534  * we can do coalesce a page and its buddy if
535  * (a) the buddy is not in a hole &&
536  * (b) the buddy is in the buddy system &&
537  * (c) a page and its buddy have the same order &&
538  * (d) a page and its buddy are in the same zone.
539  *
540  * For recording whether a page is in the buddy system, we set ->_mapcount
541  * PAGE_BUDDY_MAPCOUNT_VALUE.
542  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
543  * serialized by zone->lock.
544  *
545  * For recording page's order, we use page_private(page).
546  */
547 static inline int page_is_buddy(struct page *page, struct page *buddy,
548 							unsigned int order)
549 {
550 	if (!pfn_valid_within(page_to_pfn(buddy)))
551 		return 0;
552 
553 	if (page_is_guard(buddy) && page_order(buddy) == order) {
554 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
555 
556 		if (page_zone_id(page) != page_zone_id(buddy))
557 			return 0;
558 
559 		return 1;
560 	}
561 
562 	if (PageBuddy(buddy) && page_order(buddy) == order) {
563 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
564 
565 		/*
566 		 * zone check is done late to avoid uselessly
567 		 * calculating zone/node ids for pages that could
568 		 * never merge.
569 		 */
570 		if (page_zone_id(page) != page_zone_id(buddy))
571 			return 0;
572 
573 		return 1;
574 	}
575 	return 0;
576 }
577 
578 /*
579  * Freeing function for a buddy system allocator.
580  *
581  * The concept of a buddy system is to maintain direct-mapped table
582  * (containing bit values) for memory blocks of various "orders".
583  * The bottom level table contains the map for the smallest allocatable
584  * units of memory (here, pages), and each level above it describes
585  * pairs of units from the levels below, hence, "buddies".
586  * At a high level, all that happens here is marking the table entry
587  * at the bottom level available, and propagating the changes upward
588  * as necessary, plus some accounting needed to play nicely with other
589  * parts of the VM system.
590  * At each level, we keep a list of pages, which are heads of continuous
591  * free pages of length of (1 << order) and marked with _mapcount
592  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
593  * field.
594  * So when we are allocating or freeing one, we can derive the state of the
595  * other.  That is, if we allocate a small block, and both were
596  * free, the remainder of the region must be split into blocks.
597  * If a block is freed, and its buddy is also free, then this
598  * triggers coalescing into a block of larger size.
599  *
600  * -- nyc
601  */
602 
603 static inline void __free_one_page(struct page *page,
604 		unsigned long pfn,
605 		struct zone *zone, unsigned int order,
606 		int migratetype)
607 {
608 	unsigned long page_idx;
609 	unsigned long combined_idx;
610 	unsigned long uninitialized_var(buddy_idx);
611 	struct page *buddy;
612 	int max_order = MAX_ORDER;
613 
614 	VM_BUG_ON(!zone_is_initialized(zone));
615 
616 	if (unlikely(PageCompound(page)))
617 		if (unlikely(destroy_compound_page(page, order)))
618 			return;
619 
620 	VM_BUG_ON(migratetype == -1);
621 	if (is_migrate_isolate(migratetype)) {
622 		/*
623 		 * We restrict max order of merging to prevent merge
624 		 * between freepages on isolate pageblock and normal
625 		 * pageblock. Without this, pageblock isolation
626 		 * could cause incorrect freepage accounting.
627 		 */
628 		max_order = min(MAX_ORDER, pageblock_order + 1);
629 	} else {
630 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
631 	}
632 
633 	page_idx = pfn & ((1 << max_order) - 1);
634 
635 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
636 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
637 
638 	while (order < max_order - 1) {
639 		buddy_idx = __find_buddy_index(page_idx, order);
640 		buddy = page + (buddy_idx - page_idx);
641 		if (!page_is_buddy(page, buddy, order))
642 			break;
643 		/*
644 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
645 		 * merge with it and move up one order.
646 		 */
647 		if (page_is_guard(buddy)) {
648 			clear_page_guard(zone, buddy, order, migratetype);
649 		} else {
650 			list_del(&buddy->lru);
651 			zone->free_area[order].nr_free--;
652 			rmv_page_order(buddy);
653 		}
654 		combined_idx = buddy_idx & page_idx;
655 		page = page + (combined_idx - page_idx);
656 		page_idx = combined_idx;
657 		order++;
658 	}
659 	set_page_order(page, order);
660 
661 	/*
662 	 * If this is not the largest possible page, check if the buddy
663 	 * of the next-highest order is free. If it is, it's possible
664 	 * that pages are being freed that will coalesce soon. In case,
665 	 * that is happening, add the free page to the tail of the list
666 	 * so it's less likely to be used soon and more likely to be merged
667 	 * as a higher order page
668 	 */
669 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
670 		struct page *higher_page, *higher_buddy;
671 		combined_idx = buddy_idx & page_idx;
672 		higher_page = page + (combined_idx - page_idx);
673 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
674 		higher_buddy = higher_page + (buddy_idx - combined_idx);
675 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
676 			list_add_tail(&page->lru,
677 				&zone->free_area[order].free_list[migratetype]);
678 			goto out;
679 		}
680 	}
681 
682 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
683 out:
684 	zone->free_area[order].nr_free++;
685 }
686 
687 static inline int free_pages_check(struct page *page)
688 {
689 	const char *bad_reason = NULL;
690 	unsigned long bad_flags = 0;
691 
692 	if (unlikely(page_mapcount(page)))
693 		bad_reason = "nonzero mapcount";
694 	if (unlikely(page->mapping != NULL))
695 		bad_reason = "non-NULL mapping";
696 	if (unlikely(atomic_read(&page->_count) != 0))
697 		bad_reason = "nonzero _count";
698 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
699 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
700 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
701 	}
702 #ifdef CONFIG_MEMCG
703 	if (unlikely(page->mem_cgroup))
704 		bad_reason = "page still charged to cgroup";
705 #endif
706 	if (unlikely(bad_reason)) {
707 		bad_page(page, bad_reason, bad_flags);
708 		return 1;
709 	}
710 	page_cpupid_reset_last(page);
711 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
712 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
713 	return 0;
714 }
715 
716 /*
717  * Frees a number of pages from the PCP lists
718  * Assumes all pages on list are in same zone, and of same order.
719  * count is the number of pages to free.
720  *
721  * If the zone was previously in an "all pages pinned" state then look to
722  * see if this freeing clears that state.
723  *
724  * And clear the zone's pages_scanned counter, to hold off the "all pages are
725  * pinned" detection logic.
726  */
727 static void free_pcppages_bulk(struct zone *zone, int count,
728 					struct per_cpu_pages *pcp)
729 {
730 	int migratetype = 0;
731 	int batch_free = 0;
732 	int to_free = count;
733 	unsigned long nr_scanned;
734 
735 	spin_lock(&zone->lock);
736 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
737 	if (nr_scanned)
738 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
739 
740 	while (to_free) {
741 		struct page *page;
742 		struct list_head *list;
743 
744 		/*
745 		 * Remove pages from lists in a round-robin fashion. A
746 		 * batch_free count is maintained that is incremented when an
747 		 * empty list is encountered.  This is so more pages are freed
748 		 * off fuller lists instead of spinning excessively around empty
749 		 * lists
750 		 */
751 		do {
752 			batch_free++;
753 			if (++migratetype == MIGRATE_PCPTYPES)
754 				migratetype = 0;
755 			list = &pcp->lists[migratetype];
756 		} while (list_empty(list));
757 
758 		/* This is the only non-empty list. Free them all. */
759 		if (batch_free == MIGRATE_PCPTYPES)
760 			batch_free = to_free;
761 
762 		do {
763 			int mt;	/* migratetype of the to-be-freed page */
764 
765 			page = list_entry(list->prev, struct page, lru);
766 			/* must delete as __free_one_page list manipulates */
767 			list_del(&page->lru);
768 			mt = get_freepage_migratetype(page);
769 			if (unlikely(has_isolate_pageblock(zone)))
770 				mt = get_pageblock_migratetype(page);
771 
772 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
773 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
774 			trace_mm_page_pcpu_drain(page, 0, mt);
775 		} while (--to_free && --batch_free && !list_empty(list));
776 	}
777 	spin_unlock(&zone->lock);
778 }
779 
780 static void free_one_page(struct zone *zone,
781 				struct page *page, unsigned long pfn,
782 				unsigned int order,
783 				int migratetype)
784 {
785 	unsigned long nr_scanned;
786 	spin_lock(&zone->lock);
787 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
788 	if (nr_scanned)
789 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
790 
791 	if (unlikely(has_isolate_pageblock(zone) ||
792 		is_migrate_isolate(migratetype))) {
793 		migratetype = get_pfnblock_migratetype(page, pfn);
794 	}
795 	__free_one_page(page, pfn, zone, order, migratetype);
796 	spin_unlock(&zone->lock);
797 }
798 
799 static bool free_pages_prepare(struct page *page, unsigned int order)
800 {
801 	int i;
802 	int bad = 0;
803 
804 	VM_BUG_ON_PAGE(PageTail(page), page);
805 	VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
806 
807 	trace_mm_page_free(page, order);
808 	kmemcheck_free_shadow(page, order);
809 
810 	if (PageAnon(page))
811 		page->mapping = NULL;
812 	for (i = 0; i < (1 << order); i++)
813 		bad += free_pages_check(page + i);
814 	if (bad)
815 		return false;
816 
817 	reset_page_owner(page, order);
818 
819 	if (!PageHighMem(page)) {
820 		debug_check_no_locks_freed(page_address(page),
821 					   PAGE_SIZE << order);
822 		debug_check_no_obj_freed(page_address(page),
823 					   PAGE_SIZE << order);
824 	}
825 	arch_free_page(page, order);
826 	kernel_map_pages(page, 1 << order, 0);
827 
828 	return true;
829 }
830 
831 static void __free_pages_ok(struct page *page, unsigned int order)
832 {
833 	unsigned long flags;
834 	int migratetype;
835 	unsigned long pfn = page_to_pfn(page);
836 
837 	if (!free_pages_prepare(page, order))
838 		return;
839 
840 	migratetype = get_pfnblock_migratetype(page, pfn);
841 	local_irq_save(flags);
842 	__count_vm_events(PGFREE, 1 << order);
843 	set_freepage_migratetype(page, migratetype);
844 	free_one_page(page_zone(page), page, pfn, order, migratetype);
845 	local_irq_restore(flags);
846 }
847 
848 void __init __free_pages_bootmem(struct page *page, unsigned int order)
849 {
850 	unsigned int nr_pages = 1 << order;
851 	struct page *p = page;
852 	unsigned int loop;
853 
854 	prefetchw(p);
855 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
856 		prefetchw(p + 1);
857 		__ClearPageReserved(p);
858 		set_page_count(p, 0);
859 	}
860 	__ClearPageReserved(p);
861 	set_page_count(p, 0);
862 
863 	page_zone(page)->managed_pages += nr_pages;
864 	set_page_refcounted(page);
865 	__free_pages(page, order);
866 }
867 
868 #ifdef CONFIG_CMA
869 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
870 void __init init_cma_reserved_pageblock(struct page *page)
871 {
872 	unsigned i = pageblock_nr_pages;
873 	struct page *p = page;
874 
875 	do {
876 		__ClearPageReserved(p);
877 		set_page_count(p, 0);
878 	} while (++p, --i);
879 
880 	set_pageblock_migratetype(page, MIGRATE_CMA);
881 
882 	if (pageblock_order >= MAX_ORDER) {
883 		i = pageblock_nr_pages;
884 		p = page;
885 		do {
886 			set_page_refcounted(p);
887 			__free_pages(p, MAX_ORDER - 1);
888 			p += MAX_ORDER_NR_PAGES;
889 		} while (i -= MAX_ORDER_NR_PAGES);
890 	} else {
891 		set_page_refcounted(page);
892 		__free_pages(page, pageblock_order);
893 	}
894 
895 	adjust_managed_page_count(page, pageblock_nr_pages);
896 }
897 #endif
898 
899 /*
900  * The order of subdivision here is critical for the IO subsystem.
901  * Please do not alter this order without good reasons and regression
902  * testing. Specifically, as large blocks of memory are subdivided,
903  * the order in which smaller blocks are delivered depends on the order
904  * they're subdivided in this function. This is the primary factor
905  * influencing the order in which pages are delivered to the IO
906  * subsystem according to empirical testing, and this is also justified
907  * by considering the behavior of a buddy system containing a single
908  * large block of memory acted on by a series of small allocations.
909  * This behavior is a critical factor in sglist merging's success.
910  *
911  * -- nyc
912  */
913 static inline void expand(struct zone *zone, struct page *page,
914 	int low, int high, struct free_area *area,
915 	int migratetype)
916 {
917 	unsigned long size = 1 << high;
918 
919 	while (high > low) {
920 		area--;
921 		high--;
922 		size >>= 1;
923 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
924 
925 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
926 			debug_guardpage_enabled() &&
927 			high < debug_guardpage_minorder()) {
928 			/*
929 			 * Mark as guard pages (or page), that will allow to
930 			 * merge back to allocator when buddy will be freed.
931 			 * Corresponding page table entries will not be touched,
932 			 * pages will stay not present in virtual address space
933 			 */
934 			set_page_guard(zone, &page[size], high, migratetype);
935 			continue;
936 		}
937 		list_add(&page[size].lru, &area->free_list[migratetype]);
938 		area->nr_free++;
939 		set_page_order(&page[size], high);
940 	}
941 }
942 
943 /*
944  * This page is about to be returned from the page allocator
945  */
946 static inline int check_new_page(struct page *page)
947 {
948 	const char *bad_reason = NULL;
949 	unsigned long bad_flags = 0;
950 
951 	if (unlikely(page_mapcount(page)))
952 		bad_reason = "nonzero mapcount";
953 	if (unlikely(page->mapping != NULL))
954 		bad_reason = "non-NULL mapping";
955 	if (unlikely(atomic_read(&page->_count) != 0))
956 		bad_reason = "nonzero _count";
957 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
958 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
959 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
960 	}
961 #ifdef CONFIG_MEMCG
962 	if (unlikely(page->mem_cgroup))
963 		bad_reason = "page still charged to cgroup";
964 #endif
965 	if (unlikely(bad_reason)) {
966 		bad_page(page, bad_reason, bad_flags);
967 		return 1;
968 	}
969 	return 0;
970 }
971 
972 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
973 {
974 	int i;
975 
976 	for (i = 0; i < (1 << order); i++) {
977 		struct page *p = page + i;
978 		if (unlikely(check_new_page(p)))
979 			return 1;
980 	}
981 
982 	set_page_private(page, 0);
983 	set_page_refcounted(page);
984 
985 	arch_alloc_page(page, order);
986 	kernel_map_pages(page, 1 << order, 1);
987 
988 	if (gfp_flags & __GFP_ZERO)
989 		prep_zero_page(page, order, gfp_flags);
990 
991 	if (order && (gfp_flags & __GFP_COMP))
992 		prep_compound_page(page, order);
993 
994 	set_page_owner(page, order, gfp_flags);
995 
996 	return 0;
997 }
998 
999 /*
1000  * Go through the free lists for the given migratetype and remove
1001  * the smallest available page from the freelists
1002  */
1003 static inline
1004 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1005 						int migratetype)
1006 {
1007 	unsigned int current_order;
1008 	struct free_area *area;
1009 	struct page *page;
1010 
1011 	/* Find a page of the appropriate size in the preferred list */
1012 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1013 		area = &(zone->free_area[current_order]);
1014 		if (list_empty(&area->free_list[migratetype]))
1015 			continue;
1016 
1017 		page = list_entry(area->free_list[migratetype].next,
1018 							struct page, lru);
1019 		list_del(&page->lru);
1020 		rmv_page_order(page);
1021 		area->nr_free--;
1022 		expand(zone, page, order, current_order, area, migratetype);
1023 		set_freepage_migratetype(page, migratetype);
1024 		return page;
1025 	}
1026 
1027 	return NULL;
1028 }
1029 
1030 
1031 /*
1032  * This array describes the order lists are fallen back to when
1033  * the free lists for the desirable migrate type are depleted
1034  */
1035 static int fallbacks[MIGRATE_TYPES][4] = {
1036 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1037 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1038 #ifdef CONFIG_CMA
1039 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1040 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1041 #else
1042 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1043 #endif
1044 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1045 #ifdef CONFIG_MEMORY_ISOLATION
1046 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1047 #endif
1048 };
1049 
1050 /*
1051  * Move the free pages in a range to the free lists of the requested type.
1052  * Note that start_page and end_pages are not aligned on a pageblock
1053  * boundary. If alignment is required, use move_freepages_block()
1054  */
1055 int move_freepages(struct zone *zone,
1056 			  struct page *start_page, struct page *end_page,
1057 			  int migratetype)
1058 {
1059 	struct page *page;
1060 	unsigned long order;
1061 	int pages_moved = 0;
1062 
1063 #ifndef CONFIG_HOLES_IN_ZONE
1064 	/*
1065 	 * page_zone is not safe to call in this context when
1066 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1067 	 * anyway as we check zone boundaries in move_freepages_block().
1068 	 * Remove at a later date when no bug reports exist related to
1069 	 * grouping pages by mobility
1070 	 */
1071 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1072 #endif
1073 
1074 	for (page = start_page; page <= end_page;) {
1075 		/* Make sure we are not inadvertently changing nodes */
1076 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1077 
1078 		if (!pfn_valid_within(page_to_pfn(page))) {
1079 			page++;
1080 			continue;
1081 		}
1082 
1083 		if (!PageBuddy(page)) {
1084 			page++;
1085 			continue;
1086 		}
1087 
1088 		order = page_order(page);
1089 		list_move(&page->lru,
1090 			  &zone->free_area[order].free_list[migratetype]);
1091 		set_freepage_migratetype(page, migratetype);
1092 		page += 1 << order;
1093 		pages_moved += 1 << order;
1094 	}
1095 
1096 	return pages_moved;
1097 }
1098 
1099 int move_freepages_block(struct zone *zone, struct page *page,
1100 				int migratetype)
1101 {
1102 	unsigned long start_pfn, end_pfn;
1103 	struct page *start_page, *end_page;
1104 
1105 	start_pfn = page_to_pfn(page);
1106 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1107 	start_page = pfn_to_page(start_pfn);
1108 	end_page = start_page + pageblock_nr_pages - 1;
1109 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1110 
1111 	/* Do not cross zone boundaries */
1112 	if (!zone_spans_pfn(zone, start_pfn))
1113 		start_page = page;
1114 	if (!zone_spans_pfn(zone, end_pfn))
1115 		return 0;
1116 
1117 	return move_freepages(zone, start_page, end_page, migratetype);
1118 }
1119 
1120 static void change_pageblock_range(struct page *pageblock_page,
1121 					int start_order, int migratetype)
1122 {
1123 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1124 
1125 	while (nr_pageblocks--) {
1126 		set_pageblock_migratetype(pageblock_page, migratetype);
1127 		pageblock_page += pageblock_nr_pages;
1128 	}
1129 }
1130 
1131 /*
1132  * If breaking a large block of pages, move all free pages to the preferred
1133  * allocation list. If falling back for a reclaimable kernel allocation, be
1134  * more aggressive about taking ownership of free pages.
1135  *
1136  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1137  * nor move CMA pages to different free lists. We don't want unmovable pages
1138  * to be allocated from MIGRATE_CMA areas.
1139  *
1140  * Returns the new migratetype of the pageblock (or the same old migratetype
1141  * if it was unchanged).
1142  */
1143 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1144 				  int start_type, int fallback_type)
1145 {
1146 	int current_order = page_order(page);
1147 
1148 	/*
1149 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1150 	 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1151 	 * is set to CMA so it is returned to the correct freelist in case
1152 	 * the page ends up being not actually allocated from the pcp lists.
1153 	 */
1154 	if (is_migrate_cma(fallback_type))
1155 		return fallback_type;
1156 
1157 	/* Take ownership for orders >= pageblock_order */
1158 	if (current_order >= pageblock_order) {
1159 		change_pageblock_range(page, current_order, start_type);
1160 		return start_type;
1161 	}
1162 
1163 	if (current_order >= pageblock_order / 2 ||
1164 	    start_type == MIGRATE_RECLAIMABLE ||
1165 	    page_group_by_mobility_disabled) {
1166 		int pages;
1167 
1168 		pages = move_freepages_block(zone, page, start_type);
1169 
1170 		/* Claim the whole block if over half of it is free */
1171 		if (pages >= (1 << (pageblock_order-1)) ||
1172 				page_group_by_mobility_disabled) {
1173 
1174 			set_pageblock_migratetype(page, start_type);
1175 			return start_type;
1176 		}
1177 
1178 	}
1179 
1180 	return fallback_type;
1181 }
1182 
1183 /* Remove an element from the buddy allocator from the fallback list */
1184 static inline struct page *
1185 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1186 {
1187 	struct free_area *area;
1188 	unsigned int current_order;
1189 	struct page *page;
1190 	int migratetype, new_type, i;
1191 
1192 	/* Find the largest possible block of pages in the other list */
1193 	for (current_order = MAX_ORDER-1;
1194 				current_order >= order && current_order <= MAX_ORDER-1;
1195 				--current_order) {
1196 		for (i = 0;; i++) {
1197 			migratetype = fallbacks[start_migratetype][i];
1198 
1199 			/* MIGRATE_RESERVE handled later if necessary */
1200 			if (migratetype == MIGRATE_RESERVE)
1201 				break;
1202 
1203 			area = &(zone->free_area[current_order]);
1204 			if (list_empty(&area->free_list[migratetype]))
1205 				continue;
1206 
1207 			page = list_entry(area->free_list[migratetype].next,
1208 					struct page, lru);
1209 			area->nr_free--;
1210 
1211 			new_type = try_to_steal_freepages(zone, page,
1212 							  start_migratetype,
1213 							  migratetype);
1214 
1215 			/* Remove the page from the freelists */
1216 			list_del(&page->lru);
1217 			rmv_page_order(page);
1218 
1219 			expand(zone, page, order, current_order, area,
1220 			       new_type);
1221 			/* The freepage_migratetype may differ from pageblock's
1222 			 * migratetype depending on the decisions in
1223 			 * try_to_steal_freepages. This is OK as long as it does
1224 			 * not differ for MIGRATE_CMA type.
1225 			 */
1226 			set_freepage_migratetype(page, new_type);
1227 
1228 			trace_mm_page_alloc_extfrag(page, order, current_order,
1229 				start_migratetype, migratetype, new_type);
1230 
1231 			return page;
1232 		}
1233 	}
1234 
1235 	return NULL;
1236 }
1237 
1238 /*
1239  * Do the hard work of removing an element from the buddy allocator.
1240  * Call me with the zone->lock already held.
1241  */
1242 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1243 						int migratetype)
1244 {
1245 	struct page *page;
1246 
1247 retry_reserve:
1248 	page = __rmqueue_smallest(zone, order, migratetype);
1249 
1250 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1251 		page = __rmqueue_fallback(zone, order, migratetype);
1252 
1253 		/*
1254 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1255 		 * is used because __rmqueue_smallest is an inline function
1256 		 * and we want just one call site
1257 		 */
1258 		if (!page) {
1259 			migratetype = MIGRATE_RESERVE;
1260 			goto retry_reserve;
1261 		}
1262 	}
1263 
1264 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1265 	return page;
1266 }
1267 
1268 /*
1269  * Obtain a specified number of elements from the buddy allocator, all under
1270  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1271  * Returns the number of new pages which were placed at *list.
1272  */
1273 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1274 			unsigned long count, struct list_head *list,
1275 			int migratetype, bool cold)
1276 {
1277 	int i;
1278 
1279 	spin_lock(&zone->lock);
1280 	for (i = 0; i < count; ++i) {
1281 		struct page *page = __rmqueue(zone, order, migratetype);
1282 		if (unlikely(page == NULL))
1283 			break;
1284 
1285 		/*
1286 		 * Split buddy pages returned by expand() are received here
1287 		 * in physical page order. The page is added to the callers and
1288 		 * list and the list head then moves forward. From the callers
1289 		 * perspective, the linked list is ordered by page number in
1290 		 * some conditions. This is useful for IO devices that can
1291 		 * merge IO requests if the physical pages are ordered
1292 		 * properly.
1293 		 */
1294 		if (likely(!cold))
1295 			list_add(&page->lru, list);
1296 		else
1297 			list_add_tail(&page->lru, list);
1298 		list = &page->lru;
1299 		if (is_migrate_cma(get_freepage_migratetype(page)))
1300 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1301 					      -(1 << order));
1302 	}
1303 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1304 	spin_unlock(&zone->lock);
1305 	return i;
1306 }
1307 
1308 #ifdef CONFIG_NUMA
1309 /*
1310  * Called from the vmstat counter updater to drain pagesets of this
1311  * currently executing processor on remote nodes after they have
1312  * expired.
1313  *
1314  * Note that this function must be called with the thread pinned to
1315  * a single processor.
1316  */
1317 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1318 {
1319 	unsigned long flags;
1320 	int to_drain, batch;
1321 
1322 	local_irq_save(flags);
1323 	batch = ACCESS_ONCE(pcp->batch);
1324 	to_drain = min(pcp->count, batch);
1325 	if (to_drain > 0) {
1326 		free_pcppages_bulk(zone, to_drain, pcp);
1327 		pcp->count -= to_drain;
1328 	}
1329 	local_irq_restore(flags);
1330 }
1331 #endif
1332 
1333 /*
1334  * Drain pcplists of the indicated processor and zone.
1335  *
1336  * The processor must either be the current processor and the
1337  * thread pinned to the current processor or a processor that
1338  * is not online.
1339  */
1340 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1341 {
1342 	unsigned long flags;
1343 	struct per_cpu_pageset *pset;
1344 	struct per_cpu_pages *pcp;
1345 
1346 	local_irq_save(flags);
1347 	pset = per_cpu_ptr(zone->pageset, cpu);
1348 
1349 	pcp = &pset->pcp;
1350 	if (pcp->count) {
1351 		free_pcppages_bulk(zone, pcp->count, pcp);
1352 		pcp->count = 0;
1353 	}
1354 	local_irq_restore(flags);
1355 }
1356 
1357 /*
1358  * Drain pcplists of all zones on the indicated processor.
1359  *
1360  * The processor must either be the current processor and the
1361  * thread pinned to the current processor or a processor that
1362  * is not online.
1363  */
1364 static void drain_pages(unsigned int cpu)
1365 {
1366 	struct zone *zone;
1367 
1368 	for_each_populated_zone(zone) {
1369 		drain_pages_zone(cpu, zone);
1370 	}
1371 }
1372 
1373 /*
1374  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1375  *
1376  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1377  * the single zone's pages.
1378  */
1379 void drain_local_pages(struct zone *zone)
1380 {
1381 	int cpu = smp_processor_id();
1382 
1383 	if (zone)
1384 		drain_pages_zone(cpu, zone);
1385 	else
1386 		drain_pages(cpu);
1387 }
1388 
1389 /*
1390  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1391  *
1392  * When zone parameter is non-NULL, spill just the single zone's pages.
1393  *
1394  * Note that this code is protected against sending an IPI to an offline
1395  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1396  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1397  * nothing keeps CPUs from showing up after we populated the cpumask and
1398  * before the call to on_each_cpu_mask().
1399  */
1400 void drain_all_pages(struct zone *zone)
1401 {
1402 	int cpu;
1403 
1404 	/*
1405 	 * Allocate in the BSS so we wont require allocation in
1406 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1407 	 */
1408 	static cpumask_t cpus_with_pcps;
1409 
1410 	/*
1411 	 * We don't care about racing with CPU hotplug event
1412 	 * as offline notification will cause the notified
1413 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1414 	 * disables preemption as part of its processing
1415 	 */
1416 	for_each_online_cpu(cpu) {
1417 		struct per_cpu_pageset *pcp;
1418 		struct zone *z;
1419 		bool has_pcps = false;
1420 
1421 		if (zone) {
1422 			pcp = per_cpu_ptr(zone->pageset, cpu);
1423 			if (pcp->pcp.count)
1424 				has_pcps = true;
1425 		} else {
1426 			for_each_populated_zone(z) {
1427 				pcp = per_cpu_ptr(z->pageset, cpu);
1428 				if (pcp->pcp.count) {
1429 					has_pcps = true;
1430 					break;
1431 				}
1432 			}
1433 		}
1434 
1435 		if (has_pcps)
1436 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1437 		else
1438 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1439 	}
1440 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1441 								zone, 1);
1442 }
1443 
1444 #ifdef CONFIG_HIBERNATION
1445 
1446 void mark_free_pages(struct zone *zone)
1447 {
1448 	unsigned long pfn, max_zone_pfn;
1449 	unsigned long flags;
1450 	unsigned int order, t;
1451 	struct list_head *curr;
1452 
1453 	if (zone_is_empty(zone))
1454 		return;
1455 
1456 	spin_lock_irqsave(&zone->lock, flags);
1457 
1458 	max_zone_pfn = zone_end_pfn(zone);
1459 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1460 		if (pfn_valid(pfn)) {
1461 			struct page *page = pfn_to_page(pfn);
1462 
1463 			if (!swsusp_page_is_forbidden(page))
1464 				swsusp_unset_page_free(page);
1465 		}
1466 
1467 	for_each_migratetype_order(order, t) {
1468 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1469 			unsigned long i;
1470 
1471 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1472 			for (i = 0; i < (1UL << order); i++)
1473 				swsusp_set_page_free(pfn_to_page(pfn + i));
1474 		}
1475 	}
1476 	spin_unlock_irqrestore(&zone->lock, flags);
1477 }
1478 #endif /* CONFIG_PM */
1479 
1480 /*
1481  * Free a 0-order page
1482  * cold == true ? free a cold page : free a hot page
1483  */
1484 void free_hot_cold_page(struct page *page, bool cold)
1485 {
1486 	struct zone *zone = page_zone(page);
1487 	struct per_cpu_pages *pcp;
1488 	unsigned long flags;
1489 	unsigned long pfn = page_to_pfn(page);
1490 	int migratetype;
1491 
1492 	if (!free_pages_prepare(page, 0))
1493 		return;
1494 
1495 	migratetype = get_pfnblock_migratetype(page, pfn);
1496 	set_freepage_migratetype(page, migratetype);
1497 	local_irq_save(flags);
1498 	__count_vm_event(PGFREE);
1499 
1500 	/*
1501 	 * We only track unmovable, reclaimable and movable on pcp lists.
1502 	 * Free ISOLATE pages back to the allocator because they are being
1503 	 * offlined but treat RESERVE as movable pages so we can get those
1504 	 * areas back if necessary. Otherwise, we may have to free
1505 	 * excessively into the page allocator
1506 	 */
1507 	if (migratetype >= MIGRATE_PCPTYPES) {
1508 		if (unlikely(is_migrate_isolate(migratetype))) {
1509 			free_one_page(zone, page, pfn, 0, migratetype);
1510 			goto out;
1511 		}
1512 		migratetype = MIGRATE_MOVABLE;
1513 	}
1514 
1515 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1516 	if (!cold)
1517 		list_add(&page->lru, &pcp->lists[migratetype]);
1518 	else
1519 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1520 	pcp->count++;
1521 	if (pcp->count >= pcp->high) {
1522 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1523 		free_pcppages_bulk(zone, batch, pcp);
1524 		pcp->count -= batch;
1525 	}
1526 
1527 out:
1528 	local_irq_restore(flags);
1529 }
1530 
1531 /*
1532  * Free a list of 0-order pages
1533  */
1534 void free_hot_cold_page_list(struct list_head *list, bool cold)
1535 {
1536 	struct page *page, *next;
1537 
1538 	list_for_each_entry_safe(page, next, list, lru) {
1539 		trace_mm_page_free_batched(page, cold);
1540 		free_hot_cold_page(page, cold);
1541 	}
1542 }
1543 
1544 /*
1545  * split_page takes a non-compound higher-order page, and splits it into
1546  * n (1<<order) sub-pages: page[0..n]
1547  * Each sub-page must be freed individually.
1548  *
1549  * Note: this is probably too low level an operation for use in drivers.
1550  * Please consult with lkml before using this in your driver.
1551  */
1552 void split_page(struct page *page, unsigned int order)
1553 {
1554 	int i;
1555 
1556 	VM_BUG_ON_PAGE(PageCompound(page), page);
1557 	VM_BUG_ON_PAGE(!page_count(page), page);
1558 
1559 #ifdef CONFIG_KMEMCHECK
1560 	/*
1561 	 * Split shadow pages too, because free(page[0]) would
1562 	 * otherwise free the whole shadow.
1563 	 */
1564 	if (kmemcheck_page_is_tracked(page))
1565 		split_page(virt_to_page(page[0].shadow), order);
1566 #endif
1567 
1568 	set_page_owner(page, 0, 0);
1569 	for (i = 1; i < (1 << order); i++) {
1570 		set_page_refcounted(page + i);
1571 		set_page_owner(page + i, 0, 0);
1572 	}
1573 }
1574 EXPORT_SYMBOL_GPL(split_page);
1575 
1576 int __isolate_free_page(struct page *page, unsigned int order)
1577 {
1578 	unsigned long watermark;
1579 	struct zone *zone;
1580 	int mt;
1581 
1582 	BUG_ON(!PageBuddy(page));
1583 
1584 	zone = page_zone(page);
1585 	mt = get_pageblock_migratetype(page);
1586 
1587 	if (!is_migrate_isolate(mt)) {
1588 		/* Obey watermarks as if the page was being allocated */
1589 		watermark = low_wmark_pages(zone) + (1 << order);
1590 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1591 			return 0;
1592 
1593 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1594 	}
1595 
1596 	/* Remove page from free list */
1597 	list_del(&page->lru);
1598 	zone->free_area[order].nr_free--;
1599 	rmv_page_order(page);
1600 
1601 	/* Set the pageblock if the isolated page is at least a pageblock */
1602 	if (order >= pageblock_order - 1) {
1603 		struct page *endpage = page + (1 << order) - 1;
1604 		for (; page < endpage; page += pageblock_nr_pages) {
1605 			int mt = get_pageblock_migratetype(page);
1606 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1607 				set_pageblock_migratetype(page,
1608 							  MIGRATE_MOVABLE);
1609 		}
1610 	}
1611 
1612 	set_page_owner(page, order, 0);
1613 	return 1UL << order;
1614 }
1615 
1616 /*
1617  * Similar to split_page except the page is already free. As this is only
1618  * being used for migration, the migratetype of the block also changes.
1619  * As this is called with interrupts disabled, the caller is responsible
1620  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1621  * are enabled.
1622  *
1623  * Note: this is probably too low level an operation for use in drivers.
1624  * Please consult with lkml before using this in your driver.
1625  */
1626 int split_free_page(struct page *page)
1627 {
1628 	unsigned int order;
1629 	int nr_pages;
1630 
1631 	order = page_order(page);
1632 
1633 	nr_pages = __isolate_free_page(page, order);
1634 	if (!nr_pages)
1635 		return 0;
1636 
1637 	/* Split into individual pages */
1638 	set_page_refcounted(page);
1639 	split_page(page, order);
1640 	return nr_pages;
1641 }
1642 
1643 /*
1644  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1645  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1646  * or two.
1647  */
1648 static inline
1649 struct page *buffered_rmqueue(struct zone *preferred_zone,
1650 			struct zone *zone, unsigned int order,
1651 			gfp_t gfp_flags, int migratetype)
1652 {
1653 	unsigned long flags;
1654 	struct page *page;
1655 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1656 
1657 again:
1658 	if (likely(order == 0)) {
1659 		struct per_cpu_pages *pcp;
1660 		struct list_head *list;
1661 
1662 		local_irq_save(flags);
1663 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1664 		list = &pcp->lists[migratetype];
1665 		if (list_empty(list)) {
1666 			pcp->count += rmqueue_bulk(zone, 0,
1667 					pcp->batch, list,
1668 					migratetype, cold);
1669 			if (unlikely(list_empty(list)))
1670 				goto failed;
1671 		}
1672 
1673 		if (cold)
1674 			page = list_entry(list->prev, struct page, lru);
1675 		else
1676 			page = list_entry(list->next, struct page, lru);
1677 
1678 		list_del(&page->lru);
1679 		pcp->count--;
1680 	} else {
1681 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1682 			/*
1683 			 * __GFP_NOFAIL is not to be used in new code.
1684 			 *
1685 			 * All __GFP_NOFAIL callers should be fixed so that they
1686 			 * properly detect and handle allocation failures.
1687 			 *
1688 			 * We most definitely don't want callers attempting to
1689 			 * allocate greater than order-1 page units with
1690 			 * __GFP_NOFAIL.
1691 			 */
1692 			WARN_ON_ONCE(order > 1);
1693 		}
1694 		spin_lock_irqsave(&zone->lock, flags);
1695 		page = __rmqueue(zone, order, migratetype);
1696 		spin_unlock(&zone->lock);
1697 		if (!page)
1698 			goto failed;
1699 		__mod_zone_freepage_state(zone, -(1 << order),
1700 					  get_freepage_migratetype(page));
1701 	}
1702 
1703 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1704 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1705 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1706 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1707 
1708 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1709 	zone_statistics(preferred_zone, zone, gfp_flags);
1710 	local_irq_restore(flags);
1711 
1712 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1713 	if (prep_new_page(page, order, gfp_flags))
1714 		goto again;
1715 	return page;
1716 
1717 failed:
1718 	local_irq_restore(flags);
1719 	return NULL;
1720 }
1721 
1722 #ifdef CONFIG_FAIL_PAGE_ALLOC
1723 
1724 static struct {
1725 	struct fault_attr attr;
1726 
1727 	u32 ignore_gfp_highmem;
1728 	u32 ignore_gfp_wait;
1729 	u32 min_order;
1730 } fail_page_alloc = {
1731 	.attr = FAULT_ATTR_INITIALIZER,
1732 	.ignore_gfp_wait = 1,
1733 	.ignore_gfp_highmem = 1,
1734 	.min_order = 1,
1735 };
1736 
1737 static int __init setup_fail_page_alloc(char *str)
1738 {
1739 	return setup_fault_attr(&fail_page_alloc.attr, str);
1740 }
1741 __setup("fail_page_alloc=", setup_fail_page_alloc);
1742 
1743 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1744 {
1745 	if (order < fail_page_alloc.min_order)
1746 		return false;
1747 	if (gfp_mask & __GFP_NOFAIL)
1748 		return false;
1749 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1750 		return false;
1751 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1752 		return false;
1753 
1754 	return should_fail(&fail_page_alloc.attr, 1 << order);
1755 }
1756 
1757 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1758 
1759 static int __init fail_page_alloc_debugfs(void)
1760 {
1761 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1762 	struct dentry *dir;
1763 
1764 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1765 					&fail_page_alloc.attr);
1766 	if (IS_ERR(dir))
1767 		return PTR_ERR(dir);
1768 
1769 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1770 				&fail_page_alloc.ignore_gfp_wait))
1771 		goto fail;
1772 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1773 				&fail_page_alloc.ignore_gfp_highmem))
1774 		goto fail;
1775 	if (!debugfs_create_u32("min-order", mode, dir,
1776 				&fail_page_alloc.min_order))
1777 		goto fail;
1778 
1779 	return 0;
1780 fail:
1781 	debugfs_remove_recursive(dir);
1782 
1783 	return -ENOMEM;
1784 }
1785 
1786 late_initcall(fail_page_alloc_debugfs);
1787 
1788 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1789 
1790 #else /* CONFIG_FAIL_PAGE_ALLOC */
1791 
1792 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1793 {
1794 	return false;
1795 }
1796 
1797 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1798 
1799 /*
1800  * Return true if free pages are above 'mark'. This takes into account the order
1801  * of the allocation.
1802  */
1803 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1804 			unsigned long mark, int classzone_idx, int alloc_flags,
1805 			long free_pages)
1806 {
1807 	/* free_pages may go negative - that's OK */
1808 	long min = mark;
1809 	int o;
1810 	long free_cma = 0;
1811 
1812 	free_pages -= (1 << order) - 1;
1813 	if (alloc_flags & ALLOC_HIGH)
1814 		min -= min / 2;
1815 	if (alloc_flags & ALLOC_HARDER)
1816 		min -= min / 4;
1817 #ifdef CONFIG_CMA
1818 	/* If allocation can't use CMA areas don't use free CMA pages */
1819 	if (!(alloc_flags & ALLOC_CMA))
1820 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1821 #endif
1822 
1823 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1824 		return false;
1825 	for (o = 0; o < order; o++) {
1826 		/* At the next order, this order's pages become unavailable */
1827 		free_pages -= z->free_area[o].nr_free << o;
1828 
1829 		/* Require fewer higher order pages to be free */
1830 		min >>= 1;
1831 
1832 		if (free_pages <= min)
1833 			return false;
1834 	}
1835 	return true;
1836 }
1837 
1838 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1839 		      int classzone_idx, int alloc_flags)
1840 {
1841 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1842 					zone_page_state(z, NR_FREE_PAGES));
1843 }
1844 
1845 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1846 			unsigned long mark, int classzone_idx, int alloc_flags)
1847 {
1848 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1849 
1850 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1851 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1852 
1853 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1854 								free_pages);
1855 }
1856 
1857 #ifdef CONFIG_NUMA
1858 /*
1859  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1860  * skip over zones that are not allowed by the cpuset, or that have
1861  * been recently (in last second) found to be nearly full.  See further
1862  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1863  * that have to skip over a lot of full or unallowed zones.
1864  *
1865  * If the zonelist cache is present in the passed zonelist, then
1866  * returns a pointer to the allowed node mask (either the current
1867  * tasks mems_allowed, or node_states[N_MEMORY].)
1868  *
1869  * If the zonelist cache is not available for this zonelist, does
1870  * nothing and returns NULL.
1871  *
1872  * If the fullzones BITMAP in the zonelist cache is stale (more than
1873  * a second since last zap'd) then we zap it out (clear its bits.)
1874  *
1875  * We hold off even calling zlc_setup, until after we've checked the
1876  * first zone in the zonelist, on the theory that most allocations will
1877  * be satisfied from that first zone, so best to examine that zone as
1878  * quickly as we can.
1879  */
1880 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1881 {
1882 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1883 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1884 
1885 	zlc = zonelist->zlcache_ptr;
1886 	if (!zlc)
1887 		return NULL;
1888 
1889 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1890 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1891 		zlc->last_full_zap = jiffies;
1892 	}
1893 
1894 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1895 					&cpuset_current_mems_allowed :
1896 					&node_states[N_MEMORY];
1897 	return allowednodes;
1898 }
1899 
1900 /*
1901  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1902  * if it is worth looking at further for free memory:
1903  *  1) Check that the zone isn't thought to be full (doesn't have its
1904  *     bit set in the zonelist_cache fullzones BITMAP).
1905  *  2) Check that the zones node (obtained from the zonelist_cache
1906  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1907  * Return true (non-zero) if zone is worth looking at further, or
1908  * else return false (zero) if it is not.
1909  *
1910  * This check -ignores- the distinction between various watermarks,
1911  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1912  * found to be full for any variation of these watermarks, it will
1913  * be considered full for up to one second by all requests, unless
1914  * we are so low on memory on all allowed nodes that we are forced
1915  * into the second scan of the zonelist.
1916  *
1917  * In the second scan we ignore this zonelist cache and exactly
1918  * apply the watermarks to all zones, even it is slower to do so.
1919  * We are low on memory in the second scan, and should leave no stone
1920  * unturned looking for a free page.
1921  */
1922 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1923 						nodemask_t *allowednodes)
1924 {
1925 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1926 	int i;				/* index of *z in zonelist zones */
1927 	int n;				/* node that zone *z is on */
1928 
1929 	zlc = zonelist->zlcache_ptr;
1930 	if (!zlc)
1931 		return 1;
1932 
1933 	i = z - zonelist->_zonerefs;
1934 	n = zlc->z_to_n[i];
1935 
1936 	/* This zone is worth trying if it is allowed but not full */
1937 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1938 }
1939 
1940 /*
1941  * Given 'z' scanning a zonelist, set the corresponding bit in
1942  * zlc->fullzones, so that subsequent attempts to allocate a page
1943  * from that zone don't waste time re-examining it.
1944  */
1945 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1946 {
1947 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1948 	int i;				/* index of *z in zonelist zones */
1949 
1950 	zlc = zonelist->zlcache_ptr;
1951 	if (!zlc)
1952 		return;
1953 
1954 	i = z - zonelist->_zonerefs;
1955 
1956 	set_bit(i, zlc->fullzones);
1957 }
1958 
1959 /*
1960  * clear all zones full, called after direct reclaim makes progress so that
1961  * a zone that was recently full is not skipped over for up to a second
1962  */
1963 static void zlc_clear_zones_full(struct zonelist *zonelist)
1964 {
1965 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1966 
1967 	zlc = zonelist->zlcache_ptr;
1968 	if (!zlc)
1969 		return;
1970 
1971 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1972 }
1973 
1974 static bool zone_local(struct zone *local_zone, struct zone *zone)
1975 {
1976 	return local_zone->node == zone->node;
1977 }
1978 
1979 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1980 {
1981 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1982 				RECLAIM_DISTANCE;
1983 }
1984 
1985 #else	/* CONFIG_NUMA */
1986 
1987 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1988 {
1989 	return NULL;
1990 }
1991 
1992 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1993 				nodemask_t *allowednodes)
1994 {
1995 	return 1;
1996 }
1997 
1998 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1999 {
2000 }
2001 
2002 static void zlc_clear_zones_full(struct zonelist *zonelist)
2003 {
2004 }
2005 
2006 static bool zone_local(struct zone *local_zone, struct zone *zone)
2007 {
2008 	return true;
2009 }
2010 
2011 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2012 {
2013 	return true;
2014 }
2015 
2016 #endif	/* CONFIG_NUMA */
2017 
2018 static void reset_alloc_batches(struct zone *preferred_zone)
2019 {
2020 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2021 
2022 	do {
2023 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2024 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2025 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2026 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2027 	} while (zone++ != preferred_zone);
2028 }
2029 
2030 /*
2031  * get_page_from_freelist goes through the zonelist trying to allocate
2032  * a page.
2033  */
2034 static struct page *
2035 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
2036 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
2037 		struct zone *preferred_zone, int classzone_idx, int migratetype)
2038 {
2039 	struct zoneref *z;
2040 	struct page *page = NULL;
2041 	struct zone *zone;
2042 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2043 	int zlc_active = 0;		/* set if using zonelist_cache */
2044 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
2045 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2046 				(gfp_mask & __GFP_WRITE);
2047 	int nr_fair_skipped = 0;
2048 	bool zonelist_rescan;
2049 
2050 zonelist_scan:
2051 	zonelist_rescan = false;
2052 
2053 	/*
2054 	 * Scan zonelist, looking for a zone with enough free.
2055 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2056 	 */
2057 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2058 						high_zoneidx, nodemask) {
2059 		unsigned long mark;
2060 
2061 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2062 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2063 				continue;
2064 		if (cpusets_enabled() &&
2065 			(alloc_flags & ALLOC_CPUSET) &&
2066 			!cpuset_zone_allowed(zone, gfp_mask))
2067 				continue;
2068 		/*
2069 		 * Distribute pages in proportion to the individual
2070 		 * zone size to ensure fair page aging.  The zone a
2071 		 * page was allocated in should have no effect on the
2072 		 * time the page has in memory before being reclaimed.
2073 		 */
2074 		if (alloc_flags & ALLOC_FAIR) {
2075 			if (!zone_local(preferred_zone, zone))
2076 				break;
2077 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2078 				nr_fair_skipped++;
2079 				continue;
2080 			}
2081 		}
2082 		/*
2083 		 * When allocating a page cache page for writing, we
2084 		 * want to get it from a zone that is within its dirty
2085 		 * limit, such that no single zone holds more than its
2086 		 * proportional share of globally allowed dirty pages.
2087 		 * The dirty limits take into account the zone's
2088 		 * lowmem reserves and high watermark so that kswapd
2089 		 * should be able to balance it without having to
2090 		 * write pages from its LRU list.
2091 		 *
2092 		 * This may look like it could increase pressure on
2093 		 * lower zones by failing allocations in higher zones
2094 		 * before they are full.  But the pages that do spill
2095 		 * over are limited as the lower zones are protected
2096 		 * by this very same mechanism.  It should not become
2097 		 * a practical burden to them.
2098 		 *
2099 		 * XXX: For now, allow allocations to potentially
2100 		 * exceed the per-zone dirty limit in the slowpath
2101 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2102 		 * which is important when on a NUMA setup the allowed
2103 		 * zones are together not big enough to reach the
2104 		 * global limit.  The proper fix for these situations
2105 		 * will require awareness of zones in the
2106 		 * dirty-throttling and the flusher threads.
2107 		 */
2108 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2109 			continue;
2110 
2111 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2112 		if (!zone_watermark_ok(zone, order, mark,
2113 				       classzone_idx, alloc_flags)) {
2114 			int ret;
2115 
2116 			/* Checked here to keep the fast path fast */
2117 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2118 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2119 				goto try_this_zone;
2120 
2121 			if (IS_ENABLED(CONFIG_NUMA) &&
2122 					!did_zlc_setup && nr_online_nodes > 1) {
2123 				/*
2124 				 * we do zlc_setup if there are multiple nodes
2125 				 * and before considering the first zone allowed
2126 				 * by the cpuset.
2127 				 */
2128 				allowednodes = zlc_setup(zonelist, alloc_flags);
2129 				zlc_active = 1;
2130 				did_zlc_setup = 1;
2131 			}
2132 
2133 			if (zone_reclaim_mode == 0 ||
2134 			    !zone_allows_reclaim(preferred_zone, zone))
2135 				goto this_zone_full;
2136 
2137 			/*
2138 			 * As we may have just activated ZLC, check if the first
2139 			 * eligible zone has failed zone_reclaim recently.
2140 			 */
2141 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2142 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2143 				continue;
2144 
2145 			ret = zone_reclaim(zone, gfp_mask, order);
2146 			switch (ret) {
2147 			case ZONE_RECLAIM_NOSCAN:
2148 				/* did not scan */
2149 				continue;
2150 			case ZONE_RECLAIM_FULL:
2151 				/* scanned but unreclaimable */
2152 				continue;
2153 			default:
2154 				/* did we reclaim enough */
2155 				if (zone_watermark_ok(zone, order, mark,
2156 						classzone_idx, alloc_flags))
2157 					goto try_this_zone;
2158 
2159 				/*
2160 				 * Failed to reclaim enough to meet watermark.
2161 				 * Only mark the zone full if checking the min
2162 				 * watermark or if we failed to reclaim just
2163 				 * 1<<order pages or else the page allocator
2164 				 * fastpath will prematurely mark zones full
2165 				 * when the watermark is between the low and
2166 				 * min watermarks.
2167 				 */
2168 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2169 				    ret == ZONE_RECLAIM_SOME)
2170 					goto this_zone_full;
2171 
2172 				continue;
2173 			}
2174 		}
2175 
2176 try_this_zone:
2177 		page = buffered_rmqueue(preferred_zone, zone, order,
2178 						gfp_mask, migratetype);
2179 		if (page)
2180 			break;
2181 this_zone_full:
2182 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2183 			zlc_mark_zone_full(zonelist, z);
2184 	}
2185 
2186 	if (page) {
2187 		/*
2188 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2189 		 * necessary to allocate the page. The expectation is
2190 		 * that the caller is taking steps that will free more
2191 		 * memory. The caller should avoid the page being used
2192 		 * for !PFMEMALLOC purposes.
2193 		 */
2194 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2195 		return page;
2196 	}
2197 
2198 	/*
2199 	 * The first pass makes sure allocations are spread fairly within the
2200 	 * local node.  However, the local node might have free pages left
2201 	 * after the fairness batches are exhausted, and remote zones haven't
2202 	 * even been considered yet.  Try once more without fairness, and
2203 	 * include remote zones now, before entering the slowpath and waking
2204 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2205 	 */
2206 	if (alloc_flags & ALLOC_FAIR) {
2207 		alloc_flags &= ~ALLOC_FAIR;
2208 		if (nr_fair_skipped) {
2209 			zonelist_rescan = true;
2210 			reset_alloc_batches(preferred_zone);
2211 		}
2212 		if (nr_online_nodes > 1)
2213 			zonelist_rescan = true;
2214 	}
2215 
2216 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2217 		/* Disable zlc cache for second zonelist scan */
2218 		zlc_active = 0;
2219 		zonelist_rescan = true;
2220 	}
2221 
2222 	if (zonelist_rescan)
2223 		goto zonelist_scan;
2224 
2225 	return NULL;
2226 }
2227 
2228 /*
2229  * Large machines with many possible nodes should not always dump per-node
2230  * meminfo in irq context.
2231  */
2232 static inline bool should_suppress_show_mem(void)
2233 {
2234 	bool ret = false;
2235 
2236 #if NODES_SHIFT > 8
2237 	ret = in_interrupt();
2238 #endif
2239 	return ret;
2240 }
2241 
2242 static DEFINE_RATELIMIT_STATE(nopage_rs,
2243 		DEFAULT_RATELIMIT_INTERVAL,
2244 		DEFAULT_RATELIMIT_BURST);
2245 
2246 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2247 {
2248 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2249 
2250 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2251 	    debug_guardpage_minorder() > 0)
2252 		return;
2253 
2254 	/*
2255 	 * This documents exceptions given to allocations in certain
2256 	 * contexts that are allowed to allocate outside current's set
2257 	 * of allowed nodes.
2258 	 */
2259 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2260 		if (test_thread_flag(TIF_MEMDIE) ||
2261 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2262 			filter &= ~SHOW_MEM_FILTER_NODES;
2263 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2264 		filter &= ~SHOW_MEM_FILTER_NODES;
2265 
2266 	if (fmt) {
2267 		struct va_format vaf;
2268 		va_list args;
2269 
2270 		va_start(args, fmt);
2271 
2272 		vaf.fmt = fmt;
2273 		vaf.va = &args;
2274 
2275 		pr_warn("%pV", &vaf);
2276 
2277 		va_end(args);
2278 	}
2279 
2280 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2281 		current->comm, order, gfp_mask);
2282 
2283 	dump_stack();
2284 	if (!should_suppress_show_mem())
2285 		show_mem(filter);
2286 }
2287 
2288 static inline int
2289 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2290 				unsigned long did_some_progress,
2291 				unsigned long pages_reclaimed)
2292 {
2293 	/* Do not loop if specifically requested */
2294 	if (gfp_mask & __GFP_NORETRY)
2295 		return 0;
2296 
2297 	/* Always retry if specifically requested */
2298 	if (gfp_mask & __GFP_NOFAIL)
2299 		return 1;
2300 
2301 	/*
2302 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2303 	 * making forward progress without invoking OOM. Suspend also disables
2304 	 * storage devices so kswapd will not help. Bail if we are suspending.
2305 	 */
2306 	if (!did_some_progress && pm_suspended_storage())
2307 		return 0;
2308 
2309 	/*
2310 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2311 	 * means __GFP_NOFAIL, but that may not be true in other
2312 	 * implementations.
2313 	 */
2314 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2315 		return 1;
2316 
2317 	/*
2318 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2319 	 * specified, then we retry until we no longer reclaim any pages
2320 	 * (above), or we've reclaimed an order of pages at least as
2321 	 * large as the allocation's order. In both cases, if the
2322 	 * allocation still fails, we stop retrying.
2323 	 */
2324 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2325 		return 1;
2326 
2327 	return 0;
2328 }
2329 
2330 static inline struct page *
2331 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2332 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2333 	nodemask_t *nodemask, struct zone *preferred_zone,
2334 	int classzone_idx, int migratetype)
2335 {
2336 	struct page *page;
2337 
2338 	/* Acquire the per-zone oom lock for each zone */
2339 	if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2340 		schedule_timeout_uninterruptible(1);
2341 		return NULL;
2342 	}
2343 
2344 	/*
2345 	 * PM-freezer should be notified that there might be an OOM killer on
2346 	 * its way to kill and wake somebody up. This is too early and we might
2347 	 * end up not killing anything but false positives are acceptable.
2348 	 * See freeze_processes.
2349 	 */
2350 	note_oom_kill();
2351 
2352 	/*
2353 	 * Go through the zonelist yet one more time, keep very high watermark
2354 	 * here, this is only to catch a parallel oom killing, we must fail if
2355 	 * we're still under heavy pressure.
2356 	 */
2357 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2358 		order, zonelist, high_zoneidx,
2359 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2360 		preferred_zone, classzone_idx, migratetype);
2361 	if (page)
2362 		goto out;
2363 
2364 	if (!(gfp_mask & __GFP_NOFAIL)) {
2365 		/* The OOM killer will not help higher order allocs */
2366 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2367 			goto out;
2368 		/* The OOM killer does not needlessly kill tasks for lowmem */
2369 		if (high_zoneidx < ZONE_NORMAL)
2370 			goto out;
2371 		/*
2372 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2373 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2374 		 * The caller should handle page allocation failure by itself if
2375 		 * it specifies __GFP_THISNODE.
2376 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2377 		 */
2378 		if (gfp_mask & __GFP_THISNODE)
2379 			goto out;
2380 	}
2381 	/* Exhausted what can be done so it's blamo time */
2382 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2383 
2384 out:
2385 	oom_zonelist_unlock(zonelist, gfp_mask);
2386 	return page;
2387 }
2388 
2389 #ifdef CONFIG_COMPACTION
2390 /* Try memory compaction for high-order allocations before reclaim */
2391 static struct page *
2392 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2393 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2394 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2395 	int classzone_idx, int migratetype, enum migrate_mode mode,
2396 	int *contended_compaction, bool *deferred_compaction)
2397 {
2398 	unsigned long compact_result;
2399 	struct page *page;
2400 
2401 	if (!order)
2402 		return NULL;
2403 
2404 	current->flags |= PF_MEMALLOC;
2405 	compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2406 						nodemask, mode,
2407 						contended_compaction,
2408 						alloc_flags, classzone_idx);
2409 	current->flags &= ~PF_MEMALLOC;
2410 
2411 	switch (compact_result) {
2412 	case COMPACT_DEFERRED:
2413 		*deferred_compaction = true;
2414 		/* fall-through */
2415 	case COMPACT_SKIPPED:
2416 		return NULL;
2417 	default:
2418 		break;
2419 	}
2420 
2421 	/*
2422 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2423 	 * count a compaction stall
2424 	 */
2425 	count_vm_event(COMPACTSTALL);
2426 
2427 	page = get_page_from_freelist(gfp_mask, nodemask,
2428 			order, zonelist, high_zoneidx,
2429 			alloc_flags & ~ALLOC_NO_WATERMARKS,
2430 			preferred_zone, classzone_idx, migratetype);
2431 
2432 	if (page) {
2433 		struct zone *zone = page_zone(page);
2434 
2435 		zone->compact_blockskip_flush = false;
2436 		compaction_defer_reset(zone, order, true);
2437 		count_vm_event(COMPACTSUCCESS);
2438 		return page;
2439 	}
2440 
2441 	/*
2442 	 * It's bad if compaction run occurs and fails. The most likely reason
2443 	 * is that pages exist, but not enough to satisfy watermarks.
2444 	 */
2445 	count_vm_event(COMPACTFAIL);
2446 
2447 	cond_resched();
2448 
2449 	return NULL;
2450 }
2451 #else
2452 static inline struct page *
2453 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2454 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2455 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2456 	int classzone_idx, int migratetype, enum migrate_mode mode,
2457 	int *contended_compaction, bool *deferred_compaction)
2458 {
2459 	return NULL;
2460 }
2461 #endif /* CONFIG_COMPACTION */
2462 
2463 /* Perform direct synchronous page reclaim */
2464 static int
2465 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2466 		  nodemask_t *nodemask)
2467 {
2468 	struct reclaim_state reclaim_state;
2469 	int progress;
2470 
2471 	cond_resched();
2472 
2473 	/* We now go into synchronous reclaim */
2474 	cpuset_memory_pressure_bump();
2475 	current->flags |= PF_MEMALLOC;
2476 	lockdep_set_current_reclaim_state(gfp_mask);
2477 	reclaim_state.reclaimed_slab = 0;
2478 	current->reclaim_state = &reclaim_state;
2479 
2480 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2481 
2482 	current->reclaim_state = NULL;
2483 	lockdep_clear_current_reclaim_state();
2484 	current->flags &= ~PF_MEMALLOC;
2485 
2486 	cond_resched();
2487 
2488 	return progress;
2489 }
2490 
2491 /* The really slow allocator path where we enter direct reclaim */
2492 static inline struct page *
2493 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2494 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2495 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2496 	int classzone_idx, int migratetype, unsigned long *did_some_progress)
2497 {
2498 	struct page *page = NULL;
2499 	bool drained = false;
2500 
2501 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2502 					       nodemask);
2503 	if (unlikely(!(*did_some_progress)))
2504 		return NULL;
2505 
2506 	/* After successful reclaim, reconsider all zones for allocation */
2507 	if (IS_ENABLED(CONFIG_NUMA))
2508 		zlc_clear_zones_full(zonelist);
2509 
2510 retry:
2511 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2512 					zonelist, high_zoneidx,
2513 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2514 					preferred_zone, classzone_idx,
2515 					migratetype);
2516 
2517 	/*
2518 	 * If an allocation failed after direct reclaim, it could be because
2519 	 * pages are pinned on the per-cpu lists. Drain them and try again
2520 	 */
2521 	if (!page && !drained) {
2522 		drain_all_pages(NULL);
2523 		drained = true;
2524 		goto retry;
2525 	}
2526 
2527 	return page;
2528 }
2529 
2530 /*
2531  * This is called in the allocator slow-path if the allocation request is of
2532  * sufficient urgency to ignore watermarks and take other desperate measures
2533  */
2534 static inline struct page *
2535 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2536 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2537 	nodemask_t *nodemask, struct zone *preferred_zone,
2538 	int classzone_idx, int migratetype)
2539 {
2540 	struct page *page;
2541 
2542 	do {
2543 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2544 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2545 			preferred_zone, classzone_idx, migratetype);
2546 
2547 		if (!page && gfp_mask & __GFP_NOFAIL)
2548 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2549 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2550 
2551 	return page;
2552 }
2553 
2554 static void wake_all_kswapds(unsigned int order,
2555 			     struct zonelist *zonelist,
2556 			     enum zone_type high_zoneidx,
2557 			     struct zone *preferred_zone,
2558 			     nodemask_t *nodemask)
2559 {
2560 	struct zoneref *z;
2561 	struct zone *zone;
2562 
2563 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2564 						high_zoneidx, nodemask)
2565 		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2566 }
2567 
2568 static inline int
2569 gfp_to_alloc_flags(gfp_t gfp_mask)
2570 {
2571 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2572 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2573 
2574 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2575 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2576 
2577 	/*
2578 	 * The caller may dip into page reserves a bit more if the caller
2579 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2580 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2581 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2582 	 */
2583 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2584 
2585 	if (atomic) {
2586 		/*
2587 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2588 		 * if it can't schedule.
2589 		 */
2590 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2591 			alloc_flags |= ALLOC_HARDER;
2592 		/*
2593 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2594 		 * comment for __cpuset_node_allowed().
2595 		 */
2596 		alloc_flags &= ~ALLOC_CPUSET;
2597 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2598 		alloc_flags |= ALLOC_HARDER;
2599 
2600 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2601 		if (gfp_mask & __GFP_MEMALLOC)
2602 			alloc_flags |= ALLOC_NO_WATERMARKS;
2603 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2604 			alloc_flags |= ALLOC_NO_WATERMARKS;
2605 		else if (!in_interrupt() &&
2606 				((current->flags & PF_MEMALLOC) ||
2607 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2608 			alloc_flags |= ALLOC_NO_WATERMARKS;
2609 	}
2610 #ifdef CONFIG_CMA
2611 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2612 		alloc_flags |= ALLOC_CMA;
2613 #endif
2614 	return alloc_flags;
2615 }
2616 
2617 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2618 {
2619 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2620 }
2621 
2622 static inline struct page *
2623 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2624 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2625 	nodemask_t *nodemask, struct zone *preferred_zone,
2626 	int classzone_idx, int migratetype)
2627 {
2628 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2629 	struct page *page = NULL;
2630 	int alloc_flags;
2631 	unsigned long pages_reclaimed = 0;
2632 	unsigned long did_some_progress;
2633 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2634 	bool deferred_compaction = false;
2635 	int contended_compaction = COMPACT_CONTENDED_NONE;
2636 
2637 	/*
2638 	 * In the slowpath, we sanity check order to avoid ever trying to
2639 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2640 	 * be using allocators in order of preference for an area that is
2641 	 * too large.
2642 	 */
2643 	if (order >= MAX_ORDER) {
2644 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2645 		return NULL;
2646 	}
2647 
2648 	/*
2649 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2650 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2651 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2652 	 * using a larger set of nodes after it has established that the
2653 	 * allowed per node queues are empty and that nodes are
2654 	 * over allocated.
2655 	 */
2656 	if (IS_ENABLED(CONFIG_NUMA) &&
2657 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2658 		goto nopage;
2659 
2660 restart:
2661 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2662 		wake_all_kswapds(order, zonelist, high_zoneidx,
2663 				preferred_zone, nodemask);
2664 
2665 	/*
2666 	 * OK, we're below the kswapd watermark and have kicked background
2667 	 * reclaim. Now things get more complex, so set up alloc_flags according
2668 	 * to how we want to proceed.
2669 	 */
2670 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2671 
2672 	/*
2673 	 * Find the true preferred zone if the allocation is unconstrained by
2674 	 * cpusets.
2675 	 */
2676 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2677 		struct zoneref *preferred_zoneref;
2678 		preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2679 				NULL, &preferred_zone);
2680 		classzone_idx = zonelist_zone_idx(preferred_zoneref);
2681 	}
2682 
2683 rebalance:
2684 	/* This is the last chance, in general, before the goto nopage. */
2685 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2686 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2687 			preferred_zone, classzone_idx, migratetype);
2688 	if (page)
2689 		goto got_pg;
2690 
2691 	/* Allocate without watermarks if the context allows */
2692 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2693 		/*
2694 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2695 		 * the allocation is high priority and these type of
2696 		 * allocations are system rather than user orientated
2697 		 */
2698 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2699 
2700 		page = __alloc_pages_high_priority(gfp_mask, order,
2701 				zonelist, high_zoneidx, nodemask,
2702 				preferred_zone, classzone_idx, migratetype);
2703 		if (page) {
2704 			goto got_pg;
2705 		}
2706 	}
2707 
2708 	/* Atomic allocations - we can't balance anything */
2709 	if (!wait) {
2710 		/*
2711 		 * All existing users of the deprecated __GFP_NOFAIL are
2712 		 * blockable, so warn of any new users that actually allow this
2713 		 * type of allocation to fail.
2714 		 */
2715 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2716 		goto nopage;
2717 	}
2718 
2719 	/* Avoid recursion of direct reclaim */
2720 	if (current->flags & PF_MEMALLOC)
2721 		goto nopage;
2722 
2723 	/* Avoid allocations with no watermarks from looping endlessly */
2724 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2725 		goto nopage;
2726 
2727 	/*
2728 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2729 	 * attempts after direct reclaim are synchronous
2730 	 */
2731 	page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2732 					high_zoneidx, nodemask, alloc_flags,
2733 					preferred_zone,
2734 					classzone_idx, migratetype,
2735 					migration_mode, &contended_compaction,
2736 					&deferred_compaction);
2737 	if (page)
2738 		goto got_pg;
2739 
2740 	/* Checks for THP-specific high-order allocations */
2741 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2742 		/*
2743 		 * If compaction is deferred for high-order allocations, it is
2744 		 * because sync compaction recently failed. If this is the case
2745 		 * and the caller requested a THP allocation, we do not want
2746 		 * to heavily disrupt the system, so we fail the allocation
2747 		 * instead of entering direct reclaim.
2748 		 */
2749 		if (deferred_compaction)
2750 			goto nopage;
2751 
2752 		/*
2753 		 * In all zones where compaction was attempted (and not
2754 		 * deferred or skipped), lock contention has been detected.
2755 		 * For THP allocation we do not want to disrupt the others
2756 		 * so we fallback to base pages instead.
2757 		 */
2758 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2759 			goto nopage;
2760 
2761 		/*
2762 		 * If compaction was aborted due to need_resched(), we do not
2763 		 * want to further increase allocation latency, unless it is
2764 		 * khugepaged trying to collapse.
2765 		 */
2766 		if (contended_compaction == COMPACT_CONTENDED_SCHED
2767 			&& !(current->flags & PF_KTHREAD))
2768 			goto nopage;
2769 	}
2770 
2771 	/*
2772 	 * It can become very expensive to allocate transparent hugepages at
2773 	 * fault, so use asynchronous memory compaction for THP unless it is
2774 	 * khugepaged trying to collapse.
2775 	 */
2776 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2777 						(current->flags & PF_KTHREAD))
2778 		migration_mode = MIGRATE_SYNC_LIGHT;
2779 
2780 	/* Try direct reclaim and then allocating */
2781 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2782 					zonelist, high_zoneidx,
2783 					nodemask,
2784 					alloc_flags, preferred_zone,
2785 					classzone_idx, migratetype,
2786 					&did_some_progress);
2787 	if (page)
2788 		goto got_pg;
2789 
2790 	/*
2791 	 * If we failed to make any progress reclaiming, then we are
2792 	 * running out of options and have to consider going OOM
2793 	 */
2794 	if (!did_some_progress) {
2795 		if (oom_gfp_allowed(gfp_mask)) {
2796 			if (oom_killer_disabled)
2797 				goto nopage;
2798 			/* Coredumps can quickly deplete all memory reserves */
2799 			if ((current->flags & PF_DUMPCORE) &&
2800 			    !(gfp_mask & __GFP_NOFAIL))
2801 				goto nopage;
2802 			page = __alloc_pages_may_oom(gfp_mask, order,
2803 					zonelist, high_zoneidx,
2804 					nodemask, preferred_zone,
2805 					classzone_idx, migratetype);
2806 			if (page)
2807 				goto got_pg;
2808 
2809 			if (!(gfp_mask & __GFP_NOFAIL)) {
2810 				/*
2811 				 * The oom killer is not called for high-order
2812 				 * allocations that may fail, so if no progress
2813 				 * is being made, there are no other options and
2814 				 * retrying is unlikely to help.
2815 				 */
2816 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2817 					goto nopage;
2818 				/*
2819 				 * The oom killer is not called for lowmem
2820 				 * allocations to prevent needlessly killing
2821 				 * innocent tasks.
2822 				 */
2823 				if (high_zoneidx < ZONE_NORMAL)
2824 					goto nopage;
2825 			}
2826 
2827 			goto restart;
2828 		}
2829 	}
2830 
2831 	/* Check if we should retry the allocation */
2832 	pages_reclaimed += did_some_progress;
2833 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2834 						pages_reclaimed)) {
2835 		/* Wait for some write requests to complete then retry */
2836 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2837 		goto rebalance;
2838 	} else {
2839 		/*
2840 		 * High-order allocations do not necessarily loop after
2841 		 * direct reclaim and reclaim/compaction depends on compaction
2842 		 * being called after reclaim so call directly if necessary
2843 		 */
2844 		page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2845 					high_zoneidx, nodemask, alloc_flags,
2846 					preferred_zone,
2847 					classzone_idx, migratetype,
2848 					migration_mode, &contended_compaction,
2849 					&deferred_compaction);
2850 		if (page)
2851 			goto got_pg;
2852 	}
2853 
2854 nopage:
2855 	warn_alloc_failed(gfp_mask, order, NULL);
2856 	return page;
2857 got_pg:
2858 	if (kmemcheck_enabled)
2859 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2860 
2861 	return page;
2862 }
2863 
2864 /*
2865  * This is the 'heart' of the zoned buddy allocator.
2866  */
2867 struct page *
2868 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2869 			struct zonelist *zonelist, nodemask_t *nodemask)
2870 {
2871 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2872 	struct zone *preferred_zone;
2873 	struct zoneref *preferred_zoneref;
2874 	struct page *page = NULL;
2875 	int migratetype = gfpflags_to_migratetype(gfp_mask);
2876 	unsigned int cpuset_mems_cookie;
2877 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2878 	int classzone_idx;
2879 
2880 	gfp_mask &= gfp_allowed_mask;
2881 
2882 	lockdep_trace_alloc(gfp_mask);
2883 
2884 	might_sleep_if(gfp_mask & __GFP_WAIT);
2885 
2886 	if (should_fail_alloc_page(gfp_mask, order))
2887 		return NULL;
2888 
2889 	/*
2890 	 * Check the zones suitable for the gfp_mask contain at least one
2891 	 * valid zone. It's possible to have an empty zonelist as a result
2892 	 * of GFP_THISNODE and a memoryless node
2893 	 */
2894 	if (unlikely(!zonelist->_zonerefs->zone))
2895 		return NULL;
2896 
2897 	if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2898 		alloc_flags |= ALLOC_CMA;
2899 
2900 retry_cpuset:
2901 	cpuset_mems_cookie = read_mems_allowed_begin();
2902 
2903 	/* The preferred zone is used for statistics later */
2904 	preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2905 				nodemask ? : &cpuset_current_mems_allowed,
2906 				&preferred_zone);
2907 	if (!preferred_zone)
2908 		goto out;
2909 	classzone_idx = zonelist_zone_idx(preferred_zoneref);
2910 
2911 	/* First allocation attempt */
2912 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2913 			zonelist, high_zoneidx, alloc_flags,
2914 			preferred_zone, classzone_idx, migratetype);
2915 	if (unlikely(!page)) {
2916 		/*
2917 		 * Runtime PM, block IO and its error handling path
2918 		 * can deadlock because I/O on the device might not
2919 		 * complete.
2920 		 */
2921 		gfp_mask = memalloc_noio_flags(gfp_mask);
2922 		page = __alloc_pages_slowpath(gfp_mask, order,
2923 				zonelist, high_zoneidx, nodemask,
2924 				preferred_zone, classzone_idx, migratetype);
2925 	}
2926 
2927 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2928 
2929 out:
2930 	/*
2931 	 * When updating a task's mems_allowed, it is possible to race with
2932 	 * parallel threads in such a way that an allocation can fail while
2933 	 * the mask is being updated. If a page allocation is about to fail,
2934 	 * check if the cpuset changed during allocation and if so, retry.
2935 	 */
2936 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2937 		goto retry_cpuset;
2938 
2939 	return page;
2940 }
2941 EXPORT_SYMBOL(__alloc_pages_nodemask);
2942 
2943 /*
2944  * Common helper functions.
2945  */
2946 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2947 {
2948 	struct page *page;
2949 
2950 	/*
2951 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2952 	 * a highmem page
2953 	 */
2954 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2955 
2956 	page = alloc_pages(gfp_mask, order);
2957 	if (!page)
2958 		return 0;
2959 	return (unsigned long) page_address(page);
2960 }
2961 EXPORT_SYMBOL(__get_free_pages);
2962 
2963 unsigned long get_zeroed_page(gfp_t gfp_mask)
2964 {
2965 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2966 }
2967 EXPORT_SYMBOL(get_zeroed_page);
2968 
2969 void __free_pages(struct page *page, unsigned int order)
2970 {
2971 	if (put_page_testzero(page)) {
2972 		if (order == 0)
2973 			free_hot_cold_page(page, false);
2974 		else
2975 			__free_pages_ok(page, order);
2976 	}
2977 }
2978 
2979 EXPORT_SYMBOL(__free_pages);
2980 
2981 void free_pages(unsigned long addr, unsigned int order)
2982 {
2983 	if (addr != 0) {
2984 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2985 		__free_pages(virt_to_page((void *)addr), order);
2986 	}
2987 }
2988 
2989 EXPORT_SYMBOL(free_pages);
2990 
2991 /*
2992  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2993  * of the current memory cgroup.
2994  *
2995  * It should be used when the caller would like to use kmalloc, but since the
2996  * allocation is large, it has to fall back to the page allocator.
2997  */
2998 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2999 {
3000 	struct page *page;
3001 	struct mem_cgroup *memcg = NULL;
3002 
3003 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3004 		return NULL;
3005 	page = alloc_pages(gfp_mask, order);
3006 	memcg_kmem_commit_charge(page, memcg, order);
3007 	return page;
3008 }
3009 
3010 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3011 {
3012 	struct page *page;
3013 	struct mem_cgroup *memcg = NULL;
3014 
3015 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3016 		return NULL;
3017 	page = alloc_pages_node(nid, gfp_mask, order);
3018 	memcg_kmem_commit_charge(page, memcg, order);
3019 	return page;
3020 }
3021 
3022 /*
3023  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3024  * alloc_kmem_pages.
3025  */
3026 void __free_kmem_pages(struct page *page, unsigned int order)
3027 {
3028 	memcg_kmem_uncharge_pages(page, order);
3029 	__free_pages(page, order);
3030 }
3031 
3032 void free_kmem_pages(unsigned long addr, unsigned int order)
3033 {
3034 	if (addr != 0) {
3035 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3036 		__free_kmem_pages(virt_to_page((void *)addr), order);
3037 	}
3038 }
3039 
3040 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3041 {
3042 	if (addr) {
3043 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3044 		unsigned long used = addr + PAGE_ALIGN(size);
3045 
3046 		split_page(virt_to_page((void *)addr), order);
3047 		while (used < alloc_end) {
3048 			free_page(used);
3049 			used += PAGE_SIZE;
3050 		}
3051 	}
3052 	return (void *)addr;
3053 }
3054 
3055 /**
3056  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3057  * @size: the number of bytes to allocate
3058  * @gfp_mask: GFP flags for the allocation
3059  *
3060  * This function is similar to alloc_pages(), except that it allocates the
3061  * minimum number of pages to satisfy the request.  alloc_pages() can only
3062  * allocate memory in power-of-two pages.
3063  *
3064  * This function is also limited by MAX_ORDER.
3065  *
3066  * Memory allocated by this function must be released by free_pages_exact().
3067  */
3068 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3069 {
3070 	unsigned int order = get_order(size);
3071 	unsigned long addr;
3072 
3073 	addr = __get_free_pages(gfp_mask, order);
3074 	return make_alloc_exact(addr, order, size);
3075 }
3076 EXPORT_SYMBOL(alloc_pages_exact);
3077 
3078 /**
3079  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3080  *			   pages on a node.
3081  * @nid: the preferred node ID where memory should be allocated
3082  * @size: the number of bytes to allocate
3083  * @gfp_mask: GFP flags for the allocation
3084  *
3085  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3086  * back.
3087  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3088  * but is not exact.
3089  */
3090 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3091 {
3092 	unsigned order = get_order(size);
3093 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3094 	if (!p)
3095 		return NULL;
3096 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3097 }
3098 
3099 /**
3100  * free_pages_exact - release memory allocated via alloc_pages_exact()
3101  * @virt: the value returned by alloc_pages_exact.
3102  * @size: size of allocation, same value as passed to alloc_pages_exact().
3103  *
3104  * Release the memory allocated by a previous call to alloc_pages_exact.
3105  */
3106 void free_pages_exact(void *virt, size_t size)
3107 {
3108 	unsigned long addr = (unsigned long)virt;
3109 	unsigned long end = addr + PAGE_ALIGN(size);
3110 
3111 	while (addr < end) {
3112 		free_page(addr);
3113 		addr += PAGE_SIZE;
3114 	}
3115 }
3116 EXPORT_SYMBOL(free_pages_exact);
3117 
3118 /**
3119  * nr_free_zone_pages - count number of pages beyond high watermark
3120  * @offset: The zone index of the highest zone
3121  *
3122  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3123  * high watermark within all zones at or below a given zone index.  For each
3124  * zone, the number of pages is calculated as:
3125  *     managed_pages - high_pages
3126  */
3127 static unsigned long nr_free_zone_pages(int offset)
3128 {
3129 	struct zoneref *z;
3130 	struct zone *zone;
3131 
3132 	/* Just pick one node, since fallback list is circular */
3133 	unsigned long sum = 0;
3134 
3135 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3136 
3137 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3138 		unsigned long size = zone->managed_pages;
3139 		unsigned long high = high_wmark_pages(zone);
3140 		if (size > high)
3141 			sum += size - high;
3142 	}
3143 
3144 	return sum;
3145 }
3146 
3147 /**
3148  * nr_free_buffer_pages - count number of pages beyond high watermark
3149  *
3150  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3151  * watermark within ZONE_DMA and ZONE_NORMAL.
3152  */
3153 unsigned long nr_free_buffer_pages(void)
3154 {
3155 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3156 }
3157 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3158 
3159 /**
3160  * nr_free_pagecache_pages - count number of pages beyond high watermark
3161  *
3162  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3163  * high watermark within all zones.
3164  */
3165 unsigned long nr_free_pagecache_pages(void)
3166 {
3167 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3168 }
3169 
3170 static inline void show_node(struct zone *zone)
3171 {
3172 	if (IS_ENABLED(CONFIG_NUMA))
3173 		printk("Node %d ", zone_to_nid(zone));
3174 }
3175 
3176 void si_meminfo(struct sysinfo *val)
3177 {
3178 	val->totalram = totalram_pages;
3179 	val->sharedram = global_page_state(NR_SHMEM);
3180 	val->freeram = global_page_state(NR_FREE_PAGES);
3181 	val->bufferram = nr_blockdev_pages();
3182 	val->totalhigh = totalhigh_pages;
3183 	val->freehigh = nr_free_highpages();
3184 	val->mem_unit = PAGE_SIZE;
3185 }
3186 
3187 EXPORT_SYMBOL(si_meminfo);
3188 
3189 #ifdef CONFIG_NUMA
3190 void si_meminfo_node(struct sysinfo *val, int nid)
3191 {
3192 	int zone_type;		/* needs to be signed */
3193 	unsigned long managed_pages = 0;
3194 	pg_data_t *pgdat = NODE_DATA(nid);
3195 
3196 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3197 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3198 	val->totalram = managed_pages;
3199 	val->sharedram = node_page_state(nid, NR_SHMEM);
3200 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3201 #ifdef CONFIG_HIGHMEM
3202 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3203 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3204 			NR_FREE_PAGES);
3205 #else
3206 	val->totalhigh = 0;
3207 	val->freehigh = 0;
3208 #endif
3209 	val->mem_unit = PAGE_SIZE;
3210 }
3211 #endif
3212 
3213 /*
3214  * Determine whether the node should be displayed or not, depending on whether
3215  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3216  */
3217 bool skip_free_areas_node(unsigned int flags, int nid)
3218 {
3219 	bool ret = false;
3220 	unsigned int cpuset_mems_cookie;
3221 
3222 	if (!(flags & SHOW_MEM_FILTER_NODES))
3223 		goto out;
3224 
3225 	do {
3226 		cpuset_mems_cookie = read_mems_allowed_begin();
3227 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3228 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3229 out:
3230 	return ret;
3231 }
3232 
3233 #define K(x) ((x) << (PAGE_SHIFT-10))
3234 
3235 static void show_migration_types(unsigned char type)
3236 {
3237 	static const char types[MIGRATE_TYPES] = {
3238 		[MIGRATE_UNMOVABLE]	= 'U',
3239 		[MIGRATE_RECLAIMABLE]	= 'E',
3240 		[MIGRATE_MOVABLE]	= 'M',
3241 		[MIGRATE_RESERVE]	= 'R',
3242 #ifdef CONFIG_CMA
3243 		[MIGRATE_CMA]		= 'C',
3244 #endif
3245 #ifdef CONFIG_MEMORY_ISOLATION
3246 		[MIGRATE_ISOLATE]	= 'I',
3247 #endif
3248 	};
3249 	char tmp[MIGRATE_TYPES + 1];
3250 	char *p = tmp;
3251 	int i;
3252 
3253 	for (i = 0; i < MIGRATE_TYPES; i++) {
3254 		if (type & (1 << i))
3255 			*p++ = types[i];
3256 	}
3257 
3258 	*p = '\0';
3259 	printk("(%s) ", tmp);
3260 }
3261 
3262 /*
3263  * Show free area list (used inside shift_scroll-lock stuff)
3264  * We also calculate the percentage fragmentation. We do this by counting the
3265  * memory on each free list with the exception of the first item on the list.
3266  * Suppresses nodes that are not allowed by current's cpuset if
3267  * SHOW_MEM_FILTER_NODES is passed.
3268  */
3269 void show_free_areas(unsigned int filter)
3270 {
3271 	int cpu;
3272 	struct zone *zone;
3273 
3274 	for_each_populated_zone(zone) {
3275 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3276 			continue;
3277 		show_node(zone);
3278 		printk("%s per-cpu:\n", zone->name);
3279 
3280 		for_each_online_cpu(cpu) {
3281 			struct per_cpu_pageset *pageset;
3282 
3283 			pageset = per_cpu_ptr(zone->pageset, cpu);
3284 
3285 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3286 			       cpu, pageset->pcp.high,
3287 			       pageset->pcp.batch, pageset->pcp.count);
3288 		}
3289 	}
3290 
3291 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3292 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3293 		" unevictable:%lu"
3294 		" dirty:%lu writeback:%lu unstable:%lu\n"
3295 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3296 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3297 		" free_cma:%lu\n",
3298 		global_page_state(NR_ACTIVE_ANON),
3299 		global_page_state(NR_INACTIVE_ANON),
3300 		global_page_state(NR_ISOLATED_ANON),
3301 		global_page_state(NR_ACTIVE_FILE),
3302 		global_page_state(NR_INACTIVE_FILE),
3303 		global_page_state(NR_ISOLATED_FILE),
3304 		global_page_state(NR_UNEVICTABLE),
3305 		global_page_state(NR_FILE_DIRTY),
3306 		global_page_state(NR_WRITEBACK),
3307 		global_page_state(NR_UNSTABLE_NFS),
3308 		global_page_state(NR_FREE_PAGES),
3309 		global_page_state(NR_SLAB_RECLAIMABLE),
3310 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3311 		global_page_state(NR_FILE_MAPPED),
3312 		global_page_state(NR_SHMEM),
3313 		global_page_state(NR_PAGETABLE),
3314 		global_page_state(NR_BOUNCE),
3315 		global_page_state(NR_FREE_CMA_PAGES));
3316 
3317 	for_each_populated_zone(zone) {
3318 		int i;
3319 
3320 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3321 			continue;
3322 		show_node(zone);
3323 		printk("%s"
3324 			" free:%lukB"
3325 			" min:%lukB"
3326 			" low:%lukB"
3327 			" high:%lukB"
3328 			" active_anon:%lukB"
3329 			" inactive_anon:%lukB"
3330 			" active_file:%lukB"
3331 			" inactive_file:%lukB"
3332 			" unevictable:%lukB"
3333 			" isolated(anon):%lukB"
3334 			" isolated(file):%lukB"
3335 			" present:%lukB"
3336 			" managed:%lukB"
3337 			" mlocked:%lukB"
3338 			" dirty:%lukB"
3339 			" writeback:%lukB"
3340 			" mapped:%lukB"
3341 			" shmem:%lukB"
3342 			" slab_reclaimable:%lukB"
3343 			" slab_unreclaimable:%lukB"
3344 			" kernel_stack:%lukB"
3345 			" pagetables:%lukB"
3346 			" unstable:%lukB"
3347 			" bounce:%lukB"
3348 			" free_cma:%lukB"
3349 			" writeback_tmp:%lukB"
3350 			" pages_scanned:%lu"
3351 			" all_unreclaimable? %s"
3352 			"\n",
3353 			zone->name,
3354 			K(zone_page_state(zone, NR_FREE_PAGES)),
3355 			K(min_wmark_pages(zone)),
3356 			K(low_wmark_pages(zone)),
3357 			K(high_wmark_pages(zone)),
3358 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3359 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3360 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3361 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3362 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3363 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3364 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3365 			K(zone->present_pages),
3366 			K(zone->managed_pages),
3367 			K(zone_page_state(zone, NR_MLOCK)),
3368 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3369 			K(zone_page_state(zone, NR_WRITEBACK)),
3370 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3371 			K(zone_page_state(zone, NR_SHMEM)),
3372 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3373 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3374 			zone_page_state(zone, NR_KERNEL_STACK) *
3375 				THREAD_SIZE / 1024,
3376 			K(zone_page_state(zone, NR_PAGETABLE)),
3377 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3378 			K(zone_page_state(zone, NR_BOUNCE)),
3379 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3380 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3381 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3382 			(!zone_reclaimable(zone) ? "yes" : "no")
3383 			);
3384 		printk("lowmem_reserve[]:");
3385 		for (i = 0; i < MAX_NR_ZONES; i++)
3386 			printk(" %ld", zone->lowmem_reserve[i]);
3387 		printk("\n");
3388 	}
3389 
3390 	for_each_populated_zone(zone) {
3391 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3392 		unsigned char types[MAX_ORDER];
3393 
3394 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3395 			continue;
3396 		show_node(zone);
3397 		printk("%s: ", zone->name);
3398 
3399 		spin_lock_irqsave(&zone->lock, flags);
3400 		for (order = 0; order < MAX_ORDER; order++) {
3401 			struct free_area *area = &zone->free_area[order];
3402 			int type;
3403 
3404 			nr[order] = area->nr_free;
3405 			total += nr[order] << order;
3406 
3407 			types[order] = 0;
3408 			for (type = 0; type < MIGRATE_TYPES; type++) {
3409 				if (!list_empty(&area->free_list[type]))
3410 					types[order] |= 1 << type;
3411 			}
3412 		}
3413 		spin_unlock_irqrestore(&zone->lock, flags);
3414 		for (order = 0; order < MAX_ORDER; order++) {
3415 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3416 			if (nr[order])
3417 				show_migration_types(types[order]);
3418 		}
3419 		printk("= %lukB\n", K(total));
3420 	}
3421 
3422 	hugetlb_show_meminfo();
3423 
3424 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3425 
3426 	show_swap_cache_info();
3427 }
3428 
3429 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3430 {
3431 	zoneref->zone = zone;
3432 	zoneref->zone_idx = zone_idx(zone);
3433 }
3434 
3435 /*
3436  * Builds allocation fallback zone lists.
3437  *
3438  * Add all populated zones of a node to the zonelist.
3439  */
3440 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3441 				int nr_zones)
3442 {
3443 	struct zone *zone;
3444 	enum zone_type zone_type = MAX_NR_ZONES;
3445 
3446 	do {
3447 		zone_type--;
3448 		zone = pgdat->node_zones + zone_type;
3449 		if (populated_zone(zone)) {
3450 			zoneref_set_zone(zone,
3451 				&zonelist->_zonerefs[nr_zones++]);
3452 			check_highest_zone(zone_type);
3453 		}
3454 	} while (zone_type);
3455 
3456 	return nr_zones;
3457 }
3458 
3459 
3460 /*
3461  *  zonelist_order:
3462  *  0 = automatic detection of better ordering.
3463  *  1 = order by ([node] distance, -zonetype)
3464  *  2 = order by (-zonetype, [node] distance)
3465  *
3466  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3467  *  the same zonelist. So only NUMA can configure this param.
3468  */
3469 #define ZONELIST_ORDER_DEFAULT  0
3470 #define ZONELIST_ORDER_NODE     1
3471 #define ZONELIST_ORDER_ZONE     2
3472 
3473 /* zonelist order in the kernel.
3474  * set_zonelist_order() will set this to NODE or ZONE.
3475  */
3476 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3477 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3478 
3479 
3480 #ifdef CONFIG_NUMA
3481 /* The value user specified ....changed by config */
3482 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3483 /* string for sysctl */
3484 #define NUMA_ZONELIST_ORDER_LEN	16
3485 char numa_zonelist_order[16] = "default";
3486 
3487 /*
3488  * interface for configure zonelist ordering.
3489  * command line option "numa_zonelist_order"
3490  *	= "[dD]efault	- default, automatic configuration.
3491  *	= "[nN]ode 	- order by node locality, then by zone within node
3492  *	= "[zZ]one      - order by zone, then by locality within zone
3493  */
3494 
3495 static int __parse_numa_zonelist_order(char *s)
3496 {
3497 	if (*s == 'd' || *s == 'D') {
3498 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3499 	} else if (*s == 'n' || *s == 'N') {
3500 		user_zonelist_order = ZONELIST_ORDER_NODE;
3501 	} else if (*s == 'z' || *s == 'Z') {
3502 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3503 	} else {
3504 		printk(KERN_WARNING
3505 			"Ignoring invalid numa_zonelist_order value:  "
3506 			"%s\n", s);
3507 		return -EINVAL;
3508 	}
3509 	return 0;
3510 }
3511 
3512 static __init int setup_numa_zonelist_order(char *s)
3513 {
3514 	int ret;
3515 
3516 	if (!s)
3517 		return 0;
3518 
3519 	ret = __parse_numa_zonelist_order(s);
3520 	if (ret == 0)
3521 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3522 
3523 	return ret;
3524 }
3525 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3526 
3527 /*
3528  * sysctl handler for numa_zonelist_order
3529  */
3530 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3531 		void __user *buffer, size_t *length,
3532 		loff_t *ppos)
3533 {
3534 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3535 	int ret;
3536 	static DEFINE_MUTEX(zl_order_mutex);
3537 
3538 	mutex_lock(&zl_order_mutex);
3539 	if (write) {
3540 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3541 			ret = -EINVAL;
3542 			goto out;
3543 		}
3544 		strcpy(saved_string, (char *)table->data);
3545 	}
3546 	ret = proc_dostring(table, write, buffer, length, ppos);
3547 	if (ret)
3548 		goto out;
3549 	if (write) {
3550 		int oldval = user_zonelist_order;
3551 
3552 		ret = __parse_numa_zonelist_order((char *)table->data);
3553 		if (ret) {
3554 			/*
3555 			 * bogus value.  restore saved string
3556 			 */
3557 			strncpy((char *)table->data, saved_string,
3558 				NUMA_ZONELIST_ORDER_LEN);
3559 			user_zonelist_order = oldval;
3560 		} else if (oldval != user_zonelist_order) {
3561 			mutex_lock(&zonelists_mutex);
3562 			build_all_zonelists(NULL, NULL);
3563 			mutex_unlock(&zonelists_mutex);
3564 		}
3565 	}
3566 out:
3567 	mutex_unlock(&zl_order_mutex);
3568 	return ret;
3569 }
3570 
3571 
3572 #define MAX_NODE_LOAD (nr_online_nodes)
3573 static int node_load[MAX_NUMNODES];
3574 
3575 /**
3576  * find_next_best_node - find the next node that should appear in a given node's fallback list
3577  * @node: node whose fallback list we're appending
3578  * @used_node_mask: nodemask_t of already used nodes
3579  *
3580  * We use a number of factors to determine which is the next node that should
3581  * appear on a given node's fallback list.  The node should not have appeared
3582  * already in @node's fallback list, and it should be the next closest node
3583  * according to the distance array (which contains arbitrary distance values
3584  * from each node to each node in the system), and should also prefer nodes
3585  * with no CPUs, since presumably they'll have very little allocation pressure
3586  * on them otherwise.
3587  * It returns -1 if no node is found.
3588  */
3589 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3590 {
3591 	int n, val;
3592 	int min_val = INT_MAX;
3593 	int best_node = NUMA_NO_NODE;
3594 	const struct cpumask *tmp = cpumask_of_node(0);
3595 
3596 	/* Use the local node if we haven't already */
3597 	if (!node_isset(node, *used_node_mask)) {
3598 		node_set(node, *used_node_mask);
3599 		return node;
3600 	}
3601 
3602 	for_each_node_state(n, N_MEMORY) {
3603 
3604 		/* Don't want a node to appear more than once */
3605 		if (node_isset(n, *used_node_mask))
3606 			continue;
3607 
3608 		/* Use the distance array to find the distance */
3609 		val = node_distance(node, n);
3610 
3611 		/* Penalize nodes under us ("prefer the next node") */
3612 		val += (n < node);
3613 
3614 		/* Give preference to headless and unused nodes */
3615 		tmp = cpumask_of_node(n);
3616 		if (!cpumask_empty(tmp))
3617 			val += PENALTY_FOR_NODE_WITH_CPUS;
3618 
3619 		/* Slight preference for less loaded node */
3620 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3621 		val += node_load[n];
3622 
3623 		if (val < min_val) {
3624 			min_val = val;
3625 			best_node = n;
3626 		}
3627 	}
3628 
3629 	if (best_node >= 0)
3630 		node_set(best_node, *used_node_mask);
3631 
3632 	return best_node;
3633 }
3634 
3635 
3636 /*
3637  * Build zonelists ordered by node and zones within node.
3638  * This results in maximum locality--normal zone overflows into local
3639  * DMA zone, if any--but risks exhausting DMA zone.
3640  */
3641 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3642 {
3643 	int j;
3644 	struct zonelist *zonelist;
3645 
3646 	zonelist = &pgdat->node_zonelists[0];
3647 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3648 		;
3649 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3650 	zonelist->_zonerefs[j].zone = NULL;
3651 	zonelist->_zonerefs[j].zone_idx = 0;
3652 }
3653 
3654 /*
3655  * Build gfp_thisnode zonelists
3656  */
3657 static void build_thisnode_zonelists(pg_data_t *pgdat)
3658 {
3659 	int j;
3660 	struct zonelist *zonelist;
3661 
3662 	zonelist = &pgdat->node_zonelists[1];
3663 	j = build_zonelists_node(pgdat, zonelist, 0);
3664 	zonelist->_zonerefs[j].zone = NULL;
3665 	zonelist->_zonerefs[j].zone_idx = 0;
3666 }
3667 
3668 /*
3669  * Build zonelists ordered by zone and nodes within zones.
3670  * This results in conserving DMA zone[s] until all Normal memory is
3671  * exhausted, but results in overflowing to remote node while memory
3672  * may still exist in local DMA zone.
3673  */
3674 static int node_order[MAX_NUMNODES];
3675 
3676 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3677 {
3678 	int pos, j, node;
3679 	int zone_type;		/* needs to be signed */
3680 	struct zone *z;
3681 	struct zonelist *zonelist;
3682 
3683 	zonelist = &pgdat->node_zonelists[0];
3684 	pos = 0;
3685 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3686 		for (j = 0; j < nr_nodes; j++) {
3687 			node = node_order[j];
3688 			z = &NODE_DATA(node)->node_zones[zone_type];
3689 			if (populated_zone(z)) {
3690 				zoneref_set_zone(z,
3691 					&zonelist->_zonerefs[pos++]);
3692 				check_highest_zone(zone_type);
3693 			}
3694 		}
3695 	}
3696 	zonelist->_zonerefs[pos].zone = NULL;
3697 	zonelist->_zonerefs[pos].zone_idx = 0;
3698 }
3699 
3700 #if defined(CONFIG_64BIT)
3701 /*
3702  * Devices that require DMA32/DMA are relatively rare and do not justify a
3703  * penalty to every machine in case the specialised case applies. Default
3704  * to Node-ordering on 64-bit NUMA machines
3705  */
3706 static int default_zonelist_order(void)
3707 {
3708 	return ZONELIST_ORDER_NODE;
3709 }
3710 #else
3711 /*
3712  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3713  * by the kernel. If processes running on node 0 deplete the low memory zone
3714  * then reclaim will occur more frequency increasing stalls and potentially
3715  * be easier to OOM if a large percentage of the zone is under writeback or
3716  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3717  * Hence, default to zone ordering on 32-bit.
3718  */
3719 static int default_zonelist_order(void)
3720 {
3721 	return ZONELIST_ORDER_ZONE;
3722 }
3723 #endif /* CONFIG_64BIT */
3724 
3725 static void set_zonelist_order(void)
3726 {
3727 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3728 		current_zonelist_order = default_zonelist_order();
3729 	else
3730 		current_zonelist_order = user_zonelist_order;
3731 }
3732 
3733 static void build_zonelists(pg_data_t *pgdat)
3734 {
3735 	int j, node, load;
3736 	enum zone_type i;
3737 	nodemask_t used_mask;
3738 	int local_node, prev_node;
3739 	struct zonelist *zonelist;
3740 	int order = current_zonelist_order;
3741 
3742 	/* initialize zonelists */
3743 	for (i = 0; i < MAX_ZONELISTS; i++) {
3744 		zonelist = pgdat->node_zonelists + i;
3745 		zonelist->_zonerefs[0].zone = NULL;
3746 		zonelist->_zonerefs[0].zone_idx = 0;
3747 	}
3748 
3749 	/* NUMA-aware ordering of nodes */
3750 	local_node = pgdat->node_id;
3751 	load = nr_online_nodes;
3752 	prev_node = local_node;
3753 	nodes_clear(used_mask);
3754 
3755 	memset(node_order, 0, sizeof(node_order));
3756 	j = 0;
3757 
3758 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3759 		/*
3760 		 * We don't want to pressure a particular node.
3761 		 * So adding penalty to the first node in same
3762 		 * distance group to make it round-robin.
3763 		 */
3764 		if (node_distance(local_node, node) !=
3765 		    node_distance(local_node, prev_node))
3766 			node_load[node] = load;
3767 
3768 		prev_node = node;
3769 		load--;
3770 		if (order == ZONELIST_ORDER_NODE)
3771 			build_zonelists_in_node_order(pgdat, node);
3772 		else
3773 			node_order[j++] = node;	/* remember order */
3774 	}
3775 
3776 	if (order == ZONELIST_ORDER_ZONE) {
3777 		/* calculate node order -- i.e., DMA last! */
3778 		build_zonelists_in_zone_order(pgdat, j);
3779 	}
3780 
3781 	build_thisnode_zonelists(pgdat);
3782 }
3783 
3784 /* Construct the zonelist performance cache - see further mmzone.h */
3785 static void build_zonelist_cache(pg_data_t *pgdat)
3786 {
3787 	struct zonelist *zonelist;
3788 	struct zonelist_cache *zlc;
3789 	struct zoneref *z;
3790 
3791 	zonelist = &pgdat->node_zonelists[0];
3792 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3793 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3794 	for (z = zonelist->_zonerefs; z->zone; z++)
3795 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3796 }
3797 
3798 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3799 /*
3800  * Return node id of node used for "local" allocations.
3801  * I.e., first node id of first zone in arg node's generic zonelist.
3802  * Used for initializing percpu 'numa_mem', which is used primarily
3803  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3804  */
3805 int local_memory_node(int node)
3806 {
3807 	struct zone *zone;
3808 
3809 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3810 				   gfp_zone(GFP_KERNEL),
3811 				   NULL,
3812 				   &zone);
3813 	return zone->node;
3814 }
3815 #endif
3816 
3817 #else	/* CONFIG_NUMA */
3818 
3819 static void set_zonelist_order(void)
3820 {
3821 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3822 }
3823 
3824 static void build_zonelists(pg_data_t *pgdat)
3825 {
3826 	int node, local_node;
3827 	enum zone_type j;
3828 	struct zonelist *zonelist;
3829 
3830 	local_node = pgdat->node_id;
3831 
3832 	zonelist = &pgdat->node_zonelists[0];
3833 	j = build_zonelists_node(pgdat, zonelist, 0);
3834 
3835 	/*
3836 	 * Now we build the zonelist so that it contains the zones
3837 	 * of all the other nodes.
3838 	 * We don't want to pressure a particular node, so when
3839 	 * building the zones for node N, we make sure that the
3840 	 * zones coming right after the local ones are those from
3841 	 * node N+1 (modulo N)
3842 	 */
3843 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3844 		if (!node_online(node))
3845 			continue;
3846 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3847 	}
3848 	for (node = 0; node < local_node; node++) {
3849 		if (!node_online(node))
3850 			continue;
3851 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3852 	}
3853 
3854 	zonelist->_zonerefs[j].zone = NULL;
3855 	zonelist->_zonerefs[j].zone_idx = 0;
3856 }
3857 
3858 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3859 static void build_zonelist_cache(pg_data_t *pgdat)
3860 {
3861 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3862 }
3863 
3864 #endif	/* CONFIG_NUMA */
3865 
3866 /*
3867  * Boot pageset table. One per cpu which is going to be used for all
3868  * zones and all nodes. The parameters will be set in such a way
3869  * that an item put on a list will immediately be handed over to
3870  * the buddy list. This is safe since pageset manipulation is done
3871  * with interrupts disabled.
3872  *
3873  * The boot_pagesets must be kept even after bootup is complete for
3874  * unused processors and/or zones. They do play a role for bootstrapping
3875  * hotplugged processors.
3876  *
3877  * zoneinfo_show() and maybe other functions do
3878  * not check if the processor is online before following the pageset pointer.
3879  * Other parts of the kernel may not check if the zone is available.
3880  */
3881 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3882 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3883 static void setup_zone_pageset(struct zone *zone);
3884 
3885 /*
3886  * Global mutex to protect against size modification of zonelists
3887  * as well as to serialize pageset setup for the new populated zone.
3888  */
3889 DEFINE_MUTEX(zonelists_mutex);
3890 
3891 /* return values int ....just for stop_machine() */
3892 static int __build_all_zonelists(void *data)
3893 {
3894 	int nid;
3895 	int cpu;
3896 	pg_data_t *self = data;
3897 
3898 #ifdef CONFIG_NUMA
3899 	memset(node_load, 0, sizeof(node_load));
3900 #endif
3901 
3902 	if (self && !node_online(self->node_id)) {
3903 		build_zonelists(self);
3904 		build_zonelist_cache(self);
3905 	}
3906 
3907 	for_each_online_node(nid) {
3908 		pg_data_t *pgdat = NODE_DATA(nid);
3909 
3910 		build_zonelists(pgdat);
3911 		build_zonelist_cache(pgdat);
3912 	}
3913 
3914 	/*
3915 	 * Initialize the boot_pagesets that are going to be used
3916 	 * for bootstrapping processors. The real pagesets for
3917 	 * each zone will be allocated later when the per cpu
3918 	 * allocator is available.
3919 	 *
3920 	 * boot_pagesets are used also for bootstrapping offline
3921 	 * cpus if the system is already booted because the pagesets
3922 	 * are needed to initialize allocators on a specific cpu too.
3923 	 * F.e. the percpu allocator needs the page allocator which
3924 	 * needs the percpu allocator in order to allocate its pagesets
3925 	 * (a chicken-egg dilemma).
3926 	 */
3927 	for_each_possible_cpu(cpu) {
3928 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3929 
3930 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3931 		/*
3932 		 * We now know the "local memory node" for each node--
3933 		 * i.e., the node of the first zone in the generic zonelist.
3934 		 * Set up numa_mem percpu variable for on-line cpus.  During
3935 		 * boot, only the boot cpu should be on-line;  we'll init the
3936 		 * secondary cpus' numa_mem as they come on-line.  During
3937 		 * node/memory hotplug, we'll fixup all on-line cpus.
3938 		 */
3939 		if (cpu_online(cpu))
3940 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3941 #endif
3942 	}
3943 
3944 	return 0;
3945 }
3946 
3947 /*
3948  * Called with zonelists_mutex held always
3949  * unless system_state == SYSTEM_BOOTING.
3950  */
3951 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3952 {
3953 	set_zonelist_order();
3954 
3955 	if (system_state == SYSTEM_BOOTING) {
3956 		__build_all_zonelists(NULL);
3957 		mminit_verify_zonelist();
3958 		cpuset_init_current_mems_allowed();
3959 	} else {
3960 #ifdef CONFIG_MEMORY_HOTPLUG
3961 		if (zone)
3962 			setup_zone_pageset(zone);
3963 #endif
3964 		/* we have to stop all cpus to guarantee there is no user
3965 		   of zonelist */
3966 		stop_machine(__build_all_zonelists, pgdat, NULL);
3967 		/* cpuset refresh routine should be here */
3968 	}
3969 	vm_total_pages = nr_free_pagecache_pages();
3970 	/*
3971 	 * Disable grouping by mobility if the number of pages in the
3972 	 * system is too low to allow the mechanism to work. It would be
3973 	 * more accurate, but expensive to check per-zone. This check is
3974 	 * made on memory-hotadd so a system can start with mobility
3975 	 * disabled and enable it later
3976 	 */
3977 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3978 		page_group_by_mobility_disabled = 1;
3979 	else
3980 		page_group_by_mobility_disabled = 0;
3981 
3982 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
3983 		"Total pages: %ld\n",
3984 			nr_online_nodes,
3985 			zonelist_order_name[current_zonelist_order],
3986 			page_group_by_mobility_disabled ? "off" : "on",
3987 			vm_total_pages);
3988 #ifdef CONFIG_NUMA
3989 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3990 #endif
3991 }
3992 
3993 /*
3994  * Helper functions to size the waitqueue hash table.
3995  * Essentially these want to choose hash table sizes sufficiently
3996  * large so that collisions trying to wait on pages are rare.
3997  * But in fact, the number of active page waitqueues on typical
3998  * systems is ridiculously low, less than 200. So this is even
3999  * conservative, even though it seems large.
4000  *
4001  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4002  * waitqueues, i.e. the size of the waitq table given the number of pages.
4003  */
4004 #define PAGES_PER_WAITQUEUE	256
4005 
4006 #ifndef CONFIG_MEMORY_HOTPLUG
4007 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4008 {
4009 	unsigned long size = 1;
4010 
4011 	pages /= PAGES_PER_WAITQUEUE;
4012 
4013 	while (size < pages)
4014 		size <<= 1;
4015 
4016 	/*
4017 	 * Once we have dozens or even hundreds of threads sleeping
4018 	 * on IO we've got bigger problems than wait queue collision.
4019 	 * Limit the size of the wait table to a reasonable size.
4020 	 */
4021 	size = min(size, 4096UL);
4022 
4023 	return max(size, 4UL);
4024 }
4025 #else
4026 /*
4027  * A zone's size might be changed by hot-add, so it is not possible to determine
4028  * a suitable size for its wait_table.  So we use the maximum size now.
4029  *
4030  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4031  *
4032  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4033  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4034  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4035  *
4036  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4037  * or more by the traditional way. (See above).  It equals:
4038  *
4039  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4040  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4041  *    powerpc (64K page size)             : =  (32G +16M)byte.
4042  */
4043 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4044 {
4045 	return 4096UL;
4046 }
4047 #endif
4048 
4049 /*
4050  * This is an integer logarithm so that shifts can be used later
4051  * to extract the more random high bits from the multiplicative
4052  * hash function before the remainder is taken.
4053  */
4054 static inline unsigned long wait_table_bits(unsigned long size)
4055 {
4056 	return ffz(~size);
4057 }
4058 
4059 /*
4060  * Check if a pageblock contains reserved pages
4061  */
4062 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4063 {
4064 	unsigned long pfn;
4065 
4066 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4067 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4068 			return 1;
4069 	}
4070 	return 0;
4071 }
4072 
4073 /*
4074  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4075  * of blocks reserved is based on min_wmark_pages(zone). The memory within
4076  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4077  * higher will lead to a bigger reserve which will get freed as contiguous
4078  * blocks as reclaim kicks in
4079  */
4080 static void setup_zone_migrate_reserve(struct zone *zone)
4081 {
4082 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4083 	struct page *page;
4084 	unsigned long block_migratetype;
4085 	int reserve;
4086 	int old_reserve;
4087 
4088 	/*
4089 	 * Get the start pfn, end pfn and the number of blocks to reserve
4090 	 * We have to be careful to be aligned to pageblock_nr_pages to
4091 	 * make sure that we always check pfn_valid for the first page in
4092 	 * the block.
4093 	 */
4094 	start_pfn = zone->zone_start_pfn;
4095 	end_pfn = zone_end_pfn(zone);
4096 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4097 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4098 							pageblock_order;
4099 
4100 	/*
4101 	 * Reserve blocks are generally in place to help high-order atomic
4102 	 * allocations that are short-lived. A min_free_kbytes value that
4103 	 * would result in more than 2 reserve blocks for atomic allocations
4104 	 * is assumed to be in place to help anti-fragmentation for the
4105 	 * future allocation of hugepages at runtime.
4106 	 */
4107 	reserve = min(2, reserve);
4108 	old_reserve = zone->nr_migrate_reserve_block;
4109 
4110 	/* When memory hot-add, we almost always need to do nothing */
4111 	if (reserve == old_reserve)
4112 		return;
4113 	zone->nr_migrate_reserve_block = reserve;
4114 
4115 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4116 		if (!pfn_valid(pfn))
4117 			continue;
4118 		page = pfn_to_page(pfn);
4119 
4120 		/* Watch out for overlapping nodes */
4121 		if (page_to_nid(page) != zone_to_nid(zone))
4122 			continue;
4123 
4124 		block_migratetype = get_pageblock_migratetype(page);
4125 
4126 		/* Only test what is necessary when the reserves are not met */
4127 		if (reserve > 0) {
4128 			/*
4129 			 * Blocks with reserved pages will never free, skip
4130 			 * them.
4131 			 */
4132 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4133 			if (pageblock_is_reserved(pfn, block_end_pfn))
4134 				continue;
4135 
4136 			/* If this block is reserved, account for it */
4137 			if (block_migratetype == MIGRATE_RESERVE) {
4138 				reserve--;
4139 				continue;
4140 			}
4141 
4142 			/* Suitable for reserving if this block is movable */
4143 			if (block_migratetype == MIGRATE_MOVABLE) {
4144 				set_pageblock_migratetype(page,
4145 							MIGRATE_RESERVE);
4146 				move_freepages_block(zone, page,
4147 							MIGRATE_RESERVE);
4148 				reserve--;
4149 				continue;
4150 			}
4151 		} else if (!old_reserve) {
4152 			/*
4153 			 * At boot time we don't need to scan the whole zone
4154 			 * for turning off MIGRATE_RESERVE.
4155 			 */
4156 			break;
4157 		}
4158 
4159 		/*
4160 		 * If the reserve is met and this is a previous reserved block,
4161 		 * take it back
4162 		 */
4163 		if (block_migratetype == MIGRATE_RESERVE) {
4164 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4165 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4166 		}
4167 	}
4168 }
4169 
4170 /*
4171  * Initially all pages are reserved - free ones are freed
4172  * up by free_all_bootmem() once the early boot process is
4173  * done. Non-atomic initialization, single-pass.
4174  */
4175 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4176 		unsigned long start_pfn, enum memmap_context context)
4177 {
4178 	struct page *page;
4179 	unsigned long end_pfn = start_pfn + size;
4180 	unsigned long pfn;
4181 	struct zone *z;
4182 
4183 	if (highest_memmap_pfn < end_pfn - 1)
4184 		highest_memmap_pfn = end_pfn - 1;
4185 
4186 	z = &NODE_DATA(nid)->node_zones[zone];
4187 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4188 		/*
4189 		 * There can be holes in boot-time mem_map[]s
4190 		 * handed to this function.  They do not
4191 		 * exist on hotplugged memory.
4192 		 */
4193 		if (context == MEMMAP_EARLY) {
4194 			if (!early_pfn_valid(pfn))
4195 				continue;
4196 			if (!early_pfn_in_nid(pfn, nid))
4197 				continue;
4198 		}
4199 		page = pfn_to_page(pfn);
4200 		set_page_links(page, zone, nid, pfn);
4201 		mminit_verify_page_links(page, zone, nid, pfn);
4202 		init_page_count(page);
4203 		page_mapcount_reset(page);
4204 		page_cpupid_reset_last(page);
4205 		SetPageReserved(page);
4206 		/*
4207 		 * Mark the block movable so that blocks are reserved for
4208 		 * movable at startup. This will force kernel allocations
4209 		 * to reserve their blocks rather than leaking throughout
4210 		 * the address space during boot when many long-lived
4211 		 * kernel allocations are made. Later some blocks near
4212 		 * the start are marked MIGRATE_RESERVE by
4213 		 * setup_zone_migrate_reserve()
4214 		 *
4215 		 * bitmap is created for zone's valid pfn range. but memmap
4216 		 * can be created for invalid pages (for alignment)
4217 		 * check here not to call set_pageblock_migratetype() against
4218 		 * pfn out of zone.
4219 		 */
4220 		if ((z->zone_start_pfn <= pfn)
4221 		    && (pfn < zone_end_pfn(z))
4222 		    && !(pfn & (pageblock_nr_pages - 1)))
4223 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4224 
4225 		INIT_LIST_HEAD(&page->lru);
4226 #ifdef WANT_PAGE_VIRTUAL
4227 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4228 		if (!is_highmem_idx(zone))
4229 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4230 #endif
4231 	}
4232 }
4233 
4234 static void __meminit zone_init_free_lists(struct zone *zone)
4235 {
4236 	unsigned int order, t;
4237 	for_each_migratetype_order(order, t) {
4238 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4239 		zone->free_area[order].nr_free = 0;
4240 	}
4241 }
4242 
4243 #ifndef __HAVE_ARCH_MEMMAP_INIT
4244 #define memmap_init(size, nid, zone, start_pfn) \
4245 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4246 #endif
4247 
4248 static int zone_batchsize(struct zone *zone)
4249 {
4250 #ifdef CONFIG_MMU
4251 	int batch;
4252 
4253 	/*
4254 	 * The per-cpu-pages pools are set to around 1000th of the
4255 	 * size of the zone.  But no more than 1/2 of a meg.
4256 	 *
4257 	 * OK, so we don't know how big the cache is.  So guess.
4258 	 */
4259 	batch = zone->managed_pages / 1024;
4260 	if (batch * PAGE_SIZE > 512 * 1024)
4261 		batch = (512 * 1024) / PAGE_SIZE;
4262 	batch /= 4;		/* We effectively *= 4 below */
4263 	if (batch < 1)
4264 		batch = 1;
4265 
4266 	/*
4267 	 * Clamp the batch to a 2^n - 1 value. Having a power
4268 	 * of 2 value was found to be more likely to have
4269 	 * suboptimal cache aliasing properties in some cases.
4270 	 *
4271 	 * For example if 2 tasks are alternately allocating
4272 	 * batches of pages, one task can end up with a lot
4273 	 * of pages of one half of the possible page colors
4274 	 * and the other with pages of the other colors.
4275 	 */
4276 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4277 
4278 	return batch;
4279 
4280 #else
4281 	/* The deferral and batching of frees should be suppressed under NOMMU
4282 	 * conditions.
4283 	 *
4284 	 * The problem is that NOMMU needs to be able to allocate large chunks
4285 	 * of contiguous memory as there's no hardware page translation to
4286 	 * assemble apparent contiguous memory from discontiguous pages.
4287 	 *
4288 	 * Queueing large contiguous runs of pages for batching, however,
4289 	 * causes the pages to actually be freed in smaller chunks.  As there
4290 	 * can be a significant delay between the individual batches being
4291 	 * recycled, this leads to the once large chunks of space being
4292 	 * fragmented and becoming unavailable for high-order allocations.
4293 	 */
4294 	return 0;
4295 #endif
4296 }
4297 
4298 /*
4299  * pcp->high and pcp->batch values are related and dependent on one another:
4300  * ->batch must never be higher then ->high.
4301  * The following function updates them in a safe manner without read side
4302  * locking.
4303  *
4304  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4305  * those fields changing asynchronously (acording the the above rule).
4306  *
4307  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4308  * outside of boot time (or some other assurance that no concurrent updaters
4309  * exist).
4310  */
4311 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4312 		unsigned long batch)
4313 {
4314        /* start with a fail safe value for batch */
4315 	pcp->batch = 1;
4316 	smp_wmb();
4317 
4318        /* Update high, then batch, in order */
4319 	pcp->high = high;
4320 	smp_wmb();
4321 
4322 	pcp->batch = batch;
4323 }
4324 
4325 /* a companion to pageset_set_high() */
4326 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4327 {
4328 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4329 }
4330 
4331 static void pageset_init(struct per_cpu_pageset *p)
4332 {
4333 	struct per_cpu_pages *pcp;
4334 	int migratetype;
4335 
4336 	memset(p, 0, sizeof(*p));
4337 
4338 	pcp = &p->pcp;
4339 	pcp->count = 0;
4340 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4341 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4342 }
4343 
4344 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4345 {
4346 	pageset_init(p);
4347 	pageset_set_batch(p, batch);
4348 }
4349 
4350 /*
4351  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4352  * to the value high for the pageset p.
4353  */
4354 static void pageset_set_high(struct per_cpu_pageset *p,
4355 				unsigned long high)
4356 {
4357 	unsigned long batch = max(1UL, high / 4);
4358 	if ((high / 4) > (PAGE_SHIFT * 8))
4359 		batch = PAGE_SHIFT * 8;
4360 
4361 	pageset_update(&p->pcp, high, batch);
4362 }
4363 
4364 static void pageset_set_high_and_batch(struct zone *zone,
4365 				       struct per_cpu_pageset *pcp)
4366 {
4367 	if (percpu_pagelist_fraction)
4368 		pageset_set_high(pcp,
4369 			(zone->managed_pages /
4370 				percpu_pagelist_fraction));
4371 	else
4372 		pageset_set_batch(pcp, zone_batchsize(zone));
4373 }
4374 
4375 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4376 {
4377 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4378 
4379 	pageset_init(pcp);
4380 	pageset_set_high_and_batch(zone, pcp);
4381 }
4382 
4383 static void __meminit setup_zone_pageset(struct zone *zone)
4384 {
4385 	int cpu;
4386 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4387 	for_each_possible_cpu(cpu)
4388 		zone_pageset_init(zone, cpu);
4389 }
4390 
4391 /*
4392  * Allocate per cpu pagesets and initialize them.
4393  * Before this call only boot pagesets were available.
4394  */
4395 void __init setup_per_cpu_pageset(void)
4396 {
4397 	struct zone *zone;
4398 
4399 	for_each_populated_zone(zone)
4400 		setup_zone_pageset(zone);
4401 }
4402 
4403 static noinline __init_refok
4404 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4405 {
4406 	int i;
4407 	size_t alloc_size;
4408 
4409 	/*
4410 	 * The per-page waitqueue mechanism uses hashed waitqueues
4411 	 * per zone.
4412 	 */
4413 	zone->wait_table_hash_nr_entries =
4414 		 wait_table_hash_nr_entries(zone_size_pages);
4415 	zone->wait_table_bits =
4416 		wait_table_bits(zone->wait_table_hash_nr_entries);
4417 	alloc_size = zone->wait_table_hash_nr_entries
4418 					* sizeof(wait_queue_head_t);
4419 
4420 	if (!slab_is_available()) {
4421 		zone->wait_table = (wait_queue_head_t *)
4422 			memblock_virt_alloc_node_nopanic(
4423 				alloc_size, zone->zone_pgdat->node_id);
4424 	} else {
4425 		/*
4426 		 * This case means that a zone whose size was 0 gets new memory
4427 		 * via memory hot-add.
4428 		 * But it may be the case that a new node was hot-added.  In
4429 		 * this case vmalloc() will not be able to use this new node's
4430 		 * memory - this wait_table must be initialized to use this new
4431 		 * node itself as well.
4432 		 * To use this new node's memory, further consideration will be
4433 		 * necessary.
4434 		 */
4435 		zone->wait_table = vmalloc(alloc_size);
4436 	}
4437 	if (!zone->wait_table)
4438 		return -ENOMEM;
4439 
4440 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4441 		init_waitqueue_head(zone->wait_table + i);
4442 
4443 	return 0;
4444 }
4445 
4446 static __meminit void zone_pcp_init(struct zone *zone)
4447 {
4448 	/*
4449 	 * per cpu subsystem is not up at this point. The following code
4450 	 * relies on the ability of the linker to provide the
4451 	 * offset of a (static) per cpu variable into the per cpu area.
4452 	 */
4453 	zone->pageset = &boot_pageset;
4454 
4455 	if (populated_zone(zone))
4456 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4457 			zone->name, zone->present_pages,
4458 					 zone_batchsize(zone));
4459 }
4460 
4461 int __meminit init_currently_empty_zone(struct zone *zone,
4462 					unsigned long zone_start_pfn,
4463 					unsigned long size,
4464 					enum memmap_context context)
4465 {
4466 	struct pglist_data *pgdat = zone->zone_pgdat;
4467 	int ret;
4468 	ret = zone_wait_table_init(zone, size);
4469 	if (ret)
4470 		return ret;
4471 	pgdat->nr_zones = zone_idx(zone) + 1;
4472 
4473 	zone->zone_start_pfn = zone_start_pfn;
4474 
4475 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4476 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4477 			pgdat->node_id,
4478 			(unsigned long)zone_idx(zone),
4479 			zone_start_pfn, (zone_start_pfn + size));
4480 
4481 	zone_init_free_lists(zone);
4482 
4483 	return 0;
4484 }
4485 
4486 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4487 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4488 /*
4489  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4490  */
4491 int __meminit __early_pfn_to_nid(unsigned long pfn)
4492 {
4493 	unsigned long start_pfn, end_pfn;
4494 	int nid;
4495 	/*
4496 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4497 	 * when the kernel is running single-threaded.
4498 	 */
4499 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4500 	static int __meminitdata last_nid;
4501 
4502 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4503 		return last_nid;
4504 
4505 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4506 	if (nid != -1) {
4507 		last_start_pfn = start_pfn;
4508 		last_end_pfn = end_pfn;
4509 		last_nid = nid;
4510 	}
4511 
4512 	return nid;
4513 }
4514 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4515 
4516 int __meminit early_pfn_to_nid(unsigned long pfn)
4517 {
4518 	int nid;
4519 
4520 	nid = __early_pfn_to_nid(pfn);
4521 	if (nid >= 0)
4522 		return nid;
4523 	/* just returns 0 */
4524 	return 0;
4525 }
4526 
4527 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4528 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4529 {
4530 	int nid;
4531 
4532 	nid = __early_pfn_to_nid(pfn);
4533 	if (nid >= 0 && nid != node)
4534 		return false;
4535 	return true;
4536 }
4537 #endif
4538 
4539 /**
4540  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4541  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4542  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4543  *
4544  * If an architecture guarantees that all ranges registered contain no holes
4545  * and may be freed, this this function may be used instead of calling
4546  * memblock_free_early_nid() manually.
4547  */
4548 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4549 {
4550 	unsigned long start_pfn, end_pfn;
4551 	int i, this_nid;
4552 
4553 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4554 		start_pfn = min(start_pfn, max_low_pfn);
4555 		end_pfn = min(end_pfn, max_low_pfn);
4556 
4557 		if (start_pfn < end_pfn)
4558 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4559 					(end_pfn - start_pfn) << PAGE_SHIFT,
4560 					this_nid);
4561 	}
4562 }
4563 
4564 /**
4565  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4566  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4567  *
4568  * If an architecture guarantees that all ranges registered contain no holes and may
4569  * be freed, this function may be used instead of calling memory_present() manually.
4570  */
4571 void __init sparse_memory_present_with_active_regions(int nid)
4572 {
4573 	unsigned long start_pfn, end_pfn;
4574 	int i, this_nid;
4575 
4576 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4577 		memory_present(this_nid, start_pfn, end_pfn);
4578 }
4579 
4580 /**
4581  * get_pfn_range_for_nid - Return the start and end page frames for a node
4582  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4583  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4584  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4585  *
4586  * It returns the start and end page frame of a node based on information
4587  * provided by memblock_set_node(). If called for a node
4588  * with no available memory, a warning is printed and the start and end
4589  * PFNs will be 0.
4590  */
4591 void __meminit get_pfn_range_for_nid(unsigned int nid,
4592 			unsigned long *start_pfn, unsigned long *end_pfn)
4593 {
4594 	unsigned long this_start_pfn, this_end_pfn;
4595 	int i;
4596 
4597 	*start_pfn = -1UL;
4598 	*end_pfn = 0;
4599 
4600 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4601 		*start_pfn = min(*start_pfn, this_start_pfn);
4602 		*end_pfn = max(*end_pfn, this_end_pfn);
4603 	}
4604 
4605 	if (*start_pfn == -1UL)
4606 		*start_pfn = 0;
4607 }
4608 
4609 /*
4610  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4611  * assumption is made that zones within a node are ordered in monotonic
4612  * increasing memory addresses so that the "highest" populated zone is used
4613  */
4614 static void __init find_usable_zone_for_movable(void)
4615 {
4616 	int zone_index;
4617 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4618 		if (zone_index == ZONE_MOVABLE)
4619 			continue;
4620 
4621 		if (arch_zone_highest_possible_pfn[zone_index] >
4622 				arch_zone_lowest_possible_pfn[zone_index])
4623 			break;
4624 	}
4625 
4626 	VM_BUG_ON(zone_index == -1);
4627 	movable_zone = zone_index;
4628 }
4629 
4630 /*
4631  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4632  * because it is sized independent of architecture. Unlike the other zones,
4633  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4634  * in each node depending on the size of each node and how evenly kernelcore
4635  * is distributed. This helper function adjusts the zone ranges
4636  * provided by the architecture for a given node by using the end of the
4637  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4638  * zones within a node are in order of monotonic increases memory addresses
4639  */
4640 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4641 					unsigned long zone_type,
4642 					unsigned long node_start_pfn,
4643 					unsigned long node_end_pfn,
4644 					unsigned long *zone_start_pfn,
4645 					unsigned long *zone_end_pfn)
4646 {
4647 	/* Only adjust if ZONE_MOVABLE is on this node */
4648 	if (zone_movable_pfn[nid]) {
4649 		/* Size ZONE_MOVABLE */
4650 		if (zone_type == ZONE_MOVABLE) {
4651 			*zone_start_pfn = zone_movable_pfn[nid];
4652 			*zone_end_pfn = min(node_end_pfn,
4653 				arch_zone_highest_possible_pfn[movable_zone]);
4654 
4655 		/* Adjust for ZONE_MOVABLE starting within this range */
4656 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4657 				*zone_end_pfn > zone_movable_pfn[nid]) {
4658 			*zone_end_pfn = zone_movable_pfn[nid];
4659 
4660 		/* Check if this whole range is within ZONE_MOVABLE */
4661 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4662 			*zone_start_pfn = *zone_end_pfn;
4663 	}
4664 }
4665 
4666 /*
4667  * Return the number of pages a zone spans in a node, including holes
4668  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4669  */
4670 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4671 					unsigned long zone_type,
4672 					unsigned long node_start_pfn,
4673 					unsigned long node_end_pfn,
4674 					unsigned long *ignored)
4675 {
4676 	unsigned long zone_start_pfn, zone_end_pfn;
4677 
4678 	/* Get the start and end of the zone */
4679 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4680 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4681 	adjust_zone_range_for_zone_movable(nid, zone_type,
4682 				node_start_pfn, node_end_pfn,
4683 				&zone_start_pfn, &zone_end_pfn);
4684 
4685 	/* Check that this node has pages within the zone's required range */
4686 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4687 		return 0;
4688 
4689 	/* Move the zone boundaries inside the node if necessary */
4690 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4691 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4692 
4693 	/* Return the spanned pages */
4694 	return zone_end_pfn - zone_start_pfn;
4695 }
4696 
4697 /*
4698  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4699  * then all holes in the requested range will be accounted for.
4700  */
4701 unsigned long __meminit __absent_pages_in_range(int nid,
4702 				unsigned long range_start_pfn,
4703 				unsigned long range_end_pfn)
4704 {
4705 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4706 	unsigned long start_pfn, end_pfn;
4707 	int i;
4708 
4709 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4710 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4711 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4712 		nr_absent -= end_pfn - start_pfn;
4713 	}
4714 	return nr_absent;
4715 }
4716 
4717 /**
4718  * absent_pages_in_range - Return number of page frames in holes within a range
4719  * @start_pfn: The start PFN to start searching for holes
4720  * @end_pfn: The end PFN to stop searching for holes
4721  *
4722  * It returns the number of pages frames in memory holes within a range.
4723  */
4724 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4725 							unsigned long end_pfn)
4726 {
4727 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4728 }
4729 
4730 /* Return the number of page frames in holes in a zone on a node */
4731 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4732 					unsigned long zone_type,
4733 					unsigned long node_start_pfn,
4734 					unsigned long node_end_pfn,
4735 					unsigned long *ignored)
4736 {
4737 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4738 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4739 	unsigned long zone_start_pfn, zone_end_pfn;
4740 
4741 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4742 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4743 
4744 	adjust_zone_range_for_zone_movable(nid, zone_type,
4745 			node_start_pfn, node_end_pfn,
4746 			&zone_start_pfn, &zone_end_pfn);
4747 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4748 }
4749 
4750 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4751 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4752 					unsigned long zone_type,
4753 					unsigned long node_start_pfn,
4754 					unsigned long node_end_pfn,
4755 					unsigned long *zones_size)
4756 {
4757 	return zones_size[zone_type];
4758 }
4759 
4760 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4761 						unsigned long zone_type,
4762 						unsigned long node_start_pfn,
4763 						unsigned long node_end_pfn,
4764 						unsigned long *zholes_size)
4765 {
4766 	if (!zholes_size)
4767 		return 0;
4768 
4769 	return zholes_size[zone_type];
4770 }
4771 
4772 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4773 
4774 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4775 						unsigned long node_start_pfn,
4776 						unsigned long node_end_pfn,
4777 						unsigned long *zones_size,
4778 						unsigned long *zholes_size)
4779 {
4780 	unsigned long realtotalpages, totalpages = 0;
4781 	enum zone_type i;
4782 
4783 	for (i = 0; i < MAX_NR_ZONES; i++)
4784 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4785 							 node_start_pfn,
4786 							 node_end_pfn,
4787 							 zones_size);
4788 	pgdat->node_spanned_pages = totalpages;
4789 
4790 	realtotalpages = totalpages;
4791 	for (i = 0; i < MAX_NR_ZONES; i++)
4792 		realtotalpages -=
4793 			zone_absent_pages_in_node(pgdat->node_id, i,
4794 						  node_start_pfn, node_end_pfn,
4795 						  zholes_size);
4796 	pgdat->node_present_pages = realtotalpages;
4797 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4798 							realtotalpages);
4799 }
4800 
4801 #ifndef CONFIG_SPARSEMEM
4802 /*
4803  * Calculate the size of the zone->blockflags rounded to an unsigned long
4804  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4805  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4806  * round what is now in bits to nearest long in bits, then return it in
4807  * bytes.
4808  */
4809 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4810 {
4811 	unsigned long usemapsize;
4812 
4813 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4814 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4815 	usemapsize = usemapsize >> pageblock_order;
4816 	usemapsize *= NR_PAGEBLOCK_BITS;
4817 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4818 
4819 	return usemapsize / 8;
4820 }
4821 
4822 static void __init setup_usemap(struct pglist_data *pgdat,
4823 				struct zone *zone,
4824 				unsigned long zone_start_pfn,
4825 				unsigned long zonesize)
4826 {
4827 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4828 	zone->pageblock_flags = NULL;
4829 	if (usemapsize)
4830 		zone->pageblock_flags =
4831 			memblock_virt_alloc_node_nopanic(usemapsize,
4832 							 pgdat->node_id);
4833 }
4834 #else
4835 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4836 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4837 #endif /* CONFIG_SPARSEMEM */
4838 
4839 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4840 
4841 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4842 void __paginginit set_pageblock_order(void)
4843 {
4844 	unsigned int order;
4845 
4846 	/* Check that pageblock_nr_pages has not already been setup */
4847 	if (pageblock_order)
4848 		return;
4849 
4850 	if (HPAGE_SHIFT > PAGE_SHIFT)
4851 		order = HUGETLB_PAGE_ORDER;
4852 	else
4853 		order = MAX_ORDER - 1;
4854 
4855 	/*
4856 	 * Assume the largest contiguous order of interest is a huge page.
4857 	 * This value may be variable depending on boot parameters on IA64 and
4858 	 * powerpc.
4859 	 */
4860 	pageblock_order = order;
4861 }
4862 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4863 
4864 /*
4865  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4866  * is unused as pageblock_order is set at compile-time. See
4867  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4868  * the kernel config
4869  */
4870 void __paginginit set_pageblock_order(void)
4871 {
4872 }
4873 
4874 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4875 
4876 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4877 						   unsigned long present_pages)
4878 {
4879 	unsigned long pages = spanned_pages;
4880 
4881 	/*
4882 	 * Provide a more accurate estimation if there are holes within
4883 	 * the zone and SPARSEMEM is in use. If there are holes within the
4884 	 * zone, each populated memory region may cost us one or two extra
4885 	 * memmap pages due to alignment because memmap pages for each
4886 	 * populated regions may not naturally algined on page boundary.
4887 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4888 	 */
4889 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4890 	    IS_ENABLED(CONFIG_SPARSEMEM))
4891 		pages = present_pages;
4892 
4893 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4894 }
4895 
4896 /*
4897  * Set up the zone data structures:
4898  *   - mark all pages reserved
4899  *   - mark all memory queues empty
4900  *   - clear the memory bitmaps
4901  *
4902  * NOTE: pgdat should get zeroed by caller.
4903  */
4904 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4905 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4906 		unsigned long *zones_size, unsigned long *zholes_size)
4907 {
4908 	enum zone_type j;
4909 	int nid = pgdat->node_id;
4910 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4911 	int ret;
4912 
4913 	pgdat_resize_init(pgdat);
4914 #ifdef CONFIG_NUMA_BALANCING
4915 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4916 	pgdat->numabalancing_migrate_nr_pages = 0;
4917 	pgdat->numabalancing_migrate_next_window = jiffies;
4918 #endif
4919 	init_waitqueue_head(&pgdat->kswapd_wait);
4920 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4921 	pgdat_page_ext_init(pgdat);
4922 
4923 	for (j = 0; j < MAX_NR_ZONES; j++) {
4924 		struct zone *zone = pgdat->node_zones + j;
4925 		unsigned long size, realsize, freesize, memmap_pages;
4926 
4927 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4928 						  node_end_pfn, zones_size);
4929 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4930 								node_start_pfn,
4931 								node_end_pfn,
4932 								zholes_size);
4933 
4934 		/*
4935 		 * Adjust freesize so that it accounts for how much memory
4936 		 * is used by this zone for memmap. This affects the watermark
4937 		 * and per-cpu initialisations
4938 		 */
4939 		memmap_pages = calc_memmap_size(size, realsize);
4940 		if (!is_highmem_idx(j)) {
4941 			if (freesize >= memmap_pages) {
4942 				freesize -= memmap_pages;
4943 				if (memmap_pages)
4944 					printk(KERN_DEBUG
4945 					       "  %s zone: %lu pages used for memmap\n",
4946 					       zone_names[j], memmap_pages);
4947 			} else
4948 				printk(KERN_WARNING
4949 					"  %s zone: %lu pages exceeds freesize %lu\n",
4950 					zone_names[j], memmap_pages, freesize);
4951 		}
4952 
4953 		/* Account for reserved pages */
4954 		if (j == 0 && freesize > dma_reserve) {
4955 			freesize -= dma_reserve;
4956 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4957 					zone_names[0], dma_reserve);
4958 		}
4959 
4960 		if (!is_highmem_idx(j))
4961 			nr_kernel_pages += freesize;
4962 		/* Charge for highmem memmap if there are enough kernel pages */
4963 		else if (nr_kernel_pages > memmap_pages * 2)
4964 			nr_kernel_pages -= memmap_pages;
4965 		nr_all_pages += freesize;
4966 
4967 		zone->spanned_pages = size;
4968 		zone->present_pages = realsize;
4969 		/*
4970 		 * Set an approximate value for lowmem here, it will be adjusted
4971 		 * when the bootmem allocator frees pages into the buddy system.
4972 		 * And all highmem pages will be managed by the buddy system.
4973 		 */
4974 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4975 #ifdef CONFIG_NUMA
4976 		zone->node = nid;
4977 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4978 						/ 100;
4979 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4980 #endif
4981 		zone->name = zone_names[j];
4982 		spin_lock_init(&zone->lock);
4983 		spin_lock_init(&zone->lru_lock);
4984 		zone_seqlock_init(zone);
4985 		zone->zone_pgdat = pgdat;
4986 		zone_pcp_init(zone);
4987 
4988 		/* For bootup, initialized properly in watermark setup */
4989 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4990 
4991 		lruvec_init(&zone->lruvec);
4992 		if (!size)
4993 			continue;
4994 
4995 		set_pageblock_order();
4996 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4997 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4998 						size, MEMMAP_EARLY);
4999 		BUG_ON(ret);
5000 		memmap_init(size, nid, j, zone_start_pfn);
5001 		zone_start_pfn += size;
5002 	}
5003 }
5004 
5005 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5006 {
5007 	/* Skip empty nodes */
5008 	if (!pgdat->node_spanned_pages)
5009 		return;
5010 
5011 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5012 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5013 	if (!pgdat->node_mem_map) {
5014 		unsigned long size, start, end;
5015 		struct page *map;
5016 
5017 		/*
5018 		 * The zone's endpoints aren't required to be MAX_ORDER
5019 		 * aligned but the node_mem_map endpoints must be in order
5020 		 * for the buddy allocator to function correctly.
5021 		 */
5022 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5023 		end = pgdat_end_pfn(pgdat);
5024 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5025 		size =  (end - start) * sizeof(struct page);
5026 		map = alloc_remap(pgdat->node_id, size);
5027 		if (!map)
5028 			map = memblock_virt_alloc_node_nopanic(size,
5029 							       pgdat->node_id);
5030 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5031 	}
5032 #ifndef CONFIG_NEED_MULTIPLE_NODES
5033 	/*
5034 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5035 	 */
5036 	if (pgdat == NODE_DATA(0)) {
5037 		mem_map = NODE_DATA(0)->node_mem_map;
5038 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5039 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5040 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5041 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5042 	}
5043 #endif
5044 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5045 }
5046 
5047 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5048 		unsigned long node_start_pfn, unsigned long *zholes_size)
5049 {
5050 	pg_data_t *pgdat = NODE_DATA(nid);
5051 	unsigned long start_pfn = 0;
5052 	unsigned long end_pfn = 0;
5053 
5054 	/* pg_data_t should be reset to zero when it's allocated */
5055 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5056 
5057 	pgdat->node_id = nid;
5058 	pgdat->node_start_pfn = node_start_pfn;
5059 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5060 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5061 	printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5062 			(u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
5063 #endif
5064 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5065 				  zones_size, zholes_size);
5066 
5067 	alloc_node_mem_map(pgdat);
5068 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5069 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5070 		nid, (unsigned long)pgdat,
5071 		(unsigned long)pgdat->node_mem_map);
5072 #endif
5073 
5074 	free_area_init_core(pgdat, start_pfn, end_pfn,
5075 			    zones_size, zholes_size);
5076 }
5077 
5078 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5079 
5080 #if MAX_NUMNODES > 1
5081 /*
5082  * Figure out the number of possible node ids.
5083  */
5084 void __init setup_nr_node_ids(void)
5085 {
5086 	unsigned int node;
5087 	unsigned int highest = 0;
5088 
5089 	for_each_node_mask(node, node_possible_map)
5090 		highest = node;
5091 	nr_node_ids = highest + 1;
5092 }
5093 #endif
5094 
5095 /**
5096  * node_map_pfn_alignment - determine the maximum internode alignment
5097  *
5098  * This function should be called after node map is populated and sorted.
5099  * It calculates the maximum power of two alignment which can distinguish
5100  * all the nodes.
5101  *
5102  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5103  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5104  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5105  * shifted, 1GiB is enough and this function will indicate so.
5106  *
5107  * This is used to test whether pfn -> nid mapping of the chosen memory
5108  * model has fine enough granularity to avoid incorrect mapping for the
5109  * populated node map.
5110  *
5111  * Returns the determined alignment in pfn's.  0 if there is no alignment
5112  * requirement (single node).
5113  */
5114 unsigned long __init node_map_pfn_alignment(void)
5115 {
5116 	unsigned long accl_mask = 0, last_end = 0;
5117 	unsigned long start, end, mask;
5118 	int last_nid = -1;
5119 	int i, nid;
5120 
5121 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5122 		if (!start || last_nid < 0 || last_nid == nid) {
5123 			last_nid = nid;
5124 			last_end = end;
5125 			continue;
5126 		}
5127 
5128 		/*
5129 		 * Start with a mask granular enough to pin-point to the
5130 		 * start pfn and tick off bits one-by-one until it becomes
5131 		 * too coarse to separate the current node from the last.
5132 		 */
5133 		mask = ~((1 << __ffs(start)) - 1);
5134 		while (mask && last_end <= (start & (mask << 1)))
5135 			mask <<= 1;
5136 
5137 		/* accumulate all internode masks */
5138 		accl_mask |= mask;
5139 	}
5140 
5141 	/* convert mask to number of pages */
5142 	return ~accl_mask + 1;
5143 }
5144 
5145 /* Find the lowest pfn for a node */
5146 static unsigned long __init find_min_pfn_for_node(int nid)
5147 {
5148 	unsigned long min_pfn = ULONG_MAX;
5149 	unsigned long start_pfn;
5150 	int i;
5151 
5152 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5153 		min_pfn = min(min_pfn, start_pfn);
5154 
5155 	if (min_pfn == ULONG_MAX) {
5156 		printk(KERN_WARNING
5157 			"Could not find start_pfn for node %d\n", nid);
5158 		return 0;
5159 	}
5160 
5161 	return min_pfn;
5162 }
5163 
5164 /**
5165  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5166  *
5167  * It returns the minimum PFN based on information provided via
5168  * memblock_set_node().
5169  */
5170 unsigned long __init find_min_pfn_with_active_regions(void)
5171 {
5172 	return find_min_pfn_for_node(MAX_NUMNODES);
5173 }
5174 
5175 /*
5176  * early_calculate_totalpages()
5177  * Sum pages in active regions for movable zone.
5178  * Populate N_MEMORY for calculating usable_nodes.
5179  */
5180 static unsigned long __init early_calculate_totalpages(void)
5181 {
5182 	unsigned long totalpages = 0;
5183 	unsigned long start_pfn, end_pfn;
5184 	int i, nid;
5185 
5186 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5187 		unsigned long pages = end_pfn - start_pfn;
5188 
5189 		totalpages += pages;
5190 		if (pages)
5191 			node_set_state(nid, N_MEMORY);
5192 	}
5193 	return totalpages;
5194 }
5195 
5196 /*
5197  * Find the PFN the Movable zone begins in each node. Kernel memory
5198  * is spread evenly between nodes as long as the nodes have enough
5199  * memory. When they don't, some nodes will have more kernelcore than
5200  * others
5201  */
5202 static void __init find_zone_movable_pfns_for_nodes(void)
5203 {
5204 	int i, nid;
5205 	unsigned long usable_startpfn;
5206 	unsigned long kernelcore_node, kernelcore_remaining;
5207 	/* save the state before borrow the nodemask */
5208 	nodemask_t saved_node_state = node_states[N_MEMORY];
5209 	unsigned long totalpages = early_calculate_totalpages();
5210 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5211 	struct memblock_region *r;
5212 
5213 	/* Need to find movable_zone earlier when movable_node is specified. */
5214 	find_usable_zone_for_movable();
5215 
5216 	/*
5217 	 * If movable_node is specified, ignore kernelcore and movablecore
5218 	 * options.
5219 	 */
5220 	if (movable_node_is_enabled()) {
5221 		for_each_memblock(memory, r) {
5222 			if (!memblock_is_hotpluggable(r))
5223 				continue;
5224 
5225 			nid = r->nid;
5226 
5227 			usable_startpfn = PFN_DOWN(r->base);
5228 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5229 				min(usable_startpfn, zone_movable_pfn[nid]) :
5230 				usable_startpfn;
5231 		}
5232 
5233 		goto out2;
5234 	}
5235 
5236 	/*
5237 	 * If movablecore=nn[KMG] was specified, calculate what size of
5238 	 * kernelcore that corresponds so that memory usable for
5239 	 * any allocation type is evenly spread. If both kernelcore
5240 	 * and movablecore are specified, then the value of kernelcore
5241 	 * will be used for required_kernelcore if it's greater than
5242 	 * what movablecore would have allowed.
5243 	 */
5244 	if (required_movablecore) {
5245 		unsigned long corepages;
5246 
5247 		/*
5248 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5249 		 * was requested by the user
5250 		 */
5251 		required_movablecore =
5252 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5253 		corepages = totalpages - required_movablecore;
5254 
5255 		required_kernelcore = max(required_kernelcore, corepages);
5256 	}
5257 
5258 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5259 	if (!required_kernelcore)
5260 		goto out;
5261 
5262 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5263 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5264 
5265 restart:
5266 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5267 	kernelcore_node = required_kernelcore / usable_nodes;
5268 	for_each_node_state(nid, N_MEMORY) {
5269 		unsigned long start_pfn, end_pfn;
5270 
5271 		/*
5272 		 * Recalculate kernelcore_node if the division per node
5273 		 * now exceeds what is necessary to satisfy the requested
5274 		 * amount of memory for the kernel
5275 		 */
5276 		if (required_kernelcore < kernelcore_node)
5277 			kernelcore_node = required_kernelcore / usable_nodes;
5278 
5279 		/*
5280 		 * As the map is walked, we track how much memory is usable
5281 		 * by the kernel using kernelcore_remaining. When it is
5282 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5283 		 */
5284 		kernelcore_remaining = kernelcore_node;
5285 
5286 		/* Go through each range of PFNs within this node */
5287 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5288 			unsigned long size_pages;
5289 
5290 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5291 			if (start_pfn >= end_pfn)
5292 				continue;
5293 
5294 			/* Account for what is only usable for kernelcore */
5295 			if (start_pfn < usable_startpfn) {
5296 				unsigned long kernel_pages;
5297 				kernel_pages = min(end_pfn, usable_startpfn)
5298 								- start_pfn;
5299 
5300 				kernelcore_remaining -= min(kernel_pages,
5301 							kernelcore_remaining);
5302 				required_kernelcore -= min(kernel_pages,
5303 							required_kernelcore);
5304 
5305 				/* Continue if range is now fully accounted */
5306 				if (end_pfn <= usable_startpfn) {
5307 
5308 					/*
5309 					 * Push zone_movable_pfn to the end so
5310 					 * that if we have to rebalance
5311 					 * kernelcore across nodes, we will
5312 					 * not double account here
5313 					 */
5314 					zone_movable_pfn[nid] = end_pfn;
5315 					continue;
5316 				}
5317 				start_pfn = usable_startpfn;
5318 			}
5319 
5320 			/*
5321 			 * The usable PFN range for ZONE_MOVABLE is from
5322 			 * start_pfn->end_pfn. Calculate size_pages as the
5323 			 * number of pages used as kernelcore
5324 			 */
5325 			size_pages = end_pfn - start_pfn;
5326 			if (size_pages > kernelcore_remaining)
5327 				size_pages = kernelcore_remaining;
5328 			zone_movable_pfn[nid] = start_pfn + size_pages;
5329 
5330 			/*
5331 			 * Some kernelcore has been met, update counts and
5332 			 * break if the kernelcore for this node has been
5333 			 * satisfied
5334 			 */
5335 			required_kernelcore -= min(required_kernelcore,
5336 								size_pages);
5337 			kernelcore_remaining -= size_pages;
5338 			if (!kernelcore_remaining)
5339 				break;
5340 		}
5341 	}
5342 
5343 	/*
5344 	 * If there is still required_kernelcore, we do another pass with one
5345 	 * less node in the count. This will push zone_movable_pfn[nid] further
5346 	 * along on the nodes that still have memory until kernelcore is
5347 	 * satisfied
5348 	 */
5349 	usable_nodes--;
5350 	if (usable_nodes && required_kernelcore > usable_nodes)
5351 		goto restart;
5352 
5353 out2:
5354 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5355 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5356 		zone_movable_pfn[nid] =
5357 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5358 
5359 out:
5360 	/* restore the node_state */
5361 	node_states[N_MEMORY] = saved_node_state;
5362 }
5363 
5364 /* Any regular or high memory on that node ? */
5365 static void check_for_memory(pg_data_t *pgdat, int nid)
5366 {
5367 	enum zone_type zone_type;
5368 
5369 	if (N_MEMORY == N_NORMAL_MEMORY)
5370 		return;
5371 
5372 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5373 		struct zone *zone = &pgdat->node_zones[zone_type];
5374 		if (populated_zone(zone)) {
5375 			node_set_state(nid, N_HIGH_MEMORY);
5376 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5377 			    zone_type <= ZONE_NORMAL)
5378 				node_set_state(nid, N_NORMAL_MEMORY);
5379 			break;
5380 		}
5381 	}
5382 }
5383 
5384 /**
5385  * free_area_init_nodes - Initialise all pg_data_t and zone data
5386  * @max_zone_pfn: an array of max PFNs for each zone
5387  *
5388  * This will call free_area_init_node() for each active node in the system.
5389  * Using the page ranges provided by memblock_set_node(), the size of each
5390  * zone in each node and their holes is calculated. If the maximum PFN
5391  * between two adjacent zones match, it is assumed that the zone is empty.
5392  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5393  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5394  * starts where the previous one ended. For example, ZONE_DMA32 starts
5395  * at arch_max_dma_pfn.
5396  */
5397 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5398 {
5399 	unsigned long start_pfn, end_pfn;
5400 	int i, nid;
5401 
5402 	/* Record where the zone boundaries are */
5403 	memset(arch_zone_lowest_possible_pfn, 0,
5404 				sizeof(arch_zone_lowest_possible_pfn));
5405 	memset(arch_zone_highest_possible_pfn, 0,
5406 				sizeof(arch_zone_highest_possible_pfn));
5407 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5408 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5409 	for (i = 1; i < MAX_NR_ZONES; i++) {
5410 		if (i == ZONE_MOVABLE)
5411 			continue;
5412 		arch_zone_lowest_possible_pfn[i] =
5413 			arch_zone_highest_possible_pfn[i-1];
5414 		arch_zone_highest_possible_pfn[i] =
5415 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5416 	}
5417 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5418 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5419 
5420 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5421 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5422 	find_zone_movable_pfns_for_nodes();
5423 
5424 	/* Print out the zone ranges */
5425 	pr_info("Zone ranges:\n");
5426 	for (i = 0; i < MAX_NR_ZONES; i++) {
5427 		if (i == ZONE_MOVABLE)
5428 			continue;
5429 		pr_info("  %-8s ", zone_names[i]);
5430 		if (arch_zone_lowest_possible_pfn[i] ==
5431 				arch_zone_highest_possible_pfn[i])
5432 			pr_cont("empty\n");
5433 		else
5434 			pr_cont("[mem %0#10lx-%0#10lx]\n",
5435 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5436 				(arch_zone_highest_possible_pfn[i]
5437 					<< PAGE_SHIFT) - 1);
5438 	}
5439 
5440 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5441 	pr_info("Movable zone start for each node\n");
5442 	for (i = 0; i < MAX_NUMNODES; i++) {
5443 		if (zone_movable_pfn[i])
5444 			pr_info("  Node %d: %#010lx\n", i,
5445 			       zone_movable_pfn[i] << PAGE_SHIFT);
5446 	}
5447 
5448 	/* Print out the early node map */
5449 	pr_info("Early memory node ranges\n");
5450 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5451 		pr_info("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5452 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5453 
5454 	/* Initialise every node */
5455 	mminit_verify_pageflags_layout();
5456 	setup_nr_node_ids();
5457 	for_each_online_node(nid) {
5458 		pg_data_t *pgdat = NODE_DATA(nid);
5459 		free_area_init_node(nid, NULL,
5460 				find_min_pfn_for_node(nid), NULL);
5461 
5462 		/* Any memory on that node */
5463 		if (pgdat->node_present_pages)
5464 			node_set_state(nid, N_MEMORY);
5465 		check_for_memory(pgdat, nid);
5466 	}
5467 }
5468 
5469 static int __init cmdline_parse_core(char *p, unsigned long *core)
5470 {
5471 	unsigned long long coremem;
5472 	if (!p)
5473 		return -EINVAL;
5474 
5475 	coremem = memparse(p, &p);
5476 	*core = coremem >> PAGE_SHIFT;
5477 
5478 	/* Paranoid check that UL is enough for the coremem value */
5479 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5480 
5481 	return 0;
5482 }
5483 
5484 /*
5485  * kernelcore=size sets the amount of memory for use for allocations that
5486  * cannot be reclaimed or migrated.
5487  */
5488 static int __init cmdline_parse_kernelcore(char *p)
5489 {
5490 	return cmdline_parse_core(p, &required_kernelcore);
5491 }
5492 
5493 /*
5494  * movablecore=size sets the amount of memory for use for allocations that
5495  * can be reclaimed or migrated.
5496  */
5497 static int __init cmdline_parse_movablecore(char *p)
5498 {
5499 	return cmdline_parse_core(p, &required_movablecore);
5500 }
5501 
5502 early_param("kernelcore", cmdline_parse_kernelcore);
5503 early_param("movablecore", cmdline_parse_movablecore);
5504 
5505 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5506 
5507 void adjust_managed_page_count(struct page *page, long count)
5508 {
5509 	spin_lock(&managed_page_count_lock);
5510 	page_zone(page)->managed_pages += count;
5511 	totalram_pages += count;
5512 #ifdef CONFIG_HIGHMEM
5513 	if (PageHighMem(page))
5514 		totalhigh_pages += count;
5515 #endif
5516 	spin_unlock(&managed_page_count_lock);
5517 }
5518 EXPORT_SYMBOL(adjust_managed_page_count);
5519 
5520 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5521 {
5522 	void *pos;
5523 	unsigned long pages = 0;
5524 
5525 	start = (void *)PAGE_ALIGN((unsigned long)start);
5526 	end = (void *)((unsigned long)end & PAGE_MASK);
5527 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5528 		if ((unsigned int)poison <= 0xFF)
5529 			memset(pos, poison, PAGE_SIZE);
5530 		free_reserved_page(virt_to_page(pos));
5531 	}
5532 
5533 	if (pages && s)
5534 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5535 			s, pages << (PAGE_SHIFT - 10), start, end);
5536 
5537 	return pages;
5538 }
5539 EXPORT_SYMBOL(free_reserved_area);
5540 
5541 #ifdef	CONFIG_HIGHMEM
5542 void free_highmem_page(struct page *page)
5543 {
5544 	__free_reserved_page(page);
5545 	totalram_pages++;
5546 	page_zone(page)->managed_pages++;
5547 	totalhigh_pages++;
5548 }
5549 #endif
5550 
5551 
5552 void __init mem_init_print_info(const char *str)
5553 {
5554 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5555 	unsigned long init_code_size, init_data_size;
5556 
5557 	physpages = get_num_physpages();
5558 	codesize = _etext - _stext;
5559 	datasize = _edata - _sdata;
5560 	rosize = __end_rodata - __start_rodata;
5561 	bss_size = __bss_stop - __bss_start;
5562 	init_data_size = __init_end - __init_begin;
5563 	init_code_size = _einittext - _sinittext;
5564 
5565 	/*
5566 	 * Detect special cases and adjust section sizes accordingly:
5567 	 * 1) .init.* may be embedded into .data sections
5568 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5569 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5570 	 * 3) .rodata.* may be embedded into .text or .data sections.
5571 	 */
5572 #define adj_init_size(start, end, size, pos, adj) \
5573 	do { \
5574 		if (start <= pos && pos < end && size > adj) \
5575 			size -= adj; \
5576 	} while (0)
5577 
5578 	adj_init_size(__init_begin, __init_end, init_data_size,
5579 		     _sinittext, init_code_size);
5580 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5581 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5582 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5583 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5584 
5585 #undef	adj_init_size
5586 
5587 	pr_info("Memory: %luK/%luK available "
5588 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5589 	       "%luK init, %luK bss, %luK reserved"
5590 #ifdef	CONFIG_HIGHMEM
5591 	       ", %luK highmem"
5592 #endif
5593 	       "%s%s)\n",
5594 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5595 	       codesize >> 10, datasize >> 10, rosize >> 10,
5596 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5597 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5598 #ifdef	CONFIG_HIGHMEM
5599 	       totalhigh_pages << (PAGE_SHIFT-10),
5600 #endif
5601 	       str ? ", " : "", str ? str : "");
5602 }
5603 
5604 /**
5605  * set_dma_reserve - set the specified number of pages reserved in the first zone
5606  * @new_dma_reserve: The number of pages to mark reserved
5607  *
5608  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5609  * In the DMA zone, a significant percentage may be consumed by kernel image
5610  * and other unfreeable allocations which can skew the watermarks badly. This
5611  * function may optionally be used to account for unfreeable pages in the
5612  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5613  * smaller per-cpu batchsize.
5614  */
5615 void __init set_dma_reserve(unsigned long new_dma_reserve)
5616 {
5617 	dma_reserve = new_dma_reserve;
5618 }
5619 
5620 void __init free_area_init(unsigned long *zones_size)
5621 {
5622 	free_area_init_node(0, zones_size,
5623 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5624 }
5625 
5626 static int page_alloc_cpu_notify(struct notifier_block *self,
5627 				 unsigned long action, void *hcpu)
5628 {
5629 	int cpu = (unsigned long)hcpu;
5630 
5631 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5632 		lru_add_drain_cpu(cpu);
5633 		drain_pages(cpu);
5634 
5635 		/*
5636 		 * Spill the event counters of the dead processor
5637 		 * into the current processors event counters.
5638 		 * This artificially elevates the count of the current
5639 		 * processor.
5640 		 */
5641 		vm_events_fold_cpu(cpu);
5642 
5643 		/*
5644 		 * Zero the differential counters of the dead processor
5645 		 * so that the vm statistics are consistent.
5646 		 *
5647 		 * This is only okay since the processor is dead and cannot
5648 		 * race with what we are doing.
5649 		 */
5650 		cpu_vm_stats_fold(cpu);
5651 	}
5652 	return NOTIFY_OK;
5653 }
5654 
5655 void __init page_alloc_init(void)
5656 {
5657 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5658 }
5659 
5660 /*
5661  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5662  *	or min_free_kbytes changes.
5663  */
5664 static void calculate_totalreserve_pages(void)
5665 {
5666 	struct pglist_data *pgdat;
5667 	unsigned long reserve_pages = 0;
5668 	enum zone_type i, j;
5669 
5670 	for_each_online_pgdat(pgdat) {
5671 		for (i = 0; i < MAX_NR_ZONES; i++) {
5672 			struct zone *zone = pgdat->node_zones + i;
5673 			long max = 0;
5674 
5675 			/* Find valid and maximum lowmem_reserve in the zone */
5676 			for (j = i; j < MAX_NR_ZONES; j++) {
5677 				if (zone->lowmem_reserve[j] > max)
5678 					max = zone->lowmem_reserve[j];
5679 			}
5680 
5681 			/* we treat the high watermark as reserved pages. */
5682 			max += high_wmark_pages(zone);
5683 
5684 			if (max > zone->managed_pages)
5685 				max = zone->managed_pages;
5686 			reserve_pages += max;
5687 			/*
5688 			 * Lowmem reserves are not available to
5689 			 * GFP_HIGHUSER page cache allocations and
5690 			 * kswapd tries to balance zones to their high
5691 			 * watermark.  As a result, neither should be
5692 			 * regarded as dirtyable memory, to prevent a
5693 			 * situation where reclaim has to clean pages
5694 			 * in order to balance the zones.
5695 			 */
5696 			zone->dirty_balance_reserve = max;
5697 		}
5698 	}
5699 	dirty_balance_reserve = reserve_pages;
5700 	totalreserve_pages = reserve_pages;
5701 }
5702 
5703 /*
5704  * setup_per_zone_lowmem_reserve - called whenever
5705  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5706  *	has a correct pages reserved value, so an adequate number of
5707  *	pages are left in the zone after a successful __alloc_pages().
5708  */
5709 static void setup_per_zone_lowmem_reserve(void)
5710 {
5711 	struct pglist_data *pgdat;
5712 	enum zone_type j, idx;
5713 
5714 	for_each_online_pgdat(pgdat) {
5715 		for (j = 0; j < MAX_NR_ZONES; j++) {
5716 			struct zone *zone = pgdat->node_zones + j;
5717 			unsigned long managed_pages = zone->managed_pages;
5718 
5719 			zone->lowmem_reserve[j] = 0;
5720 
5721 			idx = j;
5722 			while (idx) {
5723 				struct zone *lower_zone;
5724 
5725 				idx--;
5726 
5727 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5728 					sysctl_lowmem_reserve_ratio[idx] = 1;
5729 
5730 				lower_zone = pgdat->node_zones + idx;
5731 				lower_zone->lowmem_reserve[j] = managed_pages /
5732 					sysctl_lowmem_reserve_ratio[idx];
5733 				managed_pages += lower_zone->managed_pages;
5734 			}
5735 		}
5736 	}
5737 
5738 	/* update totalreserve_pages */
5739 	calculate_totalreserve_pages();
5740 }
5741 
5742 static void __setup_per_zone_wmarks(void)
5743 {
5744 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5745 	unsigned long lowmem_pages = 0;
5746 	struct zone *zone;
5747 	unsigned long flags;
5748 
5749 	/* Calculate total number of !ZONE_HIGHMEM pages */
5750 	for_each_zone(zone) {
5751 		if (!is_highmem(zone))
5752 			lowmem_pages += zone->managed_pages;
5753 	}
5754 
5755 	for_each_zone(zone) {
5756 		u64 tmp;
5757 
5758 		spin_lock_irqsave(&zone->lock, flags);
5759 		tmp = (u64)pages_min * zone->managed_pages;
5760 		do_div(tmp, lowmem_pages);
5761 		if (is_highmem(zone)) {
5762 			/*
5763 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5764 			 * need highmem pages, so cap pages_min to a small
5765 			 * value here.
5766 			 *
5767 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5768 			 * deltas controls asynch page reclaim, and so should
5769 			 * not be capped for highmem.
5770 			 */
5771 			unsigned long min_pages;
5772 
5773 			min_pages = zone->managed_pages / 1024;
5774 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5775 			zone->watermark[WMARK_MIN] = min_pages;
5776 		} else {
5777 			/*
5778 			 * If it's a lowmem zone, reserve a number of pages
5779 			 * proportionate to the zone's size.
5780 			 */
5781 			zone->watermark[WMARK_MIN] = tmp;
5782 		}
5783 
5784 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5785 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5786 
5787 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5788 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5789 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5790 
5791 		setup_zone_migrate_reserve(zone);
5792 		spin_unlock_irqrestore(&zone->lock, flags);
5793 	}
5794 
5795 	/* update totalreserve_pages */
5796 	calculate_totalreserve_pages();
5797 }
5798 
5799 /**
5800  * setup_per_zone_wmarks - called when min_free_kbytes changes
5801  * or when memory is hot-{added|removed}
5802  *
5803  * Ensures that the watermark[min,low,high] values for each zone are set
5804  * correctly with respect to min_free_kbytes.
5805  */
5806 void setup_per_zone_wmarks(void)
5807 {
5808 	mutex_lock(&zonelists_mutex);
5809 	__setup_per_zone_wmarks();
5810 	mutex_unlock(&zonelists_mutex);
5811 }
5812 
5813 /*
5814  * The inactive anon list should be small enough that the VM never has to
5815  * do too much work, but large enough that each inactive page has a chance
5816  * to be referenced again before it is swapped out.
5817  *
5818  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5819  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5820  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5821  * the anonymous pages are kept on the inactive list.
5822  *
5823  * total     target    max
5824  * memory    ratio     inactive anon
5825  * -------------------------------------
5826  *   10MB       1         5MB
5827  *  100MB       1        50MB
5828  *    1GB       3       250MB
5829  *   10GB      10       0.9GB
5830  *  100GB      31         3GB
5831  *    1TB     101        10GB
5832  *   10TB     320        32GB
5833  */
5834 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5835 {
5836 	unsigned int gb, ratio;
5837 
5838 	/* Zone size in gigabytes */
5839 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5840 	if (gb)
5841 		ratio = int_sqrt(10 * gb);
5842 	else
5843 		ratio = 1;
5844 
5845 	zone->inactive_ratio = ratio;
5846 }
5847 
5848 static void __meminit setup_per_zone_inactive_ratio(void)
5849 {
5850 	struct zone *zone;
5851 
5852 	for_each_zone(zone)
5853 		calculate_zone_inactive_ratio(zone);
5854 }
5855 
5856 /*
5857  * Initialise min_free_kbytes.
5858  *
5859  * For small machines we want it small (128k min).  For large machines
5860  * we want it large (64MB max).  But it is not linear, because network
5861  * bandwidth does not increase linearly with machine size.  We use
5862  *
5863  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5864  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5865  *
5866  * which yields
5867  *
5868  * 16MB:	512k
5869  * 32MB:	724k
5870  * 64MB:	1024k
5871  * 128MB:	1448k
5872  * 256MB:	2048k
5873  * 512MB:	2896k
5874  * 1024MB:	4096k
5875  * 2048MB:	5792k
5876  * 4096MB:	8192k
5877  * 8192MB:	11584k
5878  * 16384MB:	16384k
5879  */
5880 int __meminit init_per_zone_wmark_min(void)
5881 {
5882 	unsigned long lowmem_kbytes;
5883 	int new_min_free_kbytes;
5884 
5885 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5886 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5887 
5888 	if (new_min_free_kbytes > user_min_free_kbytes) {
5889 		min_free_kbytes = new_min_free_kbytes;
5890 		if (min_free_kbytes < 128)
5891 			min_free_kbytes = 128;
5892 		if (min_free_kbytes > 65536)
5893 			min_free_kbytes = 65536;
5894 	} else {
5895 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5896 				new_min_free_kbytes, user_min_free_kbytes);
5897 	}
5898 	setup_per_zone_wmarks();
5899 	refresh_zone_stat_thresholds();
5900 	setup_per_zone_lowmem_reserve();
5901 	setup_per_zone_inactive_ratio();
5902 	return 0;
5903 }
5904 module_init(init_per_zone_wmark_min)
5905 
5906 /*
5907  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5908  *	that we can call two helper functions whenever min_free_kbytes
5909  *	changes.
5910  */
5911 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5912 	void __user *buffer, size_t *length, loff_t *ppos)
5913 {
5914 	int rc;
5915 
5916 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5917 	if (rc)
5918 		return rc;
5919 
5920 	if (write) {
5921 		user_min_free_kbytes = min_free_kbytes;
5922 		setup_per_zone_wmarks();
5923 	}
5924 	return 0;
5925 }
5926 
5927 #ifdef CONFIG_NUMA
5928 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5929 	void __user *buffer, size_t *length, loff_t *ppos)
5930 {
5931 	struct zone *zone;
5932 	int rc;
5933 
5934 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5935 	if (rc)
5936 		return rc;
5937 
5938 	for_each_zone(zone)
5939 		zone->min_unmapped_pages = (zone->managed_pages *
5940 				sysctl_min_unmapped_ratio) / 100;
5941 	return 0;
5942 }
5943 
5944 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5945 	void __user *buffer, size_t *length, loff_t *ppos)
5946 {
5947 	struct zone *zone;
5948 	int rc;
5949 
5950 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5951 	if (rc)
5952 		return rc;
5953 
5954 	for_each_zone(zone)
5955 		zone->min_slab_pages = (zone->managed_pages *
5956 				sysctl_min_slab_ratio) / 100;
5957 	return 0;
5958 }
5959 #endif
5960 
5961 /*
5962  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5963  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5964  *	whenever sysctl_lowmem_reserve_ratio changes.
5965  *
5966  * The reserve ratio obviously has absolutely no relation with the
5967  * minimum watermarks. The lowmem reserve ratio can only make sense
5968  * if in function of the boot time zone sizes.
5969  */
5970 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5971 	void __user *buffer, size_t *length, loff_t *ppos)
5972 {
5973 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5974 	setup_per_zone_lowmem_reserve();
5975 	return 0;
5976 }
5977 
5978 /*
5979  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5980  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5981  * pagelist can have before it gets flushed back to buddy allocator.
5982  */
5983 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5984 	void __user *buffer, size_t *length, loff_t *ppos)
5985 {
5986 	struct zone *zone;
5987 	int old_percpu_pagelist_fraction;
5988 	int ret;
5989 
5990 	mutex_lock(&pcp_batch_high_lock);
5991 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5992 
5993 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5994 	if (!write || ret < 0)
5995 		goto out;
5996 
5997 	/* Sanity checking to avoid pcp imbalance */
5998 	if (percpu_pagelist_fraction &&
5999 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6000 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6001 		ret = -EINVAL;
6002 		goto out;
6003 	}
6004 
6005 	/* No change? */
6006 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6007 		goto out;
6008 
6009 	for_each_populated_zone(zone) {
6010 		unsigned int cpu;
6011 
6012 		for_each_possible_cpu(cpu)
6013 			pageset_set_high_and_batch(zone,
6014 					per_cpu_ptr(zone->pageset, cpu));
6015 	}
6016 out:
6017 	mutex_unlock(&pcp_batch_high_lock);
6018 	return ret;
6019 }
6020 
6021 int hashdist = HASHDIST_DEFAULT;
6022 
6023 #ifdef CONFIG_NUMA
6024 static int __init set_hashdist(char *str)
6025 {
6026 	if (!str)
6027 		return 0;
6028 	hashdist = simple_strtoul(str, &str, 0);
6029 	return 1;
6030 }
6031 __setup("hashdist=", set_hashdist);
6032 #endif
6033 
6034 /*
6035  * allocate a large system hash table from bootmem
6036  * - it is assumed that the hash table must contain an exact power-of-2
6037  *   quantity of entries
6038  * - limit is the number of hash buckets, not the total allocation size
6039  */
6040 void *__init alloc_large_system_hash(const char *tablename,
6041 				     unsigned long bucketsize,
6042 				     unsigned long numentries,
6043 				     int scale,
6044 				     int flags,
6045 				     unsigned int *_hash_shift,
6046 				     unsigned int *_hash_mask,
6047 				     unsigned long low_limit,
6048 				     unsigned long high_limit)
6049 {
6050 	unsigned long long max = high_limit;
6051 	unsigned long log2qty, size;
6052 	void *table = NULL;
6053 
6054 	/* allow the kernel cmdline to have a say */
6055 	if (!numentries) {
6056 		/* round applicable memory size up to nearest megabyte */
6057 		numentries = nr_kernel_pages;
6058 
6059 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6060 		if (PAGE_SHIFT < 20)
6061 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6062 
6063 		/* limit to 1 bucket per 2^scale bytes of low memory */
6064 		if (scale > PAGE_SHIFT)
6065 			numentries >>= (scale - PAGE_SHIFT);
6066 		else
6067 			numentries <<= (PAGE_SHIFT - scale);
6068 
6069 		/* Make sure we've got at least a 0-order allocation.. */
6070 		if (unlikely(flags & HASH_SMALL)) {
6071 			/* Makes no sense without HASH_EARLY */
6072 			WARN_ON(!(flags & HASH_EARLY));
6073 			if (!(numentries >> *_hash_shift)) {
6074 				numentries = 1UL << *_hash_shift;
6075 				BUG_ON(!numentries);
6076 			}
6077 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6078 			numentries = PAGE_SIZE / bucketsize;
6079 	}
6080 	numentries = roundup_pow_of_two(numentries);
6081 
6082 	/* limit allocation size to 1/16 total memory by default */
6083 	if (max == 0) {
6084 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6085 		do_div(max, bucketsize);
6086 	}
6087 	max = min(max, 0x80000000ULL);
6088 
6089 	if (numentries < low_limit)
6090 		numentries = low_limit;
6091 	if (numentries > max)
6092 		numentries = max;
6093 
6094 	log2qty = ilog2(numentries);
6095 
6096 	do {
6097 		size = bucketsize << log2qty;
6098 		if (flags & HASH_EARLY)
6099 			table = memblock_virt_alloc_nopanic(size, 0);
6100 		else if (hashdist)
6101 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6102 		else {
6103 			/*
6104 			 * If bucketsize is not a power-of-two, we may free
6105 			 * some pages at the end of hash table which
6106 			 * alloc_pages_exact() automatically does
6107 			 */
6108 			if (get_order(size) < MAX_ORDER) {
6109 				table = alloc_pages_exact(size, GFP_ATOMIC);
6110 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6111 			}
6112 		}
6113 	} while (!table && size > PAGE_SIZE && --log2qty);
6114 
6115 	if (!table)
6116 		panic("Failed to allocate %s hash table\n", tablename);
6117 
6118 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6119 	       tablename,
6120 	       (1UL << log2qty),
6121 	       ilog2(size) - PAGE_SHIFT,
6122 	       size);
6123 
6124 	if (_hash_shift)
6125 		*_hash_shift = log2qty;
6126 	if (_hash_mask)
6127 		*_hash_mask = (1 << log2qty) - 1;
6128 
6129 	return table;
6130 }
6131 
6132 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6133 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6134 							unsigned long pfn)
6135 {
6136 #ifdef CONFIG_SPARSEMEM
6137 	return __pfn_to_section(pfn)->pageblock_flags;
6138 #else
6139 	return zone->pageblock_flags;
6140 #endif /* CONFIG_SPARSEMEM */
6141 }
6142 
6143 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6144 {
6145 #ifdef CONFIG_SPARSEMEM
6146 	pfn &= (PAGES_PER_SECTION-1);
6147 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6148 #else
6149 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6150 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6151 #endif /* CONFIG_SPARSEMEM */
6152 }
6153 
6154 /**
6155  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6156  * @page: The page within the block of interest
6157  * @pfn: The target page frame number
6158  * @end_bitidx: The last bit of interest to retrieve
6159  * @mask: mask of bits that the caller is interested in
6160  *
6161  * Return: pageblock_bits flags
6162  */
6163 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6164 					unsigned long end_bitidx,
6165 					unsigned long mask)
6166 {
6167 	struct zone *zone;
6168 	unsigned long *bitmap;
6169 	unsigned long bitidx, word_bitidx;
6170 	unsigned long word;
6171 
6172 	zone = page_zone(page);
6173 	bitmap = get_pageblock_bitmap(zone, pfn);
6174 	bitidx = pfn_to_bitidx(zone, pfn);
6175 	word_bitidx = bitidx / BITS_PER_LONG;
6176 	bitidx &= (BITS_PER_LONG-1);
6177 
6178 	word = bitmap[word_bitidx];
6179 	bitidx += end_bitidx;
6180 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6181 }
6182 
6183 /**
6184  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6185  * @page: The page within the block of interest
6186  * @flags: The flags to set
6187  * @pfn: The target page frame number
6188  * @end_bitidx: The last bit of interest
6189  * @mask: mask of bits that the caller is interested in
6190  */
6191 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6192 					unsigned long pfn,
6193 					unsigned long end_bitidx,
6194 					unsigned long mask)
6195 {
6196 	struct zone *zone;
6197 	unsigned long *bitmap;
6198 	unsigned long bitidx, word_bitidx;
6199 	unsigned long old_word, word;
6200 
6201 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6202 
6203 	zone = page_zone(page);
6204 	bitmap = get_pageblock_bitmap(zone, pfn);
6205 	bitidx = pfn_to_bitidx(zone, pfn);
6206 	word_bitidx = bitidx / BITS_PER_LONG;
6207 	bitidx &= (BITS_PER_LONG-1);
6208 
6209 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6210 
6211 	bitidx += end_bitidx;
6212 	mask <<= (BITS_PER_LONG - bitidx - 1);
6213 	flags <<= (BITS_PER_LONG - bitidx - 1);
6214 
6215 	word = ACCESS_ONCE(bitmap[word_bitidx]);
6216 	for (;;) {
6217 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6218 		if (word == old_word)
6219 			break;
6220 		word = old_word;
6221 	}
6222 }
6223 
6224 /*
6225  * This function checks whether pageblock includes unmovable pages or not.
6226  * If @count is not zero, it is okay to include less @count unmovable pages
6227  *
6228  * PageLRU check without isolation or lru_lock could race so that
6229  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6230  * expect this function should be exact.
6231  */
6232 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6233 			 bool skip_hwpoisoned_pages)
6234 {
6235 	unsigned long pfn, iter, found;
6236 	int mt;
6237 
6238 	/*
6239 	 * For avoiding noise data, lru_add_drain_all() should be called
6240 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6241 	 */
6242 	if (zone_idx(zone) == ZONE_MOVABLE)
6243 		return false;
6244 	mt = get_pageblock_migratetype(page);
6245 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6246 		return false;
6247 
6248 	pfn = page_to_pfn(page);
6249 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6250 		unsigned long check = pfn + iter;
6251 
6252 		if (!pfn_valid_within(check))
6253 			continue;
6254 
6255 		page = pfn_to_page(check);
6256 
6257 		/*
6258 		 * Hugepages are not in LRU lists, but they're movable.
6259 		 * We need not scan over tail pages bacause we don't
6260 		 * handle each tail page individually in migration.
6261 		 */
6262 		if (PageHuge(page)) {
6263 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6264 			continue;
6265 		}
6266 
6267 		/*
6268 		 * We can't use page_count without pin a page
6269 		 * because another CPU can free compound page.
6270 		 * This check already skips compound tails of THP
6271 		 * because their page->_count is zero at all time.
6272 		 */
6273 		if (!atomic_read(&page->_count)) {
6274 			if (PageBuddy(page))
6275 				iter += (1 << page_order(page)) - 1;
6276 			continue;
6277 		}
6278 
6279 		/*
6280 		 * The HWPoisoned page may be not in buddy system, and
6281 		 * page_count() is not 0.
6282 		 */
6283 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6284 			continue;
6285 
6286 		if (!PageLRU(page))
6287 			found++;
6288 		/*
6289 		 * If there are RECLAIMABLE pages, we need to check
6290 		 * it.  But now, memory offline itself doesn't call
6291 		 * shrink_node_slabs() and it still to be fixed.
6292 		 */
6293 		/*
6294 		 * If the page is not RAM, page_count()should be 0.
6295 		 * we don't need more check. This is an _used_ not-movable page.
6296 		 *
6297 		 * The problematic thing here is PG_reserved pages. PG_reserved
6298 		 * is set to both of a memory hole page and a _used_ kernel
6299 		 * page at boot.
6300 		 */
6301 		if (found > count)
6302 			return true;
6303 	}
6304 	return false;
6305 }
6306 
6307 bool is_pageblock_removable_nolock(struct page *page)
6308 {
6309 	struct zone *zone;
6310 	unsigned long pfn;
6311 
6312 	/*
6313 	 * We have to be careful here because we are iterating over memory
6314 	 * sections which are not zone aware so we might end up outside of
6315 	 * the zone but still within the section.
6316 	 * We have to take care about the node as well. If the node is offline
6317 	 * its NODE_DATA will be NULL - see page_zone.
6318 	 */
6319 	if (!node_online(page_to_nid(page)))
6320 		return false;
6321 
6322 	zone = page_zone(page);
6323 	pfn = page_to_pfn(page);
6324 	if (!zone_spans_pfn(zone, pfn))
6325 		return false;
6326 
6327 	return !has_unmovable_pages(zone, page, 0, true);
6328 }
6329 
6330 #ifdef CONFIG_CMA
6331 
6332 static unsigned long pfn_max_align_down(unsigned long pfn)
6333 {
6334 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6335 			     pageblock_nr_pages) - 1);
6336 }
6337 
6338 static unsigned long pfn_max_align_up(unsigned long pfn)
6339 {
6340 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6341 				pageblock_nr_pages));
6342 }
6343 
6344 /* [start, end) must belong to a single zone. */
6345 static int __alloc_contig_migrate_range(struct compact_control *cc,
6346 					unsigned long start, unsigned long end)
6347 {
6348 	/* This function is based on compact_zone() from compaction.c. */
6349 	unsigned long nr_reclaimed;
6350 	unsigned long pfn = start;
6351 	unsigned int tries = 0;
6352 	int ret = 0;
6353 
6354 	migrate_prep();
6355 
6356 	while (pfn < end || !list_empty(&cc->migratepages)) {
6357 		if (fatal_signal_pending(current)) {
6358 			ret = -EINTR;
6359 			break;
6360 		}
6361 
6362 		if (list_empty(&cc->migratepages)) {
6363 			cc->nr_migratepages = 0;
6364 			pfn = isolate_migratepages_range(cc, pfn, end);
6365 			if (!pfn) {
6366 				ret = -EINTR;
6367 				break;
6368 			}
6369 			tries = 0;
6370 		} else if (++tries == 5) {
6371 			ret = ret < 0 ? ret : -EBUSY;
6372 			break;
6373 		}
6374 
6375 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6376 							&cc->migratepages);
6377 		cc->nr_migratepages -= nr_reclaimed;
6378 
6379 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6380 				    NULL, 0, cc->mode, MR_CMA);
6381 	}
6382 	if (ret < 0) {
6383 		putback_movable_pages(&cc->migratepages);
6384 		return ret;
6385 	}
6386 	return 0;
6387 }
6388 
6389 /**
6390  * alloc_contig_range() -- tries to allocate given range of pages
6391  * @start:	start PFN to allocate
6392  * @end:	one-past-the-last PFN to allocate
6393  * @migratetype:	migratetype of the underlaying pageblocks (either
6394  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6395  *			in range must have the same migratetype and it must
6396  *			be either of the two.
6397  *
6398  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6399  * aligned, however it's the caller's responsibility to guarantee that
6400  * we are the only thread that changes migrate type of pageblocks the
6401  * pages fall in.
6402  *
6403  * The PFN range must belong to a single zone.
6404  *
6405  * Returns zero on success or negative error code.  On success all
6406  * pages which PFN is in [start, end) are allocated for the caller and
6407  * need to be freed with free_contig_range().
6408  */
6409 int alloc_contig_range(unsigned long start, unsigned long end,
6410 		       unsigned migratetype)
6411 {
6412 	unsigned long outer_start, outer_end;
6413 	int ret = 0, order;
6414 
6415 	struct compact_control cc = {
6416 		.nr_migratepages = 0,
6417 		.order = -1,
6418 		.zone = page_zone(pfn_to_page(start)),
6419 		.mode = MIGRATE_SYNC,
6420 		.ignore_skip_hint = true,
6421 	};
6422 	INIT_LIST_HEAD(&cc.migratepages);
6423 
6424 	/*
6425 	 * What we do here is we mark all pageblocks in range as
6426 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6427 	 * have different sizes, and due to the way page allocator
6428 	 * work, we align the range to biggest of the two pages so
6429 	 * that page allocator won't try to merge buddies from
6430 	 * different pageblocks and change MIGRATE_ISOLATE to some
6431 	 * other migration type.
6432 	 *
6433 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6434 	 * migrate the pages from an unaligned range (ie. pages that
6435 	 * we are interested in).  This will put all the pages in
6436 	 * range back to page allocator as MIGRATE_ISOLATE.
6437 	 *
6438 	 * When this is done, we take the pages in range from page
6439 	 * allocator removing them from the buddy system.  This way
6440 	 * page allocator will never consider using them.
6441 	 *
6442 	 * This lets us mark the pageblocks back as
6443 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6444 	 * aligned range but not in the unaligned, original range are
6445 	 * put back to page allocator so that buddy can use them.
6446 	 */
6447 
6448 	ret = start_isolate_page_range(pfn_max_align_down(start),
6449 				       pfn_max_align_up(end), migratetype,
6450 				       false);
6451 	if (ret)
6452 		return ret;
6453 
6454 	ret = __alloc_contig_migrate_range(&cc, start, end);
6455 	if (ret)
6456 		goto done;
6457 
6458 	/*
6459 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6460 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6461 	 * more, all pages in [start, end) are free in page allocator.
6462 	 * What we are going to do is to allocate all pages from
6463 	 * [start, end) (that is remove them from page allocator).
6464 	 *
6465 	 * The only problem is that pages at the beginning and at the
6466 	 * end of interesting range may be not aligned with pages that
6467 	 * page allocator holds, ie. they can be part of higher order
6468 	 * pages.  Because of this, we reserve the bigger range and
6469 	 * once this is done free the pages we are not interested in.
6470 	 *
6471 	 * We don't have to hold zone->lock here because the pages are
6472 	 * isolated thus they won't get removed from buddy.
6473 	 */
6474 
6475 	lru_add_drain_all();
6476 	drain_all_pages(cc.zone);
6477 
6478 	order = 0;
6479 	outer_start = start;
6480 	while (!PageBuddy(pfn_to_page(outer_start))) {
6481 		if (++order >= MAX_ORDER) {
6482 			ret = -EBUSY;
6483 			goto done;
6484 		}
6485 		outer_start &= ~0UL << order;
6486 	}
6487 
6488 	/* Make sure the range is really isolated. */
6489 	if (test_pages_isolated(outer_start, end, false)) {
6490 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6491 			__func__, outer_start, end);
6492 		ret = -EBUSY;
6493 		goto done;
6494 	}
6495 
6496 	/* Grab isolated pages from freelists. */
6497 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6498 	if (!outer_end) {
6499 		ret = -EBUSY;
6500 		goto done;
6501 	}
6502 
6503 	/* Free head and tail (if any) */
6504 	if (start != outer_start)
6505 		free_contig_range(outer_start, start - outer_start);
6506 	if (end != outer_end)
6507 		free_contig_range(end, outer_end - end);
6508 
6509 done:
6510 	undo_isolate_page_range(pfn_max_align_down(start),
6511 				pfn_max_align_up(end), migratetype);
6512 	return ret;
6513 }
6514 
6515 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6516 {
6517 	unsigned int count = 0;
6518 
6519 	for (; nr_pages--; pfn++) {
6520 		struct page *page = pfn_to_page(pfn);
6521 
6522 		count += page_count(page) != 1;
6523 		__free_page(page);
6524 	}
6525 	WARN(count != 0, "%d pages are still in use!\n", count);
6526 }
6527 #endif
6528 
6529 #ifdef CONFIG_MEMORY_HOTPLUG
6530 /*
6531  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6532  * page high values need to be recalulated.
6533  */
6534 void __meminit zone_pcp_update(struct zone *zone)
6535 {
6536 	unsigned cpu;
6537 	mutex_lock(&pcp_batch_high_lock);
6538 	for_each_possible_cpu(cpu)
6539 		pageset_set_high_and_batch(zone,
6540 				per_cpu_ptr(zone->pageset, cpu));
6541 	mutex_unlock(&pcp_batch_high_lock);
6542 }
6543 #endif
6544 
6545 void zone_pcp_reset(struct zone *zone)
6546 {
6547 	unsigned long flags;
6548 	int cpu;
6549 	struct per_cpu_pageset *pset;
6550 
6551 	/* avoid races with drain_pages()  */
6552 	local_irq_save(flags);
6553 	if (zone->pageset != &boot_pageset) {
6554 		for_each_online_cpu(cpu) {
6555 			pset = per_cpu_ptr(zone->pageset, cpu);
6556 			drain_zonestat(zone, pset);
6557 		}
6558 		free_percpu(zone->pageset);
6559 		zone->pageset = &boot_pageset;
6560 	}
6561 	local_irq_restore(flags);
6562 }
6563 
6564 #ifdef CONFIG_MEMORY_HOTREMOVE
6565 /*
6566  * All pages in the range must be isolated before calling this.
6567  */
6568 void
6569 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6570 {
6571 	struct page *page;
6572 	struct zone *zone;
6573 	unsigned int order, i;
6574 	unsigned long pfn;
6575 	unsigned long flags;
6576 	/* find the first valid pfn */
6577 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6578 		if (pfn_valid(pfn))
6579 			break;
6580 	if (pfn == end_pfn)
6581 		return;
6582 	zone = page_zone(pfn_to_page(pfn));
6583 	spin_lock_irqsave(&zone->lock, flags);
6584 	pfn = start_pfn;
6585 	while (pfn < end_pfn) {
6586 		if (!pfn_valid(pfn)) {
6587 			pfn++;
6588 			continue;
6589 		}
6590 		page = pfn_to_page(pfn);
6591 		/*
6592 		 * The HWPoisoned page may be not in buddy system, and
6593 		 * page_count() is not 0.
6594 		 */
6595 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6596 			pfn++;
6597 			SetPageReserved(page);
6598 			continue;
6599 		}
6600 
6601 		BUG_ON(page_count(page));
6602 		BUG_ON(!PageBuddy(page));
6603 		order = page_order(page);
6604 #ifdef CONFIG_DEBUG_VM
6605 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6606 		       pfn, 1 << order, end_pfn);
6607 #endif
6608 		list_del(&page->lru);
6609 		rmv_page_order(page);
6610 		zone->free_area[order].nr_free--;
6611 		for (i = 0; i < (1 << order); i++)
6612 			SetPageReserved((page+i));
6613 		pfn += (1 << order);
6614 	}
6615 	spin_unlock_irqrestore(&zone->lock, flags);
6616 }
6617 #endif
6618 
6619 #ifdef CONFIG_MEMORY_FAILURE
6620 bool is_free_buddy_page(struct page *page)
6621 {
6622 	struct zone *zone = page_zone(page);
6623 	unsigned long pfn = page_to_pfn(page);
6624 	unsigned long flags;
6625 	unsigned int order;
6626 
6627 	spin_lock_irqsave(&zone->lock, flags);
6628 	for (order = 0; order < MAX_ORDER; order++) {
6629 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6630 
6631 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6632 			break;
6633 	}
6634 	spin_unlock_irqrestore(&zone->lock, flags);
6635 
6636 	return order < MAX_ORDER;
6637 }
6638 #endif
6639