1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_ext.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/prefetch.h> 57 #include <linux/mm_inline.h> 58 #include <linux/migrate.h> 59 #include <linux/page_ext.h> 60 #include <linux/hugetlb.h> 61 #include <linux/sched/rt.h> 62 #include <linux/page_owner.h> 63 64 #include <asm/sections.h> 65 #include <asm/tlbflush.h> 66 #include <asm/div64.h> 67 #include "internal.h" 68 69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 70 static DEFINE_MUTEX(pcp_batch_high_lock); 71 #define MIN_PERCPU_PAGELIST_FRACTION (8) 72 73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 74 DEFINE_PER_CPU(int, numa_node); 75 EXPORT_PER_CPU_SYMBOL(numa_node); 76 #endif 77 78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 79 /* 80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 83 * defined in <linux/topology.h>. 84 */ 85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 86 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 87 int _node_numa_mem_[MAX_NUMNODES]; 88 #endif 89 90 /* 91 * Array of node states. 92 */ 93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 94 [N_POSSIBLE] = NODE_MASK_ALL, 95 [N_ONLINE] = { { [0] = 1UL } }, 96 #ifndef CONFIG_NUMA 97 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 98 #ifdef CONFIG_HIGHMEM 99 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 100 #endif 101 #ifdef CONFIG_MOVABLE_NODE 102 [N_MEMORY] = { { [0] = 1UL } }, 103 #endif 104 [N_CPU] = { { [0] = 1UL } }, 105 #endif /* NUMA */ 106 }; 107 EXPORT_SYMBOL(node_states); 108 109 /* Protect totalram_pages and zone->managed_pages */ 110 static DEFINE_SPINLOCK(managed_page_count_lock); 111 112 unsigned long totalram_pages __read_mostly; 113 unsigned long totalreserve_pages __read_mostly; 114 /* 115 * When calculating the number of globally allowed dirty pages, there 116 * is a certain number of per-zone reserves that should not be 117 * considered dirtyable memory. This is the sum of those reserves 118 * over all existing zones that contribute dirtyable memory. 119 */ 120 unsigned long dirty_balance_reserve __read_mostly; 121 122 int percpu_pagelist_fraction; 123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 124 125 #ifdef CONFIG_PM_SLEEP 126 /* 127 * The following functions are used by the suspend/hibernate code to temporarily 128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 129 * while devices are suspended. To avoid races with the suspend/hibernate code, 130 * they should always be called with pm_mutex held (gfp_allowed_mask also should 131 * only be modified with pm_mutex held, unless the suspend/hibernate code is 132 * guaranteed not to run in parallel with that modification). 133 */ 134 135 static gfp_t saved_gfp_mask; 136 137 void pm_restore_gfp_mask(void) 138 { 139 WARN_ON(!mutex_is_locked(&pm_mutex)); 140 if (saved_gfp_mask) { 141 gfp_allowed_mask = saved_gfp_mask; 142 saved_gfp_mask = 0; 143 } 144 } 145 146 void pm_restrict_gfp_mask(void) 147 { 148 WARN_ON(!mutex_is_locked(&pm_mutex)); 149 WARN_ON(saved_gfp_mask); 150 saved_gfp_mask = gfp_allowed_mask; 151 gfp_allowed_mask &= ~GFP_IOFS; 152 } 153 154 bool pm_suspended_storage(void) 155 { 156 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 157 return false; 158 return true; 159 } 160 #endif /* CONFIG_PM_SLEEP */ 161 162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 163 int pageblock_order __read_mostly; 164 #endif 165 166 static void __free_pages_ok(struct page *page, unsigned int order); 167 168 /* 169 * results with 256, 32 in the lowmem_reserve sysctl: 170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 171 * 1G machine -> (16M dma, 784M normal, 224M high) 172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 175 * 176 * TBD: should special case ZONE_DMA32 machines here - in those we normally 177 * don't need any ZONE_NORMAL reservation 178 */ 179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 180 #ifdef CONFIG_ZONE_DMA 181 256, 182 #endif 183 #ifdef CONFIG_ZONE_DMA32 184 256, 185 #endif 186 #ifdef CONFIG_HIGHMEM 187 32, 188 #endif 189 32, 190 }; 191 192 EXPORT_SYMBOL(totalram_pages); 193 194 static char * const zone_names[MAX_NR_ZONES] = { 195 #ifdef CONFIG_ZONE_DMA 196 "DMA", 197 #endif 198 #ifdef CONFIG_ZONE_DMA32 199 "DMA32", 200 #endif 201 "Normal", 202 #ifdef CONFIG_HIGHMEM 203 "HighMem", 204 #endif 205 "Movable", 206 }; 207 208 int min_free_kbytes = 1024; 209 int user_min_free_kbytes = -1; 210 211 static unsigned long __meminitdata nr_kernel_pages; 212 static unsigned long __meminitdata nr_all_pages; 213 static unsigned long __meminitdata dma_reserve; 214 215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 218 static unsigned long __initdata required_kernelcore; 219 static unsigned long __initdata required_movablecore; 220 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 221 222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 223 int movable_zone; 224 EXPORT_SYMBOL(movable_zone); 225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 226 227 #if MAX_NUMNODES > 1 228 int nr_node_ids __read_mostly = MAX_NUMNODES; 229 int nr_online_nodes __read_mostly = 1; 230 EXPORT_SYMBOL(nr_node_ids); 231 EXPORT_SYMBOL(nr_online_nodes); 232 #endif 233 234 int page_group_by_mobility_disabled __read_mostly; 235 236 void set_pageblock_migratetype(struct page *page, int migratetype) 237 { 238 if (unlikely(page_group_by_mobility_disabled && 239 migratetype < MIGRATE_PCPTYPES)) 240 migratetype = MIGRATE_UNMOVABLE; 241 242 set_pageblock_flags_group(page, (unsigned long)migratetype, 243 PB_migrate, PB_migrate_end); 244 } 245 246 bool oom_killer_disabled __read_mostly; 247 248 #ifdef CONFIG_DEBUG_VM 249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 250 { 251 int ret = 0; 252 unsigned seq; 253 unsigned long pfn = page_to_pfn(page); 254 unsigned long sp, start_pfn; 255 256 do { 257 seq = zone_span_seqbegin(zone); 258 start_pfn = zone->zone_start_pfn; 259 sp = zone->spanned_pages; 260 if (!zone_spans_pfn(zone, pfn)) 261 ret = 1; 262 } while (zone_span_seqretry(zone, seq)); 263 264 if (ret) 265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 266 pfn, zone_to_nid(zone), zone->name, 267 start_pfn, start_pfn + sp); 268 269 return ret; 270 } 271 272 static int page_is_consistent(struct zone *zone, struct page *page) 273 { 274 if (!pfn_valid_within(page_to_pfn(page))) 275 return 0; 276 if (zone != page_zone(page)) 277 return 0; 278 279 return 1; 280 } 281 /* 282 * Temporary debugging check for pages not lying within a given zone. 283 */ 284 static int bad_range(struct zone *zone, struct page *page) 285 { 286 if (page_outside_zone_boundaries(zone, page)) 287 return 1; 288 if (!page_is_consistent(zone, page)) 289 return 1; 290 291 return 0; 292 } 293 #else 294 static inline int bad_range(struct zone *zone, struct page *page) 295 { 296 return 0; 297 } 298 #endif 299 300 static void bad_page(struct page *page, const char *reason, 301 unsigned long bad_flags) 302 { 303 static unsigned long resume; 304 static unsigned long nr_shown; 305 static unsigned long nr_unshown; 306 307 /* Don't complain about poisoned pages */ 308 if (PageHWPoison(page)) { 309 page_mapcount_reset(page); /* remove PageBuddy */ 310 return; 311 } 312 313 /* 314 * Allow a burst of 60 reports, then keep quiet for that minute; 315 * or allow a steady drip of one report per second. 316 */ 317 if (nr_shown == 60) { 318 if (time_before(jiffies, resume)) { 319 nr_unshown++; 320 goto out; 321 } 322 if (nr_unshown) { 323 printk(KERN_ALERT 324 "BUG: Bad page state: %lu messages suppressed\n", 325 nr_unshown); 326 nr_unshown = 0; 327 } 328 nr_shown = 0; 329 } 330 if (nr_shown++ == 0) 331 resume = jiffies + 60 * HZ; 332 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 334 current->comm, page_to_pfn(page)); 335 dump_page_badflags(page, reason, bad_flags); 336 337 print_modules(); 338 dump_stack(); 339 out: 340 /* Leave bad fields for debug, except PageBuddy could make trouble */ 341 page_mapcount_reset(page); /* remove PageBuddy */ 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 343 } 344 345 /* 346 * Higher-order pages are called "compound pages". They are structured thusly: 347 * 348 * The first PAGE_SIZE page is called the "head page". 349 * 350 * The remaining PAGE_SIZE pages are called "tail pages". 351 * 352 * All pages have PG_compound set. All tail pages have their ->first_page 353 * pointing at the head page. 354 * 355 * The first tail page's ->lru.next holds the address of the compound page's 356 * put_page() function. Its ->lru.prev holds the order of allocation. 357 * This usage means that zero-order pages may not be compound. 358 */ 359 360 static void free_compound_page(struct page *page) 361 { 362 __free_pages_ok(page, compound_order(page)); 363 } 364 365 void prep_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 370 set_compound_page_dtor(page, free_compound_page); 371 set_compound_order(page, order); 372 __SetPageHead(page); 373 for (i = 1; i < nr_pages; i++) { 374 struct page *p = page + i; 375 set_page_count(p, 0); 376 p->first_page = page; 377 /* Make sure p->first_page is always valid for PageTail() */ 378 smp_wmb(); 379 __SetPageTail(p); 380 } 381 } 382 383 /* update __split_huge_page_refcount if you change this function */ 384 static int destroy_compound_page(struct page *page, unsigned long order) 385 { 386 int i; 387 int nr_pages = 1 << order; 388 int bad = 0; 389 390 if (unlikely(compound_order(page) != order)) { 391 bad_page(page, "wrong compound order", 0); 392 bad++; 393 } 394 395 __ClearPageHead(page); 396 397 for (i = 1; i < nr_pages; i++) { 398 struct page *p = page + i; 399 400 if (unlikely(!PageTail(p))) { 401 bad_page(page, "PageTail not set", 0); 402 bad++; 403 } else if (unlikely(p->first_page != page)) { 404 bad_page(page, "first_page not consistent", 0); 405 bad++; 406 } 407 __ClearPageTail(p); 408 } 409 410 return bad; 411 } 412 413 static inline void prep_zero_page(struct page *page, unsigned int order, 414 gfp_t gfp_flags) 415 { 416 int i; 417 418 /* 419 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 420 * and __GFP_HIGHMEM from hard or soft interrupt context. 421 */ 422 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 423 for (i = 0; i < (1 << order); i++) 424 clear_highpage(page + i); 425 } 426 427 #ifdef CONFIG_DEBUG_PAGEALLOC 428 unsigned int _debug_guardpage_minorder; 429 bool _debug_pagealloc_enabled __read_mostly; 430 bool _debug_guardpage_enabled __read_mostly; 431 432 static int __init early_debug_pagealloc(char *buf) 433 { 434 if (!buf) 435 return -EINVAL; 436 437 if (strcmp(buf, "on") == 0) 438 _debug_pagealloc_enabled = true; 439 440 return 0; 441 } 442 early_param("debug_pagealloc", early_debug_pagealloc); 443 444 static bool need_debug_guardpage(void) 445 { 446 /* If we don't use debug_pagealloc, we don't need guard page */ 447 if (!debug_pagealloc_enabled()) 448 return false; 449 450 return true; 451 } 452 453 static void init_debug_guardpage(void) 454 { 455 if (!debug_pagealloc_enabled()) 456 return; 457 458 _debug_guardpage_enabled = true; 459 } 460 461 struct page_ext_operations debug_guardpage_ops = { 462 .need = need_debug_guardpage, 463 .init = init_debug_guardpage, 464 }; 465 466 static int __init debug_guardpage_minorder_setup(char *buf) 467 { 468 unsigned long res; 469 470 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 471 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 472 return 0; 473 } 474 _debug_guardpage_minorder = res; 475 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 476 return 0; 477 } 478 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 479 480 static inline void set_page_guard(struct zone *zone, struct page *page, 481 unsigned int order, int migratetype) 482 { 483 struct page_ext *page_ext; 484 485 if (!debug_guardpage_enabled()) 486 return; 487 488 page_ext = lookup_page_ext(page); 489 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 490 491 INIT_LIST_HEAD(&page->lru); 492 set_page_private(page, order); 493 /* Guard pages are not available for any usage */ 494 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 495 } 496 497 static inline void clear_page_guard(struct zone *zone, struct page *page, 498 unsigned int order, int migratetype) 499 { 500 struct page_ext *page_ext; 501 502 if (!debug_guardpage_enabled()) 503 return; 504 505 page_ext = lookup_page_ext(page); 506 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 507 508 set_page_private(page, 0); 509 if (!is_migrate_isolate(migratetype)) 510 __mod_zone_freepage_state(zone, (1 << order), migratetype); 511 } 512 #else 513 struct page_ext_operations debug_guardpage_ops = { NULL, }; 514 static inline void set_page_guard(struct zone *zone, struct page *page, 515 unsigned int order, int migratetype) {} 516 static inline void clear_page_guard(struct zone *zone, struct page *page, 517 unsigned int order, int migratetype) {} 518 #endif 519 520 static inline void set_page_order(struct page *page, unsigned int order) 521 { 522 set_page_private(page, order); 523 __SetPageBuddy(page); 524 } 525 526 static inline void rmv_page_order(struct page *page) 527 { 528 __ClearPageBuddy(page); 529 set_page_private(page, 0); 530 } 531 532 /* 533 * This function checks whether a page is free && is the buddy 534 * we can do coalesce a page and its buddy if 535 * (a) the buddy is not in a hole && 536 * (b) the buddy is in the buddy system && 537 * (c) a page and its buddy have the same order && 538 * (d) a page and its buddy are in the same zone. 539 * 540 * For recording whether a page is in the buddy system, we set ->_mapcount 541 * PAGE_BUDDY_MAPCOUNT_VALUE. 542 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 543 * serialized by zone->lock. 544 * 545 * For recording page's order, we use page_private(page). 546 */ 547 static inline int page_is_buddy(struct page *page, struct page *buddy, 548 unsigned int order) 549 { 550 if (!pfn_valid_within(page_to_pfn(buddy))) 551 return 0; 552 553 if (page_is_guard(buddy) && page_order(buddy) == order) { 554 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 555 556 if (page_zone_id(page) != page_zone_id(buddy)) 557 return 0; 558 559 return 1; 560 } 561 562 if (PageBuddy(buddy) && page_order(buddy) == order) { 563 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 564 565 /* 566 * zone check is done late to avoid uselessly 567 * calculating zone/node ids for pages that could 568 * never merge. 569 */ 570 if (page_zone_id(page) != page_zone_id(buddy)) 571 return 0; 572 573 return 1; 574 } 575 return 0; 576 } 577 578 /* 579 * Freeing function for a buddy system allocator. 580 * 581 * The concept of a buddy system is to maintain direct-mapped table 582 * (containing bit values) for memory blocks of various "orders". 583 * The bottom level table contains the map for the smallest allocatable 584 * units of memory (here, pages), and each level above it describes 585 * pairs of units from the levels below, hence, "buddies". 586 * At a high level, all that happens here is marking the table entry 587 * at the bottom level available, and propagating the changes upward 588 * as necessary, plus some accounting needed to play nicely with other 589 * parts of the VM system. 590 * At each level, we keep a list of pages, which are heads of continuous 591 * free pages of length of (1 << order) and marked with _mapcount 592 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 593 * field. 594 * So when we are allocating or freeing one, we can derive the state of the 595 * other. That is, if we allocate a small block, and both were 596 * free, the remainder of the region must be split into blocks. 597 * If a block is freed, and its buddy is also free, then this 598 * triggers coalescing into a block of larger size. 599 * 600 * -- nyc 601 */ 602 603 static inline void __free_one_page(struct page *page, 604 unsigned long pfn, 605 struct zone *zone, unsigned int order, 606 int migratetype) 607 { 608 unsigned long page_idx; 609 unsigned long combined_idx; 610 unsigned long uninitialized_var(buddy_idx); 611 struct page *buddy; 612 int max_order = MAX_ORDER; 613 614 VM_BUG_ON(!zone_is_initialized(zone)); 615 616 if (unlikely(PageCompound(page))) 617 if (unlikely(destroy_compound_page(page, order))) 618 return; 619 620 VM_BUG_ON(migratetype == -1); 621 if (is_migrate_isolate(migratetype)) { 622 /* 623 * We restrict max order of merging to prevent merge 624 * between freepages on isolate pageblock and normal 625 * pageblock. Without this, pageblock isolation 626 * could cause incorrect freepage accounting. 627 */ 628 max_order = min(MAX_ORDER, pageblock_order + 1); 629 } else { 630 __mod_zone_freepage_state(zone, 1 << order, migratetype); 631 } 632 633 page_idx = pfn & ((1 << max_order) - 1); 634 635 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 636 VM_BUG_ON_PAGE(bad_range(zone, page), page); 637 638 while (order < max_order - 1) { 639 buddy_idx = __find_buddy_index(page_idx, order); 640 buddy = page + (buddy_idx - page_idx); 641 if (!page_is_buddy(page, buddy, order)) 642 break; 643 /* 644 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 645 * merge with it and move up one order. 646 */ 647 if (page_is_guard(buddy)) { 648 clear_page_guard(zone, buddy, order, migratetype); 649 } else { 650 list_del(&buddy->lru); 651 zone->free_area[order].nr_free--; 652 rmv_page_order(buddy); 653 } 654 combined_idx = buddy_idx & page_idx; 655 page = page + (combined_idx - page_idx); 656 page_idx = combined_idx; 657 order++; 658 } 659 set_page_order(page, order); 660 661 /* 662 * If this is not the largest possible page, check if the buddy 663 * of the next-highest order is free. If it is, it's possible 664 * that pages are being freed that will coalesce soon. In case, 665 * that is happening, add the free page to the tail of the list 666 * so it's less likely to be used soon and more likely to be merged 667 * as a higher order page 668 */ 669 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 670 struct page *higher_page, *higher_buddy; 671 combined_idx = buddy_idx & page_idx; 672 higher_page = page + (combined_idx - page_idx); 673 buddy_idx = __find_buddy_index(combined_idx, order + 1); 674 higher_buddy = higher_page + (buddy_idx - combined_idx); 675 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 676 list_add_tail(&page->lru, 677 &zone->free_area[order].free_list[migratetype]); 678 goto out; 679 } 680 } 681 682 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 683 out: 684 zone->free_area[order].nr_free++; 685 } 686 687 static inline int free_pages_check(struct page *page) 688 { 689 const char *bad_reason = NULL; 690 unsigned long bad_flags = 0; 691 692 if (unlikely(page_mapcount(page))) 693 bad_reason = "nonzero mapcount"; 694 if (unlikely(page->mapping != NULL)) 695 bad_reason = "non-NULL mapping"; 696 if (unlikely(atomic_read(&page->_count) != 0)) 697 bad_reason = "nonzero _count"; 698 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 699 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 700 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 701 } 702 #ifdef CONFIG_MEMCG 703 if (unlikely(page->mem_cgroup)) 704 bad_reason = "page still charged to cgroup"; 705 #endif 706 if (unlikely(bad_reason)) { 707 bad_page(page, bad_reason, bad_flags); 708 return 1; 709 } 710 page_cpupid_reset_last(page); 711 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 712 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 713 return 0; 714 } 715 716 /* 717 * Frees a number of pages from the PCP lists 718 * Assumes all pages on list are in same zone, and of same order. 719 * count is the number of pages to free. 720 * 721 * If the zone was previously in an "all pages pinned" state then look to 722 * see if this freeing clears that state. 723 * 724 * And clear the zone's pages_scanned counter, to hold off the "all pages are 725 * pinned" detection logic. 726 */ 727 static void free_pcppages_bulk(struct zone *zone, int count, 728 struct per_cpu_pages *pcp) 729 { 730 int migratetype = 0; 731 int batch_free = 0; 732 int to_free = count; 733 unsigned long nr_scanned; 734 735 spin_lock(&zone->lock); 736 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 737 if (nr_scanned) 738 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 739 740 while (to_free) { 741 struct page *page; 742 struct list_head *list; 743 744 /* 745 * Remove pages from lists in a round-robin fashion. A 746 * batch_free count is maintained that is incremented when an 747 * empty list is encountered. This is so more pages are freed 748 * off fuller lists instead of spinning excessively around empty 749 * lists 750 */ 751 do { 752 batch_free++; 753 if (++migratetype == MIGRATE_PCPTYPES) 754 migratetype = 0; 755 list = &pcp->lists[migratetype]; 756 } while (list_empty(list)); 757 758 /* This is the only non-empty list. Free them all. */ 759 if (batch_free == MIGRATE_PCPTYPES) 760 batch_free = to_free; 761 762 do { 763 int mt; /* migratetype of the to-be-freed page */ 764 765 page = list_entry(list->prev, struct page, lru); 766 /* must delete as __free_one_page list manipulates */ 767 list_del(&page->lru); 768 mt = get_freepage_migratetype(page); 769 if (unlikely(has_isolate_pageblock(zone))) 770 mt = get_pageblock_migratetype(page); 771 772 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 773 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 774 trace_mm_page_pcpu_drain(page, 0, mt); 775 } while (--to_free && --batch_free && !list_empty(list)); 776 } 777 spin_unlock(&zone->lock); 778 } 779 780 static void free_one_page(struct zone *zone, 781 struct page *page, unsigned long pfn, 782 unsigned int order, 783 int migratetype) 784 { 785 unsigned long nr_scanned; 786 spin_lock(&zone->lock); 787 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 788 if (nr_scanned) 789 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 790 791 if (unlikely(has_isolate_pageblock(zone) || 792 is_migrate_isolate(migratetype))) { 793 migratetype = get_pfnblock_migratetype(page, pfn); 794 } 795 __free_one_page(page, pfn, zone, order, migratetype); 796 spin_unlock(&zone->lock); 797 } 798 799 static bool free_pages_prepare(struct page *page, unsigned int order) 800 { 801 int i; 802 int bad = 0; 803 804 VM_BUG_ON_PAGE(PageTail(page), page); 805 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page); 806 807 trace_mm_page_free(page, order); 808 kmemcheck_free_shadow(page, order); 809 810 if (PageAnon(page)) 811 page->mapping = NULL; 812 for (i = 0; i < (1 << order); i++) 813 bad += free_pages_check(page + i); 814 if (bad) 815 return false; 816 817 reset_page_owner(page, order); 818 819 if (!PageHighMem(page)) { 820 debug_check_no_locks_freed(page_address(page), 821 PAGE_SIZE << order); 822 debug_check_no_obj_freed(page_address(page), 823 PAGE_SIZE << order); 824 } 825 arch_free_page(page, order); 826 kernel_map_pages(page, 1 << order, 0); 827 828 return true; 829 } 830 831 static void __free_pages_ok(struct page *page, unsigned int order) 832 { 833 unsigned long flags; 834 int migratetype; 835 unsigned long pfn = page_to_pfn(page); 836 837 if (!free_pages_prepare(page, order)) 838 return; 839 840 migratetype = get_pfnblock_migratetype(page, pfn); 841 local_irq_save(flags); 842 __count_vm_events(PGFREE, 1 << order); 843 set_freepage_migratetype(page, migratetype); 844 free_one_page(page_zone(page), page, pfn, order, migratetype); 845 local_irq_restore(flags); 846 } 847 848 void __init __free_pages_bootmem(struct page *page, unsigned int order) 849 { 850 unsigned int nr_pages = 1 << order; 851 struct page *p = page; 852 unsigned int loop; 853 854 prefetchw(p); 855 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 856 prefetchw(p + 1); 857 __ClearPageReserved(p); 858 set_page_count(p, 0); 859 } 860 __ClearPageReserved(p); 861 set_page_count(p, 0); 862 863 page_zone(page)->managed_pages += nr_pages; 864 set_page_refcounted(page); 865 __free_pages(page, order); 866 } 867 868 #ifdef CONFIG_CMA 869 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 870 void __init init_cma_reserved_pageblock(struct page *page) 871 { 872 unsigned i = pageblock_nr_pages; 873 struct page *p = page; 874 875 do { 876 __ClearPageReserved(p); 877 set_page_count(p, 0); 878 } while (++p, --i); 879 880 set_pageblock_migratetype(page, MIGRATE_CMA); 881 882 if (pageblock_order >= MAX_ORDER) { 883 i = pageblock_nr_pages; 884 p = page; 885 do { 886 set_page_refcounted(p); 887 __free_pages(p, MAX_ORDER - 1); 888 p += MAX_ORDER_NR_PAGES; 889 } while (i -= MAX_ORDER_NR_PAGES); 890 } else { 891 set_page_refcounted(page); 892 __free_pages(page, pageblock_order); 893 } 894 895 adjust_managed_page_count(page, pageblock_nr_pages); 896 } 897 #endif 898 899 /* 900 * The order of subdivision here is critical for the IO subsystem. 901 * Please do not alter this order without good reasons and regression 902 * testing. Specifically, as large blocks of memory are subdivided, 903 * the order in which smaller blocks are delivered depends on the order 904 * they're subdivided in this function. This is the primary factor 905 * influencing the order in which pages are delivered to the IO 906 * subsystem according to empirical testing, and this is also justified 907 * by considering the behavior of a buddy system containing a single 908 * large block of memory acted on by a series of small allocations. 909 * This behavior is a critical factor in sglist merging's success. 910 * 911 * -- nyc 912 */ 913 static inline void expand(struct zone *zone, struct page *page, 914 int low, int high, struct free_area *area, 915 int migratetype) 916 { 917 unsigned long size = 1 << high; 918 919 while (high > low) { 920 area--; 921 high--; 922 size >>= 1; 923 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 924 925 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 926 debug_guardpage_enabled() && 927 high < debug_guardpage_minorder()) { 928 /* 929 * Mark as guard pages (or page), that will allow to 930 * merge back to allocator when buddy will be freed. 931 * Corresponding page table entries will not be touched, 932 * pages will stay not present in virtual address space 933 */ 934 set_page_guard(zone, &page[size], high, migratetype); 935 continue; 936 } 937 list_add(&page[size].lru, &area->free_list[migratetype]); 938 area->nr_free++; 939 set_page_order(&page[size], high); 940 } 941 } 942 943 /* 944 * This page is about to be returned from the page allocator 945 */ 946 static inline int check_new_page(struct page *page) 947 { 948 const char *bad_reason = NULL; 949 unsigned long bad_flags = 0; 950 951 if (unlikely(page_mapcount(page))) 952 bad_reason = "nonzero mapcount"; 953 if (unlikely(page->mapping != NULL)) 954 bad_reason = "non-NULL mapping"; 955 if (unlikely(atomic_read(&page->_count) != 0)) 956 bad_reason = "nonzero _count"; 957 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 958 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 959 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 960 } 961 #ifdef CONFIG_MEMCG 962 if (unlikely(page->mem_cgroup)) 963 bad_reason = "page still charged to cgroup"; 964 #endif 965 if (unlikely(bad_reason)) { 966 bad_page(page, bad_reason, bad_flags); 967 return 1; 968 } 969 return 0; 970 } 971 972 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags) 973 { 974 int i; 975 976 for (i = 0; i < (1 << order); i++) { 977 struct page *p = page + i; 978 if (unlikely(check_new_page(p))) 979 return 1; 980 } 981 982 set_page_private(page, 0); 983 set_page_refcounted(page); 984 985 arch_alloc_page(page, order); 986 kernel_map_pages(page, 1 << order, 1); 987 988 if (gfp_flags & __GFP_ZERO) 989 prep_zero_page(page, order, gfp_flags); 990 991 if (order && (gfp_flags & __GFP_COMP)) 992 prep_compound_page(page, order); 993 994 set_page_owner(page, order, gfp_flags); 995 996 return 0; 997 } 998 999 /* 1000 * Go through the free lists for the given migratetype and remove 1001 * the smallest available page from the freelists 1002 */ 1003 static inline 1004 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1005 int migratetype) 1006 { 1007 unsigned int current_order; 1008 struct free_area *area; 1009 struct page *page; 1010 1011 /* Find a page of the appropriate size in the preferred list */ 1012 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1013 area = &(zone->free_area[current_order]); 1014 if (list_empty(&area->free_list[migratetype])) 1015 continue; 1016 1017 page = list_entry(area->free_list[migratetype].next, 1018 struct page, lru); 1019 list_del(&page->lru); 1020 rmv_page_order(page); 1021 area->nr_free--; 1022 expand(zone, page, order, current_order, area, migratetype); 1023 set_freepage_migratetype(page, migratetype); 1024 return page; 1025 } 1026 1027 return NULL; 1028 } 1029 1030 1031 /* 1032 * This array describes the order lists are fallen back to when 1033 * the free lists for the desirable migrate type are depleted 1034 */ 1035 static int fallbacks[MIGRATE_TYPES][4] = { 1036 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1037 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1038 #ifdef CONFIG_CMA 1039 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1040 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 1041 #else 1042 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1043 #endif 1044 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 1045 #ifdef CONFIG_MEMORY_ISOLATION 1046 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 1047 #endif 1048 }; 1049 1050 /* 1051 * Move the free pages in a range to the free lists of the requested type. 1052 * Note that start_page and end_pages are not aligned on a pageblock 1053 * boundary. If alignment is required, use move_freepages_block() 1054 */ 1055 int move_freepages(struct zone *zone, 1056 struct page *start_page, struct page *end_page, 1057 int migratetype) 1058 { 1059 struct page *page; 1060 unsigned long order; 1061 int pages_moved = 0; 1062 1063 #ifndef CONFIG_HOLES_IN_ZONE 1064 /* 1065 * page_zone is not safe to call in this context when 1066 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1067 * anyway as we check zone boundaries in move_freepages_block(). 1068 * Remove at a later date when no bug reports exist related to 1069 * grouping pages by mobility 1070 */ 1071 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1072 #endif 1073 1074 for (page = start_page; page <= end_page;) { 1075 /* Make sure we are not inadvertently changing nodes */ 1076 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1077 1078 if (!pfn_valid_within(page_to_pfn(page))) { 1079 page++; 1080 continue; 1081 } 1082 1083 if (!PageBuddy(page)) { 1084 page++; 1085 continue; 1086 } 1087 1088 order = page_order(page); 1089 list_move(&page->lru, 1090 &zone->free_area[order].free_list[migratetype]); 1091 set_freepage_migratetype(page, migratetype); 1092 page += 1 << order; 1093 pages_moved += 1 << order; 1094 } 1095 1096 return pages_moved; 1097 } 1098 1099 int move_freepages_block(struct zone *zone, struct page *page, 1100 int migratetype) 1101 { 1102 unsigned long start_pfn, end_pfn; 1103 struct page *start_page, *end_page; 1104 1105 start_pfn = page_to_pfn(page); 1106 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1107 start_page = pfn_to_page(start_pfn); 1108 end_page = start_page + pageblock_nr_pages - 1; 1109 end_pfn = start_pfn + pageblock_nr_pages - 1; 1110 1111 /* Do not cross zone boundaries */ 1112 if (!zone_spans_pfn(zone, start_pfn)) 1113 start_page = page; 1114 if (!zone_spans_pfn(zone, end_pfn)) 1115 return 0; 1116 1117 return move_freepages(zone, start_page, end_page, migratetype); 1118 } 1119 1120 static void change_pageblock_range(struct page *pageblock_page, 1121 int start_order, int migratetype) 1122 { 1123 int nr_pageblocks = 1 << (start_order - pageblock_order); 1124 1125 while (nr_pageblocks--) { 1126 set_pageblock_migratetype(pageblock_page, migratetype); 1127 pageblock_page += pageblock_nr_pages; 1128 } 1129 } 1130 1131 /* 1132 * If breaking a large block of pages, move all free pages to the preferred 1133 * allocation list. If falling back for a reclaimable kernel allocation, be 1134 * more aggressive about taking ownership of free pages. 1135 * 1136 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1137 * nor move CMA pages to different free lists. We don't want unmovable pages 1138 * to be allocated from MIGRATE_CMA areas. 1139 * 1140 * Returns the new migratetype of the pageblock (or the same old migratetype 1141 * if it was unchanged). 1142 */ 1143 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1144 int start_type, int fallback_type) 1145 { 1146 int current_order = page_order(page); 1147 1148 /* 1149 * When borrowing from MIGRATE_CMA, we need to release the excess 1150 * buddy pages to CMA itself. We also ensure the freepage_migratetype 1151 * is set to CMA so it is returned to the correct freelist in case 1152 * the page ends up being not actually allocated from the pcp lists. 1153 */ 1154 if (is_migrate_cma(fallback_type)) 1155 return fallback_type; 1156 1157 /* Take ownership for orders >= pageblock_order */ 1158 if (current_order >= pageblock_order) { 1159 change_pageblock_range(page, current_order, start_type); 1160 return start_type; 1161 } 1162 1163 if (current_order >= pageblock_order / 2 || 1164 start_type == MIGRATE_RECLAIMABLE || 1165 page_group_by_mobility_disabled) { 1166 int pages; 1167 1168 pages = move_freepages_block(zone, page, start_type); 1169 1170 /* Claim the whole block if over half of it is free */ 1171 if (pages >= (1 << (pageblock_order-1)) || 1172 page_group_by_mobility_disabled) { 1173 1174 set_pageblock_migratetype(page, start_type); 1175 return start_type; 1176 } 1177 1178 } 1179 1180 return fallback_type; 1181 } 1182 1183 /* Remove an element from the buddy allocator from the fallback list */ 1184 static inline struct page * 1185 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1186 { 1187 struct free_area *area; 1188 unsigned int current_order; 1189 struct page *page; 1190 int migratetype, new_type, i; 1191 1192 /* Find the largest possible block of pages in the other list */ 1193 for (current_order = MAX_ORDER-1; 1194 current_order >= order && current_order <= MAX_ORDER-1; 1195 --current_order) { 1196 for (i = 0;; i++) { 1197 migratetype = fallbacks[start_migratetype][i]; 1198 1199 /* MIGRATE_RESERVE handled later if necessary */ 1200 if (migratetype == MIGRATE_RESERVE) 1201 break; 1202 1203 area = &(zone->free_area[current_order]); 1204 if (list_empty(&area->free_list[migratetype])) 1205 continue; 1206 1207 page = list_entry(area->free_list[migratetype].next, 1208 struct page, lru); 1209 area->nr_free--; 1210 1211 new_type = try_to_steal_freepages(zone, page, 1212 start_migratetype, 1213 migratetype); 1214 1215 /* Remove the page from the freelists */ 1216 list_del(&page->lru); 1217 rmv_page_order(page); 1218 1219 expand(zone, page, order, current_order, area, 1220 new_type); 1221 /* The freepage_migratetype may differ from pageblock's 1222 * migratetype depending on the decisions in 1223 * try_to_steal_freepages. This is OK as long as it does 1224 * not differ for MIGRATE_CMA type. 1225 */ 1226 set_freepage_migratetype(page, new_type); 1227 1228 trace_mm_page_alloc_extfrag(page, order, current_order, 1229 start_migratetype, migratetype, new_type); 1230 1231 return page; 1232 } 1233 } 1234 1235 return NULL; 1236 } 1237 1238 /* 1239 * Do the hard work of removing an element from the buddy allocator. 1240 * Call me with the zone->lock already held. 1241 */ 1242 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1243 int migratetype) 1244 { 1245 struct page *page; 1246 1247 retry_reserve: 1248 page = __rmqueue_smallest(zone, order, migratetype); 1249 1250 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1251 page = __rmqueue_fallback(zone, order, migratetype); 1252 1253 /* 1254 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1255 * is used because __rmqueue_smallest is an inline function 1256 * and we want just one call site 1257 */ 1258 if (!page) { 1259 migratetype = MIGRATE_RESERVE; 1260 goto retry_reserve; 1261 } 1262 } 1263 1264 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1265 return page; 1266 } 1267 1268 /* 1269 * Obtain a specified number of elements from the buddy allocator, all under 1270 * a single hold of the lock, for efficiency. Add them to the supplied list. 1271 * Returns the number of new pages which were placed at *list. 1272 */ 1273 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1274 unsigned long count, struct list_head *list, 1275 int migratetype, bool cold) 1276 { 1277 int i; 1278 1279 spin_lock(&zone->lock); 1280 for (i = 0; i < count; ++i) { 1281 struct page *page = __rmqueue(zone, order, migratetype); 1282 if (unlikely(page == NULL)) 1283 break; 1284 1285 /* 1286 * Split buddy pages returned by expand() are received here 1287 * in physical page order. The page is added to the callers and 1288 * list and the list head then moves forward. From the callers 1289 * perspective, the linked list is ordered by page number in 1290 * some conditions. This is useful for IO devices that can 1291 * merge IO requests if the physical pages are ordered 1292 * properly. 1293 */ 1294 if (likely(!cold)) 1295 list_add(&page->lru, list); 1296 else 1297 list_add_tail(&page->lru, list); 1298 list = &page->lru; 1299 if (is_migrate_cma(get_freepage_migratetype(page))) 1300 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1301 -(1 << order)); 1302 } 1303 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1304 spin_unlock(&zone->lock); 1305 return i; 1306 } 1307 1308 #ifdef CONFIG_NUMA 1309 /* 1310 * Called from the vmstat counter updater to drain pagesets of this 1311 * currently executing processor on remote nodes after they have 1312 * expired. 1313 * 1314 * Note that this function must be called with the thread pinned to 1315 * a single processor. 1316 */ 1317 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1318 { 1319 unsigned long flags; 1320 int to_drain, batch; 1321 1322 local_irq_save(flags); 1323 batch = ACCESS_ONCE(pcp->batch); 1324 to_drain = min(pcp->count, batch); 1325 if (to_drain > 0) { 1326 free_pcppages_bulk(zone, to_drain, pcp); 1327 pcp->count -= to_drain; 1328 } 1329 local_irq_restore(flags); 1330 } 1331 #endif 1332 1333 /* 1334 * Drain pcplists of the indicated processor and zone. 1335 * 1336 * The processor must either be the current processor and the 1337 * thread pinned to the current processor or a processor that 1338 * is not online. 1339 */ 1340 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 1341 { 1342 unsigned long flags; 1343 struct per_cpu_pageset *pset; 1344 struct per_cpu_pages *pcp; 1345 1346 local_irq_save(flags); 1347 pset = per_cpu_ptr(zone->pageset, cpu); 1348 1349 pcp = &pset->pcp; 1350 if (pcp->count) { 1351 free_pcppages_bulk(zone, pcp->count, pcp); 1352 pcp->count = 0; 1353 } 1354 local_irq_restore(flags); 1355 } 1356 1357 /* 1358 * Drain pcplists of all zones on the indicated processor. 1359 * 1360 * The processor must either be the current processor and the 1361 * thread pinned to the current processor or a processor that 1362 * is not online. 1363 */ 1364 static void drain_pages(unsigned int cpu) 1365 { 1366 struct zone *zone; 1367 1368 for_each_populated_zone(zone) { 1369 drain_pages_zone(cpu, zone); 1370 } 1371 } 1372 1373 /* 1374 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1375 * 1376 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 1377 * the single zone's pages. 1378 */ 1379 void drain_local_pages(struct zone *zone) 1380 { 1381 int cpu = smp_processor_id(); 1382 1383 if (zone) 1384 drain_pages_zone(cpu, zone); 1385 else 1386 drain_pages(cpu); 1387 } 1388 1389 /* 1390 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1391 * 1392 * When zone parameter is non-NULL, spill just the single zone's pages. 1393 * 1394 * Note that this code is protected against sending an IPI to an offline 1395 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1396 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1397 * nothing keeps CPUs from showing up after we populated the cpumask and 1398 * before the call to on_each_cpu_mask(). 1399 */ 1400 void drain_all_pages(struct zone *zone) 1401 { 1402 int cpu; 1403 1404 /* 1405 * Allocate in the BSS so we wont require allocation in 1406 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1407 */ 1408 static cpumask_t cpus_with_pcps; 1409 1410 /* 1411 * We don't care about racing with CPU hotplug event 1412 * as offline notification will cause the notified 1413 * cpu to drain that CPU pcps and on_each_cpu_mask 1414 * disables preemption as part of its processing 1415 */ 1416 for_each_online_cpu(cpu) { 1417 struct per_cpu_pageset *pcp; 1418 struct zone *z; 1419 bool has_pcps = false; 1420 1421 if (zone) { 1422 pcp = per_cpu_ptr(zone->pageset, cpu); 1423 if (pcp->pcp.count) 1424 has_pcps = true; 1425 } else { 1426 for_each_populated_zone(z) { 1427 pcp = per_cpu_ptr(z->pageset, cpu); 1428 if (pcp->pcp.count) { 1429 has_pcps = true; 1430 break; 1431 } 1432 } 1433 } 1434 1435 if (has_pcps) 1436 cpumask_set_cpu(cpu, &cpus_with_pcps); 1437 else 1438 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1439 } 1440 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 1441 zone, 1); 1442 } 1443 1444 #ifdef CONFIG_HIBERNATION 1445 1446 void mark_free_pages(struct zone *zone) 1447 { 1448 unsigned long pfn, max_zone_pfn; 1449 unsigned long flags; 1450 unsigned int order, t; 1451 struct list_head *curr; 1452 1453 if (zone_is_empty(zone)) 1454 return; 1455 1456 spin_lock_irqsave(&zone->lock, flags); 1457 1458 max_zone_pfn = zone_end_pfn(zone); 1459 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1460 if (pfn_valid(pfn)) { 1461 struct page *page = pfn_to_page(pfn); 1462 1463 if (!swsusp_page_is_forbidden(page)) 1464 swsusp_unset_page_free(page); 1465 } 1466 1467 for_each_migratetype_order(order, t) { 1468 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1469 unsigned long i; 1470 1471 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1472 for (i = 0; i < (1UL << order); i++) 1473 swsusp_set_page_free(pfn_to_page(pfn + i)); 1474 } 1475 } 1476 spin_unlock_irqrestore(&zone->lock, flags); 1477 } 1478 #endif /* CONFIG_PM */ 1479 1480 /* 1481 * Free a 0-order page 1482 * cold == true ? free a cold page : free a hot page 1483 */ 1484 void free_hot_cold_page(struct page *page, bool cold) 1485 { 1486 struct zone *zone = page_zone(page); 1487 struct per_cpu_pages *pcp; 1488 unsigned long flags; 1489 unsigned long pfn = page_to_pfn(page); 1490 int migratetype; 1491 1492 if (!free_pages_prepare(page, 0)) 1493 return; 1494 1495 migratetype = get_pfnblock_migratetype(page, pfn); 1496 set_freepage_migratetype(page, migratetype); 1497 local_irq_save(flags); 1498 __count_vm_event(PGFREE); 1499 1500 /* 1501 * We only track unmovable, reclaimable and movable on pcp lists. 1502 * Free ISOLATE pages back to the allocator because they are being 1503 * offlined but treat RESERVE as movable pages so we can get those 1504 * areas back if necessary. Otherwise, we may have to free 1505 * excessively into the page allocator 1506 */ 1507 if (migratetype >= MIGRATE_PCPTYPES) { 1508 if (unlikely(is_migrate_isolate(migratetype))) { 1509 free_one_page(zone, page, pfn, 0, migratetype); 1510 goto out; 1511 } 1512 migratetype = MIGRATE_MOVABLE; 1513 } 1514 1515 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1516 if (!cold) 1517 list_add(&page->lru, &pcp->lists[migratetype]); 1518 else 1519 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1520 pcp->count++; 1521 if (pcp->count >= pcp->high) { 1522 unsigned long batch = ACCESS_ONCE(pcp->batch); 1523 free_pcppages_bulk(zone, batch, pcp); 1524 pcp->count -= batch; 1525 } 1526 1527 out: 1528 local_irq_restore(flags); 1529 } 1530 1531 /* 1532 * Free a list of 0-order pages 1533 */ 1534 void free_hot_cold_page_list(struct list_head *list, bool cold) 1535 { 1536 struct page *page, *next; 1537 1538 list_for_each_entry_safe(page, next, list, lru) { 1539 trace_mm_page_free_batched(page, cold); 1540 free_hot_cold_page(page, cold); 1541 } 1542 } 1543 1544 /* 1545 * split_page takes a non-compound higher-order page, and splits it into 1546 * n (1<<order) sub-pages: page[0..n] 1547 * Each sub-page must be freed individually. 1548 * 1549 * Note: this is probably too low level an operation for use in drivers. 1550 * Please consult with lkml before using this in your driver. 1551 */ 1552 void split_page(struct page *page, unsigned int order) 1553 { 1554 int i; 1555 1556 VM_BUG_ON_PAGE(PageCompound(page), page); 1557 VM_BUG_ON_PAGE(!page_count(page), page); 1558 1559 #ifdef CONFIG_KMEMCHECK 1560 /* 1561 * Split shadow pages too, because free(page[0]) would 1562 * otherwise free the whole shadow. 1563 */ 1564 if (kmemcheck_page_is_tracked(page)) 1565 split_page(virt_to_page(page[0].shadow), order); 1566 #endif 1567 1568 set_page_owner(page, 0, 0); 1569 for (i = 1; i < (1 << order); i++) { 1570 set_page_refcounted(page + i); 1571 set_page_owner(page + i, 0, 0); 1572 } 1573 } 1574 EXPORT_SYMBOL_GPL(split_page); 1575 1576 int __isolate_free_page(struct page *page, unsigned int order) 1577 { 1578 unsigned long watermark; 1579 struct zone *zone; 1580 int mt; 1581 1582 BUG_ON(!PageBuddy(page)); 1583 1584 zone = page_zone(page); 1585 mt = get_pageblock_migratetype(page); 1586 1587 if (!is_migrate_isolate(mt)) { 1588 /* Obey watermarks as if the page was being allocated */ 1589 watermark = low_wmark_pages(zone) + (1 << order); 1590 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1591 return 0; 1592 1593 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1594 } 1595 1596 /* Remove page from free list */ 1597 list_del(&page->lru); 1598 zone->free_area[order].nr_free--; 1599 rmv_page_order(page); 1600 1601 /* Set the pageblock if the isolated page is at least a pageblock */ 1602 if (order >= pageblock_order - 1) { 1603 struct page *endpage = page + (1 << order) - 1; 1604 for (; page < endpage; page += pageblock_nr_pages) { 1605 int mt = get_pageblock_migratetype(page); 1606 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1607 set_pageblock_migratetype(page, 1608 MIGRATE_MOVABLE); 1609 } 1610 } 1611 1612 set_page_owner(page, order, 0); 1613 return 1UL << order; 1614 } 1615 1616 /* 1617 * Similar to split_page except the page is already free. As this is only 1618 * being used for migration, the migratetype of the block also changes. 1619 * As this is called with interrupts disabled, the caller is responsible 1620 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1621 * are enabled. 1622 * 1623 * Note: this is probably too low level an operation for use in drivers. 1624 * Please consult with lkml before using this in your driver. 1625 */ 1626 int split_free_page(struct page *page) 1627 { 1628 unsigned int order; 1629 int nr_pages; 1630 1631 order = page_order(page); 1632 1633 nr_pages = __isolate_free_page(page, order); 1634 if (!nr_pages) 1635 return 0; 1636 1637 /* Split into individual pages */ 1638 set_page_refcounted(page); 1639 split_page(page, order); 1640 return nr_pages; 1641 } 1642 1643 /* 1644 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1645 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1646 * or two. 1647 */ 1648 static inline 1649 struct page *buffered_rmqueue(struct zone *preferred_zone, 1650 struct zone *zone, unsigned int order, 1651 gfp_t gfp_flags, int migratetype) 1652 { 1653 unsigned long flags; 1654 struct page *page; 1655 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1656 1657 again: 1658 if (likely(order == 0)) { 1659 struct per_cpu_pages *pcp; 1660 struct list_head *list; 1661 1662 local_irq_save(flags); 1663 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1664 list = &pcp->lists[migratetype]; 1665 if (list_empty(list)) { 1666 pcp->count += rmqueue_bulk(zone, 0, 1667 pcp->batch, list, 1668 migratetype, cold); 1669 if (unlikely(list_empty(list))) 1670 goto failed; 1671 } 1672 1673 if (cold) 1674 page = list_entry(list->prev, struct page, lru); 1675 else 1676 page = list_entry(list->next, struct page, lru); 1677 1678 list_del(&page->lru); 1679 pcp->count--; 1680 } else { 1681 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1682 /* 1683 * __GFP_NOFAIL is not to be used in new code. 1684 * 1685 * All __GFP_NOFAIL callers should be fixed so that they 1686 * properly detect and handle allocation failures. 1687 * 1688 * We most definitely don't want callers attempting to 1689 * allocate greater than order-1 page units with 1690 * __GFP_NOFAIL. 1691 */ 1692 WARN_ON_ONCE(order > 1); 1693 } 1694 spin_lock_irqsave(&zone->lock, flags); 1695 page = __rmqueue(zone, order, migratetype); 1696 spin_unlock(&zone->lock); 1697 if (!page) 1698 goto failed; 1699 __mod_zone_freepage_state(zone, -(1 << order), 1700 get_freepage_migratetype(page)); 1701 } 1702 1703 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1704 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 1705 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 1706 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 1707 1708 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1709 zone_statistics(preferred_zone, zone, gfp_flags); 1710 local_irq_restore(flags); 1711 1712 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1713 if (prep_new_page(page, order, gfp_flags)) 1714 goto again; 1715 return page; 1716 1717 failed: 1718 local_irq_restore(flags); 1719 return NULL; 1720 } 1721 1722 #ifdef CONFIG_FAIL_PAGE_ALLOC 1723 1724 static struct { 1725 struct fault_attr attr; 1726 1727 u32 ignore_gfp_highmem; 1728 u32 ignore_gfp_wait; 1729 u32 min_order; 1730 } fail_page_alloc = { 1731 .attr = FAULT_ATTR_INITIALIZER, 1732 .ignore_gfp_wait = 1, 1733 .ignore_gfp_highmem = 1, 1734 .min_order = 1, 1735 }; 1736 1737 static int __init setup_fail_page_alloc(char *str) 1738 { 1739 return setup_fault_attr(&fail_page_alloc.attr, str); 1740 } 1741 __setup("fail_page_alloc=", setup_fail_page_alloc); 1742 1743 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1744 { 1745 if (order < fail_page_alloc.min_order) 1746 return false; 1747 if (gfp_mask & __GFP_NOFAIL) 1748 return false; 1749 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1750 return false; 1751 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1752 return false; 1753 1754 return should_fail(&fail_page_alloc.attr, 1 << order); 1755 } 1756 1757 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1758 1759 static int __init fail_page_alloc_debugfs(void) 1760 { 1761 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1762 struct dentry *dir; 1763 1764 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1765 &fail_page_alloc.attr); 1766 if (IS_ERR(dir)) 1767 return PTR_ERR(dir); 1768 1769 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1770 &fail_page_alloc.ignore_gfp_wait)) 1771 goto fail; 1772 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1773 &fail_page_alloc.ignore_gfp_highmem)) 1774 goto fail; 1775 if (!debugfs_create_u32("min-order", mode, dir, 1776 &fail_page_alloc.min_order)) 1777 goto fail; 1778 1779 return 0; 1780 fail: 1781 debugfs_remove_recursive(dir); 1782 1783 return -ENOMEM; 1784 } 1785 1786 late_initcall(fail_page_alloc_debugfs); 1787 1788 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1789 1790 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1791 1792 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1793 { 1794 return false; 1795 } 1796 1797 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1798 1799 /* 1800 * Return true if free pages are above 'mark'. This takes into account the order 1801 * of the allocation. 1802 */ 1803 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1804 unsigned long mark, int classzone_idx, int alloc_flags, 1805 long free_pages) 1806 { 1807 /* free_pages may go negative - that's OK */ 1808 long min = mark; 1809 int o; 1810 long free_cma = 0; 1811 1812 free_pages -= (1 << order) - 1; 1813 if (alloc_flags & ALLOC_HIGH) 1814 min -= min / 2; 1815 if (alloc_flags & ALLOC_HARDER) 1816 min -= min / 4; 1817 #ifdef CONFIG_CMA 1818 /* If allocation can't use CMA areas don't use free CMA pages */ 1819 if (!(alloc_flags & ALLOC_CMA)) 1820 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1821 #endif 1822 1823 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 1824 return false; 1825 for (o = 0; o < order; o++) { 1826 /* At the next order, this order's pages become unavailable */ 1827 free_pages -= z->free_area[o].nr_free << o; 1828 1829 /* Require fewer higher order pages to be free */ 1830 min >>= 1; 1831 1832 if (free_pages <= min) 1833 return false; 1834 } 1835 return true; 1836 } 1837 1838 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1839 int classzone_idx, int alloc_flags) 1840 { 1841 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1842 zone_page_state(z, NR_FREE_PAGES)); 1843 } 1844 1845 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1846 unsigned long mark, int classzone_idx, int alloc_flags) 1847 { 1848 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1849 1850 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1851 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1852 1853 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1854 free_pages); 1855 } 1856 1857 #ifdef CONFIG_NUMA 1858 /* 1859 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1860 * skip over zones that are not allowed by the cpuset, or that have 1861 * been recently (in last second) found to be nearly full. See further 1862 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1863 * that have to skip over a lot of full or unallowed zones. 1864 * 1865 * If the zonelist cache is present in the passed zonelist, then 1866 * returns a pointer to the allowed node mask (either the current 1867 * tasks mems_allowed, or node_states[N_MEMORY].) 1868 * 1869 * If the zonelist cache is not available for this zonelist, does 1870 * nothing and returns NULL. 1871 * 1872 * If the fullzones BITMAP in the zonelist cache is stale (more than 1873 * a second since last zap'd) then we zap it out (clear its bits.) 1874 * 1875 * We hold off even calling zlc_setup, until after we've checked the 1876 * first zone in the zonelist, on the theory that most allocations will 1877 * be satisfied from that first zone, so best to examine that zone as 1878 * quickly as we can. 1879 */ 1880 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1881 { 1882 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1883 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1884 1885 zlc = zonelist->zlcache_ptr; 1886 if (!zlc) 1887 return NULL; 1888 1889 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1890 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1891 zlc->last_full_zap = jiffies; 1892 } 1893 1894 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1895 &cpuset_current_mems_allowed : 1896 &node_states[N_MEMORY]; 1897 return allowednodes; 1898 } 1899 1900 /* 1901 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1902 * if it is worth looking at further for free memory: 1903 * 1) Check that the zone isn't thought to be full (doesn't have its 1904 * bit set in the zonelist_cache fullzones BITMAP). 1905 * 2) Check that the zones node (obtained from the zonelist_cache 1906 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1907 * Return true (non-zero) if zone is worth looking at further, or 1908 * else return false (zero) if it is not. 1909 * 1910 * This check -ignores- the distinction between various watermarks, 1911 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1912 * found to be full for any variation of these watermarks, it will 1913 * be considered full for up to one second by all requests, unless 1914 * we are so low on memory on all allowed nodes that we are forced 1915 * into the second scan of the zonelist. 1916 * 1917 * In the second scan we ignore this zonelist cache and exactly 1918 * apply the watermarks to all zones, even it is slower to do so. 1919 * We are low on memory in the second scan, and should leave no stone 1920 * unturned looking for a free page. 1921 */ 1922 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1923 nodemask_t *allowednodes) 1924 { 1925 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1926 int i; /* index of *z in zonelist zones */ 1927 int n; /* node that zone *z is on */ 1928 1929 zlc = zonelist->zlcache_ptr; 1930 if (!zlc) 1931 return 1; 1932 1933 i = z - zonelist->_zonerefs; 1934 n = zlc->z_to_n[i]; 1935 1936 /* This zone is worth trying if it is allowed but not full */ 1937 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1938 } 1939 1940 /* 1941 * Given 'z' scanning a zonelist, set the corresponding bit in 1942 * zlc->fullzones, so that subsequent attempts to allocate a page 1943 * from that zone don't waste time re-examining it. 1944 */ 1945 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1946 { 1947 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1948 int i; /* index of *z in zonelist zones */ 1949 1950 zlc = zonelist->zlcache_ptr; 1951 if (!zlc) 1952 return; 1953 1954 i = z - zonelist->_zonerefs; 1955 1956 set_bit(i, zlc->fullzones); 1957 } 1958 1959 /* 1960 * clear all zones full, called after direct reclaim makes progress so that 1961 * a zone that was recently full is not skipped over for up to a second 1962 */ 1963 static void zlc_clear_zones_full(struct zonelist *zonelist) 1964 { 1965 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1966 1967 zlc = zonelist->zlcache_ptr; 1968 if (!zlc) 1969 return; 1970 1971 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1972 } 1973 1974 static bool zone_local(struct zone *local_zone, struct zone *zone) 1975 { 1976 return local_zone->node == zone->node; 1977 } 1978 1979 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1980 { 1981 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 1982 RECLAIM_DISTANCE; 1983 } 1984 1985 #else /* CONFIG_NUMA */ 1986 1987 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1988 { 1989 return NULL; 1990 } 1991 1992 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1993 nodemask_t *allowednodes) 1994 { 1995 return 1; 1996 } 1997 1998 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1999 { 2000 } 2001 2002 static void zlc_clear_zones_full(struct zonelist *zonelist) 2003 { 2004 } 2005 2006 static bool zone_local(struct zone *local_zone, struct zone *zone) 2007 { 2008 return true; 2009 } 2010 2011 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2012 { 2013 return true; 2014 } 2015 2016 #endif /* CONFIG_NUMA */ 2017 2018 static void reset_alloc_batches(struct zone *preferred_zone) 2019 { 2020 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2021 2022 do { 2023 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2024 high_wmark_pages(zone) - low_wmark_pages(zone) - 2025 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2026 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2027 } while (zone++ != preferred_zone); 2028 } 2029 2030 /* 2031 * get_page_from_freelist goes through the zonelist trying to allocate 2032 * a page. 2033 */ 2034 static struct page * 2035 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 2036 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 2037 struct zone *preferred_zone, int classzone_idx, int migratetype) 2038 { 2039 struct zoneref *z; 2040 struct page *page = NULL; 2041 struct zone *zone; 2042 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 2043 int zlc_active = 0; /* set if using zonelist_cache */ 2044 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 2045 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 2046 (gfp_mask & __GFP_WRITE); 2047 int nr_fair_skipped = 0; 2048 bool zonelist_rescan; 2049 2050 zonelist_scan: 2051 zonelist_rescan = false; 2052 2053 /* 2054 * Scan zonelist, looking for a zone with enough free. 2055 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2056 */ 2057 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2058 high_zoneidx, nodemask) { 2059 unsigned long mark; 2060 2061 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2062 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2063 continue; 2064 if (cpusets_enabled() && 2065 (alloc_flags & ALLOC_CPUSET) && 2066 !cpuset_zone_allowed(zone, gfp_mask)) 2067 continue; 2068 /* 2069 * Distribute pages in proportion to the individual 2070 * zone size to ensure fair page aging. The zone a 2071 * page was allocated in should have no effect on the 2072 * time the page has in memory before being reclaimed. 2073 */ 2074 if (alloc_flags & ALLOC_FAIR) { 2075 if (!zone_local(preferred_zone, zone)) 2076 break; 2077 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2078 nr_fair_skipped++; 2079 continue; 2080 } 2081 } 2082 /* 2083 * When allocating a page cache page for writing, we 2084 * want to get it from a zone that is within its dirty 2085 * limit, such that no single zone holds more than its 2086 * proportional share of globally allowed dirty pages. 2087 * The dirty limits take into account the zone's 2088 * lowmem reserves and high watermark so that kswapd 2089 * should be able to balance it without having to 2090 * write pages from its LRU list. 2091 * 2092 * This may look like it could increase pressure on 2093 * lower zones by failing allocations in higher zones 2094 * before they are full. But the pages that do spill 2095 * over are limited as the lower zones are protected 2096 * by this very same mechanism. It should not become 2097 * a practical burden to them. 2098 * 2099 * XXX: For now, allow allocations to potentially 2100 * exceed the per-zone dirty limit in the slowpath 2101 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2102 * which is important when on a NUMA setup the allowed 2103 * zones are together not big enough to reach the 2104 * global limit. The proper fix for these situations 2105 * will require awareness of zones in the 2106 * dirty-throttling and the flusher threads. 2107 */ 2108 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2109 continue; 2110 2111 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2112 if (!zone_watermark_ok(zone, order, mark, 2113 classzone_idx, alloc_flags)) { 2114 int ret; 2115 2116 /* Checked here to keep the fast path fast */ 2117 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2118 if (alloc_flags & ALLOC_NO_WATERMARKS) 2119 goto try_this_zone; 2120 2121 if (IS_ENABLED(CONFIG_NUMA) && 2122 !did_zlc_setup && nr_online_nodes > 1) { 2123 /* 2124 * we do zlc_setup if there are multiple nodes 2125 * and before considering the first zone allowed 2126 * by the cpuset. 2127 */ 2128 allowednodes = zlc_setup(zonelist, alloc_flags); 2129 zlc_active = 1; 2130 did_zlc_setup = 1; 2131 } 2132 2133 if (zone_reclaim_mode == 0 || 2134 !zone_allows_reclaim(preferred_zone, zone)) 2135 goto this_zone_full; 2136 2137 /* 2138 * As we may have just activated ZLC, check if the first 2139 * eligible zone has failed zone_reclaim recently. 2140 */ 2141 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2142 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2143 continue; 2144 2145 ret = zone_reclaim(zone, gfp_mask, order); 2146 switch (ret) { 2147 case ZONE_RECLAIM_NOSCAN: 2148 /* did not scan */ 2149 continue; 2150 case ZONE_RECLAIM_FULL: 2151 /* scanned but unreclaimable */ 2152 continue; 2153 default: 2154 /* did we reclaim enough */ 2155 if (zone_watermark_ok(zone, order, mark, 2156 classzone_idx, alloc_flags)) 2157 goto try_this_zone; 2158 2159 /* 2160 * Failed to reclaim enough to meet watermark. 2161 * Only mark the zone full if checking the min 2162 * watermark or if we failed to reclaim just 2163 * 1<<order pages or else the page allocator 2164 * fastpath will prematurely mark zones full 2165 * when the watermark is between the low and 2166 * min watermarks. 2167 */ 2168 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2169 ret == ZONE_RECLAIM_SOME) 2170 goto this_zone_full; 2171 2172 continue; 2173 } 2174 } 2175 2176 try_this_zone: 2177 page = buffered_rmqueue(preferred_zone, zone, order, 2178 gfp_mask, migratetype); 2179 if (page) 2180 break; 2181 this_zone_full: 2182 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2183 zlc_mark_zone_full(zonelist, z); 2184 } 2185 2186 if (page) { 2187 /* 2188 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2189 * necessary to allocate the page. The expectation is 2190 * that the caller is taking steps that will free more 2191 * memory. The caller should avoid the page being used 2192 * for !PFMEMALLOC purposes. 2193 */ 2194 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2195 return page; 2196 } 2197 2198 /* 2199 * The first pass makes sure allocations are spread fairly within the 2200 * local node. However, the local node might have free pages left 2201 * after the fairness batches are exhausted, and remote zones haven't 2202 * even been considered yet. Try once more without fairness, and 2203 * include remote zones now, before entering the slowpath and waking 2204 * kswapd: prefer spilling to a remote zone over swapping locally. 2205 */ 2206 if (alloc_flags & ALLOC_FAIR) { 2207 alloc_flags &= ~ALLOC_FAIR; 2208 if (nr_fair_skipped) { 2209 zonelist_rescan = true; 2210 reset_alloc_batches(preferred_zone); 2211 } 2212 if (nr_online_nodes > 1) 2213 zonelist_rescan = true; 2214 } 2215 2216 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2217 /* Disable zlc cache for second zonelist scan */ 2218 zlc_active = 0; 2219 zonelist_rescan = true; 2220 } 2221 2222 if (zonelist_rescan) 2223 goto zonelist_scan; 2224 2225 return NULL; 2226 } 2227 2228 /* 2229 * Large machines with many possible nodes should not always dump per-node 2230 * meminfo in irq context. 2231 */ 2232 static inline bool should_suppress_show_mem(void) 2233 { 2234 bool ret = false; 2235 2236 #if NODES_SHIFT > 8 2237 ret = in_interrupt(); 2238 #endif 2239 return ret; 2240 } 2241 2242 static DEFINE_RATELIMIT_STATE(nopage_rs, 2243 DEFAULT_RATELIMIT_INTERVAL, 2244 DEFAULT_RATELIMIT_BURST); 2245 2246 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2247 { 2248 unsigned int filter = SHOW_MEM_FILTER_NODES; 2249 2250 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2251 debug_guardpage_minorder() > 0) 2252 return; 2253 2254 /* 2255 * This documents exceptions given to allocations in certain 2256 * contexts that are allowed to allocate outside current's set 2257 * of allowed nodes. 2258 */ 2259 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2260 if (test_thread_flag(TIF_MEMDIE) || 2261 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2262 filter &= ~SHOW_MEM_FILTER_NODES; 2263 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2264 filter &= ~SHOW_MEM_FILTER_NODES; 2265 2266 if (fmt) { 2267 struct va_format vaf; 2268 va_list args; 2269 2270 va_start(args, fmt); 2271 2272 vaf.fmt = fmt; 2273 vaf.va = &args; 2274 2275 pr_warn("%pV", &vaf); 2276 2277 va_end(args); 2278 } 2279 2280 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2281 current->comm, order, gfp_mask); 2282 2283 dump_stack(); 2284 if (!should_suppress_show_mem()) 2285 show_mem(filter); 2286 } 2287 2288 static inline int 2289 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2290 unsigned long did_some_progress, 2291 unsigned long pages_reclaimed) 2292 { 2293 /* Do not loop if specifically requested */ 2294 if (gfp_mask & __GFP_NORETRY) 2295 return 0; 2296 2297 /* Always retry if specifically requested */ 2298 if (gfp_mask & __GFP_NOFAIL) 2299 return 1; 2300 2301 /* 2302 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2303 * making forward progress without invoking OOM. Suspend also disables 2304 * storage devices so kswapd will not help. Bail if we are suspending. 2305 */ 2306 if (!did_some_progress && pm_suspended_storage()) 2307 return 0; 2308 2309 /* 2310 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2311 * means __GFP_NOFAIL, but that may not be true in other 2312 * implementations. 2313 */ 2314 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2315 return 1; 2316 2317 /* 2318 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2319 * specified, then we retry until we no longer reclaim any pages 2320 * (above), or we've reclaimed an order of pages at least as 2321 * large as the allocation's order. In both cases, if the 2322 * allocation still fails, we stop retrying. 2323 */ 2324 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2325 return 1; 2326 2327 return 0; 2328 } 2329 2330 static inline struct page * 2331 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2332 struct zonelist *zonelist, enum zone_type high_zoneidx, 2333 nodemask_t *nodemask, struct zone *preferred_zone, 2334 int classzone_idx, int migratetype) 2335 { 2336 struct page *page; 2337 2338 /* Acquire the per-zone oom lock for each zone */ 2339 if (!oom_zonelist_trylock(zonelist, gfp_mask)) { 2340 schedule_timeout_uninterruptible(1); 2341 return NULL; 2342 } 2343 2344 /* 2345 * PM-freezer should be notified that there might be an OOM killer on 2346 * its way to kill and wake somebody up. This is too early and we might 2347 * end up not killing anything but false positives are acceptable. 2348 * See freeze_processes. 2349 */ 2350 note_oom_kill(); 2351 2352 /* 2353 * Go through the zonelist yet one more time, keep very high watermark 2354 * here, this is only to catch a parallel oom killing, we must fail if 2355 * we're still under heavy pressure. 2356 */ 2357 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2358 order, zonelist, high_zoneidx, 2359 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2360 preferred_zone, classzone_idx, migratetype); 2361 if (page) 2362 goto out; 2363 2364 if (!(gfp_mask & __GFP_NOFAIL)) { 2365 /* The OOM killer will not help higher order allocs */ 2366 if (order > PAGE_ALLOC_COSTLY_ORDER) 2367 goto out; 2368 /* The OOM killer does not needlessly kill tasks for lowmem */ 2369 if (high_zoneidx < ZONE_NORMAL) 2370 goto out; 2371 /* 2372 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2373 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2374 * The caller should handle page allocation failure by itself if 2375 * it specifies __GFP_THISNODE. 2376 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2377 */ 2378 if (gfp_mask & __GFP_THISNODE) 2379 goto out; 2380 } 2381 /* Exhausted what can be done so it's blamo time */ 2382 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2383 2384 out: 2385 oom_zonelist_unlock(zonelist, gfp_mask); 2386 return page; 2387 } 2388 2389 #ifdef CONFIG_COMPACTION 2390 /* Try memory compaction for high-order allocations before reclaim */ 2391 static struct page * 2392 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2393 struct zonelist *zonelist, enum zone_type high_zoneidx, 2394 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2395 int classzone_idx, int migratetype, enum migrate_mode mode, 2396 int *contended_compaction, bool *deferred_compaction) 2397 { 2398 unsigned long compact_result; 2399 struct page *page; 2400 2401 if (!order) 2402 return NULL; 2403 2404 current->flags |= PF_MEMALLOC; 2405 compact_result = try_to_compact_pages(zonelist, order, gfp_mask, 2406 nodemask, mode, 2407 contended_compaction, 2408 alloc_flags, classzone_idx); 2409 current->flags &= ~PF_MEMALLOC; 2410 2411 switch (compact_result) { 2412 case COMPACT_DEFERRED: 2413 *deferred_compaction = true; 2414 /* fall-through */ 2415 case COMPACT_SKIPPED: 2416 return NULL; 2417 default: 2418 break; 2419 } 2420 2421 /* 2422 * At least in one zone compaction wasn't deferred or skipped, so let's 2423 * count a compaction stall 2424 */ 2425 count_vm_event(COMPACTSTALL); 2426 2427 page = get_page_from_freelist(gfp_mask, nodemask, 2428 order, zonelist, high_zoneidx, 2429 alloc_flags & ~ALLOC_NO_WATERMARKS, 2430 preferred_zone, classzone_idx, migratetype); 2431 2432 if (page) { 2433 struct zone *zone = page_zone(page); 2434 2435 zone->compact_blockskip_flush = false; 2436 compaction_defer_reset(zone, order, true); 2437 count_vm_event(COMPACTSUCCESS); 2438 return page; 2439 } 2440 2441 /* 2442 * It's bad if compaction run occurs and fails. The most likely reason 2443 * is that pages exist, but not enough to satisfy watermarks. 2444 */ 2445 count_vm_event(COMPACTFAIL); 2446 2447 cond_resched(); 2448 2449 return NULL; 2450 } 2451 #else 2452 static inline struct page * 2453 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2454 struct zonelist *zonelist, enum zone_type high_zoneidx, 2455 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2456 int classzone_idx, int migratetype, enum migrate_mode mode, 2457 int *contended_compaction, bool *deferred_compaction) 2458 { 2459 return NULL; 2460 } 2461 #endif /* CONFIG_COMPACTION */ 2462 2463 /* Perform direct synchronous page reclaim */ 2464 static int 2465 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2466 nodemask_t *nodemask) 2467 { 2468 struct reclaim_state reclaim_state; 2469 int progress; 2470 2471 cond_resched(); 2472 2473 /* We now go into synchronous reclaim */ 2474 cpuset_memory_pressure_bump(); 2475 current->flags |= PF_MEMALLOC; 2476 lockdep_set_current_reclaim_state(gfp_mask); 2477 reclaim_state.reclaimed_slab = 0; 2478 current->reclaim_state = &reclaim_state; 2479 2480 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2481 2482 current->reclaim_state = NULL; 2483 lockdep_clear_current_reclaim_state(); 2484 current->flags &= ~PF_MEMALLOC; 2485 2486 cond_resched(); 2487 2488 return progress; 2489 } 2490 2491 /* The really slow allocator path where we enter direct reclaim */ 2492 static inline struct page * 2493 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2494 struct zonelist *zonelist, enum zone_type high_zoneidx, 2495 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2496 int classzone_idx, int migratetype, unsigned long *did_some_progress) 2497 { 2498 struct page *page = NULL; 2499 bool drained = false; 2500 2501 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2502 nodemask); 2503 if (unlikely(!(*did_some_progress))) 2504 return NULL; 2505 2506 /* After successful reclaim, reconsider all zones for allocation */ 2507 if (IS_ENABLED(CONFIG_NUMA)) 2508 zlc_clear_zones_full(zonelist); 2509 2510 retry: 2511 page = get_page_from_freelist(gfp_mask, nodemask, order, 2512 zonelist, high_zoneidx, 2513 alloc_flags & ~ALLOC_NO_WATERMARKS, 2514 preferred_zone, classzone_idx, 2515 migratetype); 2516 2517 /* 2518 * If an allocation failed after direct reclaim, it could be because 2519 * pages are pinned on the per-cpu lists. Drain them and try again 2520 */ 2521 if (!page && !drained) { 2522 drain_all_pages(NULL); 2523 drained = true; 2524 goto retry; 2525 } 2526 2527 return page; 2528 } 2529 2530 /* 2531 * This is called in the allocator slow-path if the allocation request is of 2532 * sufficient urgency to ignore watermarks and take other desperate measures 2533 */ 2534 static inline struct page * 2535 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2536 struct zonelist *zonelist, enum zone_type high_zoneidx, 2537 nodemask_t *nodemask, struct zone *preferred_zone, 2538 int classzone_idx, int migratetype) 2539 { 2540 struct page *page; 2541 2542 do { 2543 page = get_page_from_freelist(gfp_mask, nodemask, order, 2544 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2545 preferred_zone, classzone_idx, migratetype); 2546 2547 if (!page && gfp_mask & __GFP_NOFAIL) 2548 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2549 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2550 2551 return page; 2552 } 2553 2554 static void wake_all_kswapds(unsigned int order, 2555 struct zonelist *zonelist, 2556 enum zone_type high_zoneidx, 2557 struct zone *preferred_zone, 2558 nodemask_t *nodemask) 2559 { 2560 struct zoneref *z; 2561 struct zone *zone; 2562 2563 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2564 high_zoneidx, nodemask) 2565 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2566 } 2567 2568 static inline int 2569 gfp_to_alloc_flags(gfp_t gfp_mask) 2570 { 2571 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2572 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2573 2574 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2575 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2576 2577 /* 2578 * The caller may dip into page reserves a bit more if the caller 2579 * cannot run direct reclaim, or if the caller has realtime scheduling 2580 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2581 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2582 */ 2583 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2584 2585 if (atomic) { 2586 /* 2587 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2588 * if it can't schedule. 2589 */ 2590 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2591 alloc_flags |= ALLOC_HARDER; 2592 /* 2593 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2594 * comment for __cpuset_node_allowed(). 2595 */ 2596 alloc_flags &= ~ALLOC_CPUSET; 2597 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2598 alloc_flags |= ALLOC_HARDER; 2599 2600 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2601 if (gfp_mask & __GFP_MEMALLOC) 2602 alloc_flags |= ALLOC_NO_WATERMARKS; 2603 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2604 alloc_flags |= ALLOC_NO_WATERMARKS; 2605 else if (!in_interrupt() && 2606 ((current->flags & PF_MEMALLOC) || 2607 unlikely(test_thread_flag(TIF_MEMDIE)))) 2608 alloc_flags |= ALLOC_NO_WATERMARKS; 2609 } 2610 #ifdef CONFIG_CMA 2611 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2612 alloc_flags |= ALLOC_CMA; 2613 #endif 2614 return alloc_flags; 2615 } 2616 2617 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2618 { 2619 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2620 } 2621 2622 static inline struct page * 2623 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2624 struct zonelist *zonelist, enum zone_type high_zoneidx, 2625 nodemask_t *nodemask, struct zone *preferred_zone, 2626 int classzone_idx, int migratetype) 2627 { 2628 const gfp_t wait = gfp_mask & __GFP_WAIT; 2629 struct page *page = NULL; 2630 int alloc_flags; 2631 unsigned long pages_reclaimed = 0; 2632 unsigned long did_some_progress; 2633 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2634 bool deferred_compaction = false; 2635 int contended_compaction = COMPACT_CONTENDED_NONE; 2636 2637 /* 2638 * In the slowpath, we sanity check order to avoid ever trying to 2639 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2640 * be using allocators in order of preference for an area that is 2641 * too large. 2642 */ 2643 if (order >= MAX_ORDER) { 2644 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2645 return NULL; 2646 } 2647 2648 /* 2649 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2650 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2651 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2652 * using a larger set of nodes after it has established that the 2653 * allowed per node queues are empty and that nodes are 2654 * over allocated. 2655 */ 2656 if (IS_ENABLED(CONFIG_NUMA) && 2657 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2658 goto nopage; 2659 2660 restart: 2661 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2662 wake_all_kswapds(order, zonelist, high_zoneidx, 2663 preferred_zone, nodemask); 2664 2665 /* 2666 * OK, we're below the kswapd watermark and have kicked background 2667 * reclaim. Now things get more complex, so set up alloc_flags according 2668 * to how we want to proceed. 2669 */ 2670 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2671 2672 /* 2673 * Find the true preferred zone if the allocation is unconstrained by 2674 * cpusets. 2675 */ 2676 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) { 2677 struct zoneref *preferred_zoneref; 2678 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2679 NULL, &preferred_zone); 2680 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2681 } 2682 2683 rebalance: 2684 /* This is the last chance, in general, before the goto nopage. */ 2685 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2686 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2687 preferred_zone, classzone_idx, migratetype); 2688 if (page) 2689 goto got_pg; 2690 2691 /* Allocate without watermarks if the context allows */ 2692 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2693 /* 2694 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2695 * the allocation is high priority and these type of 2696 * allocations are system rather than user orientated 2697 */ 2698 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2699 2700 page = __alloc_pages_high_priority(gfp_mask, order, 2701 zonelist, high_zoneidx, nodemask, 2702 preferred_zone, classzone_idx, migratetype); 2703 if (page) { 2704 goto got_pg; 2705 } 2706 } 2707 2708 /* Atomic allocations - we can't balance anything */ 2709 if (!wait) { 2710 /* 2711 * All existing users of the deprecated __GFP_NOFAIL are 2712 * blockable, so warn of any new users that actually allow this 2713 * type of allocation to fail. 2714 */ 2715 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2716 goto nopage; 2717 } 2718 2719 /* Avoid recursion of direct reclaim */ 2720 if (current->flags & PF_MEMALLOC) 2721 goto nopage; 2722 2723 /* Avoid allocations with no watermarks from looping endlessly */ 2724 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2725 goto nopage; 2726 2727 /* 2728 * Try direct compaction. The first pass is asynchronous. Subsequent 2729 * attempts after direct reclaim are synchronous 2730 */ 2731 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2732 high_zoneidx, nodemask, alloc_flags, 2733 preferred_zone, 2734 classzone_idx, migratetype, 2735 migration_mode, &contended_compaction, 2736 &deferred_compaction); 2737 if (page) 2738 goto got_pg; 2739 2740 /* Checks for THP-specific high-order allocations */ 2741 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { 2742 /* 2743 * If compaction is deferred for high-order allocations, it is 2744 * because sync compaction recently failed. If this is the case 2745 * and the caller requested a THP allocation, we do not want 2746 * to heavily disrupt the system, so we fail the allocation 2747 * instead of entering direct reclaim. 2748 */ 2749 if (deferred_compaction) 2750 goto nopage; 2751 2752 /* 2753 * In all zones where compaction was attempted (and not 2754 * deferred or skipped), lock contention has been detected. 2755 * For THP allocation we do not want to disrupt the others 2756 * so we fallback to base pages instead. 2757 */ 2758 if (contended_compaction == COMPACT_CONTENDED_LOCK) 2759 goto nopage; 2760 2761 /* 2762 * If compaction was aborted due to need_resched(), we do not 2763 * want to further increase allocation latency, unless it is 2764 * khugepaged trying to collapse. 2765 */ 2766 if (contended_compaction == COMPACT_CONTENDED_SCHED 2767 && !(current->flags & PF_KTHREAD)) 2768 goto nopage; 2769 } 2770 2771 /* 2772 * It can become very expensive to allocate transparent hugepages at 2773 * fault, so use asynchronous memory compaction for THP unless it is 2774 * khugepaged trying to collapse. 2775 */ 2776 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 2777 (current->flags & PF_KTHREAD)) 2778 migration_mode = MIGRATE_SYNC_LIGHT; 2779 2780 /* Try direct reclaim and then allocating */ 2781 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2782 zonelist, high_zoneidx, 2783 nodemask, 2784 alloc_flags, preferred_zone, 2785 classzone_idx, migratetype, 2786 &did_some_progress); 2787 if (page) 2788 goto got_pg; 2789 2790 /* 2791 * If we failed to make any progress reclaiming, then we are 2792 * running out of options and have to consider going OOM 2793 */ 2794 if (!did_some_progress) { 2795 if (oom_gfp_allowed(gfp_mask)) { 2796 if (oom_killer_disabled) 2797 goto nopage; 2798 /* Coredumps can quickly deplete all memory reserves */ 2799 if ((current->flags & PF_DUMPCORE) && 2800 !(gfp_mask & __GFP_NOFAIL)) 2801 goto nopage; 2802 page = __alloc_pages_may_oom(gfp_mask, order, 2803 zonelist, high_zoneidx, 2804 nodemask, preferred_zone, 2805 classzone_idx, migratetype); 2806 if (page) 2807 goto got_pg; 2808 2809 if (!(gfp_mask & __GFP_NOFAIL)) { 2810 /* 2811 * The oom killer is not called for high-order 2812 * allocations that may fail, so if no progress 2813 * is being made, there are no other options and 2814 * retrying is unlikely to help. 2815 */ 2816 if (order > PAGE_ALLOC_COSTLY_ORDER) 2817 goto nopage; 2818 /* 2819 * The oom killer is not called for lowmem 2820 * allocations to prevent needlessly killing 2821 * innocent tasks. 2822 */ 2823 if (high_zoneidx < ZONE_NORMAL) 2824 goto nopage; 2825 } 2826 2827 goto restart; 2828 } 2829 } 2830 2831 /* Check if we should retry the allocation */ 2832 pages_reclaimed += did_some_progress; 2833 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2834 pages_reclaimed)) { 2835 /* Wait for some write requests to complete then retry */ 2836 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2837 goto rebalance; 2838 } else { 2839 /* 2840 * High-order allocations do not necessarily loop after 2841 * direct reclaim and reclaim/compaction depends on compaction 2842 * being called after reclaim so call directly if necessary 2843 */ 2844 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2845 high_zoneidx, nodemask, alloc_flags, 2846 preferred_zone, 2847 classzone_idx, migratetype, 2848 migration_mode, &contended_compaction, 2849 &deferred_compaction); 2850 if (page) 2851 goto got_pg; 2852 } 2853 2854 nopage: 2855 warn_alloc_failed(gfp_mask, order, NULL); 2856 return page; 2857 got_pg: 2858 if (kmemcheck_enabled) 2859 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2860 2861 return page; 2862 } 2863 2864 /* 2865 * This is the 'heart' of the zoned buddy allocator. 2866 */ 2867 struct page * 2868 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2869 struct zonelist *zonelist, nodemask_t *nodemask) 2870 { 2871 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2872 struct zone *preferred_zone; 2873 struct zoneref *preferred_zoneref; 2874 struct page *page = NULL; 2875 int migratetype = gfpflags_to_migratetype(gfp_mask); 2876 unsigned int cpuset_mems_cookie; 2877 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2878 int classzone_idx; 2879 2880 gfp_mask &= gfp_allowed_mask; 2881 2882 lockdep_trace_alloc(gfp_mask); 2883 2884 might_sleep_if(gfp_mask & __GFP_WAIT); 2885 2886 if (should_fail_alloc_page(gfp_mask, order)) 2887 return NULL; 2888 2889 /* 2890 * Check the zones suitable for the gfp_mask contain at least one 2891 * valid zone. It's possible to have an empty zonelist as a result 2892 * of GFP_THISNODE and a memoryless node 2893 */ 2894 if (unlikely(!zonelist->_zonerefs->zone)) 2895 return NULL; 2896 2897 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE) 2898 alloc_flags |= ALLOC_CMA; 2899 2900 retry_cpuset: 2901 cpuset_mems_cookie = read_mems_allowed_begin(); 2902 2903 /* The preferred zone is used for statistics later */ 2904 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2905 nodemask ? : &cpuset_current_mems_allowed, 2906 &preferred_zone); 2907 if (!preferred_zone) 2908 goto out; 2909 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2910 2911 /* First allocation attempt */ 2912 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2913 zonelist, high_zoneidx, alloc_flags, 2914 preferred_zone, classzone_idx, migratetype); 2915 if (unlikely(!page)) { 2916 /* 2917 * Runtime PM, block IO and its error handling path 2918 * can deadlock because I/O on the device might not 2919 * complete. 2920 */ 2921 gfp_mask = memalloc_noio_flags(gfp_mask); 2922 page = __alloc_pages_slowpath(gfp_mask, order, 2923 zonelist, high_zoneidx, nodemask, 2924 preferred_zone, classzone_idx, migratetype); 2925 } 2926 2927 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2928 2929 out: 2930 /* 2931 * When updating a task's mems_allowed, it is possible to race with 2932 * parallel threads in such a way that an allocation can fail while 2933 * the mask is being updated. If a page allocation is about to fail, 2934 * check if the cpuset changed during allocation and if so, retry. 2935 */ 2936 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2937 goto retry_cpuset; 2938 2939 return page; 2940 } 2941 EXPORT_SYMBOL(__alloc_pages_nodemask); 2942 2943 /* 2944 * Common helper functions. 2945 */ 2946 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2947 { 2948 struct page *page; 2949 2950 /* 2951 * __get_free_pages() returns a 32-bit address, which cannot represent 2952 * a highmem page 2953 */ 2954 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2955 2956 page = alloc_pages(gfp_mask, order); 2957 if (!page) 2958 return 0; 2959 return (unsigned long) page_address(page); 2960 } 2961 EXPORT_SYMBOL(__get_free_pages); 2962 2963 unsigned long get_zeroed_page(gfp_t gfp_mask) 2964 { 2965 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2966 } 2967 EXPORT_SYMBOL(get_zeroed_page); 2968 2969 void __free_pages(struct page *page, unsigned int order) 2970 { 2971 if (put_page_testzero(page)) { 2972 if (order == 0) 2973 free_hot_cold_page(page, false); 2974 else 2975 __free_pages_ok(page, order); 2976 } 2977 } 2978 2979 EXPORT_SYMBOL(__free_pages); 2980 2981 void free_pages(unsigned long addr, unsigned int order) 2982 { 2983 if (addr != 0) { 2984 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2985 __free_pages(virt_to_page((void *)addr), order); 2986 } 2987 } 2988 2989 EXPORT_SYMBOL(free_pages); 2990 2991 /* 2992 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2993 * of the current memory cgroup. 2994 * 2995 * It should be used when the caller would like to use kmalloc, but since the 2996 * allocation is large, it has to fall back to the page allocator. 2997 */ 2998 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 2999 { 3000 struct page *page; 3001 struct mem_cgroup *memcg = NULL; 3002 3003 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 3004 return NULL; 3005 page = alloc_pages(gfp_mask, order); 3006 memcg_kmem_commit_charge(page, memcg, order); 3007 return page; 3008 } 3009 3010 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 3011 { 3012 struct page *page; 3013 struct mem_cgroup *memcg = NULL; 3014 3015 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 3016 return NULL; 3017 page = alloc_pages_node(nid, gfp_mask, order); 3018 memcg_kmem_commit_charge(page, memcg, order); 3019 return page; 3020 } 3021 3022 /* 3023 * __free_kmem_pages and free_kmem_pages will free pages allocated with 3024 * alloc_kmem_pages. 3025 */ 3026 void __free_kmem_pages(struct page *page, unsigned int order) 3027 { 3028 memcg_kmem_uncharge_pages(page, order); 3029 __free_pages(page, order); 3030 } 3031 3032 void free_kmem_pages(unsigned long addr, unsigned int order) 3033 { 3034 if (addr != 0) { 3035 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3036 __free_kmem_pages(virt_to_page((void *)addr), order); 3037 } 3038 } 3039 3040 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 3041 { 3042 if (addr) { 3043 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3044 unsigned long used = addr + PAGE_ALIGN(size); 3045 3046 split_page(virt_to_page((void *)addr), order); 3047 while (used < alloc_end) { 3048 free_page(used); 3049 used += PAGE_SIZE; 3050 } 3051 } 3052 return (void *)addr; 3053 } 3054 3055 /** 3056 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3057 * @size: the number of bytes to allocate 3058 * @gfp_mask: GFP flags for the allocation 3059 * 3060 * This function is similar to alloc_pages(), except that it allocates the 3061 * minimum number of pages to satisfy the request. alloc_pages() can only 3062 * allocate memory in power-of-two pages. 3063 * 3064 * This function is also limited by MAX_ORDER. 3065 * 3066 * Memory allocated by this function must be released by free_pages_exact(). 3067 */ 3068 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3069 { 3070 unsigned int order = get_order(size); 3071 unsigned long addr; 3072 3073 addr = __get_free_pages(gfp_mask, order); 3074 return make_alloc_exact(addr, order, size); 3075 } 3076 EXPORT_SYMBOL(alloc_pages_exact); 3077 3078 /** 3079 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3080 * pages on a node. 3081 * @nid: the preferred node ID where memory should be allocated 3082 * @size: the number of bytes to allocate 3083 * @gfp_mask: GFP flags for the allocation 3084 * 3085 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3086 * back. 3087 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 3088 * but is not exact. 3089 */ 3090 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3091 { 3092 unsigned order = get_order(size); 3093 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3094 if (!p) 3095 return NULL; 3096 return make_alloc_exact((unsigned long)page_address(p), order, size); 3097 } 3098 3099 /** 3100 * free_pages_exact - release memory allocated via alloc_pages_exact() 3101 * @virt: the value returned by alloc_pages_exact. 3102 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3103 * 3104 * Release the memory allocated by a previous call to alloc_pages_exact. 3105 */ 3106 void free_pages_exact(void *virt, size_t size) 3107 { 3108 unsigned long addr = (unsigned long)virt; 3109 unsigned long end = addr + PAGE_ALIGN(size); 3110 3111 while (addr < end) { 3112 free_page(addr); 3113 addr += PAGE_SIZE; 3114 } 3115 } 3116 EXPORT_SYMBOL(free_pages_exact); 3117 3118 /** 3119 * nr_free_zone_pages - count number of pages beyond high watermark 3120 * @offset: The zone index of the highest zone 3121 * 3122 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3123 * high watermark within all zones at or below a given zone index. For each 3124 * zone, the number of pages is calculated as: 3125 * managed_pages - high_pages 3126 */ 3127 static unsigned long nr_free_zone_pages(int offset) 3128 { 3129 struct zoneref *z; 3130 struct zone *zone; 3131 3132 /* Just pick one node, since fallback list is circular */ 3133 unsigned long sum = 0; 3134 3135 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3136 3137 for_each_zone_zonelist(zone, z, zonelist, offset) { 3138 unsigned long size = zone->managed_pages; 3139 unsigned long high = high_wmark_pages(zone); 3140 if (size > high) 3141 sum += size - high; 3142 } 3143 3144 return sum; 3145 } 3146 3147 /** 3148 * nr_free_buffer_pages - count number of pages beyond high watermark 3149 * 3150 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3151 * watermark within ZONE_DMA and ZONE_NORMAL. 3152 */ 3153 unsigned long nr_free_buffer_pages(void) 3154 { 3155 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3156 } 3157 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3158 3159 /** 3160 * nr_free_pagecache_pages - count number of pages beyond high watermark 3161 * 3162 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3163 * high watermark within all zones. 3164 */ 3165 unsigned long nr_free_pagecache_pages(void) 3166 { 3167 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3168 } 3169 3170 static inline void show_node(struct zone *zone) 3171 { 3172 if (IS_ENABLED(CONFIG_NUMA)) 3173 printk("Node %d ", zone_to_nid(zone)); 3174 } 3175 3176 void si_meminfo(struct sysinfo *val) 3177 { 3178 val->totalram = totalram_pages; 3179 val->sharedram = global_page_state(NR_SHMEM); 3180 val->freeram = global_page_state(NR_FREE_PAGES); 3181 val->bufferram = nr_blockdev_pages(); 3182 val->totalhigh = totalhigh_pages; 3183 val->freehigh = nr_free_highpages(); 3184 val->mem_unit = PAGE_SIZE; 3185 } 3186 3187 EXPORT_SYMBOL(si_meminfo); 3188 3189 #ifdef CONFIG_NUMA 3190 void si_meminfo_node(struct sysinfo *val, int nid) 3191 { 3192 int zone_type; /* needs to be signed */ 3193 unsigned long managed_pages = 0; 3194 pg_data_t *pgdat = NODE_DATA(nid); 3195 3196 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3197 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3198 val->totalram = managed_pages; 3199 val->sharedram = node_page_state(nid, NR_SHMEM); 3200 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3201 #ifdef CONFIG_HIGHMEM 3202 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3203 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3204 NR_FREE_PAGES); 3205 #else 3206 val->totalhigh = 0; 3207 val->freehigh = 0; 3208 #endif 3209 val->mem_unit = PAGE_SIZE; 3210 } 3211 #endif 3212 3213 /* 3214 * Determine whether the node should be displayed or not, depending on whether 3215 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3216 */ 3217 bool skip_free_areas_node(unsigned int flags, int nid) 3218 { 3219 bool ret = false; 3220 unsigned int cpuset_mems_cookie; 3221 3222 if (!(flags & SHOW_MEM_FILTER_NODES)) 3223 goto out; 3224 3225 do { 3226 cpuset_mems_cookie = read_mems_allowed_begin(); 3227 ret = !node_isset(nid, cpuset_current_mems_allowed); 3228 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3229 out: 3230 return ret; 3231 } 3232 3233 #define K(x) ((x) << (PAGE_SHIFT-10)) 3234 3235 static void show_migration_types(unsigned char type) 3236 { 3237 static const char types[MIGRATE_TYPES] = { 3238 [MIGRATE_UNMOVABLE] = 'U', 3239 [MIGRATE_RECLAIMABLE] = 'E', 3240 [MIGRATE_MOVABLE] = 'M', 3241 [MIGRATE_RESERVE] = 'R', 3242 #ifdef CONFIG_CMA 3243 [MIGRATE_CMA] = 'C', 3244 #endif 3245 #ifdef CONFIG_MEMORY_ISOLATION 3246 [MIGRATE_ISOLATE] = 'I', 3247 #endif 3248 }; 3249 char tmp[MIGRATE_TYPES + 1]; 3250 char *p = tmp; 3251 int i; 3252 3253 for (i = 0; i < MIGRATE_TYPES; i++) { 3254 if (type & (1 << i)) 3255 *p++ = types[i]; 3256 } 3257 3258 *p = '\0'; 3259 printk("(%s) ", tmp); 3260 } 3261 3262 /* 3263 * Show free area list (used inside shift_scroll-lock stuff) 3264 * We also calculate the percentage fragmentation. We do this by counting the 3265 * memory on each free list with the exception of the first item on the list. 3266 * Suppresses nodes that are not allowed by current's cpuset if 3267 * SHOW_MEM_FILTER_NODES is passed. 3268 */ 3269 void show_free_areas(unsigned int filter) 3270 { 3271 int cpu; 3272 struct zone *zone; 3273 3274 for_each_populated_zone(zone) { 3275 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3276 continue; 3277 show_node(zone); 3278 printk("%s per-cpu:\n", zone->name); 3279 3280 for_each_online_cpu(cpu) { 3281 struct per_cpu_pageset *pageset; 3282 3283 pageset = per_cpu_ptr(zone->pageset, cpu); 3284 3285 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3286 cpu, pageset->pcp.high, 3287 pageset->pcp.batch, pageset->pcp.count); 3288 } 3289 } 3290 3291 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3292 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3293 " unevictable:%lu" 3294 " dirty:%lu writeback:%lu unstable:%lu\n" 3295 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3296 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3297 " free_cma:%lu\n", 3298 global_page_state(NR_ACTIVE_ANON), 3299 global_page_state(NR_INACTIVE_ANON), 3300 global_page_state(NR_ISOLATED_ANON), 3301 global_page_state(NR_ACTIVE_FILE), 3302 global_page_state(NR_INACTIVE_FILE), 3303 global_page_state(NR_ISOLATED_FILE), 3304 global_page_state(NR_UNEVICTABLE), 3305 global_page_state(NR_FILE_DIRTY), 3306 global_page_state(NR_WRITEBACK), 3307 global_page_state(NR_UNSTABLE_NFS), 3308 global_page_state(NR_FREE_PAGES), 3309 global_page_state(NR_SLAB_RECLAIMABLE), 3310 global_page_state(NR_SLAB_UNRECLAIMABLE), 3311 global_page_state(NR_FILE_MAPPED), 3312 global_page_state(NR_SHMEM), 3313 global_page_state(NR_PAGETABLE), 3314 global_page_state(NR_BOUNCE), 3315 global_page_state(NR_FREE_CMA_PAGES)); 3316 3317 for_each_populated_zone(zone) { 3318 int i; 3319 3320 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3321 continue; 3322 show_node(zone); 3323 printk("%s" 3324 " free:%lukB" 3325 " min:%lukB" 3326 " low:%lukB" 3327 " high:%lukB" 3328 " active_anon:%lukB" 3329 " inactive_anon:%lukB" 3330 " active_file:%lukB" 3331 " inactive_file:%lukB" 3332 " unevictable:%lukB" 3333 " isolated(anon):%lukB" 3334 " isolated(file):%lukB" 3335 " present:%lukB" 3336 " managed:%lukB" 3337 " mlocked:%lukB" 3338 " dirty:%lukB" 3339 " writeback:%lukB" 3340 " mapped:%lukB" 3341 " shmem:%lukB" 3342 " slab_reclaimable:%lukB" 3343 " slab_unreclaimable:%lukB" 3344 " kernel_stack:%lukB" 3345 " pagetables:%lukB" 3346 " unstable:%lukB" 3347 " bounce:%lukB" 3348 " free_cma:%lukB" 3349 " writeback_tmp:%lukB" 3350 " pages_scanned:%lu" 3351 " all_unreclaimable? %s" 3352 "\n", 3353 zone->name, 3354 K(zone_page_state(zone, NR_FREE_PAGES)), 3355 K(min_wmark_pages(zone)), 3356 K(low_wmark_pages(zone)), 3357 K(high_wmark_pages(zone)), 3358 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3359 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3360 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3361 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3362 K(zone_page_state(zone, NR_UNEVICTABLE)), 3363 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3364 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3365 K(zone->present_pages), 3366 K(zone->managed_pages), 3367 K(zone_page_state(zone, NR_MLOCK)), 3368 K(zone_page_state(zone, NR_FILE_DIRTY)), 3369 K(zone_page_state(zone, NR_WRITEBACK)), 3370 K(zone_page_state(zone, NR_FILE_MAPPED)), 3371 K(zone_page_state(zone, NR_SHMEM)), 3372 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3373 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3374 zone_page_state(zone, NR_KERNEL_STACK) * 3375 THREAD_SIZE / 1024, 3376 K(zone_page_state(zone, NR_PAGETABLE)), 3377 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3378 K(zone_page_state(zone, NR_BOUNCE)), 3379 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3380 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3381 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3382 (!zone_reclaimable(zone) ? "yes" : "no") 3383 ); 3384 printk("lowmem_reserve[]:"); 3385 for (i = 0; i < MAX_NR_ZONES; i++) 3386 printk(" %ld", zone->lowmem_reserve[i]); 3387 printk("\n"); 3388 } 3389 3390 for_each_populated_zone(zone) { 3391 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3392 unsigned char types[MAX_ORDER]; 3393 3394 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3395 continue; 3396 show_node(zone); 3397 printk("%s: ", zone->name); 3398 3399 spin_lock_irqsave(&zone->lock, flags); 3400 for (order = 0; order < MAX_ORDER; order++) { 3401 struct free_area *area = &zone->free_area[order]; 3402 int type; 3403 3404 nr[order] = area->nr_free; 3405 total += nr[order] << order; 3406 3407 types[order] = 0; 3408 for (type = 0; type < MIGRATE_TYPES; type++) { 3409 if (!list_empty(&area->free_list[type])) 3410 types[order] |= 1 << type; 3411 } 3412 } 3413 spin_unlock_irqrestore(&zone->lock, flags); 3414 for (order = 0; order < MAX_ORDER; order++) { 3415 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3416 if (nr[order]) 3417 show_migration_types(types[order]); 3418 } 3419 printk("= %lukB\n", K(total)); 3420 } 3421 3422 hugetlb_show_meminfo(); 3423 3424 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3425 3426 show_swap_cache_info(); 3427 } 3428 3429 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3430 { 3431 zoneref->zone = zone; 3432 zoneref->zone_idx = zone_idx(zone); 3433 } 3434 3435 /* 3436 * Builds allocation fallback zone lists. 3437 * 3438 * Add all populated zones of a node to the zonelist. 3439 */ 3440 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3441 int nr_zones) 3442 { 3443 struct zone *zone; 3444 enum zone_type zone_type = MAX_NR_ZONES; 3445 3446 do { 3447 zone_type--; 3448 zone = pgdat->node_zones + zone_type; 3449 if (populated_zone(zone)) { 3450 zoneref_set_zone(zone, 3451 &zonelist->_zonerefs[nr_zones++]); 3452 check_highest_zone(zone_type); 3453 } 3454 } while (zone_type); 3455 3456 return nr_zones; 3457 } 3458 3459 3460 /* 3461 * zonelist_order: 3462 * 0 = automatic detection of better ordering. 3463 * 1 = order by ([node] distance, -zonetype) 3464 * 2 = order by (-zonetype, [node] distance) 3465 * 3466 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3467 * the same zonelist. So only NUMA can configure this param. 3468 */ 3469 #define ZONELIST_ORDER_DEFAULT 0 3470 #define ZONELIST_ORDER_NODE 1 3471 #define ZONELIST_ORDER_ZONE 2 3472 3473 /* zonelist order in the kernel. 3474 * set_zonelist_order() will set this to NODE or ZONE. 3475 */ 3476 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3477 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3478 3479 3480 #ifdef CONFIG_NUMA 3481 /* The value user specified ....changed by config */ 3482 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3483 /* string for sysctl */ 3484 #define NUMA_ZONELIST_ORDER_LEN 16 3485 char numa_zonelist_order[16] = "default"; 3486 3487 /* 3488 * interface for configure zonelist ordering. 3489 * command line option "numa_zonelist_order" 3490 * = "[dD]efault - default, automatic configuration. 3491 * = "[nN]ode - order by node locality, then by zone within node 3492 * = "[zZ]one - order by zone, then by locality within zone 3493 */ 3494 3495 static int __parse_numa_zonelist_order(char *s) 3496 { 3497 if (*s == 'd' || *s == 'D') { 3498 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3499 } else if (*s == 'n' || *s == 'N') { 3500 user_zonelist_order = ZONELIST_ORDER_NODE; 3501 } else if (*s == 'z' || *s == 'Z') { 3502 user_zonelist_order = ZONELIST_ORDER_ZONE; 3503 } else { 3504 printk(KERN_WARNING 3505 "Ignoring invalid numa_zonelist_order value: " 3506 "%s\n", s); 3507 return -EINVAL; 3508 } 3509 return 0; 3510 } 3511 3512 static __init int setup_numa_zonelist_order(char *s) 3513 { 3514 int ret; 3515 3516 if (!s) 3517 return 0; 3518 3519 ret = __parse_numa_zonelist_order(s); 3520 if (ret == 0) 3521 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3522 3523 return ret; 3524 } 3525 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3526 3527 /* 3528 * sysctl handler for numa_zonelist_order 3529 */ 3530 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3531 void __user *buffer, size_t *length, 3532 loff_t *ppos) 3533 { 3534 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3535 int ret; 3536 static DEFINE_MUTEX(zl_order_mutex); 3537 3538 mutex_lock(&zl_order_mutex); 3539 if (write) { 3540 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3541 ret = -EINVAL; 3542 goto out; 3543 } 3544 strcpy(saved_string, (char *)table->data); 3545 } 3546 ret = proc_dostring(table, write, buffer, length, ppos); 3547 if (ret) 3548 goto out; 3549 if (write) { 3550 int oldval = user_zonelist_order; 3551 3552 ret = __parse_numa_zonelist_order((char *)table->data); 3553 if (ret) { 3554 /* 3555 * bogus value. restore saved string 3556 */ 3557 strncpy((char *)table->data, saved_string, 3558 NUMA_ZONELIST_ORDER_LEN); 3559 user_zonelist_order = oldval; 3560 } else if (oldval != user_zonelist_order) { 3561 mutex_lock(&zonelists_mutex); 3562 build_all_zonelists(NULL, NULL); 3563 mutex_unlock(&zonelists_mutex); 3564 } 3565 } 3566 out: 3567 mutex_unlock(&zl_order_mutex); 3568 return ret; 3569 } 3570 3571 3572 #define MAX_NODE_LOAD (nr_online_nodes) 3573 static int node_load[MAX_NUMNODES]; 3574 3575 /** 3576 * find_next_best_node - find the next node that should appear in a given node's fallback list 3577 * @node: node whose fallback list we're appending 3578 * @used_node_mask: nodemask_t of already used nodes 3579 * 3580 * We use a number of factors to determine which is the next node that should 3581 * appear on a given node's fallback list. The node should not have appeared 3582 * already in @node's fallback list, and it should be the next closest node 3583 * according to the distance array (which contains arbitrary distance values 3584 * from each node to each node in the system), and should also prefer nodes 3585 * with no CPUs, since presumably they'll have very little allocation pressure 3586 * on them otherwise. 3587 * It returns -1 if no node is found. 3588 */ 3589 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3590 { 3591 int n, val; 3592 int min_val = INT_MAX; 3593 int best_node = NUMA_NO_NODE; 3594 const struct cpumask *tmp = cpumask_of_node(0); 3595 3596 /* Use the local node if we haven't already */ 3597 if (!node_isset(node, *used_node_mask)) { 3598 node_set(node, *used_node_mask); 3599 return node; 3600 } 3601 3602 for_each_node_state(n, N_MEMORY) { 3603 3604 /* Don't want a node to appear more than once */ 3605 if (node_isset(n, *used_node_mask)) 3606 continue; 3607 3608 /* Use the distance array to find the distance */ 3609 val = node_distance(node, n); 3610 3611 /* Penalize nodes under us ("prefer the next node") */ 3612 val += (n < node); 3613 3614 /* Give preference to headless and unused nodes */ 3615 tmp = cpumask_of_node(n); 3616 if (!cpumask_empty(tmp)) 3617 val += PENALTY_FOR_NODE_WITH_CPUS; 3618 3619 /* Slight preference for less loaded node */ 3620 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3621 val += node_load[n]; 3622 3623 if (val < min_val) { 3624 min_val = val; 3625 best_node = n; 3626 } 3627 } 3628 3629 if (best_node >= 0) 3630 node_set(best_node, *used_node_mask); 3631 3632 return best_node; 3633 } 3634 3635 3636 /* 3637 * Build zonelists ordered by node and zones within node. 3638 * This results in maximum locality--normal zone overflows into local 3639 * DMA zone, if any--but risks exhausting DMA zone. 3640 */ 3641 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3642 { 3643 int j; 3644 struct zonelist *zonelist; 3645 3646 zonelist = &pgdat->node_zonelists[0]; 3647 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3648 ; 3649 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3650 zonelist->_zonerefs[j].zone = NULL; 3651 zonelist->_zonerefs[j].zone_idx = 0; 3652 } 3653 3654 /* 3655 * Build gfp_thisnode zonelists 3656 */ 3657 static void build_thisnode_zonelists(pg_data_t *pgdat) 3658 { 3659 int j; 3660 struct zonelist *zonelist; 3661 3662 zonelist = &pgdat->node_zonelists[1]; 3663 j = build_zonelists_node(pgdat, zonelist, 0); 3664 zonelist->_zonerefs[j].zone = NULL; 3665 zonelist->_zonerefs[j].zone_idx = 0; 3666 } 3667 3668 /* 3669 * Build zonelists ordered by zone and nodes within zones. 3670 * This results in conserving DMA zone[s] until all Normal memory is 3671 * exhausted, but results in overflowing to remote node while memory 3672 * may still exist in local DMA zone. 3673 */ 3674 static int node_order[MAX_NUMNODES]; 3675 3676 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3677 { 3678 int pos, j, node; 3679 int zone_type; /* needs to be signed */ 3680 struct zone *z; 3681 struct zonelist *zonelist; 3682 3683 zonelist = &pgdat->node_zonelists[0]; 3684 pos = 0; 3685 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3686 for (j = 0; j < nr_nodes; j++) { 3687 node = node_order[j]; 3688 z = &NODE_DATA(node)->node_zones[zone_type]; 3689 if (populated_zone(z)) { 3690 zoneref_set_zone(z, 3691 &zonelist->_zonerefs[pos++]); 3692 check_highest_zone(zone_type); 3693 } 3694 } 3695 } 3696 zonelist->_zonerefs[pos].zone = NULL; 3697 zonelist->_zonerefs[pos].zone_idx = 0; 3698 } 3699 3700 #if defined(CONFIG_64BIT) 3701 /* 3702 * Devices that require DMA32/DMA are relatively rare and do not justify a 3703 * penalty to every machine in case the specialised case applies. Default 3704 * to Node-ordering on 64-bit NUMA machines 3705 */ 3706 static int default_zonelist_order(void) 3707 { 3708 return ZONELIST_ORDER_NODE; 3709 } 3710 #else 3711 /* 3712 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 3713 * by the kernel. If processes running on node 0 deplete the low memory zone 3714 * then reclaim will occur more frequency increasing stalls and potentially 3715 * be easier to OOM if a large percentage of the zone is under writeback or 3716 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 3717 * Hence, default to zone ordering on 32-bit. 3718 */ 3719 static int default_zonelist_order(void) 3720 { 3721 return ZONELIST_ORDER_ZONE; 3722 } 3723 #endif /* CONFIG_64BIT */ 3724 3725 static void set_zonelist_order(void) 3726 { 3727 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3728 current_zonelist_order = default_zonelist_order(); 3729 else 3730 current_zonelist_order = user_zonelist_order; 3731 } 3732 3733 static void build_zonelists(pg_data_t *pgdat) 3734 { 3735 int j, node, load; 3736 enum zone_type i; 3737 nodemask_t used_mask; 3738 int local_node, prev_node; 3739 struct zonelist *zonelist; 3740 int order = current_zonelist_order; 3741 3742 /* initialize zonelists */ 3743 for (i = 0; i < MAX_ZONELISTS; i++) { 3744 zonelist = pgdat->node_zonelists + i; 3745 zonelist->_zonerefs[0].zone = NULL; 3746 zonelist->_zonerefs[0].zone_idx = 0; 3747 } 3748 3749 /* NUMA-aware ordering of nodes */ 3750 local_node = pgdat->node_id; 3751 load = nr_online_nodes; 3752 prev_node = local_node; 3753 nodes_clear(used_mask); 3754 3755 memset(node_order, 0, sizeof(node_order)); 3756 j = 0; 3757 3758 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3759 /* 3760 * We don't want to pressure a particular node. 3761 * So adding penalty to the first node in same 3762 * distance group to make it round-robin. 3763 */ 3764 if (node_distance(local_node, node) != 3765 node_distance(local_node, prev_node)) 3766 node_load[node] = load; 3767 3768 prev_node = node; 3769 load--; 3770 if (order == ZONELIST_ORDER_NODE) 3771 build_zonelists_in_node_order(pgdat, node); 3772 else 3773 node_order[j++] = node; /* remember order */ 3774 } 3775 3776 if (order == ZONELIST_ORDER_ZONE) { 3777 /* calculate node order -- i.e., DMA last! */ 3778 build_zonelists_in_zone_order(pgdat, j); 3779 } 3780 3781 build_thisnode_zonelists(pgdat); 3782 } 3783 3784 /* Construct the zonelist performance cache - see further mmzone.h */ 3785 static void build_zonelist_cache(pg_data_t *pgdat) 3786 { 3787 struct zonelist *zonelist; 3788 struct zonelist_cache *zlc; 3789 struct zoneref *z; 3790 3791 zonelist = &pgdat->node_zonelists[0]; 3792 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3793 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3794 for (z = zonelist->_zonerefs; z->zone; z++) 3795 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3796 } 3797 3798 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3799 /* 3800 * Return node id of node used for "local" allocations. 3801 * I.e., first node id of first zone in arg node's generic zonelist. 3802 * Used for initializing percpu 'numa_mem', which is used primarily 3803 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3804 */ 3805 int local_memory_node(int node) 3806 { 3807 struct zone *zone; 3808 3809 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3810 gfp_zone(GFP_KERNEL), 3811 NULL, 3812 &zone); 3813 return zone->node; 3814 } 3815 #endif 3816 3817 #else /* CONFIG_NUMA */ 3818 3819 static void set_zonelist_order(void) 3820 { 3821 current_zonelist_order = ZONELIST_ORDER_ZONE; 3822 } 3823 3824 static void build_zonelists(pg_data_t *pgdat) 3825 { 3826 int node, local_node; 3827 enum zone_type j; 3828 struct zonelist *zonelist; 3829 3830 local_node = pgdat->node_id; 3831 3832 zonelist = &pgdat->node_zonelists[0]; 3833 j = build_zonelists_node(pgdat, zonelist, 0); 3834 3835 /* 3836 * Now we build the zonelist so that it contains the zones 3837 * of all the other nodes. 3838 * We don't want to pressure a particular node, so when 3839 * building the zones for node N, we make sure that the 3840 * zones coming right after the local ones are those from 3841 * node N+1 (modulo N) 3842 */ 3843 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3844 if (!node_online(node)) 3845 continue; 3846 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3847 } 3848 for (node = 0; node < local_node; node++) { 3849 if (!node_online(node)) 3850 continue; 3851 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3852 } 3853 3854 zonelist->_zonerefs[j].zone = NULL; 3855 zonelist->_zonerefs[j].zone_idx = 0; 3856 } 3857 3858 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3859 static void build_zonelist_cache(pg_data_t *pgdat) 3860 { 3861 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3862 } 3863 3864 #endif /* CONFIG_NUMA */ 3865 3866 /* 3867 * Boot pageset table. One per cpu which is going to be used for all 3868 * zones and all nodes. The parameters will be set in such a way 3869 * that an item put on a list will immediately be handed over to 3870 * the buddy list. This is safe since pageset manipulation is done 3871 * with interrupts disabled. 3872 * 3873 * The boot_pagesets must be kept even after bootup is complete for 3874 * unused processors and/or zones. They do play a role for bootstrapping 3875 * hotplugged processors. 3876 * 3877 * zoneinfo_show() and maybe other functions do 3878 * not check if the processor is online before following the pageset pointer. 3879 * Other parts of the kernel may not check if the zone is available. 3880 */ 3881 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3882 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3883 static void setup_zone_pageset(struct zone *zone); 3884 3885 /* 3886 * Global mutex to protect against size modification of zonelists 3887 * as well as to serialize pageset setup for the new populated zone. 3888 */ 3889 DEFINE_MUTEX(zonelists_mutex); 3890 3891 /* return values int ....just for stop_machine() */ 3892 static int __build_all_zonelists(void *data) 3893 { 3894 int nid; 3895 int cpu; 3896 pg_data_t *self = data; 3897 3898 #ifdef CONFIG_NUMA 3899 memset(node_load, 0, sizeof(node_load)); 3900 #endif 3901 3902 if (self && !node_online(self->node_id)) { 3903 build_zonelists(self); 3904 build_zonelist_cache(self); 3905 } 3906 3907 for_each_online_node(nid) { 3908 pg_data_t *pgdat = NODE_DATA(nid); 3909 3910 build_zonelists(pgdat); 3911 build_zonelist_cache(pgdat); 3912 } 3913 3914 /* 3915 * Initialize the boot_pagesets that are going to be used 3916 * for bootstrapping processors. The real pagesets for 3917 * each zone will be allocated later when the per cpu 3918 * allocator is available. 3919 * 3920 * boot_pagesets are used also for bootstrapping offline 3921 * cpus if the system is already booted because the pagesets 3922 * are needed to initialize allocators on a specific cpu too. 3923 * F.e. the percpu allocator needs the page allocator which 3924 * needs the percpu allocator in order to allocate its pagesets 3925 * (a chicken-egg dilemma). 3926 */ 3927 for_each_possible_cpu(cpu) { 3928 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3929 3930 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3931 /* 3932 * We now know the "local memory node" for each node-- 3933 * i.e., the node of the first zone in the generic zonelist. 3934 * Set up numa_mem percpu variable for on-line cpus. During 3935 * boot, only the boot cpu should be on-line; we'll init the 3936 * secondary cpus' numa_mem as they come on-line. During 3937 * node/memory hotplug, we'll fixup all on-line cpus. 3938 */ 3939 if (cpu_online(cpu)) 3940 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3941 #endif 3942 } 3943 3944 return 0; 3945 } 3946 3947 /* 3948 * Called with zonelists_mutex held always 3949 * unless system_state == SYSTEM_BOOTING. 3950 */ 3951 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3952 { 3953 set_zonelist_order(); 3954 3955 if (system_state == SYSTEM_BOOTING) { 3956 __build_all_zonelists(NULL); 3957 mminit_verify_zonelist(); 3958 cpuset_init_current_mems_allowed(); 3959 } else { 3960 #ifdef CONFIG_MEMORY_HOTPLUG 3961 if (zone) 3962 setup_zone_pageset(zone); 3963 #endif 3964 /* we have to stop all cpus to guarantee there is no user 3965 of zonelist */ 3966 stop_machine(__build_all_zonelists, pgdat, NULL); 3967 /* cpuset refresh routine should be here */ 3968 } 3969 vm_total_pages = nr_free_pagecache_pages(); 3970 /* 3971 * Disable grouping by mobility if the number of pages in the 3972 * system is too low to allow the mechanism to work. It would be 3973 * more accurate, but expensive to check per-zone. This check is 3974 * made on memory-hotadd so a system can start with mobility 3975 * disabled and enable it later 3976 */ 3977 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3978 page_group_by_mobility_disabled = 1; 3979 else 3980 page_group_by_mobility_disabled = 0; 3981 3982 pr_info("Built %i zonelists in %s order, mobility grouping %s. " 3983 "Total pages: %ld\n", 3984 nr_online_nodes, 3985 zonelist_order_name[current_zonelist_order], 3986 page_group_by_mobility_disabled ? "off" : "on", 3987 vm_total_pages); 3988 #ifdef CONFIG_NUMA 3989 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 3990 #endif 3991 } 3992 3993 /* 3994 * Helper functions to size the waitqueue hash table. 3995 * Essentially these want to choose hash table sizes sufficiently 3996 * large so that collisions trying to wait on pages are rare. 3997 * But in fact, the number of active page waitqueues on typical 3998 * systems is ridiculously low, less than 200. So this is even 3999 * conservative, even though it seems large. 4000 * 4001 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 4002 * waitqueues, i.e. the size of the waitq table given the number of pages. 4003 */ 4004 #define PAGES_PER_WAITQUEUE 256 4005 4006 #ifndef CONFIG_MEMORY_HOTPLUG 4007 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4008 { 4009 unsigned long size = 1; 4010 4011 pages /= PAGES_PER_WAITQUEUE; 4012 4013 while (size < pages) 4014 size <<= 1; 4015 4016 /* 4017 * Once we have dozens or even hundreds of threads sleeping 4018 * on IO we've got bigger problems than wait queue collision. 4019 * Limit the size of the wait table to a reasonable size. 4020 */ 4021 size = min(size, 4096UL); 4022 4023 return max(size, 4UL); 4024 } 4025 #else 4026 /* 4027 * A zone's size might be changed by hot-add, so it is not possible to determine 4028 * a suitable size for its wait_table. So we use the maximum size now. 4029 * 4030 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 4031 * 4032 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 4033 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 4034 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 4035 * 4036 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 4037 * or more by the traditional way. (See above). It equals: 4038 * 4039 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 4040 * ia64(16K page size) : = ( 8G + 4M)byte. 4041 * powerpc (64K page size) : = (32G +16M)byte. 4042 */ 4043 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4044 { 4045 return 4096UL; 4046 } 4047 #endif 4048 4049 /* 4050 * This is an integer logarithm so that shifts can be used later 4051 * to extract the more random high bits from the multiplicative 4052 * hash function before the remainder is taken. 4053 */ 4054 static inline unsigned long wait_table_bits(unsigned long size) 4055 { 4056 return ffz(~size); 4057 } 4058 4059 /* 4060 * Check if a pageblock contains reserved pages 4061 */ 4062 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 4063 { 4064 unsigned long pfn; 4065 4066 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4067 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 4068 return 1; 4069 } 4070 return 0; 4071 } 4072 4073 /* 4074 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 4075 * of blocks reserved is based on min_wmark_pages(zone). The memory within 4076 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 4077 * higher will lead to a bigger reserve which will get freed as contiguous 4078 * blocks as reclaim kicks in 4079 */ 4080 static void setup_zone_migrate_reserve(struct zone *zone) 4081 { 4082 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 4083 struct page *page; 4084 unsigned long block_migratetype; 4085 int reserve; 4086 int old_reserve; 4087 4088 /* 4089 * Get the start pfn, end pfn and the number of blocks to reserve 4090 * We have to be careful to be aligned to pageblock_nr_pages to 4091 * make sure that we always check pfn_valid for the first page in 4092 * the block. 4093 */ 4094 start_pfn = zone->zone_start_pfn; 4095 end_pfn = zone_end_pfn(zone); 4096 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4097 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4098 pageblock_order; 4099 4100 /* 4101 * Reserve blocks are generally in place to help high-order atomic 4102 * allocations that are short-lived. A min_free_kbytes value that 4103 * would result in more than 2 reserve blocks for atomic allocations 4104 * is assumed to be in place to help anti-fragmentation for the 4105 * future allocation of hugepages at runtime. 4106 */ 4107 reserve = min(2, reserve); 4108 old_reserve = zone->nr_migrate_reserve_block; 4109 4110 /* When memory hot-add, we almost always need to do nothing */ 4111 if (reserve == old_reserve) 4112 return; 4113 zone->nr_migrate_reserve_block = reserve; 4114 4115 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4116 if (!pfn_valid(pfn)) 4117 continue; 4118 page = pfn_to_page(pfn); 4119 4120 /* Watch out for overlapping nodes */ 4121 if (page_to_nid(page) != zone_to_nid(zone)) 4122 continue; 4123 4124 block_migratetype = get_pageblock_migratetype(page); 4125 4126 /* Only test what is necessary when the reserves are not met */ 4127 if (reserve > 0) { 4128 /* 4129 * Blocks with reserved pages will never free, skip 4130 * them. 4131 */ 4132 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4133 if (pageblock_is_reserved(pfn, block_end_pfn)) 4134 continue; 4135 4136 /* If this block is reserved, account for it */ 4137 if (block_migratetype == MIGRATE_RESERVE) { 4138 reserve--; 4139 continue; 4140 } 4141 4142 /* Suitable for reserving if this block is movable */ 4143 if (block_migratetype == MIGRATE_MOVABLE) { 4144 set_pageblock_migratetype(page, 4145 MIGRATE_RESERVE); 4146 move_freepages_block(zone, page, 4147 MIGRATE_RESERVE); 4148 reserve--; 4149 continue; 4150 } 4151 } else if (!old_reserve) { 4152 /* 4153 * At boot time we don't need to scan the whole zone 4154 * for turning off MIGRATE_RESERVE. 4155 */ 4156 break; 4157 } 4158 4159 /* 4160 * If the reserve is met and this is a previous reserved block, 4161 * take it back 4162 */ 4163 if (block_migratetype == MIGRATE_RESERVE) { 4164 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4165 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4166 } 4167 } 4168 } 4169 4170 /* 4171 * Initially all pages are reserved - free ones are freed 4172 * up by free_all_bootmem() once the early boot process is 4173 * done. Non-atomic initialization, single-pass. 4174 */ 4175 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4176 unsigned long start_pfn, enum memmap_context context) 4177 { 4178 struct page *page; 4179 unsigned long end_pfn = start_pfn + size; 4180 unsigned long pfn; 4181 struct zone *z; 4182 4183 if (highest_memmap_pfn < end_pfn - 1) 4184 highest_memmap_pfn = end_pfn - 1; 4185 4186 z = &NODE_DATA(nid)->node_zones[zone]; 4187 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4188 /* 4189 * There can be holes in boot-time mem_map[]s 4190 * handed to this function. They do not 4191 * exist on hotplugged memory. 4192 */ 4193 if (context == MEMMAP_EARLY) { 4194 if (!early_pfn_valid(pfn)) 4195 continue; 4196 if (!early_pfn_in_nid(pfn, nid)) 4197 continue; 4198 } 4199 page = pfn_to_page(pfn); 4200 set_page_links(page, zone, nid, pfn); 4201 mminit_verify_page_links(page, zone, nid, pfn); 4202 init_page_count(page); 4203 page_mapcount_reset(page); 4204 page_cpupid_reset_last(page); 4205 SetPageReserved(page); 4206 /* 4207 * Mark the block movable so that blocks are reserved for 4208 * movable at startup. This will force kernel allocations 4209 * to reserve their blocks rather than leaking throughout 4210 * the address space during boot when many long-lived 4211 * kernel allocations are made. Later some blocks near 4212 * the start are marked MIGRATE_RESERVE by 4213 * setup_zone_migrate_reserve() 4214 * 4215 * bitmap is created for zone's valid pfn range. but memmap 4216 * can be created for invalid pages (for alignment) 4217 * check here not to call set_pageblock_migratetype() against 4218 * pfn out of zone. 4219 */ 4220 if ((z->zone_start_pfn <= pfn) 4221 && (pfn < zone_end_pfn(z)) 4222 && !(pfn & (pageblock_nr_pages - 1))) 4223 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4224 4225 INIT_LIST_HEAD(&page->lru); 4226 #ifdef WANT_PAGE_VIRTUAL 4227 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4228 if (!is_highmem_idx(zone)) 4229 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4230 #endif 4231 } 4232 } 4233 4234 static void __meminit zone_init_free_lists(struct zone *zone) 4235 { 4236 unsigned int order, t; 4237 for_each_migratetype_order(order, t) { 4238 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4239 zone->free_area[order].nr_free = 0; 4240 } 4241 } 4242 4243 #ifndef __HAVE_ARCH_MEMMAP_INIT 4244 #define memmap_init(size, nid, zone, start_pfn) \ 4245 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4246 #endif 4247 4248 static int zone_batchsize(struct zone *zone) 4249 { 4250 #ifdef CONFIG_MMU 4251 int batch; 4252 4253 /* 4254 * The per-cpu-pages pools are set to around 1000th of the 4255 * size of the zone. But no more than 1/2 of a meg. 4256 * 4257 * OK, so we don't know how big the cache is. So guess. 4258 */ 4259 batch = zone->managed_pages / 1024; 4260 if (batch * PAGE_SIZE > 512 * 1024) 4261 batch = (512 * 1024) / PAGE_SIZE; 4262 batch /= 4; /* We effectively *= 4 below */ 4263 if (batch < 1) 4264 batch = 1; 4265 4266 /* 4267 * Clamp the batch to a 2^n - 1 value. Having a power 4268 * of 2 value was found to be more likely to have 4269 * suboptimal cache aliasing properties in some cases. 4270 * 4271 * For example if 2 tasks are alternately allocating 4272 * batches of pages, one task can end up with a lot 4273 * of pages of one half of the possible page colors 4274 * and the other with pages of the other colors. 4275 */ 4276 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4277 4278 return batch; 4279 4280 #else 4281 /* The deferral and batching of frees should be suppressed under NOMMU 4282 * conditions. 4283 * 4284 * The problem is that NOMMU needs to be able to allocate large chunks 4285 * of contiguous memory as there's no hardware page translation to 4286 * assemble apparent contiguous memory from discontiguous pages. 4287 * 4288 * Queueing large contiguous runs of pages for batching, however, 4289 * causes the pages to actually be freed in smaller chunks. As there 4290 * can be a significant delay between the individual batches being 4291 * recycled, this leads to the once large chunks of space being 4292 * fragmented and becoming unavailable for high-order allocations. 4293 */ 4294 return 0; 4295 #endif 4296 } 4297 4298 /* 4299 * pcp->high and pcp->batch values are related and dependent on one another: 4300 * ->batch must never be higher then ->high. 4301 * The following function updates them in a safe manner without read side 4302 * locking. 4303 * 4304 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4305 * those fields changing asynchronously (acording the the above rule). 4306 * 4307 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4308 * outside of boot time (or some other assurance that no concurrent updaters 4309 * exist). 4310 */ 4311 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4312 unsigned long batch) 4313 { 4314 /* start with a fail safe value for batch */ 4315 pcp->batch = 1; 4316 smp_wmb(); 4317 4318 /* Update high, then batch, in order */ 4319 pcp->high = high; 4320 smp_wmb(); 4321 4322 pcp->batch = batch; 4323 } 4324 4325 /* a companion to pageset_set_high() */ 4326 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4327 { 4328 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4329 } 4330 4331 static void pageset_init(struct per_cpu_pageset *p) 4332 { 4333 struct per_cpu_pages *pcp; 4334 int migratetype; 4335 4336 memset(p, 0, sizeof(*p)); 4337 4338 pcp = &p->pcp; 4339 pcp->count = 0; 4340 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4341 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4342 } 4343 4344 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4345 { 4346 pageset_init(p); 4347 pageset_set_batch(p, batch); 4348 } 4349 4350 /* 4351 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4352 * to the value high for the pageset p. 4353 */ 4354 static void pageset_set_high(struct per_cpu_pageset *p, 4355 unsigned long high) 4356 { 4357 unsigned long batch = max(1UL, high / 4); 4358 if ((high / 4) > (PAGE_SHIFT * 8)) 4359 batch = PAGE_SHIFT * 8; 4360 4361 pageset_update(&p->pcp, high, batch); 4362 } 4363 4364 static void pageset_set_high_and_batch(struct zone *zone, 4365 struct per_cpu_pageset *pcp) 4366 { 4367 if (percpu_pagelist_fraction) 4368 pageset_set_high(pcp, 4369 (zone->managed_pages / 4370 percpu_pagelist_fraction)); 4371 else 4372 pageset_set_batch(pcp, zone_batchsize(zone)); 4373 } 4374 4375 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4376 { 4377 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4378 4379 pageset_init(pcp); 4380 pageset_set_high_and_batch(zone, pcp); 4381 } 4382 4383 static void __meminit setup_zone_pageset(struct zone *zone) 4384 { 4385 int cpu; 4386 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4387 for_each_possible_cpu(cpu) 4388 zone_pageset_init(zone, cpu); 4389 } 4390 4391 /* 4392 * Allocate per cpu pagesets and initialize them. 4393 * Before this call only boot pagesets were available. 4394 */ 4395 void __init setup_per_cpu_pageset(void) 4396 { 4397 struct zone *zone; 4398 4399 for_each_populated_zone(zone) 4400 setup_zone_pageset(zone); 4401 } 4402 4403 static noinline __init_refok 4404 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4405 { 4406 int i; 4407 size_t alloc_size; 4408 4409 /* 4410 * The per-page waitqueue mechanism uses hashed waitqueues 4411 * per zone. 4412 */ 4413 zone->wait_table_hash_nr_entries = 4414 wait_table_hash_nr_entries(zone_size_pages); 4415 zone->wait_table_bits = 4416 wait_table_bits(zone->wait_table_hash_nr_entries); 4417 alloc_size = zone->wait_table_hash_nr_entries 4418 * sizeof(wait_queue_head_t); 4419 4420 if (!slab_is_available()) { 4421 zone->wait_table = (wait_queue_head_t *) 4422 memblock_virt_alloc_node_nopanic( 4423 alloc_size, zone->zone_pgdat->node_id); 4424 } else { 4425 /* 4426 * This case means that a zone whose size was 0 gets new memory 4427 * via memory hot-add. 4428 * But it may be the case that a new node was hot-added. In 4429 * this case vmalloc() will not be able to use this new node's 4430 * memory - this wait_table must be initialized to use this new 4431 * node itself as well. 4432 * To use this new node's memory, further consideration will be 4433 * necessary. 4434 */ 4435 zone->wait_table = vmalloc(alloc_size); 4436 } 4437 if (!zone->wait_table) 4438 return -ENOMEM; 4439 4440 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4441 init_waitqueue_head(zone->wait_table + i); 4442 4443 return 0; 4444 } 4445 4446 static __meminit void zone_pcp_init(struct zone *zone) 4447 { 4448 /* 4449 * per cpu subsystem is not up at this point. The following code 4450 * relies on the ability of the linker to provide the 4451 * offset of a (static) per cpu variable into the per cpu area. 4452 */ 4453 zone->pageset = &boot_pageset; 4454 4455 if (populated_zone(zone)) 4456 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4457 zone->name, zone->present_pages, 4458 zone_batchsize(zone)); 4459 } 4460 4461 int __meminit init_currently_empty_zone(struct zone *zone, 4462 unsigned long zone_start_pfn, 4463 unsigned long size, 4464 enum memmap_context context) 4465 { 4466 struct pglist_data *pgdat = zone->zone_pgdat; 4467 int ret; 4468 ret = zone_wait_table_init(zone, size); 4469 if (ret) 4470 return ret; 4471 pgdat->nr_zones = zone_idx(zone) + 1; 4472 4473 zone->zone_start_pfn = zone_start_pfn; 4474 4475 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4476 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4477 pgdat->node_id, 4478 (unsigned long)zone_idx(zone), 4479 zone_start_pfn, (zone_start_pfn + size)); 4480 4481 zone_init_free_lists(zone); 4482 4483 return 0; 4484 } 4485 4486 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4487 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4488 /* 4489 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4490 */ 4491 int __meminit __early_pfn_to_nid(unsigned long pfn) 4492 { 4493 unsigned long start_pfn, end_pfn; 4494 int nid; 4495 /* 4496 * NOTE: The following SMP-unsafe globals are only used early in boot 4497 * when the kernel is running single-threaded. 4498 */ 4499 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4500 static int __meminitdata last_nid; 4501 4502 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4503 return last_nid; 4504 4505 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4506 if (nid != -1) { 4507 last_start_pfn = start_pfn; 4508 last_end_pfn = end_pfn; 4509 last_nid = nid; 4510 } 4511 4512 return nid; 4513 } 4514 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4515 4516 int __meminit early_pfn_to_nid(unsigned long pfn) 4517 { 4518 int nid; 4519 4520 nid = __early_pfn_to_nid(pfn); 4521 if (nid >= 0) 4522 return nid; 4523 /* just returns 0 */ 4524 return 0; 4525 } 4526 4527 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4528 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4529 { 4530 int nid; 4531 4532 nid = __early_pfn_to_nid(pfn); 4533 if (nid >= 0 && nid != node) 4534 return false; 4535 return true; 4536 } 4537 #endif 4538 4539 /** 4540 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4541 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4542 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4543 * 4544 * If an architecture guarantees that all ranges registered contain no holes 4545 * and may be freed, this this function may be used instead of calling 4546 * memblock_free_early_nid() manually. 4547 */ 4548 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4549 { 4550 unsigned long start_pfn, end_pfn; 4551 int i, this_nid; 4552 4553 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4554 start_pfn = min(start_pfn, max_low_pfn); 4555 end_pfn = min(end_pfn, max_low_pfn); 4556 4557 if (start_pfn < end_pfn) 4558 memblock_free_early_nid(PFN_PHYS(start_pfn), 4559 (end_pfn - start_pfn) << PAGE_SHIFT, 4560 this_nid); 4561 } 4562 } 4563 4564 /** 4565 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4566 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4567 * 4568 * If an architecture guarantees that all ranges registered contain no holes and may 4569 * be freed, this function may be used instead of calling memory_present() manually. 4570 */ 4571 void __init sparse_memory_present_with_active_regions(int nid) 4572 { 4573 unsigned long start_pfn, end_pfn; 4574 int i, this_nid; 4575 4576 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4577 memory_present(this_nid, start_pfn, end_pfn); 4578 } 4579 4580 /** 4581 * get_pfn_range_for_nid - Return the start and end page frames for a node 4582 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4583 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4584 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4585 * 4586 * It returns the start and end page frame of a node based on information 4587 * provided by memblock_set_node(). If called for a node 4588 * with no available memory, a warning is printed and the start and end 4589 * PFNs will be 0. 4590 */ 4591 void __meminit get_pfn_range_for_nid(unsigned int nid, 4592 unsigned long *start_pfn, unsigned long *end_pfn) 4593 { 4594 unsigned long this_start_pfn, this_end_pfn; 4595 int i; 4596 4597 *start_pfn = -1UL; 4598 *end_pfn = 0; 4599 4600 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4601 *start_pfn = min(*start_pfn, this_start_pfn); 4602 *end_pfn = max(*end_pfn, this_end_pfn); 4603 } 4604 4605 if (*start_pfn == -1UL) 4606 *start_pfn = 0; 4607 } 4608 4609 /* 4610 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4611 * assumption is made that zones within a node are ordered in monotonic 4612 * increasing memory addresses so that the "highest" populated zone is used 4613 */ 4614 static void __init find_usable_zone_for_movable(void) 4615 { 4616 int zone_index; 4617 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4618 if (zone_index == ZONE_MOVABLE) 4619 continue; 4620 4621 if (arch_zone_highest_possible_pfn[zone_index] > 4622 arch_zone_lowest_possible_pfn[zone_index]) 4623 break; 4624 } 4625 4626 VM_BUG_ON(zone_index == -1); 4627 movable_zone = zone_index; 4628 } 4629 4630 /* 4631 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4632 * because it is sized independent of architecture. Unlike the other zones, 4633 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4634 * in each node depending on the size of each node and how evenly kernelcore 4635 * is distributed. This helper function adjusts the zone ranges 4636 * provided by the architecture for a given node by using the end of the 4637 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4638 * zones within a node are in order of monotonic increases memory addresses 4639 */ 4640 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4641 unsigned long zone_type, 4642 unsigned long node_start_pfn, 4643 unsigned long node_end_pfn, 4644 unsigned long *zone_start_pfn, 4645 unsigned long *zone_end_pfn) 4646 { 4647 /* Only adjust if ZONE_MOVABLE is on this node */ 4648 if (zone_movable_pfn[nid]) { 4649 /* Size ZONE_MOVABLE */ 4650 if (zone_type == ZONE_MOVABLE) { 4651 *zone_start_pfn = zone_movable_pfn[nid]; 4652 *zone_end_pfn = min(node_end_pfn, 4653 arch_zone_highest_possible_pfn[movable_zone]); 4654 4655 /* Adjust for ZONE_MOVABLE starting within this range */ 4656 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4657 *zone_end_pfn > zone_movable_pfn[nid]) { 4658 *zone_end_pfn = zone_movable_pfn[nid]; 4659 4660 /* Check if this whole range is within ZONE_MOVABLE */ 4661 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4662 *zone_start_pfn = *zone_end_pfn; 4663 } 4664 } 4665 4666 /* 4667 * Return the number of pages a zone spans in a node, including holes 4668 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4669 */ 4670 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4671 unsigned long zone_type, 4672 unsigned long node_start_pfn, 4673 unsigned long node_end_pfn, 4674 unsigned long *ignored) 4675 { 4676 unsigned long zone_start_pfn, zone_end_pfn; 4677 4678 /* Get the start and end of the zone */ 4679 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4680 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4681 adjust_zone_range_for_zone_movable(nid, zone_type, 4682 node_start_pfn, node_end_pfn, 4683 &zone_start_pfn, &zone_end_pfn); 4684 4685 /* Check that this node has pages within the zone's required range */ 4686 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4687 return 0; 4688 4689 /* Move the zone boundaries inside the node if necessary */ 4690 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4691 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4692 4693 /* Return the spanned pages */ 4694 return zone_end_pfn - zone_start_pfn; 4695 } 4696 4697 /* 4698 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4699 * then all holes in the requested range will be accounted for. 4700 */ 4701 unsigned long __meminit __absent_pages_in_range(int nid, 4702 unsigned long range_start_pfn, 4703 unsigned long range_end_pfn) 4704 { 4705 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4706 unsigned long start_pfn, end_pfn; 4707 int i; 4708 4709 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4710 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4711 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4712 nr_absent -= end_pfn - start_pfn; 4713 } 4714 return nr_absent; 4715 } 4716 4717 /** 4718 * absent_pages_in_range - Return number of page frames in holes within a range 4719 * @start_pfn: The start PFN to start searching for holes 4720 * @end_pfn: The end PFN to stop searching for holes 4721 * 4722 * It returns the number of pages frames in memory holes within a range. 4723 */ 4724 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4725 unsigned long end_pfn) 4726 { 4727 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4728 } 4729 4730 /* Return the number of page frames in holes in a zone on a node */ 4731 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4732 unsigned long zone_type, 4733 unsigned long node_start_pfn, 4734 unsigned long node_end_pfn, 4735 unsigned long *ignored) 4736 { 4737 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4738 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4739 unsigned long zone_start_pfn, zone_end_pfn; 4740 4741 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4742 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4743 4744 adjust_zone_range_for_zone_movable(nid, zone_type, 4745 node_start_pfn, node_end_pfn, 4746 &zone_start_pfn, &zone_end_pfn); 4747 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4748 } 4749 4750 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4751 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4752 unsigned long zone_type, 4753 unsigned long node_start_pfn, 4754 unsigned long node_end_pfn, 4755 unsigned long *zones_size) 4756 { 4757 return zones_size[zone_type]; 4758 } 4759 4760 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4761 unsigned long zone_type, 4762 unsigned long node_start_pfn, 4763 unsigned long node_end_pfn, 4764 unsigned long *zholes_size) 4765 { 4766 if (!zholes_size) 4767 return 0; 4768 4769 return zholes_size[zone_type]; 4770 } 4771 4772 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4773 4774 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4775 unsigned long node_start_pfn, 4776 unsigned long node_end_pfn, 4777 unsigned long *zones_size, 4778 unsigned long *zholes_size) 4779 { 4780 unsigned long realtotalpages, totalpages = 0; 4781 enum zone_type i; 4782 4783 for (i = 0; i < MAX_NR_ZONES; i++) 4784 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4785 node_start_pfn, 4786 node_end_pfn, 4787 zones_size); 4788 pgdat->node_spanned_pages = totalpages; 4789 4790 realtotalpages = totalpages; 4791 for (i = 0; i < MAX_NR_ZONES; i++) 4792 realtotalpages -= 4793 zone_absent_pages_in_node(pgdat->node_id, i, 4794 node_start_pfn, node_end_pfn, 4795 zholes_size); 4796 pgdat->node_present_pages = realtotalpages; 4797 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4798 realtotalpages); 4799 } 4800 4801 #ifndef CONFIG_SPARSEMEM 4802 /* 4803 * Calculate the size of the zone->blockflags rounded to an unsigned long 4804 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4805 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4806 * round what is now in bits to nearest long in bits, then return it in 4807 * bytes. 4808 */ 4809 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4810 { 4811 unsigned long usemapsize; 4812 4813 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4814 usemapsize = roundup(zonesize, pageblock_nr_pages); 4815 usemapsize = usemapsize >> pageblock_order; 4816 usemapsize *= NR_PAGEBLOCK_BITS; 4817 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4818 4819 return usemapsize / 8; 4820 } 4821 4822 static void __init setup_usemap(struct pglist_data *pgdat, 4823 struct zone *zone, 4824 unsigned long zone_start_pfn, 4825 unsigned long zonesize) 4826 { 4827 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4828 zone->pageblock_flags = NULL; 4829 if (usemapsize) 4830 zone->pageblock_flags = 4831 memblock_virt_alloc_node_nopanic(usemapsize, 4832 pgdat->node_id); 4833 } 4834 #else 4835 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4836 unsigned long zone_start_pfn, unsigned long zonesize) {} 4837 #endif /* CONFIG_SPARSEMEM */ 4838 4839 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4840 4841 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4842 void __paginginit set_pageblock_order(void) 4843 { 4844 unsigned int order; 4845 4846 /* Check that pageblock_nr_pages has not already been setup */ 4847 if (pageblock_order) 4848 return; 4849 4850 if (HPAGE_SHIFT > PAGE_SHIFT) 4851 order = HUGETLB_PAGE_ORDER; 4852 else 4853 order = MAX_ORDER - 1; 4854 4855 /* 4856 * Assume the largest contiguous order of interest is a huge page. 4857 * This value may be variable depending on boot parameters on IA64 and 4858 * powerpc. 4859 */ 4860 pageblock_order = order; 4861 } 4862 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4863 4864 /* 4865 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4866 * is unused as pageblock_order is set at compile-time. See 4867 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4868 * the kernel config 4869 */ 4870 void __paginginit set_pageblock_order(void) 4871 { 4872 } 4873 4874 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4875 4876 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4877 unsigned long present_pages) 4878 { 4879 unsigned long pages = spanned_pages; 4880 4881 /* 4882 * Provide a more accurate estimation if there are holes within 4883 * the zone and SPARSEMEM is in use. If there are holes within the 4884 * zone, each populated memory region may cost us one or two extra 4885 * memmap pages due to alignment because memmap pages for each 4886 * populated regions may not naturally algined on page boundary. 4887 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4888 */ 4889 if (spanned_pages > present_pages + (present_pages >> 4) && 4890 IS_ENABLED(CONFIG_SPARSEMEM)) 4891 pages = present_pages; 4892 4893 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4894 } 4895 4896 /* 4897 * Set up the zone data structures: 4898 * - mark all pages reserved 4899 * - mark all memory queues empty 4900 * - clear the memory bitmaps 4901 * 4902 * NOTE: pgdat should get zeroed by caller. 4903 */ 4904 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4905 unsigned long node_start_pfn, unsigned long node_end_pfn, 4906 unsigned long *zones_size, unsigned long *zholes_size) 4907 { 4908 enum zone_type j; 4909 int nid = pgdat->node_id; 4910 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4911 int ret; 4912 4913 pgdat_resize_init(pgdat); 4914 #ifdef CONFIG_NUMA_BALANCING 4915 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4916 pgdat->numabalancing_migrate_nr_pages = 0; 4917 pgdat->numabalancing_migrate_next_window = jiffies; 4918 #endif 4919 init_waitqueue_head(&pgdat->kswapd_wait); 4920 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4921 pgdat_page_ext_init(pgdat); 4922 4923 for (j = 0; j < MAX_NR_ZONES; j++) { 4924 struct zone *zone = pgdat->node_zones + j; 4925 unsigned long size, realsize, freesize, memmap_pages; 4926 4927 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4928 node_end_pfn, zones_size); 4929 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4930 node_start_pfn, 4931 node_end_pfn, 4932 zholes_size); 4933 4934 /* 4935 * Adjust freesize so that it accounts for how much memory 4936 * is used by this zone for memmap. This affects the watermark 4937 * and per-cpu initialisations 4938 */ 4939 memmap_pages = calc_memmap_size(size, realsize); 4940 if (!is_highmem_idx(j)) { 4941 if (freesize >= memmap_pages) { 4942 freesize -= memmap_pages; 4943 if (memmap_pages) 4944 printk(KERN_DEBUG 4945 " %s zone: %lu pages used for memmap\n", 4946 zone_names[j], memmap_pages); 4947 } else 4948 printk(KERN_WARNING 4949 " %s zone: %lu pages exceeds freesize %lu\n", 4950 zone_names[j], memmap_pages, freesize); 4951 } 4952 4953 /* Account for reserved pages */ 4954 if (j == 0 && freesize > dma_reserve) { 4955 freesize -= dma_reserve; 4956 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4957 zone_names[0], dma_reserve); 4958 } 4959 4960 if (!is_highmem_idx(j)) 4961 nr_kernel_pages += freesize; 4962 /* Charge for highmem memmap if there are enough kernel pages */ 4963 else if (nr_kernel_pages > memmap_pages * 2) 4964 nr_kernel_pages -= memmap_pages; 4965 nr_all_pages += freesize; 4966 4967 zone->spanned_pages = size; 4968 zone->present_pages = realsize; 4969 /* 4970 * Set an approximate value for lowmem here, it will be adjusted 4971 * when the bootmem allocator frees pages into the buddy system. 4972 * And all highmem pages will be managed by the buddy system. 4973 */ 4974 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4975 #ifdef CONFIG_NUMA 4976 zone->node = nid; 4977 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4978 / 100; 4979 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4980 #endif 4981 zone->name = zone_names[j]; 4982 spin_lock_init(&zone->lock); 4983 spin_lock_init(&zone->lru_lock); 4984 zone_seqlock_init(zone); 4985 zone->zone_pgdat = pgdat; 4986 zone_pcp_init(zone); 4987 4988 /* For bootup, initialized properly in watermark setup */ 4989 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4990 4991 lruvec_init(&zone->lruvec); 4992 if (!size) 4993 continue; 4994 4995 set_pageblock_order(); 4996 setup_usemap(pgdat, zone, zone_start_pfn, size); 4997 ret = init_currently_empty_zone(zone, zone_start_pfn, 4998 size, MEMMAP_EARLY); 4999 BUG_ON(ret); 5000 memmap_init(size, nid, j, zone_start_pfn); 5001 zone_start_pfn += size; 5002 } 5003 } 5004 5005 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 5006 { 5007 /* Skip empty nodes */ 5008 if (!pgdat->node_spanned_pages) 5009 return; 5010 5011 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5012 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5013 if (!pgdat->node_mem_map) { 5014 unsigned long size, start, end; 5015 struct page *map; 5016 5017 /* 5018 * The zone's endpoints aren't required to be MAX_ORDER 5019 * aligned but the node_mem_map endpoints must be in order 5020 * for the buddy allocator to function correctly. 5021 */ 5022 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5023 end = pgdat_end_pfn(pgdat); 5024 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5025 size = (end - start) * sizeof(struct page); 5026 map = alloc_remap(pgdat->node_id, size); 5027 if (!map) 5028 map = memblock_virt_alloc_node_nopanic(size, 5029 pgdat->node_id); 5030 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 5031 } 5032 #ifndef CONFIG_NEED_MULTIPLE_NODES 5033 /* 5034 * With no DISCONTIG, the global mem_map is just set as node 0's 5035 */ 5036 if (pgdat == NODE_DATA(0)) { 5037 mem_map = NODE_DATA(0)->node_mem_map; 5038 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5039 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5040 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 5041 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5042 } 5043 #endif 5044 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5045 } 5046 5047 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5048 unsigned long node_start_pfn, unsigned long *zholes_size) 5049 { 5050 pg_data_t *pgdat = NODE_DATA(nid); 5051 unsigned long start_pfn = 0; 5052 unsigned long end_pfn = 0; 5053 5054 /* pg_data_t should be reset to zero when it's allocated */ 5055 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 5056 5057 pgdat->node_id = nid; 5058 pgdat->node_start_pfn = node_start_pfn; 5059 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5060 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5061 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid, 5062 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1); 5063 #endif 5064 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5065 zones_size, zholes_size); 5066 5067 alloc_node_mem_map(pgdat); 5068 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5069 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5070 nid, (unsigned long)pgdat, 5071 (unsigned long)pgdat->node_mem_map); 5072 #endif 5073 5074 free_area_init_core(pgdat, start_pfn, end_pfn, 5075 zones_size, zholes_size); 5076 } 5077 5078 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5079 5080 #if MAX_NUMNODES > 1 5081 /* 5082 * Figure out the number of possible node ids. 5083 */ 5084 void __init setup_nr_node_ids(void) 5085 { 5086 unsigned int node; 5087 unsigned int highest = 0; 5088 5089 for_each_node_mask(node, node_possible_map) 5090 highest = node; 5091 nr_node_ids = highest + 1; 5092 } 5093 #endif 5094 5095 /** 5096 * node_map_pfn_alignment - determine the maximum internode alignment 5097 * 5098 * This function should be called after node map is populated and sorted. 5099 * It calculates the maximum power of two alignment which can distinguish 5100 * all the nodes. 5101 * 5102 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5103 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5104 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5105 * shifted, 1GiB is enough and this function will indicate so. 5106 * 5107 * This is used to test whether pfn -> nid mapping of the chosen memory 5108 * model has fine enough granularity to avoid incorrect mapping for the 5109 * populated node map. 5110 * 5111 * Returns the determined alignment in pfn's. 0 if there is no alignment 5112 * requirement (single node). 5113 */ 5114 unsigned long __init node_map_pfn_alignment(void) 5115 { 5116 unsigned long accl_mask = 0, last_end = 0; 5117 unsigned long start, end, mask; 5118 int last_nid = -1; 5119 int i, nid; 5120 5121 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5122 if (!start || last_nid < 0 || last_nid == nid) { 5123 last_nid = nid; 5124 last_end = end; 5125 continue; 5126 } 5127 5128 /* 5129 * Start with a mask granular enough to pin-point to the 5130 * start pfn and tick off bits one-by-one until it becomes 5131 * too coarse to separate the current node from the last. 5132 */ 5133 mask = ~((1 << __ffs(start)) - 1); 5134 while (mask && last_end <= (start & (mask << 1))) 5135 mask <<= 1; 5136 5137 /* accumulate all internode masks */ 5138 accl_mask |= mask; 5139 } 5140 5141 /* convert mask to number of pages */ 5142 return ~accl_mask + 1; 5143 } 5144 5145 /* Find the lowest pfn for a node */ 5146 static unsigned long __init find_min_pfn_for_node(int nid) 5147 { 5148 unsigned long min_pfn = ULONG_MAX; 5149 unsigned long start_pfn; 5150 int i; 5151 5152 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5153 min_pfn = min(min_pfn, start_pfn); 5154 5155 if (min_pfn == ULONG_MAX) { 5156 printk(KERN_WARNING 5157 "Could not find start_pfn for node %d\n", nid); 5158 return 0; 5159 } 5160 5161 return min_pfn; 5162 } 5163 5164 /** 5165 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5166 * 5167 * It returns the minimum PFN based on information provided via 5168 * memblock_set_node(). 5169 */ 5170 unsigned long __init find_min_pfn_with_active_regions(void) 5171 { 5172 return find_min_pfn_for_node(MAX_NUMNODES); 5173 } 5174 5175 /* 5176 * early_calculate_totalpages() 5177 * Sum pages in active regions for movable zone. 5178 * Populate N_MEMORY for calculating usable_nodes. 5179 */ 5180 static unsigned long __init early_calculate_totalpages(void) 5181 { 5182 unsigned long totalpages = 0; 5183 unsigned long start_pfn, end_pfn; 5184 int i, nid; 5185 5186 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5187 unsigned long pages = end_pfn - start_pfn; 5188 5189 totalpages += pages; 5190 if (pages) 5191 node_set_state(nid, N_MEMORY); 5192 } 5193 return totalpages; 5194 } 5195 5196 /* 5197 * Find the PFN the Movable zone begins in each node. Kernel memory 5198 * is spread evenly between nodes as long as the nodes have enough 5199 * memory. When they don't, some nodes will have more kernelcore than 5200 * others 5201 */ 5202 static void __init find_zone_movable_pfns_for_nodes(void) 5203 { 5204 int i, nid; 5205 unsigned long usable_startpfn; 5206 unsigned long kernelcore_node, kernelcore_remaining; 5207 /* save the state before borrow the nodemask */ 5208 nodemask_t saved_node_state = node_states[N_MEMORY]; 5209 unsigned long totalpages = early_calculate_totalpages(); 5210 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5211 struct memblock_region *r; 5212 5213 /* Need to find movable_zone earlier when movable_node is specified. */ 5214 find_usable_zone_for_movable(); 5215 5216 /* 5217 * If movable_node is specified, ignore kernelcore and movablecore 5218 * options. 5219 */ 5220 if (movable_node_is_enabled()) { 5221 for_each_memblock(memory, r) { 5222 if (!memblock_is_hotpluggable(r)) 5223 continue; 5224 5225 nid = r->nid; 5226 5227 usable_startpfn = PFN_DOWN(r->base); 5228 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5229 min(usable_startpfn, zone_movable_pfn[nid]) : 5230 usable_startpfn; 5231 } 5232 5233 goto out2; 5234 } 5235 5236 /* 5237 * If movablecore=nn[KMG] was specified, calculate what size of 5238 * kernelcore that corresponds so that memory usable for 5239 * any allocation type is evenly spread. If both kernelcore 5240 * and movablecore are specified, then the value of kernelcore 5241 * will be used for required_kernelcore if it's greater than 5242 * what movablecore would have allowed. 5243 */ 5244 if (required_movablecore) { 5245 unsigned long corepages; 5246 5247 /* 5248 * Round-up so that ZONE_MOVABLE is at least as large as what 5249 * was requested by the user 5250 */ 5251 required_movablecore = 5252 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5253 corepages = totalpages - required_movablecore; 5254 5255 required_kernelcore = max(required_kernelcore, corepages); 5256 } 5257 5258 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5259 if (!required_kernelcore) 5260 goto out; 5261 5262 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5263 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5264 5265 restart: 5266 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5267 kernelcore_node = required_kernelcore / usable_nodes; 5268 for_each_node_state(nid, N_MEMORY) { 5269 unsigned long start_pfn, end_pfn; 5270 5271 /* 5272 * Recalculate kernelcore_node if the division per node 5273 * now exceeds what is necessary to satisfy the requested 5274 * amount of memory for the kernel 5275 */ 5276 if (required_kernelcore < kernelcore_node) 5277 kernelcore_node = required_kernelcore / usable_nodes; 5278 5279 /* 5280 * As the map is walked, we track how much memory is usable 5281 * by the kernel using kernelcore_remaining. When it is 5282 * 0, the rest of the node is usable by ZONE_MOVABLE 5283 */ 5284 kernelcore_remaining = kernelcore_node; 5285 5286 /* Go through each range of PFNs within this node */ 5287 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5288 unsigned long size_pages; 5289 5290 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5291 if (start_pfn >= end_pfn) 5292 continue; 5293 5294 /* Account for what is only usable for kernelcore */ 5295 if (start_pfn < usable_startpfn) { 5296 unsigned long kernel_pages; 5297 kernel_pages = min(end_pfn, usable_startpfn) 5298 - start_pfn; 5299 5300 kernelcore_remaining -= min(kernel_pages, 5301 kernelcore_remaining); 5302 required_kernelcore -= min(kernel_pages, 5303 required_kernelcore); 5304 5305 /* Continue if range is now fully accounted */ 5306 if (end_pfn <= usable_startpfn) { 5307 5308 /* 5309 * Push zone_movable_pfn to the end so 5310 * that if we have to rebalance 5311 * kernelcore across nodes, we will 5312 * not double account here 5313 */ 5314 zone_movable_pfn[nid] = end_pfn; 5315 continue; 5316 } 5317 start_pfn = usable_startpfn; 5318 } 5319 5320 /* 5321 * The usable PFN range for ZONE_MOVABLE is from 5322 * start_pfn->end_pfn. Calculate size_pages as the 5323 * number of pages used as kernelcore 5324 */ 5325 size_pages = end_pfn - start_pfn; 5326 if (size_pages > kernelcore_remaining) 5327 size_pages = kernelcore_remaining; 5328 zone_movable_pfn[nid] = start_pfn + size_pages; 5329 5330 /* 5331 * Some kernelcore has been met, update counts and 5332 * break if the kernelcore for this node has been 5333 * satisfied 5334 */ 5335 required_kernelcore -= min(required_kernelcore, 5336 size_pages); 5337 kernelcore_remaining -= size_pages; 5338 if (!kernelcore_remaining) 5339 break; 5340 } 5341 } 5342 5343 /* 5344 * If there is still required_kernelcore, we do another pass with one 5345 * less node in the count. This will push zone_movable_pfn[nid] further 5346 * along on the nodes that still have memory until kernelcore is 5347 * satisfied 5348 */ 5349 usable_nodes--; 5350 if (usable_nodes && required_kernelcore > usable_nodes) 5351 goto restart; 5352 5353 out2: 5354 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5355 for (nid = 0; nid < MAX_NUMNODES; nid++) 5356 zone_movable_pfn[nid] = 5357 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5358 5359 out: 5360 /* restore the node_state */ 5361 node_states[N_MEMORY] = saved_node_state; 5362 } 5363 5364 /* Any regular or high memory on that node ? */ 5365 static void check_for_memory(pg_data_t *pgdat, int nid) 5366 { 5367 enum zone_type zone_type; 5368 5369 if (N_MEMORY == N_NORMAL_MEMORY) 5370 return; 5371 5372 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5373 struct zone *zone = &pgdat->node_zones[zone_type]; 5374 if (populated_zone(zone)) { 5375 node_set_state(nid, N_HIGH_MEMORY); 5376 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5377 zone_type <= ZONE_NORMAL) 5378 node_set_state(nid, N_NORMAL_MEMORY); 5379 break; 5380 } 5381 } 5382 } 5383 5384 /** 5385 * free_area_init_nodes - Initialise all pg_data_t and zone data 5386 * @max_zone_pfn: an array of max PFNs for each zone 5387 * 5388 * This will call free_area_init_node() for each active node in the system. 5389 * Using the page ranges provided by memblock_set_node(), the size of each 5390 * zone in each node and their holes is calculated. If the maximum PFN 5391 * between two adjacent zones match, it is assumed that the zone is empty. 5392 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5393 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5394 * starts where the previous one ended. For example, ZONE_DMA32 starts 5395 * at arch_max_dma_pfn. 5396 */ 5397 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5398 { 5399 unsigned long start_pfn, end_pfn; 5400 int i, nid; 5401 5402 /* Record where the zone boundaries are */ 5403 memset(arch_zone_lowest_possible_pfn, 0, 5404 sizeof(arch_zone_lowest_possible_pfn)); 5405 memset(arch_zone_highest_possible_pfn, 0, 5406 sizeof(arch_zone_highest_possible_pfn)); 5407 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5408 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5409 for (i = 1; i < MAX_NR_ZONES; i++) { 5410 if (i == ZONE_MOVABLE) 5411 continue; 5412 arch_zone_lowest_possible_pfn[i] = 5413 arch_zone_highest_possible_pfn[i-1]; 5414 arch_zone_highest_possible_pfn[i] = 5415 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5416 } 5417 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5418 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5419 5420 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5421 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5422 find_zone_movable_pfns_for_nodes(); 5423 5424 /* Print out the zone ranges */ 5425 pr_info("Zone ranges:\n"); 5426 for (i = 0; i < MAX_NR_ZONES; i++) { 5427 if (i == ZONE_MOVABLE) 5428 continue; 5429 pr_info(" %-8s ", zone_names[i]); 5430 if (arch_zone_lowest_possible_pfn[i] == 5431 arch_zone_highest_possible_pfn[i]) 5432 pr_cont("empty\n"); 5433 else 5434 pr_cont("[mem %0#10lx-%0#10lx]\n", 5435 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5436 (arch_zone_highest_possible_pfn[i] 5437 << PAGE_SHIFT) - 1); 5438 } 5439 5440 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5441 pr_info("Movable zone start for each node\n"); 5442 for (i = 0; i < MAX_NUMNODES; i++) { 5443 if (zone_movable_pfn[i]) 5444 pr_info(" Node %d: %#010lx\n", i, 5445 zone_movable_pfn[i] << PAGE_SHIFT); 5446 } 5447 5448 /* Print out the early node map */ 5449 pr_info("Early memory node ranges\n"); 5450 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5451 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5452 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5453 5454 /* Initialise every node */ 5455 mminit_verify_pageflags_layout(); 5456 setup_nr_node_ids(); 5457 for_each_online_node(nid) { 5458 pg_data_t *pgdat = NODE_DATA(nid); 5459 free_area_init_node(nid, NULL, 5460 find_min_pfn_for_node(nid), NULL); 5461 5462 /* Any memory on that node */ 5463 if (pgdat->node_present_pages) 5464 node_set_state(nid, N_MEMORY); 5465 check_for_memory(pgdat, nid); 5466 } 5467 } 5468 5469 static int __init cmdline_parse_core(char *p, unsigned long *core) 5470 { 5471 unsigned long long coremem; 5472 if (!p) 5473 return -EINVAL; 5474 5475 coremem = memparse(p, &p); 5476 *core = coremem >> PAGE_SHIFT; 5477 5478 /* Paranoid check that UL is enough for the coremem value */ 5479 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5480 5481 return 0; 5482 } 5483 5484 /* 5485 * kernelcore=size sets the amount of memory for use for allocations that 5486 * cannot be reclaimed or migrated. 5487 */ 5488 static int __init cmdline_parse_kernelcore(char *p) 5489 { 5490 return cmdline_parse_core(p, &required_kernelcore); 5491 } 5492 5493 /* 5494 * movablecore=size sets the amount of memory for use for allocations that 5495 * can be reclaimed or migrated. 5496 */ 5497 static int __init cmdline_parse_movablecore(char *p) 5498 { 5499 return cmdline_parse_core(p, &required_movablecore); 5500 } 5501 5502 early_param("kernelcore", cmdline_parse_kernelcore); 5503 early_param("movablecore", cmdline_parse_movablecore); 5504 5505 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5506 5507 void adjust_managed_page_count(struct page *page, long count) 5508 { 5509 spin_lock(&managed_page_count_lock); 5510 page_zone(page)->managed_pages += count; 5511 totalram_pages += count; 5512 #ifdef CONFIG_HIGHMEM 5513 if (PageHighMem(page)) 5514 totalhigh_pages += count; 5515 #endif 5516 spin_unlock(&managed_page_count_lock); 5517 } 5518 EXPORT_SYMBOL(adjust_managed_page_count); 5519 5520 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5521 { 5522 void *pos; 5523 unsigned long pages = 0; 5524 5525 start = (void *)PAGE_ALIGN((unsigned long)start); 5526 end = (void *)((unsigned long)end & PAGE_MASK); 5527 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5528 if ((unsigned int)poison <= 0xFF) 5529 memset(pos, poison, PAGE_SIZE); 5530 free_reserved_page(virt_to_page(pos)); 5531 } 5532 5533 if (pages && s) 5534 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5535 s, pages << (PAGE_SHIFT - 10), start, end); 5536 5537 return pages; 5538 } 5539 EXPORT_SYMBOL(free_reserved_area); 5540 5541 #ifdef CONFIG_HIGHMEM 5542 void free_highmem_page(struct page *page) 5543 { 5544 __free_reserved_page(page); 5545 totalram_pages++; 5546 page_zone(page)->managed_pages++; 5547 totalhigh_pages++; 5548 } 5549 #endif 5550 5551 5552 void __init mem_init_print_info(const char *str) 5553 { 5554 unsigned long physpages, codesize, datasize, rosize, bss_size; 5555 unsigned long init_code_size, init_data_size; 5556 5557 physpages = get_num_physpages(); 5558 codesize = _etext - _stext; 5559 datasize = _edata - _sdata; 5560 rosize = __end_rodata - __start_rodata; 5561 bss_size = __bss_stop - __bss_start; 5562 init_data_size = __init_end - __init_begin; 5563 init_code_size = _einittext - _sinittext; 5564 5565 /* 5566 * Detect special cases and adjust section sizes accordingly: 5567 * 1) .init.* may be embedded into .data sections 5568 * 2) .init.text.* may be out of [__init_begin, __init_end], 5569 * please refer to arch/tile/kernel/vmlinux.lds.S. 5570 * 3) .rodata.* may be embedded into .text or .data sections. 5571 */ 5572 #define adj_init_size(start, end, size, pos, adj) \ 5573 do { \ 5574 if (start <= pos && pos < end && size > adj) \ 5575 size -= adj; \ 5576 } while (0) 5577 5578 adj_init_size(__init_begin, __init_end, init_data_size, 5579 _sinittext, init_code_size); 5580 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5581 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5582 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5583 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5584 5585 #undef adj_init_size 5586 5587 pr_info("Memory: %luK/%luK available " 5588 "(%luK kernel code, %luK rwdata, %luK rodata, " 5589 "%luK init, %luK bss, %luK reserved" 5590 #ifdef CONFIG_HIGHMEM 5591 ", %luK highmem" 5592 #endif 5593 "%s%s)\n", 5594 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5595 codesize >> 10, datasize >> 10, rosize >> 10, 5596 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5597 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5598 #ifdef CONFIG_HIGHMEM 5599 totalhigh_pages << (PAGE_SHIFT-10), 5600 #endif 5601 str ? ", " : "", str ? str : ""); 5602 } 5603 5604 /** 5605 * set_dma_reserve - set the specified number of pages reserved in the first zone 5606 * @new_dma_reserve: The number of pages to mark reserved 5607 * 5608 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5609 * In the DMA zone, a significant percentage may be consumed by kernel image 5610 * and other unfreeable allocations which can skew the watermarks badly. This 5611 * function may optionally be used to account for unfreeable pages in the 5612 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5613 * smaller per-cpu batchsize. 5614 */ 5615 void __init set_dma_reserve(unsigned long new_dma_reserve) 5616 { 5617 dma_reserve = new_dma_reserve; 5618 } 5619 5620 void __init free_area_init(unsigned long *zones_size) 5621 { 5622 free_area_init_node(0, zones_size, 5623 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5624 } 5625 5626 static int page_alloc_cpu_notify(struct notifier_block *self, 5627 unsigned long action, void *hcpu) 5628 { 5629 int cpu = (unsigned long)hcpu; 5630 5631 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5632 lru_add_drain_cpu(cpu); 5633 drain_pages(cpu); 5634 5635 /* 5636 * Spill the event counters of the dead processor 5637 * into the current processors event counters. 5638 * This artificially elevates the count of the current 5639 * processor. 5640 */ 5641 vm_events_fold_cpu(cpu); 5642 5643 /* 5644 * Zero the differential counters of the dead processor 5645 * so that the vm statistics are consistent. 5646 * 5647 * This is only okay since the processor is dead and cannot 5648 * race with what we are doing. 5649 */ 5650 cpu_vm_stats_fold(cpu); 5651 } 5652 return NOTIFY_OK; 5653 } 5654 5655 void __init page_alloc_init(void) 5656 { 5657 hotcpu_notifier(page_alloc_cpu_notify, 0); 5658 } 5659 5660 /* 5661 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5662 * or min_free_kbytes changes. 5663 */ 5664 static void calculate_totalreserve_pages(void) 5665 { 5666 struct pglist_data *pgdat; 5667 unsigned long reserve_pages = 0; 5668 enum zone_type i, j; 5669 5670 for_each_online_pgdat(pgdat) { 5671 for (i = 0; i < MAX_NR_ZONES; i++) { 5672 struct zone *zone = pgdat->node_zones + i; 5673 long max = 0; 5674 5675 /* Find valid and maximum lowmem_reserve in the zone */ 5676 for (j = i; j < MAX_NR_ZONES; j++) { 5677 if (zone->lowmem_reserve[j] > max) 5678 max = zone->lowmem_reserve[j]; 5679 } 5680 5681 /* we treat the high watermark as reserved pages. */ 5682 max += high_wmark_pages(zone); 5683 5684 if (max > zone->managed_pages) 5685 max = zone->managed_pages; 5686 reserve_pages += max; 5687 /* 5688 * Lowmem reserves are not available to 5689 * GFP_HIGHUSER page cache allocations and 5690 * kswapd tries to balance zones to their high 5691 * watermark. As a result, neither should be 5692 * regarded as dirtyable memory, to prevent a 5693 * situation where reclaim has to clean pages 5694 * in order to balance the zones. 5695 */ 5696 zone->dirty_balance_reserve = max; 5697 } 5698 } 5699 dirty_balance_reserve = reserve_pages; 5700 totalreserve_pages = reserve_pages; 5701 } 5702 5703 /* 5704 * setup_per_zone_lowmem_reserve - called whenever 5705 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5706 * has a correct pages reserved value, so an adequate number of 5707 * pages are left in the zone after a successful __alloc_pages(). 5708 */ 5709 static void setup_per_zone_lowmem_reserve(void) 5710 { 5711 struct pglist_data *pgdat; 5712 enum zone_type j, idx; 5713 5714 for_each_online_pgdat(pgdat) { 5715 for (j = 0; j < MAX_NR_ZONES; j++) { 5716 struct zone *zone = pgdat->node_zones + j; 5717 unsigned long managed_pages = zone->managed_pages; 5718 5719 zone->lowmem_reserve[j] = 0; 5720 5721 idx = j; 5722 while (idx) { 5723 struct zone *lower_zone; 5724 5725 idx--; 5726 5727 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5728 sysctl_lowmem_reserve_ratio[idx] = 1; 5729 5730 lower_zone = pgdat->node_zones + idx; 5731 lower_zone->lowmem_reserve[j] = managed_pages / 5732 sysctl_lowmem_reserve_ratio[idx]; 5733 managed_pages += lower_zone->managed_pages; 5734 } 5735 } 5736 } 5737 5738 /* update totalreserve_pages */ 5739 calculate_totalreserve_pages(); 5740 } 5741 5742 static void __setup_per_zone_wmarks(void) 5743 { 5744 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5745 unsigned long lowmem_pages = 0; 5746 struct zone *zone; 5747 unsigned long flags; 5748 5749 /* Calculate total number of !ZONE_HIGHMEM pages */ 5750 for_each_zone(zone) { 5751 if (!is_highmem(zone)) 5752 lowmem_pages += zone->managed_pages; 5753 } 5754 5755 for_each_zone(zone) { 5756 u64 tmp; 5757 5758 spin_lock_irqsave(&zone->lock, flags); 5759 tmp = (u64)pages_min * zone->managed_pages; 5760 do_div(tmp, lowmem_pages); 5761 if (is_highmem(zone)) { 5762 /* 5763 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5764 * need highmem pages, so cap pages_min to a small 5765 * value here. 5766 * 5767 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5768 * deltas controls asynch page reclaim, and so should 5769 * not be capped for highmem. 5770 */ 5771 unsigned long min_pages; 5772 5773 min_pages = zone->managed_pages / 1024; 5774 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5775 zone->watermark[WMARK_MIN] = min_pages; 5776 } else { 5777 /* 5778 * If it's a lowmem zone, reserve a number of pages 5779 * proportionate to the zone's size. 5780 */ 5781 zone->watermark[WMARK_MIN] = tmp; 5782 } 5783 5784 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5785 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5786 5787 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5788 high_wmark_pages(zone) - low_wmark_pages(zone) - 5789 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 5790 5791 setup_zone_migrate_reserve(zone); 5792 spin_unlock_irqrestore(&zone->lock, flags); 5793 } 5794 5795 /* update totalreserve_pages */ 5796 calculate_totalreserve_pages(); 5797 } 5798 5799 /** 5800 * setup_per_zone_wmarks - called when min_free_kbytes changes 5801 * or when memory is hot-{added|removed} 5802 * 5803 * Ensures that the watermark[min,low,high] values for each zone are set 5804 * correctly with respect to min_free_kbytes. 5805 */ 5806 void setup_per_zone_wmarks(void) 5807 { 5808 mutex_lock(&zonelists_mutex); 5809 __setup_per_zone_wmarks(); 5810 mutex_unlock(&zonelists_mutex); 5811 } 5812 5813 /* 5814 * The inactive anon list should be small enough that the VM never has to 5815 * do too much work, but large enough that each inactive page has a chance 5816 * to be referenced again before it is swapped out. 5817 * 5818 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5819 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5820 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5821 * the anonymous pages are kept on the inactive list. 5822 * 5823 * total target max 5824 * memory ratio inactive anon 5825 * ------------------------------------- 5826 * 10MB 1 5MB 5827 * 100MB 1 50MB 5828 * 1GB 3 250MB 5829 * 10GB 10 0.9GB 5830 * 100GB 31 3GB 5831 * 1TB 101 10GB 5832 * 10TB 320 32GB 5833 */ 5834 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5835 { 5836 unsigned int gb, ratio; 5837 5838 /* Zone size in gigabytes */ 5839 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5840 if (gb) 5841 ratio = int_sqrt(10 * gb); 5842 else 5843 ratio = 1; 5844 5845 zone->inactive_ratio = ratio; 5846 } 5847 5848 static void __meminit setup_per_zone_inactive_ratio(void) 5849 { 5850 struct zone *zone; 5851 5852 for_each_zone(zone) 5853 calculate_zone_inactive_ratio(zone); 5854 } 5855 5856 /* 5857 * Initialise min_free_kbytes. 5858 * 5859 * For small machines we want it small (128k min). For large machines 5860 * we want it large (64MB max). But it is not linear, because network 5861 * bandwidth does not increase linearly with machine size. We use 5862 * 5863 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5864 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5865 * 5866 * which yields 5867 * 5868 * 16MB: 512k 5869 * 32MB: 724k 5870 * 64MB: 1024k 5871 * 128MB: 1448k 5872 * 256MB: 2048k 5873 * 512MB: 2896k 5874 * 1024MB: 4096k 5875 * 2048MB: 5792k 5876 * 4096MB: 8192k 5877 * 8192MB: 11584k 5878 * 16384MB: 16384k 5879 */ 5880 int __meminit init_per_zone_wmark_min(void) 5881 { 5882 unsigned long lowmem_kbytes; 5883 int new_min_free_kbytes; 5884 5885 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5886 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5887 5888 if (new_min_free_kbytes > user_min_free_kbytes) { 5889 min_free_kbytes = new_min_free_kbytes; 5890 if (min_free_kbytes < 128) 5891 min_free_kbytes = 128; 5892 if (min_free_kbytes > 65536) 5893 min_free_kbytes = 65536; 5894 } else { 5895 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5896 new_min_free_kbytes, user_min_free_kbytes); 5897 } 5898 setup_per_zone_wmarks(); 5899 refresh_zone_stat_thresholds(); 5900 setup_per_zone_lowmem_reserve(); 5901 setup_per_zone_inactive_ratio(); 5902 return 0; 5903 } 5904 module_init(init_per_zone_wmark_min) 5905 5906 /* 5907 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5908 * that we can call two helper functions whenever min_free_kbytes 5909 * changes. 5910 */ 5911 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5912 void __user *buffer, size_t *length, loff_t *ppos) 5913 { 5914 int rc; 5915 5916 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5917 if (rc) 5918 return rc; 5919 5920 if (write) { 5921 user_min_free_kbytes = min_free_kbytes; 5922 setup_per_zone_wmarks(); 5923 } 5924 return 0; 5925 } 5926 5927 #ifdef CONFIG_NUMA 5928 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5929 void __user *buffer, size_t *length, loff_t *ppos) 5930 { 5931 struct zone *zone; 5932 int rc; 5933 5934 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5935 if (rc) 5936 return rc; 5937 5938 for_each_zone(zone) 5939 zone->min_unmapped_pages = (zone->managed_pages * 5940 sysctl_min_unmapped_ratio) / 100; 5941 return 0; 5942 } 5943 5944 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5945 void __user *buffer, size_t *length, loff_t *ppos) 5946 { 5947 struct zone *zone; 5948 int rc; 5949 5950 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5951 if (rc) 5952 return rc; 5953 5954 for_each_zone(zone) 5955 zone->min_slab_pages = (zone->managed_pages * 5956 sysctl_min_slab_ratio) / 100; 5957 return 0; 5958 } 5959 #endif 5960 5961 /* 5962 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5963 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5964 * whenever sysctl_lowmem_reserve_ratio changes. 5965 * 5966 * The reserve ratio obviously has absolutely no relation with the 5967 * minimum watermarks. The lowmem reserve ratio can only make sense 5968 * if in function of the boot time zone sizes. 5969 */ 5970 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5971 void __user *buffer, size_t *length, loff_t *ppos) 5972 { 5973 proc_dointvec_minmax(table, write, buffer, length, ppos); 5974 setup_per_zone_lowmem_reserve(); 5975 return 0; 5976 } 5977 5978 /* 5979 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5980 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5981 * pagelist can have before it gets flushed back to buddy allocator. 5982 */ 5983 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 5984 void __user *buffer, size_t *length, loff_t *ppos) 5985 { 5986 struct zone *zone; 5987 int old_percpu_pagelist_fraction; 5988 int ret; 5989 5990 mutex_lock(&pcp_batch_high_lock); 5991 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 5992 5993 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5994 if (!write || ret < 0) 5995 goto out; 5996 5997 /* Sanity checking to avoid pcp imbalance */ 5998 if (percpu_pagelist_fraction && 5999 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6000 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6001 ret = -EINVAL; 6002 goto out; 6003 } 6004 6005 /* No change? */ 6006 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6007 goto out; 6008 6009 for_each_populated_zone(zone) { 6010 unsigned int cpu; 6011 6012 for_each_possible_cpu(cpu) 6013 pageset_set_high_and_batch(zone, 6014 per_cpu_ptr(zone->pageset, cpu)); 6015 } 6016 out: 6017 mutex_unlock(&pcp_batch_high_lock); 6018 return ret; 6019 } 6020 6021 int hashdist = HASHDIST_DEFAULT; 6022 6023 #ifdef CONFIG_NUMA 6024 static int __init set_hashdist(char *str) 6025 { 6026 if (!str) 6027 return 0; 6028 hashdist = simple_strtoul(str, &str, 0); 6029 return 1; 6030 } 6031 __setup("hashdist=", set_hashdist); 6032 #endif 6033 6034 /* 6035 * allocate a large system hash table from bootmem 6036 * - it is assumed that the hash table must contain an exact power-of-2 6037 * quantity of entries 6038 * - limit is the number of hash buckets, not the total allocation size 6039 */ 6040 void *__init alloc_large_system_hash(const char *tablename, 6041 unsigned long bucketsize, 6042 unsigned long numentries, 6043 int scale, 6044 int flags, 6045 unsigned int *_hash_shift, 6046 unsigned int *_hash_mask, 6047 unsigned long low_limit, 6048 unsigned long high_limit) 6049 { 6050 unsigned long long max = high_limit; 6051 unsigned long log2qty, size; 6052 void *table = NULL; 6053 6054 /* allow the kernel cmdline to have a say */ 6055 if (!numentries) { 6056 /* round applicable memory size up to nearest megabyte */ 6057 numentries = nr_kernel_pages; 6058 6059 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6060 if (PAGE_SHIFT < 20) 6061 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6062 6063 /* limit to 1 bucket per 2^scale bytes of low memory */ 6064 if (scale > PAGE_SHIFT) 6065 numentries >>= (scale - PAGE_SHIFT); 6066 else 6067 numentries <<= (PAGE_SHIFT - scale); 6068 6069 /* Make sure we've got at least a 0-order allocation.. */ 6070 if (unlikely(flags & HASH_SMALL)) { 6071 /* Makes no sense without HASH_EARLY */ 6072 WARN_ON(!(flags & HASH_EARLY)); 6073 if (!(numentries >> *_hash_shift)) { 6074 numentries = 1UL << *_hash_shift; 6075 BUG_ON(!numentries); 6076 } 6077 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6078 numentries = PAGE_SIZE / bucketsize; 6079 } 6080 numentries = roundup_pow_of_two(numentries); 6081 6082 /* limit allocation size to 1/16 total memory by default */ 6083 if (max == 0) { 6084 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6085 do_div(max, bucketsize); 6086 } 6087 max = min(max, 0x80000000ULL); 6088 6089 if (numentries < low_limit) 6090 numentries = low_limit; 6091 if (numentries > max) 6092 numentries = max; 6093 6094 log2qty = ilog2(numentries); 6095 6096 do { 6097 size = bucketsize << log2qty; 6098 if (flags & HASH_EARLY) 6099 table = memblock_virt_alloc_nopanic(size, 0); 6100 else if (hashdist) 6101 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6102 else { 6103 /* 6104 * If bucketsize is not a power-of-two, we may free 6105 * some pages at the end of hash table which 6106 * alloc_pages_exact() automatically does 6107 */ 6108 if (get_order(size) < MAX_ORDER) { 6109 table = alloc_pages_exact(size, GFP_ATOMIC); 6110 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6111 } 6112 } 6113 } while (!table && size > PAGE_SIZE && --log2qty); 6114 6115 if (!table) 6116 panic("Failed to allocate %s hash table\n", tablename); 6117 6118 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6119 tablename, 6120 (1UL << log2qty), 6121 ilog2(size) - PAGE_SHIFT, 6122 size); 6123 6124 if (_hash_shift) 6125 *_hash_shift = log2qty; 6126 if (_hash_mask) 6127 *_hash_mask = (1 << log2qty) - 1; 6128 6129 return table; 6130 } 6131 6132 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6133 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6134 unsigned long pfn) 6135 { 6136 #ifdef CONFIG_SPARSEMEM 6137 return __pfn_to_section(pfn)->pageblock_flags; 6138 #else 6139 return zone->pageblock_flags; 6140 #endif /* CONFIG_SPARSEMEM */ 6141 } 6142 6143 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6144 { 6145 #ifdef CONFIG_SPARSEMEM 6146 pfn &= (PAGES_PER_SECTION-1); 6147 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6148 #else 6149 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6150 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6151 #endif /* CONFIG_SPARSEMEM */ 6152 } 6153 6154 /** 6155 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6156 * @page: The page within the block of interest 6157 * @pfn: The target page frame number 6158 * @end_bitidx: The last bit of interest to retrieve 6159 * @mask: mask of bits that the caller is interested in 6160 * 6161 * Return: pageblock_bits flags 6162 */ 6163 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6164 unsigned long end_bitidx, 6165 unsigned long mask) 6166 { 6167 struct zone *zone; 6168 unsigned long *bitmap; 6169 unsigned long bitidx, word_bitidx; 6170 unsigned long word; 6171 6172 zone = page_zone(page); 6173 bitmap = get_pageblock_bitmap(zone, pfn); 6174 bitidx = pfn_to_bitidx(zone, pfn); 6175 word_bitidx = bitidx / BITS_PER_LONG; 6176 bitidx &= (BITS_PER_LONG-1); 6177 6178 word = bitmap[word_bitidx]; 6179 bitidx += end_bitidx; 6180 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6181 } 6182 6183 /** 6184 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6185 * @page: The page within the block of interest 6186 * @flags: The flags to set 6187 * @pfn: The target page frame number 6188 * @end_bitidx: The last bit of interest 6189 * @mask: mask of bits that the caller is interested in 6190 */ 6191 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6192 unsigned long pfn, 6193 unsigned long end_bitidx, 6194 unsigned long mask) 6195 { 6196 struct zone *zone; 6197 unsigned long *bitmap; 6198 unsigned long bitidx, word_bitidx; 6199 unsigned long old_word, word; 6200 6201 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6202 6203 zone = page_zone(page); 6204 bitmap = get_pageblock_bitmap(zone, pfn); 6205 bitidx = pfn_to_bitidx(zone, pfn); 6206 word_bitidx = bitidx / BITS_PER_LONG; 6207 bitidx &= (BITS_PER_LONG-1); 6208 6209 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6210 6211 bitidx += end_bitidx; 6212 mask <<= (BITS_PER_LONG - bitidx - 1); 6213 flags <<= (BITS_PER_LONG - bitidx - 1); 6214 6215 word = ACCESS_ONCE(bitmap[word_bitidx]); 6216 for (;;) { 6217 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6218 if (word == old_word) 6219 break; 6220 word = old_word; 6221 } 6222 } 6223 6224 /* 6225 * This function checks whether pageblock includes unmovable pages or not. 6226 * If @count is not zero, it is okay to include less @count unmovable pages 6227 * 6228 * PageLRU check without isolation or lru_lock could race so that 6229 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6230 * expect this function should be exact. 6231 */ 6232 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6233 bool skip_hwpoisoned_pages) 6234 { 6235 unsigned long pfn, iter, found; 6236 int mt; 6237 6238 /* 6239 * For avoiding noise data, lru_add_drain_all() should be called 6240 * If ZONE_MOVABLE, the zone never contains unmovable pages 6241 */ 6242 if (zone_idx(zone) == ZONE_MOVABLE) 6243 return false; 6244 mt = get_pageblock_migratetype(page); 6245 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6246 return false; 6247 6248 pfn = page_to_pfn(page); 6249 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6250 unsigned long check = pfn + iter; 6251 6252 if (!pfn_valid_within(check)) 6253 continue; 6254 6255 page = pfn_to_page(check); 6256 6257 /* 6258 * Hugepages are not in LRU lists, but they're movable. 6259 * We need not scan over tail pages bacause we don't 6260 * handle each tail page individually in migration. 6261 */ 6262 if (PageHuge(page)) { 6263 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6264 continue; 6265 } 6266 6267 /* 6268 * We can't use page_count without pin a page 6269 * because another CPU can free compound page. 6270 * This check already skips compound tails of THP 6271 * because their page->_count is zero at all time. 6272 */ 6273 if (!atomic_read(&page->_count)) { 6274 if (PageBuddy(page)) 6275 iter += (1 << page_order(page)) - 1; 6276 continue; 6277 } 6278 6279 /* 6280 * The HWPoisoned page may be not in buddy system, and 6281 * page_count() is not 0. 6282 */ 6283 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6284 continue; 6285 6286 if (!PageLRU(page)) 6287 found++; 6288 /* 6289 * If there are RECLAIMABLE pages, we need to check 6290 * it. But now, memory offline itself doesn't call 6291 * shrink_node_slabs() and it still to be fixed. 6292 */ 6293 /* 6294 * If the page is not RAM, page_count()should be 0. 6295 * we don't need more check. This is an _used_ not-movable page. 6296 * 6297 * The problematic thing here is PG_reserved pages. PG_reserved 6298 * is set to both of a memory hole page and a _used_ kernel 6299 * page at boot. 6300 */ 6301 if (found > count) 6302 return true; 6303 } 6304 return false; 6305 } 6306 6307 bool is_pageblock_removable_nolock(struct page *page) 6308 { 6309 struct zone *zone; 6310 unsigned long pfn; 6311 6312 /* 6313 * We have to be careful here because we are iterating over memory 6314 * sections which are not zone aware so we might end up outside of 6315 * the zone but still within the section. 6316 * We have to take care about the node as well. If the node is offline 6317 * its NODE_DATA will be NULL - see page_zone. 6318 */ 6319 if (!node_online(page_to_nid(page))) 6320 return false; 6321 6322 zone = page_zone(page); 6323 pfn = page_to_pfn(page); 6324 if (!zone_spans_pfn(zone, pfn)) 6325 return false; 6326 6327 return !has_unmovable_pages(zone, page, 0, true); 6328 } 6329 6330 #ifdef CONFIG_CMA 6331 6332 static unsigned long pfn_max_align_down(unsigned long pfn) 6333 { 6334 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6335 pageblock_nr_pages) - 1); 6336 } 6337 6338 static unsigned long pfn_max_align_up(unsigned long pfn) 6339 { 6340 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6341 pageblock_nr_pages)); 6342 } 6343 6344 /* [start, end) must belong to a single zone. */ 6345 static int __alloc_contig_migrate_range(struct compact_control *cc, 6346 unsigned long start, unsigned long end) 6347 { 6348 /* This function is based on compact_zone() from compaction.c. */ 6349 unsigned long nr_reclaimed; 6350 unsigned long pfn = start; 6351 unsigned int tries = 0; 6352 int ret = 0; 6353 6354 migrate_prep(); 6355 6356 while (pfn < end || !list_empty(&cc->migratepages)) { 6357 if (fatal_signal_pending(current)) { 6358 ret = -EINTR; 6359 break; 6360 } 6361 6362 if (list_empty(&cc->migratepages)) { 6363 cc->nr_migratepages = 0; 6364 pfn = isolate_migratepages_range(cc, pfn, end); 6365 if (!pfn) { 6366 ret = -EINTR; 6367 break; 6368 } 6369 tries = 0; 6370 } else if (++tries == 5) { 6371 ret = ret < 0 ? ret : -EBUSY; 6372 break; 6373 } 6374 6375 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6376 &cc->migratepages); 6377 cc->nr_migratepages -= nr_reclaimed; 6378 6379 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6380 NULL, 0, cc->mode, MR_CMA); 6381 } 6382 if (ret < 0) { 6383 putback_movable_pages(&cc->migratepages); 6384 return ret; 6385 } 6386 return 0; 6387 } 6388 6389 /** 6390 * alloc_contig_range() -- tries to allocate given range of pages 6391 * @start: start PFN to allocate 6392 * @end: one-past-the-last PFN to allocate 6393 * @migratetype: migratetype of the underlaying pageblocks (either 6394 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6395 * in range must have the same migratetype and it must 6396 * be either of the two. 6397 * 6398 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6399 * aligned, however it's the caller's responsibility to guarantee that 6400 * we are the only thread that changes migrate type of pageblocks the 6401 * pages fall in. 6402 * 6403 * The PFN range must belong to a single zone. 6404 * 6405 * Returns zero on success or negative error code. On success all 6406 * pages which PFN is in [start, end) are allocated for the caller and 6407 * need to be freed with free_contig_range(). 6408 */ 6409 int alloc_contig_range(unsigned long start, unsigned long end, 6410 unsigned migratetype) 6411 { 6412 unsigned long outer_start, outer_end; 6413 int ret = 0, order; 6414 6415 struct compact_control cc = { 6416 .nr_migratepages = 0, 6417 .order = -1, 6418 .zone = page_zone(pfn_to_page(start)), 6419 .mode = MIGRATE_SYNC, 6420 .ignore_skip_hint = true, 6421 }; 6422 INIT_LIST_HEAD(&cc.migratepages); 6423 6424 /* 6425 * What we do here is we mark all pageblocks in range as 6426 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6427 * have different sizes, and due to the way page allocator 6428 * work, we align the range to biggest of the two pages so 6429 * that page allocator won't try to merge buddies from 6430 * different pageblocks and change MIGRATE_ISOLATE to some 6431 * other migration type. 6432 * 6433 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6434 * migrate the pages from an unaligned range (ie. pages that 6435 * we are interested in). This will put all the pages in 6436 * range back to page allocator as MIGRATE_ISOLATE. 6437 * 6438 * When this is done, we take the pages in range from page 6439 * allocator removing them from the buddy system. This way 6440 * page allocator will never consider using them. 6441 * 6442 * This lets us mark the pageblocks back as 6443 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6444 * aligned range but not in the unaligned, original range are 6445 * put back to page allocator so that buddy can use them. 6446 */ 6447 6448 ret = start_isolate_page_range(pfn_max_align_down(start), 6449 pfn_max_align_up(end), migratetype, 6450 false); 6451 if (ret) 6452 return ret; 6453 6454 ret = __alloc_contig_migrate_range(&cc, start, end); 6455 if (ret) 6456 goto done; 6457 6458 /* 6459 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6460 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6461 * more, all pages in [start, end) are free in page allocator. 6462 * What we are going to do is to allocate all pages from 6463 * [start, end) (that is remove them from page allocator). 6464 * 6465 * The only problem is that pages at the beginning and at the 6466 * end of interesting range may be not aligned with pages that 6467 * page allocator holds, ie. they can be part of higher order 6468 * pages. Because of this, we reserve the bigger range and 6469 * once this is done free the pages we are not interested in. 6470 * 6471 * We don't have to hold zone->lock here because the pages are 6472 * isolated thus they won't get removed from buddy. 6473 */ 6474 6475 lru_add_drain_all(); 6476 drain_all_pages(cc.zone); 6477 6478 order = 0; 6479 outer_start = start; 6480 while (!PageBuddy(pfn_to_page(outer_start))) { 6481 if (++order >= MAX_ORDER) { 6482 ret = -EBUSY; 6483 goto done; 6484 } 6485 outer_start &= ~0UL << order; 6486 } 6487 6488 /* Make sure the range is really isolated. */ 6489 if (test_pages_isolated(outer_start, end, false)) { 6490 pr_info("%s: [%lx, %lx) PFNs busy\n", 6491 __func__, outer_start, end); 6492 ret = -EBUSY; 6493 goto done; 6494 } 6495 6496 /* Grab isolated pages from freelists. */ 6497 outer_end = isolate_freepages_range(&cc, outer_start, end); 6498 if (!outer_end) { 6499 ret = -EBUSY; 6500 goto done; 6501 } 6502 6503 /* Free head and tail (if any) */ 6504 if (start != outer_start) 6505 free_contig_range(outer_start, start - outer_start); 6506 if (end != outer_end) 6507 free_contig_range(end, outer_end - end); 6508 6509 done: 6510 undo_isolate_page_range(pfn_max_align_down(start), 6511 pfn_max_align_up(end), migratetype); 6512 return ret; 6513 } 6514 6515 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6516 { 6517 unsigned int count = 0; 6518 6519 for (; nr_pages--; pfn++) { 6520 struct page *page = pfn_to_page(pfn); 6521 6522 count += page_count(page) != 1; 6523 __free_page(page); 6524 } 6525 WARN(count != 0, "%d pages are still in use!\n", count); 6526 } 6527 #endif 6528 6529 #ifdef CONFIG_MEMORY_HOTPLUG 6530 /* 6531 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6532 * page high values need to be recalulated. 6533 */ 6534 void __meminit zone_pcp_update(struct zone *zone) 6535 { 6536 unsigned cpu; 6537 mutex_lock(&pcp_batch_high_lock); 6538 for_each_possible_cpu(cpu) 6539 pageset_set_high_and_batch(zone, 6540 per_cpu_ptr(zone->pageset, cpu)); 6541 mutex_unlock(&pcp_batch_high_lock); 6542 } 6543 #endif 6544 6545 void zone_pcp_reset(struct zone *zone) 6546 { 6547 unsigned long flags; 6548 int cpu; 6549 struct per_cpu_pageset *pset; 6550 6551 /* avoid races with drain_pages() */ 6552 local_irq_save(flags); 6553 if (zone->pageset != &boot_pageset) { 6554 for_each_online_cpu(cpu) { 6555 pset = per_cpu_ptr(zone->pageset, cpu); 6556 drain_zonestat(zone, pset); 6557 } 6558 free_percpu(zone->pageset); 6559 zone->pageset = &boot_pageset; 6560 } 6561 local_irq_restore(flags); 6562 } 6563 6564 #ifdef CONFIG_MEMORY_HOTREMOVE 6565 /* 6566 * All pages in the range must be isolated before calling this. 6567 */ 6568 void 6569 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6570 { 6571 struct page *page; 6572 struct zone *zone; 6573 unsigned int order, i; 6574 unsigned long pfn; 6575 unsigned long flags; 6576 /* find the first valid pfn */ 6577 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6578 if (pfn_valid(pfn)) 6579 break; 6580 if (pfn == end_pfn) 6581 return; 6582 zone = page_zone(pfn_to_page(pfn)); 6583 spin_lock_irqsave(&zone->lock, flags); 6584 pfn = start_pfn; 6585 while (pfn < end_pfn) { 6586 if (!pfn_valid(pfn)) { 6587 pfn++; 6588 continue; 6589 } 6590 page = pfn_to_page(pfn); 6591 /* 6592 * The HWPoisoned page may be not in buddy system, and 6593 * page_count() is not 0. 6594 */ 6595 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6596 pfn++; 6597 SetPageReserved(page); 6598 continue; 6599 } 6600 6601 BUG_ON(page_count(page)); 6602 BUG_ON(!PageBuddy(page)); 6603 order = page_order(page); 6604 #ifdef CONFIG_DEBUG_VM 6605 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6606 pfn, 1 << order, end_pfn); 6607 #endif 6608 list_del(&page->lru); 6609 rmv_page_order(page); 6610 zone->free_area[order].nr_free--; 6611 for (i = 0; i < (1 << order); i++) 6612 SetPageReserved((page+i)); 6613 pfn += (1 << order); 6614 } 6615 spin_unlock_irqrestore(&zone->lock, flags); 6616 } 6617 #endif 6618 6619 #ifdef CONFIG_MEMORY_FAILURE 6620 bool is_free_buddy_page(struct page *page) 6621 { 6622 struct zone *zone = page_zone(page); 6623 unsigned long pfn = page_to_pfn(page); 6624 unsigned long flags; 6625 unsigned int order; 6626 6627 spin_lock_irqsave(&zone->lock, flags); 6628 for (order = 0; order < MAX_ORDER; order++) { 6629 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6630 6631 if (PageBuddy(page_head) && page_order(page_head) >= order) 6632 break; 6633 } 6634 spin_unlock_irqrestore(&zone->lock, flags); 6635 6636 return order < MAX_ORDER; 6637 } 6638 #endif 6639