1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmalloc.h> 38 39 #include <asm/tlbflush.h> 40 #include "internal.h" 41 42 /* 43 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 44 * initializer cleaner 45 */ 46 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 47 EXPORT_SYMBOL(node_online_map); 48 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 49 EXPORT_SYMBOL(node_possible_map); 50 struct pglist_data *pgdat_list __read_mostly; 51 unsigned long totalram_pages __read_mostly; 52 unsigned long totalhigh_pages __read_mostly; 53 long nr_swap_pages; 54 55 /* 56 * results with 256, 32 in the lowmem_reserve sysctl: 57 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 58 * 1G machine -> (16M dma, 784M normal, 224M high) 59 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 60 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 61 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 62 */ 63 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 }; 64 65 EXPORT_SYMBOL(totalram_pages); 66 EXPORT_SYMBOL(nr_swap_pages); 67 68 /* 69 * Used by page_zone() to look up the address of the struct zone whose 70 * id is encoded in the upper bits of page->flags 71 */ 72 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 73 EXPORT_SYMBOL(zone_table); 74 75 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; 76 int min_free_kbytes = 1024; 77 78 unsigned long __initdata nr_kernel_pages; 79 unsigned long __initdata nr_all_pages; 80 81 /* 82 * Temporary debugging check for pages not lying within a given zone. 83 */ 84 static int bad_range(struct zone *zone, struct page *page) 85 { 86 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages) 87 return 1; 88 if (page_to_pfn(page) < zone->zone_start_pfn) 89 return 1; 90 #ifdef CONFIG_HOLES_IN_ZONE 91 if (!pfn_valid(page_to_pfn(page))) 92 return 1; 93 #endif 94 if (zone != page_zone(page)) 95 return 1; 96 return 0; 97 } 98 99 static void bad_page(const char *function, struct page *page) 100 { 101 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n", 102 function, current->comm, page); 103 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", 104 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags, 105 page->mapping, page_mapcount(page), page_count(page)); 106 printk(KERN_EMERG "Backtrace:\n"); 107 dump_stack(); 108 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"); 109 page->flags &= ~(1 << PG_lru | 110 1 << PG_private | 111 1 << PG_locked | 112 1 << PG_active | 113 1 << PG_dirty | 114 1 << PG_reclaim | 115 1 << PG_slab | 116 1 << PG_swapcache | 117 1 << PG_writeback); 118 set_page_count(page, 0); 119 reset_page_mapcount(page); 120 page->mapping = NULL; 121 add_taint(TAINT_BAD_PAGE); 122 } 123 124 #ifndef CONFIG_HUGETLB_PAGE 125 #define prep_compound_page(page, order) do { } while (0) 126 #define destroy_compound_page(page, order) do { } while (0) 127 #else 128 /* 129 * Higher-order pages are called "compound pages". They are structured thusly: 130 * 131 * The first PAGE_SIZE page is called the "head page". 132 * 133 * The remaining PAGE_SIZE pages are called "tail pages". 134 * 135 * All pages have PG_compound set. All pages have their ->private pointing at 136 * the head page (even the head page has this). 137 * 138 * The first tail page's ->mapping, if non-zero, holds the address of the 139 * compound page's put_page() function. 140 * 141 * The order of the allocation is stored in the first tail page's ->index 142 * This is only for debug at present. This usage means that zero-order pages 143 * may not be compound. 144 */ 145 static void prep_compound_page(struct page *page, unsigned long order) 146 { 147 int i; 148 int nr_pages = 1 << order; 149 150 page[1].mapping = NULL; 151 page[1].index = order; 152 for (i = 0; i < nr_pages; i++) { 153 struct page *p = page + i; 154 155 SetPageCompound(p); 156 p->private = (unsigned long)page; 157 } 158 } 159 160 static void destroy_compound_page(struct page *page, unsigned long order) 161 { 162 int i; 163 int nr_pages = 1 << order; 164 165 if (!PageCompound(page)) 166 return; 167 168 if (page[1].index != order) 169 bad_page(__FUNCTION__, page); 170 171 for (i = 0; i < nr_pages; i++) { 172 struct page *p = page + i; 173 174 if (!PageCompound(p)) 175 bad_page(__FUNCTION__, page); 176 if (p->private != (unsigned long)page) 177 bad_page(__FUNCTION__, page); 178 ClearPageCompound(p); 179 } 180 } 181 #endif /* CONFIG_HUGETLB_PAGE */ 182 183 /* 184 * function for dealing with page's order in buddy system. 185 * zone->lock is already acquired when we use these. 186 * So, we don't need atomic page->flags operations here. 187 */ 188 static inline unsigned long page_order(struct page *page) { 189 return page->private; 190 } 191 192 static inline void set_page_order(struct page *page, int order) { 193 page->private = order; 194 __SetPagePrivate(page); 195 } 196 197 static inline void rmv_page_order(struct page *page) 198 { 199 __ClearPagePrivate(page); 200 page->private = 0; 201 } 202 203 /* 204 * Locate the struct page for both the matching buddy in our 205 * pair (buddy1) and the combined O(n+1) page they form (page). 206 * 207 * 1) Any buddy B1 will have an order O twin B2 which satisfies 208 * the following equation: 209 * B2 = B1 ^ (1 << O) 210 * For example, if the starting buddy (buddy2) is #8 its order 211 * 1 buddy is #10: 212 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 213 * 214 * 2) Any buddy B will have an order O+1 parent P which 215 * satisfies the following equation: 216 * P = B & ~(1 << O) 217 * 218 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 219 */ 220 static inline struct page * 221 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 222 { 223 unsigned long buddy_idx = page_idx ^ (1 << order); 224 225 return page + (buddy_idx - page_idx); 226 } 227 228 static inline unsigned long 229 __find_combined_index(unsigned long page_idx, unsigned int order) 230 { 231 return (page_idx & ~(1 << order)); 232 } 233 234 /* 235 * This function checks whether a page is free && is the buddy 236 * we can do coalesce a page and its buddy if 237 * (a) the buddy is free && 238 * (b) the buddy is on the buddy system && 239 * (c) a page and its buddy have the same order. 240 * for recording page's order, we use page->private and PG_private. 241 * 242 */ 243 static inline int page_is_buddy(struct page *page, int order) 244 { 245 if (PagePrivate(page) && 246 (page_order(page) == order) && 247 !PageReserved(page) && 248 page_count(page) == 0) 249 return 1; 250 return 0; 251 } 252 253 /* 254 * Freeing function for a buddy system allocator. 255 * 256 * The concept of a buddy system is to maintain direct-mapped table 257 * (containing bit values) for memory blocks of various "orders". 258 * The bottom level table contains the map for the smallest allocatable 259 * units of memory (here, pages), and each level above it describes 260 * pairs of units from the levels below, hence, "buddies". 261 * At a high level, all that happens here is marking the table entry 262 * at the bottom level available, and propagating the changes upward 263 * as necessary, plus some accounting needed to play nicely with other 264 * parts of the VM system. 265 * At each level, we keep a list of pages, which are heads of continuous 266 * free pages of length of (1 << order) and marked with PG_Private.Page's 267 * order is recorded in page->private field. 268 * So when we are allocating or freeing one, we can derive the state of the 269 * other. That is, if we allocate a small block, and both were 270 * free, the remainder of the region must be split into blocks. 271 * If a block is freed, and its buddy is also free, then this 272 * triggers coalescing into a block of larger size. 273 * 274 * -- wli 275 */ 276 277 static inline void __free_pages_bulk (struct page *page, 278 struct zone *zone, unsigned int order) 279 { 280 unsigned long page_idx; 281 int order_size = 1 << order; 282 283 if (unlikely(order)) 284 destroy_compound_page(page, order); 285 286 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 287 288 BUG_ON(page_idx & (order_size - 1)); 289 BUG_ON(bad_range(zone, page)); 290 291 zone->free_pages += order_size; 292 while (order < MAX_ORDER-1) { 293 unsigned long combined_idx; 294 struct free_area *area; 295 struct page *buddy; 296 297 combined_idx = __find_combined_index(page_idx, order); 298 buddy = __page_find_buddy(page, page_idx, order); 299 300 if (bad_range(zone, buddy)) 301 break; 302 if (!page_is_buddy(buddy, order)) 303 break; /* Move the buddy up one level. */ 304 list_del(&buddy->lru); 305 area = zone->free_area + order; 306 area->nr_free--; 307 rmv_page_order(buddy); 308 page = page + (combined_idx - page_idx); 309 page_idx = combined_idx; 310 order++; 311 } 312 set_page_order(page, order); 313 list_add(&page->lru, &zone->free_area[order].free_list); 314 zone->free_area[order].nr_free++; 315 } 316 317 static inline void free_pages_check(const char *function, struct page *page) 318 { 319 if ( page_mapcount(page) || 320 page->mapping != NULL || 321 page_count(page) != 0 || 322 (page->flags & ( 323 1 << PG_lru | 324 1 << PG_private | 325 1 << PG_locked | 326 1 << PG_active | 327 1 << PG_reclaim | 328 1 << PG_slab | 329 1 << PG_swapcache | 330 1 << PG_writeback ))) 331 bad_page(function, page); 332 if (PageDirty(page)) 333 __ClearPageDirty(page); 334 } 335 336 /* 337 * Frees a list of pages. 338 * Assumes all pages on list are in same zone, and of same order. 339 * count is the number of pages to free. 340 * 341 * If the zone was previously in an "all pages pinned" state then look to 342 * see if this freeing clears that state. 343 * 344 * And clear the zone's pages_scanned counter, to hold off the "all pages are 345 * pinned" detection logic. 346 */ 347 static int 348 free_pages_bulk(struct zone *zone, int count, 349 struct list_head *list, unsigned int order) 350 { 351 unsigned long flags; 352 struct page *page = NULL; 353 int ret = 0; 354 355 spin_lock_irqsave(&zone->lock, flags); 356 zone->all_unreclaimable = 0; 357 zone->pages_scanned = 0; 358 while (!list_empty(list) && count--) { 359 page = list_entry(list->prev, struct page, lru); 360 /* have to delete it as __free_pages_bulk list manipulates */ 361 list_del(&page->lru); 362 __free_pages_bulk(page, zone, order); 363 ret++; 364 } 365 spin_unlock_irqrestore(&zone->lock, flags); 366 return ret; 367 } 368 369 void __free_pages_ok(struct page *page, unsigned int order) 370 { 371 LIST_HEAD(list); 372 int i; 373 374 arch_free_page(page, order); 375 376 mod_page_state(pgfree, 1 << order); 377 378 #ifndef CONFIG_MMU 379 if (order > 0) 380 for (i = 1 ; i < (1 << order) ; ++i) 381 __put_page(page + i); 382 #endif 383 384 for (i = 0 ; i < (1 << order) ; ++i) 385 free_pages_check(__FUNCTION__, page + i); 386 list_add(&page->lru, &list); 387 kernel_map_pages(page, 1<<order, 0); 388 free_pages_bulk(page_zone(page), 1, &list, order); 389 } 390 391 392 /* 393 * The order of subdivision here is critical for the IO subsystem. 394 * Please do not alter this order without good reasons and regression 395 * testing. Specifically, as large blocks of memory are subdivided, 396 * the order in which smaller blocks are delivered depends on the order 397 * they're subdivided in this function. This is the primary factor 398 * influencing the order in which pages are delivered to the IO 399 * subsystem according to empirical testing, and this is also justified 400 * by considering the behavior of a buddy system containing a single 401 * large block of memory acted on by a series of small allocations. 402 * This behavior is a critical factor in sglist merging's success. 403 * 404 * -- wli 405 */ 406 static inline struct page * 407 expand(struct zone *zone, struct page *page, 408 int low, int high, struct free_area *area) 409 { 410 unsigned long size = 1 << high; 411 412 while (high > low) { 413 area--; 414 high--; 415 size >>= 1; 416 BUG_ON(bad_range(zone, &page[size])); 417 list_add(&page[size].lru, &area->free_list); 418 area->nr_free++; 419 set_page_order(&page[size], high); 420 } 421 return page; 422 } 423 424 void set_page_refs(struct page *page, int order) 425 { 426 #ifdef CONFIG_MMU 427 set_page_count(page, 1); 428 #else 429 int i; 430 431 /* 432 * We need to reference all the pages for this order, otherwise if 433 * anyone accesses one of the pages with (get/put) it will be freed. 434 * - eg: access_process_vm() 435 */ 436 for (i = 0; i < (1 << order); i++) 437 set_page_count(page + i, 1); 438 #endif /* CONFIG_MMU */ 439 } 440 441 /* 442 * This page is about to be returned from the page allocator 443 */ 444 static void prep_new_page(struct page *page, int order) 445 { 446 if ( page_mapcount(page) || 447 page->mapping != NULL || 448 page_count(page) != 0 || 449 (page->flags & ( 450 1 << PG_lru | 451 1 << PG_private | 452 1 << PG_locked | 453 1 << PG_active | 454 1 << PG_dirty | 455 1 << PG_reclaim | 456 1 << PG_slab | 457 1 << PG_swapcache | 458 1 << PG_writeback ))) 459 bad_page(__FUNCTION__, page); 460 461 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 462 1 << PG_referenced | 1 << PG_arch_1 | 463 1 << PG_checked | 1 << PG_mappedtodisk); 464 page->private = 0; 465 set_page_refs(page, order); 466 kernel_map_pages(page, 1 << order, 1); 467 } 468 469 /* 470 * Do the hard work of removing an element from the buddy allocator. 471 * Call me with the zone->lock already held. 472 */ 473 static struct page *__rmqueue(struct zone *zone, unsigned int order) 474 { 475 struct free_area * area; 476 unsigned int current_order; 477 struct page *page; 478 479 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 480 area = zone->free_area + current_order; 481 if (list_empty(&area->free_list)) 482 continue; 483 484 page = list_entry(area->free_list.next, struct page, lru); 485 list_del(&page->lru); 486 rmv_page_order(page); 487 area->nr_free--; 488 zone->free_pages -= 1UL << order; 489 return expand(zone, page, order, current_order, area); 490 } 491 492 return NULL; 493 } 494 495 /* 496 * Obtain a specified number of elements from the buddy allocator, all under 497 * a single hold of the lock, for efficiency. Add them to the supplied list. 498 * Returns the number of new pages which were placed at *list. 499 */ 500 static int rmqueue_bulk(struct zone *zone, unsigned int order, 501 unsigned long count, struct list_head *list) 502 { 503 unsigned long flags; 504 int i; 505 int allocated = 0; 506 struct page *page; 507 508 spin_lock_irqsave(&zone->lock, flags); 509 for (i = 0; i < count; ++i) { 510 page = __rmqueue(zone, order); 511 if (page == NULL) 512 break; 513 allocated++; 514 list_add_tail(&page->lru, list); 515 } 516 spin_unlock_irqrestore(&zone->lock, flags); 517 return allocated; 518 } 519 520 #ifdef CONFIG_NUMA 521 /* Called from the slab reaper to drain remote pagesets */ 522 void drain_remote_pages(void) 523 { 524 struct zone *zone; 525 int i; 526 unsigned long flags; 527 528 local_irq_save(flags); 529 for_each_zone(zone) { 530 struct per_cpu_pageset *pset; 531 532 /* Do not drain local pagesets */ 533 if (zone->zone_pgdat->node_id == numa_node_id()) 534 continue; 535 536 pset = zone->pageset[smp_processor_id()]; 537 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 538 struct per_cpu_pages *pcp; 539 540 pcp = &pset->pcp[i]; 541 if (pcp->count) 542 pcp->count -= free_pages_bulk(zone, pcp->count, 543 &pcp->list, 0); 544 } 545 } 546 local_irq_restore(flags); 547 } 548 #endif 549 550 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 551 static void __drain_pages(unsigned int cpu) 552 { 553 struct zone *zone; 554 int i; 555 556 for_each_zone(zone) { 557 struct per_cpu_pageset *pset; 558 559 pset = zone_pcp(zone, cpu); 560 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 561 struct per_cpu_pages *pcp; 562 563 pcp = &pset->pcp[i]; 564 pcp->count -= free_pages_bulk(zone, pcp->count, 565 &pcp->list, 0); 566 } 567 } 568 } 569 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 570 571 #ifdef CONFIG_PM 572 573 void mark_free_pages(struct zone *zone) 574 { 575 unsigned long zone_pfn, flags; 576 int order; 577 struct list_head *curr; 578 579 if (!zone->spanned_pages) 580 return; 581 582 spin_lock_irqsave(&zone->lock, flags); 583 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 584 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 585 586 for (order = MAX_ORDER - 1; order >= 0; --order) 587 list_for_each(curr, &zone->free_area[order].free_list) { 588 unsigned long start_pfn, i; 589 590 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 591 592 for (i=0; i < (1<<order); i++) 593 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 594 } 595 spin_unlock_irqrestore(&zone->lock, flags); 596 } 597 598 /* 599 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 600 */ 601 void drain_local_pages(void) 602 { 603 unsigned long flags; 604 605 local_irq_save(flags); 606 __drain_pages(smp_processor_id()); 607 local_irq_restore(flags); 608 } 609 #endif /* CONFIG_PM */ 610 611 static void zone_statistics(struct zonelist *zonelist, struct zone *z) 612 { 613 #ifdef CONFIG_NUMA 614 unsigned long flags; 615 int cpu; 616 pg_data_t *pg = z->zone_pgdat; 617 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 618 struct per_cpu_pageset *p; 619 620 local_irq_save(flags); 621 cpu = smp_processor_id(); 622 p = zone_pcp(z,cpu); 623 if (pg == orig) { 624 p->numa_hit++; 625 } else { 626 p->numa_miss++; 627 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 628 } 629 if (pg == NODE_DATA(numa_node_id())) 630 p->local_node++; 631 else 632 p->other_node++; 633 local_irq_restore(flags); 634 #endif 635 } 636 637 /* 638 * Free a 0-order page 639 */ 640 static void FASTCALL(free_hot_cold_page(struct page *page, int cold)); 641 static void fastcall free_hot_cold_page(struct page *page, int cold) 642 { 643 struct zone *zone = page_zone(page); 644 struct per_cpu_pages *pcp; 645 unsigned long flags; 646 647 arch_free_page(page, 0); 648 649 kernel_map_pages(page, 1, 0); 650 inc_page_state(pgfree); 651 if (PageAnon(page)) 652 page->mapping = NULL; 653 free_pages_check(__FUNCTION__, page); 654 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 655 local_irq_save(flags); 656 list_add(&page->lru, &pcp->list); 657 pcp->count++; 658 if (pcp->count >= pcp->high) 659 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 660 local_irq_restore(flags); 661 put_cpu(); 662 } 663 664 void fastcall free_hot_page(struct page *page) 665 { 666 free_hot_cold_page(page, 0); 667 } 668 669 void fastcall free_cold_page(struct page *page) 670 { 671 free_hot_cold_page(page, 1); 672 } 673 674 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 675 { 676 int i; 677 678 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 679 for(i = 0; i < (1 << order); i++) 680 clear_highpage(page + i); 681 } 682 683 /* 684 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 685 * we cheat by calling it from here, in the order > 0 path. Saves a branch 686 * or two. 687 */ 688 static struct page * 689 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags) 690 { 691 unsigned long flags; 692 struct page *page = NULL; 693 int cold = !!(gfp_flags & __GFP_COLD); 694 695 if (order == 0) { 696 struct per_cpu_pages *pcp; 697 698 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 699 local_irq_save(flags); 700 if (pcp->count <= pcp->low) 701 pcp->count += rmqueue_bulk(zone, 0, 702 pcp->batch, &pcp->list); 703 if (pcp->count) { 704 page = list_entry(pcp->list.next, struct page, lru); 705 list_del(&page->lru); 706 pcp->count--; 707 } 708 local_irq_restore(flags); 709 put_cpu(); 710 } 711 712 if (page == NULL) { 713 spin_lock_irqsave(&zone->lock, flags); 714 page = __rmqueue(zone, order); 715 spin_unlock_irqrestore(&zone->lock, flags); 716 } 717 718 if (page != NULL) { 719 BUG_ON(bad_range(zone, page)); 720 mod_page_state_zone(zone, pgalloc, 1 << order); 721 prep_new_page(page, order); 722 723 if (gfp_flags & __GFP_ZERO) 724 prep_zero_page(page, order, gfp_flags); 725 726 if (order && (gfp_flags & __GFP_COMP)) 727 prep_compound_page(page, order); 728 } 729 return page; 730 } 731 732 /* 733 * Return 1 if free pages are above 'mark'. This takes into account the order 734 * of the allocation. 735 */ 736 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 737 int classzone_idx, int can_try_harder, int gfp_high) 738 { 739 /* free_pages my go negative - that's OK */ 740 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 741 int o; 742 743 if (gfp_high) 744 min -= min / 2; 745 if (can_try_harder) 746 min -= min / 4; 747 748 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 749 return 0; 750 for (o = 0; o < order; o++) { 751 /* At the next order, this order's pages become unavailable */ 752 free_pages -= z->free_area[o].nr_free << o; 753 754 /* Require fewer higher order pages to be free */ 755 min >>= 1; 756 757 if (free_pages <= min) 758 return 0; 759 } 760 return 1; 761 } 762 763 static inline int 764 should_reclaim_zone(struct zone *z, gfp_t gfp_mask) 765 { 766 if (!z->reclaim_pages) 767 return 0; 768 if (gfp_mask & __GFP_NORECLAIM) 769 return 0; 770 return 1; 771 } 772 773 /* 774 * This is the 'heart' of the zoned buddy allocator. 775 */ 776 struct page * fastcall 777 __alloc_pages(gfp_t gfp_mask, unsigned int order, 778 struct zonelist *zonelist) 779 { 780 const int wait = gfp_mask & __GFP_WAIT; 781 struct zone **zones, *z; 782 struct page *page; 783 struct reclaim_state reclaim_state; 784 struct task_struct *p = current; 785 int i; 786 int classzone_idx; 787 int do_retry; 788 int can_try_harder; 789 int did_some_progress; 790 791 might_sleep_if(wait); 792 793 /* 794 * The caller may dip into page reserves a bit more if the caller 795 * cannot run direct reclaim, or is the caller has realtime scheduling 796 * policy 797 */ 798 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait; 799 800 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */ 801 802 if (unlikely(zones[0] == NULL)) { 803 /* Should this ever happen?? */ 804 return NULL; 805 } 806 807 classzone_idx = zone_idx(zones[0]); 808 809 restart: 810 /* 811 * Go through the zonelist once, looking for a zone with enough free. 812 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 813 */ 814 for (i = 0; (z = zones[i]) != NULL; i++) { 815 int do_reclaim = should_reclaim_zone(z, gfp_mask); 816 817 if (!cpuset_zone_allowed(z, __GFP_HARDWALL)) 818 continue; 819 820 /* 821 * If the zone is to attempt early page reclaim then this loop 822 * will try to reclaim pages and check the watermark a second 823 * time before giving up and falling back to the next zone. 824 */ 825 zone_reclaim_retry: 826 if (!zone_watermark_ok(z, order, z->pages_low, 827 classzone_idx, 0, 0)) { 828 if (!do_reclaim) 829 continue; 830 else { 831 zone_reclaim(z, gfp_mask, order); 832 /* Only try reclaim once */ 833 do_reclaim = 0; 834 goto zone_reclaim_retry; 835 } 836 } 837 838 page = buffered_rmqueue(z, order, gfp_mask); 839 if (page) 840 goto got_pg; 841 } 842 843 for (i = 0; (z = zones[i]) != NULL; i++) 844 wakeup_kswapd(z, order); 845 846 /* 847 * Go through the zonelist again. Let __GFP_HIGH and allocations 848 * coming from realtime tasks to go deeper into reserves 849 * 850 * This is the last chance, in general, before the goto nopage. 851 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 852 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 853 */ 854 for (i = 0; (z = zones[i]) != NULL; i++) { 855 if (!zone_watermark_ok(z, order, z->pages_min, 856 classzone_idx, can_try_harder, 857 gfp_mask & __GFP_HIGH)) 858 continue; 859 860 if (wait && !cpuset_zone_allowed(z, gfp_mask)) 861 continue; 862 863 page = buffered_rmqueue(z, order, gfp_mask); 864 if (page) 865 goto got_pg; 866 } 867 868 /* This allocation should allow future memory freeing. */ 869 870 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 871 && !in_interrupt()) { 872 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 873 /* go through the zonelist yet again, ignoring mins */ 874 for (i = 0; (z = zones[i]) != NULL; i++) { 875 if (!cpuset_zone_allowed(z, gfp_mask)) 876 continue; 877 page = buffered_rmqueue(z, order, gfp_mask); 878 if (page) 879 goto got_pg; 880 } 881 } 882 goto nopage; 883 } 884 885 /* Atomic allocations - we can't balance anything */ 886 if (!wait) 887 goto nopage; 888 889 rebalance: 890 cond_resched(); 891 892 /* We now go into synchronous reclaim */ 893 p->flags |= PF_MEMALLOC; 894 reclaim_state.reclaimed_slab = 0; 895 p->reclaim_state = &reclaim_state; 896 897 did_some_progress = try_to_free_pages(zones, gfp_mask); 898 899 p->reclaim_state = NULL; 900 p->flags &= ~PF_MEMALLOC; 901 902 cond_resched(); 903 904 if (likely(did_some_progress)) { 905 for (i = 0; (z = zones[i]) != NULL; i++) { 906 if (!zone_watermark_ok(z, order, z->pages_min, 907 classzone_idx, can_try_harder, 908 gfp_mask & __GFP_HIGH)) 909 continue; 910 911 if (!cpuset_zone_allowed(z, gfp_mask)) 912 continue; 913 914 page = buffered_rmqueue(z, order, gfp_mask); 915 if (page) 916 goto got_pg; 917 } 918 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 919 /* 920 * Go through the zonelist yet one more time, keep 921 * very high watermark here, this is only to catch 922 * a parallel oom killing, we must fail if we're still 923 * under heavy pressure. 924 */ 925 for (i = 0; (z = zones[i]) != NULL; i++) { 926 if (!zone_watermark_ok(z, order, z->pages_high, 927 classzone_idx, 0, 0)) 928 continue; 929 930 if (!cpuset_zone_allowed(z, __GFP_HARDWALL)) 931 continue; 932 933 page = buffered_rmqueue(z, order, gfp_mask); 934 if (page) 935 goto got_pg; 936 } 937 938 out_of_memory(gfp_mask, order); 939 goto restart; 940 } 941 942 /* 943 * Don't let big-order allocations loop unless the caller explicitly 944 * requests that. Wait for some write requests to complete then retry. 945 * 946 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 947 * <= 3, but that may not be true in other implementations. 948 */ 949 do_retry = 0; 950 if (!(gfp_mask & __GFP_NORETRY)) { 951 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 952 do_retry = 1; 953 if (gfp_mask & __GFP_NOFAIL) 954 do_retry = 1; 955 } 956 if (do_retry) { 957 blk_congestion_wait(WRITE, HZ/50); 958 goto rebalance; 959 } 960 961 nopage: 962 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 963 printk(KERN_WARNING "%s: page allocation failure." 964 " order:%d, mode:0x%x\n", 965 p->comm, order, gfp_mask); 966 dump_stack(); 967 show_mem(); 968 } 969 return NULL; 970 got_pg: 971 zone_statistics(zonelist, z); 972 return page; 973 } 974 975 EXPORT_SYMBOL(__alloc_pages); 976 977 /* 978 * Common helper functions. 979 */ 980 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 981 { 982 struct page * page; 983 page = alloc_pages(gfp_mask, order); 984 if (!page) 985 return 0; 986 return (unsigned long) page_address(page); 987 } 988 989 EXPORT_SYMBOL(__get_free_pages); 990 991 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 992 { 993 struct page * page; 994 995 /* 996 * get_zeroed_page() returns a 32-bit address, which cannot represent 997 * a highmem page 998 */ 999 BUG_ON(gfp_mask & __GFP_HIGHMEM); 1000 1001 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1002 if (page) 1003 return (unsigned long) page_address(page); 1004 return 0; 1005 } 1006 1007 EXPORT_SYMBOL(get_zeroed_page); 1008 1009 void __pagevec_free(struct pagevec *pvec) 1010 { 1011 int i = pagevec_count(pvec); 1012 1013 while (--i >= 0) 1014 free_hot_cold_page(pvec->pages[i], pvec->cold); 1015 } 1016 1017 fastcall void __free_pages(struct page *page, unsigned int order) 1018 { 1019 if (!PageReserved(page) && put_page_testzero(page)) { 1020 if (order == 0) 1021 free_hot_page(page); 1022 else 1023 __free_pages_ok(page, order); 1024 } 1025 } 1026 1027 EXPORT_SYMBOL(__free_pages); 1028 1029 fastcall void free_pages(unsigned long addr, unsigned int order) 1030 { 1031 if (addr != 0) { 1032 BUG_ON(!virt_addr_valid((void *)addr)); 1033 __free_pages(virt_to_page((void *)addr), order); 1034 } 1035 } 1036 1037 EXPORT_SYMBOL(free_pages); 1038 1039 /* 1040 * Total amount of free (allocatable) RAM: 1041 */ 1042 unsigned int nr_free_pages(void) 1043 { 1044 unsigned int sum = 0; 1045 struct zone *zone; 1046 1047 for_each_zone(zone) 1048 sum += zone->free_pages; 1049 1050 return sum; 1051 } 1052 1053 EXPORT_SYMBOL(nr_free_pages); 1054 1055 #ifdef CONFIG_NUMA 1056 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1057 { 1058 unsigned int i, sum = 0; 1059 1060 for (i = 0; i < MAX_NR_ZONES; i++) 1061 sum += pgdat->node_zones[i].free_pages; 1062 1063 return sum; 1064 } 1065 #endif 1066 1067 static unsigned int nr_free_zone_pages(int offset) 1068 { 1069 /* Just pick one node, since fallback list is circular */ 1070 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1071 unsigned int sum = 0; 1072 1073 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1074 struct zone **zonep = zonelist->zones; 1075 struct zone *zone; 1076 1077 for (zone = *zonep++; zone; zone = *zonep++) { 1078 unsigned long size = zone->present_pages; 1079 unsigned long high = zone->pages_high; 1080 if (size > high) 1081 sum += size - high; 1082 } 1083 1084 return sum; 1085 } 1086 1087 /* 1088 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1089 */ 1090 unsigned int nr_free_buffer_pages(void) 1091 { 1092 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK); 1093 } 1094 1095 /* 1096 * Amount of free RAM allocatable within all zones 1097 */ 1098 unsigned int nr_free_pagecache_pages(void) 1099 { 1100 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK); 1101 } 1102 1103 #ifdef CONFIG_HIGHMEM 1104 unsigned int nr_free_highpages (void) 1105 { 1106 pg_data_t *pgdat; 1107 unsigned int pages = 0; 1108 1109 for_each_pgdat(pgdat) 1110 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1111 1112 return pages; 1113 } 1114 #endif 1115 1116 #ifdef CONFIG_NUMA 1117 static void show_node(struct zone *zone) 1118 { 1119 printk("Node %d ", zone->zone_pgdat->node_id); 1120 } 1121 #else 1122 #define show_node(zone) do { } while (0) 1123 #endif 1124 1125 /* 1126 * Accumulate the page_state information across all CPUs. 1127 * The result is unavoidably approximate - it can change 1128 * during and after execution of this function. 1129 */ 1130 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1131 1132 atomic_t nr_pagecache = ATOMIC_INIT(0); 1133 EXPORT_SYMBOL(nr_pagecache); 1134 #ifdef CONFIG_SMP 1135 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1136 #endif 1137 1138 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1139 { 1140 int cpu = 0; 1141 1142 memset(ret, 0, sizeof(*ret)); 1143 cpus_and(*cpumask, *cpumask, cpu_online_map); 1144 1145 cpu = first_cpu(*cpumask); 1146 while (cpu < NR_CPUS) { 1147 unsigned long *in, *out, off; 1148 1149 in = (unsigned long *)&per_cpu(page_states, cpu); 1150 1151 cpu = next_cpu(cpu, *cpumask); 1152 1153 if (cpu < NR_CPUS) 1154 prefetch(&per_cpu(page_states, cpu)); 1155 1156 out = (unsigned long *)ret; 1157 for (off = 0; off < nr; off++) 1158 *out++ += *in++; 1159 } 1160 } 1161 1162 void get_page_state_node(struct page_state *ret, int node) 1163 { 1164 int nr; 1165 cpumask_t mask = node_to_cpumask(node); 1166 1167 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1168 nr /= sizeof(unsigned long); 1169 1170 __get_page_state(ret, nr+1, &mask); 1171 } 1172 1173 void get_page_state(struct page_state *ret) 1174 { 1175 int nr; 1176 cpumask_t mask = CPU_MASK_ALL; 1177 1178 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1179 nr /= sizeof(unsigned long); 1180 1181 __get_page_state(ret, nr + 1, &mask); 1182 } 1183 1184 void get_full_page_state(struct page_state *ret) 1185 { 1186 cpumask_t mask = CPU_MASK_ALL; 1187 1188 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1189 } 1190 1191 unsigned long __read_page_state(unsigned long offset) 1192 { 1193 unsigned long ret = 0; 1194 int cpu; 1195 1196 for_each_online_cpu(cpu) { 1197 unsigned long in; 1198 1199 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1200 ret += *((unsigned long *)in); 1201 } 1202 return ret; 1203 } 1204 1205 void __mod_page_state(unsigned long offset, unsigned long delta) 1206 { 1207 unsigned long flags; 1208 void* ptr; 1209 1210 local_irq_save(flags); 1211 ptr = &__get_cpu_var(page_states); 1212 *(unsigned long*)(ptr + offset) += delta; 1213 local_irq_restore(flags); 1214 } 1215 1216 EXPORT_SYMBOL(__mod_page_state); 1217 1218 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1219 unsigned long *free, struct pglist_data *pgdat) 1220 { 1221 struct zone *zones = pgdat->node_zones; 1222 int i; 1223 1224 *active = 0; 1225 *inactive = 0; 1226 *free = 0; 1227 for (i = 0; i < MAX_NR_ZONES; i++) { 1228 *active += zones[i].nr_active; 1229 *inactive += zones[i].nr_inactive; 1230 *free += zones[i].free_pages; 1231 } 1232 } 1233 1234 void get_zone_counts(unsigned long *active, 1235 unsigned long *inactive, unsigned long *free) 1236 { 1237 struct pglist_data *pgdat; 1238 1239 *active = 0; 1240 *inactive = 0; 1241 *free = 0; 1242 for_each_pgdat(pgdat) { 1243 unsigned long l, m, n; 1244 __get_zone_counts(&l, &m, &n, pgdat); 1245 *active += l; 1246 *inactive += m; 1247 *free += n; 1248 } 1249 } 1250 1251 void si_meminfo(struct sysinfo *val) 1252 { 1253 val->totalram = totalram_pages; 1254 val->sharedram = 0; 1255 val->freeram = nr_free_pages(); 1256 val->bufferram = nr_blockdev_pages(); 1257 #ifdef CONFIG_HIGHMEM 1258 val->totalhigh = totalhigh_pages; 1259 val->freehigh = nr_free_highpages(); 1260 #else 1261 val->totalhigh = 0; 1262 val->freehigh = 0; 1263 #endif 1264 val->mem_unit = PAGE_SIZE; 1265 } 1266 1267 EXPORT_SYMBOL(si_meminfo); 1268 1269 #ifdef CONFIG_NUMA 1270 void si_meminfo_node(struct sysinfo *val, int nid) 1271 { 1272 pg_data_t *pgdat = NODE_DATA(nid); 1273 1274 val->totalram = pgdat->node_present_pages; 1275 val->freeram = nr_free_pages_pgdat(pgdat); 1276 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1277 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1278 val->mem_unit = PAGE_SIZE; 1279 } 1280 #endif 1281 1282 #define K(x) ((x) << (PAGE_SHIFT-10)) 1283 1284 /* 1285 * Show free area list (used inside shift_scroll-lock stuff) 1286 * We also calculate the percentage fragmentation. We do this by counting the 1287 * memory on each free list with the exception of the first item on the list. 1288 */ 1289 void show_free_areas(void) 1290 { 1291 struct page_state ps; 1292 int cpu, temperature; 1293 unsigned long active; 1294 unsigned long inactive; 1295 unsigned long free; 1296 struct zone *zone; 1297 1298 for_each_zone(zone) { 1299 show_node(zone); 1300 printk("%s per-cpu:", zone->name); 1301 1302 if (!zone->present_pages) { 1303 printk(" empty\n"); 1304 continue; 1305 } else 1306 printk("\n"); 1307 1308 for (cpu = 0; cpu < NR_CPUS; ++cpu) { 1309 struct per_cpu_pageset *pageset; 1310 1311 if (!cpu_possible(cpu)) 1312 continue; 1313 1314 pageset = zone_pcp(zone, cpu); 1315 1316 for (temperature = 0; temperature < 2; temperature++) 1317 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n", 1318 cpu, 1319 temperature ? "cold" : "hot", 1320 pageset->pcp[temperature].low, 1321 pageset->pcp[temperature].high, 1322 pageset->pcp[temperature].batch, 1323 pageset->pcp[temperature].count); 1324 } 1325 } 1326 1327 get_page_state(&ps); 1328 get_zone_counts(&active, &inactive, &free); 1329 1330 printk("Free pages: %11ukB (%ukB HighMem)\n", 1331 K(nr_free_pages()), 1332 K(nr_free_highpages())); 1333 1334 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1335 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1336 active, 1337 inactive, 1338 ps.nr_dirty, 1339 ps.nr_writeback, 1340 ps.nr_unstable, 1341 nr_free_pages(), 1342 ps.nr_slab, 1343 ps.nr_mapped, 1344 ps.nr_page_table_pages); 1345 1346 for_each_zone(zone) { 1347 int i; 1348 1349 show_node(zone); 1350 printk("%s" 1351 " free:%lukB" 1352 " min:%lukB" 1353 " low:%lukB" 1354 " high:%lukB" 1355 " active:%lukB" 1356 " inactive:%lukB" 1357 " present:%lukB" 1358 " pages_scanned:%lu" 1359 " all_unreclaimable? %s" 1360 "\n", 1361 zone->name, 1362 K(zone->free_pages), 1363 K(zone->pages_min), 1364 K(zone->pages_low), 1365 K(zone->pages_high), 1366 K(zone->nr_active), 1367 K(zone->nr_inactive), 1368 K(zone->present_pages), 1369 zone->pages_scanned, 1370 (zone->all_unreclaimable ? "yes" : "no") 1371 ); 1372 printk("lowmem_reserve[]:"); 1373 for (i = 0; i < MAX_NR_ZONES; i++) 1374 printk(" %lu", zone->lowmem_reserve[i]); 1375 printk("\n"); 1376 } 1377 1378 for_each_zone(zone) { 1379 unsigned long nr, flags, order, total = 0; 1380 1381 show_node(zone); 1382 printk("%s: ", zone->name); 1383 if (!zone->present_pages) { 1384 printk("empty\n"); 1385 continue; 1386 } 1387 1388 spin_lock_irqsave(&zone->lock, flags); 1389 for (order = 0; order < MAX_ORDER; order++) { 1390 nr = zone->free_area[order].nr_free; 1391 total += nr << order; 1392 printk("%lu*%lukB ", nr, K(1UL) << order); 1393 } 1394 spin_unlock_irqrestore(&zone->lock, flags); 1395 printk("= %lukB\n", K(total)); 1396 } 1397 1398 show_swap_cache_info(); 1399 } 1400 1401 /* 1402 * Builds allocation fallback zone lists. 1403 */ 1404 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k) 1405 { 1406 switch (k) { 1407 struct zone *zone; 1408 default: 1409 BUG(); 1410 case ZONE_HIGHMEM: 1411 zone = pgdat->node_zones + ZONE_HIGHMEM; 1412 if (zone->present_pages) { 1413 #ifndef CONFIG_HIGHMEM 1414 BUG(); 1415 #endif 1416 zonelist->zones[j++] = zone; 1417 } 1418 case ZONE_NORMAL: 1419 zone = pgdat->node_zones + ZONE_NORMAL; 1420 if (zone->present_pages) 1421 zonelist->zones[j++] = zone; 1422 case ZONE_DMA: 1423 zone = pgdat->node_zones + ZONE_DMA; 1424 if (zone->present_pages) 1425 zonelist->zones[j++] = zone; 1426 } 1427 1428 return j; 1429 } 1430 1431 #ifdef CONFIG_NUMA 1432 #define MAX_NODE_LOAD (num_online_nodes()) 1433 static int __initdata node_load[MAX_NUMNODES]; 1434 /** 1435 * find_next_best_node - find the next node that should appear in a given node's fallback list 1436 * @node: node whose fallback list we're appending 1437 * @used_node_mask: nodemask_t of already used nodes 1438 * 1439 * We use a number of factors to determine which is the next node that should 1440 * appear on a given node's fallback list. The node should not have appeared 1441 * already in @node's fallback list, and it should be the next closest node 1442 * according to the distance array (which contains arbitrary distance values 1443 * from each node to each node in the system), and should also prefer nodes 1444 * with no CPUs, since presumably they'll have very little allocation pressure 1445 * on them otherwise. 1446 * It returns -1 if no node is found. 1447 */ 1448 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1449 { 1450 int i, n, val; 1451 int min_val = INT_MAX; 1452 int best_node = -1; 1453 1454 for_each_online_node(i) { 1455 cpumask_t tmp; 1456 1457 /* Start from local node */ 1458 n = (node+i) % num_online_nodes(); 1459 1460 /* Don't want a node to appear more than once */ 1461 if (node_isset(n, *used_node_mask)) 1462 continue; 1463 1464 /* Use the local node if we haven't already */ 1465 if (!node_isset(node, *used_node_mask)) { 1466 best_node = node; 1467 break; 1468 } 1469 1470 /* Use the distance array to find the distance */ 1471 val = node_distance(node, n); 1472 1473 /* Give preference to headless and unused nodes */ 1474 tmp = node_to_cpumask(n); 1475 if (!cpus_empty(tmp)) 1476 val += PENALTY_FOR_NODE_WITH_CPUS; 1477 1478 /* Slight preference for less loaded node */ 1479 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1480 val += node_load[n]; 1481 1482 if (val < min_val) { 1483 min_val = val; 1484 best_node = n; 1485 } 1486 } 1487 1488 if (best_node >= 0) 1489 node_set(best_node, *used_node_mask); 1490 1491 return best_node; 1492 } 1493 1494 static void __init build_zonelists(pg_data_t *pgdat) 1495 { 1496 int i, j, k, node, local_node; 1497 int prev_node, load; 1498 struct zonelist *zonelist; 1499 nodemask_t used_mask; 1500 1501 /* initialize zonelists */ 1502 for (i = 0; i < GFP_ZONETYPES; i++) { 1503 zonelist = pgdat->node_zonelists + i; 1504 zonelist->zones[0] = NULL; 1505 } 1506 1507 /* NUMA-aware ordering of nodes */ 1508 local_node = pgdat->node_id; 1509 load = num_online_nodes(); 1510 prev_node = local_node; 1511 nodes_clear(used_mask); 1512 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1513 /* 1514 * We don't want to pressure a particular node. 1515 * So adding penalty to the first node in same 1516 * distance group to make it round-robin. 1517 */ 1518 if (node_distance(local_node, node) != 1519 node_distance(local_node, prev_node)) 1520 node_load[node] += load; 1521 prev_node = node; 1522 load--; 1523 for (i = 0; i < GFP_ZONETYPES; i++) { 1524 zonelist = pgdat->node_zonelists + i; 1525 for (j = 0; zonelist->zones[j] != NULL; j++); 1526 1527 k = ZONE_NORMAL; 1528 if (i & __GFP_HIGHMEM) 1529 k = ZONE_HIGHMEM; 1530 if (i & __GFP_DMA) 1531 k = ZONE_DMA; 1532 1533 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1534 zonelist->zones[j] = NULL; 1535 } 1536 } 1537 } 1538 1539 #else /* CONFIG_NUMA */ 1540 1541 static void __init build_zonelists(pg_data_t *pgdat) 1542 { 1543 int i, j, k, node, local_node; 1544 1545 local_node = pgdat->node_id; 1546 for (i = 0; i < GFP_ZONETYPES; i++) { 1547 struct zonelist *zonelist; 1548 1549 zonelist = pgdat->node_zonelists + i; 1550 1551 j = 0; 1552 k = ZONE_NORMAL; 1553 if (i & __GFP_HIGHMEM) 1554 k = ZONE_HIGHMEM; 1555 if (i & __GFP_DMA) 1556 k = ZONE_DMA; 1557 1558 j = build_zonelists_node(pgdat, zonelist, j, k); 1559 /* 1560 * Now we build the zonelist so that it contains the zones 1561 * of all the other nodes. 1562 * We don't want to pressure a particular node, so when 1563 * building the zones for node N, we make sure that the 1564 * zones coming right after the local ones are those from 1565 * node N+1 (modulo N) 1566 */ 1567 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1568 if (!node_online(node)) 1569 continue; 1570 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1571 } 1572 for (node = 0; node < local_node; node++) { 1573 if (!node_online(node)) 1574 continue; 1575 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1576 } 1577 1578 zonelist->zones[j] = NULL; 1579 } 1580 } 1581 1582 #endif /* CONFIG_NUMA */ 1583 1584 void __init build_all_zonelists(void) 1585 { 1586 int i; 1587 1588 for_each_online_node(i) 1589 build_zonelists(NODE_DATA(i)); 1590 printk("Built %i zonelists\n", num_online_nodes()); 1591 cpuset_init_current_mems_allowed(); 1592 } 1593 1594 /* 1595 * Helper functions to size the waitqueue hash table. 1596 * Essentially these want to choose hash table sizes sufficiently 1597 * large so that collisions trying to wait on pages are rare. 1598 * But in fact, the number of active page waitqueues on typical 1599 * systems is ridiculously low, less than 200. So this is even 1600 * conservative, even though it seems large. 1601 * 1602 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1603 * waitqueues, i.e. the size of the waitq table given the number of pages. 1604 */ 1605 #define PAGES_PER_WAITQUEUE 256 1606 1607 static inline unsigned long wait_table_size(unsigned long pages) 1608 { 1609 unsigned long size = 1; 1610 1611 pages /= PAGES_PER_WAITQUEUE; 1612 1613 while (size < pages) 1614 size <<= 1; 1615 1616 /* 1617 * Once we have dozens or even hundreds of threads sleeping 1618 * on IO we've got bigger problems than wait queue collision. 1619 * Limit the size of the wait table to a reasonable size. 1620 */ 1621 size = min(size, 4096UL); 1622 1623 return max(size, 4UL); 1624 } 1625 1626 /* 1627 * This is an integer logarithm so that shifts can be used later 1628 * to extract the more random high bits from the multiplicative 1629 * hash function before the remainder is taken. 1630 */ 1631 static inline unsigned long wait_table_bits(unsigned long size) 1632 { 1633 return ffz(~size); 1634 } 1635 1636 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1637 1638 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1639 unsigned long *zones_size, unsigned long *zholes_size) 1640 { 1641 unsigned long realtotalpages, totalpages = 0; 1642 int i; 1643 1644 for (i = 0; i < MAX_NR_ZONES; i++) 1645 totalpages += zones_size[i]; 1646 pgdat->node_spanned_pages = totalpages; 1647 1648 realtotalpages = totalpages; 1649 if (zholes_size) 1650 for (i = 0; i < MAX_NR_ZONES; i++) 1651 realtotalpages -= zholes_size[i]; 1652 pgdat->node_present_pages = realtotalpages; 1653 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1654 } 1655 1656 1657 /* 1658 * Initially all pages are reserved - free ones are freed 1659 * up by free_all_bootmem() once the early boot process is 1660 * done. Non-atomic initialization, single-pass. 1661 */ 1662 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1663 unsigned long start_pfn) 1664 { 1665 struct page *page; 1666 unsigned long end_pfn = start_pfn + size; 1667 unsigned long pfn; 1668 1669 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) { 1670 if (!early_pfn_valid(pfn)) 1671 continue; 1672 if (!early_pfn_in_nid(pfn, nid)) 1673 continue; 1674 page = pfn_to_page(pfn); 1675 set_page_links(page, zone, nid, pfn); 1676 set_page_count(page, 0); 1677 reset_page_mapcount(page); 1678 SetPageReserved(page); 1679 INIT_LIST_HEAD(&page->lru); 1680 #ifdef WANT_PAGE_VIRTUAL 1681 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1682 if (!is_highmem_idx(zone)) 1683 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1684 #endif 1685 } 1686 } 1687 1688 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1689 unsigned long size) 1690 { 1691 int order; 1692 for (order = 0; order < MAX_ORDER ; order++) { 1693 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1694 zone->free_area[order].nr_free = 0; 1695 } 1696 } 1697 1698 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1699 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1700 unsigned long size) 1701 { 1702 unsigned long snum = pfn_to_section_nr(pfn); 1703 unsigned long end = pfn_to_section_nr(pfn + size); 1704 1705 if (FLAGS_HAS_NODE) 1706 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1707 else 1708 for (; snum <= end; snum++) 1709 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1710 } 1711 1712 #ifndef __HAVE_ARCH_MEMMAP_INIT 1713 #define memmap_init(size, nid, zone, start_pfn) \ 1714 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1715 #endif 1716 1717 static int __devinit zone_batchsize(struct zone *zone) 1718 { 1719 int batch; 1720 1721 /* 1722 * The per-cpu-pages pools are set to around 1000th of the 1723 * size of the zone. But no more than 1/4 of a meg - there's 1724 * no point in going beyond the size of L2 cache. 1725 * 1726 * OK, so we don't know how big the cache is. So guess. 1727 */ 1728 batch = zone->present_pages / 1024; 1729 if (batch * PAGE_SIZE > 256 * 1024) 1730 batch = (256 * 1024) / PAGE_SIZE; 1731 batch /= 4; /* We effectively *= 4 below */ 1732 if (batch < 1) 1733 batch = 1; 1734 1735 /* 1736 * Clamp the batch to a 2^n - 1 value. Having a power 1737 * of 2 value was found to be more likely to have 1738 * suboptimal cache aliasing properties in some cases. 1739 * 1740 * For example if 2 tasks are alternately allocating 1741 * batches of pages, one task can end up with a lot 1742 * of pages of one half of the possible page colors 1743 * and the other with pages of the other colors. 1744 */ 1745 batch = (1 << fls(batch + batch/2)) - 1; 1746 return batch; 1747 } 1748 1749 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1750 { 1751 struct per_cpu_pages *pcp; 1752 1753 pcp = &p->pcp[0]; /* hot */ 1754 pcp->count = 0; 1755 pcp->low = 2 * batch; 1756 pcp->high = 6 * batch; 1757 pcp->batch = max(1UL, 1 * batch); 1758 INIT_LIST_HEAD(&pcp->list); 1759 1760 pcp = &p->pcp[1]; /* cold*/ 1761 pcp->count = 0; 1762 pcp->low = 0; 1763 pcp->high = 2 * batch; 1764 pcp->batch = max(1UL, 1 * batch); 1765 INIT_LIST_HEAD(&pcp->list); 1766 } 1767 1768 #ifdef CONFIG_NUMA 1769 /* 1770 * Boot pageset table. One per cpu which is going to be used for all 1771 * zones and all nodes. The parameters will be set in such a way 1772 * that an item put on a list will immediately be handed over to 1773 * the buddy list. This is safe since pageset manipulation is done 1774 * with interrupts disabled. 1775 * 1776 * Some NUMA counter updates may also be caught by the boot pagesets. 1777 * 1778 * The boot_pagesets must be kept even after bootup is complete for 1779 * unused processors and/or zones. They do play a role for bootstrapping 1780 * hotplugged processors. 1781 * 1782 * zoneinfo_show() and maybe other functions do 1783 * not check if the processor is online before following the pageset pointer. 1784 * Other parts of the kernel may not check if the zone is available. 1785 */ 1786 static struct per_cpu_pageset 1787 boot_pageset[NR_CPUS]; 1788 1789 /* 1790 * Dynamically allocate memory for the 1791 * per cpu pageset array in struct zone. 1792 */ 1793 static int __devinit process_zones(int cpu) 1794 { 1795 struct zone *zone, *dzone; 1796 1797 for_each_zone(zone) { 1798 1799 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset), 1800 GFP_KERNEL, cpu_to_node(cpu)); 1801 if (!zone->pageset[cpu]) 1802 goto bad; 1803 1804 setup_pageset(zone->pageset[cpu], zone_batchsize(zone)); 1805 } 1806 1807 return 0; 1808 bad: 1809 for_each_zone(dzone) { 1810 if (dzone == zone) 1811 break; 1812 kfree(dzone->pageset[cpu]); 1813 dzone->pageset[cpu] = NULL; 1814 } 1815 return -ENOMEM; 1816 } 1817 1818 static inline void free_zone_pagesets(int cpu) 1819 { 1820 #ifdef CONFIG_NUMA 1821 struct zone *zone; 1822 1823 for_each_zone(zone) { 1824 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1825 1826 zone_pcp(zone, cpu) = NULL; 1827 kfree(pset); 1828 } 1829 #endif 1830 } 1831 1832 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb, 1833 unsigned long action, 1834 void *hcpu) 1835 { 1836 int cpu = (long)hcpu; 1837 int ret = NOTIFY_OK; 1838 1839 switch (action) { 1840 case CPU_UP_PREPARE: 1841 if (process_zones(cpu)) 1842 ret = NOTIFY_BAD; 1843 break; 1844 #ifdef CONFIG_HOTPLUG_CPU 1845 case CPU_DEAD: 1846 free_zone_pagesets(cpu); 1847 break; 1848 #endif 1849 default: 1850 break; 1851 } 1852 return ret; 1853 } 1854 1855 static struct notifier_block pageset_notifier = 1856 { &pageset_cpuup_callback, NULL, 0 }; 1857 1858 void __init setup_per_cpu_pageset() 1859 { 1860 int err; 1861 1862 /* Initialize per_cpu_pageset for cpu 0. 1863 * A cpuup callback will do this for every cpu 1864 * as it comes online 1865 */ 1866 err = process_zones(smp_processor_id()); 1867 BUG_ON(err); 1868 register_cpu_notifier(&pageset_notifier); 1869 } 1870 1871 #endif 1872 1873 /* 1874 * Set up the zone data structures: 1875 * - mark all pages reserved 1876 * - mark all memory queues empty 1877 * - clear the memory bitmaps 1878 */ 1879 static void __init free_area_init_core(struct pglist_data *pgdat, 1880 unsigned long *zones_size, unsigned long *zholes_size) 1881 { 1882 unsigned long i, j; 1883 int cpu, nid = pgdat->node_id; 1884 unsigned long zone_start_pfn = pgdat->node_start_pfn; 1885 1886 pgdat->nr_zones = 0; 1887 init_waitqueue_head(&pgdat->kswapd_wait); 1888 pgdat->kswapd_max_order = 0; 1889 1890 for (j = 0; j < MAX_NR_ZONES; j++) { 1891 struct zone *zone = pgdat->node_zones + j; 1892 unsigned long size, realsize; 1893 unsigned long batch; 1894 1895 realsize = size = zones_size[j]; 1896 if (zholes_size) 1897 realsize -= zholes_size[j]; 1898 1899 if (j == ZONE_DMA || j == ZONE_NORMAL) 1900 nr_kernel_pages += realsize; 1901 nr_all_pages += realsize; 1902 1903 zone->spanned_pages = size; 1904 zone->present_pages = realsize; 1905 zone->name = zone_names[j]; 1906 spin_lock_init(&zone->lock); 1907 spin_lock_init(&zone->lru_lock); 1908 zone->zone_pgdat = pgdat; 1909 zone->free_pages = 0; 1910 1911 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 1912 1913 batch = zone_batchsize(zone); 1914 1915 for (cpu = 0; cpu < NR_CPUS; cpu++) { 1916 #ifdef CONFIG_NUMA 1917 /* Early boot. Slab allocator not functional yet */ 1918 zone->pageset[cpu] = &boot_pageset[cpu]; 1919 setup_pageset(&boot_pageset[cpu],0); 1920 #else 1921 setup_pageset(zone_pcp(zone,cpu), batch); 1922 #endif 1923 } 1924 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 1925 zone_names[j], realsize, batch); 1926 INIT_LIST_HEAD(&zone->active_list); 1927 INIT_LIST_HEAD(&zone->inactive_list); 1928 zone->nr_scan_active = 0; 1929 zone->nr_scan_inactive = 0; 1930 zone->nr_active = 0; 1931 zone->nr_inactive = 0; 1932 atomic_set(&zone->reclaim_in_progress, 0); 1933 if (!size) 1934 continue; 1935 1936 /* 1937 * The per-page waitqueue mechanism uses hashed waitqueues 1938 * per zone. 1939 */ 1940 zone->wait_table_size = wait_table_size(size); 1941 zone->wait_table_bits = 1942 wait_table_bits(zone->wait_table_size); 1943 zone->wait_table = (wait_queue_head_t *) 1944 alloc_bootmem_node(pgdat, zone->wait_table_size 1945 * sizeof(wait_queue_head_t)); 1946 1947 for(i = 0; i < zone->wait_table_size; ++i) 1948 init_waitqueue_head(zone->wait_table + i); 1949 1950 pgdat->nr_zones = j+1; 1951 1952 zone->zone_mem_map = pfn_to_page(zone_start_pfn); 1953 zone->zone_start_pfn = zone_start_pfn; 1954 1955 memmap_init(size, nid, j, zone_start_pfn); 1956 1957 zonetable_add(zone, nid, j, zone_start_pfn, size); 1958 1959 zone_start_pfn += size; 1960 1961 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 1962 } 1963 } 1964 1965 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1966 { 1967 /* Skip empty nodes */ 1968 if (!pgdat->node_spanned_pages) 1969 return; 1970 1971 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1972 /* ia64 gets its own node_mem_map, before this, without bootmem */ 1973 if (!pgdat->node_mem_map) { 1974 unsigned long size; 1975 struct page *map; 1976 1977 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 1978 map = alloc_remap(pgdat->node_id, size); 1979 if (!map) 1980 map = alloc_bootmem_node(pgdat, size); 1981 pgdat->node_mem_map = map; 1982 } 1983 #ifdef CONFIG_FLATMEM 1984 /* 1985 * With no DISCONTIG, the global mem_map is just set as node 0's 1986 */ 1987 if (pgdat == NODE_DATA(0)) 1988 mem_map = NODE_DATA(0)->node_mem_map; 1989 #endif 1990 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 1991 } 1992 1993 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 1994 unsigned long *zones_size, unsigned long node_start_pfn, 1995 unsigned long *zholes_size) 1996 { 1997 pgdat->node_id = nid; 1998 pgdat->node_start_pfn = node_start_pfn; 1999 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2000 2001 alloc_node_mem_map(pgdat); 2002 2003 free_area_init_core(pgdat, zones_size, zholes_size); 2004 } 2005 2006 #ifndef CONFIG_NEED_MULTIPLE_NODES 2007 static bootmem_data_t contig_bootmem_data; 2008 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2009 2010 EXPORT_SYMBOL(contig_page_data); 2011 #endif 2012 2013 void __init free_area_init(unsigned long *zones_size) 2014 { 2015 free_area_init_node(0, NODE_DATA(0), zones_size, 2016 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2017 } 2018 2019 #ifdef CONFIG_PROC_FS 2020 2021 #include <linux/seq_file.h> 2022 2023 static void *frag_start(struct seq_file *m, loff_t *pos) 2024 { 2025 pg_data_t *pgdat; 2026 loff_t node = *pos; 2027 2028 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) 2029 --node; 2030 2031 return pgdat; 2032 } 2033 2034 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2035 { 2036 pg_data_t *pgdat = (pg_data_t *)arg; 2037 2038 (*pos)++; 2039 return pgdat->pgdat_next; 2040 } 2041 2042 static void frag_stop(struct seq_file *m, void *arg) 2043 { 2044 } 2045 2046 /* 2047 * This walks the free areas for each zone. 2048 */ 2049 static int frag_show(struct seq_file *m, void *arg) 2050 { 2051 pg_data_t *pgdat = (pg_data_t *)arg; 2052 struct zone *zone; 2053 struct zone *node_zones = pgdat->node_zones; 2054 unsigned long flags; 2055 int order; 2056 2057 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2058 if (!zone->present_pages) 2059 continue; 2060 2061 spin_lock_irqsave(&zone->lock, flags); 2062 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2063 for (order = 0; order < MAX_ORDER; ++order) 2064 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2065 spin_unlock_irqrestore(&zone->lock, flags); 2066 seq_putc(m, '\n'); 2067 } 2068 return 0; 2069 } 2070 2071 struct seq_operations fragmentation_op = { 2072 .start = frag_start, 2073 .next = frag_next, 2074 .stop = frag_stop, 2075 .show = frag_show, 2076 }; 2077 2078 /* 2079 * Output information about zones in @pgdat. 2080 */ 2081 static int zoneinfo_show(struct seq_file *m, void *arg) 2082 { 2083 pg_data_t *pgdat = arg; 2084 struct zone *zone; 2085 struct zone *node_zones = pgdat->node_zones; 2086 unsigned long flags; 2087 2088 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2089 int i; 2090 2091 if (!zone->present_pages) 2092 continue; 2093 2094 spin_lock_irqsave(&zone->lock, flags); 2095 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2096 seq_printf(m, 2097 "\n pages free %lu" 2098 "\n min %lu" 2099 "\n low %lu" 2100 "\n high %lu" 2101 "\n active %lu" 2102 "\n inactive %lu" 2103 "\n scanned %lu (a: %lu i: %lu)" 2104 "\n spanned %lu" 2105 "\n present %lu", 2106 zone->free_pages, 2107 zone->pages_min, 2108 zone->pages_low, 2109 zone->pages_high, 2110 zone->nr_active, 2111 zone->nr_inactive, 2112 zone->pages_scanned, 2113 zone->nr_scan_active, zone->nr_scan_inactive, 2114 zone->spanned_pages, 2115 zone->present_pages); 2116 seq_printf(m, 2117 "\n protection: (%lu", 2118 zone->lowmem_reserve[0]); 2119 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2120 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2121 seq_printf(m, 2122 ")" 2123 "\n pagesets"); 2124 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) { 2125 struct per_cpu_pageset *pageset; 2126 int j; 2127 2128 pageset = zone_pcp(zone, i); 2129 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2130 if (pageset->pcp[j].count) 2131 break; 2132 } 2133 if (j == ARRAY_SIZE(pageset->pcp)) 2134 continue; 2135 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2136 seq_printf(m, 2137 "\n cpu: %i pcp: %i" 2138 "\n count: %i" 2139 "\n low: %i" 2140 "\n high: %i" 2141 "\n batch: %i", 2142 i, j, 2143 pageset->pcp[j].count, 2144 pageset->pcp[j].low, 2145 pageset->pcp[j].high, 2146 pageset->pcp[j].batch); 2147 } 2148 #ifdef CONFIG_NUMA 2149 seq_printf(m, 2150 "\n numa_hit: %lu" 2151 "\n numa_miss: %lu" 2152 "\n numa_foreign: %lu" 2153 "\n interleave_hit: %lu" 2154 "\n local_node: %lu" 2155 "\n other_node: %lu", 2156 pageset->numa_hit, 2157 pageset->numa_miss, 2158 pageset->numa_foreign, 2159 pageset->interleave_hit, 2160 pageset->local_node, 2161 pageset->other_node); 2162 #endif 2163 } 2164 seq_printf(m, 2165 "\n all_unreclaimable: %u" 2166 "\n prev_priority: %i" 2167 "\n temp_priority: %i" 2168 "\n start_pfn: %lu", 2169 zone->all_unreclaimable, 2170 zone->prev_priority, 2171 zone->temp_priority, 2172 zone->zone_start_pfn); 2173 spin_unlock_irqrestore(&zone->lock, flags); 2174 seq_putc(m, '\n'); 2175 } 2176 return 0; 2177 } 2178 2179 struct seq_operations zoneinfo_op = { 2180 .start = frag_start, /* iterate over all zones. The same as in 2181 * fragmentation. */ 2182 .next = frag_next, 2183 .stop = frag_stop, 2184 .show = zoneinfo_show, 2185 }; 2186 2187 static char *vmstat_text[] = { 2188 "nr_dirty", 2189 "nr_writeback", 2190 "nr_unstable", 2191 "nr_page_table_pages", 2192 "nr_mapped", 2193 "nr_slab", 2194 2195 "pgpgin", 2196 "pgpgout", 2197 "pswpin", 2198 "pswpout", 2199 "pgalloc_high", 2200 2201 "pgalloc_normal", 2202 "pgalloc_dma", 2203 "pgfree", 2204 "pgactivate", 2205 "pgdeactivate", 2206 2207 "pgfault", 2208 "pgmajfault", 2209 "pgrefill_high", 2210 "pgrefill_normal", 2211 "pgrefill_dma", 2212 2213 "pgsteal_high", 2214 "pgsteal_normal", 2215 "pgsteal_dma", 2216 "pgscan_kswapd_high", 2217 "pgscan_kswapd_normal", 2218 2219 "pgscan_kswapd_dma", 2220 "pgscan_direct_high", 2221 "pgscan_direct_normal", 2222 "pgscan_direct_dma", 2223 "pginodesteal", 2224 2225 "slabs_scanned", 2226 "kswapd_steal", 2227 "kswapd_inodesteal", 2228 "pageoutrun", 2229 "allocstall", 2230 2231 "pgrotated", 2232 "nr_bounce", 2233 }; 2234 2235 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2236 { 2237 struct page_state *ps; 2238 2239 if (*pos >= ARRAY_SIZE(vmstat_text)) 2240 return NULL; 2241 2242 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2243 m->private = ps; 2244 if (!ps) 2245 return ERR_PTR(-ENOMEM); 2246 get_full_page_state(ps); 2247 ps->pgpgin /= 2; /* sectors -> kbytes */ 2248 ps->pgpgout /= 2; 2249 return (unsigned long *)ps + *pos; 2250 } 2251 2252 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2253 { 2254 (*pos)++; 2255 if (*pos >= ARRAY_SIZE(vmstat_text)) 2256 return NULL; 2257 return (unsigned long *)m->private + *pos; 2258 } 2259 2260 static int vmstat_show(struct seq_file *m, void *arg) 2261 { 2262 unsigned long *l = arg; 2263 unsigned long off = l - (unsigned long *)m->private; 2264 2265 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2266 return 0; 2267 } 2268 2269 static void vmstat_stop(struct seq_file *m, void *arg) 2270 { 2271 kfree(m->private); 2272 m->private = NULL; 2273 } 2274 2275 struct seq_operations vmstat_op = { 2276 .start = vmstat_start, 2277 .next = vmstat_next, 2278 .stop = vmstat_stop, 2279 .show = vmstat_show, 2280 }; 2281 2282 #endif /* CONFIG_PROC_FS */ 2283 2284 #ifdef CONFIG_HOTPLUG_CPU 2285 static int page_alloc_cpu_notify(struct notifier_block *self, 2286 unsigned long action, void *hcpu) 2287 { 2288 int cpu = (unsigned long)hcpu; 2289 long *count; 2290 unsigned long *src, *dest; 2291 2292 if (action == CPU_DEAD) { 2293 int i; 2294 2295 /* Drain local pagecache count. */ 2296 count = &per_cpu(nr_pagecache_local, cpu); 2297 atomic_add(*count, &nr_pagecache); 2298 *count = 0; 2299 local_irq_disable(); 2300 __drain_pages(cpu); 2301 2302 /* Add dead cpu's page_states to our own. */ 2303 dest = (unsigned long *)&__get_cpu_var(page_states); 2304 src = (unsigned long *)&per_cpu(page_states, cpu); 2305 2306 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2307 i++) { 2308 dest[i] += src[i]; 2309 src[i] = 0; 2310 } 2311 2312 local_irq_enable(); 2313 } 2314 return NOTIFY_OK; 2315 } 2316 #endif /* CONFIG_HOTPLUG_CPU */ 2317 2318 void __init page_alloc_init(void) 2319 { 2320 hotcpu_notifier(page_alloc_cpu_notify, 0); 2321 } 2322 2323 /* 2324 * setup_per_zone_lowmem_reserve - called whenever 2325 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2326 * has a correct pages reserved value, so an adequate number of 2327 * pages are left in the zone after a successful __alloc_pages(). 2328 */ 2329 static void setup_per_zone_lowmem_reserve(void) 2330 { 2331 struct pglist_data *pgdat; 2332 int j, idx; 2333 2334 for_each_pgdat(pgdat) { 2335 for (j = 0; j < MAX_NR_ZONES; j++) { 2336 struct zone *zone = pgdat->node_zones + j; 2337 unsigned long present_pages = zone->present_pages; 2338 2339 zone->lowmem_reserve[j] = 0; 2340 2341 for (idx = j-1; idx >= 0; idx--) { 2342 struct zone *lower_zone; 2343 2344 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2345 sysctl_lowmem_reserve_ratio[idx] = 1; 2346 2347 lower_zone = pgdat->node_zones + idx; 2348 lower_zone->lowmem_reserve[j] = present_pages / 2349 sysctl_lowmem_reserve_ratio[idx]; 2350 present_pages += lower_zone->present_pages; 2351 } 2352 } 2353 } 2354 } 2355 2356 /* 2357 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2358 * that the pages_{min,low,high} values for each zone are set correctly 2359 * with respect to min_free_kbytes. 2360 */ 2361 static void setup_per_zone_pages_min(void) 2362 { 2363 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2364 unsigned long lowmem_pages = 0; 2365 struct zone *zone; 2366 unsigned long flags; 2367 2368 /* Calculate total number of !ZONE_HIGHMEM pages */ 2369 for_each_zone(zone) { 2370 if (!is_highmem(zone)) 2371 lowmem_pages += zone->present_pages; 2372 } 2373 2374 for_each_zone(zone) { 2375 spin_lock_irqsave(&zone->lru_lock, flags); 2376 if (is_highmem(zone)) { 2377 /* 2378 * Often, highmem doesn't need to reserve any pages. 2379 * But the pages_min/low/high values are also used for 2380 * batching up page reclaim activity so we need a 2381 * decent value here. 2382 */ 2383 int min_pages; 2384 2385 min_pages = zone->present_pages / 1024; 2386 if (min_pages < SWAP_CLUSTER_MAX) 2387 min_pages = SWAP_CLUSTER_MAX; 2388 if (min_pages > 128) 2389 min_pages = 128; 2390 zone->pages_min = min_pages; 2391 } else { 2392 /* if it's a lowmem zone, reserve a number of pages 2393 * proportionate to the zone's size. 2394 */ 2395 zone->pages_min = (pages_min * zone->present_pages) / 2396 lowmem_pages; 2397 } 2398 2399 /* 2400 * When interpreting these watermarks, just keep in mind that: 2401 * zone->pages_min == (zone->pages_min * 4) / 4; 2402 */ 2403 zone->pages_low = (zone->pages_min * 5) / 4; 2404 zone->pages_high = (zone->pages_min * 6) / 4; 2405 spin_unlock_irqrestore(&zone->lru_lock, flags); 2406 } 2407 } 2408 2409 /* 2410 * Initialise min_free_kbytes. 2411 * 2412 * For small machines we want it small (128k min). For large machines 2413 * we want it large (64MB max). But it is not linear, because network 2414 * bandwidth does not increase linearly with machine size. We use 2415 * 2416 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2417 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2418 * 2419 * which yields 2420 * 2421 * 16MB: 512k 2422 * 32MB: 724k 2423 * 64MB: 1024k 2424 * 128MB: 1448k 2425 * 256MB: 2048k 2426 * 512MB: 2896k 2427 * 1024MB: 4096k 2428 * 2048MB: 5792k 2429 * 4096MB: 8192k 2430 * 8192MB: 11584k 2431 * 16384MB: 16384k 2432 */ 2433 static int __init init_per_zone_pages_min(void) 2434 { 2435 unsigned long lowmem_kbytes; 2436 2437 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2438 2439 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2440 if (min_free_kbytes < 128) 2441 min_free_kbytes = 128; 2442 if (min_free_kbytes > 65536) 2443 min_free_kbytes = 65536; 2444 setup_per_zone_pages_min(); 2445 setup_per_zone_lowmem_reserve(); 2446 return 0; 2447 } 2448 module_init(init_per_zone_pages_min) 2449 2450 /* 2451 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2452 * that we can call two helper functions whenever min_free_kbytes 2453 * changes. 2454 */ 2455 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2456 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2457 { 2458 proc_dointvec(table, write, file, buffer, length, ppos); 2459 setup_per_zone_pages_min(); 2460 return 0; 2461 } 2462 2463 /* 2464 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2465 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2466 * whenever sysctl_lowmem_reserve_ratio changes. 2467 * 2468 * The reserve ratio obviously has absolutely no relation with the 2469 * pages_min watermarks. The lowmem reserve ratio can only make sense 2470 * if in function of the boot time zone sizes. 2471 */ 2472 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2473 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2474 { 2475 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2476 setup_per_zone_lowmem_reserve(); 2477 return 0; 2478 } 2479 2480 __initdata int hashdist = HASHDIST_DEFAULT; 2481 2482 #ifdef CONFIG_NUMA 2483 static int __init set_hashdist(char *str) 2484 { 2485 if (!str) 2486 return 0; 2487 hashdist = simple_strtoul(str, &str, 0); 2488 return 1; 2489 } 2490 __setup("hashdist=", set_hashdist); 2491 #endif 2492 2493 /* 2494 * allocate a large system hash table from bootmem 2495 * - it is assumed that the hash table must contain an exact power-of-2 2496 * quantity of entries 2497 * - limit is the number of hash buckets, not the total allocation size 2498 */ 2499 void *__init alloc_large_system_hash(const char *tablename, 2500 unsigned long bucketsize, 2501 unsigned long numentries, 2502 int scale, 2503 int flags, 2504 unsigned int *_hash_shift, 2505 unsigned int *_hash_mask, 2506 unsigned long limit) 2507 { 2508 unsigned long long max = limit; 2509 unsigned long log2qty, size; 2510 void *table = NULL; 2511 2512 /* allow the kernel cmdline to have a say */ 2513 if (!numentries) { 2514 /* round applicable memory size up to nearest megabyte */ 2515 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2516 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2517 numentries >>= 20 - PAGE_SHIFT; 2518 numentries <<= 20 - PAGE_SHIFT; 2519 2520 /* limit to 1 bucket per 2^scale bytes of low memory */ 2521 if (scale > PAGE_SHIFT) 2522 numentries >>= (scale - PAGE_SHIFT); 2523 else 2524 numentries <<= (PAGE_SHIFT - scale); 2525 } 2526 /* rounded up to nearest power of 2 in size */ 2527 numentries = 1UL << (long_log2(numentries) + 1); 2528 2529 /* limit allocation size to 1/16 total memory by default */ 2530 if (max == 0) { 2531 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2532 do_div(max, bucketsize); 2533 } 2534 2535 if (numentries > max) 2536 numentries = max; 2537 2538 log2qty = long_log2(numentries); 2539 2540 do { 2541 size = bucketsize << log2qty; 2542 if (flags & HASH_EARLY) 2543 table = alloc_bootmem(size); 2544 else if (hashdist) 2545 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2546 else { 2547 unsigned long order; 2548 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2549 ; 2550 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2551 } 2552 } while (!table && size > PAGE_SIZE && --log2qty); 2553 2554 if (!table) 2555 panic("Failed to allocate %s hash table\n", tablename); 2556 2557 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2558 tablename, 2559 (1U << log2qty), 2560 long_log2(size) - PAGE_SHIFT, 2561 size); 2562 2563 if (_hash_shift) 2564 *_hash_shift = log2qty; 2565 if (_hash_mask) 2566 *_hash_mask = (1 << log2qty) - 1; 2567 2568 return table; 2569 } 2570