1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmstat.h> 38 #include <linux/fault-inject.h> 39 #include <linux/compaction.h> 40 #include <trace/events/kmem.h> 41 #include <trace/events/oom.h> 42 #include <linux/prefetch.h> 43 #include <linux/mm_inline.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/migrate.h> 46 #include <linux/sched/mm.h> 47 #include <linux/page_owner.h> 48 #include <linux/page_table_check.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/lockdep.h> 52 #include <linux/psi.h> 53 #include <linux/khugepaged.h> 54 #include <linux/delayacct.h> 55 #include <linux/cacheinfo.h> 56 #include <asm/div64.h> 57 #include "internal.h" 58 #include "shuffle.h" 59 #include "page_reporting.h" 60 61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 62 typedef int __bitwise fpi_t; 63 64 /* No special request */ 65 #define FPI_NONE ((__force fpi_t)0) 66 67 /* 68 * Skip free page reporting notification for the (possibly merged) page. 69 * This does not hinder free page reporting from grabbing the page, 70 * reporting it and marking it "reported" - it only skips notifying 71 * the free page reporting infrastructure about a newly freed page. For 72 * example, used when temporarily pulling a page from a freelist and 73 * putting it back unmodified. 74 */ 75 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 76 77 /* 78 * Place the (possibly merged) page to the tail of the freelist. Will ignore 79 * page shuffling (relevant code - e.g., memory onlining - is expected to 80 * shuffle the whole zone). 81 * 82 * Note: No code should rely on this flag for correctness - it's purely 83 * to allow for optimizations when handing back either fresh pages 84 * (memory onlining) or untouched pages (page isolation, free page 85 * reporting). 86 */ 87 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 88 89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 90 static DEFINE_MUTEX(pcp_batch_high_lock); 91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 92 93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 94 /* 95 * On SMP, spin_trylock is sufficient protection. 96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 97 */ 98 #define pcp_trylock_prepare(flags) do { } while (0) 99 #define pcp_trylock_finish(flag) do { } while (0) 100 #else 101 102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 103 #define pcp_trylock_prepare(flags) local_irq_save(flags) 104 #define pcp_trylock_finish(flags) local_irq_restore(flags) 105 #endif 106 107 /* 108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 109 * a migration causing the wrong PCP to be locked and remote memory being 110 * potentially allocated, pin the task to the CPU for the lookup+lock. 111 * preempt_disable is used on !RT because it is faster than migrate_disable. 112 * migrate_disable is used on RT because otherwise RT spinlock usage is 113 * interfered with and a high priority task cannot preempt the allocator. 114 */ 115 #ifndef CONFIG_PREEMPT_RT 116 #define pcpu_task_pin() preempt_disable() 117 #define pcpu_task_unpin() preempt_enable() 118 #else 119 #define pcpu_task_pin() migrate_disable() 120 #define pcpu_task_unpin() migrate_enable() 121 #endif 122 123 /* 124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 125 * Return value should be used with equivalent unlock helper. 126 */ 127 #define pcpu_spin_lock(type, member, ptr) \ 128 ({ \ 129 type *_ret; \ 130 pcpu_task_pin(); \ 131 _ret = this_cpu_ptr(ptr); \ 132 spin_lock(&_ret->member); \ 133 _ret; \ 134 }) 135 136 #define pcpu_spin_trylock(type, member, ptr) \ 137 ({ \ 138 type *_ret; \ 139 pcpu_task_pin(); \ 140 _ret = this_cpu_ptr(ptr); \ 141 if (!spin_trylock(&_ret->member)) { \ 142 pcpu_task_unpin(); \ 143 _ret = NULL; \ 144 } \ 145 _ret; \ 146 }) 147 148 #define pcpu_spin_unlock(member, ptr) \ 149 ({ \ 150 spin_unlock(&ptr->member); \ 151 pcpu_task_unpin(); \ 152 }) 153 154 /* struct per_cpu_pages specific helpers. */ 155 #define pcp_spin_lock(ptr) \ 156 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 157 158 #define pcp_spin_trylock(ptr) \ 159 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 160 161 #define pcp_spin_unlock(ptr) \ 162 pcpu_spin_unlock(lock, ptr) 163 164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 165 DEFINE_PER_CPU(int, numa_node); 166 EXPORT_PER_CPU_SYMBOL(numa_node); 167 #endif 168 169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 170 171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 172 /* 173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 176 * defined in <linux/topology.h>. 177 */ 178 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 179 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 180 #endif 181 182 static DEFINE_MUTEX(pcpu_drain_mutex); 183 184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 185 volatile unsigned long latent_entropy __latent_entropy; 186 EXPORT_SYMBOL(latent_entropy); 187 #endif 188 189 /* 190 * Array of node states. 191 */ 192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 193 [N_POSSIBLE] = NODE_MASK_ALL, 194 [N_ONLINE] = { { [0] = 1UL } }, 195 #ifndef CONFIG_NUMA 196 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 197 #ifdef CONFIG_HIGHMEM 198 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 199 #endif 200 [N_MEMORY] = { { [0] = 1UL } }, 201 [N_CPU] = { { [0] = 1UL } }, 202 #endif /* NUMA */ 203 }; 204 EXPORT_SYMBOL(node_states); 205 206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 207 208 /* 209 * A cached value of the page's pageblock's migratetype, used when the page is 210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 211 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 212 * Also the migratetype set in the page does not necessarily match the pcplist 213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 214 * other index - this ensures that it will be put on the correct CMA freelist. 215 */ 216 static inline int get_pcppage_migratetype(struct page *page) 217 { 218 return page->index; 219 } 220 221 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 222 { 223 page->index = migratetype; 224 } 225 226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 227 unsigned int pageblock_order __read_mostly; 228 #endif 229 230 static void __free_pages_ok(struct page *page, unsigned int order, 231 fpi_t fpi_flags); 232 233 /* 234 * results with 256, 32 in the lowmem_reserve sysctl: 235 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 236 * 1G machine -> (16M dma, 784M normal, 224M high) 237 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 238 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 239 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 240 * 241 * TBD: should special case ZONE_DMA32 machines here - in those we normally 242 * don't need any ZONE_NORMAL reservation 243 */ 244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 245 #ifdef CONFIG_ZONE_DMA 246 [ZONE_DMA] = 256, 247 #endif 248 #ifdef CONFIG_ZONE_DMA32 249 [ZONE_DMA32] = 256, 250 #endif 251 [ZONE_NORMAL] = 32, 252 #ifdef CONFIG_HIGHMEM 253 [ZONE_HIGHMEM] = 0, 254 #endif 255 [ZONE_MOVABLE] = 0, 256 }; 257 258 char * const zone_names[MAX_NR_ZONES] = { 259 #ifdef CONFIG_ZONE_DMA 260 "DMA", 261 #endif 262 #ifdef CONFIG_ZONE_DMA32 263 "DMA32", 264 #endif 265 "Normal", 266 #ifdef CONFIG_HIGHMEM 267 "HighMem", 268 #endif 269 "Movable", 270 #ifdef CONFIG_ZONE_DEVICE 271 "Device", 272 #endif 273 }; 274 275 const char * const migratetype_names[MIGRATE_TYPES] = { 276 "Unmovable", 277 "Movable", 278 "Reclaimable", 279 "HighAtomic", 280 #ifdef CONFIG_CMA 281 "CMA", 282 #endif 283 #ifdef CONFIG_MEMORY_ISOLATION 284 "Isolate", 285 #endif 286 }; 287 288 int min_free_kbytes = 1024; 289 int user_min_free_kbytes = -1; 290 static int watermark_boost_factor __read_mostly = 15000; 291 static int watermark_scale_factor = 10; 292 293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 294 int movable_zone; 295 EXPORT_SYMBOL(movable_zone); 296 297 #if MAX_NUMNODES > 1 298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 299 unsigned int nr_online_nodes __read_mostly = 1; 300 EXPORT_SYMBOL(nr_node_ids); 301 EXPORT_SYMBOL(nr_online_nodes); 302 #endif 303 304 static bool page_contains_unaccepted(struct page *page, unsigned int order); 305 static void accept_page(struct page *page, unsigned int order); 306 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 307 static inline bool has_unaccepted_memory(void); 308 static bool __free_unaccepted(struct page *page); 309 310 int page_group_by_mobility_disabled __read_mostly; 311 312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 313 /* 314 * During boot we initialize deferred pages on-demand, as needed, but once 315 * page_alloc_init_late() has finished, the deferred pages are all initialized, 316 * and we can permanently disable that path. 317 */ 318 DEFINE_STATIC_KEY_TRUE(deferred_pages); 319 320 static inline bool deferred_pages_enabled(void) 321 { 322 return static_branch_unlikely(&deferred_pages); 323 } 324 325 /* 326 * deferred_grow_zone() is __init, but it is called from 327 * get_page_from_freelist() during early boot until deferred_pages permanently 328 * disables this call. This is why we have refdata wrapper to avoid warning, 329 * and to ensure that the function body gets unloaded. 330 */ 331 static bool __ref 332 _deferred_grow_zone(struct zone *zone, unsigned int order) 333 { 334 return deferred_grow_zone(zone, order); 335 } 336 #else 337 static inline bool deferred_pages_enabled(void) 338 { 339 return false; 340 } 341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 342 343 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 344 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 345 unsigned long pfn) 346 { 347 #ifdef CONFIG_SPARSEMEM 348 return section_to_usemap(__pfn_to_section(pfn)); 349 #else 350 return page_zone(page)->pageblock_flags; 351 #endif /* CONFIG_SPARSEMEM */ 352 } 353 354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 355 { 356 #ifdef CONFIG_SPARSEMEM 357 pfn &= (PAGES_PER_SECTION-1); 358 #else 359 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 360 #endif /* CONFIG_SPARSEMEM */ 361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 362 } 363 364 /** 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 366 * @page: The page within the block of interest 367 * @pfn: The target page frame number 368 * @mask: mask of bits that the caller is interested in 369 * 370 * Return: pageblock_bits flags 371 */ 372 unsigned long get_pfnblock_flags_mask(const struct page *page, 373 unsigned long pfn, unsigned long mask) 374 { 375 unsigned long *bitmap; 376 unsigned long bitidx, word_bitidx; 377 unsigned long word; 378 379 bitmap = get_pageblock_bitmap(page, pfn); 380 bitidx = pfn_to_bitidx(page, pfn); 381 word_bitidx = bitidx / BITS_PER_LONG; 382 bitidx &= (BITS_PER_LONG-1); 383 /* 384 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 385 * a consistent read of the memory array, so that results, even though 386 * racy, are not corrupted. 387 */ 388 word = READ_ONCE(bitmap[word_bitidx]); 389 return (word >> bitidx) & mask; 390 } 391 392 static __always_inline int get_pfnblock_migratetype(const struct page *page, 393 unsigned long pfn) 394 { 395 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 396 } 397 398 /** 399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 400 * @page: The page within the block of interest 401 * @flags: The flags to set 402 * @pfn: The target page frame number 403 * @mask: mask of bits that the caller is interested in 404 */ 405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 406 unsigned long pfn, 407 unsigned long mask) 408 { 409 unsigned long *bitmap; 410 unsigned long bitidx, word_bitidx; 411 unsigned long word; 412 413 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 414 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 415 416 bitmap = get_pageblock_bitmap(page, pfn); 417 bitidx = pfn_to_bitidx(page, pfn); 418 word_bitidx = bitidx / BITS_PER_LONG; 419 bitidx &= (BITS_PER_LONG-1); 420 421 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 422 423 mask <<= bitidx; 424 flags <<= bitidx; 425 426 word = READ_ONCE(bitmap[word_bitidx]); 427 do { 428 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 429 } 430 431 void set_pageblock_migratetype(struct page *page, int migratetype) 432 { 433 if (unlikely(page_group_by_mobility_disabled && 434 migratetype < MIGRATE_PCPTYPES)) 435 migratetype = MIGRATE_UNMOVABLE; 436 437 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 438 page_to_pfn(page), MIGRATETYPE_MASK); 439 } 440 441 #ifdef CONFIG_DEBUG_VM 442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 443 { 444 int ret; 445 unsigned seq; 446 unsigned long pfn = page_to_pfn(page); 447 unsigned long sp, start_pfn; 448 449 do { 450 seq = zone_span_seqbegin(zone); 451 start_pfn = zone->zone_start_pfn; 452 sp = zone->spanned_pages; 453 ret = !zone_spans_pfn(zone, pfn); 454 } while (zone_span_seqretry(zone, seq)); 455 456 if (ret) 457 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 458 pfn, zone_to_nid(zone), zone->name, 459 start_pfn, start_pfn + sp); 460 461 return ret; 462 } 463 464 /* 465 * Temporary debugging check for pages not lying within a given zone. 466 */ 467 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 468 { 469 if (page_outside_zone_boundaries(zone, page)) 470 return 1; 471 if (zone != page_zone(page)) 472 return 1; 473 474 return 0; 475 } 476 #else 477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 478 { 479 return 0; 480 } 481 #endif 482 483 static void bad_page(struct page *page, const char *reason) 484 { 485 static unsigned long resume; 486 static unsigned long nr_shown; 487 static unsigned long nr_unshown; 488 489 /* 490 * Allow a burst of 60 reports, then keep quiet for that minute; 491 * or allow a steady drip of one report per second. 492 */ 493 if (nr_shown == 60) { 494 if (time_before(jiffies, resume)) { 495 nr_unshown++; 496 goto out; 497 } 498 if (nr_unshown) { 499 pr_alert( 500 "BUG: Bad page state: %lu messages suppressed\n", 501 nr_unshown); 502 nr_unshown = 0; 503 } 504 nr_shown = 0; 505 } 506 if (nr_shown++ == 0) 507 resume = jiffies + 60 * HZ; 508 509 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 510 current->comm, page_to_pfn(page)); 511 dump_page(page, reason); 512 513 print_modules(); 514 dump_stack(); 515 out: 516 /* Leave bad fields for debug, except PageBuddy could make trouble */ 517 page_mapcount_reset(page); /* remove PageBuddy */ 518 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 519 } 520 521 static inline unsigned int order_to_pindex(int migratetype, int order) 522 { 523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 524 if (order > PAGE_ALLOC_COSTLY_ORDER) { 525 VM_BUG_ON(order != pageblock_order); 526 return NR_LOWORDER_PCP_LISTS; 527 } 528 #else 529 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 530 #endif 531 532 return (MIGRATE_PCPTYPES * order) + migratetype; 533 } 534 535 static inline int pindex_to_order(unsigned int pindex) 536 { 537 int order = pindex / MIGRATE_PCPTYPES; 538 539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 540 if (pindex == NR_LOWORDER_PCP_LISTS) 541 order = pageblock_order; 542 #else 543 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 544 #endif 545 546 return order; 547 } 548 549 static inline bool pcp_allowed_order(unsigned int order) 550 { 551 if (order <= PAGE_ALLOC_COSTLY_ORDER) 552 return true; 553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 554 if (order == pageblock_order) 555 return true; 556 #endif 557 return false; 558 } 559 560 static inline void free_the_page(struct page *page, unsigned int order) 561 { 562 if (pcp_allowed_order(order)) /* Via pcp? */ 563 free_unref_page(page, order); 564 else 565 __free_pages_ok(page, order, FPI_NONE); 566 } 567 568 /* 569 * Higher-order pages are called "compound pages". They are structured thusly: 570 * 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 572 * 573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 575 * 576 * The first tail page's ->compound_order holds the order of allocation. 577 * This usage means that zero-order pages may not be compound. 578 */ 579 580 void prep_compound_page(struct page *page, unsigned int order) 581 { 582 int i; 583 int nr_pages = 1 << order; 584 585 __SetPageHead(page); 586 for (i = 1; i < nr_pages; i++) 587 prep_compound_tail(page, i); 588 589 prep_compound_head(page, order); 590 } 591 592 void destroy_large_folio(struct folio *folio) 593 { 594 if (folio_test_hugetlb(folio)) { 595 free_huge_folio(folio); 596 return; 597 } 598 599 if (folio_test_large_rmappable(folio)) 600 folio_undo_large_rmappable(folio); 601 602 mem_cgroup_uncharge(folio); 603 free_the_page(&folio->page, folio_order(folio)); 604 } 605 606 static inline void set_buddy_order(struct page *page, unsigned int order) 607 { 608 set_page_private(page, order); 609 __SetPageBuddy(page); 610 } 611 612 #ifdef CONFIG_COMPACTION 613 static inline struct capture_control *task_capc(struct zone *zone) 614 { 615 struct capture_control *capc = current->capture_control; 616 617 return unlikely(capc) && 618 !(current->flags & PF_KTHREAD) && 619 !capc->page && 620 capc->cc->zone == zone ? capc : NULL; 621 } 622 623 static inline bool 624 compaction_capture(struct capture_control *capc, struct page *page, 625 int order, int migratetype) 626 { 627 if (!capc || order != capc->cc->order) 628 return false; 629 630 /* Do not accidentally pollute CMA or isolated regions*/ 631 if (is_migrate_cma(migratetype) || 632 is_migrate_isolate(migratetype)) 633 return false; 634 635 /* 636 * Do not let lower order allocations pollute a movable pageblock. 637 * This might let an unmovable request use a reclaimable pageblock 638 * and vice-versa but no more than normal fallback logic which can 639 * have trouble finding a high-order free page. 640 */ 641 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 642 return false; 643 644 capc->page = page; 645 return true; 646 } 647 648 #else 649 static inline struct capture_control *task_capc(struct zone *zone) 650 { 651 return NULL; 652 } 653 654 static inline bool 655 compaction_capture(struct capture_control *capc, struct page *page, 656 int order, int migratetype) 657 { 658 return false; 659 } 660 #endif /* CONFIG_COMPACTION */ 661 662 /* Used for pages not on another list */ 663 static inline void add_to_free_list(struct page *page, struct zone *zone, 664 unsigned int order, int migratetype) 665 { 666 struct free_area *area = &zone->free_area[order]; 667 668 list_add(&page->buddy_list, &area->free_list[migratetype]); 669 area->nr_free++; 670 } 671 672 /* Used for pages not on another list */ 673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 674 unsigned int order, int migratetype) 675 { 676 struct free_area *area = &zone->free_area[order]; 677 678 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 679 area->nr_free++; 680 } 681 682 /* 683 * Used for pages which are on another list. Move the pages to the tail 684 * of the list - so the moved pages won't immediately be considered for 685 * allocation again (e.g., optimization for memory onlining). 686 */ 687 static inline void move_to_free_list(struct page *page, struct zone *zone, 688 unsigned int order, int migratetype) 689 { 690 struct free_area *area = &zone->free_area[order]; 691 692 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 693 } 694 695 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 696 unsigned int order) 697 { 698 /* clear reported state and update reported page count */ 699 if (page_reported(page)) 700 __ClearPageReported(page); 701 702 list_del(&page->buddy_list); 703 __ClearPageBuddy(page); 704 set_page_private(page, 0); 705 zone->free_area[order].nr_free--; 706 } 707 708 static inline struct page *get_page_from_free_area(struct free_area *area, 709 int migratetype) 710 { 711 return list_first_entry_or_null(&area->free_list[migratetype], 712 struct page, buddy_list); 713 } 714 715 /* 716 * If this is not the largest possible page, check if the buddy 717 * of the next-highest order is free. If it is, it's possible 718 * that pages are being freed that will coalesce soon. In case, 719 * that is happening, add the free page to the tail of the list 720 * so it's less likely to be used soon and more likely to be merged 721 * as a higher order page 722 */ 723 static inline bool 724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 725 struct page *page, unsigned int order) 726 { 727 unsigned long higher_page_pfn; 728 struct page *higher_page; 729 730 if (order >= MAX_PAGE_ORDER - 1) 731 return false; 732 733 higher_page_pfn = buddy_pfn & pfn; 734 higher_page = page + (higher_page_pfn - pfn); 735 736 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 737 NULL) != NULL; 738 } 739 740 /* 741 * Freeing function for a buddy system allocator. 742 * 743 * The concept of a buddy system is to maintain direct-mapped table 744 * (containing bit values) for memory blocks of various "orders". 745 * The bottom level table contains the map for the smallest allocatable 746 * units of memory (here, pages), and each level above it describes 747 * pairs of units from the levels below, hence, "buddies". 748 * At a high level, all that happens here is marking the table entry 749 * at the bottom level available, and propagating the changes upward 750 * as necessary, plus some accounting needed to play nicely with other 751 * parts of the VM system. 752 * At each level, we keep a list of pages, which are heads of continuous 753 * free pages of length of (1 << order) and marked with PageBuddy. 754 * Page's order is recorded in page_private(page) field. 755 * So when we are allocating or freeing one, we can derive the state of the 756 * other. That is, if we allocate a small block, and both were 757 * free, the remainder of the region must be split into blocks. 758 * If a block is freed, and its buddy is also free, then this 759 * triggers coalescing into a block of larger size. 760 * 761 * -- nyc 762 */ 763 764 static inline void __free_one_page(struct page *page, 765 unsigned long pfn, 766 struct zone *zone, unsigned int order, 767 int migratetype, fpi_t fpi_flags) 768 { 769 struct capture_control *capc = task_capc(zone); 770 unsigned long buddy_pfn = 0; 771 unsigned long combined_pfn; 772 struct page *buddy; 773 bool to_tail; 774 775 VM_BUG_ON(!zone_is_initialized(zone)); 776 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 777 778 VM_BUG_ON(migratetype == -1); 779 if (likely(!is_migrate_isolate(migratetype))) 780 __mod_zone_freepage_state(zone, 1 << order, migratetype); 781 782 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 783 VM_BUG_ON_PAGE(bad_range(zone, page), page); 784 785 while (order < MAX_PAGE_ORDER) { 786 if (compaction_capture(capc, page, order, migratetype)) { 787 __mod_zone_freepage_state(zone, -(1 << order), 788 migratetype); 789 return; 790 } 791 792 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 793 if (!buddy) 794 goto done_merging; 795 796 if (unlikely(order >= pageblock_order)) { 797 /* 798 * We want to prevent merge between freepages on pageblock 799 * without fallbacks and normal pageblock. Without this, 800 * pageblock isolation could cause incorrect freepage or CMA 801 * accounting or HIGHATOMIC accounting. 802 */ 803 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 804 805 if (migratetype != buddy_mt 806 && (!migratetype_is_mergeable(migratetype) || 807 !migratetype_is_mergeable(buddy_mt))) 808 goto done_merging; 809 } 810 811 /* 812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 813 * merge with it and move up one order. 814 */ 815 if (page_is_guard(buddy)) 816 clear_page_guard(zone, buddy, order, migratetype); 817 else 818 del_page_from_free_list(buddy, zone, order); 819 combined_pfn = buddy_pfn & pfn; 820 page = page + (combined_pfn - pfn); 821 pfn = combined_pfn; 822 order++; 823 } 824 825 done_merging: 826 set_buddy_order(page, order); 827 828 if (fpi_flags & FPI_TO_TAIL) 829 to_tail = true; 830 else if (is_shuffle_order(order)) 831 to_tail = shuffle_pick_tail(); 832 else 833 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 834 835 if (to_tail) 836 add_to_free_list_tail(page, zone, order, migratetype); 837 else 838 add_to_free_list(page, zone, order, migratetype); 839 840 /* Notify page reporting subsystem of freed page */ 841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 842 page_reporting_notify_free(order); 843 } 844 845 /** 846 * split_free_page() -- split a free page at split_pfn_offset 847 * @free_page: the original free page 848 * @order: the order of the page 849 * @split_pfn_offset: split offset within the page 850 * 851 * Return -ENOENT if the free page is changed, otherwise 0 852 * 853 * It is used when the free page crosses two pageblocks with different migratetypes 854 * at split_pfn_offset within the page. The split free page will be put into 855 * separate migratetype lists afterwards. Otherwise, the function achieves 856 * nothing. 857 */ 858 int split_free_page(struct page *free_page, 859 unsigned int order, unsigned long split_pfn_offset) 860 { 861 struct zone *zone = page_zone(free_page); 862 unsigned long free_page_pfn = page_to_pfn(free_page); 863 unsigned long pfn; 864 unsigned long flags; 865 int free_page_order; 866 int mt; 867 int ret = 0; 868 869 if (split_pfn_offset == 0) 870 return ret; 871 872 spin_lock_irqsave(&zone->lock, flags); 873 874 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 875 ret = -ENOENT; 876 goto out; 877 } 878 879 mt = get_pfnblock_migratetype(free_page, free_page_pfn); 880 if (likely(!is_migrate_isolate(mt))) 881 __mod_zone_freepage_state(zone, -(1UL << order), mt); 882 883 del_page_from_free_list(free_page, zone, order); 884 for (pfn = free_page_pfn; 885 pfn < free_page_pfn + (1UL << order);) { 886 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 887 888 free_page_order = min_t(unsigned int, 889 pfn ? __ffs(pfn) : order, 890 __fls(split_pfn_offset)); 891 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 892 mt, FPI_NONE); 893 pfn += 1UL << free_page_order; 894 split_pfn_offset -= (1UL << free_page_order); 895 /* we have done the first part, now switch to second part */ 896 if (split_pfn_offset == 0) 897 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 898 } 899 out: 900 spin_unlock_irqrestore(&zone->lock, flags); 901 return ret; 902 } 903 /* 904 * A bad page could be due to a number of fields. Instead of multiple branches, 905 * try and check multiple fields with one check. The caller must do a detailed 906 * check if necessary. 907 */ 908 static inline bool page_expected_state(struct page *page, 909 unsigned long check_flags) 910 { 911 if (unlikely(atomic_read(&page->_mapcount) != -1)) 912 return false; 913 914 if (unlikely((unsigned long)page->mapping | 915 page_ref_count(page) | 916 #ifdef CONFIG_MEMCG 917 page->memcg_data | 918 #endif 919 (page->flags & check_flags))) 920 return false; 921 922 return true; 923 } 924 925 static const char *page_bad_reason(struct page *page, unsigned long flags) 926 { 927 const char *bad_reason = NULL; 928 929 if (unlikely(atomic_read(&page->_mapcount) != -1)) 930 bad_reason = "nonzero mapcount"; 931 if (unlikely(page->mapping != NULL)) 932 bad_reason = "non-NULL mapping"; 933 if (unlikely(page_ref_count(page) != 0)) 934 bad_reason = "nonzero _refcount"; 935 if (unlikely(page->flags & flags)) { 936 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 937 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 938 else 939 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 940 } 941 #ifdef CONFIG_MEMCG 942 if (unlikely(page->memcg_data)) 943 bad_reason = "page still charged to cgroup"; 944 #endif 945 return bad_reason; 946 } 947 948 static void free_page_is_bad_report(struct page *page) 949 { 950 bad_page(page, 951 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 952 } 953 954 static inline bool free_page_is_bad(struct page *page) 955 { 956 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 957 return false; 958 959 /* Something has gone sideways, find it */ 960 free_page_is_bad_report(page); 961 return true; 962 } 963 964 static inline bool is_check_pages_enabled(void) 965 { 966 return static_branch_unlikely(&check_pages_enabled); 967 } 968 969 static int free_tail_page_prepare(struct page *head_page, struct page *page) 970 { 971 struct folio *folio = (struct folio *)head_page; 972 int ret = 1; 973 974 /* 975 * We rely page->lru.next never has bit 0 set, unless the page 976 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 977 */ 978 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 979 980 if (!is_check_pages_enabled()) { 981 ret = 0; 982 goto out; 983 } 984 switch (page - head_page) { 985 case 1: 986 /* the first tail page: these may be in place of ->mapping */ 987 if (unlikely(folio_entire_mapcount(folio))) { 988 bad_page(page, "nonzero entire_mapcount"); 989 goto out; 990 } 991 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 992 bad_page(page, "nonzero nr_pages_mapped"); 993 goto out; 994 } 995 if (unlikely(atomic_read(&folio->_pincount))) { 996 bad_page(page, "nonzero pincount"); 997 goto out; 998 } 999 break; 1000 case 2: 1001 /* 1002 * the second tail page: ->mapping is 1003 * deferred_list.next -- ignore value. 1004 */ 1005 break; 1006 default: 1007 if (page->mapping != TAIL_MAPPING) { 1008 bad_page(page, "corrupted mapping in tail page"); 1009 goto out; 1010 } 1011 break; 1012 } 1013 if (unlikely(!PageTail(page))) { 1014 bad_page(page, "PageTail not set"); 1015 goto out; 1016 } 1017 if (unlikely(compound_head(page) != head_page)) { 1018 bad_page(page, "compound_head not consistent"); 1019 goto out; 1020 } 1021 ret = 0; 1022 out: 1023 page->mapping = NULL; 1024 clear_compound_head(page); 1025 return ret; 1026 } 1027 1028 /* 1029 * Skip KASAN memory poisoning when either: 1030 * 1031 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1032 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1033 * using page tags instead (see below). 1034 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1035 * that error detection is disabled for accesses via the page address. 1036 * 1037 * Pages will have match-all tags in the following circumstances: 1038 * 1039 * 1. Pages are being initialized for the first time, including during deferred 1040 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1041 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1042 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1043 * 3. The allocation was excluded from being checked due to sampling, 1044 * see the call to kasan_unpoison_pages. 1045 * 1046 * Poisoning pages during deferred memory init will greatly lengthen the 1047 * process and cause problem in large memory systems as the deferred pages 1048 * initialization is done with interrupt disabled. 1049 * 1050 * Assuming that there will be no reference to those newly initialized 1051 * pages before they are ever allocated, this should have no effect on 1052 * KASAN memory tracking as the poison will be properly inserted at page 1053 * allocation time. The only corner case is when pages are allocated by 1054 * on-demand allocation and then freed again before the deferred pages 1055 * initialization is done, but this is not likely to happen. 1056 */ 1057 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1058 { 1059 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1060 return deferred_pages_enabled(); 1061 1062 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1063 } 1064 1065 static void kernel_init_pages(struct page *page, int numpages) 1066 { 1067 int i; 1068 1069 /* s390's use of memset() could override KASAN redzones. */ 1070 kasan_disable_current(); 1071 for (i = 0; i < numpages; i++) 1072 clear_highpage_kasan_tagged(page + i); 1073 kasan_enable_current(); 1074 } 1075 1076 static __always_inline bool free_pages_prepare(struct page *page, 1077 unsigned int order, fpi_t fpi_flags) 1078 { 1079 int bad = 0; 1080 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1081 bool init = want_init_on_free(); 1082 bool compound = PageCompound(page); 1083 1084 VM_BUG_ON_PAGE(PageTail(page), page); 1085 1086 trace_mm_page_free(page, order); 1087 kmsan_free_page(page, order); 1088 1089 if (memcg_kmem_online() && PageMemcgKmem(page)) 1090 __memcg_kmem_uncharge_page(page, order); 1091 1092 if (unlikely(PageHWPoison(page)) && !order) { 1093 /* Do not let hwpoison pages hit pcplists/buddy */ 1094 reset_page_owner(page, order); 1095 page_table_check_free(page, order); 1096 return false; 1097 } 1098 1099 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1100 1101 /* 1102 * Check tail pages before head page information is cleared to 1103 * avoid checking PageCompound for order-0 pages. 1104 */ 1105 if (unlikely(order)) { 1106 int i; 1107 1108 if (compound) 1109 page[1].flags &= ~PAGE_FLAGS_SECOND; 1110 for (i = 1; i < (1 << order); i++) { 1111 if (compound) 1112 bad += free_tail_page_prepare(page, page + i); 1113 if (is_check_pages_enabled()) { 1114 if (free_page_is_bad(page + i)) { 1115 bad++; 1116 continue; 1117 } 1118 } 1119 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1120 } 1121 } 1122 if (PageMappingFlags(page)) 1123 page->mapping = NULL; 1124 if (is_check_pages_enabled()) { 1125 if (free_page_is_bad(page)) 1126 bad++; 1127 if (bad) 1128 return false; 1129 } 1130 1131 page_cpupid_reset_last(page); 1132 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1133 reset_page_owner(page, order); 1134 page_table_check_free(page, order); 1135 1136 if (!PageHighMem(page)) { 1137 debug_check_no_locks_freed(page_address(page), 1138 PAGE_SIZE << order); 1139 debug_check_no_obj_freed(page_address(page), 1140 PAGE_SIZE << order); 1141 } 1142 1143 kernel_poison_pages(page, 1 << order); 1144 1145 /* 1146 * As memory initialization might be integrated into KASAN, 1147 * KASAN poisoning and memory initialization code must be 1148 * kept together to avoid discrepancies in behavior. 1149 * 1150 * With hardware tag-based KASAN, memory tags must be set before the 1151 * page becomes unavailable via debug_pagealloc or arch_free_page. 1152 */ 1153 if (!skip_kasan_poison) { 1154 kasan_poison_pages(page, order, init); 1155 1156 /* Memory is already initialized if KASAN did it internally. */ 1157 if (kasan_has_integrated_init()) 1158 init = false; 1159 } 1160 if (init) 1161 kernel_init_pages(page, 1 << order); 1162 1163 /* 1164 * arch_free_page() can make the page's contents inaccessible. s390 1165 * does this. So nothing which can access the page's contents should 1166 * happen after this. 1167 */ 1168 arch_free_page(page, order); 1169 1170 debug_pagealloc_unmap_pages(page, 1 << order); 1171 1172 return true; 1173 } 1174 1175 /* 1176 * Frees a number of pages from the PCP lists 1177 * Assumes all pages on list are in same zone. 1178 * count is the number of pages to free. 1179 */ 1180 static void free_pcppages_bulk(struct zone *zone, int count, 1181 struct per_cpu_pages *pcp, 1182 int pindex) 1183 { 1184 unsigned long flags; 1185 unsigned int order; 1186 bool isolated_pageblocks; 1187 struct page *page; 1188 1189 /* 1190 * Ensure proper count is passed which otherwise would stuck in the 1191 * below while (list_empty(list)) loop. 1192 */ 1193 count = min(pcp->count, count); 1194 1195 /* Ensure requested pindex is drained first. */ 1196 pindex = pindex - 1; 1197 1198 spin_lock_irqsave(&zone->lock, flags); 1199 isolated_pageblocks = has_isolate_pageblock(zone); 1200 1201 while (count > 0) { 1202 struct list_head *list; 1203 int nr_pages; 1204 1205 /* Remove pages from lists in a round-robin fashion. */ 1206 do { 1207 if (++pindex > NR_PCP_LISTS - 1) 1208 pindex = 0; 1209 list = &pcp->lists[pindex]; 1210 } while (list_empty(list)); 1211 1212 order = pindex_to_order(pindex); 1213 nr_pages = 1 << order; 1214 do { 1215 int mt; 1216 1217 page = list_last_entry(list, struct page, pcp_list); 1218 mt = get_pcppage_migratetype(page); 1219 1220 /* must delete to avoid corrupting pcp list */ 1221 list_del(&page->pcp_list); 1222 count -= nr_pages; 1223 pcp->count -= nr_pages; 1224 1225 /* MIGRATE_ISOLATE page should not go to pcplists */ 1226 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1227 /* Pageblock could have been isolated meanwhile */ 1228 if (unlikely(isolated_pageblocks)) 1229 mt = get_pageblock_migratetype(page); 1230 1231 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1232 trace_mm_page_pcpu_drain(page, order, mt); 1233 } while (count > 0 && !list_empty(list)); 1234 } 1235 1236 spin_unlock_irqrestore(&zone->lock, flags); 1237 } 1238 1239 static void free_one_page(struct zone *zone, 1240 struct page *page, unsigned long pfn, 1241 unsigned int order, 1242 int migratetype, fpi_t fpi_flags) 1243 { 1244 unsigned long flags; 1245 1246 spin_lock_irqsave(&zone->lock, flags); 1247 if (unlikely(has_isolate_pageblock(zone) || 1248 is_migrate_isolate(migratetype))) { 1249 migratetype = get_pfnblock_migratetype(page, pfn); 1250 } 1251 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1252 spin_unlock_irqrestore(&zone->lock, flags); 1253 } 1254 1255 static void __free_pages_ok(struct page *page, unsigned int order, 1256 fpi_t fpi_flags) 1257 { 1258 int migratetype; 1259 unsigned long pfn = page_to_pfn(page); 1260 struct zone *zone = page_zone(page); 1261 1262 if (!free_pages_prepare(page, order, fpi_flags)) 1263 return; 1264 1265 /* 1266 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1267 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1268 * This will reduce the lock holding time. 1269 */ 1270 migratetype = get_pfnblock_migratetype(page, pfn); 1271 1272 free_one_page(zone, page, pfn, order, migratetype, fpi_flags); 1273 1274 __count_vm_events(PGFREE, 1 << order); 1275 } 1276 1277 void __free_pages_core(struct page *page, unsigned int order) 1278 { 1279 unsigned int nr_pages = 1 << order; 1280 struct page *p = page; 1281 unsigned int loop; 1282 1283 /* 1284 * When initializing the memmap, __init_single_page() sets the refcount 1285 * of all pages to 1 ("allocated"/"not free"). We have to set the 1286 * refcount of all involved pages to 0. 1287 */ 1288 prefetchw(p); 1289 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1290 prefetchw(p + 1); 1291 __ClearPageReserved(p); 1292 set_page_count(p, 0); 1293 } 1294 __ClearPageReserved(p); 1295 set_page_count(p, 0); 1296 1297 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1298 1299 if (page_contains_unaccepted(page, order)) { 1300 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1301 return; 1302 1303 accept_page(page, order); 1304 } 1305 1306 /* 1307 * Bypass PCP and place fresh pages right to the tail, primarily 1308 * relevant for memory onlining. 1309 */ 1310 __free_pages_ok(page, order, FPI_TO_TAIL); 1311 } 1312 1313 /* 1314 * Check that the whole (or subset of) a pageblock given by the interval of 1315 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1316 * with the migration of free compaction scanner. 1317 * 1318 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1319 * 1320 * It's possible on some configurations to have a setup like node0 node1 node0 1321 * i.e. it's possible that all pages within a zones range of pages do not 1322 * belong to a single zone. We assume that a border between node0 and node1 1323 * can occur within a single pageblock, but not a node0 node1 node0 1324 * interleaving within a single pageblock. It is therefore sufficient to check 1325 * the first and last page of a pageblock and avoid checking each individual 1326 * page in a pageblock. 1327 * 1328 * Note: the function may return non-NULL struct page even for a page block 1329 * which contains a memory hole (i.e. there is no physical memory for a subset 1330 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1331 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1332 * even though the start pfn is online and valid. This should be safe most of 1333 * the time because struct pages are still initialized via init_unavailable_range() 1334 * and pfn walkers shouldn't touch any physical memory range for which they do 1335 * not recognize any specific metadata in struct pages. 1336 */ 1337 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1338 unsigned long end_pfn, struct zone *zone) 1339 { 1340 struct page *start_page; 1341 struct page *end_page; 1342 1343 /* end_pfn is one past the range we are checking */ 1344 end_pfn--; 1345 1346 if (!pfn_valid(end_pfn)) 1347 return NULL; 1348 1349 start_page = pfn_to_online_page(start_pfn); 1350 if (!start_page) 1351 return NULL; 1352 1353 if (page_zone(start_page) != zone) 1354 return NULL; 1355 1356 end_page = pfn_to_page(end_pfn); 1357 1358 /* This gives a shorter code than deriving page_zone(end_page) */ 1359 if (page_zone_id(start_page) != page_zone_id(end_page)) 1360 return NULL; 1361 1362 return start_page; 1363 } 1364 1365 /* 1366 * The order of subdivision here is critical for the IO subsystem. 1367 * Please do not alter this order without good reasons and regression 1368 * testing. Specifically, as large blocks of memory are subdivided, 1369 * the order in which smaller blocks are delivered depends on the order 1370 * they're subdivided in this function. This is the primary factor 1371 * influencing the order in which pages are delivered to the IO 1372 * subsystem according to empirical testing, and this is also justified 1373 * by considering the behavior of a buddy system containing a single 1374 * large block of memory acted on by a series of small allocations. 1375 * This behavior is a critical factor in sglist merging's success. 1376 * 1377 * -- nyc 1378 */ 1379 static inline void expand(struct zone *zone, struct page *page, 1380 int low, int high, int migratetype) 1381 { 1382 unsigned long size = 1 << high; 1383 1384 while (high > low) { 1385 high--; 1386 size >>= 1; 1387 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1388 1389 /* 1390 * Mark as guard pages (or page), that will allow to 1391 * merge back to allocator when buddy will be freed. 1392 * Corresponding page table entries will not be touched, 1393 * pages will stay not present in virtual address space 1394 */ 1395 if (set_page_guard(zone, &page[size], high, migratetype)) 1396 continue; 1397 1398 add_to_free_list(&page[size], zone, high, migratetype); 1399 set_buddy_order(&page[size], high); 1400 } 1401 } 1402 1403 static void check_new_page_bad(struct page *page) 1404 { 1405 if (unlikely(page->flags & __PG_HWPOISON)) { 1406 /* Don't complain about hwpoisoned pages */ 1407 page_mapcount_reset(page); /* remove PageBuddy */ 1408 return; 1409 } 1410 1411 bad_page(page, 1412 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1413 } 1414 1415 /* 1416 * This page is about to be returned from the page allocator 1417 */ 1418 static int check_new_page(struct page *page) 1419 { 1420 if (likely(page_expected_state(page, 1421 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1422 return 0; 1423 1424 check_new_page_bad(page); 1425 return 1; 1426 } 1427 1428 static inline bool check_new_pages(struct page *page, unsigned int order) 1429 { 1430 if (is_check_pages_enabled()) { 1431 for (int i = 0; i < (1 << order); i++) { 1432 struct page *p = page + i; 1433 1434 if (check_new_page(p)) 1435 return true; 1436 } 1437 } 1438 1439 return false; 1440 } 1441 1442 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1443 { 1444 /* Don't skip if a software KASAN mode is enabled. */ 1445 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1446 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1447 return false; 1448 1449 /* Skip, if hardware tag-based KASAN is not enabled. */ 1450 if (!kasan_hw_tags_enabled()) 1451 return true; 1452 1453 /* 1454 * With hardware tag-based KASAN enabled, skip if this has been 1455 * requested via __GFP_SKIP_KASAN. 1456 */ 1457 return flags & __GFP_SKIP_KASAN; 1458 } 1459 1460 static inline bool should_skip_init(gfp_t flags) 1461 { 1462 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1463 if (!kasan_hw_tags_enabled()) 1464 return false; 1465 1466 /* For hardware tag-based KASAN, skip if requested. */ 1467 return (flags & __GFP_SKIP_ZERO); 1468 } 1469 1470 inline void post_alloc_hook(struct page *page, unsigned int order, 1471 gfp_t gfp_flags) 1472 { 1473 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1474 !should_skip_init(gfp_flags); 1475 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1476 int i; 1477 1478 set_page_private(page, 0); 1479 set_page_refcounted(page); 1480 1481 arch_alloc_page(page, order); 1482 debug_pagealloc_map_pages(page, 1 << order); 1483 1484 /* 1485 * Page unpoisoning must happen before memory initialization. 1486 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1487 * allocations and the page unpoisoning code will complain. 1488 */ 1489 kernel_unpoison_pages(page, 1 << order); 1490 1491 /* 1492 * As memory initialization might be integrated into KASAN, 1493 * KASAN unpoisoning and memory initializion code must be 1494 * kept together to avoid discrepancies in behavior. 1495 */ 1496 1497 /* 1498 * If memory tags should be zeroed 1499 * (which happens only when memory should be initialized as well). 1500 */ 1501 if (zero_tags) { 1502 /* Initialize both memory and memory tags. */ 1503 for (i = 0; i != 1 << order; ++i) 1504 tag_clear_highpage(page + i); 1505 1506 /* Take note that memory was initialized by the loop above. */ 1507 init = false; 1508 } 1509 if (!should_skip_kasan_unpoison(gfp_flags) && 1510 kasan_unpoison_pages(page, order, init)) { 1511 /* Take note that memory was initialized by KASAN. */ 1512 if (kasan_has_integrated_init()) 1513 init = false; 1514 } else { 1515 /* 1516 * If memory tags have not been set by KASAN, reset the page 1517 * tags to ensure page_address() dereferencing does not fault. 1518 */ 1519 for (i = 0; i != 1 << order; ++i) 1520 page_kasan_tag_reset(page + i); 1521 } 1522 /* If memory is still not initialized, initialize it now. */ 1523 if (init) 1524 kernel_init_pages(page, 1 << order); 1525 1526 set_page_owner(page, order, gfp_flags); 1527 page_table_check_alloc(page, order); 1528 } 1529 1530 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1531 unsigned int alloc_flags) 1532 { 1533 post_alloc_hook(page, order, gfp_flags); 1534 1535 if (order && (gfp_flags & __GFP_COMP)) 1536 prep_compound_page(page, order); 1537 1538 /* 1539 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1540 * allocate the page. The expectation is that the caller is taking 1541 * steps that will free more memory. The caller should avoid the page 1542 * being used for !PFMEMALLOC purposes. 1543 */ 1544 if (alloc_flags & ALLOC_NO_WATERMARKS) 1545 set_page_pfmemalloc(page); 1546 else 1547 clear_page_pfmemalloc(page); 1548 } 1549 1550 /* 1551 * Go through the free lists for the given migratetype and remove 1552 * the smallest available page from the freelists 1553 */ 1554 static __always_inline 1555 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1556 int migratetype) 1557 { 1558 unsigned int current_order; 1559 struct free_area *area; 1560 struct page *page; 1561 1562 /* Find a page of the appropriate size in the preferred list */ 1563 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1564 area = &(zone->free_area[current_order]); 1565 page = get_page_from_free_area(area, migratetype); 1566 if (!page) 1567 continue; 1568 del_page_from_free_list(page, zone, current_order); 1569 expand(zone, page, order, current_order, migratetype); 1570 set_pcppage_migratetype(page, migratetype); 1571 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1572 pcp_allowed_order(order) && 1573 migratetype < MIGRATE_PCPTYPES); 1574 return page; 1575 } 1576 1577 return NULL; 1578 } 1579 1580 1581 /* 1582 * This array describes the order lists are fallen back to when 1583 * the free lists for the desirable migrate type are depleted 1584 * 1585 * The other migratetypes do not have fallbacks. 1586 */ 1587 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1588 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1589 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1590 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1591 }; 1592 1593 #ifdef CONFIG_CMA 1594 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1595 unsigned int order) 1596 { 1597 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1598 } 1599 #else 1600 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1601 unsigned int order) { return NULL; } 1602 #endif 1603 1604 /* 1605 * Move the free pages in a range to the freelist tail of the requested type. 1606 * Note that start_page and end_pages are not aligned on a pageblock 1607 * boundary. If alignment is required, use move_freepages_block() 1608 */ 1609 static int move_freepages(struct zone *zone, 1610 unsigned long start_pfn, unsigned long end_pfn, 1611 int migratetype, int *num_movable) 1612 { 1613 struct page *page; 1614 unsigned long pfn; 1615 unsigned int order; 1616 int pages_moved = 0; 1617 1618 for (pfn = start_pfn; pfn <= end_pfn;) { 1619 page = pfn_to_page(pfn); 1620 if (!PageBuddy(page)) { 1621 /* 1622 * We assume that pages that could be isolated for 1623 * migration are movable. But we don't actually try 1624 * isolating, as that would be expensive. 1625 */ 1626 if (num_movable && 1627 (PageLRU(page) || __PageMovable(page))) 1628 (*num_movable)++; 1629 pfn++; 1630 continue; 1631 } 1632 1633 /* Make sure we are not inadvertently changing nodes */ 1634 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1635 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1636 1637 order = buddy_order(page); 1638 move_to_free_list(page, zone, order, migratetype); 1639 pfn += 1 << order; 1640 pages_moved += 1 << order; 1641 } 1642 1643 return pages_moved; 1644 } 1645 1646 int move_freepages_block(struct zone *zone, struct page *page, 1647 int migratetype, int *num_movable) 1648 { 1649 unsigned long start_pfn, end_pfn, pfn; 1650 1651 if (num_movable) 1652 *num_movable = 0; 1653 1654 pfn = page_to_pfn(page); 1655 start_pfn = pageblock_start_pfn(pfn); 1656 end_pfn = pageblock_end_pfn(pfn) - 1; 1657 1658 /* Do not cross zone boundaries */ 1659 if (!zone_spans_pfn(zone, start_pfn)) 1660 start_pfn = pfn; 1661 if (!zone_spans_pfn(zone, end_pfn)) 1662 return 0; 1663 1664 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1665 num_movable); 1666 } 1667 1668 static void change_pageblock_range(struct page *pageblock_page, 1669 int start_order, int migratetype) 1670 { 1671 int nr_pageblocks = 1 << (start_order - pageblock_order); 1672 1673 while (nr_pageblocks--) { 1674 set_pageblock_migratetype(pageblock_page, migratetype); 1675 pageblock_page += pageblock_nr_pages; 1676 } 1677 } 1678 1679 /* 1680 * When we are falling back to another migratetype during allocation, try to 1681 * steal extra free pages from the same pageblocks to satisfy further 1682 * allocations, instead of polluting multiple pageblocks. 1683 * 1684 * If we are stealing a relatively large buddy page, it is likely there will 1685 * be more free pages in the pageblock, so try to steal them all. For 1686 * reclaimable and unmovable allocations, we steal regardless of page size, 1687 * as fragmentation caused by those allocations polluting movable pageblocks 1688 * is worse than movable allocations stealing from unmovable and reclaimable 1689 * pageblocks. 1690 */ 1691 static bool can_steal_fallback(unsigned int order, int start_mt) 1692 { 1693 /* 1694 * Leaving this order check is intended, although there is 1695 * relaxed order check in next check. The reason is that 1696 * we can actually steal whole pageblock if this condition met, 1697 * but, below check doesn't guarantee it and that is just heuristic 1698 * so could be changed anytime. 1699 */ 1700 if (order >= pageblock_order) 1701 return true; 1702 1703 if (order >= pageblock_order / 2 || 1704 start_mt == MIGRATE_RECLAIMABLE || 1705 start_mt == MIGRATE_UNMOVABLE || 1706 page_group_by_mobility_disabled) 1707 return true; 1708 1709 return false; 1710 } 1711 1712 static inline bool boost_watermark(struct zone *zone) 1713 { 1714 unsigned long max_boost; 1715 1716 if (!watermark_boost_factor) 1717 return false; 1718 /* 1719 * Don't bother in zones that are unlikely to produce results. 1720 * On small machines, including kdump capture kernels running 1721 * in a small area, boosting the watermark can cause an out of 1722 * memory situation immediately. 1723 */ 1724 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1725 return false; 1726 1727 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1728 watermark_boost_factor, 10000); 1729 1730 /* 1731 * high watermark may be uninitialised if fragmentation occurs 1732 * very early in boot so do not boost. We do not fall 1733 * through and boost by pageblock_nr_pages as failing 1734 * allocations that early means that reclaim is not going 1735 * to help and it may even be impossible to reclaim the 1736 * boosted watermark resulting in a hang. 1737 */ 1738 if (!max_boost) 1739 return false; 1740 1741 max_boost = max(pageblock_nr_pages, max_boost); 1742 1743 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1744 max_boost); 1745 1746 return true; 1747 } 1748 1749 /* 1750 * This function implements actual steal behaviour. If order is large enough, 1751 * we can steal whole pageblock. If not, we first move freepages in this 1752 * pageblock to our migratetype and determine how many already-allocated pages 1753 * are there in the pageblock with a compatible migratetype. If at least half 1754 * of pages are free or compatible, we can change migratetype of the pageblock 1755 * itself, so pages freed in the future will be put on the correct free list. 1756 */ 1757 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1758 unsigned int alloc_flags, int start_type, bool whole_block) 1759 { 1760 unsigned int current_order = buddy_order(page); 1761 int free_pages, movable_pages, alike_pages; 1762 int old_block_type; 1763 1764 old_block_type = get_pageblock_migratetype(page); 1765 1766 /* 1767 * This can happen due to races and we want to prevent broken 1768 * highatomic accounting. 1769 */ 1770 if (is_migrate_highatomic(old_block_type)) 1771 goto single_page; 1772 1773 /* Take ownership for orders >= pageblock_order */ 1774 if (current_order >= pageblock_order) { 1775 change_pageblock_range(page, current_order, start_type); 1776 goto single_page; 1777 } 1778 1779 /* 1780 * Boost watermarks to increase reclaim pressure to reduce the 1781 * likelihood of future fallbacks. Wake kswapd now as the node 1782 * may be balanced overall and kswapd will not wake naturally. 1783 */ 1784 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1785 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1786 1787 /* We are not allowed to try stealing from the whole block */ 1788 if (!whole_block) 1789 goto single_page; 1790 1791 free_pages = move_freepages_block(zone, page, start_type, 1792 &movable_pages); 1793 /* moving whole block can fail due to zone boundary conditions */ 1794 if (!free_pages) 1795 goto single_page; 1796 1797 /* 1798 * Determine how many pages are compatible with our allocation. 1799 * For movable allocation, it's the number of movable pages which 1800 * we just obtained. For other types it's a bit more tricky. 1801 */ 1802 if (start_type == MIGRATE_MOVABLE) { 1803 alike_pages = movable_pages; 1804 } else { 1805 /* 1806 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1807 * to MOVABLE pageblock, consider all non-movable pages as 1808 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1809 * vice versa, be conservative since we can't distinguish the 1810 * exact migratetype of non-movable pages. 1811 */ 1812 if (old_block_type == MIGRATE_MOVABLE) 1813 alike_pages = pageblock_nr_pages 1814 - (free_pages + movable_pages); 1815 else 1816 alike_pages = 0; 1817 } 1818 /* 1819 * If a sufficient number of pages in the block are either free or of 1820 * compatible migratability as our allocation, claim the whole block. 1821 */ 1822 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1823 page_group_by_mobility_disabled) 1824 set_pageblock_migratetype(page, start_type); 1825 1826 return; 1827 1828 single_page: 1829 move_to_free_list(page, zone, current_order, start_type); 1830 } 1831 1832 /* 1833 * Check whether there is a suitable fallback freepage with requested order. 1834 * If only_stealable is true, this function returns fallback_mt only if 1835 * we can steal other freepages all together. This would help to reduce 1836 * fragmentation due to mixed migratetype pages in one pageblock. 1837 */ 1838 int find_suitable_fallback(struct free_area *area, unsigned int order, 1839 int migratetype, bool only_stealable, bool *can_steal) 1840 { 1841 int i; 1842 int fallback_mt; 1843 1844 if (area->nr_free == 0) 1845 return -1; 1846 1847 *can_steal = false; 1848 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1849 fallback_mt = fallbacks[migratetype][i]; 1850 if (free_area_empty(area, fallback_mt)) 1851 continue; 1852 1853 if (can_steal_fallback(order, migratetype)) 1854 *can_steal = true; 1855 1856 if (!only_stealable) 1857 return fallback_mt; 1858 1859 if (*can_steal) 1860 return fallback_mt; 1861 } 1862 1863 return -1; 1864 } 1865 1866 /* 1867 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1868 * there are no empty page blocks that contain a page with a suitable order 1869 */ 1870 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone) 1871 { 1872 int mt; 1873 unsigned long max_managed, flags; 1874 1875 /* 1876 * The number reserved as: minimum is 1 pageblock, maximum is 1877 * roughly 1% of a zone. But if 1% of a zone falls below a 1878 * pageblock size, then don't reserve any pageblocks. 1879 * Check is race-prone but harmless. 1880 */ 1881 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 1882 return; 1883 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 1884 if (zone->nr_reserved_highatomic >= max_managed) 1885 return; 1886 1887 spin_lock_irqsave(&zone->lock, flags); 1888 1889 /* Recheck the nr_reserved_highatomic limit under the lock */ 1890 if (zone->nr_reserved_highatomic >= max_managed) 1891 goto out_unlock; 1892 1893 /* Yoink! */ 1894 mt = get_pageblock_migratetype(page); 1895 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1896 if (migratetype_is_mergeable(mt)) { 1897 zone->nr_reserved_highatomic += pageblock_nr_pages; 1898 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1899 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 1900 } 1901 1902 out_unlock: 1903 spin_unlock_irqrestore(&zone->lock, flags); 1904 } 1905 1906 /* 1907 * Used when an allocation is about to fail under memory pressure. This 1908 * potentially hurts the reliability of high-order allocations when under 1909 * intense memory pressure but failed atomic allocations should be easier 1910 * to recover from than an OOM. 1911 * 1912 * If @force is true, try to unreserve a pageblock even though highatomic 1913 * pageblock is exhausted. 1914 */ 1915 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 1916 bool force) 1917 { 1918 struct zonelist *zonelist = ac->zonelist; 1919 unsigned long flags; 1920 struct zoneref *z; 1921 struct zone *zone; 1922 struct page *page; 1923 int order; 1924 bool ret; 1925 1926 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 1927 ac->nodemask) { 1928 /* 1929 * Preserve at least one pageblock unless memory pressure 1930 * is really high. 1931 */ 1932 if (!force && zone->nr_reserved_highatomic <= 1933 pageblock_nr_pages) 1934 continue; 1935 1936 spin_lock_irqsave(&zone->lock, flags); 1937 for (order = 0; order < NR_PAGE_ORDERS; order++) { 1938 struct free_area *area = &(zone->free_area[order]); 1939 1940 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 1941 if (!page) 1942 continue; 1943 1944 /* 1945 * In page freeing path, migratetype change is racy so 1946 * we can counter several free pages in a pageblock 1947 * in this loop although we changed the pageblock type 1948 * from highatomic to ac->migratetype. So we should 1949 * adjust the count once. 1950 */ 1951 if (is_migrate_highatomic_page(page)) { 1952 /* 1953 * It should never happen but changes to 1954 * locking could inadvertently allow a per-cpu 1955 * drain to add pages to MIGRATE_HIGHATOMIC 1956 * while unreserving so be safe and watch for 1957 * underflows. 1958 */ 1959 zone->nr_reserved_highatomic -= min( 1960 pageblock_nr_pages, 1961 zone->nr_reserved_highatomic); 1962 } 1963 1964 /* 1965 * Convert to ac->migratetype and avoid the normal 1966 * pageblock stealing heuristics. Minimally, the caller 1967 * is doing the work and needs the pages. More 1968 * importantly, if the block was always converted to 1969 * MIGRATE_UNMOVABLE or another type then the number 1970 * of pageblocks that cannot be completely freed 1971 * may increase. 1972 */ 1973 set_pageblock_migratetype(page, ac->migratetype); 1974 ret = move_freepages_block(zone, page, ac->migratetype, 1975 NULL); 1976 if (ret) { 1977 spin_unlock_irqrestore(&zone->lock, flags); 1978 return ret; 1979 } 1980 } 1981 spin_unlock_irqrestore(&zone->lock, flags); 1982 } 1983 1984 return false; 1985 } 1986 1987 /* 1988 * Try finding a free buddy page on the fallback list and put it on the free 1989 * list of requested migratetype, possibly along with other pages from the same 1990 * block, depending on fragmentation avoidance heuristics. Returns true if 1991 * fallback was found so that __rmqueue_smallest() can grab it. 1992 * 1993 * The use of signed ints for order and current_order is a deliberate 1994 * deviation from the rest of this file, to make the for loop 1995 * condition simpler. 1996 */ 1997 static __always_inline bool 1998 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 1999 unsigned int alloc_flags) 2000 { 2001 struct free_area *area; 2002 int current_order; 2003 int min_order = order; 2004 struct page *page; 2005 int fallback_mt; 2006 bool can_steal; 2007 2008 /* 2009 * Do not steal pages from freelists belonging to other pageblocks 2010 * i.e. orders < pageblock_order. If there are no local zones free, 2011 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2012 */ 2013 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2014 min_order = pageblock_order; 2015 2016 /* 2017 * Find the largest available free page in the other list. This roughly 2018 * approximates finding the pageblock with the most free pages, which 2019 * would be too costly to do exactly. 2020 */ 2021 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2022 --current_order) { 2023 area = &(zone->free_area[current_order]); 2024 fallback_mt = find_suitable_fallback(area, current_order, 2025 start_migratetype, false, &can_steal); 2026 if (fallback_mt == -1) 2027 continue; 2028 2029 /* 2030 * We cannot steal all free pages from the pageblock and the 2031 * requested migratetype is movable. In that case it's better to 2032 * steal and split the smallest available page instead of the 2033 * largest available page, because even if the next movable 2034 * allocation falls back into a different pageblock than this 2035 * one, it won't cause permanent fragmentation. 2036 */ 2037 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2038 && current_order > order) 2039 goto find_smallest; 2040 2041 goto do_steal; 2042 } 2043 2044 return false; 2045 2046 find_smallest: 2047 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2048 area = &(zone->free_area[current_order]); 2049 fallback_mt = find_suitable_fallback(area, current_order, 2050 start_migratetype, false, &can_steal); 2051 if (fallback_mt != -1) 2052 break; 2053 } 2054 2055 /* 2056 * This should not happen - we already found a suitable fallback 2057 * when looking for the largest page. 2058 */ 2059 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2060 2061 do_steal: 2062 page = get_page_from_free_area(area, fallback_mt); 2063 2064 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2065 can_steal); 2066 2067 trace_mm_page_alloc_extfrag(page, order, current_order, 2068 start_migratetype, fallback_mt); 2069 2070 return true; 2071 2072 } 2073 2074 /* 2075 * Do the hard work of removing an element from the buddy allocator. 2076 * Call me with the zone->lock already held. 2077 */ 2078 static __always_inline struct page * 2079 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2080 unsigned int alloc_flags) 2081 { 2082 struct page *page; 2083 2084 if (IS_ENABLED(CONFIG_CMA)) { 2085 /* 2086 * Balance movable allocations between regular and CMA areas by 2087 * allocating from CMA when over half of the zone's free memory 2088 * is in the CMA area. 2089 */ 2090 if (alloc_flags & ALLOC_CMA && 2091 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2092 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2093 page = __rmqueue_cma_fallback(zone, order); 2094 if (page) 2095 return page; 2096 } 2097 } 2098 retry: 2099 page = __rmqueue_smallest(zone, order, migratetype); 2100 if (unlikely(!page)) { 2101 if (alloc_flags & ALLOC_CMA) 2102 page = __rmqueue_cma_fallback(zone, order); 2103 2104 if (!page && __rmqueue_fallback(zone, order, migratetype, 2105 alloc_flags)) 2106 goto retry; 2107 } 2108 return page; 2109 } 2110 2111 /* 2112 * Obtain a specified number of elements from the buddy allocator, all under 2113 * a single hold of the lock, for efficiency. Add them to the supplied list. 2114 * Returns the number of new pages which were placed at *list. 2115 */ 2116 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2117 unsigned long count, struct list_head *list, 2118 int migratetype, unsigned int alloc_flags) 2119 { 2120 unsigned long flags; 2121 int i; 2122 2123 spin_lock_irqsave(&zone->lock, flags); 2124 for (i = 0; i < count; ++i) { 2125 struct page *page = __rmqueue(zone, order, migratetype, 2126 alloc_flags); 2127 if (unlikely(page == NULL)) 2128 break; 2129 2130 /* 2131 * Split buddy pages returned by expand() are received here in 2132 * physical page order. The page is added to the tail of 2133 * caller's list. From the callers perspective, the linked list 2134 * is ordered by page number under some conditions. This is 2135 * useful for IO devices that can forward direction from the 2136 * head, thus also in the physical page order. This is useful 2137 * for IO devices that can merge IO requests if the physical 2138 * pages are ordered properly. 2139 */ 2140 list_add_tail(&page->pcp_list, list); 2141 if (is_migrate_cma(get_pcppage_migratetype(page))) 2142 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2143 -(1 << order)); 2144 } 2145 2146 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2147 spin_unlock_irqrestore(&zone->lock, flags); 2148 2149 return i; 2150 } 2151 2152 /* 2153 * Called from the vmstat counter updater to decay the PCP high. 2154 * Return whether there are addition works to do. 2155 */ 2156 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2157 { 2158 int high_min, to_drain, batch; 2159 int todo = 0; 2160 2161 high_min = READ_ONCE(pcp->high_min); 2162 batch = READ_ONCE(pcp->batch); 2163 /* 2164 * Decrease pcp->high periodically to try to free possible 2165 * idle PCP pages. And, avoid to free too many pages to 2166 * control latency. This caps pcp->high decrement too. 2167 */ 2168 if (pcp->high > high_min) { 2169 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2170 pcp->high - (pcp->high >> 3), high_min); 2171 if (pcp->high > high_min) 2172 todo++; 2173 } 2174 2175 to_drain = pcp->count - pcp->high; 2176 if (to_drain > 0) { 2177 spin_lock(&pcp->lock); 2178 free_pcppages_bulk(zone, to_drain, pcp, 0); 2179 spin_unlock(&pcp->lock); 2180 todo++; 2181 } 2182 2183 return todo; 2184 } 2185 2186 #ifdef CONFIG_NUMA 2187 /* 2188 * Called from the vmstat counter updater to drain pagesets of this 2189 * currently executing processor on remote nodes after they have 2190 * expired. 2191 */ 2192 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2193 { 2194 int to_drain, batch; 2195 2196 batch = READ_ONCE(pcp->batch); 2197 to_drain = min(pcp->count, batch); 2198 if (to_drain > 0) { 2199 spin_lock(&pcp->lock); 2200 free_pcppages_bulk(zone, to_drain, pcp, 0); 2201 spin_unlock(&pcp->lock); 2202 } 2203 } 2204 #endif 2205 2206 /* 2207 * Drain pcplists of the indicated processor and zone. 2208 */ 2209 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2210 { 2211 struct per_cpu_pages *pcp; 2212 2213 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2214 if (pcp->count) { 2215 spin_lock(&pcp->lock); 2216 free_pcppages_bulk(zone, pcp->count, pcp, 0); 2217 spin_unlock(&pcp->lock); 2218 } 2219 } 2220 2221 /* 2222 * Drain pcplists of all zones on the indicated processor. 2223 */ 2224 static void drain_pages(unsigned int cpu) 2225 { 2226 struct zone *zone; 2227 2228 for_each_populated_zone(zone) { 2229 drain_pages_zone(cpu, zone); 2230 } 2231 } 2232 2233 /* 2234 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2235 */ 2236 void drain_local_pages(struct zone *zone) 2237 { 2238 int cpu = smp_processor_id(); 2239 2240 if (zone) 2241 drain_pages_zone(cpu, zone); 2242 else 2243 drain_pages(cpu); 2244 } 2245 2246 /* 2247 * The implementation of drain_all_pages(), exposing an extra parameter to 2248 * drain on all cpus. 2249 * 2250 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2251 * not empty. The check for non-emptiness can however race with a free to 2252 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2253 * that need the guarantee that every CPU has drained can disable the 2254 * optimizing racy check. 2255 */ 2256 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2257 { 2258 int cpu; 2259 2260 /* 2261 * Allocate in the BSS so we won't require allocation in 2262 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2263 */ 2264 static cpumask_t cpus_with_pcps; 2265 2266 /* 2267 * Do not drain if one is already in progress unless it's specific to 2268 * a zone. Such callers are primarily CMA and memory hotplug and need 2269 * the drain to be complete when the call returns. 2270 */ 2271 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2272 if (!zone) 2273 return; 2274 mutex_lock(&pcpu_drain_mutex); 2275 } 2276 2277 /* 2278 * We don't care about racing with CPU hotplug event 2279 * as offline notification will cause the notified 2280 * cpu to drain that CPU pcps and on_each_cpu_mask 2281 * disables preemption as part of its processing 2282 */ 2283 for_each_online_cpu(cpu) { 2284 struct per_cpu_pages *pcp; 2285 struct zone *z; 2286 bool has_pcps = false; 2287 2288 if (force_all_cpus) { 2289 /* 2290 * The pcp.count check is racy, some callers need a 2291 * guarantee that no cpu is missed. 2292 */ 2293 has_pcps = true; 2294 } else if (zone) { 2295 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2296 if (pcp->count) 2297 has_pcps = true; 2298 } else { 2299 for_each_populated_zone(z) { 2300 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2301 if (pcp->count) { 2302 has_pcps = true; 2303 break; 2304 } 2305 } 2306 } 2307 2308 if (has_pcps) 2309 cpumask_set_cpu(cpu, &cpus_with_pcps); 2310 else 2311 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2312 } 2313 2314 for_each_cpu(cpu, &cpus_with_pcps) { 2315 if (zone) 2316 drain_pages_zone(cpu, zone); 2317 else 2318 drain_pages(cpu); 2319 } 2320 2321 mutex_unlock(&pcpu_drain_mutex); 2322 } 2323 2324 /* 2325 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2326 * 2327 * When zone parameter is non-NULL, spill just the single zone's pages. 2328 */ 2329 void drain_all_pages(struct zone *zone) 2330 { 2331 __drain_all_pages(zone, false); 2332 } 2333 2334 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2335 unsigned int order) 2336 { 2337 int migratetype; 2338 2339 if (!free_pages_prepare(page, order, FPI_NONE)) 2340 return false; 2341 2342 migratetype = get_pfnblock_migratetype(page, pfn); 2343 set_pcppage_migratetype(page, migratetype); 2344 return true; 2345 } 2346 2347 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2348 { 2349 int min_nr_free, max_nr_free; 2350 2351 /* Free as much as possible if batch freeing high-order pages. */ 2352 if (unlikely(free_high)) 2353 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2354 2355 /* Check for PCP disabled or boot pageset */ 2356 if (unlikely(high < batch)) 2357 return 1; 2358 2359 /* Leave at least pcp->batch pages on the list */ 2360 min_nr_free = batch; 2361 max_nr_free = high - batch; 2362 2363 /* 2364 * Increase the batch number to the number of the consecutive 2365 * freed pages to reduce zone lock contention. 2366 */ 2367 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2368 2369 return batch; 2370 } 2371 2372 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2373 int batch, bool free_high) 2374 { 2375 int high, high_min, high_max; 2376 2377 high_min = READ_ONCE(pcp->high_min); 2378 high_max = READ_ONCE(pcp->high_max); 2379 high = pcp->high = clamp(pcp->high, high_min, high_max); 2380 2381 if (unlikely(!high)) 2382 return 0; 2383 2384 if (unlikely(free_high)) { 2385 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2386 high_min); 2387 return 0; 2388 } 2389 2390 /* 2391 * If reclaim is active, limit the number of pages that can be 2392 * stored on pcp lists 2393 */ 2394 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2395 int free_count = max_t(int, pcp->free_count, batch); 2396 2397 pcp->high = max(high - free_count, high_min); 2398 return min(batch << 2, pcp->high); 2399 } 2400 2401 if (high_min == high_max) 2402 return high; 2403 2404 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2405 int free_count = max_t(int, pcp->free_count, batch); 2406 2407 pcp->high = max(high - free_count, high_min); 2408 high = max(pcp->count, high_min); 2409 } else if (pcp->count >= high) { 2410 int need_high = pcp->free_count + batch; 2411 2412 /* pcp->high should be large enough to hold batch freed pages */ 2413 if (pcp->high < need_high) 2414 pcp->high = clamp(need_high, high_min, high_max); 2415 } 2416 2417 return high; 2418 } 2419 2420 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2421 struct page *page, int migratetype, 2422 unsigned int order) 2423 { 2424 int high, batch; 2425 int pindex; 2426 bool free_high = false; 2427 2428 /* 2429 * On freeing, reduce the number of pages that are batch allocated. 2430 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2431 * allocations. 2432 */ 2433 pcp->alloc_factor >>= 1; 2434 __count_vm_events(PGFREE, 1 << order); 2435 pindex = order_to_pindex(migratetype, order); 2436 list_add(&page->pcp_list, &pcp->lists[pindex]); 2437 pcp->count += 1 << order; 2438 2439 batch = READ_ONCE(pcp->batch); 2440 /* 2441 * As high-order pages other than THP's stored on PCP can contribute 2442 * to fragmentation, limit the number stored when PCP is heavily 2443 * freeing without allocation. The remainder after bulk freeing 2444 * stops will be drained from vmstat refresh context. 2445 */ 2446 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2447 free_high = (pcp->free_count >= batch && 2448 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2449 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2450 pcp->count >= READ_ONCE(batch))); 2451 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2452 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2453 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2454 } 2455 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2456 pcp->free_count += (1 << order); 2457 high = nr_pcp_high(pcp, zone, batch, free_high); 2458 if (pcp->count >= high) { 2459 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2460 pcp, pindex); 2461 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2462 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2463 ZONE_MOVABLE, 0)) 2464 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2465 } 2466 } 2467 2468 /* 2469 * Free a pcp page 2470 */ 2471 void free_unref_page(struct page *page, unsigned int order) 2472 { 2473 unsigned long __maybe_unused UP_flags; 2474 struct per_cpu_pages *pcp; 2475 struct zone *zone; 2476 unsigned long pfn = page_to_pfn(page); 2477 int migratetype, pcpmigratetype; 2478 2479 if (!free_unref_page_prepare(page, pfn, order)) 2480 return; 2481 2482 /* 2483 * We only track unmovable, reclaimable and movable on pcp lists. 2484 * Place ISOLATE pages on the isolated list because they are being 2485 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2486 * get those areas back if necessary. Otherwise, we may have to free 2487 * excessively into the page allocator 2488 */ 2489 migratetype = pcpmigratetype = get_pcppage_migratetype(page); 2490 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2491 if (unlikely(is_migrate_isolate(migratetype))) { 2492 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2493 return; 2494 } 2495 pcpmigratetype = MIGRATE_MOVABLE; 2496 } 2497 2498 zone = page_zone(page); 2499 pcp_trylock_prepare(UP_flags); 2500 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2501 if (pcp) { 2502 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order); 2503 pcp_spin_unlock(pcp); 2504 } else { 2505 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2506 } 2507 pcp_trylock_finish(UP_flags); 2508 } 2509 2510 /* 2511 * Free a list of 0-order pages 2512 */ 2513 void free_unref_page_list(struct list_head *list) 2514 { 2515 unsigned long __maybe_unused UP_flags; 2516 struct page *page, *next; 2517 struct per_cpu_pages *pcp = NULL; 2518 struct zone *locked_zone = NULL; 2519 int batch_count = 0; 2520 int migratetype; 2521 2522 /* Prepare pages for freeing */ 2523 list_for_each_entry_safe(page, next, list, lru) { 2524 unsigned long pfn = page_to_pfn(page); 2525 if (!free_unref_page_prepare(page, pfn, 0)) { 2526 list_del(&page->lru); 2527 continue; 2528 } 2529 2530 /* 2531 * Free isolated pages directly to the allocator, see 2532 * comment in free_unref_page. 2533 */ 2534 migratetype = get_pcppage_migratetype(page); 2535 if (unlikely(is_migrate_isolate(migratetype))) { 2536 list_del(&page->lru); 2537 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2538 continue; 2539 } 2540 } 2541 2542 list_for_each_entry_safe(page, next, list, lru) { 2543 struct zone *zone = page_zone(page); 2544 2545 list_del(&page->lru); 2546 migratetype = get_pcppage_migratetype(page); 2547 2548 /* 2549 * Either different zone requiring a different pcp lock or 2550 * excessive lock hold times when freeing a large list of 2551 * pages. 2552 */ 2553 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2554 if (pcp) { 2555 pcp_spin_unlock(pcp); 2556 pcp_trylock_finish(UP_flags); 2557 } 2558 2559 batch_count = 0; 2560 2561 /* 2562 * trylock is necessary as pages may be getting freed 2563 * from IRQ or SoftIRQ context after an IO completion. 2564 */ 2565 pcp_trylock_prepare(UP_flags); 2566 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2567 if (unlikely(!pcp)) { 2568 pcp_trylock_finish(UP_flags); 2569 free_one_page(zone, page, page_to_pfn(page), 2570 0, migratetype, FPI_NONE); 2571 locked_zone = NULL; 2572 continue; 2573 } 2574 locked_zone = zone; 2575 } 2576 2577 /* 2578 * Non-isolated types over MIGRATE_PCPTYPES get added 2579 * to the MIGRATE_MOVABLE pcp list. 2580 */ 2581 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2582 migratetype = MIGRATE_MOVABLE; 2583 2584 trace_mm_page_free_batched(page); 2585 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2586 batch_count++; 2587 } 2588 2589 if (pcp) { 2590 pcp_spin_unlock(pcp); 2591 pcp_trylock_finish(UP_flags); 2592 } 2593 } 2594 2595 /* 2596 * split_page takes a non-compound higher-order page, and splits it into 2597 * n (1<<order) sub-pages: page[0..n] 2598 * Each sub-page must be freed individually. 2599 * 2600 * Note: this is probably too low level an operation for use in drivers. 2601 * Please consult with lkml before using this in your driver. 2602 */ 2603 void split_page(struct page *page, unsigned int order) 2604 { 2605 int i; 2606 2607 VM_BUG_ON_PAGE(PageCompound(page), page); 2608 VM_BUG_ON_PAGE(!page_count(page), page); 2609 2610 for (i = 1; i < (1 << order); i++) 2611 set_page_refcounted(page + i); 2612 split_page_owner(page, 1 << order); 2613 split_page_memcg(page, 1 << order); 2614 } 2615 EXPORT_SYMBOL_GPL(split_page); 2616 2617 int __isolate_free_page(struct page *page, unsigned int order) 2618 { 2619 struct zone *zone = page_zone(page); 2620 int mt = get_pageblock_migratetype(page); 2621 2622 if (!is_migrate_isolate(mt)) { 2623 unsigned long watermark; 2624 /* 2625 * Obey watermarks as if the page was being allocated. We can 2626 * emulate a high-order watermark check with a raised order-0 2627 * watermark, because we already know our high-order page 2628 * exists. 2629 */ 2630 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2631 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2632 return 0; 2633 2634 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2635 } 2636 2637 del_page_from_free_list(page, zone, order); 2638 2639 /* 2640 * Set the pageblock if the isolated page is at least half of a 2641 * pageblock 2642 */ 2643 if (order >= pageblock_order - 1) { 2644 struct page *endpage = page + (1 << order) - 1; 2645 for (; page < endpage; page += pageblock_nr_pages) { 2646 int mt = get_pageblock_migratetype(page); 2647 /* 2648 * Only change normal pageblocks (i.e., they can merge 2649 * with others) 2650 */ 2651 if (migratetype_is_mergeable(mt)) 2652 set_pageblock_migratetype(page, 2653 MIGRATE_MOVABLE); 2654 } 2655 } 2656 2657 return 1UL << order; 2658 } 2659 2660 /** 2661 * __putback_isolated_page - Return a now-isolated page back where we got it 2662 * @page: Page that was isolated 2663 * @order: Order of the isolated page 2664 * @mt: The page's pageblock's migratetype 2665 * 2666 * This function is meant to return a page pulled from the free lists via 2667 * __isolate_free_page back to the free lists they were pulled from. 2668 */ 2669 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2670 { 2671 struct zone *zone = page_zone(page); 2672 2673 /* zone lock should be held when this function is called */ 2674 lockdep_assert_held(&zone->lock); 2675 2676 /* Return isolated page to tail of freelist. */ 2677 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2678 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2679 } 2680 2681 /* 2682 * Update NUMA hit/miss statistics 2683 */ 2684 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2685 long nr_account) 2686 { 2687 #ifdef CONFIG_NUMA 2688 enum numa_stat_item local_stat = NUMA_LOCAL; 2689 2690 /* skip numa counters update if numa stats is disabled */ 2691 if (!static_branch_likely(&vm_numa_stat_key)) 2692 return; 2693 2694 if (zone_to_nid(z) != numa_node_id()) 2695 local_stat = NUMA_OTHER; 2696 2697 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2698 __count_numa_events(z, NUMA_HIT, nr_account); 2699 else { 2700 __count_numa_events(z, NUMA_MISS, nr_account); 2701 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2702 } 2703 __count_numa_events(z, local_stat, nr_account); 2704 #endif 2705 } 2706 2707 static __always_inline 2708 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2709 unsigned int order, unsigned int alloc_flags, 2710 int migratetype) 2711 { 2712 struct page *page; 2713 unsigned long flags; 2714 2715 do { 2716 page = NULL; 2717 spin_lock_irqsave(&zone->lock, flags); 2718 if (alloc_flags & ALLOC_HIGHATOMIC) 2719 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2720 if (!page) { 2721 page = __rmqueue(zone, order, migratetype, alloc_flags); 2722 2723 /* 2724 * If the allocation fails, allow OOM handling access 2725 * to HIGHATOMIC reserves as failing now is worse than 2726 * failing a high-order atomic allocation in the 2727 * future. 2728 */ 2729 if (!page && (alloc_flags & ALLOC_OOM)) 2730 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2731 2732 if (!page) { 2733 spin_unlock_irqrestore(&zone->lock, flags); 2734 return NULL; 2735 } 2736 } 2737 __mod_zone_freepage_state(zone, -(1 << order), 2738 get_pcppage_migratetype(page)); 2739 spin_unlock_irqrestore(&zone->lock, flags); 2740 } while (check_new_pages(page, order)); 2741 2742 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2743 zone_statistics(preferred_zone, zone, 1); 2744 2745 return page; 2746 } 2747 2748 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2749 { 2750 int high, base_batch, batch, max_nr_alloc; 2751 int high_max, high_min; 2752 2753 base_batch = READ_ONCE(pcp->batch); 2754 high_min = READ_ONCE(pcp->high_min); 2755 high_max = READ_ONCE(pcp->high_max); 2756 high = pcp->high = clamp(pcp->high, high_min, high_max); 2757 2758 /* Check for PCP disabled or boot pageset */ 2759 if (unlikely(high < base_batch)) 2760 return 1; 2761 2762 if (order) 2763 batch = base_batch; 2764 else 2765 batch = (base_batch << pcp->alloc_factor); 2766 2767 /* 2768 * If we had larger pcp->high, we could avoid to allocate from 2769 * zone. 2770 */ 2771 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2772 high = pcp->high = min(high + batch, high_max); 2773 2774 if (!order) { 2775 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2776 /* 2777 * Double the number of pages allocated each time there is 2778 * subsequent allocation of order-0 pages without any freeing. 2779 */ 2780 if (batch <= max_nr_alloc && 2781 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2782 pcp->alloc_factor++; 2783 batch = min(batch, max_nr_alloc); 2784 } 2785 2786 /* 2787 * Scale batch relative to order if batch implies free pages 2788 * can be stored on the PCP. Batch can be 1 for small zones or 2789 * for boot pagesets which should never store free pages as 2790 * the pages may belong to arbitrary zones. 2791 */ 2792 if (batch > 1) 2793 batch = max(batch >> order, 2); 2794 2795 return batch; 2796 } 2797 2798 /* Remove page from the per-cpu list, caller must protect the list */ 2799 static inline 2800 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2801 int migratetype, 2802 unsigned int alloc_flags, 2803 struct per_cpu_pages *pcp, 2804 struct list_head *list) 2805 { 2806 struct page *page; 2807 2808 do { 2809 if (list_empty(list)) { 2810 int batch = nr_pcp_alloc(pcp, zone, order); 2811 int alloced; 2812 2813 alloced = rmqueue_bulk(zone, order, 2814 batch, list, 2815 migratetype, alloc_flags); 2816 2817 pcp->count += alloced << order; 2818 if (unlikely(list_empty(list))) 2819 return NULL; 2820 } 2821 2822 page = list_first_entry(list, struct page, pcp_list); 2823 list_del(&page->pcp_list); 2824 pcp->count -= 1 << order; 2825 } while (check_new_pages(page, order)); 2826 2827 return page; 2828 } 2829 2830 /* Lock and remove page from the per-cpu list */ 2831 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2832 struct zone *zone, unsigned int order, 2833 int migratetype, unsigned int alloc_flags) 2834 { 2835 struct per_cpu_pages *pcp; 2836 struct list_head *list; 2837 struct page *page; 2838 unsigned long __maybe_unused UP_flags; 2839 2840 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2841 pcp_trylock_prepare(UP_flags); 2842 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2843 if (!pcp) { 2844 pcp_trylock_finish(UP_flags); 2845 return NULL; 2846 } 2847 2848 /* 2849 * On allocation, reduce the number of pages that are batch freed. 2850 * See nr_pcp_free() where free_factor is increased for subsequent 2851 * frees. 2852 */ 2853 pcp->free_count >>= 1; 2854 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2855 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2856 pcp_spin_unlock(pcp); 2857 pcp_trylock_finish(UP_flags); 2858 if (page) { 2859 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2860 zone_statistics(preferred_zone, zone, 1); 2861 } 2862 return page; 2863 } 2864 2865 /* 2866 * Allocate a page from the given zone. 2867 * Use pcplists for THP or "cheap" high-order allocations. 2868 */ 2869 2870 /* 2871 * Do not instrument rmqueue() with KMSAN. This function may call 2872 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2873 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2874 * may call rmqueue() again, which will result in a deadlock. 2875 */ 2876 __no_sanitize_memory 2877 static inline 2878 struct page *rmqueue(struct zone *preferred_zone, 2879 struct zone *zone, unsigned int order, 2880 gfp_t gfp_flags, unsigned int alloc_flags, 2881 int migratetype) 2882 { 2883 struct page *page; 2884 2885 /* 2886 * We most definitely don't want callers attempting to 2887 * allocate greater than order-1 page units with __GFP_NOFAIL. 2888 */ 2889 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2890 2891 if (likely(pcp_allowed_order(order))) { 2892 page = rmqueue_pcplist(preferred_zone, zone, order, 2893 migratetype, alloc_flags); 2894 if (likely(page)) 2895 goto out; 2896 } 2897 2898 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2899 migratetype); 2900 2901 out: 2902 /* Separate test+clear to avoid unnecessary atomics */ 2903 if ((alloc_flags & ALLOC_KSWAPD) && 2904 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 2905 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2906 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2907 } 2908 2909 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2910 return page; 2911 } 2912 2913 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2914 { 2915 return __should_fail_alloc_page(gfp_mask, order); 2916 } 2917 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 2918 2919 static inline long __zone_watermark_unusable_free(struct zone *z, 2920 unsigned int order, unsigned int alloc_flags) 2921 { 2922 long unusable_free = (1 << order) - 1; 2923 2924 /* 2925 * If the caller does not have rights to reserves below the min 2926 * watermark then subtract the high-atomic reserves. This will 2927 * over-estimate the size of the atomic reserve but it avoids a search. 2928 */ 2929 if (likely(!(alloc_flags & ALLOC_RESERVES))) 2930 unusable_free += z->nr_reserved_highatomic; 2931 2932 #ifdef CONFIG_CMA 2933 /* If allocation can't use CMA areas don't use free CMA pages */ 2934 if (!(alloc_flags & ALLOC_CMA)) 2935 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 2936 #endif 2937 #ifdef CONFIG_UNACCEPTED_MEMORY 2938 unusable_free += zone_page_state(z, NR_UNACCEPTED); 2939 #endif 2940 2941 return unusable_free; 2942 } 2943 2944 /* 2945 * Return true if free base pages are above 'mark'. For high-order checks it 2946 * will return true of the order-0 watermark is reached and there is at least 2947 * one free page of a suitable size. Checking now avoids taking the zone lock 2948 * to check in the allocation paths if no pages are free. 2949 */ 2950 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2951 int highest_zoneidx, unsigned int alloc_flags, 2952 long free_pages) 2953 { 2954 long min = mark; 2955 int o; 2956 2957 /* free_pages may go negative - that's OK */ 2958 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 2959 2960 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 2961 /* 2962 * __GFP_HIGH allows access to 50% of the min reserve as well 2963 * as OOM. 2964 */ 2965 if (alloc_flags & ALLOC_MIN_RESERVE) { 2966 min -= min / 2; 2967 2968 /* 2969 * Non-blocking allocations (e.g. GFP_ATOMIC) can 2970 * access more reserves than just __GFP_HIGH. Other 2971 * non-blocking allocations requests such as GFP_NOWAIT 2972 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 2973 * access to the min reserve. 2974 */ 2975 if (alloc_flags & ALLOC_NON_BLOCK) 2976 min -= min / 4; 2977 } 2978 2979 /* 2980 * OOM victims can try even harder than the normal reserve 2981 * users on the grounds that it's definitely going to be in 2982 * the exit path shortly and free memory. Any allocation it 2983 * makes during the free path will be small and short-lived. 2984 */ 2985 if (alloc_flags & ALLOC_OOM) 2986 min -= min / 2; 2987 } 2988 2989 /* 2990 * Check watermarks for an order-0 allocation request. If these 2991 * are not met, then a high-order request also cannot go ahead 2992 * even if a suitable page happened to be free. 2993 */ 2994 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 2995 return false; 2996 2997 /* If this is an order-0 request then the watermark is fine */ 2998 if (!order) 2999 return true; 3000 3001 /* For a high-order request, check at least one suitable page is free */ 3002 for (o = order; o < NR_PAGE_ORDERS; o++) { 3003 struct free_area *area = &z->free_area[o]; 3004 int mt; 3005 3006 if (!area->nr_free) 3007 continue; 3008 3009 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3010 if (!free_area_empty(area, mt)) 3011 return true; 3012 } 3013 3014 #ifdef CONFIG_CMA 3015 if ((alloc_flags & ALLOC_CMA) && 3016 !free_area_empty(area, MIGRATE_CMA)) { 3017 return true; 3018 } 3019 #endif 3020 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3021 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3022 return true; 3023 } 3024 } 3025 return false; 3026 } 3027 3028 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3029 int highest_zoneidx, unsigned int alloc_flags) 3030 { 3031 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3032 zone_page_state(z, NR_FREE_PAGES)); 3033 } 3034 3035 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3036 unsigned long mark, int highest_zoneidx, 3037 unsigned int alloc_flags, gfp_t gfp_mask) 3038 { 3039 long free_pages; 3040 3041 free_pages = zone_page_state(z, NR_FREE_PAGES); 3042 3043 /* 3044 * Fast check for order-0 only. If this fails then the reserves 3045 * need to be calculated. 3046 */ 3047 if (!order) { 3048 long usable_free; 3049 long reserved; 3050 3051 usable_free = free_pages; 3052 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3053 3054 /* reserved may over estimate high-atomic reserves. */ 3055 usable_free -= min(usable_free, reserved); 3056 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3057 return true; 3058 } 3059 3060 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3061 free_pages)) 3062 return true; 3063 3064 /* 3065 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3066 * when checking the min watermark. The min watermark is the 3067 * point where boosting is ignored so that kswapd is woken up 3068 * when below the low watermark. 3069 */ 3070 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3071 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3072 mark = z->_watermark[WMARK_MIN]; 3073 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3074 alloc_flags, free_pages); 3075 } 3076 3077 return false; 3078 } 3079 3080 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3081 unsigned long mark, int highest_zoneidx) 3082 { 3083 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3084 3085 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3086 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3087 3088 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3089 free_pages); 3090 } 3091 3092 #ifdef CONFIG_NUMA 3093 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3094 3095 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3096 { 3097 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3098 node_reclaim_distance; 3099 } 3100 #else /* CONFIG_NUMA */ 3101 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3102 { 3103 return true; 3104 } 3105 #endif /* CONFIG_NUMA */ 3106 3107 /* 3108 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3109 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3110 * premature use of a lower zone may cause lowmem pressure problems that 3111 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3112 * probably too small. It only makes sense to spread allocations to avoid 3113 * fragmentation between the Normal and DMA32 zones. 3114 */ 3115 static inline unsigned int 3116 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3117 { 3118 unsigned int alloc_flags; 3119 3120 /* 3121 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3122 * to save a branch. 3123 */ 3124 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3125 3126 #ifdef CONFIG_ZONE_DMA32 3127 if (!zone) 3128 return alloc_flags; 3129 3130 if (zone_idx(zone) != ZONE_NORMAL) 3131 return alloc_flags; 3132 3133 /* 3134 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3135 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3136 * on UMA that if Normal is populated then so is DMA32. 3137 */ 3138 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3139 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3140 return alloc_flags; 3141 3142 alloc_flags |= ALLOC_NOFRAGMENT; 3143 #endif /* CONFIG_ZONE_DMA32 */ 3144 return alloc_flags; 3145 } 3146 3147 /* Must be called after current_gfp_context() which can change gfp_mask */ 3148 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3149 unsigned int alloc_flags) 3150 { 3151 #ifdef CONFIG_CMA 3152 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3153 alloc_flags |= ALLOC_CMA; 3154 #endif 3155 return alloc_flags; 3156 } 3157 3158 /* 3159 * get_page_from_freelist goes through the zonelist trying to allocate 3160 * a page. 3161 */ 3162 static struct page * 3163 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3164 const struct alloc_context *ac) 3165 { 3166 struct zoneref *z; 3167 struct zone *zone; 3168 struct pglist_data *last_pgdat = NULL; 3169 bool last_pgdat_dirty_ok = false; 3170 bool no_fallback; 3171 3172 retry: 3173 /* 3174 * Scan zonelist, looking for a zone with enough free. 3175 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3176 */ 3177 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3178 z = ac->preferred_zoneref; 3179 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3180 ac->nodemask) { 3181 struct page *page; 3182 unsigned long mark; 3183 3184 if (cpusets_enabled() && 3185 (alloc_flags & ALLOC_CPUSET) && 3186 !__cpuset_zone_allowed(zone, gfp_mask)) 3187 continue; 3188 /* 3189 * When allocating a page cache page for writing, we 3190 * want to get it from a node that is within its dirty 3191 * limit, such that no single node holds more than its 3192 * proportional share of globally allowed dirty pages. 3193 * The dirty limits take into account the node's 3194 * lowmem reserves and high watermark so that kswapd 3195 * should be able to balance it without having to 3196 * write pages from its LRU list. 3197 * 3198 * XXX: For now, allow allocations to potentially 3199 * exceed the per-node dirty limit in the slowpath 3200 * (spread_dirty_pages unset) before going into reclaim, 3201 * which is important when on a NUMA setup the allowed 3202 * nodes are together not big enough to reach the 3203 * global limit. The proper fix for these situations 3204 * will require awareness of nodes in the 3205 * dirty-throttling and the flusher threads. 3206 */ 3207 if (ac->spread_dirty_pages) { 3208 if (last_pgdat != zone->zone_pgdat) { 3209 last_pgdat = zone->zone_pgdat; 3210 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3211 } 3212 3213 if (!last_pgdat_dirty_ok) 3214 continue; 3215 } 3216 3217 if (no_fallback && nr_online_nodes > 1 && 3218 zone != ac->preferred_zoneref->zone) { 3219 int local_nid; 3220 3221 /* 3222 * If moving to a remote node, retry but allow 3223 * fragmenting fallbacks. Locality is more important 3224 * than fragmentation avoidance. 3225 */ 3226 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3227 if (zone_to_nid(zone) != local_nid) { 3228 alloc_flags &= ~ALLOC_NOFRAGMENT; 3229 goto retry; 3230 } 3231 } 3232 3233 /* 3234 * Detect whether the number of free pages is below high 3235 * watermark. If so, we will decrease pcp->high and free 3236 * PCP pages in free path to reduce the possibility of 3237 * premature page reclaiming. Detection is done here to 3238 * avoid to do that in hotter free path. 3239 */ 3240 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3241 goto check_alloc_wmark; 3242 3243 mark = high_wmark_pages(zone); 3244 if (zone_watermark_fast(zone, order, mark, 3245 ac->highest_zoneidx, alloc_flags, 3246 gfp_mask)) 3247 goto try_this_zone; 3248 else 3249 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3250 3251 check_alloc_wmark: 3252 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3253 if (!zone_watermark_fast(zone, order, mark, 3254 ac->highest_zoneidx, alloc_flags, 3255 gfp_mask)) { 3256 int ret; 3257 3258 if (has_unaccepted_memory()) { 3259 if (try_to_accept_memory(zone, order)) 3260 goto try_this_zone; 3261 } 3262 3263 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3264 /* 3265 * Watermark failed for this zone, but see if we can 3266 * grow this zone if it contains deferred pages. 3267 */ 3268 if (deferred_pages_enabled()) { 3269 if (_deferred_grow_zone(zone, order)) 3270 goto try_this_zone; 3271 } 3272 #endif 3273 /* Checked here to keep the fast path fast */ 3274 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3275 if (alloc_flags & ALLOC_NO_WATERMARKS) 3276 goto try_this_zone; 3277 3278 if (!node_reclaim_enabled() || 3279 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3280 continue; 3281 3282 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3283 switch (ret) { 3284 case NODE_RECLAIM_NOSCAN: 3285 /* did not scan */ 3286 continue; 3287 case NODE_RECLAIM_FULL: 3288 /* scanned but unreclaimable */ 3289 continue; 3290 default: 3291 /* did we reclaim enough */ 3292 if (zone_watermark_ok(zone, order, mark, 3293 ac->highest_zoneidx, alloc_flags)) 3294 goto try_this_zone; 3295 3296 continue; 3297 } 3298 } 3299 3300 try_this_zone: 3301 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3302 gfp_mask, alloc_flags, ac->migratetype); 3303 if (page) { 3304 prep_new_page(page, order, gfp_mask, alloc_flags); 3305 3306 /* 3307 * If this is a high-order atomic allocation then check 3308 * if the pageblock should be reserved for the future 3309 */ 3310 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3311 reserve_highatomic_pageblock(page, zone); 3312 3313 return page; 3314 } else { 3315 if (has_unaccepted_memory()) { 3316 if (try_to_accept_memory(zone, order)) 3317 goto try_this_zone; 3318 } 3319 3320 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3321 /* Try again if zone has deferred pages */ 3322 if (deferred_pages_enabled()) { 3323 if (_deferred_grow_zone(zone, order)) 3324 goto try_this_zone; 3325 } 3326 #endif 3327 } 3328 } 3329 3330 /* 3331 * It's possible on a UMA machine to get through all zones that are 3332 * fragmented. If avoiding fragmentation, reset and try again. 3333 */ 3334 if (no_fallback) { 3335 alloc_flags &= ~ALLOC_NOFRAGMENT; 3336 goto retry; 3337 } 3338 3339 return NULL; 3340 } 3341 3342 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3343 { 3344 unsigned int filter = SHOW_MEM_FILTER_NODES; 3345 3346 /* 3347 * This documents exceptions given to allocations in certain 3348 * contexts that are allowed to allocate outside current's set 3349 * of allowed nodes. 3350 */ 3351 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3352 if (tsk_is_oom_victim(current) || 3353 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3354 filter &= ~SHOW_MEM_FILTER_NODES; 3355 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3356 filter &= ~SHOW_MEM_FILTER_NODES; 3357 3358 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3359 } 3360 3361 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3362 { 3363 struct va_format vaf; 3364 va_list args; 3365 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3366 3367 if ((gfp_mask & __GFP_NOWARN) || 3368 !__ratelimit(&nopage_rs) || 3369 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3370 return; 3371 3372 va_start(args, fmt); 3373 vaf.fmt = fmt; 3374 vaf.va = &args; 3375 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3376 current->comm, &vaf, gfp_mask, &gfp_mask, 3377 nodemask_pr_args(nodemask)); 3378 va_end(args); 3379 3380 cpuset_print_current_mems_allowed(); 3381 pr_cont("\n"); 3382 dump_stack(); 3383 warn_alloc_show_mem(gfp_mask, nodemask); 3384 } 3385 3386 static inline struct page * 3387 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3388 unsigned int alloc_flags, 3389 const struct alloc_context *ac) 3390 { 3391 struct page *page; 3392 3393 page = get_page_from_freelist(gfp_mask, order, 3394 alloc_flags|ALLOC_CPUSET, ac); 3395 /* 3396 * fallback to ignore cpuset restriction if our nodes 3397 * are depleted 3398 */ 3399 if (!page) 3400 page = get_page_from_freelist(gfp_mask, order, 3401 alloc_flags, ac); 3402 3403 return page; 3404 } 3405 3406 static inline struct page * 3407 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3408 const struct alloc_context *ac, unsigned long *did_some_progress) 3409 { 3410 struct oom_control oc = { 3411 .zonelist = ac->zonelist, 3412 .nodemask = ac->nodemask, 3413 .memcg = NULL, 3414 .gfp_mask = gfp_mask, 3415 .order = order, 3416 }; 3417 struct page *page; 3418 3419 *did_some_progress = 0; 3420 3421 /* 3422 * Acquire the oom lock. If that fails, somebody else is 3423 * making progress for us. 3424 */ 3425 if (!mutex_trylock(&oom_lock)) { 3426 *did_some_progress = 1; 3427 schedule_timeout_uninterruptible(1); 3428 return NULL; 3429 } 3430 3431 /* 3432 * Go through the zonelist yet one more time, keep very high watermark 3433 * here, this is only to catch a parallel oom killing, we must fail if 3434 * we're still under heavy pressure. But make sure that this reclaim 3435 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3436 * allocation which will never fail due to oom_lock already held. 3437 */ 3438 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3439 ~__GFP_DIRECT_RECLAIM, order, 3440 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3441 if (page) 3442 goto out; 3443 3444 /* Coredumps can quickly deplete all memory reserves */ 3445 if (current->flags & PF_DUMPCORE) 3446 goto out; 3447 /* The OOM killer will not help higher order allocs */ 3448 if (order > PAGE_ALLOC_COSTLY_ORDER) 3449 goto out; 3450 /* 3451 * We have already exhausted all our reclaim opportunities without any 3452 * success so it is time to admit defeat. We will skip the OOM killer 3453 * because it is very likely that the caller has a more reasonable 3454 * fallback than shooting a random task. 3455 * 3456 * The OOM killer may not free memory on a specific node. 3457 */ 3458 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3459 goto out; 3460 /* The OOM killer does not needlessly kill tasks for lowmem */ 3461 if (ac->highest_zoneidx < ZONE_NORMAL) 3462 goto out; 3463 if (pm_suspended_storage()) 3464 goto out; 3465 /* 3466 * XXX: GFP_NOFS allocations should rather fail than rely on 3467 * other request to make a forward progress. 3468 * We are in an unfortunate situation where out_of_memory cannot 3469 * do much for this context but let's try it to at least get 3470 * access to memory reserved if the current task is killed (see 3471 * out_of_memory). Once filesystems are ready to handle allocation 3472 * failures more gracefully we should just bail out here. 3473 */ 3474 3475 /* Exhausted what can be done so it's blame time */ 3476 if (out_of_memory(&oc) || 3477 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3478 *did_some_progress = 1; 3479 3480 /* 3481 * Help non-failing allocations by giving them access to memory 3482 * reserves 3483 */ 3484 if (gfp_mask & __GFP_NOFAIL) 3485 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3486 ALLOC_NO_WATERMARKS, ac); 3487 } 3488 out: 3489 mutex_unlock(&oom_lock); 3490 return page; 3491 } 3492 3493 /* 3494 * Maximum number of compaction retries with a progress before OOM 3495 * killer is consider as the only way to move forward. 3496 */ 3497 #define MAX_COMPACT_RETRIES 16 3498 3499 #ifdef CONFIG_COMPACTION 3500 /* Try memory compaction for high-order allocations before reclaim */ 3501 static struct page * 3502 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3503 unsigned int alloc_flags, const struct alloc_context *ac, 3504 enum compact_priority prio, enum compact_result *compact_result) 3505 { 3506 struct page *page = NULL; 3507 unsigned long pflags; 3508 unsigned int noreclaim_flag; 3509 3510 if (!order) 3511 return NULL; 3512 3513 psi_memstall_enter(&pflags); 3514 delayacct_compact_start(); 3515 noreclaim_flag = memalloc_noreclaim_save(); 3516 3517 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3518 prio, &page); 3519 3520 memalloc_noreclaim_restore(noreclaim_flag); 3521 psi_memstall_leave(&pflags); 3522 delayacct_compact_end(); 3523 3524 if (*compact_result == COMPACT_SKIPPED) 3525 return NULL; 3526 /* 3527 * At least in one zone compaction wasn't deferred or skipped, so let's 3528 * count a compaction stall 3529 */ 3530 count_vm_event(COMPACTSTALL); 3531 3532 /* Prep a captured page if available */ 3533 if (page) 3534 prep_new_page(page, order, gfp_mask, alloc_flags); 3535 3536 /* Try get a page from the freelist if available */ 3537 if (!page) 3538 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3539 3540 if (page) { 3541 struct zone *zone = page_zone(page); 3542 3543 zone->compact_blockskip_flush = false; 3544 compaction_defer_reset(zone, order, true); 3545 count_vm_event(COMPACTSUCCESS); 3546 return page; 3547 } 3548 3549 /* 3550 * It's bad if compaction run occurs and fails. The most likely reason 3551 * is that pages exist, but not enough to satisfy watermarks. 3552 */ 3553 count_vm_event(COMPACTFAIL); 3554 3555 cond_resched(); 3556 3557 return NULL; 3558 } 3559 3560 static inline bool 3561 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3562 enum compact_result compact_result, 3563 enum compact_priority *compact_priority, 3564 int *compaction_retries) 3565 { 3566 int max_retries = MAX_COMPACT_RETRIES; 3567 int min_priority; 3568 bool ret = false; 3569 int retries = *compaction_retries; 3570 enum compact_priority priority = *compact_priority; 3571 3572 if (!order) 3573 return false; 3574 3575 if (fatal_signal_pending(current)) 3576 return false; 3577 3578 /* 3579 * Compaction was skipped due to a lack of free order-0 3580 * migration targets. Continue if reclaim can help. 3581 */ 3582 if (compact_result == COMPACT_SKIPPED) { 3583 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3584 goto out; 3585 } 3586 3587 /* 3588 * Compaction managed to coalesce some page blocks, but the 3589 * allocation failed presumably due to a race. Retry some. 3590 */ 3591 if (compact_result == COMPACT_SUCCESS) { 3592 /* 3593 * !costly requests are much more important than 3594 * __GFP_RETRY_MAYFAIL costly ones because they are de 3595 * facto nofail and invoke OOM killer to move on while 3596 * costly can fail and users are ready to cope with 3597 * that. 1/4 retries is rather arbitrary but we would 3598 * need much more detailed feedback from compaction to 3599 * make a better decision. 3600 */ 3601 if (order > PAGE_ALLOC_COSTLY_ORDER) 3602 max_retries /= 4; 3603 3604 if (++(*compaction_retries) <= max_retries) { 3605 ret = true; 3606 goto out; 3607 } 3608 } 3609 3610 /* 3611 * Compaction failed. Retry with increasing priority. 3612 */ 3613 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3614 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3615 3616 if (*compact_priority > min_priority) { 3617 (*compact_priority)--; 3618 *compaction_retries = 0; 3619 ret = true; 3620 } 3621 out: 3622 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3623 return ret; 3624 } 3625 #else 3626 static inline struct page * 3627 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3628 unsigned int alloc_flags, const struct alloc_context *ac, 3629 enum compact_priority prio, enum compact_result *compact_result) 3630 { 3631 *compact_result = COMPACT_SKIPPED; 3632 return NULL; 3633 } 3634 3635 static inline bool 3636 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3637 enum compact_result compact_result, 3638 enum compact_priority *compact_priority, 3639 int *compaction_retries) 3640 { 3641 struct zone *zone; 3642 struct zoneref *z; 3643 3644 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3645 return false; 3646 3647 /* 3648 * There are setups with compaction disabled which would prefer to loop 3649 * inside the allocator rather than hit the oom killer prematurely. 3650 * Let's give them a good hope and keep retrying while the order-0 3651 * watermarks are OK. 3652 */ 3653 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3654 ac->highest_zoneidx, ac->nodemask) { 3655 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3656 ac->highest_zoneidx, alloc_flags)) 3657 return true; 3658 } 3659 return false; 3660 } 3661 #endif /* CONFIG_COMPACTION */ 3662 3663 #ifdef CONFIG_LOCKDEP 3664 static struct lockdep_map __fs_reclaim_map = 3665 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3666 3667 static bool __need_reclaim(gfp_t gfp_mask) 3668 { 3669 /* no reclaim without waiting on it */ 3670 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3671 return false; 3672 3673 /* this guy won't enter reclaim */ 3674 if (current->flags & PF_MEMALLOC) 3675 return false; 3676 3677 if (gfp_mask & __GFP_NOLOCKDEP) 3678 return false; 3679 3680 return true; 3681 } 3682 3683 void __fs_reclaim_acquire(unsigned long ip) 3684 { 3685 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3686 } 3687 3688 void __fs_reclaim_release(unsigned long ip) 3689 { 3690 lock_release(&__fs_reclaim_map, ip); 3691 } 3692 3693 void fs_reclaim_acquire(gfp_t gfp_mask) 3694 { 3695 gfp_mask = current_gfp_context(gfp_mask); 3696 3697 if (__need_reclaim(gfp_mask)) { 3698 if (gfp_mask & __GFP_FS) 3699 __fs_reclaim_acquire(_RET_IP_); 3700 3701 #ifdef CONFIG_MMU_NOTIFIER 3702 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3703 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3704 #endif 3705 3706 } 3707 } 3708 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3709 3710 void fs_reclaim_release(gfp_t gfp_mask) 3711 { 3712 gfp_mask = current_gfp_context(gfp_mask); 3713 3714 if (__need_reclaim(gfp_mask)) { 3715 if (gfp_mask & __GFP_FS) 3716 __fs_reclaim_release(_RET_IP_); 3717 } 3718 } 3719 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3720 #endif 3721 3722 /* 3723 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3724 * have been rebuilt so allocation retries. Reader side does not lock and 3725 * retries the allocation if zonelist changes. Writer side is protected by the 3726 * embedded spin_lock. 3727 */ 3728 static DEFINE_SEQLOCK(zonelist_update_seq); 3729 3730 static unsigned int zonelist_iter_begin(void) 3731 { 3732 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3733 return read_seqbegin(&zonelist_update_seq); 3734 3735 return 0; 3736 } 3737 3738 static unsigned int check_retry_zonelist(unsigned int seq) 3739 { 3740 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3741 return read_seqretry(&zonelist_update_seq, seq); 3742 3743 return seq; 3744 } 3745 3746 /* Perform direct synchronous page reclaim */ 3747 static unsigned long 3748 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3749 const struct alloc_context *ac) 3750 { 3751 unsigned int noreclaim_flag; 3752 unsigned long progress; 3753 3754 cond_resched(); 3755 3756 /* We now go into synchronous reclaim */ 3757 cpuset_memory_pressure_bump(); 3758 fs_reclaim_acquire(gfp_mask); 3759 noreclaim_flag = memalloc_noreclaim_save(); 3760 3761 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3762 ac->nodemask); 3763 3764 memalloc_noreclaim_restore(noreclaim_flag); 3765 fs_reclaim_release(gfp_mask); 3766 3767 cond_resched(); 3768 3769 return progress; 3770 } 3771 3772 /* The really slow allocator path where we enter direct reclaim */ 3773 static inline struct page * 3774 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3775 unsigned int alloc_flags, const struct alloc_context *ac, 3776 unsigned long *did_some_progress) 3777 { 3778 struct page *page = NULL; 3779 unsigned long pflags; 3780 bool drained = false; 3781 3782 psi_memstall_enter(&pflags); 3783 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3784 if (unlikely(!(*did_some_progress))) 3785 goto out; 3786 3787 retry: 3788 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3789 3790 /* 3791 * If an allocation failed after direct reclaim, it could be because 3792 * pages are pinned on the per-cpu lists or in high alloc reserves. 3793 * Shrink them and try again 3794 */ 3795 if (!page && !drained) { 3796 unreserve_highatomic_pageblock(ac, false); 3797 drain_all_pages(NULL); 3798 drained = true; 3799 goto retry; 3800 } 3801 out: 3802 psi_memstall_leave(&pflags); 3803 3804 return page; 3805 } 3806 3807 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3808 const struct alloc_context *ac) 3809 { 3810 struct zoneref *z; 3811 struct zone *zone; 3812 pg_data_t *last_pgdat = NULL; 3813 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3814 3815 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3816 ac->nodemask) { 3817 if (!managed_zone(zone)) 3818 continue; 3819 if (last_pgdat != zone->zone_pgdat) { 3820 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3821 last_pgdat = zone->zone_pgdat; 3822 } 3823 } 3824 } 3825 3826 static inline unsigned int 3827 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3828 { 3829 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3830 3831 /* 3832 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3833 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3834 * to save two branches. 3835 */ 3836 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3837 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3838 3839 /* 3840 * The caller may dip into page reserves a bit more if the caller 3841 * cannot run direct reclaim, or if the caller has realtime scheduling 3842 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3843 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3844 */ 3845 alloc_flags |= (__force int) 3846 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3847 3848 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3849 /* 3850 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3851 * if it can't schedule. 3852 */ 3853 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3854 alloc_flags |= ALLOC_NON_BLOCK; 3855 3856 if (order > 0) 3857 alloc_flags |= ALLOC_HIGHATOMIC; 3858 } 3859 3860 /* 3861 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3862 * GFP_ATOMIC) rather than fail, see the comment for 3863 * cpuset_node_allowed(). 3864 */ 3865 if (alloc_flags & ALLOC_MIN_RESERVE) 3866 alloc_flags &= ~ALLOC_CPUSET; 3867 } else if (unlikely(rt_task(current)) && in_task()) 3868 alloc_flags |= ALLOC_MIN_RESERVE; 3869 3870 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3871 3872 return alloc_flags; 3873 } 3874 3875 static bool oom_reserves_allowed(struct task_struct *tsk) 3876 { 3877 if (!tsk_is_oom_victim(tsk)) 3878 return false; 3879 3880 /* 3881 * !MMU doesn't have oom reaper so give access to memory reserves 3882 * only to the thread with TIF_MEMDIE set 3883 */ 3884 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3885 return false; 3886 3887 return true; 3888 } 3889 3890 /* 3891 * Distinguish requests which really need access to full memory 3892 * reserves from oom victims which can live with a portion of it 3893 */ 3894 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3895 { 3896 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3897 return 0; 3898 if (gfp_mask & __GFP_MEMALLOC) 3899 return ALLOC_NO_WATERMARKS; 3900 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3901 return ALLOC_NO_WATERMARKS; 3902 if (!in_interrupt()) { 3903 if (current->flags & PF_MEMALLOC) 3904 return ALLOC_NO_WATERMARKS; 3905 else if (oom_reserves_allowed(current)) 3906 return ALLOC_OOM; 3907 } 3908 3909 return 0; 3910 } 3911 3912 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3913 { 3914 return !!__gfp_pfmemalloc_flags(gfp_mask); 3915 } 3916 3917 /* 3918 * Checks whether it makes sense to retry the reclaim to make a forward progress 3919 * for the given allocation request. 3920 * 3921 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3922 * without success, or when we couldn't even meet the watermark if we 3923 * reclaimed all remaining pages on the LRU lists. 3924 * 3925 * Returns true if a retry is viable or false to enter the oom path. 3926 */ 3927 static inline bool 3928 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3929 struct alloc_context *ac, int alloc_flags, 3930 bool did_some_progress, int *no_progress_loops) 3931 { 3932 struct zone *zone; 3933 struct zoneref *z; 3934 bool ret = false; 3935 3936 /* 3937 * Costly allocations might have made a progress but this doesn't mean 3938 * their order will become available due to high fragmentation so 3939 * always increment the no progress counter for them 3940 */ 3941 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3942 *no_progress_loops = 0; 3943 else 3944 (*no_progress_loops)++; 3945 3946 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 3947 goto out; 3948 3949 3950 /* 3951 * Keep reclaiming pages while there is a chance this will lead 3952 * somewhere. If none of the target zones can satisfy our allocation 3953 * request even if all reclaimable pages are considered then we are 3954 * screwed and have to go OOM. 3955 */ 3956 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3957 ac->highest_zoneidx, ac->nodemask) { 3958 unsigned long available; 3959 unsigned long reclaimable; 3960 unsigned long min_wmark = min_wmark_pages(zone); 3961 bool wmark; 3962 3963 available = reclaimable = zone_reclaimable_pages(zone); 3964 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3965 3966 /* 3967 * Would the allocation succeed if we reclaimed all 3968 * reclaimable pages? 3969 */ 3970 wmark = __zone_watermark_ok(zone, order, min_wmark, 3971 ac->highest_zoneidx, alloc_flags, available); 3972 trace_reclaim_retry_zone(z, order, reclaimable, 3973 available, min_wmark, *no_progress_loops, wmark); 3974 if (wmark) { 3975 ret = true; 3976 break; 3977 } 3978 } 3979 3980 /* 3981 * Memory allocation/reclaim might be called from a WQ context and the 3982 * current implementation of the WQ concurrency control doesn't 3983 * recognize that a particular WQ is congested if the worker thread is 3984 * looping without ever sleeping. Therefore we have to do a short sleep 3985 * here rather than calling cond_resched(). 3986 */ 3987 if (current->flags & PF_WQ_WORKER) 3988 schedule_timeout_uninterruptible(1); 3989 else 3990 cond_resched(); 3991 out: 3992 /* Before OOM, exhaust highatomic_reserve */ 3993 if (!ret) 3994 return unreserve_highatomic_pageblock(ac, true); 3995 3996 return ret; 3997 } 3998 3999 static inline bool 4000 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4001 { 4002 /* 4003 * It's possible that cpuset's mems_allowed and the nodemask from 4004 * mempolicy don't intersect. This should be normally dealt with by 4005 * policy_nodemask(), but it's possible to race with cpuset update in 4006 * such a way the check therein was true, and then it became false 4007 * before we got our cpuset_mems_cookie here. 4008 * This assumes that for all allocations, ac->nodemask can come only 4009 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4010 * when it does not intersect with the cpuset restrictions) or the 4011 * caller can deal with a violated nodemask. 4012 */ 4013 if (cpusets_enabled() && ac->nodemask && 4014 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4015 ac->nodemask = NULL; 4016 return true; 4017 } 4018 4019 /* 4020 * When updating a task's mems_allowed or mempolicy nodemask, it is 4021 * possible to race with parallel threads in such a way that our 4022 * allocation can fail while the mask is being updated. If we are about 4023 * to fail, check if the cpuset changed during allocation and if so, 4024 * retry. 4025 */ 4026 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4027 return true; 4028 4029 return false; 4030 } 4031 4032 static inline struct page * 4033 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4034 struct alloc_context *ac) 4035 { 4036 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4037 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4038 struct page *page = NULL; 4039 unsigned int alloc_flags; 4040 unsigned long did_some_progress; 4041 enum compact_priority compact_priority; 4042 enum compact_result compact_result; 4043 int compaction_retries; 4044 int no_progress_loops; 4045 unsigned int cpuset_mems_cookie; 4046 unsigned int zonelist_iter_cookie; 4047 int reserve_flags; 4048 4049 restart: 4050 compaction_retries = 0; 4051 no_progress_loops = 0; 4052 compact_priority = DEF_COMPACT_PRIORITY; 4053 cpuset_mems_cookie = read_mems_allowed_begin(); 4054 zonelist_iter_cookie = zonelist_iter_begin(); 4055 4056 /* 4057 * The fast path uses conservative alloc_flags to succeed only until 4058 * kswapd needs to be woken up, and to avoid the cost of setting up 4059 * alloc_flags precisely. So we do that now. 4060 */ 4061 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4062 4063 /* 4064 * We need to recalculate the starting point for the zonelist iterator 4065 * because we might have used different nodemask in the fast path, or 4066 * there was a cpuset modification and we are retrying - otherwise we 4067 * could end up iterating over non-eligible zones endlessly. 4068 */ 4069 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4070 ac->highest_zoneidx, ac->nodemask); 4071 if (!ac->preferred_zoneref->zone) 4072 goto nopage; 4073 4074 /* 4075 * Check for insane configurations where the cpuset doesn't contain 4076 * any suitable zone to satisfy the request - e.g. non-movable 4077 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4078 */ 4079 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4080 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4081 ac->highest_zoneidx, 4082 &cpuset_current_mems_allowed); 4083 if (!z->zone) 4084 goto nopage; 4085 } 4086 4087 if (alloc_flags & ALLOC_KSWAPD) 4088 wake_all_kswapds(order, gfp_mask, ac); 4089 4090 /* 4091 * The adjusted alloc_flags might result in immediate success, so try 4092 * that first 4093 */ 4094 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4095 if (page) 4096 goto got_pg; 4097 4098 /* 4099 * For costly allocations, try direct compaction first, as it's likely 4100 * that we have enough base pages and don't need to reclaim. For non- 4101 * movable high-order allocations, do that as well, as compaction will 4102 * try prevent permanent fragmentation by migrating from blocks of the 4103 * same migratetype. 4104 * Don't try this for allocations that are allowed to ignore 4105 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4106 */ 4107 if (can_direct_reclaim && 4108 (costly_order || 4109 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4110 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4111 page = __alloc_pages_direct_compact(gfp_mask, order, 4112 alloc_flags, ac, 4113 INIT_COMPACT_PRIORITY, 4114 &compact_result); 4115 if (page) 4116 goto got_pg; 4117 4118 /* 4119 * Checks for costly allocations with __GFP_NORETRY, which 4120 * includes some THP page fault allocations 4121 */ 4122 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4123 /* 4124 * If allocating entire pageblock(s) and compaction 4125 * failed because all zones are below low watermarks 4126 * or is prohibited because it recently failed at this 4127 * order, fail immediately unless the allocator has 4128 * requested compaction and reclaim retry. 4129 * 4130 * Reclaim is 4131 * - potentially very expensive because zones are far 4132 * below their low watermarks or this is part of very 4133 * bursty high order allocations, 4134 * - not guaranteed to help because isolate_freepages() 4135 * may not iterate over freed pages as part of its 4136 * linear scan, and 4137 * - unlikely to make entire pageblocks free on its 4138 * own. 4139 */ 4140 if (compact_result == COMPACT_SKIPPED || 4141 compact_result == COMPACT_DEFERRED) 4142 goto nopage; 4143 4144 /* 4145 * Looks like reclaim/compaction is worth trying, but 4146 * sync compaction could be very expensive, so keep 4147 * using async compaction. 4148 */ 4149 compact_priority = INIT_COMPACT_PRIORITY; 4150 } 4151 } 4152 4153 retry: 4154 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4155 if (alloc_flags & ALLOC_KSWAPD) 4156 wake_all_kswapds(order, gfp_mask, ac); 4157 4158 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4159 if (reserve_flags) 4160 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4161 (alloc_flags & ALLOC_KSWAPD); 4162 4163 /* 4164 * Reset the nodemask and zonelist iterators if memory policies can be 4165 * ignored. These allocations are high priority and system rather than 4166 * user oriented. 4167 */ 4168 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4169 ac->nodemask = NULL; 4170 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4171 ac->highest_zoneidx, ac->nodemask); 4172 } 4173 4174 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4175 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4176 if (page) 4177 goto got_pg; 4178 4179 /* Caller is not willing to reclaim, we can't balance anything */ 4180 if (!can_direct_reclaim) 4181 goto nopage; 4182 4183 /* Avoid recursion of direct reclaim */ 4184 if (current->flags & PF_MEMALLOC) 4185 goto nopage; 4186 4187 /* Try direct reclaim and then allocating */ 4188 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4189 &did_some_progress); 4190 if (page) 4191 goto got_pg; 4192 4193 /* Try direct compaction and then allocating */ 4194 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4195 compact_priority, &compact_result); 4196 if (page) 4197 goto got_pg; 4198 4199 /* Do not loop if specifically requested */ 4200 if (gfp_mask & __GFP_NORETRY) 4201 goto nopage; 4202 4203 /* 4204 * Do not retry costly high order allocations unless they are 4205 * __GFP_RETRY_MAYFAIL 4206 */ 4207 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4208 goto nopage; 4209 4210 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4211 did_some_progress > 0, &no_progress_loops)) 4212 goto retry; 4213 4214 /* 4215 * It doesn't make any sense to retry for the compaction if the order-0 4216 * reclaim is not able to make any progress because the current 4217 * implementation of the compaction depends on the sufficient amount 4218 * of free memory (see __compaction_suitable) 4219 */ 4220 if (did_some_progress > 0 && 4221 should_compact_retry(ac, order, alloc_flags, 4222 compact_result, &compact_priority, 4223 &compaction_retries)) 4224 goto retry; 4225 4226 4227 /* 4228 * Deal with possible cpuset update races or zonelist updates to avoid 4229 * a unnecessary OOM kill. 4230 */ 4231 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4232 check_retry_zonelist(zonelist_iter_cookie)) 4233 goto restart; 4234 4235 /* Reclaim has failed us, start killing things */ 4236 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4237 if (page) 4238 goto got_pg; 4239 4240 /* Avoid allocations with no watermarks from looping endlessly */ 4241 if (tsk_is_oom_victim(current) && 4242 (alloc_flags & ALLOC_OOM || 4243 (gfp_mask & __GFP_NOMEMALLOC))) 4244 goto nopage; 4245 4246 /* Retry as long as the OOM killer is making progress */ 4247 if (did_some_progress) { 4248 no_progress_loops = 0; 4249 goto retry; 4250 } 4251 4252 nopage: 4253 /* 4254 * Deal with possible cpuset update races or zonelist updates to avoid 4255 * a unnecessary OOM kill. 4256 */ 4257 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4258 check_retry_zonelist(zonelist_iter_cookie)) 4259 goto restart; 4260 4261 /* 4262 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4263 * we always retry 4264 */ 4265 if (gfp_mask & __GFP_NOFAIL) { 4266 /* 4267 * All existing users of the __GFP_NOFAIL are blockable, so warn 4268 * of any new users that actually require GFP_NOWAIT 4269 */ 4270 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4271 goto fail; 4272 4273 /* 4274 * PF_MEMALLOC request from this context is rather bizarre 4275 * because we cannot reclaim anything and only can loop waiting 4276 * for somebody to do a work for us 4277 */ 4278 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4279 4280 /* 4281 * non failing costly orders are a hard requirement which we 4282 * are not prepared for much so let's warn about these users 4283 * so that we can identify them and convert them to something 4284 * else. 4285 */ 4286 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4287 4288 /* 4289 * Help non-failing allocations by giving some access to memory 4290 * reserves normally used for high priority non-blocking 4291 * allocations but do not use ALLOC_NO_WATERMARKS because this 4292 * could deplete whole memory reserves which would just make 4293 * the situation worse. 4294 */ 4295 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4296 if (page) 4297 goto got_pg; 4298 4299 cond_resched(); 4300 goto retry; 4301 } 4302 fail: 4303 warn_alloc(gfp_mask, ac->nodemask, 4304 "page allocation failure: order:%u", order); 4305 got_pg: 4306 return page; 4307 } 4308 4309 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4310 int preferred_nid, nodemask_t *nodemask, 4311 struct alloc_context *ac, gfp_t *alloc_gfp, 4312 unsigned int *alloc_flags) 4313 { 4314 ac->highest_zoneidx = gfp_zone(gfp_mask); 4315 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4316 ac->nodemask = nodemask; 4317 ac->migratetype = gfp_migratetype(gfp_mask); 4318 4319 if (cpusets_enabled()) { 4320 *alloc_gfp |= __GFP_HARDWALL; 4321 /* 4322 * When we are in the interrupt context, it is irrelevant 4323 * to the current task context. It means that any node ok. 4324 */ 4325 if (in_task() && !ac->nodemask) 4326 ac->nodemask = &cpuset_current_mems_allowed; 4327 else 4328 *alloc_flags |= ALLOC_CPUSET; 4329 } 4330 4331 might_alloc(gfp_mask); 4332 4333 if (should_fail_alloc_page(gfp_mask, order)) 4334 return false; 4335 4336 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4337 4338 /* Dirty zone balancing only done in the fast path */ 4339 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4340 4341 /* 4342 * The preferred zone is used for statistics but crucially it is 4343 * also used as the starting point for the zonelist iterator. It 4344 * may get reset for allocations that ignore memory policies. 4345 */ 4346 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4347 ac->highest_zoneidx, ac->nodemask); 4348 4349 return true; 4350 } 4351 4352 /* 4353 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4354 * @gfp: GFP flags for the allocation 4355 * @preferred_nid: The preferred NUMA node ID to allocate from 4356 * @nodemask: Set of nodes to allocate from, may be NULL 4357 * @nr_pages: The number of pages desired on the list or array 4358 * @page_list: Optional list to store the allocated pages 4359 * @page_array: Optional array to store the pages 4360 * 4361 * This is a batched version of the page allocator that attempts to 4362 * allocate nr_pages quickly. Pages are added to page_list if page_list 4363 * is not NULL, otherwise it is assumed that the page_array is valid. 4364 * 4365 * For lists, nr_pages is the number of pages that should be allocated. 4366 * 4367 * For arrays, only NULL elements are populated with pages and nr_pages 4368 * is the maximum number of pages that will be stored in the array. 4369 * 4370 * Returns the number of pages on the list or array. 4371 */ 4372 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4373 nodemask_t *nodemask, int nr_pages, 4374 struct list_head *page_list, 4375 struct page **page_array) 4376 { 4377 struct page *page; 4378 unsigned long __maybe_unused UP_flags; 4379 struct zone *zone; 4380 struct zoneref *z; 4381 struct per_cpu_pages *pcp; 4382 struct list_head *pcp_list; 4383 struct alloc_context ac; 4384 gfp_t alloc_gfp; 4385 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4386 int nr_populated = 0, nr_account = 0; 4387 4388 /* 4389 * Skip populated array elements to determine if any pages need 4390 * to be allocated before disabling IRQs. 4391 */ 4392 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4393 nr_populated++; 4394 4395 /* No pages requested? */ 4396 if (unlikely(nr_pages <= 0)) 4397 goto out; 4398 4399 /* Already populated array? */ 4400 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4401 goto out; 4402 4403 /* Bulk allocator does not support memcg accounting. */ 4404 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4405 goto failed; 4406 4407 /* Use the single page allocator for one page. */ 4408 if (nr_pages - nr_populated == 1) 4409 goto failed; 4410 4411 #ifdef CONFIG_PAGE_OWNER 4412 /* 4413 * PAGE_OWNER may recurse into the allocator to allocate space to 4414 * save the stack with pagesets.lock held. Releasing/reacquiring 4415 * removes much of the performance benefit of bulk allocation so 4416 * force the caller to allocate one page at a time as it'll have 4417 * similar performance to added complexity to the bulk allocator. 4418 */ 4419 if (static_branch_unlikely(&page_owner_inited)) 4420 goto failed; 4421 #endif 4422 4423 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4424 gfp &= gfp_allowed_mask; 4425 alloc_gfp = gfp; 4426 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4427 goto out; 4428 gfp = alloc_gfp; 4429 4430 /* Find an allowed local zone that meets the low watermark. */ 4431 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4432 unsigned long mark; 4433 4434 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4435 !__cpuset_zone_allowed(zone, gfp)) { 4436 continue; 4437 } 4438 4439 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4440 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4441 goto failed; 4442 } 4443 4444 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4445 if (zone_watermark_fast(zone, 0, mark, 4446 zonelist_zone_idx(ac.preferred_zoneref), 4447 alloc_flags, gfp)) { 4448 break; 4449 } 4450 } 4451 4452 /* 4453 * If there are no allowed local zones that meets the watermarks then 4454 * try to allocate a single page and reclaim if necessary. 4455 */ 4456 if (unlikely(!zone)) 4457 goto failed; 4458 4459 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4460 pcp_trylock_prepare(UP_flags); 4461 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4462 if (!pcp) 4463 goto failed_irq; 4464 4465 /* Attempt the batch allocation */ 4466 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4467 while (nr_populated < nr_pages) { 4468 4469 /* Skip existing pages */ 4470 if (page_array && page_array[nr_populated]) { 4471 nr_populated++; 4472 continue; 4473 } 4474 4475 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4476 pcp, pcp_list); 4477 if (unlikely(!page)) { 4478 /* Try and allocate at least one page */ 4479 if (!nr_account) { 4480 pcp_spin_unlock(pcp); 4481 goto failed_irq; 4482 } 4483 break; 4484 } 4485 nr_account++; 4486 4487 prep_new_page(page, 0, gfp, 0); 4488 if (page_list) 4489 list_add(&page->lru, page_list); 4490 else 4491 page_array[nr_populated] = page; 4492 nr_populated++; 4493 } 4494 4495 pcp_spin_unlock(pcp); 4496 pcp_trylock_finish(UP_flags); 4497 4498 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4499 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4500 4501 out: 4502 return nr_populated; 4503 4504 failed_irq: 4505 pcp_trylock_finish(UP_flags); 4506 4507 failed: 4508 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4509 if (page) { 4510 if (page_list) 4511 list_add(&page->lru, page_list); 4512 else 4513 page_array[nr_populated] = page; 4514 nr_populated++; 4515 } 4516 4517 goto out; 4518 } 4519 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4520 4521 /* 4522 * This is the 'heart' of the zoned buddy allocator. 4523 */ 4524 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4525 nodemask_t *nodemask) 4526 { 4527 struct page *page; 4528 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4529 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4530 struct alloc_context ac = { }; 4531 4532 /* 4533 * There are several places where we assume that the order value is sane 4534 * so bail out early if the request is out of bound. 4535 */ 4536 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4537 return NULL; 4538 4539 gfp &= gfp_allowed_mask; 4540 /* 4541 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4542 * resp. GFP_NOIO which has to be inherited for all allocation requests 4543 * from a particular context which has been marked by 4544 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4545 * movable zones are not used during allocation. 4546 */ 4547 gfp = current_gfp_context(gfp); 4548 alloc_gfp = gfp; 4549 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4550 &alloc_gfp, &alloc_flags)) 4551 return NULL; 4552 4553 /* 4554 * Forbid the first pass from falling back to types that fragment 4555 * memory until all local zones are considered. 4556 */ 4557 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4558 4559 /* First allocation attempt */ 4560 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4561 if (likely(page)) 4562 goto out; 4563 4564 alloc_gfp = gfp; 4565 ac.spread_dirty_pages = false; 4566 4567 /* 4568 * Restore the original nodemask if it was potentially replaced with 4569 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4570 */ 4571 ac.nodemask = nodemask; 4572 4573 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4574 4575 out: 4576 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4577 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4578 __free_pages(page, order); 4579 page = NULL; 4580 } 4581 4582 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4583 kmsan_alloc_page(page, order, alloc_gfp); 4584 4585 return page; 4586 } 4587 EXPORT_SYMBOL(__alloc_pages); 4588 4589 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4590 nodemask_t *nodemask) 4591 { 4592 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4593 preferred_nid, nodemask); 4594 return page_rmappable_folio(page); 4595 } 4596 EXPORT_SYMBOL(__folio_alloc); 4597 4598 /* 4599 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4600 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4601 * you need to access high mem. 4602 */ 4603 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4604 { 4605 struct page *page; 4606 4607 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4608 if (!page) 4609 return 0; 4610 return (unsigned long) page_address(page); 4611 } 4612 EXPORT_SYMBOL(__get_free_pages); 4613 4614 unsigned long get_zeroed_page(gfp_t gfp_mask) 4615 { 4616 return __get_free_page(gfp_mask | __GFP_ZERO); 4617 } 4618 EXPORT_SYMBOL(get_zeroed_page); 4619 4620 /** 4621 * __free_pages - Free pages allocated with alloc_pages(). 4622 * @page: The page pointer returned from alloc_pages(). 4623 * @order: The order of the allocation. 4624 * 4625 * This function can free multi-page allocations that are not compound 4626 * pages. It does not check that the @order passed in matches that of 4627 * the allocation, so it is easy to leak memory. Freeing more memory 4628 * than was allocated will probably emit a warning. 4629 * 4630 * If the last reference to this page is speculative, it will be released 4631 * by put_page() which only frees the first page of a non-compound 4632 * allocation. To prevent the remaining pages from being leaked, we free 4633 * the subsequent pages here. If you want to use the page's reference 4634 * count to decide when to free the allocation, you should allocate a 4635 * compound page, and use put_page() instead of __free_pages(). 4636 * 4637 * Context: May be called in interrupt context or while holding a normal 4638 * spinlock, but not in NMI context or while holding a raw spinlock. 4639 */ 4640 void __free_pages(struct page *page, unsigned int order) 4641 { 4642 /* get PageHead before we drop reference */ 4643 int head = PageHead(page); 4644 4645 if (put_page_testzero(page)) 4646 free_the_page(page, order); 4647 else if (!head) 4648 while (order-- > 0) 4649 free_the_page(page + (1 << order), order); 4650 } 4651 EXPORT_SYMBOL(__free_pages); 4652 4653 void free_pages(unsigned long addr, unsigned int order) 4654 { 4655 if (addr != 0) { 4656 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4657 __free_pages(virt_to_page((void *)addr), order); 4658 } 4659 } 4660 4661 EXPORT_SYMBOL(free_pages); 4662 4663 /* 4664 * Page Fragment: 4665 * An arbitrary-length arbitrary-offset area of memory which resides 4666 * within a 0 or higher order page. Multiple fragments within that page 4667 * are individually refcounted, in the page's reference counter. 4668 * 4669 * The page_frag functions below provide a simple allocation framework for 4670 * page fragments. This is used by the network stack and network device 4671 * drivers to provide a backing region of memory for use as either an 4672 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4673 */ 4674 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4675 gfp_t gfp_mask) 4676 { 4677 struct page *page = NULL; 4678 gfp_t gfp = gfp_mask; 4679 4680 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4681 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4682 __GFP_NOMEMALLOC; 4683 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4684 PAGE_FRAG_CACHE_MAX_ORDER); 4685 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4686 #endif 4687 if (unlikely(!page)) 4688 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4689 4690 nc->va = page ? page_address(page) : NULL; 4691 4692 return page; 4693 } 4694 4695 void __page_frag_cache_drain(struct page *page, unsigned int count) 4696 { 4697 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4698 4699 if (page_ref_sub_and_test(page, count)) 4700 free_the_page(page, compound_order(page)); 4701 } 4702 EXPORT_SYMBOL(__page_frag_cache_drain); 4703 4704 void *page_frag_alloc_align(struct page_frag_cache *nc, 4705 unsigned int fragsz, gfp_t gfp_mask, 4706 unsigned int align_mask) 4707 { 4708 unsigned int size = PAGE_SIZE; 4709 struct page *page; 4710 int offset; 4711 4712 if (unlikely(!nc->va)) { 4713 refill: 4714 page = __page_frag_cache_refill(nc, gfp_mask); 4715 if (!page) 4716 return NULL; 4717 4718 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4719 /* if size can vary use size else just use PAGE_SIZE */ 4720 size = nc->size; 4721 #endif 4722 /* Even if we own the page, we do not use atomic_set(). 4723 * This would break get_page_unless_zero() users. 4724 */ 4725 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4726 4727 /* reset page count bias and offset to start of new frag */ 4728 nc->pfmemalloc = page_is_pfmemalloc(page); 4729 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4730 nc->offset = size; 4731 } 4732 4733 offset = nc->offset - fragsz; 4734 if (unlikely(offset < 0)) { 4735 page = virt_to_page(nc->va); 4736 4737 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4738 goto refill; 4739 4740 if (unlikely(nc->pfmemalloc)) { 4741 free_the_page(page, compound_order(page)); 4742 goto refill; 4743 } 4744 4745 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4746 /* if size can vary use size else just use PAGE_SIZE */ 4747 size = nc->size; 4748 #endif 4749 /* OK, page count is 0, we can safely set it */ 4750 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4751 4752 /* reset page count bias and offset to start of new frag */ 4753 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4754 offset = size - fragsz; 4755 if (unlikely(offset < 0)) { 4756 /* 4757 * The caller is trying to allocate a fragment 4758 * with fragsz > PAGE_SIZE but the cache isn't big 4759 * enough to satisfy the request, this may 4760 * happen in low memory conditions. 4761 * We don't release the cache page because 4762 * it could make memory pressure worse 4763 * so we simply return NULL here. 4764 */ 4765 return NULL; 4766 } 4767 } 4768 4769 nc->pagecnt_bias--; 4770 offset &= align_mask; 4771 nc->offset = offset; 4772 4773 return nc->va + offset; 4774 } 4775 EXPORT_SYMBOL(page_frag_alloc_align); 4776 4777 /* 4778 * Frees a page fragment allocated out of either a compound or order 0 page. 4779 */ 4780 void page_frag_free(void *addr) 4781 { 4782 struct page *page = virt_to_head_page(addr); 4783 4784 if (unlikely(put_page_testzero(page))) 4785 free_the_page(page, compound_order(page)); 4786 } 4787 EXPORT_SYMBOL(page_frag_free); 4788 4789 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4790 size_t size) 4791 { 4792 if (addr) { 4793 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4794 struct page *page = virt_to_page((void *)addr); 4795 struct page *last = page + nr; 4796 4797 split_page_owner(page, 1 << order); 4798 split_page_memcg(page, 1 << order); 4799 while (page < --last) 4800 set_page_refcounted(last); 4801 4802 last = page + (1UL << order); 4803 for (page += nr; page < last; page++) 4804 __free_pages_ok(page, 0, FPI_TO_TAIL); 4805 } 4806 return (void *)addr; 4807 } 4808 4809 /** 4810 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4811 * @size: the number of bytes to allocate 4812 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4813 * 4814 * This function is similar to alloc_pages(), except that it allocates the 4815 * minimum number of pages to satisfy the request. alloc_pages() can only 4816 * allocate memory in power-of-two pages. 4817 * 4818 * This function is also limited by MAX_PAGE_ORDER. 4819 * 4820 * Memory allocated by this function must be released by free_pages_exact(). 4821 * 4822 * Return: pointer to the allocated area or %NULL in case of error. 4823 */ 4824 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4825 { 4826 unsigned int order = get_order(size); 4827 unsigned long addr; 4828 4829 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4830 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4831 4832 addr = __get_free_pages(gfp_mask, order); 4833 return make_alloc_exact(addr, order, size); 4834 } 4835 EXPORT_SYMBOL(alloc_pages_exact); 4836 4837 /** 4838 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4839 * pages on a node. 4840 * @nid: the preferred node ID where memory should be allocated 4841 * @size: the number of bytes to allocate 4842 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4843 * 4844 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4845 * back. 4846 * 4847 * Return: pointer to the allocated area or %NULL in case of error. 4848 */ 4849 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4850 { 4851 unsigned int order = get_order(size); 4852 struct page *p; 4853 4854 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4855 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4856 4857 p = alloc_pages_node(nid, gfp_mask, order); 4858 if (!p) 4859 return NULL; 4860 return make_alloc_exact((unsigned long)page_address(p), order, size); 4861 } 4862 4863 /** 4864 * free_pages_exact - release memory allocated via alloc_pages_exact() 4865 * @virt: the value returned by alloc_pages_exact. 4866 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4867 * 4868 * Release the memory allocated by a previous call to alloc_pages_exact. 4869 */ 4870 void free_pages_exact(void *virt, size_t size) 4871 { 4872 unsigned long addr = (unsigned long)virt; 4873 unsigned long end = addr + PAGE_ALIGN(size); 4874 4875 while (addr < end) { 4876 free_page(addr); 4877 addr += PAGE_SIZE; 4878 } 4879 } 4880 EXPORT_SYMBOL(free_pages_exact); 4881 4882 /** 4883 * nr_free_zone_pages - count number of pages beyond high watermark 4884 * @offset: The zone index of the highest zone 4885 * 4886 * nr_free_zone_pages() counts the number of pages which are beyond the 4887 * high watermark within all zones at or below a given zone index. For each 4888 * zone, the number of pages is calculated as: 4889 * 4890 * nr_free_zone_pages = managed_pages - high_pages 4891 * 4892 * Return: number of pages beyond high watermark. 4893 */ 4894 static unsigned long nr_free_zone_pages(int offset) 4895 { 4896 struct zoneref *z; 4897 struct zone *zone; 4898 4899 /* Just pick one node, since fallback list is circular */ 4900 unsigned long sum = 0; 4901 4902 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4903 4904 for_each_zone_zonelist(zone, z, zonelist, offset) { 4905 unsigned long size = zone_managed_pages(zone); 4906 unsigned long high = high_wmark_pages(zone); 4907 if (size > high) 4908 sum += size - high; 4909 } 4910 4911 return sum; 4912 } 4913 4914 /** 4915 * nr_free_buffer_pages - count number of pages beyond high watermark 4916 * 4917 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4918 * watermark within ZONE_DMA and ZONE_NORMAL. 4919 * 4920 * Return: number of pages beyond high watermark within ZONE_DMA and 4921 * ZONE_NORMAL. 4922 */ 4923 unsigned long nr_free_buffer_pages(void) 4924 { 4925 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4926 } 4927 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4928 4929 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4930 { 4931 zoneref->zone = zone; 4932 zoneref->zone_idx = zone_idx(zone); 4933 } 4934 4935 /* 4936 * Builds allocation fallback zone lists. 4937 * 4938 * Add all populated zones of a node to the zonelist. 4939 */ 4940 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4941 { 4942 struct zone *zone; 4943 enum zone_type zone_type = MAX_NR_ZONES; 4944 int nr_zones = 0; 4945 4946 do { 4947 zone_type--; 4948 zone = pgdat->node_zones + zone_type; 4949 if (populated_zone(zone)) { 4950 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4951 check_highest_zone(zone_type); 4952 } 4953 } while (zone_type); 4954 4955 return nr_zones; 4956 } 4957 4958 #ifdef CONFIG_NUMA 4959 4960 static int __parse_numa_zonelist_order(char *s) 4961 { 4962 /* 4963 * We used to support different zonelists modes but they turned 4964 * out to be just not useful. Let's keep the warning in place 4965 * if somebody still use the cmd line parameter so that we do 4966 * not fail it silently 4967 */ 4968 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4969 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4970 return -EINVAL; 4971 } 4972 return 0; 4973 } 4974 4975 static char numa_zonelist_order[] = "Node"; 4976 #define NUMA_ZONELIST_ORDER_LEN 16 4977 /* 4978 * sysctl handler for numa_zonelist_order 4979 */ 4980 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 4981 void *buffer, size_t *length, loff_t *ppos) 4982 { 4983 if (write) 4984 return __parse_numa_zonelist_order(buffer); 4985 return proc_dostring(table, write, buffer, length, ppos); 4986 } 4987 4988 static int node_load[MAX_NUMNODES]; 4989 4990 /** 4991 * find_next_best_node - find the next node that should appear in a given node's fallback list 4992 * @node: node whose fallback list we're appending 4993 * @used_node_mask: nodemask_t of already used nodes 4994 * 4995 * We use a number of factors to determine which is the next node that should 4996 * appear on a given node's fallback list. The node should not have appeared 4997 * already in @node's fallback list, and it should be the next closest node 4998 * according to the distance array (which contains arbitrary distance values 4999 * from each node to each node in the system), and should also prefer nodes 5000 * with no CPUs, since presumably they'll have very little allocation pressure 5001 * on them otherwise. 5002 * 5003 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5004 */ 5005 int find_next_best_node(int node, nodemask_t *used_node_mask) 5006 { 5007 int n, val; 5008 int min_val = INT_MAX; 5009 int best_node = NUMA_NO_NODE; 5010 5011 /* 5012 * Use the local node if we haven't already, but for memoryless local 5013 * node, we should skip it and fall back to other nodes. 5014 */ 5015 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5016 node_set(node, *used_node_mask); 5017 return node; 5018 } 5019 5020 for_each_node_state(n, N_MEMORY) { 5021 5022 /* Don't want a node to appear more than once */ 5023 if (node_isset(n, *used_node_mask)) 5024 continue; 5025 5026 /* Use the distance array to find the distance */ 5027 val = node_distance(node, n); 5028 5029 /* Penalize nodes under us ("prefer the next node") */ 5030 val += (n < node); 5031 5032 /* Give preference to headless and unused nodes */ 5033 if (!cpumask_empty(cpumask_of_node(n))) 5034 val += PENALTY_FOR_NODE_WITH_CPUS; 5035 5036 /* Slight preference for less loaded node */ 5037 val *= MAX_NUMNODES; 5038 val += node_load[n]; 5039 5040 if (val < min_val) { 5041 min_val = val; 5042 best_node = n; 5043 } 5044 } 5045 5046 if (best_node >= 0) 5047 node_set(best_node, *used_node_mask); 5048 5049 return best_node; 5050 } 5051 5052 5053 /* 5054 * Build zonelists ordered by node and zones within node. 5055 * This results in maximum locality--normal zone overflows into local 5056 * DMA zone, if any--but risks exhausting DMA zone. 5057 */ 5058 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5059 unsigned nr_nodes) 5060 { 5061 struct zoneref *zonerefs; 5062 int i; 5063 5064 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5065 5066 for (i = 0; i < nr_nodes; i++) { 5067 int nr_zones; 5068 5069 pg_data_t *node = NODE_DATA(node_order[i]); 5070 5071 nr_zones = build_zonerefs_node(node, zonerefs); 5072 zonerefs += nr_zones; 5073 } 5074 zonerefs->zone = NULL; 5075 zonerefs->zone_idx = 0; 5076 } 5077 5078 /* 5079 * Build gfp_thisnode zonelists 5080 */ 5081 static void build_thisnode_zonelists(pg_data_t *pgdat) 5082 { 5083 struct zoneref *zonerefs; 5084 int nr_zones; 5085 5086 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5087 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5088 zonerefs += nr_zones; 5089 zonerefs->zone = NULL; 5090 zonerefs->zone_idx = 0; 5091 } 5092 5093 /* 5094 * Build zonelists ordered by zone and nodes within zones. 5095 * This results in conserving DMA zone[s] until all Normal memory is 5096 * exhausted, but results in overflowing to remote node while memory 5097 * may still exist in local DMA zone. 5098 */ 5099 5100 static void build_zonelists(pg_data_t *pgdat) 5101 { 5102 static int node_order[MAX_NUMNODES]; 5103 int node, nr_nodes = 0; 5104 nodemask_t used_mask = NODE_MASK_NONE; 5105 int local_node, prev_node; 5106 5107 /* NUMA-aware ordering of nodes */ 5108 local_node = pgdat->node_id; 5109 prev_node = local_node; 5110 5111 memset(node_order, 0, sizeof(node_order)); 5112 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5113 /* 5114 * We don't want to pressure a particular node. 5115 * So adding penalty to the first node in same 5116 * distance group to make it round-robin. 5117 */ 5118 if (node_distance(local_node, node) != 5119 node_distance(local_node, prev_node)) 5120 node_load[node] += 1; 5121 5122 node_order[nr_nodes++] = node; 5123 prev_node = node; 5124 } 5125 5126 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5127 build_thisnode_zonelists(pgdat); 5128 pr_info("Fallback order for Node %d: ", local_node); 5129 for (node = 0; node < nr_nodes; node++) 5130 pr_cont("%d ", node_order[node]); 5131 pr_cont("\n"); 5132 } 5133 5134 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5135 /* 5136 * Return node id of node used for "local" allocations. 5137 * I.e., first node id of first zone in arg node's generic zonelist. 5138 * Used for initializing percpu 'numa_mem', which is used primarily 5139 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5140 */ 5141 int local_memory_node(int node) 5142 { 5143 struct zoneref *z; 5144 5145 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5146 gfp_zone(GFP_KERNEL), 5147 NULL); 5148 return zone_to_nid(z->zone); 5149 } 5150 #endif 5151 5152 static void setup_min_unmapped_ratio(void); 5153 static void setup_min_slab_ratio(void); 5154 #else /* CONFIG_NUMA */ 5155 5156 static void build_zonelists(pg_data_t *pgdat) 5157 { 5158 int node, local_node; 5159 struct zoneref *zonerefs; 5160 int nr_zones; 5161 5162 local_node = pgdat->node_id; 5163 5164 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5165 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5166 zonerefs += nr_zones; 5167 5168 /* 5169 * Now we build the zonelist so that it contains the zones 5170 * of all the other nodes. 5171 * We don't want to pressure a particular node, so when 5172 * building the zones for node N, we make sure that the 5173 * zones coming right after the local ones are those from 5174 * node N+1 (modulo N) 5175 */ 5176 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5177 if (!node_online(node)) 5178 continue; 5179 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5180 zonerefs += nr_zones; 5181 } 5182 for (node = 0; node < local_node; node++) { 5183 if (!node_online(node)) 5184 continue; 5185 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5186 zonerefs += nr_zones; 5187 } 5188 5189 zonerefs->zone = NULL; 5190 zonerefs->zone_idx = 0; 5191 } 5192 5193 #endif /* CONFIG_NUMA */ 5194 5195 /* 5196 * Boot pageset table. One per cpu which is going to be used for all 5197 * zones and all nodes. The parameters will be set in such a way 5198 * that an item put on a list will immediately be handed over to 5199 * the buddy list. This is safe since pageset manipulation is done 5200 * with interrupts disabled. 5201 * 5202 * The boot_pagesets must be kept even after bootup is complete for 5203 * unused processors and/or zones. They do play a role for bootstrapping 5204 * hotplugged processors. 5205 * 5206 * zoneinfo_show() and maybe other functions do 5207 * not check if the processor is online before following the pageset pointer. 5208 * Other parts of the kernel may not check if the zone is available. 5209 */ 5210 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5211 /* These effectively disable the pcplists in the boot pageset completely */ 5212 #define BOOT_PAGESET_HIGH 0 5213 #define BOOT_PAGESET_BATCH 1 5214 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5215 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5216 5217 static void __build_all_zonelists(void *data) 5218 { 5219 int nid; 5220 int __maybe_unused cpu; 5221 pg_data_t *self = data; 5222 unsigned long flags; 5223 5224 /* 5225 * The zonelist_update_seq must be acquired with irqsave because the 5226 * reader can be invoked from IRQ with GFP_ATOMIC. 5227 */ 5228 write_seqlock_irqsave(&zonelist_update_seq, flags); 5229 /* 5230 * Also disable synchronous printk() to prevent any printk() from 5231 * trying to hold port->lock, for 5232 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5233 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5234 */ 5235 printk_deferred_enter(); 5236 5237 #ifdef CONFIG_NUMA 5238 memset(node_load, 0, sizeof(node_load)); 5239 #endif 5240 5241 /* 5242 * This node is hotadded and no memory is yet present. So just 5243 * building zonelists is fine - no need to touch other nodes. 5244 */ 5245 if (self && !node_online(self->node_id)) { 5246 build_zonelists(self); 5247 } else { 5248 /* 5249 * All possible nodes have pgdat preallocated 5250 * in free_area_init 5251 */ 5252 for_each_node(nid) { 5253 pg_data_t *pgdat = NODE_DATA(nid); 5254 5255 build_zonelists(pgdat); 5256 } 5257 5258 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5259 /* 5260 * We now know the "local memory node" for each node-- 5261 * i.e., the node of the first zone in the generic zonelist. 5262 * Set up numa_mem percpu variable for on-line cpus. During 5263 * boot, only the boot cpu should be on-line; we'll init the 5264 * secondary cpus' numa_mem as they come on-line. During 5265 * node/memory hotplug, we'll fixup all on-line cpus. 5266 */ 5267 for_each_online_cpu(cpu) 5268 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5269 #endif 5270 } 5271 5272 printk_deferred_exit(); 5273 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5274 } 5275 5276 static noinline void __init 5277 build_all_zonelists_init(void) 5278 { 5279 int cpu; 5280 5281 __build_all_zonelists(NULL); 5282 5283 /* 5284 * Initialize the boot_pagesets that are going to be used 5285 * for bootstrapping processors. The real pagesets for 5286 * each zone will be allocated later when the per cpu 5287 * allocator is available. 5288 * 5289 * boot_pagesets are used also for bootstrapping offline 5290 * cpus if the system is already booted because the pagesets 5291 * are needed to initialize allocators on a specific cpu too. 5292 * F.e. the percpu allocator needs the page allocator which 5293 * needs the percpu allocator in order to allocate its pagesets 5294 * (a chicken-egg dilemma). 5295 */ 5296 for_each_possible_cpu(cpu) 5297 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5298 5299 mminit_verify_zonelist(); 5300 cpuset_init_current_mems_allowed(); 5301 } 5302 5303 /* 5304 * unless system_state == SYSTEM_BOOTING. 5305 * 5306 * __ref due to call of __init annotated helper build_all_zonelists_init 5307 * [protected by SYSTEM_BOOTING]. 5308 */ 5309 void __ref build_all_zonelists(pg_data_t *pgdat) 5310 { 5311 unsigned long vm_total_pages; 5312 5313 if (system_state == SYSTEM_BOOTING) { 5314 build_all_zonelists_init(); 5315 } else { 5316 __build_all_zonelists(pgdat); 5317 /* cpuset refresh routine should be here */ 5318 } 5319 /* Get the number of free pages beyond high watermark in all zones. */ 5320 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5321 /* 5322 * Disable grouping by mobility if the number of pages in the 5323 * system is too low to allow the mechanism to work. It would be 5324 * more accurate, but expensive to check per-zone. This check is 5325 * made on memory-hotadd so a system can start with mobility 5326 * disabled and enable it later 5327 */ 5328 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5329 page_group_by_mobility_disabled = 1; 5330 else 5331 page_group_by_mobility_disabled = 0; 5332 5333 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5334 nr_online_nodes, 5335 page_group_by_mobility_disabled ? "off" : "on", 5336 vm_total_pages); 5337 #ifdef CONFIG_NUMA 5338 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5339 #endif 5340 } 5341 5342 static int zone_batchsize(struct zone *zone) 5343 { 5344 #ifdef CONFIG_MMU 5345 int batch; 5346 5347 /* 5348 * The number of pages to batch allocate is either ~0.1% 5349 * of the zone or 1MB, whichever is smaller. The batch 5350 * size is striking a balance between allocation latency 5351 * and zone lock contention. 5352 */ 5353 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5354 batch /= 4; /* We effectively *= 4 below */ 5355 if (batch < 1) 5356 batch = 1; 5357 5358 /* 5359 * Clamp the batch to a 2^n - 1 value. Having a power 5360 * of 2 value was found to be more likely to have 5361 * suboptimal cache aliasing properties in some cases. 5362 * 5363 * For example if 2 tasks are alternately allocating 5364 * batches of pages, one task can end up with a lot 5365 * of pages of one half of the possible page colors 5366 * and the other with pages of the other colors. 5367 */ 5368 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5369 5370 return batch; 5371 5372 #else 5373 /* The deferral and batching of frees should be suppressed under NOMMU 5374 * conditions. 5375 * 5376 * The problem is that NOMMU needs to be able to allocate large chunks 5377 * of contiguous memory as there's no hardware page translation to 5378 * assemble apparent contiguous memory from discontiguous pages. 5379 * 5380 * Queueing large contiguous runs of pages for batching, however, 5381 * causes the pages to actually be freed in smaller chunks. As there 5382 * can be a significant delay between the individual batches being 5383 * recycled, this leads to the once large chunks of space being 5384 * fragmented and becoming unavailable for high-order allocations. 5385 */ 5386 return 0; 5387 #endif 5388 } 5389 5390 static int percpu_pagelist_high_fraction; 5391 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5392 int high_fraction) 5393 { 5394 #ifdef CONFIG_MMU 5395 int high; 5396 int nr_split_cpus; 5397 unsigned long total_pages; 5398 5399 if (!high_fraction) { 5400 /* 5401 * By default, the high value of the pcp is based on the zone 5402 * low watermark so that if they are full then background 5403 * reclaim will not be started prematurely. 5404 */ 5405 total_pages = low_wmark_pages(zone); 5406 } else { 5407 /* 5408 * If percpu_pagelist_high_fraction is configured, the high 5409 * value is based on a fraction of the managed pages in the 5410 * zone. 5411 */ 5412 total_pages = zone_managed_pages(zone) / high_fraction; 5413 } 5414 5415 /* 5416 * Split the high value across all online CPUs local to the zone. Note 5417 * that early in boot that CPUs may not be online yet and that during 5418 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5419 * onlined. For memory nodes that have no CPUs, split the high value 5420 * across all online CPUs to mitigate the risk that reclaim is triggered 5421 * prematurely due to pages stored on pcp lists. 5422 */ 5423 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5424 if (!nr_split_cpus) 5425 nr_split_cpus = num_online_cpus(); 5426 high = total_pages / nr_split_cpus; 5427 5428 /* 5429 * Ensure high is at least batch*4. The multiple is based on the 5430 * historical relationship between high and batch. 5431 */ 5432 high = max(high, batch << 2); 5433 5434 return high; 5435 #else 5436 return 0; 5437 #endif 5438 } 5439 5440 /* 5441 * pcp->high and pcp->batch values are related and generally batch is lower 5442 * than high. They are also related to pcp->count such that count is lower 5443 * than high, and as soon as it reaches high, the pcplist is flushed. 5444 * 5445 * However, guaranteeing these relations at all times would require e.g. write 5446 * barriers here but also careful usage of read barriers at the read side, and 5447 * thus be prone to error and bad for performance. Thus the update only prevents 5448 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5449 * should ensure they can cope with those fields changing asynchronously, and 5450 * fully trust only the pcp->count field on the local CPU with interrupts 5451 * disabled. 5452 * 5453 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5454 * outside of boot time (or some other assurance that no concurrent updaters 5455 * exist). 5456 */ 5457 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5458 unsigned long high_max, unsigned long batch) 5459 { 5460 WRITE_ONCE(pcp->batch, batch); 5461 WRITE_ONCE(pcp->high_min, high_min); 5462 WRITE_ONCE(pcp->high_max, high_max); 5463 } 5464 5465 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5466 { 5467 int pindex; 5468 5469 memset(pcp, 0, sizeof(*pcp)); 5470 memset(pzstats, 0, sizeof(*pzstats)); 5471 5472 spin_lock_init(&pcp->lock); 5473 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5474 INIT_LIST_HEAD(&pcp->lists[pindex]); 5475 5476 /* 5477 * Set batch and high values safe for a boot pageset. A true percpu 5478 * pageset's initialization will update them subsequently. Here we don't 5479 * need to be as careful as pageset_update() as nobody can access the 5480 * pageset yet. 5481 */ 5482 pcp->high_min = BOOT_PAGESET_HIGH; 5483 pcp->high_max = BOOT_PAGESET_HIGH; 5484 pcp->batch = BOOT_PAGESET_BATCH; 5485 pcp->free_count = 0; 5486 } 5487 5488 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5489 unsigned long high_max, unsigned long batch) 5490 { 5491 struct per_cpu_pages *pcp; 5492 int cpu; 5493 5494 for_each_possible_cpu(cpu) { 5495 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5496 pageset_update(pcp, high_min, high_max, batch); 5497 } 5498 } 5499 5500 /* 5501 * Calculate and set new high and batch values for all per-cpu pagesets of a 5502 * zone based on the zone's size. 5503 */ 5504 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5505 { 5506 int new_high_min, new_high_max, new_batch; 5507 5508 new_batch = max(1, zone_batchsize(zone)); 5509 if (percpu_pagelist_high_fraction) { 5510 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5511 percpu_pagelist_high_fraction); 5512 /* 5513 * PCP high is tuned manually, disable auto-tuning via 5514 * setting high_min and high_max to the manual value. 5515 */ 5516 new_high_max = new_high_min; 5517 } else { 5518 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5519 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5520 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5521 } 5522 5523 if (zone->pageset_high_min == new_high_min && 5524 zone->pageset_high_max == new_high_max && 5525 zone->pageset_batch == new_batch) 5526 return; 5527 5528 zone->pageset_high_min = new_high_min; 5529 zone->pageset_high_max = new_high_max; 5530 zone->pageset_batch = new_batch; 5531 5532 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5533 new_batch); 5534 } 5535 5536 void __meminit setup_zone_pageset(struct zone *zone) 5537 { 5538 int cpu; 5539 5540 /* Size may be 0 on !SMP && !NUMA */ 5541 if (sizeof(struct per_cpu_zonestat) > 0) 5542 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5543 5544 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5545 for_each_possible_cpu(cpu) { 5546 struct per_cpu_pages *pcp; 5547 struct per_cpu_zonestat *pzstats; 5548 5549 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5550 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5551 per_cpu_pages_init(pcp, pzstats); 5552 } 5553 5554 zone_set_pageset_high_and_batch(zone, 0); 5555 } 5556 5557 /* 5558 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5559 * page high values need to be recalculated. 5560 */ 5561 static void zone_pcp_update(struct zone *zone, int cpu_online) 5562 { 5563 mutex_lock(&pcp_batch_high_lock); 5564 zone_set_pageset_high_and_batch(zone, cpu_online); 5565 mutex_unlock(&pcp_batch_high_lock); 5566 } 5567 5568 static void zone_pcp_update_cacheinfo(struct zone *zone) 5569 { 5570 int cpu; 5571 struct per_cpu_pages *pcp; 5572 struct cpu_cacheinfo *cci; 5573 5574 for_each_online_cpu(cpu) { 5575 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5576 cci = get_cpu_cacheinfo(cpu); 5577 /* 5578 * If data cache slice of CPU is large enough, "pcp->batch" 5579 * pages can be preserved in PCP before draining PCP for 5580 * consecutive high-order pages freeing without allocation. 5581 * This can reduce zone lock contention without hurting 5582 * cache-hot pages sharing. 5583 */ 5584 spin_lock(&pcp->lock); 5585 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5586 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5587 else 5588 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5589 spin_unlock(&pcp->lock); 5590 } 5591 } 5592 5593 void setup_pcp_cacheinfo(void) 5594 { 5595 struct zone *zone; 5596 5597 for_each_populated_zone(zone) 5598 zone_pcp_update_cacheinfo(zone); 5599 } 5600 5601 /* 5602 * Allocate per cpu pagesets and initialize them. 5603 * Before this call only boot pagesets were available. 5604 */ 5605 void __init setup_per_cpu_pageset(void) 5606 { 5607 struct pglist_data *pgdat; 5608 struct zone *zone; 5609 int __maybe_unused cpu; 5610 5611 for_each_populated_zone(zone) 5612 setup_zone_pageset(zone); 5613 5614 #ifdef CONFIG_NUMA 5615 /* 5616 * Unpopulated zones continue using the boot pagesets. 5617 * The numa stats for these pagesets need to be reset. 5618 * Otherwise, they will end up skewing the stats of 5619 * the nodes these zones are associated with. 5620 */ 5621 for_each_possible_cpu(cpu) { 5622 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5623 memset(pzstats->vm_numa_event, 0, 5624 sizeof(pzstats->vm_numa_event)); 5625 } 5626 #endif 5627 5628 for_each_online_pgdat(pgdat) 5629 pgdat->per_cpu_nodestats = 5630 alloc_percpu(struct per_cpu_nodestat); 5631 } 5632 5633 __meminit void zone_pcp_init(struct zone *zone) 5634 { 5635 /* 5636 * per cpu subsystem is not up at this point. The following code 5637 * relies on the ability of the linker to provide the 5638 * offset of a (static) per cpu variable into the per cpu area. 5639 */ 5640 zone->per_cpu_pageset = &boot_pageset; 5641 zone->per_cpu_zonestats = &boot_zonestats; 5642 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5643 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5644 zone->pageset_batch = BOOT_PAGESET_BATCH; 5645 5646 if (populated_zone(zone)) 5647 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5648 zone->present_pages, zone_batchsize(zone)); 5649 } 5650 5651 void adjust_managed_page_count(struct page *page, long count) 5652 { 5653 atomic_long_add(count, &page_zone(page)->managed_pages); 5654 totalram_pages_add(count); 5655 #ifdef CONFIG_HIGHMEM 5656 if (PageHighMem(page)) 5657 totalhigh_pages_add(count); 5658 #endif 5659 } 5660 EXPORT_SYMBOL(adjust_managed_page_count); 5661 5662 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5663 { 5664 void *pos; 5665 unsigned long pages = 0; 5666 5667 start = (void *)PAGE_ALIGN((unsigned long)start); 5668 end = (void *)((unsigned long)end & PAGE_MASK); 5669 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5670 struct page *page = virt_to_page(pos); 5671 void *direct_map_addr; 5672 5673 /* 5674 * 'direct_map_addr' might be different from 'pos' 5675 * because some architectures' virt_to_page() 5676 * work with aliases. Getting the direct map 5677 * address ensures that we get a _writeable_ 5678 * alias for the memset(). 5679 */ 5680 direct_map_addr = page_address(page); 5681 /* 5682 * Perform a kasan-unchecked memset() since this memory 5683 * has not been initialized. 5684 */ 5685 direct_map_addr = kasan_reset_tag(direct_map_addr); 5686 if ((unsigned int)poison <= 0xFF) 5687 memset(direct_map_addr, poison, PAGE_SIZE); 5688 5689 free_reserved_page(page); 5690 } 5691 5692 if (pages && s) 5693 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5694 5695 return pages; 5696 } 5697 5698 static int page_alloc_cpu_dead(unsigned int cpu) 5699 { 5700 struct zone *zone; 5701 5702 lru_add_drain_cpu(cpu); 5703 mlock_drain_remote(cpu); 5704 drain_pages(cpu); 5705 5706 /* 5707 * Spill the event counters of the dead processor 5708 * into the current processors event counters. 5709 * This artificially elevates the count of the current 5710 * processor. 5711 */ 5712 vm_events_fold_cpu(cpu); 5713 5714 /* 5715 * Zero the differential counters of the dead processor 5716 * so that the vm statistics are consistent. 5717 * 5718 * This is only okay since the processor is dead and cannot 5719 * race with what we are doing. 5720 */ 5721 cpu_vm_stats_fold(cpu); 5722 5723 for_each_populated_zone(zone) 5724 zone_pcp_update(zone, 0); 5725 5726 return 0; 5727 } 5728 5729 static int page_alloc_cpu_online(unsigned int cpu) 5730 { 5731 struct zone *zone; 5732 5733 for_each_populated_zone(zone) 5734 zone_pcp_update(zone, 1); 5735 return 0; 5736 } 5737 5738 void __init page_alloc_init_cpuhp(void) 5739 { 5740 int ret; 5741 5742 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5743 "mm/page_alloc:pcp", 5744 page_alloc_cpu_online, 5745 page_alloc_cpu_dead); 5746 WARN_ON(ret < 0); 5747 } 5748 5749 /* 5750 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5751 * or min_free_kbytes changes. 5752 */ 5753 static void calculate_totalreserve_pages(void) 5754 { 5755 struct pglist_data *pgdat; 5756 unsigned long reserve_pages = 0; 5757 enum zone_type i, j; 5758 5759 for_each_online_pgdat(pgdat) { 5760 5761 pgdat->totalreserve_pages = 0; 5762 5763 for (i = 0; i < MAX_NR_ZONES; i++) { 5764 struct zone *zone = pgdat->node_zones + i; 5765 long max = 0; 5766 unsigned long managed_pages = zone_managed_pages(zone); 5767 5768 /* Find valid and maximum lowmem_reserve in the zone */ 5769 for (j = i; j < MAX_NR_ZONES; j++) { 5770 if (zone->lowmem_reserve[j] > max) 5771 max = zone->lowmem_reserve[j]; 5772 } 5773 5774 /* we treat the high watermark as reserved pages. */ 5775 max += high_wmark_pages(zone); 5776 5777 if (max > managed_pages) 5778 max = managed_pages; 5779 5780 pgdat->totalreserve_pages += max; 5781 5782 reserve_pages += max; 5783 } 5784 } 5785 totalreserve_pages = reserve_pages; 5786 } 5787 5788 /* 5789 * setup_per_zone_lowmem_reserve - called whenever 5790 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5791 * has a correct pages reserved value, so an adequate number of 5792 * pages are left in the zone after a successful __alloc_pages(). 5793 */ 5794 static void setup_per_zone_lowmem_reserve(void) 5795 { 5796 struct pglist_data *pgdat; 5797 enum zone_type i, j; 5798 5799 for_each_online_pgdat(pgdat) { 5800 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5801 struct zone *zone = &pgdat->node_zones[i]; 5802 int ratio = sysctl_lowmem_reserve_ratio[i]; 5803 bool clear = !ratio || !zone_managed_pages(zone); 5804 unsigned long managed_pages = 0; 5805 5806 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5807 struct zone *upper_zone = &pgdat->node_zones[j]; 5808 5809 managed_pages += zone_managed_pages(upper_zone); 5810 5811 if (clear) 5812 zone->lowmem_reserve[j] = 0; 5813 else 5814 zone->lowmem_reserve[j] = managed_pages / ratio; 5815 } 5816 } 5817 } 5818 5819 /* update totalreserve_pages */ 5820 calculate_totalreserve_pages(); 5821 } 5822 5823 static void __setup_per_zone_wmarks(void) 5824 { 5825 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5826 unsigned long lowmem_pages = 0; 5827 struct zone *zone; 5828 unsigned long flags; 5829 5830 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5831 for_each_zone(zone) { 5832 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5833 lowmem_pages += zone_managed_pages(zone); 5834 } 5835 5836 for_each_zone(zone) { 5837 u64 tmp; 5838 5839 spin_lock_irqsave(&zone->lock, flags); 5840 tmp = (u64)pages_min * zone_managed_pages(zone); 5841 do_div(tmp, lowmem_pages); 5842 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5843 /* 5844 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5845 * need highmem and movable zones pages, so cap pages_min 5846 * to a small value here. 5847 * 5848 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5849 * deltas control async page reclaim, and so should 5850 * not be capped for highmem and movable zones. 5851 */ 5852 unsigned long min_pages; 5853 5854 min_pages = zone_managed_pages(zone) / 1024; 5855 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5856 zone->_watermark[WMARK_MIN] = min_pages; 5857 } else { 5858 /* 5859 * If it's a lowmem zone, reserve a number of pages 5860 * proportionate to the zone's size. 5861 */ 5862 zone->_watermark[WMARK_MIN] = tmp; 5863 } 5864 5865 /* 5866 * Set the kswapd watermarks distance according to the 5867 * scale factor in proportion to available memory, but 5868 * ensure a minimum size on small systems. 5869 */ 5870 tmp = max_t(u64, tmp >> 2, 5871 mult_frac(zone_managed_pages(zone), 5872 watermark_scale_factor, 10000)); 5873 5874 zone->watermark_boost = 0; 5875 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5876 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5877 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5878 5879 spin_unlock_irqrestore(&zone->lock, flags); 5880 } 5881 5882 /* update totalreserve_pages */ 5883 calculate_totalreserve_pages(); 5884 } 5885 5886 /** 5887 * setup_per_zone_wmarks - called when min_free_kbytes changes 5888 * or when memory is hot-{added|removed} 5889 * 5890 * Ensures that the watermark[min,low,high] values for each zone are set 5891 * correctly with respect to min_free_kbytes. 5892 */ 5893 void setup_per_zone_wmarks(void) 5894 { 5895 struct zone *zone; 5896 static DEFINE_SPINLOCK(lock); 5897 5898 spin_lock(&lock); 5899 __setup_per_zone_wmarks(); 5900 spin_unlock(&lock); 5901 5902 /* 5903 * The watermark size have changed so update the pcpu batch 5904 * and high limits or the limits may be inappropriate. 5905 */ 5906 for_each_zone(zone) 5907 zone_pcp_update(zone, 0); 5908 } 5909 5910 /* 5911 * Initialise min_free_kbytes. 5912 * 5913 * For small machines we want it small (128k min). For large machines 5914 * we want it large (256MB max). But it is not linear, because network 5915 * bandwidth does not increase linearly with machine size. We use 5916 * 5917 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5918 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5919 * 5920 * which yields 5921 * 5922 * 16MB: 512k 5923 * 32MB: 724k 5924 * 64MB: 1024k 5925 * 128MB: 1448k 5926 * 256MB: 2048k 5927 * 512MB: 2896k 5928 * 1024MB: 4096k 5929 * 2048MB: 5792k 5930 * 4096MB: 8192k 5931 * 8192MB: 11584k 5932 * 16384MB: 16384k 5933 */ 5934 void calculate_min_free_kbytes(void) 5935 { 5936 unsigned long lowmem_kbytes; 5937 int new_min_free_kbytes; 5938 5939 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5940 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5941 5942 if (new_min_free_kbytes > user_min_free_kbytes) 5943 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5944 else 5945 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5946 new_min_free_kbytes, user_min_free_kbytes); 5947 5948 } 5949 5950 int __meminit init_per_zone_wmark_min(void) 5951 { 5952 calculate_min_free_kbytes(); 5953 setup_per_zone_wmarks(); 5954 refresh_zone_stat_thresholds(); 5955 setup_per_zone_lowmem_reserve(); 5956 5957 #ifdef CONFIG_NUMA 5958 setup_min_unmapped_ratio(); 5959 setup_min_slab_ratio(); 5960 #endif 5961 5962 khugepaged_min_free_kbytes_update(); 5963 5964 return 0; 5965 } 5966 postcore_initcall(init_per_zone_wmark_min) 5967 5968 /* 5969 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5970 * that we can call two helper functions whenever min_free_kbytes 5971 * changes. 5972 */ 5973 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5974 void *buffer, size_t *length, loff_t *ppos) 5975 { 5976 int rc; 5977 5978 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5979 if (rc) 5980 return rc; 5981 5982 if (write) { 5983 user_min_free_kbytes = min_free_kbytes; 5984 setup_per_zone_wmarks(); 5985 } 5986 return 0; 5987 } 5988 5989 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 5990 void *buffer, size_t *length, loff_t *ppos) 5991 { 5992 int rc; 5993 5994 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5995 if (rc) 5996 return rc; 5997 5998 if (write) 5999 setup_per_zone_wmarks(); 6000 6001 return 0; 6002 } 6003 6004 #ifdef CONFIG_NUMA 6005 static void setup_min_unmapped_ratio(void) 6006 { 6007 pg_data_t *pgdat; 6008 struct zone *zone; 6009 6010 for_each_online_pgdat(pgdat) 6011 pgdat->min_unmapped_pages = 0; 6012 6013 for_each_zone(zone) 6014 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6015 sysctl_min_unmapped_ratio) / 100; 6016 } 6017 6018 6019 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6020 void *buffer, size_t *length, loff_t *ppos) 6021 { 6022 int rc; 6023 6024 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6025 if (rc) 6026 return rc; 6027 6028 setup_min_unmapped_ratio(); 6029 6030 return 0; 6031 } 6032 6033 static void setup_min_slab_ratio(void) 6034 { 6035 pg_data_t *pgdat; 6036 struct zone *zone; 6037 6038 for_each_online_pgdat(pgdat) 6039 pgdat->min_slab_pages = 0; 6040 6041 for_each_zone(zone) 6042 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6043 sysctl_min_slab_ratio) / 100; 6044 } 6045 6046 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6047 void *buffer, size_t *length, loff_t *ppos) 6048 { 6049 int rc; 6050 6051 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6052 if (rc) 6053 return rc; 6054 6055 setup_min_slab_ratio(); 6056 6057 return 0; 6058 } 6059 #endif 6060 6061 /* 6062 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6063 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6064 * whenever sysctl_lowmem_reserve_ratio changes. 6065 * 6066 * The reserve ratio obviously has absolutely no relation with the 6067 * minimum watermarks. The lowmem reserve ratio can only make sense 6068 * if in function of the boot time zone sizes. 6069 */ 6070 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 6071 int write, void *buffer, size_t *length, loff_t *ppos) 6072 { 6073 int i; 6074 6075 proc_dointvec_minmax(table, write, buffer, length, ppos); 6076 6077 for (i = 0; i < MAX_NR_ZONES; i++) { 6078 if (sysctl_lowmem_reserve_ratio[i] < 1) 6079 sysctl_lowmem_reserve_ratio[i] = 0; 6080 } 6081 6082 setup_per_zone_lowmem_reserve(); 6083 return 0; 6084 } 6085 6086 /* 6087 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6088 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6089 * pagelist can have before it gets flushed back to buddy allocator. 6090 */ 6091 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6092 int write, void *buffer, size_t *length, loff_t *ppos) 6093 { 6094 struct zone *zone; 6095 int old_percpu_pagelist_high_fraction; 6096 int ret; 6097 6098 mutex_lock(&pcp_batch_high_lock); 6099 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6100 6101 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6102 if (!write || ret < 0) 6103 goto out; 6104 6105 /* Sanity checking to avoid pcp imbalance */ 6106 if (percpu_pagelist_high_fraction && 6107 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6108 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6109 ret = -EINVAL; 6110 goto out; 6111 } 6112 6113 /* No change? */ 6114 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6115 goto out; 6116 6117 for_each_populated_zone(zone) 6118 zone_set_pageset_high_and_batch(zone, 0); 6119 out: 6120 mutex_unlock(&pcp_batch_high_lock); 6121 return ret; 6122 } 6123 6124 static struct ctl_table page_alloc_sysctl_table[] = { 6125 { 6126 .procname = "min_free_kbytes", 6127 .data = &min_free_kbytes, 6128 .maxlen = sizeof(min_free_kbytes), 6129 .mode = 0644, 6130 .proc_handler = min_free_kbytes_sysctl_handler, 6131 .extra1 = SYSCTL_ZERO, 6132 }, 6133 { 6134 .procname = "watermark_boost_factor", 6135 .data = &watermark_boost_factor, 6136 .maxlen = sizeof(watermark_boost_factor), 6137 .mode = 0644, 6138 .proc_handler = proc_dointvec_minmax, 6139 .extra1 = SYSCTL_ZERO, 6140 }, 6141 { 6142 .procname = "watermark_scale_factor", 6143 .data = &watermark_scale_factor, 6144 .maxlen = sizeof(watermark_scale_factor), 6145 .mode = 0644, 6146 .proc_handler = watermark_scale_factor_sysctl_handler, 6147 .extra1 = SYSCTL_ONE, 6148 .extra2 = SYSCTL_THREE_THOUSAND, 6149 }, 6150 { 6151 .procname = "percpu_pagelist_high_fraction", 6152 .data = &percpu_pagelist_high_fraction, 6153 .maxlen = sizeof(percpu_pagelist_high_fraction), 6154 .mode = 0644, 6155 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6156 .extra1 = SYSCTL_ZERO, 6157 }, 6158 { 6159 .procname = "lowmem_reserve_ratio", 6160 .data = &sysctl_lowmem_reserve_ratio, 6161 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6162 .mode = 0644, 6163 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6164 }, 6165 #ifdef CONFIG_NUMA 6166 { 6167 .procname = "numa_zonelist_order", 6168 .data = &numa_zonelist_order, 6169 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6170 .mode = 0644, 6171 .proc_handler = numa_zonelist_order_handler, 6172 }, 6173 { 6174 .procname = "min_unmapped_ratio", 6175 .data = &sysctl_min_unmapped_ratio, 6176 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6177 .mode = 0644, 6178 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6179 .extra1 = SYSCTL_ZERO, 6180 .extra2 = SYSCTL_ONE_HUNDRED, 6181 }, 6182 { 6183 .procname = "min_slab_ratio", 6184 .data = &sysctl_min_slab_ratio, 6185 .maxlen = sizeof(sysctl_min_slab_ratio), 6186 .mode = 0644, 6187 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6188 .extra1 = SYSCTL_ZERO, 6189 .extra2 = SYSCTL_ONE_HUNDRED, 6190 }, 6191 #endif 6192 {} 6193 }; 6194 6195 void __init page_alloc_sysctl_init(void) 6196 { 6197 register_sysctl_init("vm", page_alloc_sysctl_table); 6198 } 6199 6200 #ifdef CONFIG_CONTIG_ALLOC 6201 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6202 static void alloc_contig_dump_pages(struct list_head *page_list) 6203 { 6204 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6205 6206 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6207 struct page *page; 6208 6209 dump_stack(); 6210 list_for_each_entry(page, page_list, lru) 6211 dump_page(page, "migration failure"); 6212 } 6213 } 6214 6215 /* [start, end) must belong to a single zone. */ 6216 int __alloc_contig_migrate_range(struct compact_control *cc, 6217 unsigned long start, unsigned long end) 6218 { 6219 /* This function is based on compact_zone() from compaction.c. */ 6220 unsigned int nr_reclaimed; 6221 unsigned long pfn = start; 6222 unsigned int tries = 0; 6223 int ret = 0; 6224 struct migration_target_control mtc = { 6225 .nid = zone_to_nid(cc->zone), 6226 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6227 }; 6228 6229 lru_cache_disable(); 6230 6231 while (pfn < end || !list_empty(&cc->migratepages)) { 6232 if (fatal_signal_pending(current)) { 6233 ret = -EINTR; 6234 break; 6235 } 6236 6237 if (list_empty(&cc->migratepages)) { 6238 cc->nr_migratepages = 0; 6239 ret = isolate_migratepages_range(cc, pfn, end); 6240 if (ret && ret != -EAGAIN) 6241 break; 6242 pfn = cc->migrate_pfn; 6243 tries = 0; 6244 } else if (++tries == 5) { 6245 ret = -EBUSY; 6246 break; 6247 } 6248 6249 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6250 &cc->migratepages); 6251 cc->nr_migratepages -= nr_reclaimed; 6252 6253 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6254 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6255 6256 /* 6257 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6258 * to retry again over this error, so do the same here. 6259 */ 6260 if (ret == -ENOMEM) 6261 break; 6262 } 6263 6264 lru_cache_enable(); 6265 if (ret < 0) { 6266 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6267 alloc_contig_dump_pages(&cc->migratepages); 6268 putback_movable_pages(&cc->migratepages); 6269 return ret; 6270 } 6271 return 0; 6272 } 6273 6274 /** 6275 * alloc_contig_range() -- tries to allocate given range of pages 6276 * @start: start PFN to allocate 6277 * @end: one-past-the-last PFN to allocate 6278 * @migratetype: migratetype of the underlying pageblocks (either 6279 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6280 * in range must have the same migratetype and it must 6281 * be either of the two. 6282 * @gfp_mask: GFP mask to use during compaction 6283 * 6284 * The PFN range does not have to be pageblock aligned. The PFN range must 6285 * belong to a single zone. 6286 * 6287 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6288 * pageblocks in the range. Once isolated, the pageblocks should not 6289 * be modified by others. 6290 * 6291 * Return: zero on success or negative error code. On success all 6292 * pages which PFN is in [start, end) are allocated for the caller and 6293 * need to be freed with free_contig_range(). 6294 */ 6295 int alloc_contig_range(unsigned long start, unsigned long end, 6296 unsigned migratetype, gfp_t gfp_mask) 6297 { 6298 unsigned long outer_start, outer_end; 6299 int order; 6300 int ret = 0; 6301 6302 struct compact_control cc = { 6303 .nr_migratepages = 0, 6304 .order = -1, 6305 .zone = page_zone(pfn_to_page(start)), 6306 .mode = MIGRATE_SYNC, 6307 .ignore_skip_hint = true, 6308 .no_set_skip_hint = true, 6309 .gfp_mask = current_gfp_context(gfp_mask), 6310 .alloc_contig = true, 6311 }; 6312 INIT_LIST_HEAD(&cc.migratepages); 6313 6314 /* 6315 * What we do here is we mark all pageblocks in range as 6316 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6317 * have different sizes, and due to the way page allocator 6318 * work, start_isolate_page_range() has special handlings for this. 6319 * 6320 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6321 * migrate the pages from an unaligned range (ie. pages that 6322 * we are interested in). This will put all the pages in 6323 * range back to page allocator as MIGRATE_ISOLATE. 6324 * 6325 * When this is done, we take the pages in range from page 6326 * allocator removing them from the buddy system. This way 6327 * page allocator will never consider using them. 6328 * 6329 * This lets us mark the pageblocks back as 6330 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6331 * aligned range but not in the unaligned, original range are 6332 * put back to page allocator so that buddy can use them. 6333 */ 6334 6335 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6336 if (ret) 6337 goto done; 6338 6339 drain_all_pages(cc.zone); 6340 6341 /* 6342 * In case of -EBUSY, we'd like to know which page causes problem. 6343 * So, just fall through. test_pages_isolated() has a tracepoint 6344 * which will report the busy page. 6345 * 6346 * It is possible that busy pages could become available before 6347 * the call to test_pages_isolated, and the range will actually be 6348 * allocated. So, if we fall through be sure to clear ret so that 6349 * -EBUSY is not accidentally used or returned to caller. 6350 */ 6351 ret = __alloc_contig_migrate_range(&cc, start, end); 6352 if (ret && ret != -EBUSY) 6353 goto done; 6354 ret = 0; 6355 6356 /* 6357 * Pages from [start, end) are within a pageblock_nr_pages 6358 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6359 * more, all pages in [start, end) are free in page allocator. 6360 * What we are going to do is to allocate all pages from 6361 * [start, end) (that is remove them from page allocator). 6362 * 6363 * The only problem is that pages at the beginning and at the 6364 * end of interesting range may be not aligned with pages that 6365 * page allocator holds, ie. they can be part of higher order 6366 * pages. Because of this, we reserve the bigger range and 6367 * once this is done free the pages we are not interested in. 6368 * 6369 * We don't have to hold zone->lock here because the pages are 6370 * isolated thus they won't get removed from buddy. 6371 */ 6372 6373 order = 0; 6374 outer_start = start; 6375 while (!PageBuddy(pfn_to_page(outer_start))) { 6376 if (++order > MAX_PAGE_ORDER) { 6377 outer_start = start; 6378 break; 6379 } 6380 outer_start &= ~0UL << order; 6381 } 6382 6383 if (outer_start != start) { 6384 order = buddy_order(pfn_to_page(outer_start)); 6385 6386 /* 6387 * outer_start page could be small order buddy page and 6388 * it doesn't include start page. Adjust outer_start 6389 * in this case to report failed page properly 6390 * on tracepoint in test_pages_isolated() 6391 */ 6392 if (outer_start + (1UL << order) <= start) 6393 outer_start = start; 6394 } 6395 6396 /* Make sure the range is really isolated. */ 6397 if (test_pages_isolated(outer_start, end, 0)) { 6398 ret = -EBUSY; 6399 goto done; 6400 } 6401 6402 /* Grab isolated pages from freelists. */ 6403 outer_end = isolate_freepages_range(&cc, outer_start, end); 6404 if (!outer_end) { 6405 ret = -EBUSY; 6406 goto done; 6407 } 6408 6409 /* Free head and tail (if any) */ 6410 if (start != outer_start) 6411 free_contig_range(outer_start, start - outer_start); 6412 if (end != outer_end) 6413 free_contig_range(end, outer_end - end); 6414 6415 done: 6416 undo_isolate_page_range(start, end, migratetype); 6417 return ret; 6418 } 6419 EXPORT_SYMBOL(alloc_contig_range); 6420 6421 static int __alloc_contig_pages(unsigned long start_pfn, 6422 unsigned long nr_pages, gfp_t gfp_mask) 6423 { 6424 unsigned long end_pfn = start_pfn + nr_pages; 6425 6426 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6427 gfp_mask); 6428 } 6429 6430 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6431 unsigned long nr_pages) 6432 { 6433 unsigned long i, end_pfn = start_pfn + nr_pages; 6434 struct page *page; 6435 6436 for (i = start_pfn; i < end_pfn; i++) { 6437 page = pfn_to_online_page(i); 6438 if (!page) 6439 return false; 6440 6441 if (page_zone(page) != z) 6442 return false; 6443 6444 if (PageReserved(page)) 6445 return false; 6446 6447 if (PageHuge(page)) 6448 return false; 6449 } 6450 return true; 6451 } 6452 6453 static bool zone_spans_last_pfn(const struct zone *zone, 6454 unsigned long start_pfn, unsigned long nr_pages) 6455 { 6456 unsigned long last_pfn = start_pfn + nr_pages - 1; 6457 6458 return zone_spans_pfn(zone, last_pfn); 6459 } 6460 6461 /** 6462 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6463 * @nr_pages: Number of contiguous pages to allocate 6464 * @gfp_mask: GFP mask to limit search and used during compaction 6465 * @nid: Target node 6466 * @nodemask: Mask for other possible nodes 6467 * 6468 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6469 * on an applicable zonelist to find a contiguous pfn range which can then be 6470 * tried for allocation with alloc_contig_range(). This routine is intended 6471 * for allocation requests which can not be fulfilled with the buddy allocator. 6472 * 6473 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6474 * power of two, then allocated range is also guaranteed to be aligned to same 6475 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6476 * 6477 * Allocated pages can be freed with free_contig_range() or by manually calling 6478 * __free_page() on each allocated page. 6479 * 6480 * Return: pointer to contiguous pages on success, or NULL if not successful. 6481 */ 6482 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6483 int nid, nodemask_t *nodemask) 6484 { 6485 unsigned long ret, pfn, flags; 6486 struct zonelist *zonelist; 6487 struct zone *zone; 6488 struct zoneref *z; 6489 6490 zonelist = node_zonelist(nid, gfp_mask); 6491 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6492 gfp_zone(gfp_mask), nodemask) { 6493 spin_lock_irqsave(&zone->lock, flags); 6494 6495 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6496 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6497 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6498 /* 6499 * We release the zone lock here because 6500 * alloc_contig_range() will also lock the zone 6501 * at some point. If there's an allocation 6502 * spinning on this lock, it may win the race 6503 * and cause alloc_contig_range() to fail... 6504 */ 6505 spin_unlock_irqrestore(&zone->lock, flags); 6506 ret = __alloc_contig_pages(pfn, nr_pages, 6507 gfp_mask); 6508 if (!ret) 6509 return pfn_to_page(pfn); 6510 spin_lock_irqsave(&zone->lock, flags); 6511 } 6512 pfn += nr_pages; 6513 } 6514 spin_unlock_irqrestore(&zone->lock, flags); 6515 } 6516 return NULL; 6517 } 6518 #endif /* CONFIG_CONTIG_ALLOC */ 6519 6520 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6521 { 6522 unsigned long count = 0; 6523 6524 for (; nr_pages--; pfn++) { 6525 struct page *page = pfn_to_page(pfn); 6526 6527 count += page_count(page) != 1; 6528 __free_page(page); 6529 } 6530 WARN(count != 0, "%lu pages are still in use!\n", count); 6531 } 6532 EXPORT_SYMBOL(free_contig_range); 6533 6534 /* 6535 * Effectively disable pcplists for the zone by setting the high limit to 0 6536 * and draining all cpus. A concurrent page freeing on another CPU that's about 6537 * to put the page on pcplist will either finish before the drain and the page 6538 * will be drained, or observe the new high limit and skip the pcplist. 6539 * 6540 * Must be paired with a call to zone_pcp_enable(). 6541 */ 6542 void zone_pcp_disable(struct zone *zone) 6543 { 6544 mutex_lock(&pcp_batch_high_lock); 6545 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6546 __drain_all_pages(zone, true); 6547 } 6548 6549 void zone_pcp_enable(struct zone *zone) 6550 { 6551 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6552 zone->pageset_high_max, zone->pageset_batch); 6553 mutex_unlock(&pcp_batch_high_lock); 6554 } 6555 6556 void zone_pcp_reset(struct zone *zone) 6557 { 6558 int cpu; 6559 struct per_cpu_zonestat *pzstats; 6560 6561 if (zone->per_cpu_pageset != &boot_pageset) { 6562 for_each_online_cpu(cpu) { 6563 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6564 drain_zonestat(zone, pzstats); 6565 } 6566 free_percpu(zone->per_cpu_pageset); 6567 zone->per_cpu_pageset = &boot_pageset; 6568 if (zone->per_cpu_zonestats != &boot_zonestats) { 6569 free_percpu(zone->per_cpu_zonestats); 6570 zone->per_cpu_zonestats = &boot_zonestats; 6571 } 6572 } 6573 } 6574 6575 #ifdef CONFIG_MEMORY_HOTREMOVE 6576 /* 6577 * All pages in the range must be in a single zone, must not contain holes, 6578 * must span full sections, and must be isolated before calling this function. 6579 */ 6580 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6581 { 6582 unsigned long pfn = start_pfn; 6583 struct page *page; 6584 struct zone *zone; 6585 unsigned int order; 6586 unsigned long flags; 6587 6588 offline_mem_sections(pfn, end_pfn); 6589 zone = page_zone(pfn_to_page(pfn)); 6590 spin_lock_irqsave(&zone->lock, flags); 6591 while (pfn < end_pfn) { 6592 page = pfn_to_page(pfn); 6593 /* 6594 * The HWPoisoned page may be not in buddy system, and 6595 * page_count() is not 0. 6596 */ 6597 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6598 pfn++; 6599 continue; 6600 } 6601 /* 6602 * At this point all remaining PageOffline() pages have a 6603 * reference count of 0 and can simply be skipped. 6604 */ 6605 if (PageOffline(page)) { 6606 BUG_ON(page_count(page)); 6607 BUG_ON(PageBuddy(page)); 6608 pfn++; 6609 continue; 6610 } 6611 6612 BUG_ON(page_count(page)); 6613 BUG_ON(!PageBuddy(page)); 6614 order = buddy_order(page); 6615 del_page_from_free_list(page, zone, order); 6616 pfn += (1 << order); 6617 } 6618 spin_unlock_irqrestore(&zone->lock, flags); 6619 } 6620 #endif 6621 6622 /* 6623 * This function returns a stable result only if called under zone lock. 6624 */ 6625 bool is_free_buddy_page(struct page *page) 6626 { 6627 unsigned long pfn = page_to_pfn(page); 6628 unsigned int order; 6629 6630 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6631 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6632 6633 if (PageBuddy(page_head) && 6634 buddy_order_unsafe(page_head) >= order) 6635 break; 6636 } 6637 6638 return order <= MAX_PAGE_ORDER; 6639 } 6640 EXPORT_SYMBOL(is_free_buddy_page); 6641 6642 #ifdef CONFIG_MEMORY_FAILURE 6643 /* 6644 * Break down a higher-order page in sub-pages, and keep our target out of 6645 * buddy allocator. 6646 */ 6647 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6648 struct page *target, int low, int high, 6649 int migratetype) 6650 { 6651 unsigned long size = 1 << high; 6652 struct page *current_buddy; 6653 6654 while (high > low) { 6655 high--; 6656 size >>= 1; 6657 6658 if (target >= &page[size]) { 6659 current_buddy = page; 6660 page = page + size; 6661 } else { 6662 current_buddy = page + size; 6663 } 6664 6665 if (set_page_guard(zone, current_buddy, high, migratetype)) 6666 continue; 6667 6668 add_to_free_list(current_buddy, zone, high, migratetype); 6669 set_buddy_order(current_buddy, high); 6670 } 6671 } 6672 6673 /* 6674 * Take a page that will be marked as poisoned off the buddy allocator. 6675 */ 6676 bool take_page_off_buddy(struct page *page) 6677 { 6678 struct zone *zone = page_zone(page); 6679 unsigned long pfn = page_to_pfn(page); 6680 unsigned long flags; 6681 unsigned int order; 6682 bool ret = false; 6683 6684 spin_lock_irqsave(&zone->lock, flags); 6685 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6686 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6687 int page_order = buddy_order(page_head); 6688 6689 if (PageBuddy(page_head) && page_order >= order) { 6690 unsigned long pfn_head = page_to_pfn(page_head); 6691 int migratetype = get_pfnblock_migratetype(page_head, 6692 pfn_head); 6693 6694 del_page_from_free_list(page_head, zone, page_order); 6695 break_down_buddy_pages(zone, page_head, page, 0, 6696 page_order, migratetype); 6697 SetPageHWPoisonTakenOff(page); 6698 if (!is_migrate_isolate(migratetype)) 6699 __mod_zone_freepage_state(zone, -1, migratetype); 6700 ret = true; 6701 break; 6702 } 6703 if (page_count(page_head) > 0) 6704 break; 6705 } 6706 spin_unlock_irqrestore(&zone->lock, flags); 6707 return ret; 6708 } 6709 6710 /* 6711 * Cancel takeoff done by take_page_off_buddy(). 6712 */ 6713 bool put_page_back_buddy(struct page *page) 6714 { 6715 struct zone *zone = page_zone(page); 6716 unsigned long pfn = page_to_pfn(page); 6717 unsigned long flags; 6718 int migratetype = get_pfnblock_migratetype(page, pfn); 6719 bool ret = false; 6720 6721 spin_lock_irqsave(&zone->lock, flags); 6722 if (put_page_testzero(page)) { 6723 ClearPageHWPoisonTakenOff(page); 6724 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6725 if (TestClearPageHWPoison(page)) { 6726 ret = true; 6727 } 6728 } 6729 spin_unlock_irqrestore(&zone->lock, flags); 6730 6731 return ret; 6732 } 6733 #endif 6734 6735 #ifdef CONFIG_ZONE_DMA 6736 bool has_managed_dma(void) 6737 { 6738 struct pglist_data *pgdat; 6739 6740 for_each_online_pgdat(pgdat) { 6741 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6742 6743 if (managed_zone(zone)) 6744 return true; 6745 } 6746 return false; 6747 } 6748 #endif /* CONFIG_ZONE_DMA */ 6749 6750 #ifdef CONFIG_UNACCEPTED_MEMORY 6751 6752 /* Counts number of zones with unaccepted pages. */ 6753 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6754 6755 static bool lazy_accept = true; 6756 6757 static int __init accept_memory_parse(char *p) 6758 { 6759 if (!strcmp(p, "lazy")) { 6760 lazy_accept = true; 6761 return 0; 6762 } else if (!strcmp(p, "eager")) { 6763 lazy_accept = false; 6764 return 0; 6765 } else { 6766 return -EINVAL; 6767 } 6768 } 6769 early_param("accept_memory", accept_memory_parse); 6770 6771 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6772 { 6773 phys_addr_t start = page_to_phys(page); 6774 phys_addr_t end = start + (PAGE_SIZE << order); 6775 6776 return range_contains_unaccepted_memory(start, end); 6777 } 6778 6779 static void accept_page(struct page *page, unsigned int order) 6780 { 6781 phys_addr_t start = page_to_phys(page); 6782 6783 accept_memory(start, start + (PAGE_SIZE << order)); 6784 } 6785 6786 static bool try_to_accept_memory_one(struct zone *zone) 6787 { 6788 unsigned long flags; 6789 struct page *page; 6790 bool last; 6791 6792 if (list_empty(&zone->unaccepted_pages)) 6793 return false; 6794 6795 spin_lock_irqsave(&zone->lock, flags); 6796 page = list_first_entry_or_null(&zone->unaccepted_pages, 6797 struct page, lru); 6798 if (!page) { 6799 spin_unlock_irqrestore(&zone->lock, flags); 6800 return false; 6801 } 6802 6803 list_del(&page->lru); 6804 last = list_empty(&zone->unaccepted_pages); 6805 6806 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6807 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6808 spin_unlock_irqrestore(&zone->lock, flags); 6809 6810 accept_page(page, MAX_PAGE_ORDER); 6811 6812 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 6813 6814 if (last) 6815 static_branch_dec(&zones_with_unaccepted_pages); 6816 6817 return true; 6818 } 6819 6820 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6821 { 6822 long to_accept; 6823 int ret = false; 6824 6825 /* How much to accept to get to high watermark? */ 6826 to_accept = high_wmark_pages(zone) - 6827 (zone_page_state(zone, NR_FREE_PAGES) - 6828 __zone_watermark_unusable_free(zone, order, 0)); 6829 6830 /* Accept at least one page */ 6831 do { 6832 if (!try_to_accept_memory_one(zone)) 6833 break; 6834 ret = true; 6835 to_accept -= MAX_ORDER_NR_PAGES; 6836 } while (to_accept > 0); 6837 6838 return ret; 6839 } 6840 6841 static inline bool has_unaccepted_memory(void) 6842 { 6843 return static_branch_unlikely(&zones_with_unaccepted_pages); 6844 } 6845 6846 static bool __free_unaccepted(struct page *page) 6847 { 6848 struct zone *zone = page_zone(page); 6849 unsigned long flags; 6850 bool first = false; 6851 6852 if (!lazy_accept) 6853 return false; 6854 6855 spin_lock_irqsave(&zone->lock, flags); 6856 first = list_empty(&zone->unaccepted_pages); 6857 list_add_tail(&page->lru, &zone->unaccepted_pages); 6858 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6859 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6860 spin_unlock_irqrestore(&zone->lock, flags); 6861 6862 if (first) 6863 static_branch_inc(&zones_with_unaccepted_pages); 6864 6865 return true; 6866 } 6867 6868 #else 6869 6870 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6871 { 6872 return false; 6873 } 6874 6875 static void accept_page(struct page *page, unsigned int order) 6876 { 6877 } 6878 6879 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6880 { 6881 return false; 6882 } 6883 6884 static inline bool has_unaccepted_memory(void) 6885 { 6886 return false; 6887 } 6888 6889 static bool __free_unaccepted(struct page *page) 6890 { 6891 BUILD_BUG(); 6892 return false; 6893 } 6894 6895 #endif /* CONFIG_UNACCEPTED_MEMORY */ 6896