xref: /linux/mm/page_alloc.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/nodemask.h>
36 #include <linux/vmalloc.h>
37 
38 #include <asm/tlbflush.h>
39 #include "internal.h"
40 
41 /*
42  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43  * initializer cleaner
44  */
45 nodemask_t node_online_map = { { [0] = 1UL } };
46 EXPORT_SYMBOL(node_online_map);
47 nodemask_t node_possible_map = NODE_MASK_ALL;
48 EXPORT_SYMBOL(node_possible_map);
49 struct pglist_data *pgdat_list;
50 unsigned long totalram_pages;
51 unsigned long totalhigh_pages;
52 long nr_swap_pages;
53 
54 /*
55  * results with 256, 32 in the lowmem_reserve sysctl:
56  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57  *	1G machine -> (16M dma, 784M normal, 224M high)
58  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61  */
62 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63 
64 EXPORT_SYMBOL(totalram_pages);
65 EXPORT_SYMBOL(nr_swap_pages);
66 
67 /*
68  * Used by page_zone() to look up the address of the struct zone whose
69  * id is encoded in the upper bits of page->flags
70  */
71 struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
72 EXPORT_SYMBOL(zone_table);
73 
74 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75 int min_free_kbytes = 1024;
76 
77 unsigned long __initdata nr_kernel_pages;
78 unsigned long __initdata nr_all_pages;
79 
80 /*
81  * Temporary debugging check for pages not lying within a given zone.
82  */
83 static int bad_range(struct zone *zone, struct page *page)
84 {
85 	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86 		return 1;
87 	if (page_to_pfn(page) < zone->zone_start_pfn)
88 		return 1;
89 #ifdef CONFIG_HOLES_IN_ZONE
90 	if (!pfn_valid(page_to_pfn(page)))
91 		return 1;
92 #endif
93 	if (zone != page_zone(page))
94 		return 1;
95 	return 0;
96 }
97 
98 static void bad_page(const char *function, struct page *page)
99 {
100 	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 		function, current->comm, page);
102 	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 		page->mapping, page_mapcount(page), page_count(page));
105 	printk(KERN_EMERG "Backtrace:\n");
106 	dump_stack();
107 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 	page->flags &= ~(1 << PG_lru	|
109 			1 << PG_private |
110 			1 << PG_locked	|
111 			1 << PG_active	|
112 			1 << PG_dirty	|
113 			1 << PG_reclaim |
114 			1 << PG_slab    |
115 			1 << PG_swapcache |
116 			1 << PG_writeback);
117 	set_page_count(page, 0);
118 	reset_page_mapcount(page);
119 	page->mapping = NULL;
120 	tainted |= TAINT_BAD_PAGE;
121 }
122 
123 #ifndef CONFIG_HUGETLB_PAGE
124 #define prep_compound_page(page, order) do { } while (0)
125 #define destroy_compound_page(page, order) do { } while (0)
126 #else
127 /*
128  * Higher-order pages are called "compound pages".  They are structured thusly:
129  *
130  * The first PAGE_SIZE page is called the "head page".
131  *
132  * The remaining PAGE_SIZE pages are called "tail pages".
133  *
134  * All pages have PG_compound set.  All pages have their ->private pointing at
135  * the head page (even the head page has this).
136  *
137  * The first tail page's ->mapping, if non-zero, holds the address of the
138  * compound page's put_page() function.
139  *
140  * The order of the allocation is stored in the first tail page's ->index
141  * This is only for debug at present.  This usage means that zero-order pages
142  * may not be compound.
143  */
144 static void prep_compound_page(struct page *page, unsigned long order)
145 {
146 	int i;
147 	int nr_pages = 1 << order;
148 
149 	page[1].mapping = NULL;
150 	page[1].index = order;
151 	for (i = 0; i < nr_pages; i++) {
152 		struct page *p = page + i;
153 
154 		SetPageCompound(p);
155 		p->private = (unsigned long)page;
156 	}
157 }
158 
159 static void destroy_compound_page(struct page *page, unsigned long order)
160 {
161 	int i;
162 	int nr_pages = 1 << order;
163 
164 	if (!PageCompound(page))
165 		return;
166 
167 	if (page[1].index != order)
168 		bad_page(__FUNCTION__, page);
169 
170 	for (i = 0; i < nr_pages; i++) {
171 		struct page *p = page + i;
172 
173 		if (!PageCompound(p))
174 			bad_page(__FUNCTION__, page);
175 		if (p->private != (unsigned long)page)
176 			bad_page(__FUNCTION__, page);
177 		ClearPageCompound(p);
178 	}
179 }
180 #endif		/* CONFIG_HUGETLB_PAGE */
181 
182 /*
183  * function for dealing with page's order in buddy system.
184  * zone->lock is already acquired when we use these.
185  * So, we don't need atomic page->flags operations here.
186  */
187 static inline unsigned long page_order(struct page *page) {
188 	return page->private;
189 }
190 
191 static inline void set_page_order(struct page *page, int order) {
192 	page->private = order;
193 	__SetPagePrivate(page);
194 }
195 
196 static inline void rmv_page_order(struct page *page)
197 {
198 	__ClearPagePrivate(page);
199 	page->private = 0;
200 }
201 
202 /*
203  * Locate the struct page for both the matching buddy in our
204  * pair (buddy1) and the combined O(n+1) page they form (page).
205  *
206  * 1) Any buddy B1 will have an order O twin B2 which satisfies
207  * the following equation:
208  *     B2 = B1 ^ (1 << O)
209  * For example, if the starting buddy (buddy2) is #8 its order
210  * 1 buddy is #10:
211  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
212  *
213  * 2) Any buddy B will have an order O+1 parent P which
214  * satisfies the following equation:
215  *     P = B & ~(1 << O)
216  *
217  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
218  */
219 static inline struct page *
220 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
221 {
222 	unsigned long buddy_idx = page_idx ^ (1 << order);
223 
224 	return page + (buddy_idx - page_idx);
225 }
226 
227 static inline unsigned long
228 __find_combined_index(unsigned long page_idx, unsigned int order)
229 {
230 	return (page_idx & ~(1 << order));
231 }
232 
233 /*
234  * This function checks whether a page is free && is the buddy
235  * we can do coalesce a page and its buddy if
236  * (a) the buddy is free &&
237  * (b) the buddy is on the buddy system &&
238  * (c) a page and its buddy have the same order.
239  * for recording page's order, we use page->private and PG_private.
240  *
241  */
242 static inline int page_is_buddy(struct page *page, int order)
243 {
244        if (PagePrivate(page)           &&
245            (page_order(page) == order) &&
246            !PageReserved(page)         &&
247             page_count(page) == 0)
248                return 1;
249        return 0;
250 }
251 
252 /*
253  * Freeing function for a buddy system allocator.
254  *
255  * The concept of a buddy system is to maintain direct-mapped table
256  * (containing bit values) for memory blocks of various "orders".
257  * The bottom level table contains the map for the smallest allocatable
258  * units of memory (here, pages), and each level above it describes
259  * pairs of units from the levels below, hence, "buddies".
260  * At a high level, all that happens here is marking the table entry
261  * at the bottom level available, and propagating the changes upward
262  * as necessary, plus some accounting needed to play nicely with other
263  * parts of the VM system.
264  * At each level, we keep a list of pages, which are heads of continuous
265  * free pages of length of (1 << order) and marked with PG_Private.Page's
266  * order is recorded in page->private field.
267  * So when we are allocating or freeing one, we can derive the state of the
268  * other.  That is, if we allocate a small block, and both were
269  * free, the remainder of the region must be split into blocks.
270  * If a block is freed, and its buddy is also free, then this
271  * triggers coalescing into a block of larger size.
272  *
273  * -- wli
274  */
275 
276 static inline void __free_pages_bulk (struct page *page,
277 		struct zone *zone, unsigned int order)
278 {
279 	unsigned long page_idx;
280 	int order_size = 1 << order;
281 
282 	if (unlikely(order))
283 		destroy_compound_page(page, order);
284 
285 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
286 
287 	BUG_ON(page_idx & (order_size - 1));
288 	BUG_ON(bad_range(zone, page));
289 
290 	zone->free_pages += order_size;
291 	while (order < MAX_ORDER-1) {
292 		unsigned long combined_idx;
293 		struct free_area *area;
294 		struct page *buddy;
295 
296 		combined_idx = __find_combined_index(page_idx, order);
297 		buddy = __page_find_buddy(page, page_idx, order);
298 
299 		if (bad_range(zone, buddy))
300 			break;
301 		if (!page_is_buddy(buddy, order))
302 			break;		/* Move the buddy up one level. */
303 		list_del(&buddy->lru);
304 		area = zone->free_area + order;
305 		area->nr_free--;
306 		rmv_page_order(buddy);
307 		page = page + (combined_idx - page_idx);
308 		page_idx = combined_idx;
309 		order++;
310 	}
311 	set_page_order(page, order);
312 	list_add(&page->lru, &zone->free_area[order].free_list);
313 	zone->free_area[order].nr_free++;
314 }
315 
316 static inline void free_pages_check(const char *function, struct page *page)
317 {
318 	if (	page_mapcount(page) ||
319 		page->mapping != NULL ||
320 		page_count(page) != 0 ||
321 		(page->flags & (
322 			1 << PG_lru	|
323 			1 << PG_private |
324 			1 << PG_locked	|
325 			1 << PG_active	|
326 			1 << PG_reclaim	|
327 			1 << PG_slab	|
328 			1 << PG_swapcache |
329 			1 << PG_writeback )))
330 		bad_page(function, page);
331 	if (PageDirty(page))
332 		ClearPageDirty(page);
333 }
334 
335 /*
336  * Frees a list of pages.
337  * Assumes all pages on list are in same zone, and of same order.
338  * count is the number of pages to free, or 0 for all on the list.
339  *
340  * If the zone was previously in an "all pages pinned" state then look to
341  * see if this freeing clears that state.
342  *
343  * And clear the zone's pages_scanned counter, to hold off the "all pages are
344  * pinned" detection logic.
345  */
346 static int
347 free_pages_bulk(struct zone *zone, int count,
348 		struct list_head *list, unsigned int order)
349 {
350 	unsigned long flags;
351 	struct page *page = NULL;
352 	int ret = 0;
353 
354 	spin_lock_irqsave(&zone->lock, flags);
355 	zone->all_unreclaimable = 0;
356 	zone->pages_scanned = 0;
357 	while (!list_empty(list) && count--) {
358 		page = list_entry(list->prev, struct page, lru);
359 		/* have to delete it as __free_pages_bulk list manipulates */
360 		list_del(&page->lru);
361 		__free_pages_bulk(page, zone, order);
362 		ret++;
363 	}
364 	spin_unlock_irqrestore(&zone->lock, flags);
365 	return ret;
366 }
367 
368 void __free_pages_ok(struct page *page, unsigned int order)
369 {
370 	LIST_HEAD(list);
371 	int i;
372 
373 	arch_free_page(page, order);
374 
375 	mod_page_state(pgfree, 1 << order);
376 
377 #ifndef CONFIG_MMU
378 	if (order > 0)
379 		for (i = 1 ; i < (1 << order) ; ++i)
380 			__put_page(page + i);
381 #endif
382 
383 	for (i = 0 ; i < (1 << order) ; ++i)
384 		free_pages_check(__FUNCTION__, page + i);
385 	list_add(&page->lru, &list);
386 	kernel_map_pages(page, 1<<order, 0);
387 	free_pages_bulk(page_zone(page), 1, &list, order);
388 }
389 
390 
391 /*
392  * The order of subdivision here is critical for the IO subsystem.
393  * Please do not alter this order without good reasons and regression
394  * testing. Specifically, as large blocks of memory are subdivided,
395  * the order in which smaller blocks are delivered depends on the order
396  * they're subdivided in this function. This is the primary factor
397  * influencing the order in which pages are delivered to the IO
398  * subsystem according to empirical testing, and this is also justified
399  * by considering the behavior of a buddy system containing a single
400  * large block of memory acted on by a series of small allocations.
401  * This behavior is a critical factor in sglist merging's success.
402  *
403  * -- wli
404  */
405 static inline struct page *
406 expand(struct zone *zone, struct page *page,
407  	int low, int high, struct free_area *area)
408 {
409 	unsigned long size = 1 << high;
410 
411 	while (high > low) {
412 		area--;
413 		high--;
414 		size >>= 1;
415 		BUG_ON(bad_range(zone, &page[size]));
416 		list_add(&page[size].lru, &area->free_list);
417 		area->nr_free++;
418 		set_page_order(&page[size], high);
419 	}
420 	return page;
421 }
422 
423 void set_page_refs(struct page *page, int order)
424 {
425 #ifdef CONFIG_MMU
426 	set_page_count(page, 1);
427 #else
428 	int i;
429 
430 	/*
431 	 * We need to reference all the pages for this order, otherwise if
432 	 * anyone accesses one of the pages with (get/put) it will be freed.
433 	 * - eg: access_process_vm()
434 	 */
435 	for (i = 0; i < (1 << order); i++)
436 		set_page_count(page + i, 1);
437 #endif /* CONFIG_MMU */
438 }
439 
440 /*
441  * This page is about to be returned from the page allocator
442  */
443 static void prep_new_page(struct page *page, int order)
444 {
445 	if (	page_mapcount(page) ||
446 		page->mapping != NULL ||
447 		page_count(page) != 0 ||
448 		(page->flags & (
449 			1 << PG_lru	|
450 			1 << PG_private	|
451 			1 << PG_locked	|
452 			1 << PG_active	|
453 			1 << PG_dirty	|
454 			1 << PG_reclaim	|
455 			1 << PG_slab    |
456 			1 << PG_swapcache |
457 			1 << PG_writeback )))
458 		bad_page(__FUNCTION__, page);
459 
460 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
461 			1 << PG_referenced | 1 << PG_arch_1 |
462 			1 << PG_checked | 1 << PG_mappedtodisk);
463 	page->private = 0;
464 	set_page_refs(page, order);
465 	kernel_map_pages(page, 1 << order, 1);
466 }
467 
468 /*
469  * Do the hard work of removing an element from the buddy allocator.
470  * Call me with the zone->lock already held.
471  */
472 static struct page *__rmqueue(struct zone *zone, unsigned int order)
473 {
474 	struct free_area * area;
475 	unsigned int current_order;
476 	struct page *page;
477 
478 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
479 		area = zone->free_area + current_order;
480 		if (list_empty(&area->free_list))
481 			continue;
482 
483 		page = list_entry(area->free_list.next, struct page, lru);
484 		list_del(&page->lru);
485 		rmv_page_order(page);
486 		area->nr_free--;
487 		zone->free_pages -= 1UL << order;
488 		return expand(zone, page, order, current_order, area);
489 	}
490 
491 	return NULL;
492 }
493 
494 /*
495  * Obtain a specified number of elements from the buddy allocator, all under
496  * a single hold of the lock, for efficiency.  Add them to the supplied list.
497  * Returns the number of new pages which were placed at *list.
498  */
499 static int rmqueue_bulk(struct zone *zone, unsigned int order,
500 			unsigned long count, struct list_head *list)
501 {
502 	unsigned long flags;
503 	int i;
504 	int allocated = 0;
505 	struct page *page;
506 
507 	spin_lock_irqsave(&zone->lock, flags);
508 	for (i = 0; i < count; ++i) {
509 		page = __rmqueue(zone, order);
510 		if (page == NULL)
511 			break;
512 		allocated++;
513 		list_add_tail(&page->lru, list);
514 	}
515 	spin_unlock_irqrestore(&zone->lock, flags);
516 	return allocated;
517 }
518 
519 #ifdef CONFIG_NUMA
520 /* Called from the slab reaper to drain remote pagesets */
521 void drain_remote_pages(void)
522 {
523 	struct zone *zone;
524 	int i;
525 	unsigned long flags;
526 
527 	local_irq_save(flags);
528 	for_each_zone(zone) {
529 		struct per_cpu_pageset *pset;
530 
531 		/* Do not drain local pagesets */
532 		if (zone->zone_pgdat->node_id == numa_node_id())
533 			continue;
534 
535 		pset = zone->pageset[smp_processor_id()];
536 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
537 			struct per_cpu_pages *pcp;
538 
539 			pcp = &pset->pcp[i];
540 			if (pcp->count)
541 				pcp->count -= free_pages_bulk(zone, pcp->count,
542 						&pcp->list, 0);
543 		}
544 	}
545 	local_irq_restore(flags);
546 }
547 #endif
548 
549 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
550 static void __drain_pages(unsigned int cpu)
551 {
552 	struct zone *zone;
553 	int i;
554 
555 	for_each_zone(zone) {
556 		struct per_cpu_pageset *pset;
557 
558 		pset = zone_pcp(zone, cpu);
559 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
560 			struct per_cpu_pages *pcp;
561 
562 			pcp = &pset->pcp[i];
563 			pcp->count -= free_pages_bulk(zone, pcp->count,
564 						&pcp->list, 0);
565 		}
566 	}
567 }
568 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
569 
570 #ifdef CONFIG_PM
571 
572 void mark_free_pages(struct zone *zone)
573 {
574 	unsigned long zone_pfn, flags;
575 	int order;
576 	struct list_head *curr;
577 
578 	if (!zone->spanned_pages)
579 		return;
580 
581 	spin_lock_irqsave(&zone->lock, flags);
582 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
583 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
584 
585 	for (order = MAX_ORDER - 1; order >= 0; --order)
586 		list_for_each(curr, &zone->free_area[order].free_list) {
587 			unsigned long start_pfn, i;
588 
589 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
590 
591 			for (i=0; i < (1<<order); i++)
592 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
593 	}
594 	spin_unlock_irqrestore(&zone->lock, flags);
595 }
596 
597 /*
598  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
599  */
600 void drain_local_pages(void)
601 {
602 	unsigned long flags;
603 
604 	local_irq_save(flags);
605 	__drain_pages(smp_processor_id());
606 	local_irq_restore(flags);
607 }
608 #endif /* CONFIG_PM */
609 
610 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
611 {
612 #ifdef CONFIG_NUMA
613 	unsigned long flags;
614 	int cpu;
615 	pg_data_t *pg = z->zone_pgdat;
616 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
617 	struct per_cpu_pageset *p;
618 
619 	local_irq_save(flags);
620 	cpu = smp_processor_id();
621 	p = zone_pcp(z,cpu);
622 	if (pg == orig) {
623 		p->numa_hit++;
624 	} else {
625 		p->numa_miss++;
626 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
627 	}
628 	if (pg == NODE_DATA(numa_node_id()))
629 		p->local_node++;
630 	else
631 		p->other_node++;
632 	local_irq_restore(flags);
633 #endif
634 }
635 
636 /*
637  * Free a 0-order page
638  */
639 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
640 static void fastcall free_hot_cold_page(struct page *page, int cold)
641 {
642 	struct zone *zone = page_zone(page);
643 	struct per_cpu_pages *pcp;
644 	unsigned long flags;
645 
646 	arch_free_page(page, 0);
647 
648 	kernel_map_pages(page, 1, 0);
649 	inc_page_state(pgfree);
650 	if (PageAnon(page))
651 		page->mapping = NULL;
652 	free_pages_check(__FUNCTION__, page);
653 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
654 	local_irq_save(flags);
655 	list_add(&page->lru, &pcp->list);
656 	pcp->count++;
657 	if (pcp->count >= pcp->high)
658 		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
659 	local_irq_restore(flags);
660 	put_cpu();
661 }
662 
663 void fastcall free_hot_page(struct page *page)
664 {
665 	free_hot_cold_page(page, 0);
666 }
667 
668 void fastcall free_cold_page(struct page *page)
669 {
670 	free_hot_cold_page(page, 1);
671 }
672 
673 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
674 {
675 	int i;
676 
677 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
678 	for(i = 0; i < (1 << order); i++)
679 		clear_highpage(page + i);
680 }
681 
682 /*
683  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
684  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
685  * or two.
686  */
687 static struct page *
688 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
689 {
690 	unsigned long flags;
691 	struct page *page = NULL;
692 	int cold = !!(gfp_flags & __GFP_COLD);
693 
694 	if (order == 0) {
695 		struct per_cpu_pages *pcp;
696 
697 		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
698 		local_irq_save(flags);
699 		if (pcp->count <= pcp->low)
700 			pcp->count += rmqueue_bulk(zone, 0,
701 						pcp->batch, &pcp->list);
702 		if (pcp->count) {
703 			page = list_entry(pcp->list.next, struct page, lru);
704 			list_del(&page->lru);
705 			pcp->count--;
706 		}
707 		local_irq_restore(flags);
708 		put_cpu();
709 	}
710 
711 	if (page == NULL) {
712 		spin_lock_irqsave(&zone->lock, flags);
713 		page = __rmqueue(zone, order);
714 		spin_unlock_irqrestore(&zone->lock, flags);
715 	}
716 
717 	if (page != NULL) {
718 		BUG_ON(bad_range(zone, page));
719 		mod_page_state_zone(zone, pgalloc, 1 << order);
720 		prep_new_page(page, order);
721 
722 		if (gfp_flags & __GFP_ZERO)
723 			prep_zero_page(page, order, gfp_flags);
724 
725 		if (order && (gfp_flags & __GFP_COMP))
726 			prep_compound_page(page, order);
727 	}
728 	return page;
729 }
730 
731 /*
732  * Return 1 if free pages are above 'mark'. This takes into account the order
733  * of the allocation.
734  */
735 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
736 		      int classzone_idx, int can_try_harder, int gfp_high)
737 {
738 	/* free_pages my go negative - that's OK */
739 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
740 	int o;
741 
742 	if (gfp_high)
743 		min -= min / 2;
744 	if (can_try_harder)
745 		min -= min / 4;
746 
747 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
748 		return 0;
749 	for (o = 0; o < order; o++) {
750 		/* At the next order, this order's pages become unavailable */
751 		free_pages -= z->free_area[o].nr_free << o;
752 
753 		/* Require fewer higher order pages to be free */
754 		min >>= 1;
755 
756 		if (free_pages <= min)
757 			return 0;
758 	}
759 	return 1;
760 }
761 
762 static inline int
763 should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
764 {
765 	if (!z->reclaim_pages)
766 		return 0;
767 	if (gfp_mask & __GFP_NORECLAIM)
768 		return 0;
769 	return 1;
770 }
771 
772 /*
773  * This is the 'heart' of the zoned buddy allocator.
774  */
775 struct page * fastcall
776 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
777 		struct zonelist *zonelist)
778 {
779 	const int wait = gfp_mask & __GFP_WAIT;
780 	struct zone **zones, *z;
781 	struct page *page;
782 	struct reclaim_state reclaim_state;
783 	struct task_struct *p = current;
784 	int i;
785 	int classzone_idx;
786 	int do_retry;
787 	int can_try_harder;
788 	int did_some_progress;
789 
790 	might_sleep_if(wait);
791 
792 	/*
793 	 * The caller may dip into page reserves a bit more if the caller
794 	 * cannot run direct reclaim, or is the caller has realtime scheduling
795 	 * policy
796 	 */
797 	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
798 
799 	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
800 
801 	if (unlikely(zones[0] == NULL)) {
802 		/* Should this ever happen?? */
803 		return NULL;
804 	}
805 
806 	classzone_idx = zone_idx(zones[0]);
807 
808 restart:
809 	/* Go through the zonelist once, looking for a zone with enough free */
810 	for (i = 0; (z = zones[i]) != NULL; i++) {
811 		int do_reclaim = should_reclaim_zone(z, gfp_mask);
812 
813 		if (!cpuset_zone_allowed(z))
814 			continue;
815 
816 		/*
817 		 * If the zone is to attempt early page reclaim then this loop
818 		 * will try to reclaim pages and check the watermark a second
819 		 * time before giving up and falling back to the next zone.
820 		 */
821 zone_reclaim_retry:
822 		if (!zone_watermark_ok(z, order, z->pages_low,
823 				       classzone_idx, 0, 0)) {
824 			if (!do_reclaim)
825 				continue;
826 			else {
827 				zone_reclaim(z, gfp_mask, order);
828 				/* Only try reclaim once */
829 				do_reclaim = 0;
830 				goto zone_reclaim_retry;
831 			}
832 		}
833 
834 		page = buffered_rmqueue(z, order, gfp_mask);
835 		if (page)
836 			goto got_pg;
837 	}
838 
839 	for (i = 0; (z = zones[i]) != NULL; i++)
840 		wakeup_kswapd(z, order);
841 
842 	/*
843 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
844 	 * coming from realtime tasks to go deeper into reserves
845 	 *
846 	 * This is the last chance, in general, before the goto nopage.
847 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
848 	 */
849 	for (i = 0; (z = zones[i]) != NULL; i++) {
850 		if (!zone_watermark_ok(z, order, z->pages_min,
851 				       classzone_idx, can_try_harder,
852 				       gfp_mask & __GFP_HIGH))
853 			continue;
854 
855 		if (wait && !cpuset_zone_allowed(z))
856 			continue;
857 
858 		page = buffered_rmqueue(z, order, gfp_mask);
859 		if (page)
860 			goto got_pg;
861 	}
862 
863 	/* This allocation should allow future memory freeing. */
864 
865 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
866 			&& !in_interrupt()) {
867 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
868 			/* go through the zonelist yet again, ignoring mins */
869 			for (i = 0; (z = zones[i]) != NULL; i++) {
870 				if (!cpuset_zone_allowed(z))
871 					continue;
872 				page = buffered_rmqueue(z, order, gfp_mask);
873 				if (page)
874 					goto got_pg;
875 			}
876 		}
877 		goto nopage;
878 	}
879 
880 	/* Atomic allocations - we can't balance anything */
881 	if (!wait)
882 		goto nopage;
883 
884 rebalance:
885 	cond_resched();
886 
887 	/* We now go into synchronous reclaim */
888 	p->flags |= PF_MEMALLOC;
889 	reclaim_state.reclaimed_slab = 0;
890 	p->reclaim_state = &reclaim_state;
891 
892 	did_some_progress = try_to_free_pages(zones, gfp_mask);
893 
894 	p->reclaim_state = NULL;
895 	p->flags &= ~PF_MEMALLOC;
896 
897 	cond_resched();
898 
899 	if (likely(did_some_progress)) {
900 		/*
901 		 * Go through the zonelist yet one more time, keep
902 		 * very high watermark here, this is only to catch
903 		 * a parallel oom killing, we must fail if we're still
904 		 * under heavy pressure.
905 		 */
906 		for (i = 0; (z = zones[i]) != NULL; i++) {
907 			if (!zone_watermark_ok(z, order, z->pages_min,
908 					       classzone_idx, can_try_harder,
909 					       gfp_mask & __GFP_HIGH))
910 				continue;
911 
912 			if (!cpuset_zone_allowed(z))
913 				continue;
914 
915 			page = buffered_rmqueue(z, order, gfp_mask);
916 			if (page)
917 				goto got_pg;
918 		}
919 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
920 		/*
921 		 * Go through the zonelist yet one more time, keep
922 		 * very high watermark here, this is only to catch
923 		 * a parallel oom killing, we must fail if we're still
924 		 * under heavy pressure.
925 		 */
926 		for (i = 0; (z = zones[i]) != NULL; i++) {
927 			if (!zone_watermark_ok(z, order, z->pages_high,
928 					       classzone_idx, 0, 0))
929 				continue;
930 
931 			if (!cpuset_zone_allowed(z))
932 				continue;
933 
934 			page = buffered_rmqueue(z, order, gfp_mask);
935 			if (page)
936 				goto got_pg;
937 		}
938 
939 		out_of_memory(gfp_mask);
940 		goto restart;
941 	}
942 
943 	/*
944 	 * Don't let big-order allocations loop unless the caller explicitly
945 	 * requests that.  Wait for some write requests to complete then retry.
946 	 *
947 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
948 	 * <= 3, but that may not be true in other implementations.
949 	 */
950 	do_retry = 0;
951 	if (!(gfp_mask & __GFP_NORETRY)) {
952 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
953 			do_retry = 1;
954 		if (gfp_mask & __GFP_NOFAIL)
955 			do_retry = 1;
956 	}
957 	if (do_retry) {
958 		blk_congestion_wait(WRITE, HZ/50);
959 		goto rebalance;
960 	}
961 
962 nopage:
963 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
964 		printk(KERN_WARNING "%s: page allocation failure."
965 			" order:%d, mode:0x%x\n",
966 			p->comm, order, gfp_mask);
967 		dump_stack();
968 		show_mem();
969 	}
970 	return NULL;
971 got_pg:
972 	zone_statistics(zonelist, z);
973 	return page;
974 }
975 
976 EXPORT_SYMBOL(__alloc_pages);
977 
978 /*
979  * Common helper functions.
980  */
981 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
982 {
983 	struct page * page;
984 	page = alloc_pages(gfp_mask, order);
985 	if (!page)
986 		return 0;
987 	return (unsigned long) page_address(page);
988 }
989 
990 EXPORT_SYMBOL(__get_free_pages);
991 
992 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
993 {
994 	struct page * page;
995 
996 	/*
997 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
998 	 * a highmem page
999 	 */
1000 	BUG_ON(gfp_mask & __GFP_HIGHMEM);
1001 
1002 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1003 	if (page)
1004 		return (unsigned long) page_address(page);
1005 	return 0;
1006 }
1007 
1008 EXPORT_SYMBOL(get_zeroed_page);
1009 
1010 void __pagevec_free(struct pagevec *pvec)
1011 {
1012 	int i = pagevec_count(pvec);
1013 
1014 	while (--i >= 0)
1015 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1016 }
1017 
1018 fastcall void __free_pages(struct page *page, unsigned int order)
1019 {
1020 	if (!PageReserved(page) && put_page_testzero(page)) {
1021 		if (order == 0)
1022 			free_hot_page(page);
1023 		else
1024 			__free_pages_ok(page, order);
1025 	}
1026 }
1027 
1028 EXPORT_SYMBOL(__free_pages);
1029 
1030 fastcall void free_pages(unsigned long addr, unsigned int order)
1031 {
1032 	if (addr != 0) {
1033 		BUG_ON(!virt_addr_valid((void *)addr));
1034 		__free_pages(virt_to_page((void *)addr), order);
1035 	}
1036 }
1037 
1038 EXPORT_SYMBOL(free_pages);
1039 
1040 /*
1041  * Total amount of free (allocatable) RAM:
1042  */
1043 unsigned int nr_free_pages(void)
1044 {
1045 	unsigned int sum = 0;
1046 	struct zone *zone;
1047 
1048 	for_each_zone(zone)
1049 		sum += zone->free_pages;
1050 
1051 	return sum;
1052 }
1053 
1054 EXPORT_SYMBOL(nr_free_pages);
1055 
1056 #ifdef CONFIG_NUMA
1057 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1058 {
1059 	unsigned int i, sum = 0;
1060 
1061 	for (i = 0; i < MAX_NR_ZONES; i++)
1062 		sum += pgdat->node_zones[i].free_pages;
1063 
1064 	return sum;
1065 }
1066 #endif
1067 
1068 static unsigned int nr_free_zone_pages(int offset)
1069 {
1070 	pg_data_t *pgdat;
1071 	unsigned int sum = 0;
1072 
1073 	for_each_pgdat(pgdat) {
1074 		struct zonelist *zonelist = pgdat->node_zonelists + offset;
1075 		struct zone **zonep = zonelist->zones;
1076 		struct zone *zone;
1077 
1078 		for (zone = *zonep++; zone; zone = *zonep++) {
1079 			unsigned long size = zone->present_pages;
1080 			unsigned long high = zone->pages_high;
1081 			if (size > high)
1082 				sum += size - high;
1083 		}
1084 	}
1085 
1086 	return sum;
1087 }
1088 
1089 /*
1090  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1091  */
1092 unsigned int nr_free_buffer_pages(void)
1093 {
1094 	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1095 }
1096 
1097 /*
1098  * Amount of free RAM allocatable within all zones
1099  */
1100 unsigned int nr_free_pagecache_pages(void)
1101 {
1102 	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1103 }
1104 
1105 #ifdef CONFIG_HIGHMEM
1106 unsigned int nr_free_highpages (void)
1107 {
1108 	pg_data_t *pgdat;
1109 	unsigned int pages = 0;
1110 
1111 	for_each_pgdat(pgdat)
1112 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1113 
1114 	return pages;
1115 }
1116 #endif
1117 
1118 #ifdef CONFIG_NUMA
1119 static void show_node(struct zone *zone)
1120 {
1121 	printk("Node %d ", zone->zone_pgdat->node_id);
1122 }
1123 #else
1124 #define show_node(zone)	do { } while (0)
1125 #endif
1126 
1127 /*
1128  * Accumulate the page_state information across all CPUs.
1129  * The result is unavoidably approximate - it can change
1130  * during and after execution of this function.
1131  */
1132 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1133 
1134 atomic_t nr_pagecache = ATOMIC_INIT(0);
1135 EXPORT_SYMBOL(nr_pagecache);
1136 #ifdef CONFIG_SMP
1137 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1138 #endif
1139 
1140 void __get_page_state(struct page_state *ret, int nr)
1141 {
1142 	int cpu = 0;
1143 
1144 	memset(ret, 0, sizeof(*ret));
1145 
1146 	cpu = first_cpu(cpu_online_map);
1147 	while (cpu < NR_CPUS) {
1148 		unsigned long *in, *out, off;
1149 
1150 		in = (unsigned long *)&per_cpu(page_states, cpu);
1151 
1152 		cpu = next_cpu(cpu, cpu_online_map);
1153 
1154 		if (cpu < NR_CPUS)
1155 			prefetch(&per_cpu(page_states, cpu));
1156 
1157 		out = (unsigned long *)ret;
1158 		for (off = 0; off < nr; off++)
1159 			*out++ += *in++;
1160 	}
1161 }
1162 
1163 void get_page_state(struct page_state *ret)
1164 {
1165 	int nr;
1166 
1167 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1168 	nr /= sizeof(unsigned long);
1169 
1170 	__get_page_state(ret, nr + 1);
1171 }
1172 
1173 void get_full_page_state(struct page_state *ret)
1174 {
1175 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1176 }
1177 
1178 unsigned long __read_page_state(unsigned long offset)
1179 {
1180 	unsigned long ret = 0;
1181 	int cpu;
1182 
1183 	for_each_online_cpu(cpu) {
1184 		unsigned long in;
1185 
1186 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1187 		ret += *((unsigned long *)in);
1188 	}
1189 	return ret;
1190 }
1191 
1192 void __mod_page_state(unsigned long offset, unsigned long delta)
1193 {
1194 	unsigned long flags;
1195 	void* ptr;
1196 
1197 	local_irq_save(flags);
1198 	ptr = &__get_cpu_var(page_states);
1199 	*(unsigned long*)(ptr + offset) += delta;
1200 	local_irq_restore(flags);
1201 }
1202 
1203 EXPORT_SYMBOL(__mod_page_state);
1204 
1205 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1206 			unsigned long *free, struct pglist_data *pgdat)
1207 {
1208 	struct zone *zones = pgdat->node_zones;
1209 	int i;
1210 
1211 	*active = 0;
1212 	*inactive = 0;
1213 	*free = 0;
1214 	for (i = 0; i < MAX_NR_ZONES; i++) {
1215 		*active += zones[i].nr_active;
1216 		*inactive += zones[i].nr_inactive;
1217 		*free += zones[i].free_pages;
1218 	}
1219 }
1220 
1221 void get_zone_counts(unsigned long *active,
1222 		unsigned long *inactive, unsigned long *free)
1223 {
1224 	struct pglist_data *pgdat;
1225 
1226 	*active = 0;
1227 	*inactive = 0;
1228 	*free = 0;
1229 	for_each_pgdat(pgdat) {
1230 		unsigned long l, m, n;
1231 		__get_zone_counts(&l, &m, &n, pgdat);
1232 		*active += l;
1233 		*inactive += m;
1234 		*free += n;
1235 	}
1236 }
1237 
1238 void si_meminfo(struct sysinfo *val)
1239 {
1240 	val->totalram = totalram_pages;
1241 	val->sharedram = 0;
1242 	val->freeram = nr_free_pages();
1243 	val->bufferram = nr_blockdev_pages();
1244 #ifdef CONFIG_HIGHMEM
1245 	val->totalhigh = totalhigh_pages;
1246 	val->freehigh = nr_free_highpages();
1247 #else
1248 	val->totalhigh = 0;
1249 	val->freehigh = 0;
1250 #endif
1251 	val->mem_unit = PAGE_SIZE;
1252 }
1253 
1254 EXPORT_SYMBOL(si_meminfo);
1255 
1256 #ifdef CONFIG_NUMA
1257 void si_meminfo_node(struct sysinfo *val, int nid)
1258 {
1259 	pg_data_t *pgdat = NODE_DATA(nid);
1260 
1261 	val->totalram = pgdat->node_present_pages;
1262 	val->freeram = nr_free_pages_pgdat(pgdat);
1263 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1264 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1265 	val->mem_unit = PAGE_SIZE;
1266 }
1267 #endif
1268 
1269 #define K(x) ((x) << (PAGE_SHIFT-10))
1270 
1271 /*
1272  * Show free area list (used inside shift_scroll-lock stuff)
1273  * We also calculate the percentage fragmentation. We do this by counting the
1274  * memory on each free list with the exception of the first item on the list.
1275  */
1276 void show_free_areas(void)
1277 {
1278 	struct page_state ps;
1279 	int cpu, temperature;
1280 	unsigned long active;
1281 	unsigned long inactive;
1282 	unsigned long free;
1283 	struct zone *zone;
1284 
1285 	for_each_zone(zone) {
1286 		show_node(zone);
1287 		printk("%s per-cpu:", zone->name);
1288 
1289 		if (!zone->present_pages) {
1290 			printk(" empty\n");
1291 			continue;
1292 		} else
1293 			printk("\n");
1294 
1295 		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1296 			struct per_cpu_pageset *pageset;
1297 
1298 			if (!cpu_possible(cpu))
1299 				continue;
1300 
1301 			pageset = zone_pcp(zone, cpu);
1302 
1303 			for (temperature = 0; temperature < 2; temperature++)
1304 				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1305 					cpu,
1306 					temperature ? "cold" : "hot",
1307 					pageset->pcp[temperature].low,
1308 					pageset->pcp[temperature].high,
1309 					pageset->pcp[temperature].batch,
1310 					pageset->pcp[temperature].count);
1311 		}
1312 	}
1313 
1314 	get_page_state(&ps);
1315 	get_zone_counts(&active, &inactive, &free);
1316 
1317 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1318 		K(nr_free_pages()),
1319 		K(nr_free_highpages()));
1320 
1321 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1322 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1323 		active,
1324 		inactive,
1325 		ps.nr_dirty,
1326 		ps.nr_writeback,
1327 		ps.nr_unstable,
1328 		nr_free_pages(),
1329 		ps.nr_slab,
1330 		ps.nr_mapped,
1331 		ps.nr_page_table_pages);
1332 
1333 	for_each_zone(zone) {
1334 		int i;
1335 
1336 		show_node(zone);
1337 		printk("%s"
1338 			" free:%lukB"
1339 			" min:%lukB"
1340 			" low:%lukB"
1341 			" high:%lukB"
1342 			" active:%lukB"
1343 			" inactive:%lukB"
1344 			" present:%lukB"
1345 			" pages_scanned:%lu"
1346 			" all_unreclaimable? %s"
1347 			"\n",
1348 			zone->name,
1349 			K(zone->free_pages),
1350 			K(zone->pages_min),
1351 			K(zone->pages_low),
1352 			K(zone->pages_high),
1353 			K(zone->nr_active),
1354 			K(zone->nr_inactive),
1355 			K(zone->present_pages),
1356 			zone->pages_scanned,
1357 			(zone->all_unreclaimable ? "yes" : "no")
1358 			);
1359 		printk("lowmem_reserve[]:");
1360 		for (i = 0; i < MAX_NR_ZONES; i++)
1361 			printk(" %lu", zone->lowmem_reserve[i]);
1362 		printk("\n");
1363 	}
1364 
1365 	for_each_zone(zone) {
1366  		unsigned long nr, flags, order, total = 0;
1367 
1368 		show_node(zone);
1369 		printk("%s: ", zone->name);
1370 		if (!zone->present_pages) {
1371 			printk("empty\n");
1372 			continue;
1373 		}
1374 
1375 		spin_lock_irqsave(&zone->lock, flags);
1376 		for (order = 0; order < MAX_ORDER; order++) {
1377 			nr = zone->free_area[order].nr_free;
1378 			total += nr << order;
1379 			printk("%lu*%lukB ", nr, K(1UL) << order);
1380 		}
1381 		spin_unlock_irqrestore(&zone->lock, flags);
1382 		printk("= %lukB\n", K(total));
1383 	}
1384 
1385 	show_swap_cache_info();
1386 }
1387 
1388 /*
1389  * Builds allocation fallback zone lists.
1390  */
1391 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1392 {
1393 	switch (k) {
1394 		struct zone *zone;
1395 	default:
1396 		BUG();
1397 	case ZONE_HIGHMEM:
1398 		zone = pgdat->node_zones + ZONE_HIGHMEM;
1399 		if (zone->present_pages) {
1400 #ifndef CONFIG_HIGHMEM
1401 			BUG();
1402 #endif
1403 			zonelist->zones[j++] = zone;
1404 		}
1405 	case ZONE_NORMAL:
1406 		zone = pgdat->node_zones + ZONE_NORMAL;
1407 		if (zone->present_pages)
1408 			zonelist->zones[j++] = zone;
1409 	case ZONE_DMA:
1410 		zone = pgdat->node_zones + ZONE_DMA;
1411 		if (zone->present_pages)
1412 			zonelist->zones[j++] = zone;
1413 	}
1414 
1415 	return j;
1416 }
1417 
1418 #ifdef CONFIG_NUMA
1419 #define MAX_NODE_LOAD (num_online_nodes())
1420 static int __initdata node_load[MAX_NUMNODES];
1421 /**
1422  * find_next_best_node - find the next node that should appear in a given node's fallback list
1423  * @node: node whose fallback list we're appending
1424  * @used_node_mask: nodemask_t of already used nodes
1425  *
1426  * We use a number of factors to determine which is the next node that should
1427  * appear on a given node's fallback list.  The node should not have appeared
1428  * already in @node's fallback list, and it should be the next closest node
1429  * according to the distance array (which contains arbitrary distance values
1430  * from each node to each node in the system), and should also prefer nodes
1431  * with no CPUs, since presumably they'll have very little allocation pressure
1432  * on them otherwise.
1433  * It returns -1 if no node is found.
1434  */
1435 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1436 {
1437 	int i, n, val;
1438 	int min_val = INT_MAX;
1439 	int best_node = -1;
1440 
1441 	for_each_online_node(i) {
1442 		cpumask_t tmp;
1443 
1444 		/* Start from local node */
1445 		n = (node+i) % num_online_nodes();
1446 
1447 		/* Don't want a node to appear more than once */
1448 		if (node_isset(n, *used_node_mask))
1449 			continue;
1450 
1451 		/* Use the local node if we haven't already */
1452 		if (!node_isset(node, *used_node_mask)) {
1453 			best_node = node;
1454 			break;
1455 		}
1456 
1457 		/* Use the distance array to find the distance */
1458 		val = node_distance(node, n);
1459 
1460 		/* Give preference to headless and unused nodes */
1461 		tmp = node_to_cpumask(n);
1462 		if (!cpus_empty(tmp))
1463 			val += PENALTY_FOR_NODE_WITH_CPUS;
1464 
1465 		/* Slight preference for less loaded node */
1466 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1467 		val += node_load[n];
1468 
1469 		if (val < min_val) {
1470 			min_val = val;
1471 			best_node = n;
1472 		}
1473 	}
1474 
1475 	if (best_node >= 0)
1476 		node_set(best_node, *used_node_mask);
1477 
1478 	return best_node;
1479 }
1480 
1481 static void __init build_zonelists(pg_data_t *pgdat)
1482 {
1483 	int i, j, k, node, local_node;
1484 	int prev_node, load;
1485 	struct zonelist *zonelist;
1486 	nodemask_t used_mask;
1487 
1488 	/* initialize zonelists */
1489 	for (i = 0; i < GFP_ZONETYPES; i++) {
1490 		zonelist = pgdat->node_zonelists + i;
1491 		zonelist->zones[0] = NULL;
1492 	}
1493 
1494 	/* NUMA-aware ordering of nodes */
1495 	local_node = pgdat->node_id;
1496 	load = num_online_nodes();
1497 	prev_node = local_node;
1498 	nodes_clear(used_mask);
1499 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1500 		/*
1501 		 * We don't want to pressure a particular node.
1502 		 * So adding penalty to the first node in same
1503 		 * distance group to make it round-robin.
1504 		 */
1505 		if (node_distance(local_node, node) !=
1506 				node_distance(local_node, prev_node))
1507 			node_load[node] += load;
1508 		prev_node = node;
1509 		load--;
1510 		for (i = 0; i < GFP_ZONETYPES; i++) {
1511 			zonelist = pgdat->node_zonelists + i;
1512 			for (j = 0; zonelist->zones[j] != NULL; j++);
1513 
1514 			k = ZONE_NORMAL;
1515 			if (i & __GFP_HIGHMEM)
1516 				k = ZONE_HIGHMEM;
1517 			if (i & __GFP_DMA)
1518 				k = ZONE_DMA;
1519 
1520 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1521 			zonelist->zones[j] = NULL;
1522 		}
1523 	}
1524 }
1525 
1526 #else	/* CONFIG_NUMA */
1527 
1528 static void __init build_zonelists(pg_data_t *pgdat)
1529 {
1530 	int i, j, k, node, local_node;
1531 
1532 	local_node = pgdat->node_id;
1533 	for (i = 0; i < GFP_ZONETYPES; i++) {
1534 		struct zonelist *zonelist;
1535 
1536 		zonelist = pgdat->node_zonelists + i;
1537 
1538 		j = 0;
1539 		k = ZONE_NORMAL;
1540 		if (i & __GFP_HIGHMEM)
1541 			k = ZONE_HIGHMEM;
1542 		if (i & __GFP_DMA)
1543 			k = ZONE_DMA;
1544 
1545  		j = build_zonelists_node(pgdat, zonelist, j, k);
1546  		/*
1547  		 * Now we build the zonelist so that it contains the zones
1548  		 * of all the other nodes.
1549  		 * We don't want to pressure a particular node, so when
1550  		 * building the zones for node N, we make sure that the
1551  		 * zones coming right after the local ones are those from
1552  		 * node N+1 (modulo N)
1553  		 */
1554 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1555 			if (!node_online(node))
1556 				continue;
1557 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1558 		}
1559 		for (node = 0; node < local_node; node++) {
1560 			if (!node_online(node))
1561 				continue;
1562 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1563 		}
1564 
1565 		zonelist->zones[j] = NULL;
1566 	}
1567 }
1568 
1569 #endif	/* CONFIG_NUMA */
1570 
1571 void __init build_all_zonelists(void)
1572 {
1573 	int i;
1574 
1575 	for_each_online_node(i)
1576 		build_zonelists(NODE_DATA(i));
1577 	printk("Built %i zonelists\n", num_online_nodes());
1578 	cpuset_init_current_mems_allowed();
1579 }
1580 
1581 /*
1582  * Helper functions to size the waitqueue hash table.
1583  * Essentially these want to choose hash table sizes sufficiently
1584  * large so that collisions trying to wait on pages are rare.
1585  * But in fact, the number of active page waitqueues on typical
1586  * systems is ridiculously low, less than 200. So this is even
1587  * conservative, even though it seems large.
1588  *
1589  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1590  * waitqueues, i.e. the size of the waitq table given the number of pages.
1591  */
1592 #define PAGES_PER_WAITQUEUE	256
1593 
1594 static inline unsigned long wait_table_size(unsigned long pages)
1595 {
1596 	unsigned long size = 1;
1597 
1598 	pages /= PAGES_PER_WAITQUEUE;
1599 
1600 	while (size < pages)
1601 		size <<= 1;
1602 
1603 	/*
1604 	 * Once we have dozens or even hundreds of threads sleeping
1605 	 * on IO we've got bigger problems than wait queue collision.
1606 	 * Limit the size of the wait table to a reasonable size.
1607 	 */
1608 	size = min(size, 4096UL);
1609 
1610 	return max(size, 4UL);
1611 }
1612 
1613 /*
1614  * This is an integer logarithm so that shifts can be used later
1615  * to extract the more random high bits from the multiplicative
1616  * hash function before the remainder is taken.
1617  */
1618 static inline unsigned long wait_table_bits(unsigned long size)
1619 {
1620 	return ffz(~size);
1621 }
1622 
1623 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1624 
1625 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1626 		unsigned long *zones_size, unsigned long *zholes_size)
1627 {
1628 	unsigned long realtotalpages, totalpages = 0;
1629 	int i;
1630 
1631 	for (i = 0; i < MAX_NR_ZONES; i++)
1632 		totalpages += zones_size[i];
1633 	pgdat->node_spanned_pages = totalpages;
1634 
1635 	realtotalpages = totalpages;
1636 	if (zholes_size)
1637 		for (i = 0; i < MAX_NR_ZONES; i++)
1638 			realtotalpages -= zholes_size[i];
1639 	pgdat->node_present_pages = realtotalpages;
1640 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1641 }
1642 
1643 
1644 /*
1645  * Initially all pages are reserved - free ones are freed
1646  * up by free_all_bootmem() once the early boot process is
1647  * done. Non-atomic initialization, single-pass.
1648  */
1649 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1650 		unsigned long start_pfn)
1651 {
1652 	struct page *start = pfn_to_page(start_pfn);
1653 	struct page *page;
1654 
1655 	for (page = start; page < (start + size); page++) {
1656 		set_page_zone(page, NODEZONE(nid, zone));
1657 		set_page_count(page, 0);
1658 		reset_page_mapcount(page);
1659 		SetPageReserved(page);
1660 		INIT_LIST_HEAD(&page->lru);
1661 #ifdef WANT_PAGE_VIRTUAL
1662 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1663 		if (!is_highmem_idx(zone))
1664 			set_page_address(page, __va(start_pfn << PAGE_SHIFT));
1665 #endif
1666 		start_pfn++;
1667 	}
1668 }
1669 
1670 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1671 				unsigned long size)
1672 {
1673 	int order;
1674 	for (order = 0; order < MAX_ORDER ; order++) {
1675 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1676 		zone->free_area[order].nr_free = 0;
1677 	}
1678 }
1679 
1680 #ifndef __HAVE_ARCH_MEMMAP_INIT
1681 #define memmap_init(size, nid, zone, start_pfn) \
1682 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1683 #endif
1684 
1685 static int __devinit zone_batchsize(struct zone *zone)
1686 {
1687 	int batch;
1688 
1689 	/*
1690 	 * The per-cpu-pages pools are set to around 1000th of the
1691 	 * size of the zone.  But no more than 1/4 of a meg - there's
1692 	 * no point in going beyond the size of L2 cache.
1693 	 *
1694 	 * OK, so we don't know how big the cache is.  So guess.
1695 	 */
1696 	batch = zone->present_pages / 1024;
1697 	if (batch * PAGE_SIZE > 256 * 1024)
1698 		batch = (256 * 1024) / PAGE_SIZE;
1699 	batch /= 4;		/* We effectively *= 4 below */
1700 	if (batch < 1)
1701 		batch = 1;
1702 
1703 	/*
1704 	 * Clamp the batch to a 2^n - 1 value. Having a power
1705 	 * of 2 value was found to be more likely to have
1706 	 * suboptimal cache aliasing properties in some cases.
1707 	 *
1708 	 * For example if 2 tasks are alternately allocating
1709 	 * batches of pages, one task can end up with a lot
1710 	 * of pages of one half of the possible page colors
1711 	 * and the other with pages of the other colors.
1712 	 */
1713 	batch = (1 << fls(batch + batch/2)) - 1;
1714 	return batch;
1715 }
1716 
1717 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1718 {
1719 	struct per_cpu_pages *pcp;
1720 
1721 	pcp = &p->pcp[0];		/* hot */
1722 	pcp->count = 0;
1723 	pcp->low = 2 * batch;
1724 	pcp->high = 6 * batch;
1725 	pcp->batch = max(1UL, 1 * batch);
1726 	INIT_LIST_HEAD(&pcp->list);
1727 
1728 	pcp = &p->pcp[1];		/* cold*/
1729 	pcp->count = 0;
1730 	pcp->low = 0;
1731 	pcp->high = 2 * batch;
1732 	pcp->batch = max(1UL, 1 * batch);
1733 	INIT_LIST_HEAD(&pcp->list);
1734 }
1735 
1736 #ifdef CONFIG_NUMA
1737 /*
1738  * Boot pageset table. One per cpu which is going to be used for all
1739  * zones and all nodes. The parameters will be set in such a way
1740  * that an item put on a list will immediately be handed over to
1741  * the buddy list. This is safe since pageset manipulation is done
1742  * with interrupts disabled.
1743  *
1744  * Some NUMA counter updates may also be caught by the boot pagesets.
1745  * These will be discarded when bootup is complete.
1746  */
1747 static struct per_cpu_pageset
1748 	boot_pageset[NR_CPUS] __initdata;
1749 
1750 /*
1751  * Dynamically allocate memory for the
1752  * per cpu pageset array in struct zone.
1753  */
1754 static int __devinit process_zones(int cpu)
1755 {
1756 	struct zone *zone, *dzone;
1757 
1758 	for_each_zone(zone) {
1759 
1760 		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1761 					 GFP_KERNEL, cpu_to_node(cpu));
1762 		if (!zone->pageset[cpu])
1763 			goto bad;
1764 
1765 		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1766 	}
1767 
1768 	return 0;
1769 bad:
1770 	for_each_zone(dzone) {
1771 		if (dzone == zone)
1772 			break;
1773 		kfree(dzone->pageset[cpu]);
1774 		dzone->pageset[cpu] = NULL;
1775 	}
1776 	return -ENOMEM;
1777 }
1778 
1779 static inline void free_zone_pagesets(int cpu)
1780 {
1781 #ifdef CONFIG_NUMA
1782 	struct zone *zone;
1783 
1784 	for_each_zone(zone) {
1785 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1786 
1787 		zone_pcp(zone, cpu) = NULL;
1788 		kfree(pset);
1789 	}
1790 #endif
1791 }
1792 
1793 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1794 		unsigned long action,
1795 		void *hcpu)
1796 {
1797 	int cpu = (long)hcpu;
1798 	int ret = NOTIFY_OK;
1799 
1800 	switch (action) {
1801 		case CPU_UP_PREPARE:
1802 			if (process_zones(cpu))
1803 				ret = NOTIFY_BAD;
1804 			break;
1805 #ifdef CONFIG_HOTPLUG_CPU
1806 		case CPU_DEAD:
1807 			free_zone_pagesets(cpu);
1808 			break;
1809 #endif
1810 		default:
1811 			break;
1812 	}
1813 	return ret;
1814 }
1815 
1816 static struct notifier_block pageset_notifier =
1817 	{ &pageset_cpuup_callback, NULL, 0 };
1818 
1819 void __init setup_per_cpu_pageset()
1820 {
1821 	int err;
1822 
1823 	/* Initialize per_cpu_pageset for cpu 0.
1824 	 * A cpuup callback will do this for every cpu
1825 	 * as it comes online
1826 	 */
1827 	err = process_zones(smp_processor_id());
1828 	BUG_ON(err);
1829 	register_cpu_notifier(&pageset_notifier);
1830 }
1831 
1832 #endif
1833 
1834 /*
1835  * Set up the zone data structures:
1836  *   - mark all pages reserved
1837  *   - mark all memory queues empty
1838  *   - clear the memory bitmaps
1839  */
1840 static void __init free_area_init_core(struct pglist_data *pgdat,
1841 		unsigned long *zones_size, unsigned long *zholes_size)
1842 {
1843 	unsigned long i, j;
1844 	const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1845 	int cpu, nid = pgdat->node_id;
1846 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1847 
1848 	pgdat->nr_zones = 0;
1849 	init_waitqueue_head(&pgdat->kswapd_wait);
1850 	pgdat->kswapd_max_order = 0;
1851 
1852 	for (j = 0; j < MAX_NR_ZONES; j++) {
1853 		struct zone *zone = pgdat->node_zones + j;
1854 		unsigned long size, realsize;
1855 		unsigned long batch;
1856 
1857 		zone_table[NODEZONE(nid, j)] = zone;
1858 		realsize = size = zones_size[j];
1859 		if (zholes_size)
1860 			realsize -= zholes_size[j];
1861 
1862 		if (j == ZONE_DMA || j == ZONE_NORMAL)
1863 			nr_kernel_pages += realsize;
1864 		nr_all_pages += realsize;
1865 
1866 		zone->spanned_pages = size;
1867 		zone->present_pages = realsize;
1868 		zone->name = zone_names[j];
1869 		spin_lock_init(&zone->lock);
1870 		spin_lock_init(&zone->lru_lock);
1871 		zone->zone_pgdat = pgdat;
1872 		zone->free_pages = 0;
1873 
1874 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1875 
1876 		batch = zone_batchsize(zone);
1877 
1878 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1879 #ifdef CONFIG_NUMA
1880 			/* Early boot. Slab allocator not functional yet */
1881 			zone->pageset[cpu] = &boot_pageset[cpu];
1882 			setup_pageset(&boot_pageset[cpu],0);
1883 #else
1884 			setup_pageset(zone_pcp(zone,cpu), batch);
1885 #endif
1886 		}
1887 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1888 				zone_names[j], realsize, batch);
1889 		INIT_LIST_HEAD(&zone->active_list);
1890 		INIT_LIST_HEAD(&zone->inactive_list);
1891 		zone->nr_scan_active = 0;
1892 		zone->nr_scan_inactive = 0;
1893 		zone->nr_active = 0;
1894 		zone->nr_inactive = 0;
1895 		atomic_set(&zone->reclaim_in_progress, -1);
1896 		if (!size)
1897 			continue;
1898 
1899 		/*
1900 		 * The per-page waitqueue mechanism uses hashed waitqueues
1901 		 * per zone.
1902 		 */
1903 		zone->wait_table_size = wait_table_size(size);
1904 		zone->wait_table_bits =
1905 			wait_table_bits(zone->wait_table_size);
1906 		zone->wait_table = (wait_queue_head_t *)
1907 			alloc_bootmem_node(pgdat, zone->wait_table_size
1908 						* sizeof(wait_queue_head_t));
1909 
1910 		for(i = 0; i < zone->wait_table_size; ++i)
1911 			init_waitqueue_head(zone->wait_table + i);
1912 
1913 		pgdat->nr_zones = j+1;
1914 
1915 		zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1916 		zone->zone_start_pfn = zone_start_pfn;
1917 
1918 		if ((zone_start_pfn) & (zone_required_alignment-1))
1919 			printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1920 
1921 		memmap_init(size, nid, j, zone_start_pfn);
1922 
1923 		zone_start_pfn += size;
1924 
1925 		zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1926 	}
1927 }
1928 
1929 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1930 {
1931 	unsigned long size;
1932 
1933 	/* Skip empty nodes */
1934 	if (!pgdat->node_spanned_pages)
1935 		return;
1936 
1937 	/* ia64 gets its own node_mem_map, before this, without bootmem */
1938 	if (!pgdat->node_mem_map) {
1939 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1940 		pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
1941 	}
1942 #ifndef CONFIG_DISCONTIGMEM
1943 	/*
1944 	 * With no DISCONTIG, the global mem_map is just set as node 0's
1945 	 */
1946 	if (pgdat == NODE_DATA(0))
1947 		mem_map = NODE_DATA(0)->node_mem_map;
1948 #endif
1949 }
1950 
1951 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1952 		unsigned long *zones_size, unsigned long node_start_pfn,
1953 		unsigned long *zholes_size)
1954 {
1955 	pgdat->node_id = nid;
1956 	pgdat->node_start_pfn = node_start_pfn;
1957 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1958 
1959 	alloc_node_mem_map(pgdat);
1960 
1961 	free_area_init_core(pgdat, zones_size, zholes_size);
1962 }
1963 
1964 #ifndef CONFIG_DISCONTIGMEM
1965 static bootmem_data_t contig_bootmem_data;
1966 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1967 
1968 EXPORT_SYMBOL(contig_page_data);
1969 
1970 void __init free_area_init(unsigned long *zones_size)
1971 {
1972 	free_area_init_node(0, &contig_page_data, zones_size,
1973 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1974 }
1975 #endif
1976 
1977 #ifdef CONFIG_PROC_FS
1978 
1979 #include <linux/seq_file.h>
1980 
1981 static void *frag_start(struct seq_file *m, loff_t *pos)
1982 {
1983 	pg_data_t *pgdat;
1984 	loff_t node = *pos;
1985 
1986 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
1987 		--node;
1988 
1989 	return pgdat;
1990 }
1991 
1992 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1993 {
1994 	pg_data_t *pgdat = (pg_data_t *)arg;
1995 
1996 	(*pos)++;
1997 	return pgdat->pgdat_next;
1998 }
1999 
2000 static void frag_stop(struct seq_file *m, void *arg)
2001 {
2002 }
2003 
2004 /*
2005  * This walks the free areas for each zone.
2006  */
2007 static int frag_show(struct seq_file *m, void *arg)
2008 {
2009 	pg_data_t *pgdat = (pg_data_t *)arg;
2010 	struct zone *zone;
2011 	struct zone *node_zones = pgdat->node_zones;
2012 	unsigned long flags;
2013 	int order;
2014 
2015 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2016 		if (!zone->present_pages)
2017 			continue;
2018 
2019 		spin_lock_irqsave(&zone->lock, flags);
2020 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2021 		for (order = 0; order < MAX_ORDER; ++order)
2022 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2023 		spin_unlock_irqrestore(&zone->lock, flags);
2024 		seq_putc(m, '\n');
2025 	}
2026 	return 0;
2027 }
2028 
2029 struct seq_operations fragmentation_op = {
2030 	.start	= frag_start,
2031 	.next	= frag_next,
2032 	.stop	= frag_stop,
2033 	.show	= frag_show,
2034 };
2035 
2036 /*
2037  * Output information about zones in @pgdat.
2038  */
2039 static int zoneinfo_show(struct seq_file *m, void *arg)
2040 {
2041 	pg_data_t *pgdat = arg;
2042 	struct zone *zone;
2043 	struct zone *node_zones = pgdat->node_zones;
2044 	unsigned long flags;
2045 
2046 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2047 		int i;
2048 
2049 		if (!zone->present_pages)
2050 			continue;
2051 
2052 		spin_lock_irqsave(&zone->lock, flags);
2053 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2054 		seq_printf(m,
2055 			   "\n  pages free     %lu"
2056 			   "\n        min      %lu"
2057 			   "\n        low      %lu"
2058 			   "\n        high     %lu"
2059 			   "\n        active   %lu"
2060 			   "\n        inactive %lu"
2061 			   "\n        scanned  %lu (a: %lu i: %lu)"
2062 			   "\n        spanned  %lu"
2063 			   "\n        present  %lu",
2064 			   zone->free_pages,
2065 			   zone->pages_min,
2066 			   zone->pages_low,
2067 			   zone->pages_high,
2068 			   zone->nr_active,
2069 			   zone->nr_inactive,
2070 			   zone->pages_scanned,
2071 			   zone->nr_scan_active, zone->nr_scan_inactive,
2072 			   zone->spanned_pages,
2073 			   zone->present_pages);
2074 		seq_printf(m,
2075 			   "\n        protection: (%lu",
2076 			   zone->lowmem_reserve[0]);
2077 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2078 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2079 		seq_printf(m,
2080 			   ")"
2081 			   "\n  pagesets");
2082 		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2083 			struct per_cpu_pageset *pageset;
2084 			int j;
2085 
2086 			pageset = zone_pcp(zone, i);
2087 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2088 				if (pageset->pcp[j].count)
2089 					break;
2090 			}
2091 			if (j == ARRAY_SIZE(pageset->pcp))
2092 				continue;
2093 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2094 				seq_printf(m,
2095 					   "\n    cpu: %i pcp: %i"
2096 					   "\n              count: %i"
2097 					   "\n              low:   %i"
2098 					   "\n              high:  %i"
2099 					   "\n              batch: %i",
2100 					   i, j,
2101 					   pageset->pcp[j].count,
2102 					   pageset->pcp[j].low,
2103 					   pageset->pcp[j].high,
2104 					   pageset->pcp[j].batch);
2105 			}
2106 #ifdef CONFIG_NUMA
2107 			seq_printf(m,
2108 				   "\n            numa_hit:       %lu"
2109 				   "\n            numa_miss:      %lu"
2110 				   "\n            numa_foreign:   %lu"
2111 				   "\n            interleave_hit: %lu"
2112 				   "\n            local_node:     %lu"
2113 				   "\n            other_node:     %lu",
2114 				   pageset->numa_hit,
2115 				   pageset->numa_miss,
2116 				   pageset->numa_foreign,
2117 				   pageset->interleave_hit,
2118 				   pageset->local_node,
2119 				   pageset->other_node);
2120 #endif
2121 		}
2122 		seq_printf(m,
2123 			   "\n  all_unreclaimable: %u"
2124 			   "\n  prev_priority:     %i"
2125 			   "\n  temp_priority:     %i"
2126 			   "\n  start_pfn:         %lu",
2127 			   zone->all_unreclaimable,
2128 			   zone->prev_priority,
2129 			   zone->temp_priority,
2130 			   zone->zone_start_pfn);
2131 		spin_unlock_irqrestore(&zone->lock, flags);
2132 		seq_putc(m, '\n');
2133 	}
2134 	return 0;
2135 }
2136 
2137 struct seq_operations zoneinfo_op = {
2138 	.start	= frag_start, /* iterate over all zones. The same as in
2139 			       * fragmentation. */
2140 	.next	= frag_next,
2141 	.stop	= frag_stop,
2142 	.show	= zoneinfo_show,
2143 };
2144 
2145 static char *vmstat_text[] = {
2146 	"nr_dirty",
2147 	"nr_writeback",
2148 	"nr_unstable",
2149 	"nr_page_table_pages",
2150 	"nr_mapped",
2151 	"nr_slab",
2152 
2153 	"pgpgin",
2154 	"pgpgout",
2155 	"pswpin",
2156 	"pswpout",
2157 	"pgalloc_high",
2158 
2159 	"pgalloc_normal",
2160 	"pgalloc_dma",
2161 	"pgfree",
2162 	"pgactivate",
2163 	"pgdeactivate",
2164 
2165 	"pgfault",
2166 	"pgmajfault",
2167 	"pgrefill_high",
2168 	"pgrefill_normal",
2169 	"pgrefill_dma",
2170 
2171 	"pgsteal_high",
2172 	"pgsteal_normal",
2173 	"pgsteal_dma",
2174 	"pgscan_kswapd_high",
2175 	"pgscan_kswapd_normal",
2176 
2177 	"pgscan_kswapd_dma",
2178 	"pgscan_direct_high",
2179 	"pgscan_direct_normal",
2180 	"pgscan_direct_dma",
2181 	"pginodesteal",
2182 
2183 	"slabs_scanned",
2184 	"kswapd_steal",
2185 	"kswapd_inodesteal",
2186 	"pageoutrun",
2187 	"allocstall",
2188 
2189 	"pgrotated",
2190 	"nr_bounce",
2191 };
2192 
2193 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2194 {
2195 	struct page_state *ps;
2196 
2197 	if (*pos >= ARRAY_SIZE(vmstat_text))
2198 		return NULL;
2199 
2200 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2201 	m->private = ps;
2202 	if (!ps)
2203 		return ERR_PTR(-ENOMEM);
2204 	get_full_page_state(ps);
2205 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2206 	ps->pgpgout /= 2;
2207 	return (unsigned long *)ps + *pos;
2208 }
2209 
2210 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2211 {
2212 	(*pos)++;
2213 	if (*pos >= ARRAY_SIZE(vmstat_text))
2214 		return NULL;
2215 	return (unsigned long *)m->private + *pos;
2216 }
2217 
2218 static int vmstat_show(struct seq_file *m, void *arg)
2219 {
2220 	unsigned long *l = arg;
2221 	unsigned long off = l - (unsigned long *)m->private;
2222 
2223 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2224 	return 0;
2225 }
2226 
2227 static void vmstat_stop(struct seq_file *m, void *arg)
2228 {
2229 	kfree(m->private);
2230 	m->private = NULL;
2231 }
2232 
2233 struct seq_operations vmstat_op = {
2234 	.start	= vmstat_start,
2235 	.next	= vmstat_next,
2236 	.stop	= vmstat_stop,
2237 	.show	= vmstat_show,
2238 };
2239 
2240 #endif /* CONFIG_PROC_FS */
2241 
2242 #ifdef CONFIG_HOTPLUG_CPU
2243 static int page_alloc_cpu_notify(struct notifier_block *self,
2244 				 unsigned long action, void *hcpu)
2245 {
2246 	int cpu = (unsigned long)hcpu;
2247 	long *count;
2248 	unsigned long *src, *dest;
2249 
2250 	if (action == CPU_DEAD) {
2251 		int i;
2252 
2253 		/* Drain local pagecache count. */
2254 		count = &per_cpu(nr_pagecache_local, cpu);
2255 		atomic_add(*count, &nr_pagecache);
2256 		*count = 0;
2257 		local_irq_disable();
2258 		__drain_pages(cpu);
2259 
2260 		/* Add dead cpu's page_states to our own. */
2261 		dest = (unsigned long *)&__get_cpu_var(page_states);
2262 		src = (unsigned long *)&per_cpu(page_states, cpu);
2263 
2264 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2265 				i++) {
2266 			dest[i] += src[i];
2267 			src[i] = 0;
2268 		}
2269 
2270 		local_irq_enable();
2271 	}
2272 	return NOTIFY_OK;
2273 }
2274 #endif /* CONFIG_HOTPLUG_CPU */
2275 
2276 void __init page_alloc_init(void)
2277 {
2278 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2279 }
2280 
2281 /*
2282  * setup_per_zone_lowmem_reserve - called whenever
2283  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2284  *	has a correct pages reserved value, so an adequate number of
2285  *	pages are left in the zone after a successful __alloc_pages().
2286  */
2287 static void setup_per_zone_lowmem_reserve(void)
2288 {
2289 	struct pglist_data *pgdat;
2290 	int j, idx;
2291 
2292 	for_each_pgdat(pgdat) {
2293 		for (j = 0; j < MAX_NR_ZONES; j++) {
2294 			struct zone *zone = pgdat->node_zones + j;
2295 			unsigned long present_pages = zone->present_pages;
2296 
2297 			zone->lowmem_reserve[j] = 0;
2298 
2299 			for (idx = j-1; idx >= 0; idx--) {
2300 				struct zone *lower_zone;
2301 
2302 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2303 					sysctl_lowmem_reserve_ratio[idx] = 1;
2304 
2305 				lower_zone = pgdat->node_zones + idx;
2306 				lower_zone->lowmem_reserve[j] = present_pages /
2307 					sysctl_lowmem_reserve_ratio[idx];
2308 				present_pages += lower_zone->present_pages;
2309 			}
2310 		}
2311 	}
2312 }
2313 
2314 /*
2315  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2316  *	that the pages_{min,low,high} values for each zone are set correctly
2317  *	with respect to min_free_kbytes.
2318  */
2319 static void setup_per_zone_pages_min(void)
2320 {
2321 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2322 	unsigned long lowmem_pages = 0;
2323 	struct zone *zone;
2324 	unsigned long flags;
2325 
2326 	/* Calculate total number of !ZONE_HIGHMEM pages */
2327 	for_each_zone(zone) {
2328 		if (!is_highmem(zone))
2329 			lowmem_pages += zone->present_pages;
2330 	}
2331 
2332 	for_each_zone(zone) {
2333 		spin_lock_irqsave(&zone->lru_lock, flags);
2334 		if (is_highmem(zone)) {
2335 			/*
2336 			 * Often, highmem doesn't need to reserve any pages.
2337 			 * But the pages_min/low/high values are also used for
2338 			 * batching up page reclaim activity so we need a
2339 			 * decent value here.
2340 			 */
2341 			int min_pages;
2342 
2343 			min_pages = zone->present_pages / 1024;
2344 			if (min_pages < SWAP_CLUSTER_MAX)
2345 				min_pages = SWAP_CLUSTER_MAX;
2346 			if (min_pages > 128)
2347 				min_pages = 128;
2348 			zone->pages_min = min_pages;
2349 		} else {
2350 			/* if it's a lowmem zone, reserve a number of pages
2351 			 * proportionate to the zone's size.
2352 			 */
2353 			zone->pages_min = (pages_min * zone->present_pages) /
2354 			                   lowmem_pages;
2355 		}
2356 
2357 		/*
2358 		 * When interpreting these watermarks, just keep in mind that:
2359 		 * zone->pages_min == (zone->pages_min * 4) / 4;
2360 		 */
2361 		zone->pages_low   = (zone->pages_min * 5) / 4;
2362 		zone->pages_high  = (zone->pages_min * 6) / 4;
2363 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2364 	}
2365 }
2366 
2367 /*
2368  * Initialise min_free_kbytes.
2369  *
2370  * For small machines we want it small (128k min).  For large machines
2371  * we want it large (64MB max).  But it is not linear, because network
2372  * bandwidth does not increase linearly with machine size.  We use
2373  *
2374  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2375  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2376  *
2377  * which yields
2378  *
2379  * 16MB:	512k
2380  * 32MB:	724k
2381  * 64MB:	1024k
2382  * 128MB:	1448k
2383  * 256MB:	2048k
2384  * 512MB:	2896k
2385  * 1024MB:	4096k
2386  * 2048MB:	5792k
2387  * 4096MB:	8192k
2388  * 8192MB:	11584k
2389  * 16384MB:	16384k
2390  */
2391 static int __init init_per_zone_pages_min(void)
2392 {
2393 	unsigned long lowmem_kbytes;
2394 
2395 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2396 
2397 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2398 	if (min_free_kbytes < 128)
2399 		min_free_kbytes = 128;
2400 	if (min_free_kbytes > 65536)
2401 		min_free_kbytes = 65536;
2402 	setup_per_zone_pages_min();
2403 	setup_per_zone_lowmem_reserve();
2404 	return 0;
2405 }
2406 module_init(init_per_zone_pages_min)
2407 
2408 /*
2409  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2410  *	that we can call two helper functions whenever min_free_kbytes
2411  *	changes.
2412  */
2413 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2414 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2415 {
2416 	proc_dointvec(table, write, file, buffer, length, ppos);
2417 	setup_per_zone_pages_min();
2418 	return 0;
2419 }
2420 
2421 /*
2422  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2423  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2424  *	whenever sysctl_lowmem_reserve_ratio changes.
2425  *
2426  * The reserve ratio obviously has absolutely no relation with the
2427  * pages_min watermarks. The lowmem reserve ratio can only make sense
2428  * if in function of the boot time zone sizes.
2429  */
2430 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2431 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2432 {
2433 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2434 	setup_per_zone_lowmem_reserve();
2435 	return 0;
2436 }
2437 
2438 __initdata int hashdist = HASHDIST_DEFAULT;
2439 
2440 #ifdef CONFIG_NUMA
2441 static int __init set_hashdist(char *str)
2442 {
2443 	if (!str)
2444 		return 0;
2445 	hashdist = simple_strtoul(str, &str, 0);
2446 	return 1;
2447 }
2448 __setup("hashdist=", set_hashdist);
2449 #endif
2450 
2451 /*
2452  * allocate a large system hash table from bootmem
2453  * - it is assumed that the hash table must contain an exact power-of-2
2454  *   quantity of entries
2455  * - limit is the number of hash buckets, not the total allocation size
2456  */
2457 void *__init alloc_large_system_hash(const char *tablename,
2458 				     unsigned long bucketsize,
2459 				     unsigned long numentries,
2460 				     int scale,
2461 				     int flags,
2462 				     unsigned int *_hash_shift,
2463 				     unsigned int *_hash_mask,
2464 				     unsigned long limit)
2465 {
2466 	unsigned long long max = limit;
2467 	unsigned long log2qty, size;
2468 	void *table = NULL;
2469 
2470 	/* allow the kernel cmdline to have a say */
2471 	if (!numentries) {
2472 		/* round applicable memory size up to nearest megabyte */
2473 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2474 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2475 		numentries >>= 20 - PAGE_SHIFT;
2476 		numentries <<= 20 - PAGE_SHIFT;
2477 
2478 		/* limit to 1 bucket per 2^scale bytes of low memory */
2479 		if (scale > PAGE_SHIFT)
2480 			numentries >>= (scale - PAGE_SHIFT);
2481 		else
2482 			numentries <<= (PAGE_SHIFT - scale);
2483 	}
2484 	/* rounded up to nearest power of 2 in size */
2485 	numentries = 1UL << (long_log2(numentries) + 1);
2486 
2487 	/* limit allocation size to 1/16 total memory by default */
2488 	if (max == 0) {
2489 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2490 		do_div(max, bucketsize);
2491 	}
2492 
2493 	if (numentries > max)
2494 		numentries = max;
2495 
2496 	log2qty = long_log2(numentries);
2497 
2498 	do {
2499 		size = bucketsize << log2qty;
2500 		if (flags & HASH_EARLY)
2501 			table = alloc_bootmem(size);
2502 		else if (hashdist)
2503 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2504 		else {
2505 			unsigned long order;
2506 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2507 				;
2508 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2509 		}
2510 	} while (!table && size > PAGE_SIZE && --log2qty);
2511 
2512 	if (!table)
2513 		panic("Failed to allocate %s hash table\n", tablename);
2514 
2515 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2516 	       tablename,
2517 	       (1U << log2qty),
2518 	       long_log2(size) - PAGE_SHIFT,
2519 	       size);
2520 
2521 	if (_hash_shift)
2522 		*_hash_shift = log2qty;
2523 	if (_hash_mask)
2524 		*_hash_mask = (1 << log2qty) - 1;
2525 
2526 	return table;
2527 }
2528