xref: /linux/mm/page_alloc.c (revision 778e73d2411abc8f3a2d60dbf038acaec218792e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <linux/cacheinfo.h>
56 #include <asm/div64.h>
57 #include "internal.h"
58 #include "shuffle.h"
59 #include "page_reporting.h"
60 
61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
62 typedef int __bitwise fpi_t;
63 
64 /* No special request */
65 #define FPI_NONE		((__force fpi_t)0)
66 
67 /*
68  * Skip free page reporting notification for the (possibly merged) page.
69  * This does not hinder free page reporting from grabbing the page,
70  * reporting it and marking it "reported" -  it only skips notifying
71  * the free page reporting infrastructure about a newly freed page. For
72  * example, used when temporarily pulling a page from a freelist and
73  * putting it back unmodified.
74  */
75 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
76 
77 /*
78  * Place the (possibly merged) page to the tail of the freelist. Will ignore
79  * page shuffling (relevant code - e.g., memory onlining - is expected to
80  * shuffle the whole zone).
81  *
82  * Note: No code should rely on this flag for correctness - it's purely
83  *       to allow for optimizations when handing back either fresh pages
84  *       (memory onlining) or untouched pages (page isolation, free page
85  *       reporting).
86  */
87 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
88 
89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
90 static DEFINE_MUTEX(pcp_batch_high_lock);
91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
92 
93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
94 /*
95  * On SMP, spin_trylock is sufficient protection.
96  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
97  */
98 #define pcp_trylock_prepare(flags)	do { } while (0)
99 #define pcp_trylock_finish(flag)	do { } while (0)
100 #else
101 
102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
103 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
104 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
105 #endif
106 
107 /*
108  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
109  * a migration causing the wrong PCP to be locked and remote memory being
110  * potentially allocated, pin the task to the CPU for the lookup+lock.
111  * preempt_disable is used on !RT because it is faster than migrate_disable.
112  * migrate_disable is used on RT because otherwise RT spinlock usage is
113  * interfered with and a high priority task cannot preempt the allocator.
114  */
115 #ifndef CONFIG_PREEMPT_RT
116 #define pcpu_task_pin()		preempt_disable()
117 #define pcpu_task_unpin()	preempt_enable()
118 #else
119 #define pcpu_task_pin()		migrate_disable()
120 #define pcpu_task_unpin()	migrate_enable()
121 #endif
122 
123 /*
124  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
125  * Return value should be used with equivalent unlock helper.
126  */
127 #define pcpu_spin_lock(type, member, ptr)				\
128 ({									\
129 	type *_ret;							\
130 	pcpu_task_pin();						\
131 	_ret = this_cpu_ptr(ptr);					\
132 	spin_lock(&_ret->member);					\
133 	_ret;								\
134 })
135 
136 #define pcpu_spin_trylock(type, member, ptr)				\
137 ({									\
138 	type *_ret;							\
139 	pcpu_task_pin();						\
140 	_ret = this_cpu_ptr(ptr);					\
141 	if (!spin_trylock(&_ret->member)) {				\
142 		pcpu_task_unpin();					\
143 		_ret = NULL;						\
144 	}								\
145 	_ret;								\
146 })
147 
148 #define pcpu_spin_unlock(member, ptr)					\
149 ({									\
150 	spin_unlock(&ptr->member);					\
151 	pcpu_task_unpin();						\
152 })
153 
154 /* struct per_cpu_pages specific helpers. */
155 #define pcp_spin_lock(ptr)						\
156 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
157 
158 #define pcp_spin_trylock(ptr)						\
159 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
160 
161 #define pcp_spin_unlock(ptr)						\
162 	pcpu_spin_unlock(lock, ptr)
163 
164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
165 DEFINE_PER_CPU(int, numa_node);
166 EXPORT_PER_CPU_SYMBOL(numa_node);
167 #endif
168 
169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
170 
171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
172 /*
173  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
174  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
175  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
176  * defined in <linux/topology.h>.
177  */
178 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
179 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
180 #endif
181 
182 static DEFINE_MUTEX(pcpu_drain_mutex);
183 
184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
185 volatile unsigned long latent_entropy __latent_entropy;
186 EXPORT_SYMBOL(latent_entropy);
187 #endif
188 
189 /*
190  * Array of node states.
191  */
192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
193 	[N_POSSIBLE] = NODE_MASK_ALL,
194 	[N_ONLINE] = { { [0] = 1UL } },
195 #ifndef CONFIG_NUMA
196 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
197 #ifdef CONFIG_HIGHMEM
198 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
199 #endif
200 	[N_MEMORY] = { { [0] = 1UL } },
201 	[N_CPU] = { { [0] = 1UL } },
202 #endif	/* NUMA */
203 };
204 EXPORT_SYMBOL(node_states);
205 
206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
207 
208 /*
209  * A cached value of the page's pageblock's migratetype, used when the page is
210  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
211  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
212  * Also the migratetype set in the page does not necessarily match the pcplist
213  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
214  * other index - this ensures that it will be put on the correct CMA freelist.
215  */
216 static inline int get_pcppage_migratetype(struct page *page)
217 {
218 	return page->index;
219 }
220 
221 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
222 {
223 	page->index = migratetype;
224 }
225 
226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
227 unsigned int pageblock_order __read_mostly;
228 #endif
229 
230 static void __free_pages_ok(struct page *page, unsigned int order,
231 			    fpi_t fpi_flags);
232 
233 /*
234  * results with 256, 32 in the lowmem_reserve sysctl:
235  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
236  *	1G machine -> (16M dma, 784M normal, 224M high)
237  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
238  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
239  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
240  *
241  * TBD: should special case ZONE_DMA32 machines here - in those we normally
242  * don't need any ZONE_NORMAL reservation
243  */
244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
245 #ifdef CONFIG_ZONE_DMA
246 	[ZONE_DMA] = 256,
247 #endif
248 #ifdef CONFIG_ZONE_DMA32
249 	[ZONE_DMA32] = 256,
250 #endif
251 	[ZONE_NORMAL] = 32,
252 #ifdef CONFIG_HIGHMEM
253 	[ZONE_HIGHMEM] = 0,
254 #endif
255 	[ZONE_MOVABLE] = 0,
256 };
257 
258 char * const zone_names[MAX_NR_ZONES] = {
259 #ifdef CONFIG_ZONE_DMA
260 	 "DMA",
261 #endif
262 #ifdef CONFIG_ZONE_DMA32
263 	 "DMA32",
264 #endif
265 	 "Normal",
266 #ifdef CONFIG_HIGHMEM
267 	 "HighMem",
268 #endif
269 	 "Movable",
270 #ifdef CONFIG_ZONE_DEVICE
271 	 "Device",
272 #endif
273 };
274 
275 const char * const migratetype_names[MIGRATE_TYPES] = {
276 	"Unmovable",
277 	"Movable",
278 	"Reclaimable",
279 	"HighAtomic",
280 #ifdef CONFIG_CMA
281 	"CMA",
282 #endif
283 #ifdef CONFIG_MEMORY_ISOLATION
284 	"Isolate",
285 #endif
286 };
287 
288 int min_free_kbytes = 1024;
289 int user_min_free_kbytes = -1;
290 static int watermark_boost_factor __read_mostly = 15000;
291 static int watermark_scale_factor = 10;
292 
293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
294 int movable_zone;
295 EXPORT_SYMBOL(movable_zone);
296 
297 #if MAX_NUMNODES > 1
298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
299 unsigned int nr_online_nodes __read_mostly = 1;
300 EXPORT_SYMBOL(nr_node_ids);
301 EXPORT_SYMBOL(nr_online_nodes);
302 #endif
303 
304 static bool page_contains_unaccepted(struct page *page, unsigned int order);
305 static void accept_page(struct page *page, unsigned int order);
306 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
307 static inline bool has_unaccepted_memory(void);
308 static bool __free_unaccepted(struct page *page);
309 
310 int page_group_by_mobility_disabled __read_mostly;
311 
312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
313 /*
314  * During boot we initialize deferred pages on-demand, as needed, but once
315  * page_alloc_init_late() has finished, the deferred pages are all initialized,
316  * and we can permanently disable that path.
317  */
318 DEFINE_STATIC_KEY_TRUE(deferred_pages);
319 
320 static inline bool deferred_pages_enabled(void)
321 {
322 	return static_branch_unlikely(&deferred_pages);
323 }
324 
325 /*
326  * deferred_grow_zone() is __init, but it is called from
327  * get_page_from_freelist() during early boot until deferred_pages permanently
328  * disables this call. This is why we have refdata wrapper to avoid warning,
329  * and to ensure that the function body gets unloaded.
330  */
331 static bool __ref
332 _deferred_grow_zone(struct zone *zone, unsigned int order)
333 {
334        return deferred_grow_zone(zone, order);
335 }
336 #else
337 static inline bool deferred_pages_enabled(void)
338 {
339 	return false;
340 }
341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
342 
343 /* Return a pointer to the bitmap storing bits affecting a block of pages */
344 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
345 							unsigned long pfn)
346 {
347 #ifdef CONFIG_SPARSEMEM
348 	return section_to_usemap(__pfn_to_section(pfn));
349 #else
350 	return page_zone(page)->pageblock_flags;
351 #endif /* CONFIG_SPARSEMEM */
352 }
353 
354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
355 {
356 #ifdef CONFIG_SPARSEMEM
357 	pfn &= (PAGES_PER_SECTION-1);
358 #else
359 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
360 #endif /* CONFIG_SPARSEMEM */
361 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
362 }
363 
364 /**
365  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366  * @page: The page within the block of interest
367  * @pfn: The target page frame number
368  * @mask: mask of bits that the caller is interested in
369  *
370  * Return: pageblock_bits flags
371  */
372 unsigned long get_pfnblock_flags_mask(const struct page *page,
373 					unsigned long pfn, unsigned long mask)
374 {
375 	unsigned long *bitmap;
376 	unsigned long bitidx, word_bitidx;
377 	unsigned long word;
378 
379 	bitmap = get_pageblock_bitmap(page, pfn);
380 	bitidx = pfn_to_bitidx(page, pfn);
381 	word_bitidx = bitidx / BITS_PER_LONG;
382 	bitidx &= (BITS_PER_LONG-1);
383 	/*
384 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
385 	 * a consistent read of the memory array, so that results, even though
386 	 * racy, are not corrupted.
387 	 */
388 	word = READ_ONCE(bitmap[word_bitidx]);
389 	return (word >> bitidx) & mask;
390 }
391 
392 static __always_inline int get_pfnblock_migratetype(const struct page *page,
393 					unsigned long pfn)
394 {
395 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
396 }
397 
398 /**
399  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
400  * @page: The page within the block of interest
401  * @flags: The flags to set
402  * @pfn: The target page frame number
403  * @mask: mask of bits that the caller is interested in
404  */
405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
406 					unsigned long pfn,
407 					unsigned long mask)
408 {
409 	unsigned long *bitmap;
410 	unsigned long bitidx, word_bitidx;
411 	unsigned long word;
412 
413 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
414 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
415 
416 	bitmap = get_pageblock_bitmap(page, pfn);
417 	bitidx = pfn_to_bitidx(page, pfn);
418 	word_bitidx = bitidx / BITS_PER_LONG;
419 	bitidx &= (BITS_PER_LONG-1);
420 
421 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
422 
423 	mask <<= bitidx;
424 	flags <<= bitidx;
425 
426 	word = READ_ONCE(bitmap[word_bitidx]);
427 	do {
428 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
429 }
430 
431 void set_pageblock_migratetype(struct page *page, int migratetype)
432 {
433 	if (unlikely(page_group_by_mobility_disabled &&
434 		     migratetype < MIGRATE_PCPTYPES))
435 		migratetype = MIGRATE_UNMOVABLE;
436 
437 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
438 				page_to_pfn(page), MIGRATETYPE_MASK);
439 }
440 
441 #ifdef CONFIG_DEBUG_VM
442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
443 {
444 	int ret;
445 	unsigned seq;
446 	unsigned long pfn = page_to_pfn(page);
447 	unsigned long sp, start_pfn;
448 
449 	do {
450 		seq = zone_span_seqbegin(zone);
451 		start_pfn = zone->zone_start_pfn;
452 		sp = zone->spanned_pages;
453 		ret = !zone_spans_pfn(zone, pfn);
454 	} while (zone_span_seqretry(zone, seq));
455 
456 	if (ret)
457 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
458 			pfn, zone_to_nid(zone), zone->name,
459 			start_pfn, start_pfn + sp);
460 
461 	return ret;
462 }
463 
464 /*
465  * Temporary debugging check for pages not lying within a given zone.
466  */
467 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
468 {
469 	if (page_outside_zone_boundaries(zone, page))
470 		return 1;
471 	if (zone != page_zone(page))
472 		return 1;
473 
474 	return 0;
475 }
476 #else
477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
478 {
479 	return 0;
480 }
481 #endif
482 
483 static void bad_page(struct page *page, const char *reason)
484 {
485 	static unsigned long resume;
486 	static unsigned long nr_shown;
487 	static unsigned long nr_unshown;
488 
489 	/*
490 	 * Allow a burst of 60 reports, then keep quiet for that minute;
491 	 * or allow a steady drip of one report per second.
492 	 */
493 	if (nr_shown == 60) {
494 		if (time_before(jiffies, resume)) {
495 			nr_unshown++;
496 			goto out;
497 		}
498 		if (nr_unshown) {
499 			pr_alert(
500 			      "BUG: Bad page state: %lu messages suppressed\n",
501 				nr_unshown);
502 			nr_unshown = 0;
503 		}
504 		nr_shown = 0;
505 	}
506 	if (nr_shown++ == 0)
507 		resume = jiffies + 60 * HZ;
508 
509 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
510 		current->comm, page_to_pfn(page));
511 	dump_page(page, reason);
512 
513 	print_modules();
514 	dump_stack();
515 out:
516 	/* Leave bad fields for debug, except PageBuddy could make trouble */
517 	page_mapcount_reset(page); /* remove PageBuddy */
518 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
519 }
520 
521 static inline unsigned int order_to_pindex(int migratetype, int order)
522 {
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 		VM_BUG_ON(order != pageblock_order);
526 		return NR_LOWORDER_PCP_LISTS;
527 	}
528 #else
529 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
530 #endif
531 
532 	return (MIGRATE_PCPTYPES * order) + migratetype;
533 }
534 
535 static inline int pindex_to_order(unsigned int pindex)
536 {
537 	int order = pindex / MIGRATE_PCPTYPES;
538 
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 	if (pindex == NR_LOWORDER_PCP_LISTS)
541 		order = pageblock_order;
542 #else
543 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
544 #endif
545 
546 	return order;
547 }
548 
549 static inline bool pcp_allowed_order(unsigned int order)
550 {
551 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
552 		return true;
553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 	if (order == pageblock_order)
555 		return true;
556 #endif
557 	return false;
558 }
559 
560 static inline void free_the_page(struct page *page, unsigned int order)
561 {
562 	if (pcp_allowed_order(order))		/* Via pcp? */
563 		free_unref_page(page, order);
564 	else
565 		__free_pages_ok(page, order, FPI_NONE);
566 }
567 
568 /*
569  * Higher-order pages are called "compound pages".  They are structured thusly:
570  *
571  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
572  *
573  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
575  *
576  * The first tail page's ->compound_order holds the order of allocation.
577  * This usage means that zero-order pages may not be compound.
578  */
579 
580 void prep_compound_page(struct page *page, unsigned int order)
581 {
582 	int i;
583 	int nr_pages = 1 << order;
584 
585 	__SetPageHead(page);
586 	for (i = 1; i < nr_pages; i++)
587 		prep_compound_tail(page, i);
588 
589 	prep_compound_head(page, order);
590 }
591 
592 void destroy_large_folio(struct folio *folio)
593 {
594 	if (folio_test_hugetlb(folio)) {
595 		free_huge_folio(folio);
596 		return;
597 	}
598 
599 	if (folio_test_large_rmappable(folio))
600 		folio_undo_large_rmappable(folio);
601 
602 	mem_cgroup_uncharge(folio);
603 	free_the_page(&folio->page, folio_order(folio));
604 }
605 
606 static inline void set_buddy_order(struct page *page, unsigned int order)
607 {
608 	set_page_private(page, order);
609 	__SetPageBuddy(page);
610 }
611 
612 #ifdef CONFIG_COMPACTION
613 static inline struct capture_control *task_capc(struct zone *zone)
614 {
615 	struct capture_control *capc = current->capture_control;
616 
617 	return unlikely(capc) &&
618 		!(current->flags & PF_KTHREAD) &&
619 		!capc->page &&
620 		capc->cc->zone == zone ? capc : NULL;
621 }
622 
623 static inline bool
624 compaction_capture(struct capture_control *capc, struct page *page,
625 		   int order, int migratetype)
626 {
627 	if (!capc || order != capc->cc->order)
628 		return false;
629 
630 	/* Do not accidentally pollute CMA or isolated regions*/
631 	if (is_migrate_cma(migratetype) ||
632 	    is_migrate_isolate(migratetype))
633 		return false;
634 
635 	/*
636 	 * Do not let lower order allocations pollute a movable pageblock.
637 	 * This might let an unmovable request use a reclaimable pageblock
638 	 * and vice-versa but no more than normal fallback logic which can
639 	 * have trouble finding a high-order free page.
640 	 */
641 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
642 		return false;
643 
644 	capc->page = page;
645 	return true;
646 }
647 
648 #else
649 static inline struct capture_control *task_capc(struct zone *zone)
650 {
651 	return NULL;
652 }
653 
654 static inline bool
655 compaction_capture(struct capture_control *capc, struct page *page,
656 		   int order, int migratetype)
657 {
658 	return false;
659 }
660 #endif /* CONFIG_COMPACTION */
661 
662 /* Used for pages not on another list */
663 static inline void add_to_free_list(struct page *page, struct zone *zone,
664 				    unsigned int order, int migratetype)
665 {
666 	struct free_area *area = &zone->free_area[order];
667 
668 	list_add(&page->buddy_list, &area->free_list[migratetype]);
669 	area->nr_free++;
670 }
671 
672 /* Used for pages not on another list */
673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
674 					 unsigned int order, int migratetype)
675 {
676 	struct free_area *area = &zone->free_area[order];
677 
678 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
679 	area->nr_free++;
680 }
681 
682 /*
683  * Used for pages which are on another list. Move the pages to the tail
684  * of the list - so the moved pages won't immediately be considered for
685  * allocation again (e.g., optimization for memory onlining).
686  */
687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 				     unsigned int order, int migratetype)
689 {
690 	struct free_area *area = &zone->free_area[order];
691 
692 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
693 }
694 
695 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
696 					   unsigned int order)
697 {
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
708 static inline struct page *get_page_from_free_area(struct free_area *area,
709 					    int migratetype)
710 {
711 	return list_first_entry_or_null(&area->free_list[migratetype],
712 					struct page, buddy_list);
713 }
714 
715 /*
716  * If this is not the largest possible page, check if the buddy
717  * of the next-highest order is free. If it is, it's possible
718  * that pages are being freed that will coalesce soon. In case,
719  * that is happening, add the free page to the tail of the list
720  * so it's less likely to be used soon and more likely to be merged
721  * as a higher order page
722  */
723 static inline bool
724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
725 		   struct page *page, unsigned int order)
726 {
727 	unsigned long higher_page_pfn;
728 	struct page *higher_page;
729 
730 	if (order >= MAX_PAGE_ORDER - 1)
731 		return false;
732 
733 	higher_page_pfn = buddy_pfn & pfn;
734 	higher_page = page + (higher_page_pfn - pfn);
735 
736 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
737 			NULL) != NULL;
738 }
739 
740 /*
741  * Freeing function for a buddy system allocator.
742  *
743  * The concept of a buddy system is to maintain direct-mapped table
744  * (containing bit values) for memory blocks of various "orders".
745  * The bottom level table contains the map for the smallest allocatable
746  * units of memory (here, pages), and each level above it describes
747  * pairs of units from the levels below, hence, "buddies".
748  * At a high level, all that happens here is marking the table entry
749  * at the bottom level available, and propagating the changes upward
750  * as necessary, plus some accounting needed to play nicely with other
751  * parts of the VM system.
752  * At each level, we keep a list of pages, which are heads of continuous
753  * free pages of length of (1 << order) and marked with PageBuddy.
754  * Page's order is recorded in page_private(page) field.
755  * So when we are allocating or freeing one, we can derive the state of the
756  * other.  That is, if we allocate a small block, and both were
757  * free, the remainder of the region must be split into blocks.
758  * If a block is freed, and its buddy is also free, then this
759  * triggers coalescing into a block of larger size.
760  *
761  * -- nyc
762  */
763 
764 static inline void __free_one_page(struct page *page,
765 		unsigned long pfn,
766 		struct zone *zone, unsigned int order,
767 		int migratetype, fpi_t fpi_flags)
768 {
769 	struct capture_control *capc = task_capc(zone);
770 	unsigned long buddy_pfn = 0;
771 	unsigned long combined_pfn;
772 	struct page *buddy;
773 	bool to_tail;
774 
775 	VM_BUG_ON(!zone_is_initialized(zone));
776 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
777 
778 	VM_BUG_ON(migratetype == -1);
779 	if (likely(!is_migrate_isolate(migratetype)))
780 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
781 
782 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
783 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
784 
785 	while (order < MAX_PAGE_ORDER) {
786 		if (compaction_capture(capc, page, order, migratetype)) {
787 			__mod_zone_freepage_state(zone, -(1 << order),
788 								migratetype);
789 			return;
790 		}
791 
792 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
793 		if (!buddy)
794 			goto done_merging;
795 
796 		if (unlikely(order >= pageblock_order)) {
797 			/*
798 			 * We want to prevent merge between freepages on pageblock
799 			 * without fallbacks and normal pageblock. Without this,
800 			 * pageblock isolation could cause incorrect freepage or CMA
801 			 * accounting or HIGHATOMIC accounting.
802 			 */
803 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
804 
805 			if (migratetype != buddy_mt
806 					&& (!migratetype_is_mergeable(migratetype) ||
807 						!migratetype_is_mergeable(buddy_mt)))
808 				goto done_merging;
809 		}
810 
811 		/*
812 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 		 * merge with it and move up one order.
814 		 */
815 		if (page_is_guard(buddy))
816 			clear_page_guard(zone, buddy, order, migratetype);
817 		else
818 			del_page_from_free_list(buddy, zone, order);
819 		combined_pfn = buddy_pfn & pfn;
820 		page = page + (combined_pfn - pfn);
821 		pfn = combined_pfn;
822 		order++;
823 	}
824 
825 done_merging:
826 	set_buddy_order(page, order);
827 
828 	if (fpi_flags & FPI_TO_TAIL)
829 		to_tail = true;
830 	else if (is_shuffle_order(order))
831 		to_tail = shuffle_pick_tail();
832 	else
833 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
834 
835 	if (to_tail)
836 		add_to_free_list_tail(page, zone, order, migratetype);
837 	else
838 		add_to_free_list(page, zone, order, migratetype);
839 
840 	/* Notify page reporting subsystem of freed page */
841 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 		page_reporting_notify_free(order);
843 }
844 
845 /**
846  * split_free_page() -- split a free page at split_pfn_offset
847  * @free_page:		the original free page
848  * @order:		the order of the page
849  * @split_pfn_offset:	split offset within the page
850  *
851  * Return -ENOENT if the free page is changed, otherwise 0
852  *
853  * It is used when the free page crosses two pageblocks with different migratetypes
854  * at split_pfn_offset within the page. The split free page will be put into
855  * separate migratetype lists afterwards. Otherwise, the function achieves
856  * nothing.
857  */
858 int split_free_page(struct page *free_page,
859 			unsigned int order, unsigned long split_pfn_offset)
860 {
861 	struct zone *zone = page_zone(free_page);
862 	unsigned long free_page_pfn = page_to_pfn(free_page);
863 	unsigned long pfn;
864 	unsigned long flags;
865 	int free_page_order;
866 	int mt;
867 	int ret = 0;
868 
869 	if (split_pfn_offset == 0)
870 		return ret;
871 
872 	spin_lock_irqsave(&zone->lock, flags);
873 
874 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
875 		ret = -ENOENT;
876 		goto out;
877 	}
878 
879 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
880 	if (likely(!is_migrate_isolate(mt)))
881 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
882 
883 	del_page_from_free_list(free_page, zone, order);
884 	for (pfn = free_page_pfn;
885 	     pfn < free_page_pfn + (1UL << order);) {
886 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
887 
888 		free_page_order = min_t(unsigned int,
889 					pfn ? __ffs(pfn) : order,
890 					__fls(split_pfn_offset));
891 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
892 				mt, FPI_NONE);
893 		pfn += 1UL << free_page_order;
894 		split_pfn_offset -= (1UL << free_page_order);
895 		/* we have done the first part, now switch to second part */
896 		if (split_pfn_offset == 0)
897 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
898 	}
899 out:
900 	spin_unlock_irqrestore(&zone->lock, flags);
901 	return ret;
902 }
903 /*
904  * A bad page could be due to a number of fields. Instead of multiple branches,
905  * try and check multiple fields with one check. The caller must do a detailed
906  * check if necessary.
907  */
908 static inline bool page_expected_state(struct page *page,
909 					unsigned long check_flags)
910 {
911 	if (unlikely(atomic_read(&page->_mapcount) != -1))
912 		return false;
913 
914 	if (unlikely((unsigned long)page->mapping |
915 			page_ref_count(page) |
916 #ifdef CONFIG_MEMCG
917 			page->memcg_data |
918 #endif
919 			(page->flags & check_flags)))
920 		return false;
921 
922 	return true;
923 }
924 
925 static const char *page_bad_reason(struct page *page, unsigned long flags)
926 {
927 	const char *bad_reason = NULL;
928 
929 	if (unlikely(atomic_read(&page->_mapcount) != -1))
930 		bad_reason = "nonzero mapcount";
931 	if (unlikely(page->mapping != NULL))
932 		bad_reason = "non-NULL mapping";
933 	if (unlikely(page_ref_count(page) != 0))
934 		bad_reason = "nonzero _refcount";
935 	if (unlikely(page->flags & flags)) {
936 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
937 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
938 		else
939 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
940 	}
941 #ifdef CONFIG_MEMCG
942 	if (unlikely(page->memcg_data))
943 		bad_reason = "page still charged to cgroup";
944 #endif
945 	return bad_reason;
946 }
947 
948 static void free_page_is_bad_report(struct page *page)
949 {
950 	bad_page(page,
951 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
952 }
953 
954 static inline bool free_page_is_bad(struct page *page)
955 {
956 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
957 		return false;
958 
959 	/* Something has gone sideways, find it */
960 	free_page_is_bad_report(page);
961 	return true;
962 }
963 
964 static inline bool is_check_pages_enabled(void)
965 {
966 	return static_branch_unlikely(&check_pages_enabled);
967 }
968 
969 static int free_tail_page_prepare(struct page *head_page, struct page *page)
970 {
971 	struct folio *folio = (struct folio *)head_page;
972 	int ret = 1;
973 
974 	/*
975 	 * We rely page->lru.next never has bit 0 set, unless the page
976 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
977 	 */
978 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
979 
980 	if (!is_check_pages_enabled()) {
981 		ret = 0;
982 		goto out;
983 	}
984 	switch (page - head_page) {
985 	case 1:
986 		/* the first tail page: these may be in place of ->mapping */
987 		if (unlikely(folio_entire_mapcount(folio))) {
988 			bad_page(page, "nonzero entire_mapcount");
989 			goto out;
990 		}
991 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
992 			bad_page(page, "nonzero nr_pages_mapped");
993 			goto out;
994 		}
995 		if (unlikely(atomic_read(&folio->_pincount))) {
996 			bad_page(page, "nonzero pincount");
997 			goto out;
998 		}
999 		break;
1000 	case 2:
1001 		/*
1002 		 * the second tail page: ->mapping is
1003 		 * deferred_list.next -- ignore value.
1004 		 */
1005 		break;
1006 	default:
1007 		if (page->mapping != TAIL_MAPPING) {
1008 			bad_page(page, "corrupted mapping in tail page");
1009 			goto out;
1010 		}
1011 		break;
1012 	}
1013 	if (unlikely(!PageTail(page))) {
1014 		bad_page(page, "PageTail not set");
1015 		goto out;
1016 	}
1017 	if (unlikely(compound_head(page) != head_page)) {
1018 		bad_page(page, "compound_head not consistent");
1019 		goto out;
1020 	}
1021 	ret = 0;
1022 out:
1023 	page->mapping = NULL;
1024 	clear_compound_head(page);
1025 	return ret;
1026 }
1027 
1028 /*
1029  * Skip KASAN memory poisoning when either:
1030  *
1031  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1032  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1033  *    using page tags instead (see below).
1034  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1035  *    that error detection is disabled for accesses via the page address.
1036  *
1037  * Pages will have match-all tags in the following circumstances:
1038  *
1039  * 1. Pages are being initialized for the first time, including during deferred
1040  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1041  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1042  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1043  * 3. The allocation was excluded from being checked due to sampling,
1044  *    see the call to kasan_unpoison_pages.
1045  *
1046  * Poisoning pages during deferred memory init will greatly lengthen the
1047  * process and cause problem in large memory systems as the deferred pages
1048  * initialization is done with interrupt disabled.
1049  *
1050  * Assuming that there will be no reference to those newly initialized
1051  * pages before they are ever allocated, this should have no effect on
1052  * KASAN memory tracking as the poison will be properly inserted at page
1053  * allocation time. The only corner case is when pages are allocated by
1054  * on-demand allocation and then freed again before the deferred pages
1055  * initialization is done, but this is not likely to happen.
1056  */
1057 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1058 {
1059 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1060 		return deferred_pages_enabled();
1061 
1062 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1063 }
1064 
1065 static void kernel_init_pages(struct page *page, int numpages)
1066 {
1067 	int i;
1068 
1069 	/* s390's use of memset() could override KASAN redzones. */
1070 	kasan_disable_current();
1071 	for (i = 0; i < numpages; i++)
1072 		clear_highpage_kasan_tagged(page + i);
1073 	kasan_enable_current();
1074 }
1075 
1076 static __always_inline bool free_pages_prepare(struct page *page,
1077 			unsigned int order, fpi_t fpi_flags)
1078 {
1079 	int bad = 0;
1080 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1081 	bool init = want_init_on_free();
1082 	bool compound = PageCompound(page);
1083 
1084 	VM_BUG_ON_PAGE(PageTail(page), page);
1085 
1086 	trace_mm_page_free(page, order);
1087 	kmsan_free_page(page, order);
1088 
1089 	if (memcg_kmem_online() && PageMemcgKmem(page))
1090 		__memcg_kmem_uncharge_page(page, order);
1091 
1092 	if (unlikely(PageHWPoison(page)) && !order) {
1093 		/* Do not let hwpoison pages hit pcplists/buddy */
1094 		reset_page_owner(page, order);
1095 		page_table_check_free(page, order);
1096 		return false;
1097 	}
1098 
1099 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1100 
1101 	/*
1102 	 * Check tail pages before head page information is cleared to
1103 	 * avoid checking PageCompound for order-0 pages.
1104 	 */
1105 	if (unlikely(order)) {
1106 		int i;
1107 
1108 		if (compound)
1109 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1110 		for (i = 1; i < (1 << order); i++) {
1111 			if (compound)
1112 				bad += free_tail_page_prepare(page, page + i);
1113 			if (is_check_pages_enabled()) {
1114 				if (free_page_is_bad(page + i)) {
1115 					bad++;
1116 					continue;
1117 				}
1118 			}
1119 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1120 		}
1121 	}
1122 	if (PageMappingFlags(page))
1123 		page->mapping = NULL;
1124 	if (is_check_pages_enabled()) {
1125 		if (free_page_is_bad(page))
1126 			bad++;
1127 		if (bad)
1128 			return false;
1129 	}
1130 
1131 	page_cpupid_reset_last(page);
1132 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1133 	reset_page_owner(page, order);
1134 	page_table_check_free(page, order);
1135 
1136 	if (!PageHighMem(page)) {
1137 		debug_check_no_locks_freed(page_address(page),
1138 					   PAGE_SIZE << order);
1139 		debug_check_no_obj_freed(page_address(page),
1140 					   PAGE_SIZE << order);
1141 	}
1142 
1143 	kernel_poison_pages(page, 1 << order);
1144 
1145 	/*
1146 	 * As memory initialization might be integrated into KASAN,
1147 	 * KASAN poisoning and memory initialization code must be
1148 	 * kept together to avoid discrepancies in behavior.
1149 	 *
1150 	 * With hardware tag-based KASAN, memory tags must be set before the
1151 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1152 	 */
1153 	if (!skip_kasan_poison) {
1154 		kasan_poison_pages(page, order, init);
1155 
1156 		/* Memory is already initialized if KASAN did it internally. */
1157 		if (kasan_has_integrated_init())
1158 			init = false;
1159 	}
1160 	if (init)
1161 		kernel_init_pages(page, 1 << order);
1162 
1163 	/*
1164 	 * arch_free_page() can make the page's contents inaccessible.  s390
1165 	 * does this.  So nothing which can access the page's contents should
1166 	 * happen after this.
1167 	 */
1168 	arch_free_page(page, order);
1169 
1170 	debug_pagealloc_unmap_pages(page, 1 << order);
1171 
1172 	return true;
1173 }
1174 
1175 /*
1176  * Frees a number of pages from the PCP lists
1177  * Assumes all pages on list are in same zone.
1178  * count is the number of pages to free.
1179  */
1180 static void free_pcppages_bulk(struct zone *zone, int count,
1181 					struct per_cpu_pages *pcp,
1182 					int pindex)
1183 {
1184 	unsigned long flags;
1185 	unsigned int order;
1186 	bool isolated_pageblocks;
1187 	struct page *page;
1188 
1189 	/*
1190 	 * Ensure proper count is passed which otherwise would stuck in the
1191 	 * below while (list_empty(list)) loop.
1192 	 */
1193 	count = min(pcp->count, count);
1194 
1195 	/* Ensure requested pindex is drained first. */
1196 	pindex = pindex - 1;
1197 
1198 	spin_lock_irqsave(&zone->lock, flags);
1199 	isolated_pageblocks = has_isolate_pageblock(zone);
1200 
1201 	while (count > 0) {
1202 		struct list_head *list;
1203 		int nr_pages;
1204 
1205 		/* Remove pages from lists in a round-robin fashion. */
1206 		do {
1207 			if (++pindex > NR_PCP_LISTS - 1)
1208 				pindex = 0;
1209 			list = &pcp->lists[pindex];
1210 		} while (list_empty(list));
1211 
1212 		order = pindex_to_order(pindex);
1213 		nr_pages = 1 << order;
1214 		do {
1215 			int mt;
1216 
1217 			page = list_last_entry(list, struct page, pcp_list);
1218 			mt = get_pcppage_migratetype(page);
1219 
1220 			/* must delete to avoid corrupting pcp list */
1221 			list_del(&page->pcp_list);
1222 			count -= nr_pages;
1223 			pcp->count -= nr_pages;
1224 
1225 			/* MIGRATE_ISOLATE page should not go to pcplists */
1226 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1227 			/* Pageblock could have been isolated meanwhile */
1228 			if (unlikely(isolated_pageblocks))
1229 				mt = get_pageblock_migratetype(page);
1230 
1231 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1232 			trace_mm_page_pcpu_drain(page, order, mt);
1233 		} while (count > 0 && !list_empty(list));
1234 	}
1235 
1236 	spin_unlock_irqrestore(&zone->lock, flags);
1237 }
1238 
1239 static void free_one_page(struct zone *zone,
1240 				struct page *page, unsigned long pfn,
1241 				unsigned int order,
1242 				int migratetype, fpi_t fpi_flags)
1243 {
1244 	unsigned long flags;
1245 
1246 	spin_lock_irqsave(&zone->lock, flags);
1247 	if (unlikely(has_isolate_pageblock(zone) ||
1248 		is_migrate_isolate(migratetype))) {
1249 		migratetype = get_pfnblock_migratetype(page, pfn);
1250 	}
1251 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1252 	spin_unlock_irqrestore(&zone->lock, flags);
1253 }
1254 
1255 static void __free_pages_ok(struct page *page, unsigned int order,
1256 			    fpi_t fpi_flags)
1257 {
1258 	int migratetype;
1259 	unsigned long pfn = page_to_pfn(page);
1260 	struct zone *zone = page_zone(page);
1261 
1262 	if (!free_pages_prepare(page, order, fpi_flags))
1263 		return;
1264 
1265 	/*
1266 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1267 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1268 	 * This will reduce the lock holding time.
1269 	 */
1270 	migratetype = get_pfnblock_migratetype(page, pfn);
1271 
1272 	free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
1273 
1274 	__count_vm_events(PGFREE, 1 << order);
1275 }
1276 
1277 void __free_pages_core(struct page *page, unsigned int order)
1278 {
1279 	unsigned int nr_pages = 1 << order;
1280 	struct page *p = page;
1281 	unsigned int loop;
1282 
1283 	/*
1284 	 * When initializing the memmap, __init_single_page() sets the refcount
1285 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1286 	 * refcount of all involved pages to 0.
1287 	 */
1288 	prefetchw(p);
1289 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1290 		prefetchw(p + 1);
1291 		__ClearPageReserved(p);
1292 		set_page_count(p, 0);
1293 	}
1294 	__ClearPageReserved(p);
1295 	set_page_count(p, 0);
1296 
1297 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1298 
1299 	if (page_contains_unaccepted(page, order)) {
1300 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1301 			return;
1302 
1303 		accept_page(page, order);
1304 	}
1305 
1306 	/*
1307 	 * Bypass PCP and place fresh pages right to the tail, primarily
1308 	 * relevant for memory onlining.
1309 	 */
1310 	__free_pages_ok(page, order, FPI_TO_TAIL);
1311 }
1312 
1313 /*
1314  * Check that the whole (or subset of) a pageblock given by the interval of
1315  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1316  * with the migration of free compaction scanner.
1317  *
1318  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1319  *
1320  * It's possible on some configurations to have a setup like node0 node1 node0
1321  * i.e. it's possible that all pages within a zones range of pages do not
1322  * belong to a single zone. We assume that a border between node0 and node1
1323  * can occur within a single pageblock, but not a node0 node1 node0
1324  * interleaving within a single pageblock. It is therefore sufficient to check
1325  * the first and last page of a pageblock and avoid checking each individual
1326  * page in a pageblock.
1327  *
1328  * Note: the function may return non-NULL struct page even for a page block
1329  * which contains a memory hole (i.e. there is no physical memory for a subset
1330  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1331  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1332  * even though the start pfn is online and valid. This should be safe most of
1333  * the time because struct pages are still initialized via init_unavailable_range()
1334  * and pfn walkers shouldn't touch any physical memory range for which they do
1335  * not recognize any specific metadata in struct pages.
1336  */
1337 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1338 				     unsigned long end_pfn, struct zone *zone)
1339 {
1340 	struct page *start_page;
1341 	struct page *end_page;
1342 
1343 	/* end_pfn is one past the range we are checking */
1344 	end_pfn--;
1345 
1346 	if (!pfn_valid(end_pfn))
1347 		return NULL;
1348 
1349 	start_page = pfn_to_online_page(start_pfn);
1350 	if (!start_page)
1351 		return NULL;
1352 
1353 	if (page_zone(start_page) != zone)
1354 		return NULL;
1355 
1356 	end_page = pfn_to_page(end_pfn);
1357 
1358 	/* This gives a shorter code than deriving page_zone(end_page) */
1359 	if (page_zone_id(start_page) != page_zone_id(end_page))
1360 		return NULL;
1361 
1362 	return start_page;
1363 }
1364 
1365 /*
1366  * The order of subdivision here is critical for the IO subsystem.
1367  * Please do not alter this order without good reasons and regression
1368  * testing. Specifically, as large blocks of memory are subdivided,
1369  * the order in which smaller blocks are delivered depends on the order
1370  * they're subdivided in this function. This is the primary factor
1371  * influencing the order in which pages are delivered to the IO
1372  * subsystem according to empirical testing, and this is also justified
1373  * by considering the behavior of a buddy system containing a single
1374  * large block of memory acted on by a series of small allocations.
1375  * This behavior is a critical factor in sglist merging's success.
1376  *
1377  * -- nyc
1378  */
1379 static inline void expand(struct zone *zone, struct page *page,
1380 	int low, int high, int migratetype)
1381 {
1382 	unsigned long size = 1 << high;
1383 
1384 	while (high > low) {
1385 		high--;
1386 		size >>= 1;
1387 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1388 
1389 		/*
1390 		 * Mark as guard pages (or page), that will allow to
1391 		 * merge back to allocator when buddy will be freed.
1392 		 * Corresponding page table entries will not be touched,
1393 		 * pages will stay not present in virtual address space
1394 		 */
1395 		if (set_page_guard(zone, &page[size], high, migratetype))
1396 			continue;
1397 
1398 		add_to_free_list(&page[size], zone, high, migratetype);
1399 		set_buddy_order(&page[size], high);
1400 	}
1401 }
1402 
1403 static void check_new_page_bad(struct page *page)
1404 {
1405 	if (unlikely(page->flags & __PG_HWPOISON)) {
1406 		/* Don't complain about hwpoisoned pages */
1407 		page_mapcount_reset(page); /* remove PageBuddy */
1408 		return;
1409 	}
1410 
1411 	bad_page(page,
1412 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1413 }
1414 
1415 /*
1416  * This page is about to be returned from the page allocator
1417  */
1418 static int check_new_page(struct page *page)
1419 {
1420 	if (likely(page_expected_state(page,
1421 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1422 		return 0;
1423 
1424 	check_new_page_bad(page);
1425 	return 1;
1426 }
1427 
1428 static inline bool check_new_pages(struct page *page, unsigned int order)
1429 {
1430 	if (is_check_pages_enabled()) {
1431 		for (int i = 0; i < (1 << order); i++) {
1432 			struct page *p = page + i;
1433 
1434 			if (check_new_page(p))
1435 				return true;
1436 		}
1437 	}
1438 
1439 	return false;
1440 }
1441 
1442 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1443 {
1444 	/* Don't skip if a software KASAN mode is enabled. */
1445 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1446 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1447 		return false;
1448 
1449 	/* Skip, if hardware tag-based KASAN is not enabled. */
1450 	if (!kasan_hw_tags_enabled())
1451 		return true;
1452 
1453 	/*
1454 	 * With hardware tag-based KASAN enabled, skip if this has been
1455 	 * requested via __GFP_SKIP_KASAN.
1456 	 */
1457 	return flags & __GFP_SKIP_KASAN;
1458 }
1459 
1460 static inline bool should_skip_init(gfp_t flags)
1461 {
1462 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1463 	if (!kasan_hw_tags_enabled())
1464 		return false;
1465 
1466 	/* For hardware tag-based KASAN, skip if requested. */
1467 	return (flags & __GFP_SKIP_ZERO);
1468 }
1469 
1470 inline void post_alloc_hook(struct page *page, unsigned int order,
1471 				gfp_t gfp_flags)
1472 {
1473 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1474 			!should_skip_init(gfp_flags);
1475 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1476 	int i;
1477 
1478 	set_page_private(page, 0);
1479 	set_page_refcounted(page);
1480 
1481 	arch_alloc_page(page, order);
1482 	debug_pagealloc_map_pages(page, 1 << order);
1483 
1484 	/*
1485 	 * Page unpoisoning must happen before memory initialization.
1486 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1487 	 * allocations and the page unpoisoning code will complain.
1488 	 */
1489 	kernel_unpoison_pages(page, 1 << order);
1490 
1491 	/*
1492 	 * As memory initialization might be integrated into KASAN,
1493 	 * KASAN unpoisoning and memory initializion code must be
1494 	 * kept together to avoid discrepancies in behavior.
1495 	 */
1496 
1497 	/*
1498 	 * If memory tags should be zeroed
1499 	 * (which happens only when memory should be initialized as well).
1500 	 */
1501 	if (zero_tags) {
1502 		/* Initialize both memory and memory tags. */
1503 		for (i = 0; i != 1 << order; ++i)
1504 			tag_clear_highpage(page + i);
1505 
1506 		/* Take note that memory was initialized by the loop above. */
1507 		init = false;
1508 	}
1509 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1510 	    kasan_unpoison_pages(page, order, init)) {
1511 		/* Take note that memory was initialized by KASAN. */
1512 		if (kasan_has_integrated_init())
1513 			init = false;
1514 	} else {
1515 		/*
1516 		 * If memory tags have not been set by KASAN, reset the page
1517 		 * tags to ensure page_address() dereferencing does not fault.
1518 		 */
1519 		for (i = 0; i != 1 << order; ++i)
1520 			page_kasan_tag_reset(page + i);
1521 	}
1522 	/* If memory is still not initialized, initialize it now. */
1523 	if (init)
1524 		kernel_init_pages(page, 1 << order);
1525 
1526 	set_page_owner(page, order, gfp_flags);
1527 	page_table_check_alloc(page, order);
1528 }
1529 
1530 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1531 							unsigned int alloc_flags)
1532 {
1533 	post_alloc_hook(page, order, gfp_flags);
1534 
1535 	if (order && (gfp_flags & __GFP_COMP))
1536 		prep_compound_page(page, order);
1537 
1538 	/*
1539 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1540 	 * allocate the page. The expectation is that the caller is taking
1541 	 * steps that will free more memory. The caller should avoid the page
1542 	 * being used for !PFMEMALLOC purposes.
1543 	 */
1544 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1545 		set_page_pfmemalloc(page);
1546 	else
1547 		clear_page_pfmemalloc(page);
1548 }
1549 
1550 /*
1551  * Go through the free lists for the given migratetype and remove
1552  * the smallest available page from the freelists
1553  */
1554 static __always_inline
1555 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1556 						int migratetype)
1557 {
1558 	unsigned int current_order;
1559 	struct free_area *area;
1560 	struct page *page;
1561 
1562 	/* Find a page of the appropriate size in the preferred list */
1563 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1564 		area = &(zone->free_area[current_order]);
1565 		page = get_page_from_free_area(area, migratetype);
1566 		if (!page)
1567 			continue;
1568 		del_page_from_free_list(page, zone, current_order);
1569 		expand(zone, page, order, current_order, migratetype);
1570 		set_pcppage_migratetype(page, migratetype);
1571 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1572 				pcp_allowed_order(order) &&
1573 				migratetype < MIGRATE_PCPTYPES);
1574 		return page;
1575 	}
1576 
1577 	return NULL;
1578 }
1579 
1580 
1581 /*
1582  * This array describes the order lists are fallen back to when
1583  * the free lists for the desirable migrate type are depleted
1584  *
1585  * The other migratetypes do not have fallbacks.
1586  */
1587 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1588 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1589 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1590 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1591 };
1592 
1593 #ifdef CONFIG_CMA
1594 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1595 					unsigned int order)
1596 {
1597 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1598 }
1599 #else
1600 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1601 					unsigned int order) { return NULL; }
1602 #endif
1603 
1604 /*
1605  * Move the free pages in a range to the freelist tail of the requested type.
1606  * Note that start_page and end_pages are not aligned on a pageblock
1607  * boundary. If alignment is required, use move_freepages_block()
1608  */
1609 static int move_freepages(struct zone *zone,
1610 			  unsigned long start_pfn, unsigned long end_pfn,
1611 			  int migratetype, int *num_movable)
1612 {
1613 	struct page *page;
1614 	unsigned long pfn;
1615 	unsigned int order;
1616 	int pages_moved = 0;
1617 
1618 	for (pfn = start_pfn; pfn <= end_pfn;) {
1619 		page = pfn_to_page(pfn);
1620 		if (!PageBuddy(page)) {
1621 			/*
1622 			 * We assume that pages that could be isolated for
1623 			 * migration are movable. But we don't actually try
1624 			 * isolating, as that would be expensive.
1625 			 */
1626 			if (num_movable &&
1627 					(PageLRU(page) || __PageMovable(page)))
1628 				(*num_movable)++;
1629 			pfn++;
1630 			continue;
1631 		}
1632 
1633 		/* Make sure we are not inadvertently changing nodes */
1634 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1635 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1636 
1637 		order = buddy_order(page);
1638 		move_to_free_list(page, zone, order, migratetype);
1639 		pfn += 1 << order;
1640 		pages_moved += 1 << order;
1641 	}
1642 
1643 	return pages_moved;
1644 }
1645 
1646 int move_freepages_block(struct zone *zone, struct page *page,
1647 				int migratetype, int *num_movable)
1648 {
1649 	unsigned long start_pfn, end_pfn, pfn;
1650 
1651 	if (num_movable)
1652 		*num_movable = 0;
1653 
1654 	pfn = page_to_pfn(page);
1655 	start_pfn = pageblock_start_pfn(pfn);
1656 	end_pfn = pageblock_end_pfn(pfn) - 1;
1657 
1658 	/* Do not cross zone boundaries */
1659 	if (!zone_spans_pfn(zone, start_pfn))
1660 		start_pfn = pfn;
1661 	if (!zone_spans_pfn(zone, end_pfn))
1662 		return 0;
1663 
1664 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1665 								num_movable);
1666 }
1667 
1668 static void change_pageblock_range(struct page *pageblock_page,
1669 					int start_order, int migratetype)
1670 {
1671 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1672 
1673 	while (nr_pageblocks--) {
1674 		set_pageblock_migratetype(pageblock_page, migratetype);
1675 		pageblock_page += pageblock_nr_pages;
1676 	}
1677 }
1678 
1679 /*
1680  * When we are falling back to another migratetype during allocation, try to
1681  * steal extra free pages from the same pageblocks to satisfy further
1682  * allocations, instead of polluting multiple pageblocks.
1683  *
1684  * If we are stealing a relatively large buddy page, it is likely there will
1685  * be more free pages in the pageblock, so try to steal them all. For
1686  * reclaimable and unmovable allocations, we steal regardless of page size,
1687  * as fragmentation caused by those allocations polluting movable pageblocks
1688  * is worse than movable allocations stealing from unmovable and reclaimable
1689  * pageblocks.
1690  */
1691 static bool can_steal_fallback(unsigned int order, int start_mt)
1692 {
1693 	/*
1694 	 * Leaving this order check is intended, although there is
1695 	 * relaxed order check in next check. The reason is that
1696 	 * we can actually steal whole pageblock if this condition met,
1697 	 * but, below check doesn't guarantee it and that is just heuristic
1698 	 * so could be changed anytime.
1699 	 */
1700 	if (order >= pageblock_order)
1701 		return true;
1702 
1703 	if (order >= pageblock_order / 2 ||
1704 		start_mt == MIGRATE_RECLAIMABLE ||
1705 		start_mt == MIGRATE_UNMOVABLE ||
1706 		page_group_by_mobility_disabled)
1707 		return true;
1708 
1709 	return false;
1710 }
1711 
1712 static inline bool boost_watermark(struct zone *zone)
1713 {
1714 	unsigned long max_boost;
1715 
1716 	if (!watermark_boost_factor)
1717 		return false;
1718 	/*
1719 	 * Don't bother in zones that are unlikely to produce results.
1720 	 * On small machines, including kdump capture kernels running
1721 	 * in a small area, boosting the watermark can cause an out of
1722 	 * memory situation immediately.
1723 	 */
1724 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1725 		return false;
1726 
1727 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1728 			watermark_boost_factor, 10000);
1729 
1730 	/*
1731 	 * high watermark may be uninitialised if fragmentation occurs
1732 	 * very early in boot so do not boost. We do not fall
1733 	 * through and boost by pageblock_nr_pages as failing
1734 	 * allocations that early means that reclaim is not going
1735 	 * to help and it may even be impossible to reclaim the
1736 	 * boosted watermark resulting in a hang.
1737 	 */
1738 	if (!max_boost)
1739 		return false;
1740 
1741 	max_boost = max(pageblock_nr_pages, max_boost);
1742 
1743 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1744 		max_boost);
1745 
1746 	return true;
1747 }
1748 
1749 /*
1750  * This function implements actual steal behaviour. If order is large enough,
1751  * we can steal whole pageblock. If not, we first move freepages in this
1752  * pageblock to our migratetype and determine how many already-allocated pages
1753  * are there in the pageblock with a compatible migratetype. If at least half
1754  * of pages are free or compatible, we can change migratetype of the pageblock
1755  * itself, so pages freed in the future will be put on the correct free list.
1756  */
1757 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1758 		unsigned int alloc_flags, int start_type, bool whole_block)
1759 {
1760 	unsigned int current_order = buddy_order(page);
1761 	int free_pages, movable_pages, alike_pages;
1762 	int old_block_type;
1763 
1764 	old_block_type = get_pageblock_migratetype(page);
1765 
1766 	/*
1767 	 * This can happen due to races and we want to prevent broken
1768 	 * highatomic accounting.
1769 	 */
1770 	if (is_migrate_highatomic(old_block_type))
1771 		goto single_page;
1772 
1773 	/* Take ownership for orders >= pageblock_order */
1774 	if (current_order >= pageblock_order) {
1775 		change_pageblock_range(page, current_order, start_type);
1776 		goto single_page;
1777 	}
1778 
1779 	/*
1780 	 * Boost watermarks to increase reclaim pressure to reduce the
1781 	 * likelihood of future fallbacks. Wake kswapd now as the node
1782 	 * may be balanced overall and kswapd will not wake naturally.
1783 	 */
1784 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1785 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1786 
1787 	/* We are not allowed to try stealing from the whole block */
1788 	if (!whole_block)
1789 		goto single_page;
1790 
1791 	free_pages = move_freepages_block(zone, page, start_type,
1792 						&movable_pages);
1793 	/* moving whole block can fail due to zone boundary conditions */
1794 	if (!free_pages)
1795 		goto single_page;
1796 
1797 	/*
1798 	 * Determine how many pages are compatible with our allocation.
1799 	 * For movable allocation, it's the number of movable pages which
1800 	 * we just obtained. For other types it's a bit more tricky.
1801 	 */
1802 	if (start_type == MIGRATE_MOVABLE) {
1803 		alike_pages = movable_pages;
1804 	} else {
1805 		/*
1806 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1807 		 * to MOVABLE pageblock, consider all non-movable pages as
1808 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1809 		 * vice versa, be conservative since we can't distinguish the
1810 		 * exact migratetype of non-movable pages.
1811 		 */
1812 		if (old_block_type == MIGRATE_MOVABLE)
1813 			alike_pages = pageblock_nr_pages
1814 						- (free_pages + movable_pages);
1815 		else
1816 			alike_pages = 0;
1817 	}
1818 	/*
1819 	 * If a sufficient number of pages in the block are either free or of
1820 	 * compatible migratability as our allocation, claim the whole block.
1821 	 */
1822 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1823 			page_group_by_mobility_disabled)
1824 		set_pageblock_migratetype(page, start_type);
1825 
1826 	return;
1827 
1828 single_page:
1829 	move_to_free_list(page, zone, current_order, start_type);
1830 }
1831 
1832 /*
1833  * Check whether there is a suitable fallback freepage with requested order.
1834  * If only_stealable is true, this function returns fallback_mt only if
1835  * we can steal other freepages all together. This would help to reduce
1836  * fragmentation due to mixed migratetype pages in one pageblock.
1837  */
1838 int find_suitable_fallback(struct free_area *area, unsigned int order,
1839 			int migratetype, bool only_stealable, bool *can_steal)
1840 {
1841 	int i;
1842 	int fallback_mt;
1843 
1844 	if (area->nr_free == 0)
1845 		return -1;
1846 
1847 	*can_steal = false;
1848 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1849 		fallback_mt = fallbacks[migratetype][i];
1850 		if (free_area_empty(area, fallback_mt))
1851 			continue;
1852 
1853 		if (can_steal_fallback(order, migratetype))
1854 			*can_steal = true;
1855 
1856 		if (!only_stealable)
1857 			return fallback_mt;
1858 
1859 		if (*can_steal)
1860 			return fallback_mt;
1861 	}
1862 
1863 	return -1;
1864 }
1865 
1866 /*
1867  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1868  * there are no empty page blocks that contain a page with a suitable order
1869  */
1870 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1871 {
1872 	int mt;
1873 	unsigned long max_managed, flags;
1874 
1875 	/*
1876 	 * The number reserved as: minimum is 1 pageblock, maximum is
1877 	 * roughly 1% of a zone. But if 1% of a zone falls below a
1878 	 * pageblock size, then don't reserve any pageblocks.
1879 	 * Check is race-prone but harmless.
1880 	 */
1881 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1882 		return;
1883 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1884 	if (zone->nr_reserved_highatomic >= max_managed)
1885 		return;
1886 
1887 	spin_lock_irqsave(&zone->lock, flags);
1888 
1889 	/* Recheck the nr_reserved_highatomic limit under the lock */
1890 	if (zone->nr_reserved_highatomic >= max_managed)
1891 		goto out_unlock;
1892 
1893 	/* Yoink! */
1894 	mt = get_pageblock_migratetype(page);
1895 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1896 	if (migratetype_is_mergeable(mt)) {
1897 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1898 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1899 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1900 	}
1901 
1902 out_unlock:
1903 	spin_unlock_irqrestore(&zone->lock, flags);
1904 }
1905 
1906 /*
1907  * Used when an allocation is about to fail under memory pressure. This
1908  * potentially hurts the reliability of high-order allocations when under
1909  * intense memory pressure but failed atomic allocations should be easier
1910  * to recover from than an OOM.
1911  *
1912  * If @force is true, try to unreserve a pageblock even though highatomic
1913  * pageblock is exhausted.
1914  */
1915 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1916 						bool force)
1917 {
1918 	struct zonelist *zonelist = ac->zonelist;
1919 	unsigned long flags;
1920 	struct zoneref *z;
1921 	struct zone *zone;
1922 	struct page *page;
1923 	int order;
1924 	bool ret;
1925 
1926 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1927 								ac->nodemask) {
1928 		/*
1929 		 * Preserve at least one pageblock unless memory pressure
1930 		 * is really high.
1931 		 */
1932 		if (!force && zone->nr_reserved_highatomic <=
1933 					pageblock_nr_pages)
1934 			continue;
1935 
1936 		spin_lock_irqsave(&zone->lock, flags);
1937 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1938 			struct free_area *area = &(zone->free_area[order]);
1939 
1940 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1941 			if (!page)
1942 				continue;
1943 
1944 			/*
1945 			 * In page freeing path, migratetype change is racy so
1946 			 * we can counter several free pages in a pageblock
1947 			 * in this loop although we changed the pageblock type
1948 			 * from highatomic to ac->migratetype. So we should
1949 			 * adjust the count once.
1950 			 */
1951 			if (is_migrate_highatomic_page(page)) {
1952 				/*
1953 				 * It should never happen but changes to
1954 				 * locking could inadvertently allow a per-cpu
1955 				 * drain to add pages to MIGRATE_HIGHATOMIC
1956 				 * while unreserving so be safe and watch for
1957 				 * underflows.
1958 				 */
1959 				zone->nr_reserved_highatomic -= min(
1960 						pageblock_nr_pages,
1961 						zone->nr_reserved_highatomic);
1962 			}
1963 
1964 			/*
1965 			 * Convert to ac->migratetype and avoid the normal
1966 			 * pageblock stealing heuristics. Minimally, the caller
1967 			 * is doing the work and needs the pages. More
1968 			 * importantly, if the block was always converted to
1969 			 * MIGRATE_UNMOVABLE or another type then the number
1970 			 * of pageblocks that cannot be completely freed
1971 			 * may increase.
1972 			 */
1973 			set_pageblock_migratetype(page, ac->migratetype);
1974 			ret = move_freepages_block(zone, page, ac->migratetype,
1975 									NULL);
1976 			if (ret) {
1977 				spin_unlock_irqrestore(&zone->lock, flags);
1978 				return ret;
1979 			}
1980 		}
1981 		spin_unlock_irqrestore(&zone->lock, flags);
1982 	}
1983 
1984 	return false;
1985 }
1986 
1987 /*
1988  * Try finding a free buddy page on the fallback list and put it on the free
1989  * list of requested migratetype, possibly along with other pages from the same
1990  * block, depending on fragmentation avoidance heuristics. Returns true if
1991  * fallback was found so that __rmqueue_smallest() can grab it.
1992  *
1993  * The use of signed ints for order and current_order is a deliberate
1994  * deviation from the rest of this file, to make the for loop
1995  * condition simpler.
1996  */
1997 static __always_inline bool
1998 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
1999 						unsigned int alloc_flags)
2000 {
2001 	struct free_area *area;
2002 	int current_order;
2003 	int min_order = order;
2004 	struct page *page;
2005 	int fallback_mt;
2006 	bool can_steal;
2007 
2008 	/*
2009 	 * Do not steal pages from freelists belonging to other pageblocks
2010 	 * i.e. orders < pageblock_order. If there are no local zones free,
2011 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2012 	 */
2013 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2014 		min_order = pageblock_order;
2015 
2016 	/*
2017 	 * Find the largest available free page in the other list. This roughly
2018 	 * approximates finding the pageblock with the most free pages, which
2019 	 * would be too costly to do exactly.
2020 	 */
2021 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2022 				--current_order) {
2023 		area = &(zone->free_area[current_order]);
2024 		fallback_mt = find_suitable_fallback(area, current_order,
2025 				start_migratetype, false, &can_steal);
2026 		if (fallback_mt == -1)
2027 			continue;
2028 
2029 		/*
2030 		 * We cannot steal all free pages from the pageblock and the
2031 		 * requested migratetype is movable. In that case it's better to
2032 		 * steal and split the smallest available page instead of the
2033 		 * largest available page, because even if the next movable
2034 		 * allocation falls back into a different pageblock than this
2035 		 * one, it won't cause permanent fragmentation.
2036 		 */
2037 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2038 					&& current_order > order)
2039 			goto find_smallest;
2040 
2041 		goto do_steal;
2042 	}
2043 
2044 	return false;
2045 
2046 find_smallest:
2047 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2048 		area = &(zone->free_area[current_order]);
2049 		fallback_mt = find_suitable_fallback(area, current_order,
2050 				start_migratetype, false, &can_steal);
2051 		if (fallback_mt != -1)
2052 			break;
2053 	}
2054 
2055 	/*
2056 	 * This should not happen - we already found a suitable fallback
2057 	 * when looking for the largest page.
2058 	 */
2059 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2060 
2061 do_steal:
2062 	page = get_page_from_free_area(area, fallback_mt);
2063 
2064 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2065 								can_steal);
2066 
2067 	trace_mm_page_alloc_extfrag(page, order, current_order,
2068 		start_migratetype, fallback_mt);
2069 
2070 	return true;
2071 
2072 }
2073 
2074 /*
2075  * Do the hard work of removing an element from the buddy allocator.
2076  * Call me with the zone->lock already held.
2077  */
2078 static __always_inline struct page *
2079 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2080 						unsigned int alloc_flags)
2081 {
2082 	struct page *page;
2083 
2084 	if (IS_ENABLED(CONFIG_CMA)) {
2085 		/*
2086 		 * Balance movable allocations between regular and CMA areas by
2087 		 * allocating from CMA when over half of the zone's free memory
2088 		 * is in the CMA area.
2089 		 */
2090 		if (alloc_flags & ALLOC_CMA &&
2091 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2092 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2093 			page = __rmqueue_cma_fallback(zone, order);
2094 			if (page)
2095 				return page;
2096 		}
2097 	}
2098 retry:
2099 	page = __rmqueue_smallest(zone, order, migratetype);
2100 	if (unlikely(!page)) {
2101 		if (alloc_flags & ALLOC_CMA)
2102 			page = __rmqueue_cma_fallback(zone, order);
2103 
2104 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2105 								alloc_flags))
2106 			goto retry;
2107 	}
2108 	return page;
2109 }
2110 
2111 /*
2112  * Obtain a specified number of elements from the buddy allocator, all under
2113  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2114  * Returns the number of new pages which were placed at *list.
2115  */
2116 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2117 			unsigned long count, struct list_head *list,
2118 			int migratetype, unsigned int alloc_flags)
2119 {
2120 	unsigned long flags;
2121 	int i;
2122 
2123 	spin_lock_irqsave(&zone->lock, flags);
2124 	for (i = 0; i < count; ++i) {
2125 		struct page *page = __rmqueue(zone, order, migratetype,
2126 								alloc_flags);
2127 		if (unlikely(page == NULL))
2128 			break;
2129 
2130 		/*
2131 		 * Split buddy pages returned by expand() are received here in
2132 		 * physical page order. The page is added to the tail of
2133 		 * caller's list. From the callers perspective, the linked list
2134 		 * is ordered by page number under some conditions. This is
2135 		 * useful for IO devices that can forward direction from the
2136 		 * head, thus also in the physical page order. This is useful
2137 		 * for IO devices that can merge IO requests if the physical
2138 		 * pages are ordered properly.
2139 		 */
2140 		list_add_tail(&page->pcp_list, list);
2141 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2142 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2143 					      -(1 << order));
2144 	}
2145 
2146 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2147 	spin_unlock_irqrestore(&zone->lock, flags);
2148 
2149 	return i;
2150 }
2151 
2152 /*
2153  * Called from the vmstat counter updater to decay the PCP high.
2154  * Return whether there are addition works to do.
2155  */
2156 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2157 {
2158 	int high_min, to_drain, batch;
2159 	int todo = 0;
2160 
2161 	high_min = READ_ONCE(pcp->high_min);
2162 	batch = READ_ONCE(pcp->batch);
2163 	/*
2164 	 * Decrease pcp->high periodically to try to free possible
2165 	 * idle PCP pages.  And, avoid to free too many pages to
2166 	 * control latency.  This caps pcp->high decrement too.
2167 	 */
2168 	if (pcp->high > high_min) {
2169 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2170 				 pcp->high - (pcp->high >> 3), high_min);
2171 		if (pcp->high > high_min)
2172 			todo++;
2173 	}
2174 
2175 	to_drain = pcp->count - pcp->high;
2176 	if (to_drain > 0) {
2177 		spin_lock(&pcp->lock);
2178 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2179 		spin_unlock(&pcp->lock);
2180 		todo++;
2181 	}
2182 
2183 	return todo;
2184 }
2185 
2186 #ifdef CONFIG_NUMA
2187 /*
2188  * Called from the vmstat counter updater to drain pagesets of this
2189  * currently executing processor on remote nodes after they have
2190  * expired.
2191  */
2192 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2193 {
2194 	int to_drain, batch;
2195 
2196 	batch = READ_ONCE(pcp->batch);
2197 	to_drain = min(pcp->count, batch);
2198 	if (to_drain > 0) {
2199 		spin_lock(&pcp->lock);
2200 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2201 		spin_unlock(&pcp->lock);
2202 	}
2203 }
2204 #endif
2205 
2206 /*
2207  * Drain pcplists of the indicated processor and zone.
2208  */
2209 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2210 {
2211 	struct per_cpu_pages *pcp;
2212 
2213 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2214 	if (pcp->count) {
2215 		spin_lock(&pcp->lock);
2216 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2217 		spin_unlock(&pcp->lock);
2218 	}
2219 }
2220 
2221 /*
2222  * Drain pcplists of all zones on the indicated processor.
2223  */
2224 static void drain_pages(unsigned int cpu)
2225 {
2226 	struct zone *zone;
2227 
2228 	for_each_populated_zone(zone) {
2229 		drain_pages_zone(cpu, zone);
2230 	}
2231 }
2232 
2233 /*
2234  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2235  */
2236 void drain_local_pages(struct zone *zone)
2237 {
2238 	int cpu = smp_processor_id();
2239 
2240 	if (zone)
2241 		drain_pages_zone(cpu, zone);
2242 	else
2243 		drain_pages(cpu);
2244 }
2245 
2246 /*
2247  * The implementation of drain_all_pages(), exposing an extra parameter to
2248  * drain on all cpus.
2249  *
2250  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2251  * not empty. The check for non-emptiness can however race with a free to
2252  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2253  * that need the guarantee that every CPU has drained can disable the
2254  * optimizing racy check.
2255  */
2256 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2257 {
2258 	int cpu;
2259 
2260 	/*
2261 	 * Allocate in the BSS so we won't require allocation in
2262 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2263 	 */
2264 	static cpumask_t cpus_with_pcps;
2265 
2266 	/*
2267 	 * Do not drain if one is already in progress unless it's specific to
2268 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2269 	 * the drain to be complete when the call returns.
2270 	 */
2271 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2272 		if (!zone)
2273 			return;
2274 		mutex_lock(&pcpu_drain_mutex);
2275 	}
2276 
2277 	/*
2278 	 * We don't care about racing with CPU hotplug event
2279 	 * as offline notification will cause the notified
2280 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2281 	 * disables preemption as part of its processing
2282 	 */
2283 	for_each_online_cpu(cpu) {
2284 		struct per_cpu_pages *pcp;
2285 		struct zone *z;
2286 		bool has_pcps = false;
2287 
2288 		if (force_all_cpus) {
2289 			/*
2290 			 * The pcp.count check is racy, some callers need a
2291 			 * guarantee that no cpu is missed.
2292 			 */
2293 			has_pcps = true;
2294 		} else if (zone) {
2295 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2296 			if (pcp->count)
2297 				has_pcps = true;
2298 		} else {
2299 			for_each_populated_zone(z) {
2300 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2301 				if (pcp->count) {
2302 					has_pcps = true;
2303 					break;
2304 				}
2305 			}
2306 		}
2307 
2308 		if (has_pcps)
2309 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2310 		else
2311 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2312 	}
2313 
2314 	for_each_cpu(cpu, &cpus_with_pcps) {
2315 		if (zone)
2316 			drain_pages_zone(cpu, zone);
2317 		else
2318 			drain_pages(cpu);
2319 	}
2320 
2321 	mutex_unlock(&pcpu_drain_mutex);
2322 }
2323 
2324 /*
2325  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2326  *
2327  * When zone parameter is non-NULL, spill just the single zone's pages.
2328  */
2329 void drain_all_pages(struct zone *zone)
2330 {
2331 	__drain_all_pages(zone, false);
2332 }
2333 
2334 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2335 							unsigned int order)
2336 {
2337 	int migratetype;
2338 
2339 	if (!free_pages_prepare(page, order, FPI_NONE))
2340 		return false;
2341 
2342 	migratetype = get_pfnblock_migratetype(page, pfn);
2343 	set_pcppage_migratetype(page, migratetype);
2344 	return true;
2345 }
2346 
2347 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2348 {
2349 	int min_nr_free, max_nr_free;
2350 
2351 	/* Free as much as possible if batch freeing high-order pages. */
2352 	if (unlikely(free_high))
2353 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2354 
2355 	/* Check for PCP disabled or boot pageset */
2356 	if (unlikely(high < batch))
2357 		return 1;
2358 
2359 	/* Leave at least pcp->batch pages on the list */
2360 	min_nr_free = batch;
2361 	max_nr_free = high - batch;
2362 
2363 	/*
2364 	 * Increase the batch number to the number of the consecutive
2365 	 * freed pages to reduce zone lock contention.
2366 	 */
2367 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2368 
2369 	return batch;
2370 }
2371 
2372 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2373 		       int batch, bool free_high)
2374 {
2375 	int high, high_min, high_max;
2376 
2377 	high_min = READ_ONCE(pcp->high_min);
2378 	high_max = READ_ONCE(pcp->high_max);
2379 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2380 
2381 	if (unlikely(!high))
2382 		return 0;
2383 
2384 	if (unlikely(free_high)) {
2385 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2386 				high_min);
2387 		return 0;
2388 	}
2389 
2390 	/*
2391 	 * If reclaim is active, limit the number of pages that can be
2392 	 * stored on pcp lists
2393 	 */
2394 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2395 		int free_count = max_t(int, pcp->free_count, batch);
2396 
2397 		pcp->high = max(high - free_count, high_min);
2398 		return min(batch << 2, pcp->high);
2399 	}
2400 
2401 	if (high_min == high_max)
2402 		return high;
2403 
2404 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2405 		int free_count = max_t(int, pcp->free_count, batch);
2406 
2407 		pcp->high = max(high - free_count, high_min);
2408 		high = max(pcp->count, high_min);
2409 	} else if (pcp->count >= high) {
2410 		int need_high = pcp->free_count + batch;
2411 
2412 		/* pcp->high should be large enough to hold batch freed pages */
2413 		if (pcp->high < need_high)
2414 			pcp->high = clamp(need_high, high_min, high_max);
2415 	}
2416 
2417 	return high;
2418 }
2419 
2420 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2421 				   struct page *page, int migratetype,
2422 				   unsigned int order)
2423 {
2424 	int high, batch;
2425 	int pindex;
2426 	bool free_high = false;
2427 
2428 	/*
2429 	 * On freeing, reduce the number of pages that are batch allocated.
2430 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2431 	 * allocations.
2432 	 */
2433 	pcp->alloc_factor >>= 1;
2434 	__count_vm_events(PGFREE, 1 << order);
2435 	pindex = order_to_pindex(migratetype, order);
2436 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2437 	pcp->count += 1 << order;
2438 
2439 	batch = READ_ONCE(pcp->batch);
2440 	/*
2441 	 * As high-order pages other than THP's stored on PCP can contribute
2442 	 * to fragmentation, limit the number stored when PCP is heavily
2443 	 * freeing without allocation. The remainder after bulk freeing
2444 	 * stops will be drained from vmstat refresh context.
2445 	 */
2446 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2447 		free_high = (pcp->free_count >= batch &&
2448 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2449 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2450 			      pcp->count >= READ_ONCE(batch)));
2451 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2452 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2453 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2454 	}
2455 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2456 		pcp->free_count += (1 << order);
2457 	high = nr_pcp_high(pcp, zone, batch, free_high);
2458 	if (pcp->count >= high) {
2459 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2460 				   pcp, pindex);
2461 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2462 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2463 				      ZONE_MOVABLE, 0))
2464 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2465 	}
2466 }
2467 
2468 /*
2469  * Free a pcp page
2470  */
2471 void free_unref_page(struct page *page, unsigned int order)
2472 {
2473 	unsigned long __maybe_unused UP_flags;
2474 	struct per_cpu_pages *pcp;
2475 	struct zone *zone;
2476 	unsigned long pfn = page_to_pfn(page);
2477 	int migratetype, pcpmigratetype;
2478 
2479 	if (!free_unref_page_prepare(page, pfn, order))
2480 		return;
2481 
2482 	/*
2483 	 * We only track unmovable, reclaimable and movable on pcp lists.
2484 	 * Place ISOLATE pages on the isolated list because they are being
2485 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2486 	 * get those areas back if necessary. Otherwise, we may have to free
2487 	 * excessively into the page allocator
2488 	 */
2489 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2490 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2491 		if (unlikely(is_migrate_isolate(migratetype))) {
2492 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2493 			return;
2494 		}
2495 		pcpmigratetype = MIGRATE_MOVABLE;
2496 	}
2497 
2498 	zone = page_zone(page);
2499 	pcp_trylock_prepare(UP_flags);
2500 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2501 	if (pcp) {
2502 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2503 		pcp_spin_unlock(pcp);
2504 	} else {
2505 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2506 	}
2507 	pcp_trylock_finish(UP_flags);
2508 }
2509 
2510 /*
2511  * Free a list of 0-order pages
2512  */
2513 void free_unref_page_list(struct list_head *list)
2514 {
2515 	unsigned long __maybe_unused UP_flags;
2516 	struct page *page, *next;
2517 	struct per_cpu_pages *pcp = NULL;
2518 	struct zone *locked_zone = NULL;
2519 	int batch_count = 0;
2520 	int migratetype;
2521 
2522 	/* Prepare pages for freeing */
2523 	list_for_each_entry_safe(page, next, list, lru) {
2524 		unsigned long pfn = page_to_pfn(page);
2525 		if (!free_unref_page_prepare(page, pfn, 0)) {
2526 			list_del(&page->lru);
2527 			continue;
2528 		}
2529 
2530 		/*
2531 		 * Free isolated pages directly to the allocator, see
2532 		 * comment in free_unref_page.
2533 		 */
2534 		migratetype = get_pcppage_migratetype(page);
2535 		if (unlikely(is_migrate_isolate(migratetype))) {
2536 			list_del(&page->lru);
2537 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2538 			continue;
2539 		}
2540 	}
2541 
2542 	list_for_each_entry_safe(page, next, list, lru) {
2543 		struct zone *zone = page_zone(page);
2544 
2545 		list_del(&page->lru);
2546 		migratetype = get_pcppage_migratetype(page);
2547 
2548 		/*
2549 		 * Either different zone requiring a different pcp lock or
2550 		 * excessive lock hold times when freeing a large list of
2551 		 * pages.
2552 		 */
2553 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2554 			if (pcp) {
2555 				pcp_spin_unlock(pcp);
2556 				pcp_trylock_finish(UP_flags);
2557 			}
2558 
2559 			batch_count = 0;
2560 
2561 			/*
2562 			 * trylock is necessary as pages may be getting freed
2563 			 * from IRQ or SoftIRQ context after an IO completion.
2564 			 */
2565 			pcp_trylock_prepare(UP_flags);
2566 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2567 			if (unlikely(!pcp)) {
2568 				pcp_trylock_finish(UP_flags);
2569 				free_one_page(zone, page, page_to_pfn(page),
2570 					      0, migratetype, FPI_NONE);
2571 				locked_zone = NULL;
2572 				continue;
2573 			}
2574 			locked_zone = zone;
2575 		}
2576 
2577 		/*
2578 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2579 		 * to the MIGRATE_MOVABLE pcp list.
2580 		 */
2581 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2582 			migratetype = MIGRATE_MOVABLE;
2583 
2584 		trace_mm_page_free_batched(page);
2585 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2586 		batch_count++;
2587 	}
2588 
2589 	if (pcp) {
2590 		pcp_spin_unlock(pcp);
2591 		pcp_trylock_finish(UP_flags);
2592 	}
2593 }
2594 
2595 /*
2596  * split_page takes a non-compound higher-order page, and splits it into
2597  * n (1<<order) sub-pages: page[0..n]
2598  * Each sub-page must be freed individually.
2599  *
2600  * Note: this is probably too low level an operation for use in drivers.
2601  * Please consult with lkml before using this in your driver.
2602  */
2603 void split_page(struct page *page, unsigned int order)
2604 {
2605 	int i;
2606 
2607 	VM_BUG_ON_PAGE(PageCompound(page), page);
2608 	VM_BUG_ON_PAGE(!page_count(page), page);
2609 
2610 	for (i = 1; i < (1 << order); i++)
2611 		set_page_refcounted(page + i);
2612 	split_page_owner(page, 1 << order);
2613 	split_page_memcg(page, 1 << order);
2614 }
2615 EXPORT_SYMBOL_GPL(split_page);
2616 
2617 int __isolate_free_page(struct page *page, unsigned int order)
2618 {
2619 	struct zone *zone = page_zone(page);
2620 	int mt = get_pageblock_migratetype(page);
2621 
2622 	if (!is_migrate_isolate(mt)) {
2623 		unsigned long watermark;
2624 		/*
2625 		 * Obey watermarks as if the page was being allocated. We can
2626 		 * emulate a high-order watermark check with a raised order-0
2627 		 * watermark, because we already know our high-order page
2628 		 * exists.
2629 		 */
2630 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2631 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2632 			return 0;
2633 
2634 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2635 	}
2636 
2637 	del_page_from_free_list(page, zone, order);
2638 
2639 	/*
2640 	 * Set the pageblock if the isolated page is at least half of a
2641 	 * pageblock
2642 	 */
2643 	if (order >= pageblock_order - 1) {
2644 		struct page *endpage = page + (1 << order) - 1;
2645 		for (; page < endpage; page += pageblock_nr_pages) {
2646 			int mt = get_pageblock_migratetype(page);
2647 			/*
2648 			 * Only change normal pageblocks (i.e., they can merge
2649 			 * with others)
2650 			 */
2651 			if (migratetype_is_mergeable(mt))
2652 				set_pageblock_migratetype(page,
2653 							  MIGRATE_MOVABLE);
2654 		}
2655 	}
2656 
2657 	return 1UL << order;
2658 }
2659 
2660 /**
2661  * __putback_isolated_page - Return a now-isolated page back where we got it
2662  * @page: Page that was isolated
2663  * @order: Order of the isolated page
2664  * @mt: The page's pageblock's migratetype
2665  *
2666  * This function is meant to return a page pulled from the free lists via
2667  * __isolate_free_page back to the free lists they were pulled from.
2668  */
2669 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2670 {
2671 	struct zone *zone = page_zone(page);
2672 
2673 	/* zone lock should be held when this function is called */
2674 	lockdep_assert_held(&zone->lock);
2675 
2676 	/* Return isolated page to tail of freelist. */
2677 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2678 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2679 }
2680 
2681 /*
2682  * Update NUMA hit/miss statistics
2683  */
2684 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2685 				   long nr_account)
2686 {
2687 #ifdef CONFIG_NUMA
2688 	enum numa_stat_item local_stat = NUMA_LOCAL;
2689 
2690 	/* skip numa counters update if numa stats is disabled */
2691 	if (!static_branch_likely(&vm_numa_stat_key))
2692 		return;
2693 
2694 	if (zone_to_nid(z) != numa_node_id())
2695 		local_stat = NUMA_OTHER;
2696 
2697 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2698 		__count_numa_events(z, NUMA_HIT, nr_account);
2699 	else {
2700 		__count_numa_events(z, NUMA_MISS, nr_account);
2701 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2702 	}
2703 	__count_numa_events(z, local_stat, nr_account);
2704 #endif
2705 }
2706 
2707 static __always_inline
2708 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2709 			   unsigned int order, unsigned int alloc_flags,
2710 			   int migratetype)
2711 {
2712 	struct page *page;
2713 	unsigned long flags;
2714 
2715 	do {
2716 		page = NULL;
2717 		spin_lock_irqsave(&zone->lock, flags);
2718 		if (alloc_flags & ALLOC_HIGHATOMIC)
2719 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2720 		if (!page) {
2721 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2722 
2723 			/*
2724 			 * If the allocation fails, allow OOM handling access
2725 			 * to HIGHATOMIC reserves as failing now is worse than
2726 			 * failing a high-order atomic allocation in the
2727 			 * future.
2728 			 */
2729 			if (!page && (alloc_flags & ALLOC_OOM))
2730 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2731 
2732 			if (!page) {
2733 				spin_unlock_irqrestore(&zone->lock, flags);
2734 				return NULL;
2735 			}
2736 		}
2737 		__mod_zone_freepage_state(zone, -(1 << order),
2738 					  get_pcppage_migratetype(page));
2739 		spin_unlock_irqrestore(&zone->lock, flags);
2740 	} while (check_new_pages(page, order));
2741 
2742 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2743 	zone_statistics(preferred_zone, zone, 1);
2744 
2745 	return page;
2746 }
2747 
2748 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2749 {
2750 	int high, base_batch, batch, max_nr_alloc;
2751 	int high_max, high_min;
2752 
2753 	base_batch = READ_ONCE(pcp->batch);
2754 	high_min = READ_ONCE(pcp->high_min);
2755 	high_max = READ_ONCE(pcp->high_max);
2756 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2757 
2758 	/* Check for PCP disabled or boot pageset */
2759 	if (unlikely(high < base_batch))
2760 		return 1;
2761 
2762 	if (order)
2763 		batch = base_batch;
2764 	else
2765 		batch = (base_batch << pcp->alloc_factor);
2766 
2767 	/*
2768 	 * If we had larger pcp->high, we could avoid to allocate from
2769 	 * zone.
2770 	 */
2771 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2772 		high = pcp->high = min(high + batch, high_max);
2773 
2774 	if (!order) {
2775 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2776 		/*
2777 		 * Double the number of pages allocated each time there is
2778 		 * subsequent allocation of order-0 pages without any freeing.
2779 		 */
2780 		if (batch <= max_nr_alloc &&
2781 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2782 			pcp->alloc_factor++;
2783 		batch = min(batch, max_nr_alloc);
2784 	}
2785 
2786 	/*
2787 	 * Scale batch relative to order if batch implies free pages
2788 	 * can be stored on the PCP. Batch can be 1 for small zones or
2789 	 * for boot pagesets which should never store free pages as
2790 	 * the pages may belong to arbitrary zones.
2791 	 */
2792 	if (batch > 1)
2793 		batch = max(batch >> order, 2);
2794 
2795 	return batch;
2796 }
2797 
2798 /* Remove page from the per-cpu list, caller must protect the list */
2799 static inline
2800 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2801 			int migratetype,
2802 			unsigned int alloc_flags,
2803 			struct per_cpu_pages *pcp,
2804 			struct list_head *list)
2805 {
2806 	struct page *page;
2807 
2808 	do {
2809 		if (list_empty(list)) {
2810 			int batch = nr_pcp_alloc(pcp, zone, order);
2811 			int alloced;
2812 
2813 			alloced = rmqueue_bulk(zone, order,
2814 					batch, list,
2815 					migratetype, alloc_flags);
2816 
2817 			pcp->count += alloced << order;
2818 			if (unlikely(list_empty(list)))
2819 				return NULL;
2820 		}
2821 
2822 		page = list_first_entry(list, struct page, pcp_list);
2823 		list_del(&page->pcp_list);
2824 		pcp->count -= 1 << order;
2825 	} while (check_new_pages(page, order));
2826 
2827 	return page;
2828 }
2829 
2830 /* Lock and remove page from the per-cpu list */
2831 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2832 			struct zone *zone, unsigned int order,
2833 			int migratetype, unsigned int alloc_flags)
2834 {
2835 	struct per_cpu_pages *pcp;
2836 	struct list_head *list;
2837 	struct page *page;
2838 	unsigned long __maybe_unused UP_flags;
2839 
2840 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2841 	pcp_trylock_prepare(UP_flags);
2842 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2843 	if (!pcp) {
2844 		pcp_trylock_finish(UP_flags);
2845 		return NULL;
2846 	}
2847 
2848 	/*
2849 	 * On allocation, reduce the number of pages that are batch freed.
2850 	 * See nr_pcp_free() where free_factor is increased for subsequent
2851 	 * frees.
2852 	 */
2853 	pcp->free_count >>= 1;
2854 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2855 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2856 	pcp_spin_unlock(pcp);
2857 	pcp_trylock_finish(UP_flags);
2858 	if (page) {
2859 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2860 		zone_statistics(preferred_zone, zone, 1);
2861 	}
2862 	return page;
2863 }
2864 
2865 /*
2866  * Allocate a page from the given zone.
2867  * Use pcplists for THP or "cheap" high-order allocations.
2868  */
2869 
2870 /*
2871  * Do not instrument rmqueue() with KMSAN. This function may call
2872  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2873  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2874  * may call rmqueue() again, which will result in a deadlock.
2875  */
2876 __no_sanitize_memory
2877 static inline
2878 struct page *rmqueue(struct zone *preferred_zone,
2879 			struct zone *zone, unsigned int order,
2880 			gfp_t gfp_flags, unsigned int alloc_flags,
2881 			int migratetype)
2882 {
2883 	struct page *page;
2884 
2885 	/*
2886 	 * We most definitely don't want callers attempting to
2887 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2888 	 */
2889 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2890 
2891 	if (likely(pcp_allowed_order(order))) {
2892 		page = rmqueue_pcplist(preferred_zone, zone, order,
2893 				       migratetype, alloc_flags);
2894 		if (likely(page))
2895 			goto out;
2896 	}
2897 
2898 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2899 							migratetype);
2900 
2901 out:
2902 	/* Separate test+clear to avoid unnecessary atomics */
2903 	if ((alloc_flags & ALLOC_KSWAPD) &&
2904 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2905 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2906 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2907 	}
2908 
2909 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2910 	return page;
2911 }
2912 
2913 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2914 {
2915 	return __should_fail_alloc_page(gfp_mask, order);
2916 }
2917 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2918 
2919 static inline long __zone_watermark_unusable_free(struct zone *z,
2920 				unsigned int order, unsigned int alloc_flags)
2921 {
2922 	long unusable_free = (1 << order) - 1;
2923 
2924 	/*
2925 	 * If the caller does not have rights to reserves below the min
2926 	 * watermark then subtract the high-atomic reserves. This will
2927 	 * over-estimate the size of the atomic reserve but it avoids a search.
2928 	 */
2929 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2930 		unusable_free += z->nr_reserved_highatomic;
2931 
2932 #ifdef CONFIG_CMA
2933 	/* If allocation can't use CMA areas don't use free CMA pages */
2934 	if (!(alloc_flags & ALLOC_CMA))
2935 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2936 #endif
2937 #ifdef CONFIG_UNACCEPTED_MEMORY
2938 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2939 #endif
2940 
2941 	return unusable_free;
2942 }
2943 
2944 /*
2945  * Return true if free base pages are above 'mark'. For high-order checks it
2946  * will return true of the order-0 watermark is reached and there is at least
2947  * one free page of a suitable size. Checking now avoids taking the zone lock
2948  * to check in the allocation paths if no pages are free.
2949  */
2950 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2951 			 int highest_zoneidx, unsigned int alloc_flags,
2952 			 long free_pages)
2953 {
2954 	long min = mark;
2955 	int o;
2956 
2957 	/* free_pages may go negative - that's OK */
2958 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2959 
2960 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2961 		/*
2962 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2963 		 * as OOM.
2964 		 */
2965 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2966 			min -= min / 2;
2967 
2968 			/*
2969 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2970 			 * access more reserves than just __GFP_HIGH. Other
2971 			 * non-blocking allocations requests such as GFP_NOWAIT
2972 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2973 			 * access to the min reserve.
2974 			 */
2975 			if (alloc_flags & ALLOC_NON_BLOCK)
2976 				min -= min / 4;
2977 		}
2978 
2979 		/*
2980 		 * OOM victims can try even harder than the normal reserve
2981 		 * users on the grounds that it's definitely going to be in
2982 		 * the exit path shortly and free memory. Any allocation it
2983 		 * makes during the free path will be small and short-lived.
2984 		 */
2985 		if (alloc_flags & ALLOC_OOM)
2986 			min -= min / 2;
2987 	}
2988 
2989 	/*
2990 	 * Check watermarks for an order-0 allocation request. If these
2991 	 * are not met, then a high-order request also cannot go ahead
2992 	 * even if a suitable page happened to be free.
2993 	 */
2994 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2995 		return false;
2996 
2997 	/* If this is an order-0 request then the watermark is fine */
2998 	if (!order)
2999 		return true;
3000 
3001 	/* For a high-order request, check at least one suitable page is free */
3002 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3003 		struct free_area *area = &z->free_area[o];
3004 		int mt;
3005 
3006 		if (!area->nr_free)
3007 			continue;
3008 
3009 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3010 			if (!free_area_empty(area, mt))
3011 				return true;
3012 		}
3013 
3014 #ifdef CONFIG_CMA
3015 		if ((alloc_flags & ALLOC_CMA) &&
3016 		    !free_area_empty(area, MIGRATE_CMA)) {
3017 			return true;
3018 		}
3019 #endif
3020 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3021 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3022 			return true;
3023 		}
3024 	}
3025 	return false;
3026 }
3027 
3028 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3029 		      int highest_zoneidx, unsigned int alloc_flags)
3030 {
3031 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3032 					zone_page_state(z, NR_FREE_PAGES));
3033 }
3034 
3035 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3036 				unsigned long mark, int highest_zoneidx,
3037 				unsigned int alloc_flags, gfp_t gfp_mask)
3038 {
3039 	long free_pages;
3040 
3041 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3042 
3043 	/*
3044 	 * Fast check for order-0 only. If this fails then the reserves
3045 	 * need to be calculated.
3046 	 */
3047 	if (!order) {
3048 		long usable_free;
3049 		long reserved;
3050 
3051 		usable_free = free_pages;
3052 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3053 
3054 		/* reserved may over estimate high-atomic reserves. */
3055 		usable_free -= min(usable_free, reserved);
3056 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3057 			return true;
3058 	}
3059 
3060 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3061 					free_pages))
3062 		return true;
3063 
3064 	/*
3065 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3066 	 * when checking the min watermark. The min watermark is the
3067 	 * point where boosting is ignored so that kswapd is woken up
3068 	 * when below the low watermark.
3069 	 */
3070 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3071 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3072 		mark = z->_watermark[WMARK_MIN];
3073 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3074 					alloc_flags, free_pages);
3075 	}
3076 
3077 	return false;
3078 }
3079 
3080 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3081 			unsigned long mark, int highest_zoneidx)
3082 {
3083 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3084 
3085 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3086 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3087 
3088 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3089 								free_pages);
3090 }
3091 
3092 #ifdef CONFIG_NUMA
3093 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3094 
3095 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3096 {
3097 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3098 				node_reclaim_distance;
3099 }
3100 #else	/* CONFIG_NUMA */
3101 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3102 {
3103 	return true;
3104 }
3105 #endif	/* CONFIG_NUMA */
3106 
3107 /*
3108  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3109  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3110  * premature use of a lower zone may cause lowmem pressure problems that
3111  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3112  * probably too small. It only makes sense to spread allocations to avoid
3113  * fragmentation between the Normal and DMA32 zones.
3114  */
3115 static inline unsigned int
3116 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3117 {
3118 	unsigned int alloc_flags;
3119 
3120 	/*
3121 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3122 	 * to save a branch.
3123 	 */
3124 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3125 
3126 #ifdef CONFIG_ZONE_DMA32
3127 	if (!zone)
3128 		return alloc_flags;
3129 
3130 	if (zone_idx(zone) != ZONE_NORMAL)
3131 		return alloc_flags;
3132 
3133 	/*
3134 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3135 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3136 	 * on UMA that if Normal is populated then so is DMA32.
3137 	 */
3138 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3139 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3140 		return alloc_flags;
3141 
3142 	alloc_flags |= ALLOC_NOFRAGMENT;
3143 #endif /* CONFIG_ZONE_DMA32 */
3144 	return alloc_flags;
3145 }
3146 
3147 /* Must be called after current_gfp_context() which can change gfp_mask */
3148 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3149 						  unsigned int alloc_flags)
3150 {
3151 #ifdef CONFIG_CMA
3152 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3153 		alloc_flags |= ALLOC_CMA;
3154 #endif
3155 	return alloc_flags;
3156 }
3157 
3158 /*
3159  * get_page_from_freelist goes through the zonelist trying to allocate
3160  * a page.
3161  */
3162 static struct page *
3163 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3164 						const struct alloc_context *ac)
3165 {
3166 	struct zoneref *z;
3167 	struct zone *zone;
3168 	struct pglist_data *last_pgdat = NULL;
3169 	bool last_pgdat_dirty_ok = false;
3170 	bool no_fallback;
3171 
3172 retry:
3173 	/*
3174 	 * Scan zonelist, looking for a zone with enough free.
3175 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3176 	 */
3177 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3178 	z = ac->preferred_zoneref;
3179 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3180 					ac->nodemask) {
3181 		struct page *page;
3182 		unsigned long mark;
3183 
3184 		if (cpusets_enabled() &&
3185 			(alloc_flags & ALLOC_CPUSET) &&
3186 			!__cpuset_zone_allowed(zone, gfp_mask))
3187 				continue;
3188 		/*
3189 		 * When allocating a page cache page for writing, we
3190 		 * want to get it from a node that is within its dirty
3191 		 * limit, such that no single node holds more than its
3192 		 * proportional share of globally allowed dirty pages.
3193 		 * The dirty limits take into account the node's
3194 		 * lowmem reserves and high watermark so that kswapd
3195 		 * should be able to balance it without having to
3196 		 * write pages from its LRU list.
3197 		 *
3198 		 * XXX: For now, allow allocations to potentially
3199 		 * exceed the per-node dirty limit in the slowpath
3200 		 * (spread_dirty_pages unset) before going into reclaim,
3201 		 * which is important when on a NUMA setup the allowed
3202 		 * nodes are together not big enough to reach the
3203 		 * global limit.  The proper fix for these situations
3204 		 * will require awareness of nodes in the
3205 		 * dirty-throttling and the flusher threads.
3206 		 */
3207 		if (ac->spread_dirty_pages) {
3208 			if (last_pgdat != zone->zone_pgdat) {
3209 				last_pgdat = zone->zone_pgdat;
3210 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3211 			}
3212 
3213 			if (!last_pgdat_dirty_ok)
3214 				continue;
3215 		}
3216 
3217 		if (no_fallback && nr_online_nodes > 1 &&
3218 		    zone != ac->preferred_zoneref->zone) {
3219 			int local_nid;
3220 
3221 			/*
3222 			 * If moving to a remote node, retry but allow
3223 			 * fragmenting fallbacks. Locality is more important
3224 			 * than fragmentation avoidance.
3225 			 */
3226 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3227 			if (zone_to_nid(zone) != local_nid) {
3228 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3229 				goto retry;
3230 			}
3231 		}
3232 
3233 		/*
3234 		 * Detect whether the number of free pages is below high
3235 		 * watermark.  If so, we will decrease pcp->high and free
3236 		 * PCP pages in free path to reduce the possibility of
3237 		 * premature page reclaiming.  Detection is done here to
3238 		 * avoid to do that in hotter free path.
3239 		 */
3240 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3241 			goto check_alloc_wmark;
3242 
3243 		mark = high_wmark_pages(zone);
3244 		if (zone_watermark_fast(zone, order, mark,
3245 					ac->highest_zoneidx, alloc_flags,
3246 					gfp_mask))
3247 			goto try_this_zone;
3248 		else
3249 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3250 
3251 check_alloc_wmark:
3252 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3253 		if (!zone_watermark_fast(zone, order, mark,
3254 				       ac->highest_zoneidx, alloc_flags,
3255 				       gfp_mask)) {
3256 			int ret;
3257 
3258 			if (has_unaccepted_memory()) {
3259 				if (try_to_accept_memory(zone, order))
3260 					goto try_this_zone;
3261 			}
3262 
3263 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3264 			/*
3265 			 * Watermark failed for this zone, but see if we can
3266 			 * grow this zone if it contains deferred pages.
3267 			 */
3268 			if (deferred_pages_enabled()) {
3269 				if (_deferred_grow_zone(zone, order))
3270 					goto try_this_zone;
3271 			}
3272 #endif
3273 			/* Checked here to keep the fast path fast */
3274 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3275 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3276 				goto try_this_zone;
3277 
3278 			if (!node_reclaim_enabled() ||
3279 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3280 				continue;
3281 
3282 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3283 			switch (ret) {
3284 			case NODE_RECLAIM_NOSCAN:
3285 				/* did not scan */
3286 				continue;
3287 			case NODE_RECLAIM_FULL:
3288 				/* scanned but unreclaimable */
3289 				continue;
3290 			default:
3291 				/* did we reclaim enough */
3292 				if (zone_watermark_ok(zone, order, mark,
3293 					ac->highest_zoneidx, alloc_flags))
3294 					goto try_this_zone;
3295 
3296 				continue;
3297 			}
3298 		}
3299 
3300 try_this_zone:
3301 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3302 				gfp_mask, alloc_flags, ac->migratetype);
3303 		if (page) {
3304 			prep_new_page(page, order, gfp_mask, alloc_flags);
3305 
3306 			/*
3307 			 * If this is a high-order atomic allocation then check
3308 			 * if the pageblock should be reserved for the future
3309 			 */
3310 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3311 				reserve_highatomic_pageblock(page, zone);
3312 
3313 			return page;
3314 		} else {
3315 			if (has_unaccepted_memory()) {
3316 				if (try_to_accept_memory(zone, order))
3317 					goto try_this_zone;
3318 			}
3319 
3320 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3321 			/* Try again if zone has deferred pages */
3322 			if (deferred_pages_enabled()) {
3323 				if (_deferred_grow_zone(zone, order))
3324 					goto try_this_zone;
3325 			}
3326 #endif
3327 		}
3328 	}
3329 
3330 	/*
3331 	 * It's possible on a UMA machine to get through all zones that are
3332 	 * fragmented. If avoiding fragmentation, reset and try again.
3333 	 */
3334 	if (no_fallback) {
3335 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3336 		goto retry;
3337 	}
3338 
3339 	return NULL;
3340 }
3341 
3342 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3343 {
3344 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3345 
3346 	/*
3347 	 * This documents exceptions given to allocations in certain
3348 	 * contexts that are allowed to allocate outside current's set
3349 	 * of allowed nodes.
3350 	 */
3351 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3352 		if (tsk_is_oom_victim(current) ||
3353 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3354 			filter &= ~SHOW_MEM_FILTER_NODES;
3355 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3356 		filter &= ~SHOW_MEM_FILTER_NODES;
3357 
3358 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3359 }
3360 
3361 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3362 {
3363 	struct va_format vaf;
3364 	va_list args;
3365 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3366 
3367 	if ((gfp_mask & __GFP_NOWARN) ||
3368 	     !__ratelimit(&nopage_rs) ||
3369 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3370 		return;
3371 
3372 	va_start(args, fmt);
3373 	vaf.fmt = fmt;
3374 	vaf.va = &args;
3375 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3376 			current->comm, &vaf, gfp_mask, &gfp_mask,
3377 			nodemask_pr_args(nodemask));
3378 	va_end(args);
3379 
3380 	cpuset_print_current_mems_allowed();
3381 	pr_cont("\n");
3382 	dump_stack();
3383 	warn_alloc_show_mem(gfp_mask, nodemask);
3384 }
3385 
3386 static inline struct page *
3387 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3388 			      unsigned int alloc_flags,
3389 			      const struct alloc_context *ac)
3390 {
3391 	struct page *page;
3392 
3393 	page = get_page_from_freelist(gfp_mask, order,
3394 			alloc_flags|ALLOC_CPUSET, ac);
3395 	/*
3396 	 * fallback to ignore cpuset restriction if our nodes
3397 	 * are depleted
3398 	 */
3399 	if (!page)
3400 		page = get_page_from_freelist(gfp_mask, order,
3401 				alloc_flags, ac);
3402 
3403 	return page;
3404 }
3405 
3406 static inline struct page *
3407 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3408 	const struct alloc_context *ac, unsigned long *did_some_progress)
3409 {
3410 	struct oom_control oc = {
3411 		.zonelist = ac->zonelist,
3412 		.nodemask = ac->nodemask,
3413 		.memcg = NULL,
3414 		.gfp_mask = gfp_mask,
3415 		.order = order,
3416 	};
3417 	struct page *page;
3418 
3419 	*did_some_progress = 0;
3420 
3421 	/*
3422 	 * Acquire the oom lock.  If that fails, somebody else is
3423 	 * making progress for us.
3424 	 */
3425 	if (!mutex_trylock(&oom_lock)) {
3426 		*did_some_progress = 1;
3427 		schedule_timeout_uninterruptible(1);
3428 		return NULL;
3429 	}
3430 
3431 	/*
3432 	 * Go through the zonelist yet one more time, keep very high watermark
3433 	 * here, this is only to catch a parallel oom killing, we must fail if
3434 	 * we're still under heavy pressure. But make sure that this reclaim
3435 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3436 	 * allocation which will never fail due to oom_lock already held.
3437 	 */
3438 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3439 				      ~__GFP_DIRECT_RECLAIM, order,
3440 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3441 	if (page)
3442 		goto out;
3443 
3444 	/* Coredumps can quickly deplete all memory reserves */
3445 	if (current->flags & PF_DUMPCORE)
3446 		goto out;
3447 	/* The OOM killer will not help higher order allocs */
3448 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3449 		goto out;
3450 	/*
3451 	 * We have already exhausted all our reclaim opportunities without any
3452 	 * success so it is time to admit defeat. We will skip the OOM killer
3453 	 * because it is very likely that the caller has a more reasonable
3454 	 * fallback than shooting a random task.
3455 	 *
3456 	 * The OOM killer may not free memory on a specific node.
3457 	 */
3458 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3459 		goto out;
3460 	/* The OOM killer does not needlessly kill tasks for lowmem */
3461 	if (ac->highest_zoneidx < ZONE_NORMAL)
3462 		goto out;
3463 	if (pm_suspended_storage())
3464 		goto out;
3465 	/*
3466 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3467 	 * other request to make a forward progress.
3468 	 * We are in an unfortunate situation where out_of_memory cannot
3469 	 * do much for this context but let's try it to at least get
3470 	 * access to memory reserved if the current task is killed (see
3471 	 * out_of_memory). Once filesystems are ready to handle allocation
3472 	 * failures more gracefully we should just bail out here.
3473 	 */
3474 
3475 	/* Exhausted what can be done so it's blame time */
3476 	if (out_of_memory(&oc) ||
3477 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3478 		*did_some_progress = 1;
3479 
3480 		/*
3481 		 * Help non-failing allocations by giving them access to memory
3482 		 * reserves
3483 		 */
3484 		if (gfp_mask & __GFP_NOFAIL)
3485 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3486 					ALLOC_NO_WATERMARKS, ac);
3487 	}
3488 out:
3489 	mutex_unlock(&oom_lock);
3490 	return page;
3491 }
3492 
3493 /*
3494  * Maximum number of compaction retries with a progress before OOM
3495  * killer is consider as the only way to move forward.
3496  */
3497 #define MAX_COMPACT_RETRIES 16
3498 
3499 #ifdef CONFIG_COMPACTION
3500 /* Try memory compaction for high-order allocations before reclaim */
3501 static struct page *
3502 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3503 		unsigned int alloc_flags, const struct alloc_context *ac,
3504 		enum compact_priority prio, enum compact_result *compact_result)
3505 {
3506 	struct page *page = NULL;
3507 	unsigned long pflags;
3508 	unsigned int noreclaim_flag;
3509 
3510 	if (!order)
3511 		return NULL;
3512 
3513 	psi_memstall_enter(&pflags);
3514 	delayacct_compact_start();
3515 	noreclaim_flag = memalloc_noreclaim_save();
3516 
3517 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3518 								prio, &page);
3519 
3520 	memalloc_noreclaim_restore(noreclaim_flag);
3521 	psi_memstall_leave(&pflags);
3522 	delayacct_compact_end();
3523 
3524 	if (*compact_result == COMPACT_SKIPPED)
3525 		return NULL;
3526 	/*
3527 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3528 	 * count a compaction stall
3529 	 */
3530 	count_vm_event(COMPACTSTALL);
3531 
3532 	/* Prep a captured page if available */
3533 	if (page)
3534 		prep_new_page(page, order, gfp_mask, alloc_flags);
3535 
3536 	/* Try get a page from the freelist if available */
3537 	if (!page)
3538 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3539 
3540 	if (page) {
3541 		struct zone *zone = page_zone(page);
3542 
3543 		zone->compact_blockskip_flush = false;
3544 		compaction_defer_reset(zone, order, true);
3545 		count_vm_event(COMPACTSUCCESS);
3546 		return page;
3547 	}
3548 
3549 	/*
3550 	 * It's bad if compaction run occurs and fails. The most likely reason
3551 	 * is that pages exist, but not enough to satisfy watermarks.
3552 	 */
3553 	count_vm_event(COMPACTFAIL);
3554 
3555 	cond_resched();
3556 
3557 	return NULL;
3558 }
3559 
3560 static inline bool
3561 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3562 		     enum compact_result compact_result,
3563 		     enum compact_priority *compact_priority,
3564 		     int *compaction_retries)
3565 {
3566 	int max_retries = MAX_COMPACT_RETRIES;
3567 	int min_priority;
3568 	bool ret = false;
3569 	int retries = *compaction_retries;
3570 	enum compact_priority priority = *compact_priority;
3571 
3572 	if (!order)
3573 		return false;
3574 
3575 	if (fatal_signal_pending(current))
3576 		return false;
3577 
3578 	/*
3579 	 * Compaction was skipped due to a lack of free order-0
3580 	 * migration targets. Continue if reclaim can help.
3581 	 */
3582 	if (compact_result == COMPACT_SKIPPED) {
3583 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3584 		goto out;
3585 	}
3586 
3587 	/*
3588 	 * Compaction managed to coalesce some page blocks, but the
3589 	 * allocation failed presumably due to a race. Retry some.
3590 	 */
3591 	if (compact_result == COMPACT_SUCCESS) {
3592 		/*
3593 		 * !costly requests are much more important than
3594 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3595 		 * facto nofail and invoke OOM killer to move on while
3596 		 * costly can fail and users are ready to cope with
3597 		 * that. 1/4 retries is rather arbitrary but we would
3598 		 * need much more detailed feedback from compaction to
3599 		 * make a better decision.
3600 		 */
3601 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3602 			max_retries /= 4;
3603 
3604 		if (++(*compaction_retries) <= max_retries) {
3605 			ret = true;
3606 			goto out;
3607 		}
3608 	}
3609 
3610 	/*
3611 	 * Compaction failed. Retry with increasing priority.
3612 	 */
3613 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3614 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3615 
3616 	if (*compact_priority > min_priority) {
3617 		(*compact_priority)--;
3618 		*compaction_retries = 0;
3619 		ret = true;
3620 	}
3621 out:
3622 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3623 	return ret;
3624 }
3625 #else
3626 static inline struct page *
3627 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3628 		unsigned int alloc_flags, const struct alloc_context *ac,
3629 		enum compact_priority prio, enum compact_result *compact_result)
3630 {
3631 	*compact_result = COMPACT_SKIPPED;
3632 	return NULL;
3633 }
3634 
3635 static inline bool
3636 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3637 		     enum compact_result compact_result,
3638 		     enum compact_priority *compact_priority,
3639 		     int *compaction_retries)
3640 {
3641 	struct zone *zone;
3642 	struct zoneref *z;
3643 
3644 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3645 		return false;
3646 
3647 	/*
3648 	 * There are setups with compaction disabled which would prefer to loop
3649 	 * inside the allocator rather than hit the oom killer prematurely.
3650 	 * Let's give them a good hope and keep retrying while the order-0
3651 	 * watermarks are OK.
3652 	 */
3653 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3654 				ac->highest_zoneidx, ac->nodemask) {
3655 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3656 					ac->highest_zoneidx, alloc_flags))
3657 			return true;
3658 	}
3659 	return false;
3660 }
3661 #endif /* CONFIG_COMPACTION */
3662 
3663 #ifdef CONFIG_LOCKDEP
3664 static struct lockdep_map __fs_reclaim_map =
3665 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3666 
3667 static bool __need_reclaim(gfp_t gfp_mask)
3668 {
3669 	/* no reclaim without waiting on it */
3670 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3671 		return false;
3672 
3673 	/* this guy won't enter reclaim */
3674 	if (current->flags & PF_MEMALLOC)
3675 		return false;
3676 
3677 	if (gfp_mask & __GFP_NOLOCKDEP)
3678 		return false;
3679 
3680 	return true;
3681 }
3682 
3683 void __fs_reclaim_acquire(unsigned long ip)
3684 {
3685 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3686 }
3687 
3688 void __fs_reclaim_release(unsigned long ip)
3689 {
3690 	lock_release(&__fs_reclaim_map, ip);
3691 }
3692 
3693 void fs_reclaim_acquire(gfp_t gfp_mask)
3694 {
3695 	gfp_mask = current_gfp_context(gfp_mask);
3696 
3697 	if (__need_reclaim(gfp_mask)) {
3698 		if (gfp_mask & __GFP_FS)
3699 			__fs_reclaim_acquire(_RET_IP_);
3700 
3701 #ifdef CONFIG_MMU_NOTIFIER
3702 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3703 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3704 #endif
3705 
3706 	}
3707 }
3708 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3709 
3710 void fs_reclaim_release(gfp_t gfp_mask)
3711 {
3712 	gfp_mask = current_gfp_context(gfp_mask);
3713 
3714 	if (__need_reclaim(gfp_mask)) {
3715 		if (gfp_mask & __GFP_FS)
3716 			__fs_reclaim_release(_RET_IP_);
3717 	}
3718 }
3719 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3720 #endif
3721 
3722 /*
3723  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3724  * have been rebuilt so allocation retries. Reader side does not lock and
3725  * retries the allocation if zonelist changes. Writer side is protected by the
3726  * embedded spin_lock.
3727  */
3728 static DEFINE_SEQLOCK(zonelist_update_seq);
3729 
3730 static unsigned int zonelist_iter_begin(void)
3731 {
3732 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3733 		return read_seqbegin(&zonelist_update_seq);
3734 
3735 	return 0;
3736 }
3737 
3738 static unsigned int check_retry_zonelist(unsigned int seq)
3739 {
3740 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3741 		return read_seqretry(&zonelist_update_seq, seq);
3742 
3743 	return seq;
3744 }
3745 
3746 /* Perform direct synchronous page reclaim */
3747 static unsigned long
3748 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3749 					const struct alloc_context *ac)
3750 {
3751 	unsigned int noreclaim_flag;
3752 	unsigned long progress;
3753 
3754 	cond_resched();
3755 
3756 	/* We now go into synchronous reclaim */
3757 	cpuset_memory_pressure_bump();
3758 	fs_reclaim_acquire(gfp_mask);
3759 	noreclaim_flag = memalloc_noreclaim_save();
3760 
3761 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3762 								ac->nodemask);
3763 
3764 	memalloc_noreclaim_restore(noreclaim_flag);
3765 	fs_reclaim_release(gfp_mask);
3766 
3767 	cond_resched();
3768 
3769 	return progress;
3770 }
3771 
3772 /* The really slow allocator path where we enter direct reclaim */
3773 static inline struct page *
3774 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3775 		unsigned int alloc_flags, const struct alloc_context *ac,
3776 		unsigned long *did_some_progress)
3777 {
3778 	struct page *page = NULL;
3779 	unsigned long pflags;
3780 	bool drained = false;
3781 
3782 	psi_memstall_enter(&pflags);
3783 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3784 	if (unlikely(!(*did_some_progress)))
3785 		goto out;
3786 
3787 retry:
3788 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3789 
3790 	/*
3791 	 * If an allocation failed after direct reclaim, it could be because
3792 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3793 	 * Shrink them and try again
3794 	 */
3795 	if (!page && !drained) {
3796 		unreserve_highatomic_pageblock(ac, false);
3797 		drain_all_pages(NULL);
3798 		drained = true;
3799 		goto retry;
3800 	}
3801 out:
3802 	psi_memstall_leave(&pflags);
3803 
3804 	return page;
3805 }
3806 
3807 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3808 			     const struct alloc_context *ac)
3809 {
3810 	struct zoneref *z;
3811 	struct zone *zone;
3812 	pg_data_t *last_pgdat = NULL;
3813 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3814 
3815 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3816 					ac->nodemask) {
3817 		if (!managed_zone(zone))
3818 			continue;
3819 		if (last_pgdat != zone->zone_pgdat) {
3820 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3821 			last_pgdat = zone->zone_pgdat;
3822 		}
3823 	}
3824 }
3825 
3826 static inline unsigned int
3827 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3828 {
3829 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3830 
3831 	/*
3832 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3833 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3834 	 * to save two branches.
3835 	 */
3836 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3837 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3838 
3839 	/*
3840 	 * The caller may dip into page reserves a bit more if the caller
3841 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3842 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3843 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3844 	 */
3845 	alloc_flags |= (__force int)
3846 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3847 
3848 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3849 		/*
3850 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3851 		 * if it can't schedule.
3852 		 */
3853 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3854 			alloc_flags |= ALLOC_NON_BLOCK;
3855 
3856 			if (order > 0)
3857 				alloc_flags |= ALLOC_HIGHATOMIC;
3858 		}
3859 
3860 		/*
3861 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3862 		 * GFP_ATOMIC) rather than fail, see the comment for
3863 		 * cpuset_node_allowed().
3864 		 */
3865 		if (alloc_flags & ALLOC_MIN_RESERVE)
3866 			alloc_flags &= ~ALLOC_CPUSET;
3867 	} else if (unlikely(rt_task(current)) && in_task())
3868 		alloc_flags |= ALLOC_MIN_RESERVE;
3869 
3870 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3871 
3872 	return alloc_flags;
3873 }
3874 
3875 static bool oom_reserves_allowed(struct task_struct *tsk)
3876 {
3877 	if (!tsk_is_oom_victim(tsk))
3878 		return false;
3879 
3880 	/*
3881 	 * !MMU doesn't have oom reaper so give access to memory reserves
3882 	 * only to the thread with TIF_MEMDIE set
3883 	 */
3884 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3885 		return false;
3886 
3887 	return true;
3888 }
3889 
3890 /*
3891  * Distinguish requests which really need access to full memory
3892  * reserves from oom victims which can live with a portion of it
3893  */
3894 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3895 {
3896 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3897 		return 0;
3898 	if (gfp_mask & __GFP_MEMALLOC)
3899 		return ALLOC_NO_WATERMARKS;
3900 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3901 		return ALLOC_NO_WATERMARKS;
3902 	if (!in_interrupt()) {
3903 		if (current->flags & PF_MEMALLOC)
3904 			return ALLOC_NO_WATERMARKS;
3905 		else if (oom_reserves_allowed(current))
3906 			return ALLOC_OOM;
3907 	}
3908 
3909 	return 0;
3910 }
3911 
3912 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3913 {
3914 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3915 }
3916 
3917 /*
3918  * Checks whether it makes sense to retry the reclaim to make a forward progress
3919  * for the given allocation request.
3920  *
3921  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3922  * without success, or when we couldn't even meet the watermark if we
3923  * reclaimed all remaining pages on the LRU lists.
3924  *
3925  * Returns true if a retry is viable or false to enter the oom path.
3926  */
3927 static inline bool
3928 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3929 		     struct alloc_context *ac, int alloc_flags,
3930 		     bool did_some_progress, int *no_progress_loops)
3931 {
3932 	struct zone *zone;
3933 	struct zoneref *z;
3934 	bool ret = false;
3935 
3936 	/*
3937 	 * Costly allocations might have made a progress but this doesn't mean
3938 	 * their order will become available due to high fragmentation so
3939 	 * always increment the no progress counter for them
3940 	 */
3941 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3942 		*no_progress_loops = 0;
3943 	else
3944 		(*no_progress_loops)++;
3945 
3946 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3947 		goto out;
3948 
3949 
3950 	/*
3951 	 * Keep reclaiming pages while there is a chance this will lead
3952 	 * somewhere.  If none of the target zones can satisfy our allocation
3953 	 * request even if all reclaimable pages are considered then we are
3954 	 * screwed and have to go OOM.
3955 	 */
3956 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3957 				ac->highest_zoneidx, ac->nodemask) {
3958 		unsigned long available;
3959 		unsigned long reclaimable;
3960 		unsigned long min_wmark = min_wmark_pages(zone);
3961 		bool wmark;
3962 
3963 		available = reclaimable = zone_reclaimable_pages(zone);
3964 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3965 
3966 		/*
3967 		 * Would the allocation succeed if we reclaimed all
3968 		 * reclaimable pages?
3969 		 */
3970 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3971 				ac->highest_zoneidx, alloc_flags, available);
3972 		trace_reclaim_retry_zone(z, order, reclaimable,
3973 				available, min_wmark, *no_progress_loops, wmark);
3974 		if (wmark) {
3975 			ret = true;
3976 			break;
3977 		}
3978 	}
3979 
3980 	/*
3981 	 * Memory allocation/reclaim might be called from a WQ context and the
3982 	 * current implementation of the WQ concurrency control doesn't
3983 	 * recognize that a particular WQ is congested if the worker thread is
3984 	 * looping without ever sleeping. Therefore we have to do a short sleep
3985 	 * here rather than calling cond_resched().
3986 	 */
3987 	if (current->flags & PF_WQ_WORKER)
3988 		schedule_timeout_uninterruptible(1);
3989 	else
3990 		cond_resched();
3991 out:
3992 	/* Before OOM, exhaust highatomic_reserve */
3993 	if (!ret)
3994 		return unreserve_highatomic_pageblock(ac, true);
3995 
3996 	return ret;
3997 }
3998 
3999 static inline bool
4000 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4001 {
4002 	/*
4003 	 * It's possible that cpuset's mems_allowed and the nodemask from
4004 	 * mempolicy don't intersect. This should be normally dealt with by
4005 	 * policy_nodemask(), but it's possible to race with cpuset update in
4006 	 * such a way the check therein was true, and then it became false
4007 	 * before we got our cpuset_mems_cookie here.
4008 	 * This assumes that for all allocations, ac->nodemask can come only
4009 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4010 	 * when it does not intersect with the cpuset restrictions) or the
4011 	 * caller can deal with a violated nodemask.
4012 	 */
4013 	if (cpusets_enabled() && ac->nodemask &&
4014 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4015 		ac->nodemask = NULL;
4016 		return true;
4017 	}
4018 
4019 	/*
4020 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4021 	 * possible to race with parallel threads in such a way that our
4022 	 * allocation can fail while the mask is being updated. If we are about
4023 	 * to fail, check if the cpuset changed during allocation and if so,
4024 	 * retry.
4025 	 */
4026 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4027 		return true;
4028 
4029 	return false;
4030 }
4031 
4032 static inline struct page *
4033 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4034 						struct alloc_context *ac)
4035 {
4036 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4037 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4038 	struct page *page = NULL;
4039 	unsigned int alloc_flags;
4040 	unsigned long did_some_progress;
4041 	enum compact_priority compact_priority;
4042 	enum compact_result compact_result;
4043 	int compaction_retries;
4044 	int no_progress_loops;
4045 	unsigned int cpuset_mems_cookie;
4046 	unsigned int zonelist_iter_cookie;
4047 	int reserve_flags;
4048 
4049 restart:
4050 	compaction_retries = 0;
4051 	no_progress_loops = 0;
4052 	compact_priority = DEF_COMPACT_PRIORITY;
4053 	cpuset_mems_cookie = read_mems_allowed_begin();
4054 	zonelist_iter_cookie = zonelist_iter_begin();
4055 
4056 	/*
4057 	 * The fast path uses conservative alloc_flags to succeed only until
4058 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4059 	 * alloc_flags precisely. So we do that now.
4060 	 */
4061 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4062 
4063 	/*
4064 	 * We need to recalculate the starting point for the zonelist iterator
4065 	 * because we might have used different nodemask in the fast path, or
4066 	 * there was a cpuset modification and we are retrying - otherwise we
4067 	 * could end up iterating over non-eligible zones endlessly.
4068 	 */
4069 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4070 					ac->highest_zoneidx, ac->nodemask);
4071 	if (!ac->preferred_zoneref->zone)
4072 		goto nopage;
4073 
4074 	/*
4075 	 * Check for insane configurations where the cpuset doesn't contain
4076 	 * any suitable zone to satisfy the request - e.g. non-movable
4077 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4078 	 */
4079 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4080 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4081 					ac->highest_zoneidx,
4082 					&cpuset_current_mems_allowed);
4083 		if (!z->zone)
4084 			goto nopage;
4085 	}
4086 
4087 	if (alloc_flags & ALLOC_KSWAPD)
4088 		wake_all_kswapds(order, gfp_mask, ac);
4089 
4090 	/*
4091 	 * The adjusted alloc_flags might result in immediate success, so try
4092 	 * that first
4093 	 */
4094 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4095 	if (page)
4096 		goto got_pg;
4097 
4098 	/*
4099 	 * For costly allocations, try direct compaction first, as it's likely
4100 	 * that we have enough base pages and don't need to reclaim. For non-
4101 	 * movable high-order allocations, do that as well, as compaction will
4102 	 * try prevent permanent fragmentation by migrating from blocks of the
4103 	 * same migratetype.
4104 	 * Don't try this for allocations that are allowed to ignore
4105 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4106 	 */
4107 	if (can_direct_reclaim &&
4108 			(costly_order ||
4109 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4110 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4111 		page = __alloc_pages_direct_compact(gfp_mask, order,
4112 						alloc_flags, ac,
4113 						INIT_COMPACT_PRIORITY,
4114 						&compact_result);
4115 		if (page)
4116 			goto got_pg;
4117 
4118 		/*
4119 		 * Checks for costly allocations with __GFP_NORETRY, which
4120 		 * includes some THP page fault allocations
4121 		 */
4122 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4123 			/*
4124 			 * If allocating entire pageblock(s) and compaction
4125 			 * failed because all zones are below low watermarks
4126 			 * or is prohibited because it recently failed at this
4127 			 * order, fail immediately unless the allocator has
4128 			 * requested compaction and reclaim retry.
4129 			 *
4130 			 * Reclaim is
4131 			 *  - potentially very expensive because zones are far
4132 			 *    below their low watermarks or this is part of very
4133 			 *    bursty high order allocations,
4134 			 *  - not guaranteed to help because isolate_freepages()
4135 			 *    may not iterate over freed pages as part of its
4136 			 *    linear scan, and
4137 			 *  - unlikely to make entire pageblocks free on its
4138 			 *    own.
4139 			 */
4140 			if (compact_result == COMPACT_SKIPPED ||
4141 			    compact_result == COMPACT_DEFERRED)
4142 				goto nopage;
4143 
4144 			/*
4145 			 * Looks like reclaim/compaction is worth trying, but
4146 			 * sync compaction could be very expensive, so keep
4147 			 * using async compaction.
4148 			 */
4149 			compact_priority = INIT_COMPACT_PRIORITY;
4150 		}
4151 	}
4152 
4153 retry:
4154 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4155 	if (alloc_flags & ALLOC_KSWAPD)
4156 		wake_all_kswapds(order, gfp_mask, ac);
4157 
4158 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4159 	if (reserve_flags)
4160 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4161 					  (alloc_flags & ALLOC_KSWAPD);
4162 
4163 	/*
4164 	 * Reset the nodemask and zonelist iterators if memory policies can be
4165 	 * ignored. These allocations are high priority and system rather than
4166 	 * user oriented.
4167 	 */
4168 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4169 		ac->nodemask = NULL;
4170 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4171 					ac->highest_zoneidx, ac->nodemask);
4172 	}
4173 
4174 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4175 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4176 	if (page)
4177 		goto got_pg;
4178 
4179 	/* Caller is not willing to reclaim, we can't balance anything */
4180 	if (!can_direct_reclaim)
4181 		goto nopage;
4182 
4183 	/* Avoid recursion of direct reclaim */
4184 	if (current->flags & PF_MEMALLOC)
4185 		goto nopage;
4186 
4187 	/* Try direct reclaim and then allocating */
4188 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4189 							&did_some_progress);
4190 	if (page)
4191 		goto got_pg;
4192 
4193 	/* Try direct compaction and then allocating */
4194 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4195 					compact_priority, &compact_result);
4196 	if (page)
4197 		goto got_pg;
4198 
4199 	/* Do not loop if specifically requested */
4200 	if (gfp_mask & __GFP_NORETRY)
4201 		goto nopage;
4202 
4203 	/*
4204 	 * Do not retry costly high order allocations unless they are
4205 	 * __GFP_RETRY_MAYFAIL
4206 	 */
4207 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4208 		goto nopage;
4209 
4210 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4211 				 did_some_progress > 0, &no_progress_loops))
4212 		goto retry;
4213 
4214 	/*
4215 	 * It doesn't make any sense to retry for the compaction if the order-0
4216 	 * reclaim is not able to make any progress because the current
4217 	 * implementation of the compaction depends on the sufficient amount
4218 	 * of free memory (see __compaction_suitable)
4219 	 */
4220 	if (did_some_progress > 0 &&
4221 			should_compact_retry(ac, order, alloc_flags,
4222 				compact_result, &compact_priority,
4223 				&compaction_retries))
4224 		goto retry;
4225 
4226 
4227 	/*
4228 	 * Deal with possible cpuset update races or zonelist updates to avoid
4229 	 * a unnecessary OOM kill.
4230 	 */
4231 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4232 	    check_retry_zonelist(zonelist_iter_cookie))
4233 		goto restart;
4234 
4235 	/* Reclaim has failed us, start killing things */
4236 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4237 	if (page)
4238 		goto got_pg;
4239 
4240 	/* Avoid allocations with no watermarks from looping endlessly */
4241 	if (tsk_is_oom_victim(current) &&
4242 	    (alloc_flags & ALLOC_OOM ||
4243 	     (gfp_mask & __GFP_NOMEMALLOC)))
4244 		goto nopage;
4245 
4246 	/* Retry as long as the OOM killer is making progress */
4247 	if (did_some_progress) {
4248 		no_progress_loops = 0;
4249 		goto retry;
4250 	}
4251 
4252 nopage:
4253 	/*
4254 	 * Deal with possible cpuset update races or zonelist updates to avoid
4255 	 * a unnecessary OOM kill.
4256 	 */
4257 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4258 	    check_retry_zonelist(zonelist_iter_cookie))
4259 		goto restart;
4260 
4261 	/*
4262 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4263 	 * we always retry
4264 	 */
4265 	if (gfp_mask & __GFP_NOFAIL) {
4266 		/*
4267 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4268 		 * of any new users that actually require GFP_NOWAIT
4269 		 */
4270 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4271 			goto fail;
4272 
4273 		/*
4274 		 * PF_MEMALLOC request from this context is rather bizarre
4275 		 * because we cannot reclaim anything and only can loop waiting
4276 		 * for somebody to do a work for us
4277 		 */
4278 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4279 
4280 		/*
4281 		 * non failing costly orders are a hard requirement which we
4282 		 * are not prepared for much so let's warn about these users
4283 		 * so that we can identify them and convert them to something
4284 		 * else.
4285 		 */
4286 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4287 
4288 		/*
4289 		 * Help non-failing allocations by giving some access to memory
4290 		 * reserves normally used for high priority non-blocking
4291 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4292 		 * could deplete whole memory reserves which would just make
4293 		 * the situation worse.
4294 		 */
4295 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4296 		if (page)
4297 			goto got_pg;
4298 
4299 		cond_resched();
4300 		goto retry;
4301 	}
4302 fail:
4303 	warn_alloc(gfp_mask, ac->nodemask,
4304 			"page allocation failure: order:%u", order);
4305 got_pg:
4306 	return page;
4307 }
4308 
4309 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4310 		int preferred_nid, nodemask_t *nodemask,
4311 		struct alloc_context *ac, gfp_t *alloc_gfp,
4312 		unsigned int *alloc_flags)
4313 {
4314 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4315 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4316 	ac->nodemask = nodemask;
4317 	ac->migratetype = gfp_migratetype(gfp_mask);
4318 
4319 	if (cpusets_enabled()) {
4320 		*alloc_gfp |= __GFP_HARDWALL;
4321 		/*
4322 		 * When we are in the interrupt context, it is irrelevant
4323 		 * to the current task context. It means that any node ok.
4324 		 */
4325 		if (in_task() && !ac->nodemask)
4326 			ac->nodemask = &cpuset_current_mems_allowed;
4327 		else
4328 			*alloc_flags |= ALLOC_CPUSET;
4329 	}
4330 
4331 	might_alloc(gfp_mask);
4332 
4333 	if (should_fail_alloc_page(gfp_mask, order))
4334 		return false;
4335 
4336 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4337 
4338 	/* Dirty zone balancing only done in the fast path */
4339 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4340 
4341 	/*
4342 	 * The preferred zone is used for statistics but crucially it is
4343 	 * also used as the starting point for the zonelist iterator. It
4344 	 * may get reset for allocations that ignore memory policies.
4345 	 */
4346 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4347 					ac->highest_zoneidx, ac->nodemask);
4348 
4349 	return true;
4350 }
4351 
4352 /*
4353  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4354  * @gfp: GFP flags for the allocation
4355  * @preferred_nid: The preferred NUMA node ID to allocate from
4356  * @nodemask: Set of nodes to allocate from, may be NULL
4357  * @nr_pages: The number of pages desired on the list or array
4358  * @page_list: Optional list to store the allocated pages
4359  * @page_array: Optional array to store the pages
4360  *
4361  * This is a batched version of the page allocator that attempts to
4362  * allocate nr_pages quickly. Pages are added to page_list if page_list
4363  * is not NULL, otherwise it is assumed that the page_array is valid.
4364  *
4365  * For lists, nr_pages is the number of pages that should be allocated.
4366  *
4367  * For arrays, only NULL elements are populated with pages and nr_pages
4368  * is the maximum number of pages that will be stored in the array.
4369  *
4370  * Returns the number of pages on the list or array.
4371  */
4372 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4373 			nodemask_t *nodemask, int nr_pages,
4374 			struct list_head *page_list,
4375 			struct page **page_array)
4376 {
4377 	struct page *page;
4378 	unsigned long __maybe_unused UP_flags;
4379 	struct zone *zone;
4380 	struct zoneref *z;
4381 	struct per_cpu_pages *pcp;
4382 	struct list_head *pcp_list;
4383 	struct alloc_context ac;
4384 	gfp_t alloc_gfp;
4385 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4386 	int nr_populated = 0, nr_account = 0;
4387 
4388 	/*
4389 	 * Skip populated array elements to determine if any pages need
4390 	 * to be allocated before disabling IRQs.
4391 	 */
4392 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4393 		nr_populated++;
4394 
4395 	/* No pages requested? */
4396 	if (unlikely(nr_pages <= 0))
4397 		goto out;
4398 
4399 	/* Already populated array? */
4400 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4401 		goto out;
4402 
4403 	/* Bulk allocator does not support memcg accounting. */
4404 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4405 		goto failed;
4406 
4407 	/* Use the single page allocator for one page. */
4408 	if (nr_pages - nr_populated == 1)
4409 		goto failed;
4410 
4411 #ifdef CONFIG_PAGE_OWNER
4412 	/*
4413 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4414 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4415 	 * removes much of the performance benefit of bulk allocation so
4416 	 * force the caller to allocate one page at a time as it'll have
4417 	 * similar performance to added complexity to the bulk allocator.
4418 	 */
4419 	if (static_branch_unlikely(&page_owner_inited))
4420 		goto failed;
4421 #endif
4422 
4423 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4424 	gfp &= gfp_allowed_mask;
4425 	alloc_gfp = gfp;
4426 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4427 		goto out;
4428 	gfp = alloc_gfp;
4429 
4430 	/* Find an allowed local zone that meets the low watermark. */
4431 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4432 		unsigned long mark;
4433 
4434 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4435 		    !__cpuset_zone_allowed(zone, gfp)) {
4436 			continue;
4437 		}
4438 
4439 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4440 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4441 			goto failed;
4442 		}
4443 
4444 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4445 		if (zone_watermark_fast(zone, 0,  mark,
4446 				zonelist_zone_idx(ac.preferred_zoneref),
4447 				alloc_flags, gfp)) {
4448 			break;
4449 		}
4450 	}
4451 
4452 	/*
4453 	 * If there are no allowed local zones that meets the watermarks then
4454 	 * try to allocate a single page and reclaim if necessary.
4455 	 */
4456 	if (unlikely(!zone))
4457 		goto failed;
4458 
4459 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4460 	pcp_trylock_prepare(UP_flags);
4461 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4462 	if (!pcp)
4463 		goto failed_irq;
4464 
4465 	/* Attempt the batch allocation */
4466 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4467 	while (nr_populated < nr_pages) {
4468 
4469 		/* Skip existing pages */
4470 		if (page_array && page_array[nr_populated]) {
4471 			nr_populated++;
4472 			continue;
4473 		}
4474 
4475 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4476 								pcp, pcp_list);
4477 		if (unlikely(!page)) {
4478 			/* Try and allocate at least one page */
4479 			if (!nr_account) {
4480 				pcp_spin_unlock(pcp);
4481 				goto failed_irq;
4482 			}
4483 			break;
4484 		}
4485 		nr_account++;
4486 
4487 		prep_new_page(page, 0, gfp, 0);
4488 		if (page_list)
4489 			list_add(&page->lru, page_list);
4490 		else
4491 			page_array[nr_populated] = page;
4492 		nr_populated++;
4493 	}
4494 
4495 	pcp_spin_unlock(pcp);
4496 	pcp_trylock_finish(UP_flags);
4497 
4498 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4499 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4500 
4501 out:
4502 	return nr_populated;
4503 
4504 failed_irq:
4505 	pcp_trylock_finish(UP_flags);
4506 
4507 failed:
4508 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4509 	if (page) {
4510 		if (page_list)
4511 			list_add(&page->lru, page_list);
4512 		else
4513 			page_array[nr_populated] = page;
4514 		nr_populated++;
4515 	}
4516 
4517 	goto out;
4518 }
4519 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4520 
4521 /*
4522  * This is the 'heart' of the zoned buddy allocator.
4523  */
4524 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4525 							nodemask_t *nodemask)
4526 {
4527 	struct page *page;
4528 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4529 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4530 	struct alloc_context ac = { };
4531 
4532 	/*
4533 	 * There are several places where we assume that the order value is sane
4534 	 * so bail out early if the request is out of bound.
4535 	 */
4536 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4537 		return NULL;
4538 
4539 	gfp &= gfp_allowed_mask;
4540 	/*
4541 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4542 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4543 	 * from a particular context which has been marked by
4544 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4545 	 * movable zones are not used during allocation.
4546 	 */
4547 	gfp = current_gfp_context(gfp);
4548 	alloc_gfp = gfp;
4549 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4550 			&alloc_gfp, &alloc_flags))
4551 		return NULL;
4552 
4553 	/*
4554 	 * Forbid the first pass from falling back to types that fragment
4555 	 * memory until all local zones are considered.
4556 	 */
4557 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4558 
4559 	/* First allocation attempt */
4560 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4561 	if (likely(page))
4562 		goto out;
4563 
4564 	alloc_gfp = gfp;
4565 	ac.spread_dirty_pages = false;
4566 
4567 	/*
4568 	 * Restore the original nodemask if it was potentially replaced with
4569 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4570 	 */
4571 	ac.nodemask = nodemask;
4572 
4573 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4574 
4575 out:
4576 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4577 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4578 		__free_pages(page, order);
4579 		page = NULL;
4580 	}
4581 
4582 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4583 	kmsan_alloc_page(page, order, alloc_gfp);
4584 
4585 	return page;
4586 }
4587 EXPORT_SYMBOL(__alloc_pages);
4588 
4589 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4590 		nodemask_t *nodemask)
4591 {
4592 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4593 					preferred_nid, nodemask);
4594 	return page_rmappable_folio(page);
4595 }
4596 EXPORT_SYMBOL(__folio_alloc);
4597 
4598 /*
4599  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4600  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4601  * you need to access high mem.
4602  */
4603 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4604 {
4605 	struct page *page;
4606 
4607 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4608 	if (!page)
4609 		return 0;
4610 	return (unsigned long) page_address(page);
4611 }
4612 EXPORT_SYMBOL(__get_free_pages);
4613 
4614 unsigned long get_zeroed_page(gfp_t gfp_mask)
4615 {
4616 	return __get_free_page(gfp_mask | __GFP_ZERO);
4617 }
4618 EXPORT_SYMBOL(get_zeroed_page);
4619 
4620 /**
4621  * __free_pages - Free pages allocated with alloc_pages().
4622  * @page: The page pointer returned from alloc_pages().
4623  * @order: The order of the allocation.
4624  *
4625  * This function can free multi-page allocations that are not compound
4626  * pages.  It does not check that the @order passed in matches that of
4627  * the allocation, so it is easy to leak memory.  Freeing more memory
4628  * than was allocated will probably emit a warning.
4629  *
4630  * If the last reference to this page is speculative, it will be released
4631  * by put_page() which only frees the first page of a non-compound
4632  * allocation.  To prevent the remaining pages from being leaked, we free
4633  * the subsequent pages here.  If you want to use the page's reference
4634  * count to decide when to free the allocation, you should allocate a
4635  * compound page, and use put_page() instead of __free_pages().
4636  *
4637  * Context: May be called in interrupt context or while holding a normal
4638  * spinlock, but not in NMI context or while holding a raw spinlock.
4639  */
4640 void __free_pages(struct page *page, unsigned int order)
4641 {
4642 	/* get PageHead before we drop reference */
4643 	int head = PageHead(page);
4644 
4645 	if (put_page_testzero(page))
4646 		free_the_page(page, order);
4647 	else if (!head)
4648 		while (order-- > 0)
4649 			free_the_page(page + (1 << order), order);
4650 }
4651 EXPORT_SYMBOL(__free_pages);
4652 
4653 void free_pages(unsigned long addr, unsigned int order)
4654 {
4655 	if (addr != 0) {
4656 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4657 		__free_pages(virt_to_page((void *)addr), order);
4658 	}
4659 }
4660 
4661 EXPORT_SYMBOL(free_pages);
4662 
4663 /*
4664  * Page Fragment:
4665  *  An arbitrary-length arbitrary-offset area of memory which resides
4666  *  within a 0 or higher order page.  Multiple fragments within that page
4667  *  are individually refcounted, in the page's reference counter.
4668  *
4669  * The page_frag functions below provide a simple allocation framework for
4670  * page fragments.  This is used by the network stack and network device
4671  * drivers to provide a backing region of memory for use as either an
4672  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4673  */
4674 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4675 					     gfp_t gfp_mask)
4676 {
4677 	struct page *page = NULL;
4678 	gfp_t gfp = gfp_mask;
4679 
4680 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4681 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4682 		    __GFP_NOMEMALLOC;
4683 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4684 				PAGE_FRAG_CACHE_MAX_ORDER);
4685 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4686 #endif
4687 	if (unlikely(!page))
4688 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4689 
4690 	nc->va = page ? page_address(page) : NULL;
4691 
4692 	return page;
4693 }
4694 
4695 void __page_frag_cache_drain(struct page *page, unsigned int count)
4696 {
4697 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4698 
4699 	if (page_ref_sub_and_test(page, count))
4700 		free_the_page(page, compound_order(page));
4701 }
4702 EXPORT_SYMBOL(__page_frag_cache_drain);
4703 
4704 void *page_frag_alloc_align(struct page_frag_cache *nc,
4705 		      unsigned int fragsz, gfp_t gfp_mask,
4706 		      unsigned int align_mask)
4707 {
4708 	unsigned int size = PAGE_SIZE;
4709 	struct page *page;
4710 	int offset;
4711 
4712 	if (unlikely(!nc->va)) {
4713 refill:
4714 		page = __page_frag_cache_refill(nc, gfp_mask);
4715 		if (!page)
4716 			return NULL;
4717 
4718 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4719 		/* if size can vary use size else just use PAGE_SIZE */
4720 		size = nc->size;
4721 #endif
4722 		/* Even if we own the page, we do not use atomic_set().
4723 		 * This would break get_page_unless_zero() users.
4724 		 */
4725 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4726 
4727 		/* reset page count bias and offset to start of new frag */
4728 		nc->pfmemalloc = page_is_pfmemalloc(page);
4729 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4730 		nc->offset = size;
4731 	}
4732 
4733 	offset = nc->offset - fragsz;
4734 	if (unlikely(offset < 0)) {
4735 		page = virt_to_page(nc->va);
4736 
4737 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4738 			goto refill;
4739 
4740 		if (unlikely(nc->pfmemalloc)) {
4741 			free_the_page(page, compound_order(page));
4742 			goto refill;
4743 		}
4744 
4745 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4746 		/* if size can vary use size else just use PAGE_SIZE */
4747 		size = nc->size;
4748 #endif
4749 		/* OK, page count is 0, we can safely set it */
4750 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4751 
4752 		/* reset page count bias and offset to start of new frag */
4753 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4754 		offset = size - fragsz;
4755 		if (unlikely(offset < 0)) {
4756 			/*
4757 			 * The caller is trying to allocate a fragment
4758 			 * with fragsz > PAGE_SIZE but the cache isn't big
4759 			 * enough to satisfy the request, this may
4760 			 * happen in low memory conditions.
4761 			 * We don't release the cache page because
4762 			 * it could make memory pressure worse
4763 			 * so we simply return NULL here.
4764 			 */
4765 			return NULL;
4766 		}
4767 	}
4768 
4769 	nc->pagecnt_bias--;
4770 	offset &= align_mask;
4771 	nc->offset = offset;
4772 
4773 	return nc->va + offset;
4774 }
4775 EXPORT_SYMBOL(page_frag_alloc_align);
4776 
4777 /*
4778  * Frees a page fragment allocated out of either a compound or order 0 page.
4779  */
4780 void page_frag_free(void *addr)
4781 {
4782 	struct page *page = virt_to_head_page(addr);
4783 
4784 	if (unlikely(put_page_testzero(page)))
4785 		free_the_page(page, compound_order(page));
4786 }
4787 EXPORT_SYMBOL(page_frag_free);
4788 
4789 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4790 		size_t size)
4791 {
4792 	if (addr) {
4793 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4794 		struct page *page = virt_to_page((void *)addr);
4795 		struct page *last = page + nr;
4796 
4797 		split_page_owner(page, 1 << order);
4798 		split_page_memcg(page, 1 << order);
4799 		while (page < --last)
4800 			set_page_refcounted(last);
4801 
4802 		last = page + (1UL << order);
4803 		for (page += nr; page < last; page++)
4804 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4805 	}
4806 	return (void *)addr;
4807 }
4808 
4809 /**
4810  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4811  * @size: the number of bytes to allocate
4812  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4813  *
4814  * This function is similar to alloc_pages(), except that it allocates the
4815  * minimum number of pages to satisfy the request.  alloc_pages() can only
4816  * allocate memory in power-of-two pages.
4817  *
4818  * This function is also limited by MAX_PAGE_ORDER.
4819  *
4820  * Memory allocated by this function must be released by free_pages_exact().
4821  *
4822  * Return: pointer to the allocated area or %NULL in case of error.
4823  */
4824 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4825 {
4826 	unsigned int order = get_order(size);
4827 	unsigned long addr;
4828 
4829 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4830 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4831 
4832 	addr = __get_free_pages(gfp_mask, order);
4833 	return make_alloc_exact(addr, order, size);
4834 }
4835 EXPORT_SYMBOL(alloc_pages_exact);
4836 
4837 /**
4838  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4839  *			   pages on a node.
4840  * @nid: the preferred node ID where memory should be allocated
4841  * @size: the number of bytes to allocate
4842  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4843  *
4844  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4845  * back.
4846  *
4847  * Return: pointer to the allocated area or %NULL in case of error.
4848  */
4849 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4850 {
4851 	unsigned int order = get_order(size);
4852 	struct page *p;
4853 
4854 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4855 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4856 
4857 	p = alloc_pages_node(nid, gfp_mask, order);
4858 	if (!p)
4859 		return NULL;
4860 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4861 }
4862 
4863 /**
4864  * free_pages_exact - release memory allocated via alloc_pages_exact()
4865  * @virt: the value returned by alloc_pages_exact.
4866  * @size: size of allocation, same value as passed to alloc_pages_exact().
4867  *
4868  * Release the memory allocated by a previous call to alloc_pages_exact.
4869  */
4870 void free_pages_exact(void *virt, size_t size)
4871 {
4872 	unsigned long addr = (unsigned long)virt;
4873 	unsigned long end = addr + PAGE_ALIGN(size);
4874 
4875 	while (addr < end) {
4876 		free_page(addr);
4877 		addr += PAGE_SIZE;
4878 	}
4879 }
4880 EXPORT_SYMBOL(free_pages_exact);
4881 
4882 /**
4883  * nr_free_zone_pages - count number of pages beyond high watermark
4884  * @offset: The zone index of the highest zone
4885  *
4886  * nr_free_zone_pages() counts the number of pages which are beyond the
4887  * high watermark within all zones at or below a given zone index.  For each
4888  * zone, the number of pages is calculated as:
4889  *
4890  *     nr_free_zone_pages = managed_pages - high_pages
4891  *
4892  * Return: number of pages beyond high watermark.
4893  */
4894 static unsigned long nr_free_zone_pages(int offset)
4895 {
4896 	struct zoneref *z;
4897 	struct zone *zone;
4898 
4899 	/* Just pick one node, since fallback list is circular */
4900 	unsigned long sum = 0;
4901 
4902 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4903 
4904 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4905 		unsigned long size = zone_managed_pages(zone);
4906 		unsigned long high = high_wmark_pages(zone);
4907 		if (size > high)
4908 			sum += size - high;
4909 	}
4910 
4911 	return sum;
4912 }
4913 
4914 /**
4915  * nr_free_buffer_pages - count number of pages beyond high watermark
4916  *
4917  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4918  * watermark within ZONE_DMA and ZONE_NORMAL.
4919  *
4920  * Return: number of pages beyond high watermark within ZONE_DMA and
4921  * ZONE_NORMAL.
4922  */
4923 unsigned long nr_free_buffer_pages(void)
4924 {
4925 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4926 }
4927 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4928 
4929 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4930 {
4931 	zoneref->zone = zone;
4932 	zoneref->zone_idx = zone_idx(zone);
4933 }
4934 
4935 /*
4936  * Builds allocation fallback zone lists.
4937  *
4938  * Add all populated zones of a node to the zonelist.
4939  */
4940 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4941 {
4942 	struct zone *zone;
4943 	enum zone_type zone_type = MAX_NR_ZONES;
4944 	int nr_zones = 0;
4945 
4946 	do {
4947 		zone_type--;
4948 		zone = pgdat->node_zones + zone_type;
4949 		if (populated_zone(zone)) {
4950 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4951 			check_highest_zone(zone_type);
4952 		}
4953 	} while (zone_type);
4954 
4955 	return nr_zones;
4956 }
4957 
4958 #ifdef CONFIG_NUMA
4959 
4960 static int __parse_numa_zonelist_order(char *s)
4961 {
4962 	/*
4963 	 * We used to support different zonelists modes but they turned
4964 	 * out to be just not useful. Let's keep the warning in place
4965 	 * if somebody still use the cmd line parameter so that we do
4966 	 * not fail it silently
4967 	 */
4968 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4969 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4970 		return -EINVAL;
4971 	}
4972 	return 0;
4973 }
4974 
4975 static char numa_zonelist_order[] = "Node";
4976 #define NUMA_ZONELIST_ORDER_LEN	16
4977 /*
4978  * sysctl handler for numa_zonelist_order
4979  */
4980 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4981 		void *buffer, size_t *length, loff_t *ppos)
4982 {
4983 	if (write)
4984 		return __parse_numa_zonelist_order(buffer);
4985 	return proc_dostring(table, write, buffer, length, ppos);
4986 }
4987 
4988 static int node_load[MAX_NUMNODES];
4989 
4990 /**
4991  * find_next_best_node - find the next node that should appear in a given node's fallback list
4992  * @node: node whose fallback list we're appending
4993  * @used_node_mask: nodemask_t of already used nodes
4994  *
4995  * We use a number of factors to determine which is the next node that should
4996  * appear on a given node's fallback list.  The node should not have appeared
4997  * already in @node's fallback list, and it should be the next closest node
4998  * according to the distance array (which contains arbitrary distance values
4999  * from each node to each node in the system), and should also prefer nodes
5000  * with no CPUs, since presumably they'll have very little allocation pressure
5001  * on them otherwise.
5002  *
5003  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5004  */
5005 int find_next_best_node(int node, nodemask_t *used_node_mask)
5006 {
5007 	int n, val;
5008 	int min_val = INT_MAX;
5009 	int best_node = NUMA_NO_NODE;
5010 
5011 	/*
5012 	 * Use the local node if we haven't already, but for memoryless local
5013 	 * node, we should skip it and fall back to other nodes.
5014 	 */
5015 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5016 		node_set(node, *used_node_mask);
5017 		return node;
5018 	}
5019 
5020 	for_each_node_state(n, N_MEMORY) {
5021 
5022 		/* Don't want a node to appear more than once */
5023 		if (node_isset(n, *used_node_mask))
5024 			continue;
5025 
5026 		/* Use the distance array to find the distance */
5027 		val = node_distance(node, n);
5028 
5029 		/* Penalize nodes under us ("prefer the next node") */
5030 		val += (n < node);
5031 
5032 		/* Give preference to headless and unused nodes */
5033 		if (!cpumask_empty(cpumask_of_node(n)))
5034 			val += PENALTY_FOR_NODE_WITH_CPUS;
5035 
5036 		/* Slight preference for less loaded node */
5037 		val *= MAX_NUMNODES;
5038 		val += node_load[n];
5039 
5040 		if (val < min_val) {
5041 			min_val = val;
5042 			best_node = n;
5043 		}
5044 	}
5045 
5046 	if (best_node >= 0)
5047 		node_set(best_node, *used_node_mask);
5048 
5049 	return best_node;
5050 }
5051 
5052 
5053 /*
5054  * Build zonelists ordered by node and zones within node.
5055  * This results in maximum locality--normal zone overflows into local
5056  * DMA zone, if any--but risks exhausting DMA zone.
5057  */
5058 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5059 		unsigned nr_nodes)
5060 {
5061 	struct zoneref *zonerefs;
5062 	int i;
5063 
5064 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5065 
5066 	for (i = 0; i < nr_nodes; i++) {
5067 		int nr_zones;
5068 
5069 		pg_data_t *node = NODE_DATA(node_order[i]);
5070 
5071 		nr_zones = build_zonerefs_node(node, zonerefs);
5072 		zonerefs += nr_zones;
5073 	}
5074 	zonerefs->zone = NULL;
5075 	zonerefs->zone_idx = 0;
5076 }
5077 
5078 /*
5079  * Build gfp_thisnode zonelists
5080  */
5081 static void build_thisnode_zonelists(pg_data_t *pgdat)
5082 {
5083 	struct zoneref *zonerefs;
5084 	int nr_zones;
5085 
5086 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5087 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5088 	zonerefs += nr_zones;
5089 	zonerefs->zone = NULL;
5090 	zonerefs->zone_idx = 0;
5091 }
5092 
5093 /*
5094  * Build zonelists ordered by zone and nodes within zones.
5095  * This results in conserving DMA zone[s] until all Normal memory is
5096  * exhausted, but results in overflowing to remote node while memory
5097  * may still exist in local DMA zone.
5098  */
5099 
5100 static void build_zonelists(pg_data_t *pgdat)
5101 {
5102 	static int node_order[MAX_NUMNODES];
5103 	int node, nr_nodes = 0;
5104 	nodemask_t used_mask = NODE_MASK_NONE;
5105 	int local_node, prev_node;
5106 
5107 	/* NUMA-aware ordering of nodes */
5108 	local_node = pgdat->node_id;
5109 	prev_node = local_node;
5110 
5111 	memset(node_order, 0, sizeof(node_order));
5112 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5113 		/*
5114 		 * We don't want to pressure a particular node.
5115 		 * So adding penalty to the first node in same
5116 		 * distance group to make it round-robin.
5117 		 */
5118 		if (node_distance(local_node, node) !=
5119 		    node_distance(local_node, prev_node))
5120 			node_load[node] += 1;
5121 
5122 		node_order[nr_nodes++] = node;
5123 		prev_node = node;
5124 	}
5125 
5126 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5127 	build_thisnode_zonelists(pgdat);
5128 	pr_info("Fallback order for Node %d: ", local_node);
5129 	for (node = 0; node < nr_nodes; node++)
5130 		pr_cont("%d ", node_order[node]);
5131 	pr_cont("\n");
5132 }
5133 
5134 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5135 /*
5136  * Return node id of node used for "local" allocations.
5137  * I.e., first node id of first zone in arg node's generic zonelist.
5138  * Used for initializing percpu 'numa_mem', which is used primarily
5139  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5140  */
5141 int local_memory_node(int node)
5142 {
5143 	struct zoneref *z;
5144 
5145 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5146 				   gfp_zone(GFP_KERNEL),
5147 				   NULL);
5148 	return zone_to_nid(z->zone);
5149 }
5150 #endif
5151 
5152 static void setup_min_unmapped_ratio(void);
5153 static void setup_min_slab_ratio(void);
5154 #else	/* CONFIG_NUMA */
5155 
5156 static void build_zonelists(pg_data_t *pgdat)
5157 {
5158 	int node, local_node;
5159 	struct zoneref *zonerefs;
5160 	int nr_zones;
5161 
5162 	local_node = pgdat->node_id;
5163 
5164 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5165 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5166 	zonerefs += nr_zones;
5167 
5168 	/*
5169 	 * Now we build the zonelist so that it contains the zones
5170 	 * of all the other nodes.
5171 	 * We don't want to pressure a particular node, so when
5172 	 * building the zones for node N, we make sure that the
5173 	 * zones coming right after the local ones are those from
5174 	 * node N+1 (modulo N)
5175 	 */
5176 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5177 		if (!node_online(node))
5178 			continue;
5179 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5180 		zonerefs += nr_zones;
5181 	}
5182 	for (node = 0; node < local_node; node++) {
5183 		if (!node_online(node))
5184 			continue;
5185 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5186 		zonerefs += nr_zones;
5187 	}
5188 
5189 	zonerefs->zone = NULL;
5190 	zonerefs->zone_idx = 0;
5191 }
5192 
5193 #endif	/* CONFIG_NUMA */
5194 
5195 /*
5196  * Boot pageset table. One per cpu which is going to be used for all
5197  * zones and all nodes. The parameters will be set in such a way
5198  * that an item put on a list will immediately be handed over to
5199  * the buddy list. This is safe since pageset manipulation is done
5200  * with interrupts disabled.
5201  *
5202  * The boot_pagesets must be kept even after bootup is complete for
5203  * unused processors and/or zones. They do play a role for bootstrapping
5204  * hotplugged processors.
5205  *
5206  * zoneinfo_show() and maybe other functions do
5207  * not check if the processor is online before following the pageset pointer.
5208  * Other parts of the kernel may not check if the zone is available.
5209  */
5210 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5211 /* These effectively disable the pcplists in the boot pageset completely */
5212 #define BOOT_PAGESET_HIGH	0
5213 #define BOOT_PAGESET_BATCH	1
5214 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5215 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5216 
5217 static void __build_all_zonelists(void *data)
5218 {
5219 	int nid;
5220 	int __maybe_unused cpu;
5221 	pg_data_t *self = data;
5222 	unsigned long flags;
5223 
5224 	/*
5225 	 * The zonelist_update_seq must be acquired with irqsave because the
5226 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5227 	 */
5228 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5229 	/*
5230 	 * Also disable synchronous printk() to prevent any printk() from
5231 	 * trying to hold port->lock, for
5232 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5233 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5234 	 */
5235 	printk_deferred_enter();
5236 
5237 #ifdef CONFIG_NUMA
5238 	memset(node_load, 0, sizeof(node_load));
5239 #endif
5240 
5241 	/*
5242 	 * This node is hotadded and no memory is yet present.   So just
5243 	 * building zonelists is fine - no need to touch other nodes.
5244 	 */
5245 	if (self && !node_online(self->node_id)) {
5246 		build_zonelists(self);
5247 	} else {
5248 		/*
5249 		 * All possible nodes have pgdat preallocated
5250 		 * in free_area_init
5251 		 */
5252 		for_each_node(nid) {
5253 			pg_data_t *pgdat = NODE_DATA(nid);
5254 
5255 			build_zonelists(pgdat);
5256 		}
5257 
5258 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5259 		/*
5260 		 * We now know the "local memory node" for each node--
5261 		 * i.e., the node of the first zone in the generic zonelist.
5262 		 * Set up numa_mem percpu variable for on-line cpus.  During
5263 		 * boot, only the boot cpu should be on-line;  we'll init the
5264 		 * secondary cpus' numa_mem as they come on-line.  During
5265 		 * node/memory hotplug, we'll fixup all on-line cpus.
5266 		 */
5267 		for_each_online_cpu(cpu)
5268 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5269 #endif
5270 	}
5271 
5272 	printk_deferred_exit();
5273 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5274 }
5275 
5276 static noinline void __init
5277 build_all_zonelists_init(void)
5278 {
5279 	int cpu;
5280 
5281 	__build_all_zonelists(NULL);
5282 
5283 	/*
5284 	 * Initialize the boot_pagesets that are going to be used
5285 	 * for bootstrapping processors. The real pagesets for
5286 	 * each zone will be allocated later when the per cpu
5287 	 * allocator is available.
5288 	 *
5289 	 * boot_pagesets are used also for bootstrapping offline
5290 	 * cpus if the system is already booted because the pagesets
5291 	 * are needed to initialize allocators on a specific cpu too.
5292 	 * F.e. the percpu allocator needs the page allocator which
5293 	 * needs the percpu allocator in order to allocate its pagesets
5294 	 * (a chicken-egg dilemma).
5295 	 */
5296 	for_each_possible_cpu(cpu)
5297 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5298 
5299 	mminit_verify_zonelist();
5300 	cpuset_init_current_mems_allowed();
5301 }
5302 
5303 /*
5304  * unless system_state == SYSTEM_BOOTING.
5305  *
5306  * __ref due to call of __init annotated helper build_all_zonelists_init
5307  * [protected by SYSTEM_BOOTING].
5308  */
5309 void __ref build_all_zonelists(pg_data_t *pgdat)
5310 {
5311 	unsigned long vm_total_pages;
5312 
5313 	if (system_state == SYSTEM_BOOTING) {
5314 		build_all_zonelists_init();
5315 	} else {
5316 		__build_all_zonelists(pgdat);
5317 		/* cpuset refresh routine should be here */
5318 	}
5319 	/* Get the number of free pages beyond high watermark in all zones. */
5320 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5321 	/*
5322 	 * Disable grouping by mobility if the number of pages in the
5323 	 * system is too low to allow the mechanism to work. It would be
5324 	 * more accurate, but expensive to check per-zone. This check is
5325 	 * made on memory-hotadd so a system can start with mobility
5326 	 * disabled and enable it later
5327 	 */
5328 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5329 		page_group_by_mobility_disabled = 1;
5330 	else
5331 		page_group_by_mobility_disabled = 0;
5332 
5333 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5334 		nr_online_nodes,
5335 		page_group_by_mobility_disabled ? "off" : "on",
5336 		vm_total_pages);
5337 #ifdef CONFIG_NUMA
5338 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5339 #endif
5340 }
5341 
5342 static int zone_batchsize(struct zone *zone)
5343 {
5344 #ifdef CONFIG_MMU
5345 	int batch;
5346 
5347 	/*
5348 	 * The number of pages to batch allocate is either ~0.1%
5349 	 * of the zone or 1MB, whichever is smaller. The batch
5350 	 * size is striking a balance between allocation latency
5351 	 * and zone lock contention.
5352 	 */
5353 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5354 	batch /= 4;		/* We effectively *= 4 below */
5355 	if (batch < 1)
5356 		batch = 1;
5357 
5358 	/*
5359 	 * Clamp the batch to a 2^n - 1 value. Having a power
5360 	 * of 2 value was found to be more likely to have
5361 	 * suboptimal cache aliasing properties in some cases.
5362 	 *
5363 	 * For example if 2 tasks are alternately allocating
5364 	 * batches of pages, one task can end up with a lot
5365 	 * of pages of one half of the possible page colors
5366 	 * and the other with pages of the other colors.
5367 	 */
5368 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5369 
5370 	return batch;
5371 
5372 #else
5373 	/* The deferral and batching of frees should be suppressed under NOMMU
5374 	 * conditions.
5375 	 *
5376 	 * The problem is that NOMMU needs to be able to allocate large chunks
5377 	 * of contiguous memory as there's no hardware page translation to
5378 	 * assemble apparent contiguous memory from discontiguous pages.
5379 	 *
5380 	 * Queueing large contiguous runs of pages for batching, however,
5381 	 * causes the pages to actually be freed in smaller chunks.  As there
5382 	 * can be a significant delay between the individual batches being
5383 	 * recycled, this leads to the once large chunks of space being
5384 	 * fragmented and becoming unavailable for high-order allocations.
5385 	 */
5386 	return 0;
5387 #endif
5388 }
5389 
5390 static int percpu_pagelist_high_fraction;
5391 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5392 			 int high_fraction)
5393 {
5394 #ifdef CONFIG_MMU
5395 	int high;
5396 	int nr_split_cpus;
5397 	unsigned long total_pages;
5398 
5399 	if (!high_fraction) {
5400 		/*
5401 		 * By default, the high value of the pcp is based on the zone
5402 		 * low watermark so that if they are full then background
5403 		 * reclaim will not be started prematurely.
5404 		 */
5405 		total_pages = low_wmark_pages(zone);
5406 	} else {
5407 		/*
5408 		 * If percpu_pagelist_high_fraction is configured, the high
5409 		 * value is based on a fraction of the managed pages in the
5410 		 * zone.
5411 		 */
5412 		total_pages = zone_managed_pages(zone) / high_fraction;
5413 	}
5414 
5415 	/*
5416 	 * Split the high value across all online CPUs local to the zone. Note
5417 	 * that early in boot that CPUs may not be online yet and that during
5418 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5419 	 * onlined. For memory nodes that have no CPUs, split the high value
5420 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5421 	 * prematurely due to pages stored on pcp lists.
5422 	 */
5423 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5424 	if (!nr_split_cpus)
5425 		nr_split_cpus = num_online_cpus();
5426 	high = total_pages / nr_split_cpus;
5427 
5428 	/*
5429 	 * Ensure high is at least batch*4. The multiple is based on the
5430 	 * historical relationship between high and batch.
5431 	 */
5432 	high = max(high, batch << 2);
5433 
5434 	return high;
5435 #else
5436 	return 0;
5437 #endif
5438 }
5439 
5440 /*
5441  * pcp->high and pcp->batch values are related and generally batch is lower
5442  * than high. They are also related to pcp->count such that count is lower
5443  * than high, and as soon as it reaches high, the pcplist is flushed.
5444  *
5445  * However, guaranteeing these relations at all times would require e.g. write
5446  * barriers here but also careful usage of read barriers at the read side, and
5447  * thus be prone to error and bad for performance. Thus the update only prevents
5448  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5449  * should ensure they can cope with those fields changing asynchronously, and
5450  * fully trust only the pcp->count field on the local CPU with interrupts
5451  * disabled.
5452  *
5453  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5454  * outside of boot time (or some other assurance that no concurrent updaters
5455  * exist).
5456  */
5457 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5458 			   unsigned long high_max, unsigned long batch)
5459 {
5460 	WRITE_ONCE(pcp->batch, batch);
5461 	WRITE_ONCE(pcp->high_min, high_min);
5462 	WRITE_ONCE(pcp->high_max, high_max);
5463 }
5464 
5465 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5466 {
5467 	int pindex;
5468 
5469 	memset(pcp, 0, sizeof(*pcp));
5470 	memset(pzstats, 0, sizeof(*pzstats));
5471 
5472 	spin_lock_init(&pcp->lock);
5473 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5474 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5475 
5476 	/*
5477 	 * Set batch and high values safe for a boot pageset. A true percpu
5478 	 * pageset's initialization will update them subsequently. Here we don't
5479 	 * need to be as careful as pageset_update() as nobody can access the
5480 	 * pageset yet.
5481 	 */
5482 	pcp->high_min = BOOT_PAGESET_HIGH;
5483 	pcp->high_max = BOOT_PAGESET_HIGH;
5484 	pcp->batch = BOOT_PAGESET_BATCH;
5485 	pcp->free_count = 0;
5486 }
5487 
5488 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5489 					      unsigned long high_max, unsigned long batch)
5490 {
5491 	struct per_cpu_pages *pcp;
5492 	int cpu;
5493 
5494 	for_each_possible_cpu(cpu) {
5495 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5496 		pageset_update(pcp, high_min, high_max, batch);
5497 	}
5498 }
5499 
5500 /*
5501  * Calculate and set new high and batch values for all per-cpu pagesets of a
5502  * zone based on the zone's size.
5503  */
5504 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5505 {
5506 	int new_high_min, new_high_max, new_batch;
5507 
5508 	new_batch = max(1, zone_batchsize(zone));
5509 	if (percpu_pagelist_high_fraction) {
5510 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5511 					     percpu_pagelist_high_fraction);
5512 		/*
5513 		 * PCP high is tuned manually, disable auto-tuning via
5514 		 * setting high_min and high_max to the manual value.
5515 		 */
5516 		new_high_max = new_high_min;
5517 	} else {
5518 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5519 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5520 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5521 	}
5522 
5523 	if (zone->pageset_high_min == new_high_min &&
5524 	    zone->pageset_high_max == new_high_max &&
5525 	    zone->pageset_batch == new_batch)
5526 		return;
5527 
5528 	zone->pageset_high_min = new_high_min;
5529 	zone->pageset_high_max = new_high_max;
5530 	zone->pageset_batch = new_batch;
5531 
5532 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5533 					  new_batch);
5534 }
5535 
5536 void __meminit setup_zone_pageset(struct zone *zone)
5537 {
5538 	int cpu;
5539 
5540 	/* Size may be 0 on !SMP && !NUMA */
5541 	if (sizeof(struct per_cpu_zonestat) > 0)
5542 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5543 
5544 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5545 	for_each_possible_cpu(cpu) {
5546 		struct per_cpu_pages *pcp;
5547 		struct per_cpu_zonestat *pzstats;
5548 
5549 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5550 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5551 		per_cpu_pages_init(pcp, pzstats);
5552 	}
5553 
5554 	zone_set_pageset_high_and_batch(zone, 0);
5555 }
5556 
5557 /*
5558  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5559  * page high values need to be recalculated.
5560  */
5561 static void zone_pcp_update(struct zone *zone, int cpu_online)
5562 {
5563 	mutex_lock(&pcp_batch_high_lock);
5564 	zone_set_pageset_high_and_batch(zone, cpu_online);
5565 	mutex_unlock(&pcp_batch_high_lock);
5566 }
5567 
5568 static void zone_pcp_update_cacheinfo(struct zone *zone)
5569 {
5570 	int cpu;
5571 	struct per_cpu_pages *pcp;
5572 	struct cpu_cacheinfo *cci;
5573 
5574 	for_each_online_cpu(cpu) {
5575 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5576 		cci = get_cpu_cacheinfo(cpu);
5577 		/*
5578 		 * If data cache slice of CPU is large enough, "pcp->batch"
5579 		 * pages can be preserved in PCP before draining PCP for
5580 		 * consecutive high-order pages freeing without allocation.
5581 		 * This can reduce zone lock contention without hurting
5582 		 * cache-hot pages sharing.
5583 		 */
5584 		spin_lock(&pcp->lock);
5585 		if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5586 			pcp->flags |= PCPF_FREE_HIGH_BATCH;
5587 		else
5588 			pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5589 		spin_unlock(&pcp->lock);
5590 	}
5591 }
5592 
5593 void setup_pcp_cacheinfo(void)
5594 {
5595 	struct zone *zone;
5596 
5597 	for_each_populated_zone(zone)
5598 		zone_pcp_update_cacheinfo(zone);
5599 }
5600 
5601 /*
5602  * Allocate per cpu pagesets and initialize them.
5603  * Before this call only boot pagesets were available.
5604  */
5605 void __init setup_per_cpu_pageset(void)
5606 {
5607 	struct pglist_data *pgdat;
5608 	struct zone *zone;
5609 	int __maybe_unused cpu;
5610 
5611 	for_each_populated_zone(zone)
5612 		setup_zone_pageset(zone);
5613 
5614 #ifdef CONFIG_NUMA
5615 	/*
5616 	 * Unpopulated zones continue using the boot pagesets.
5617 	 * The numa stats for these pagesets need to be reset.
5618 	 * Otherwise, they will end up skewing the stats of
5619 	 * the nodes these zones are associated with.
5620 	 */
5621 	for_each_possible_cpu(cpu) {
5622 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5623 		memset(pzstats->vm_numa_event, 0,
5624 		       sizeof(pzstats->vm_numa_event));
5625 	}
5626 #endif
5627 
5628 	for_each_online_pgdat(pgdat)
5629 		pgdat->per_cpu_nodestats =
5630 			alloc_percpu(struct per_cpu_nodestat);
5631 }
5632 
5633 __meminit void zone_pcp_init(struct zone *zone)
5634 {
5635 	/*
5636 	 * per cpu subsystem is not up at this point. The following code
5637 	 * relies on the ability of the linker to provide the
5638 	 * offset of a (static) per cpu variable into the per cpu area.
5639 	 */
5640 	zone->per_cpu_pageset = &boot_pageset;
5641 	zone->per_cpu_zonestats = &boot_zonestats;
5642 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5643 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5644 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5645 
5646 	if (populated_zone(zone))
5647 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5648 			 zone->present_pages, zone_batchsize(zone));
5649 }
5650 
5651 void adjust_managed_page_count(struct page *page, long count)
5652 {
5653 	atomic_long_add(count, &page_zone(page)->managed_pages);
5654 	totalram_pages_add(count);
5655 #ifdef CONFIG_HIGHMEM
5656 	if (PageHighMem(page))
5657 		totalhigh_pages_add(count);
5658 #endif
5659 }
5660 EXPORT_SYMBOL(adjust_managed_page_count);
5661 
5662 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5663 {
5664 	void *pos;
5665 	unsigned long pages = 0;
5666 
5667 	start = (void *)PAGE_ALIGN((unsigned long)start);
5668 	end = (void *)((unsigned long)end & PAGE_MASK);
5669 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5670 		struct page *page = virt_to_page(pos);
5671 		void *direct_map_addr;
5672 
5673 		/*
5674 		 * 'direct_map_addr' might be different from 'pos'
5675 		 * because some architectures' virt_to_page()
5676 		 * work with aliases.  Getting the direct map
5677 		 * address ensures that we get a _writeable_
5678 		 * alias for the memset().
5679 		 */
5680 		direct_map_addr = page_address(page);
5681 		/*
5682 		 * Perform a kasan-unchecked memset() since this memory
5683 		 * has not been initialized.
5684 		 */
5685 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5686 		if ((unsigned int)poison <= 0xFF)
5687 			memset(direct_map_addr, poison, PAGE_SIZE);
5688 
5689 		free_reserved_page(page);
5690 	}
5691 
5692 	if (pages && s)
5693 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5694 
5695 	return pages;
5696 }
5697 
5698 static int page_alloc_cpu_dead(unsigned int cpu)
5699 {
5700 	struct zone *zone;
5701 
5702 	lru_add_drain_cpu(cpu);
5703 	mlock_drain_remote(cpu);
5704 	drain_pages(cpu);
5705 
5706 	/*
5707 	 * Spill the event counters of the dead processor
5708 	 * into the current processors event counters.
5709 	 * This artificially elevates the count of the current
5710 	 * processor.
5711 	 */
5712 	vm_events_fold_cpu(cpu);
5713 
5714 	/*
5715 	 * Zero the differential counters of the dead processor
5716 	 * so that the vm statistics are consistent.
5717 	 *
5718 	 * This is only okay since the processor is dead and cannot
5719 	 * race with what we are doing.
5720 	 */
5721 	cpu_vm_stats_fold(cpu);
5722 
5723 	for_each_populated_zone(zone)
5724 		zone_pcp_update(zone, 0);
5725 
5726 	return 0;
5727 }
5728 
5729 static int page_alloc_cpu_online(unsigned int cpu)
5730 {
5731 	struct zone *zone;
5732 
5733 	for_each_populated_zone(zone)
5734 		zone_pcp_update(zone, 1);
5735 	return 0;
5736 }
5737 
5738 void __init page_alloc_init_cpuhp(void)
5739 {
5740 	int ret;
5741 
5742 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5743 					"mm/page_alloc:pcp",
5744 					page_alloc_cpu_online,
5745 					page_alloc_cpu_dead);
5746 	WARN_ON(ret < 0);
5747 }
5748 
5749 /*
5750  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5751  *	or min_free_kbytes changes.
5752  */
5753 static void calculate_totalreserve_pages(void)
5754 {
5755 	struct pglist_data *pgdat;
5756 	unsigned long reserve_pages = 0;
5757 	enum zone_type i, j;
5758 
5759 	for_each_online_pgdat(pgdat) {
5760 
5761 		pgdat->totalreserve_pages = 0;
5762 
5763 		for (i = 0; i < MAX_NR_ZONES; i++) {
5764 			struct zone *zone = pgdat->node_zones + i;
5765 			long max = 0;
5766 			unsigned long managed_pages = zone_managed_pages(zone);
5767 
5768 			/* Find valid and maximum lowmem_reserve in the zone */
5769 			for (j = i; j < MAX_NR_ZONES; j++) {
5770 				if (zone->lowmem_reserve[j] > max)
5771 					max = zone->lowmem_reserve[j];
5772 			}
5773 
5774 			/* we treat the high watermark as reserved pages. */
5775 			max += high_wmark_pages(zone);
5776 
5777 			if (max > managed_pages)
5778 				max = managed_pages;
5779 
5780 			pgdat->totalreserve_pages += max;
5781 
5782 			reserve_pages += max;
5783 		}
5784 	}
5785 	totalreserve_pages = reserve_pages;
5786 }
5787 
5788 /*
5789  * setup_per_zone_lowmem_reserve - called whenever
5790  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5791  *	has a correct pages reserved value, so an adequate number of
5792  *	pages are left in the zone after a successful __alloc_pages().
5793  */
5794 static void setup_per_zone_lowmem_reserve(void)
5795 {
5796 	struct pglist_data *pgdat;
5797 	enum zone_type i, j;
5798 
5799 	for_each_online_pgdat(pgdat) {
5800 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5801 			struct zone *zone = &pgdat->node_zones[i];
5802 			int ratio = sysctl_lowmem_reserve_ratio[i];
5803 			bool clear = !ratio || !zone_managed_pages(zone);
5804 			unsigned long managed_pages = 0;
5805 
5806 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5807 				struct zone *upper_zone = &pgdat->node_zones[j];
5808 
5809 				managed_pages += zone_managed_pages(upper_zone);
5810 
5811 				if (clear)
5812 					zone->lowmem_reserve[j] = 0;
5813 				else
5814 					zone->lowmem_reserve[j] = managed_pages / ratio;
5815 			}
5816 		}
5817 	}
5818 
5819 	/* update totalreserve_pages */
5820 	calculate_totalreserve_pages();
5821 }
5822 
5823 static void __setup_per_zone_wmarks(void)
5824 {
5825 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5826 	unsigned long lowmem_pages = 0;
5827 	struct zone *zone;
5828 	unsigned long flags;
5829 
5830 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5831 	for_each_zone(zone) {
5832 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5833 			lowmem_pages += zone_managed_pages(zone);
5834 	}
5835 
5836 	for_each_zone(zone) {
5837 		u64 tmp;
5838 
5839 		spin_lock_irqsave(&zone->lock, flags);
5840 		tmp = (u64)pages_min * zone_managed_pages(zone);
5841 		do_div(tmp, lowmem_pages);
5842 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5843 			/*
5844 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5845 			 * need highmem and movable zones pages, so cap pages_min
5846 			 * to a small  value here.
5847 			 *
5848 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5849 			 * deltas control async page reclaim, and so should
5850 			 * not be capped for highmem and movable zones.
5851 			 */
5852 			unsigned long min_pages;
5853 
5854 			min_pages = zone_managed_pages(zone) / 1024;
5855 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5856 			zone->_watermark[WMARK_MIN] = min_pages;
5857 		} else {
5858 			/*
5859 			 * If it's a lowmem zone, reserve a number of pages
5860 			 * proportionate to the zone's size.
5861 			 */
5862 			zone->_watermark[WMARK_MIN] = tmp;
5863 		}
5864 
5865 		/*
5866 		 * Set the kswapd watermarks distance according to the
5867 		 * scale factor in proportion to available memory, but
5868 		 * ensure a minimum size on small systems.
5869 		 */
5870 		tmp = max_t(u64, tmp >> 2,
5871 			    mult_frac(zone_managed_pages(zone),
5872 				      watermark_scale_factor, 10000));
5873 
5874 		zone->watermark_boost = 0;
5875 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5876 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5877 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5878 
5879 		spin_unlock_irqrestore(&zone->lock, flags);
5880 	}
5881 
5882 	/* update totalreserve_pages */
5883 	calculate_totalreserve_pages();
5884 }
5885 
5886 /**
5887  * setup_per_zone_wmarks - called when min_free_kbytes changes
5888  * or when memory is hot-{added|removed}
5889  *
5890  * Ensures that the watermark[min,low,high] values for each zone are set
5891  * correctly with respect to min_free_kbytes.
5892  */
5893 void setup_per_zone_wmarks(void)
5894 {
5895 	struct zone *zone;
5896 	static DEFINE_SPINLOCK(lock);
5897 
5898 	spin_lock(&lock);
5899 	__setup_per_zone_wmarks();
5900 	spin_unlock(&lock);
5901 
5902 	/*
5903 	 * The watermark size have changed so update the pcpu batch
5904 	 * and high limits or the limits may be inappropriate.
5905 	 */
5906 	for_each_zone(zone)
5907 		zone_pcp_update(zone, 0);
5908 }
5909 
5910 /*
5911  * Initialise min_free_kbytes.
5912  *
5913  * For small machines we want it small (128k min).  For large machines
5914  * we want it large (256MB max).  But it is not linear, because network
5915  * bandwidth does not increase linearly with machine size.  We use
5916  *
5917  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5918  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5919  *
5920  * which yields
5921  *
5922  * 16MB:	512k
5923  * 32MB:	724k
5924  * 64MB:	1024k
5925  * 128MB:	1448k
5926  * 256MB:	2048k
5927  * 512MB:	2896k
5928  * 1024MB:	4096k
5929  * 2048MB:	5792k
5930  * 4096MB:	8192k
5931  * 8192MB:	11584k
5932  * 16384MB:	16384k
5933  */
5934 void calculate_min_free_kbytes(void)
5935 {
5936 	unsigned long lowmem_kbytes;
5937 	int new_min_free_kbytes;
5938 
5939 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5940 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5941 
5942 	if (new_min_free_kbytes > user_min_free_kbytes)
5943 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5944 	else
5945 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5946 				new_min_free_kbytes, user_min_free_kbytes);
5947 
5948 }
5949 
5950 int __meminit init_per_zone_wmark_min(void)
5951 {
5952 	calculate_min_free_kbytes();
5953 	setup_per_zone_wmarks();
5954 	refresh_zone_stat_thresholds();
5955 	setup_per_zone_lowmem_reserve();
5956 
5957 #ifdef CONFIG_NUMA
5958 	setup_min_unmapped_ratio();
5959 	setup_min_slab_ratio();
5960 #endif
5961 
5962 	khugepaged_min_free_kbytes_update();
5963 
5964 	return 0;
5965 }
5966 postcore_initcall(init_per_zone_wmark_min)
5967 
5968 /*
5969  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5970  *	that we can call two helper functions whenever min_free_kbytes
5971  *	changes.
5972  */
5973 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5974 		void *buffer, size_t *length, loff_t *ppos)
5975 {
5976 	int rc;
5977 
5978 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5979 	if (rc)
5980 		return rc;
5981 
5982 	if (write) {
5983 		user_min_free_kbytes = min_free_kbytes;
5984 		setup_per_zone_wmarks();
5985 	}
5986 	return 0;
5987 }
5988 
5989 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5990 		void *buffer, size_t *length, loff_t *ppos)
5991 {
5992 	int rc;
5993 
5994 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5995 	if (rc)
5996 		return rc;
5997 
5998 	if (write)
5999 		setup_per_zone_wmarks();
6000 
6001 	return 0;
6002 }
6003 
6004 #ifdef CONFIG_NUMA
6005 static void setup_min_unmapped_ratio(void)
6006 {
6007 	pg_data_t *pgdat;
6008 	struct zone *zone;
6009 
6010 	for_each_online_pgdat(pgdat)
6011 		pgdat->min_unmapped_pages = 0;
6012 
6013 	for_each_zone(zone)
6014 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6015 						         sysctl_min_unmapped_ratio) / 100;
6016 }
6017 
6018 
6019 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6020 		void *buffer, size_t *length, loff_t *ppos)
6021 {
6022 	int rc;
6023 
6024 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6025 	if (rc)
6026 		return rc;
6027 
6028 	setup_min_unmapped_ratio();
6029 
6030 	return 0;
6031 }
6032 
6033 static void setup_min_slab_ratio(void)
6034 {
6035 	pg_data_t *pgdat;
6036 	struct zone *zone;
6037 
6038 	for_each_online_pgdat(pgdat)
6039 		pgdat->min_slab_pages = 0;
6040 
6041 	for_each_zone(zone)
6042 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6043 						     sysctl_min_slab_ratio) / 100;
6044 }
6045 
6046 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6047 		void *buffer, size_t *length, loff_t *ppos)
6048 {
6049 	int rc;
6050 
6051 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6052 	if (rc)
6053 		return rc;
6054 
6055 	setup_min_slab_ratio();
6056 
6057 	return 0;
6058 }
6059 #endif
6060 
6061 /*
6062  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6063  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6064  *	whenever sysctl_lowmem_reserve_ratio changes.
6065  *
6066  * The reserve ratio obviously has absolutely no relation with the
6067  * minimum watermarks. The lowmem reserve ratio can only make sense
6068  * if in function of the boot time zone sizes.
6069  */
6070 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6071 		int write, void *buffer, size_t *length, loff_t *ppos)
6072 {
6073 	int i;
6074 
6075 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6076 
6077 	for (i = 0; i < MAX_NR_ZONES; i++) {
6078 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6079 			sysctl_lowmem_reserve_ratio[i] = 0;
6080 	}
6081 
6082 	setup_per_zone_lowmem_reserve();
6083 	return 0;
6084 }
6085 
6086 /*
6087  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6088  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6089  * pagelist can have before it gets flushed back to buddy allocator.
6090  */
6091 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6092 		int write, void *buffer, size_t *length, loff_t *ppos)
6093 {
6094 	struct zone *zone;
6095 	int old_percpu_pagelist_high_fraction;
6096 	int ret;
6097 
6098 	mutex_lock(&pcp_batch_high_lock);
6099 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6100 
6101 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6102 	if (!write || ret < 0)
6103 		goto out;
6104 
6105 	/* Sanity checking to avoid pcp imbalance */
6106 	if (percpu_pagelist_high_fraction &&
6107 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6108 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6109 		ret = -EINVAL;
6110 		goto out;
6111 	}
6112 
6113 	/* No change? */
6114 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6115 		goto out;
6116 
6117 	for_each_populated_zone(zone)
6118 		zone_set_pageset_high_and_batch(zone, 0);
6119 out:
6120 	mutex_unlock(&pcp_batch_high_lock);
6121 	return ret;
6122 }
6123 
6124 static struct ctl_table page_alloc_sysctl_table[] = {
6125 	{
6126 		.procname	= "min_free_kbytes",
6127 		.data		= &min_free_kbytes,
6128 		.maxlen		= sizeof(min_free_kbytes),
6129 		.mode		= 0644,
6130 		.proc_handler	= min_free_kbytes_sysctl_handler,
6131 		.extra1		= SYSCTL_ZERO,
6132 	},
6133 	{
6134 		.procname	= "watermark_boost_factor",
6135 		.data		= &watermark_boost_factor,
6136 		.maxlen		= sizeof(watermark_boost_factor),
6137 		.mode		= 0644,
6138 		.proc_handler	= proc_dointvec_minmax,
6139 		.extra1		= SYSCTL_ZERO,
6140 	},
6141 	{
6142 		.procname	= "watermark_scale_factor",
6143 		.data		= &watermark_scale_factor,
6144 		.maxlen		= sizeof(watermark_scale_factor),
6145 		.mode		= 0644,
6146 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6147 		.extra1		= SYSCTL_ONE,
6148 		.extra2		= SYSCTL_THREE_THOUSAND,
6149 	},
6150 	{
6151 		.procname	= "percpu_pagelist_high_fraction",
6152 		.data		= &percpu_pagelist_high_fraction,
6153 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6154 		.mode		= 0644,
6155 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6156 		.extra1		= SYSCTL_ZERO,
6157 	},
6158 	{
6159 		.procname	= "lowmem_reserve_ratio",
6160 		.data		= &sysctl_lowmem_reserve_ratio,
6161 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6162 		.mode		= 0644,
6163 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6164 	},
6165 #ifdef CONFIG_NUMA
6166 	{
6167 		.procname	= "numa_zonelist_order",
6168 		.data		= &numa_zonelist_order,
6169 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6170 		.mode		= 0644,
6171 		.proc_handler	= numa_zonelist_order_handler,
6172 	},
6173 	{
6174 		.procname	= "min_unmapped_ratio",
6175 		.data		= &sysctl_min_unmapped_ratio,
6176 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6177 		.mode		= 0644,
6178 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6179 		.extra1		= SYSCTL_ZERO,
6180 		.extra2		= SYSCTL_ONE_HUNDRED,
6181 	},
6182 	{
6183 		.procname	= "min_slab_ratio",
6184 		.data		= &sysctl_min_slab_ratio,
6185 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6186 		.mode		= 0644,
6187 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6188 		.extra1		= SYSCTL_ZERO,
6189 		.extra2		= SYSCTL_ONE_HUNDRED,
6190 	},
6191 #endif
6192 	{}
6193 };
6194 
6195 void __init page_alloc_sysctl_init(void)
6196 {
6197 	register_sysctl_init("vm", page_alloc_sysctl_table);
6198 }
6199 
6200 #ifdef CONFIG_CONTIG_ALLOC
6201 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6202 static void alloc_contig_dump_pages(struct list_head *page_list)
6203 {
6204 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6205 
6206 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6207 		struct page *page;
6208 
6209 		dump_stack();
6210 		list_for_each_entry(page, page_list, lru)
6211 			dump_page(page, "migration failure");
6212 	}
6213 }
6214 
6215 /* [start, end) must belong to a single zone. */
6216 int __alloc_contig_migrate_range(struct compact_control *cc,
6217 					unsigned long start, unsigned long end)
6218 {
6219 	/* This function is based on compact_zone() from compaction.c. */
6220 	unsigned int nr_reclaimed;
6221 	unsigned long pfn = start;
6222 	unsigned int tries = 0;
6223 	int ret = 0;
6224 	struct migration_target_control mtc = {
6225 		.nid = zone_to_nid(cc->zone),
6226 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6227 	};
6228 
6229 	lru_cache_disable();
6230 
6231 	while (pfn < end || !list_empty(&cc->migratepages)) {
6232 		if (fatal_signal_pending(current)) {
6233 			ret = -EINTR;
6234 			break;
6235 		}
6236 
6237 		if (list_empty(&cc->migratepages)) {
6238 			cc->nr_migratepages = 0;
6239 			ret = isolate_migratepages_range(cc, pfn, end);
6240 			if (ret && ret != -EAGAIN)
6241 				break;
6242 			pfn = cc->migrate_pfn;
6243 			tries = 0;
6244 		} else if (++tries == 5) {
6245 			ret = -EBUSY;
6246 			break;
6247 		}
6248 
6249 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6250 							&cc->migratepages);
6251 		cc->nr_migratepages -= nr_reclaimed;
6252 
6253 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6254 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6255 
6256 		/*
6257 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6258 		 * to retry again over this error, so do the same here.
6259 		 */
6260 		if (ret == -ENOMEM)
6261 			break;
6262 	}
6263 
6264 	lru_cache_enable();
6265 	if (ret < 0) {
6266 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6267 			alloc_contig_dump_pages(&cc->migratepages);
6268 		putback_movable_pages(&cc->migratepages);
6269 		return ret;
6270 	}
6271 	return 0;
6272 }
6273 
6274 /**
6275  * alloc_contig_range() -- tries to allocate given range of pages
6276  * @start:	start PFN to allocate
6277  * @end:	one-past-the-last PFN to allocate
6278  * @migratetype:	migratetype of the underlying pageblocks (either
6279  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6280  *			in range must have the same migratetype and it must
6281  *			be either of the two.
6282  * @gfp_mask:	GFP mask to use during compaction
6283  *
6284  * The PFN range does not have to be pageblock aligned. The PFN range must
6285  * belong to a single zone.
6286  *
6287  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6288  * pageblocks in the range.  Once isolated, the pageblocks should not
6289  * be modified by others.
6290  *
6291  * Return: zero on success or negative error code.  On success all
6292  * pages which PFN is in [start, end) are allocated for the caller and
6293  * need to be freed with free_contig_range().
6294  */
6295 int alloc_contig_range(unsigned long start, unsigned long end,
6296 		       unsigned migratetype, gfp_t gfp_mask)
6297 {
6298 	unsigned long outer_start, outer_end;
6299 	int order;
6300 	int ret = 0;
6301 
6302 	struct compact_control cc = {
6303 		.nr_migratepages = 0,
6304 		.order = -1,
6305 		.zone = page_zone(pfn_to_page(start)),
6306 		.mode = MIGRATE_SYNC,
6307 		.ignore_skip_hint = true,
6308 		.no_set_skip_hint = true,
6309 		.gfp_mask = current_gfp_context(gfp_mask),
6310 		.alloc_contig = true,
6311 	};
6312 	INIT_LIST_HEAD(&cc.migratepages);
6313 
6314 	/*
6315 	 * What we do here is we mark all pageblocks in range as
6316 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6317 	 * have different sizes, and due to the way page allocator
6318 	 * work, start_isolate_page_range() has special handlings for this.
6319 	 *
6320 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6321 	 * migrate the pages from an unaligned range (ie. pages that
6322 	 * we are interested in). This will put all the pages in
6323 	 * range back to page allocator as MIGRATE_ISOLATE.
6324 	 *
6325 	 * When this is done, we take the pages in range from page
6326 	 * allocator removing them from the buddy system.  This way
6327 	 * page allocator will never consider using them.
6328 	 *
6329 	 * This lets us mark the pageblocks back as
6330 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6331 	 * aligned range but not in the unaligned, original range are
6332 	 * put back to page allocator so that buddy can use them.
6333 	 */
6334 
6335 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6336 	if (ret)
6337 		goto done;
6338 
6339 	drain_all_pages(cc.zone);
6340 
6341 	/*
6342 	 * In case of -EBUSY, we'd like to know which page causes problem.
6343 	 * So, just fall through. test_pages_isolated() has a tracepoint
6344 	 * which will report the busy page.
6345 	 *
6346 	 * It is possible that busy pages could become available before
6347 	 * the call to test_pages_isolated, and the range will actually be
6348 	 * allocated.  So, if we fall through be sure to clear ret so that
6349 	 * -EBUSY is not accidentally used or returned to caller.
6350 	 */
6351 	ret = __alloc_contig_migrate_range(&cc, start, end);
6352 	if (ret && ret != -EBUSY)
6353 		goto done;
6354 	ret = 0;
6355 
6356 	/*
6357 	 * Pages from [start, end) are within a pageblock_nr_pages
6358 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6359 	 * more, all pages in [start, end) are free in page allocator.
6360 	 * What we are going to do is to allocate all pages from
6361 	 * [start, end) (that is remove them from page allocator).
6362 	 *
6363 	 * The only problem is that pages at the beginning and at the
6364 	 * end of interesting range may be not aligned with pages that
6365 	 * page allocator holds, ie. they can be part of higher order
6366 	 * pages.  Because of this, we reserve the bigger range and
6367 	 * once this is done free the pages we are not interested in.
6368 	 *
6369 	 * We don't have to hold zone->lock here because the pages are
6370 	 * isolated thus they won't get removed from buddy.
6371 	 */
6372 
6373 	order = 0;
6374 	outer_start = start;
6375 	while (!PageBuddy(pfn_to_page(outer_start))) {
6376 		if (++order > MAX_PAGE_ORDER) {
6377 			outer_start = start;
6378 			break;
6379 		}
6380 		outer_start &= ~0UL << order;
6381 	}
6382 
6383 	if (outer_start != start) {
6384 		order = buddy_order(pfn_to_page(outer_start));
6385 
6386 		/*
6387 		 * outer_start page could be small order buddy page and
6388 		 * it doesn't include start page. Adjust outer_start
6389 		 * in this case to report failed page properly
6390 		 * on tracepoint in test_pages_isolated()
6391 		 */
6392 		if (outer_start + (1UL << order) <= start)
6393 			outer_start = start;
6394 	}
6395 
6396 	/* Make sure the range is really isolated. */
6397 	if (test_pages_isolated(outer_start, end, 0)) {
6398 		ret = -EBUSY;
6399 		goto done;
6400 	}
6401 
6402 	/* Grab isolated pages from freelists. */
6403 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6404 	if (!outer_end) {
6405 		ret = -EBUSY;
6406 		goto done;
6407 	}
6408 
6409 	/* Free head and tail (if any) */
6410 	if (start != outer_start)
6411 		free_contig_range(outer_start, start - outer_start);
6412 	if (end != outer_end)
6413 		free_contig_range(end, outer_end - end);
6414 
6415 done:
6416 	undo_isolate_page_range(start, end, migratetype);
6417 	return ret;
6418 }
6419 EXPORT_SYMBOL(alloc_contig_range);
6420 
6421 static int __alloc_contig_pages(unsigned long start_pfn,
6422 				unsigned long nr_pages, gfp_t gfp_mask)
6423 {
6424 	unsigned long end_pfn = start_pfn + nr_pages;
6425 
6426 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6427 				  gfp_mask);
6428 }
6429 
6430 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6431 				   unsigned long nr_pages)
6432 {
6433 	unsigned long i, end_pfn = start_pfn + nr_pages;
6434 	struct page *page;
6435 
6436 	for (i = start_pfn; i < end_pfn; i++) {
6437 		page = pfn_to_online_page(i);
6438 		if (!page)
6439 			return false;
6440 
6441 		if (page_zone(page) != z)
6442 			return false;
6443 
6444 		if (PageReserved(page))
6445 			return false;
6446 
6447 		if (PageHuge(page))
6448 			return false;
6449 	}
6450 	return true;
6451 }
6452 
6453 static bool zone_spans_last_pfn(const struct zone *zone,
6454 				unsigned long start_pfn, unsigned long nr_pages)
6455 {
6456 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6457 
6458 	return zone_spans_pfn(zone, last_pfn);
6459 }
6460 
6461 /**
6462  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6463  * @nr_pages:	Number of contiguous pages to allocate
6464  * @gfp_mask:	GFP mask to limit search and used during compaction
6465  * @nid:	Target node
6466  * @nodemask:	Mask for other possible nodes
6467  *
6468  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6469  * on an applicable zonelist to find a contiguous pfn range which can then be
6470  * tried for allocation with alloc_contig_range(). This routine is intended
6471  * for allocation requests which can not be fulfilled with the buddy allocator.
6472  *
6473  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6474  * power of two, then allocated range is also guaranteed to be aligned to same
6475  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6476  *
6477  * Allocated pages can be freed with free_contig_range() or by manually calling
6478  * __free_page() on each allocated page.
6479  *
6480  * Return: pointer to contiguous pages on success, or NULL if not successful.
6481  */
6482 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6483 				int nid, nodemask_t *nodemask)
6484 {
6485 	unsigned long ret, pfn, flags;
6486 	struct zonelist *zonelist;
6487 	struct zone *zone;
6488 	struct zoneref *z;
6489 
6490 	zonelist = node_zonelist(nid, gfp_mask);
6491 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6492 					gfp_zone(gfp_mask), nodemask) {
6493 		spin_lock_irqsave(&zone->lock, flags);
6494 
6495 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6496 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6497 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6498 				/*
6499 				 * We release the zone lock here because
6500 				 * alloc_contig_range() will also lock the zone
6501 				 * at some point. If there's an allocation
6502 				 * spinning on this lock, it may win the race
6503 				 * and cause alloc_contig_range() to fail...
6504 				 */
6505 				spin_unlock_irqrestore(&zone->lock, flags);
6506 				ret = __alloc_contig_pages(pfn, nr_pages,
6507 							gfp_mask);
6508 				if (!ret)
6509 					return pfn_to_page(pfn);
6510 				spin_lock_irqsave(&zone->lock, flags);
6511 			}
6512 			pfn += nr_pages;
6513 		}
6514 		spin_unlock_irqrestore(&zone->lock, flags);
6515 	}
6516 	return NULL;
6517 }
6518 #endif /* CONFIG_CONTIG_ALLOC */
6519 
6520 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6521 {
6522 	unsigned long count = 0;
6523 
6524 	for (; nr_pages--; pfn++) {
6525 		struct page *page = pfn_to_page(pfn);
6526 
6527 		count += page_count(page) != 1;
6528 		__free_page(page);
6529 	}
6530 	WARN(count != 0, "%lu pages are still in use!\n", count);
6531 }
6532 EXPORT_SYMBOL(free_contig_range);
6533 
6534 /*
6535  * Effectively disable pcplists for the zone by setting the high limit to 0
6536  * and draining all cpus. A concurrent page freeing on another CPU that's about
6537  * to put the page on pcplist will either finish before the drain and the page
6538  * will be drained, or observe the new high limit and skip the pcplist.
6539  *
6540  * Must be paired with a call to zone_pcp_enable().
6541  */
6542 void zone_pcp_disable(struct zone *zone)
6543 {
6544 	mutex_lock(&pcp_batch_high_lock);
6545 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6546 	__drain_all_pages(zone, true);
6547 }
6548 
6549 void zone_pcp_enable(struct zone *zone)
6550 {
6551 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6552 		zone->pageset_high_max, zone->pageset_batch);
6553 	mutex_unlock(&pcp_batch_high_lock);
6554 }
6555 
6556 void zone_pcp_reset(struct zone *zone)
6557 {
6558 	int cpu;
6559 	struct per_cpu_zonestat *pzstats;
6560 
6561 	if (zone->per_cpu_pageset != &boot_pageset) {
6562 		for_each_online_cpu(cpu) {
6563 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6564 			drain_zonestat(zone, pzstats);
6565 		}
6566 		free_percpu(zone->per_cpu_pageset);
6567 		zone->per_cpu_pageset = &boot_pageset;
6568 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6569 			free_percpu(zone->per_cpu_zonestats);
6570 			zone->per_cpu_zonestats = &boot_zonestats;
6571 		}
6572 	}
6573 }
6574 
6575 #ifdef CONFIG_MEMORY_HOTREMOVE
6576 /*
6577  * All pages in the range must be in a single zone, must not contain holes,
6578  * must span full sections, and must be isolated before calling this function.
6579  */
6580 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6581 {
6582 	unsigned long pfn = start_pfn;
6583 	struct page *page;
6584 	struct zone *zone;
6585 	unsigned int order;
6586 	unsigned long flags;
6587 
6588 	offline_mem_sections(pfn, end_pfn);
6589 	zone = page_zone(pfn_to_page(pfn));
6590 	spin_lock_irqsave(&zone->lock, flags);
6591 	while (pfn < end_pfn) {
6592 		page = pfn_to_page(pfn);
6593 		/*
6594 		 * The HWPoisoned page may be not in buddy system, and
6595 		 * page_count() is not 0.
6596 		 */
6597 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6598 			pfn++;
6599 			continue;
6600 		}
6601 		/*
6602 		 * At this point all remaining PageOffline() pages have a
6603 		 * reference count of 0 and can simply be skipped.
6604 		 */
6605 		if (PageOffline(page)) {
6606 			BUG_ON(page_count(page));
6607 			BUG_ON(PageBuddy(page));
6608 			pfn++;
6609 			continue;
6610 		}
6611 
6612 		BUG_ON(page_count(page));
6613 		BUG_ON(!PageBuddy(page));
6614 		order = buddy_order(page);
6615 		del_page_from_free_list(page, zone, order);
6616 		pfn += (1 << order);
6617 	}
6618 	spin_unlock_irqrestore(&zone->lock, flags);
6619 }
6620 #endif
6621 
6622 /*
6623  * This function returns a stable result only if called under zone lock.
6624  */
6625 bool is_free_buddy_page(struct page *page)
6626 {
6627 	unsigned long pfn = page_to_pfn(page);
6628 	unsigned int order;
6629 
6630 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6631 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6632 
6633 		if (PageBuddy(page_head) &&
6634 		    buddy_order_unsafe(page_head) >= order)
6635 			break;
6636 	}
6637 
6638 	return order <= MAX_PAGE_ORDER;
6639 }
6640 EXPORT_SYMBOL(is_free_buddy_page);
6641 
6642 #ifdef CONFIG_MEMORY_FAILURE
6643 /*
6644  * Break down a higher-order page in sub-pages, and keep our target out of
6645  * buddy allocator.
6646  */
6647 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6648 				   struct page *target, int low, int high,
6649 				   int migratetype)
6650 {
6651 	unsigned long size = 1 << high;
6652 	struct page *current_buddy;
6653 
6654 	while (high > low) {
6655 		high--;
6656 		size >>= 1;
6657 
6658 		if (target >= &page[size]) {
6659 			current_buddy = page;
6660 			page = page + size;
6661 		} else {
6662 			current_buddy = page + size;
6663 		}
6664 
6665 		if (set_page_guard(zone, current_buddy, high, migratetype))
6666 			continue;
6667 
6668 		add_to_free_list(current_buddy, zone, high, migratetype);
6669 		set_buddy_order(current_buddy, high);
6670 	}
6671 }
6672 
6673 /*
6674  * Take a page that will be marked as poisoned off the buddy allocator.
6675  */
6676 bool take_page_off_buddy(struct page *page)
6677 {
6678 	struct zone *zone = page_zone(page);
6679 	unsigned long pfn = page_to_pfn(page);
6680 	unsigned long flags;
6681 	unsigned int order;
6682 	bool ret = false;
6683 
6684 	spin_lock_irqsave(&zone->lock, flags);
6685 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6686 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6687 		int page_order = buddy_order(page_head);
6688 
6689 		if (PageBuddy(page_head) && page_order >= order) {
6690 			unsigned long pfn_head = page_to_pfn(page_head);
6691 			int migratetype = get_pfnblock_migratetype(page_head,
6692 								   pfn_head);
6693 
6694 			del_page_from_free_list(page_head, zone, page_order);
6695 			break_down_buddy_pages(zone, page_head, page, 0,
6696 						page_order, migratetype);
6697 			SetPageHWPoisonTakenOff(page);
6698 			if (!is_migrate_isolate(migratetype))
6699 				__mod_zone_freepage_state(zone, -1, migratetype);
6700 			ret = true;
6701 			break;
6702 		}
6703 		if (page_count(page_head) > 0)
6704 			break;
6705 	}
6706 	spin_unlock_irqrestore(&zone->lock, flags);
6707 	return ret;
6708 }
6709 
6710 /*
6711  * Cancel takeoff done by take_page_off_buddy().
6712  */
6713 bool put_page_back_buddy(struct page *page)
6714 {
6715 	struct zone *zone = page_zone(page);
6716 	unsigned long pfn = page_to_pfn(page);
6717 	unsigned long flags;
6718 	int migratetype = get_pfnblock_migratetype(page, pfn);
6719 	bool ret = false;
6720 
6721 	spin_lock_irqsave(&zone->lock, flags);
6722 	if (put_page_testzero(page)) {
6723 		ClearPageHWPoisonTakenOff(page);
6724 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6725 		if (TestClearPageHWPoison(page)) {
6726 			ret = true;
6727 		}
6728 	}
6729 	spin_unlock_irqrestore(&zone->lock, flags);
6730 
6731 	return ret;
6732 }
6733 #endif
6734 
6735 #ifdef CONFIG_ZONE_DMA
6736 bool has_managed_dma(void)
6737 {
6738 	struct pglist_data *pgdat;
6739 
6740 	for_each_online_pgdat(pgdat) {
6741 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6742 
6743 		if (managed_zone(zone))
6744 			return true;
6745 	}
6746 	return false;
6747 }
6748 #endif /* CONFIG_ZONE_DMA */
6749 
6750 #ifdef CONFIG_UNACCEPTED_MEMORY
6751 
6752 /* Counts number of zones with unaccepted pages. */
6753 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6754 
6755 static bool lazy_accept = true;
6756 
6757 static int __init accept_memory_parse(char *p)
6758 {
6759 	if (!strcmp(p, "lazy")) {
6760 		lazy_accept = true;
6761 		return 0;
6762 	} else if (!strcmp(p, "eager")) {
6763 		lazy_accept = false;
6764 		return 0;
6765 	} else {
6766 		return -EINVAL;
6767 	}
6768 }
6769 early_param("accept_memory", accept_memory_parse);
6770 
6771 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6772 {
6773 	phys_addr_t start = page_to_phys(page);
6774 	phys_addr_t end = start + (PAGE_SIZE << order);
6775 
6776 	return range_contains_unaccepted_memory(start, end);
6777 }
6778 
6779 static void accept_page(struct page *page, unsigned int order)
6780 {
6781 	phys_addr_t start = page_to_phys(page);
6782 
6783 	accept_memory(start, start + (PAGE_SIZE << order));
6784 }
6785 
6786 static bool try_to_accept_memory_one(struct zone *zone)
6787 {
6788 	unsigned long flags;
6789 	struct page *page;
6790 	bool last;
6791 
6792 	if (list_empty(&zone->unaccepted_pages))
6793 		return false;
6794 
6795 	spin_lock_irqsave(&zone->lock, flags);
6796 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6797 					struct page, lru);
6798 	if (!page) {
6799 		spin_unlock_irqrestore(&zone->lock, flags);
6800 		return false;
6801 	}
6802 
6803 	list_del(&page->lru);
6804 	last = list_empty(&zone->unaccepted_pages);
6805 
6806 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6807 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6808 	spin_unlock_irqrestore(&zone->lock, flags);
6809 
6810 	accept_page(page, MAX_PAGE_ORDER);
6811 
6812 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6813 
6814 	if (last)
6815 		static_branch_dec(&zones_with_unaccepted_pages);
6816 
6817 	return true;
6818 }
6819 
6820 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6821 {
6822 	long to_accept;
6823 	int ret = false;
6824 
6825 	/* How much to accept to get to high watermark? */
6826 	to_accept = high_wmark_pages(zone) -
6827 		    (zone_page_state(zone, NR_FREE_PAGES) -
6828 		    __zone_watermark_unusable_free(zone, order, 0));
6829 
6830 	/* Accept at least one page */
6831 	do {
6832 		if (!try_to_accept_memory_one(zone))
6833 			break;
6834 		ret = true;
6835 		to_accept -= MAX_ORDER_NR_PAGES;
6836 	} while (to_accept > 0);
6837 
6838 	return ret;
6839 }
6840 
6841 static inline bool has_unaccepted_memory(void)
6842 {
6843 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6844 }
6845 
6846 static bool __free_unaccepted(struct page *page)
6847 {
6848 	struct zone *zone = page_zone(page);
6849 	unsigned long flags;
6850 	bool first = false;
6851 
6852 	if (!lazy_accept)
6853 		return false;
6854 
6855 	spin_lock_irqsave(&zone->lock, flags);
6856 	first = list_empty(&zone->unaccepted_pages);
6857 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6858 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6859 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6860 	spin_unlock_irqrestore(&zone->lock, flags);
6861 
6862 	if (first)
6863 		static_branch_inc(&zones_with_unaccepted_pages);
6864 
6865 	return true;
6866 }
6867 
6868 #else
6869 
6870 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6871 {
6872 	return false;
6873 }
6874 
6875 static void accept_page(struct page *page, unsigned int order)
6876 {
6877 }
6878 
6879 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6880 {
6881 	return false;
6882 }
6883 
6884 static inline bool has_unaccepted_memory(void)
6885 {
6886 	return false;
6887 }
6888 
6889 static bool __free_unaccepted(struct page *page)
6890 {
6891 	BUILD_BUG();
6892 	return false;
6893 }
6894 
6895 #endif /* CONFIG_UNACCEPTED_MEMORY */
6896