xref: /linux/mm/page_alloc.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 
39 #include <asm/tlbflush.h>
40 #include "internal.h"
41 
42 /*
43  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
44  * initializer cleaner
45  */
46 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
47 EXPORT_SYMBOL(node_online_map);
48 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
49 EXPORT_SYMBOL(node_possible_map);
50 struct pglist_data *pgdat_list __read_mostly;
51 unsigned long totalram_pages __read_mostly;
52 unsigned long totalhigh_pages __read_mostly;
53 long nr_swap_pages;
54 
55 /*
56  * results with 256, 32 in the lowmem_reserve sysctl:
57  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
58  *	1G machine -> (16M dma, 784M normal, 224M high)
59  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
60  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
61  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
62  */
63 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
64 
65 EXPORT_SYMBOL(totalram_pages);
66 EXPORT_SYMBOL(nr_swap_pages);
67 
68 /*
69  * Used by page_zone() to look up the address of the struct zone whose
70  * id is encoded in the upper bits of page->flags
71  */
72 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
73 EXPORT_SYMBOL(zone_table);
74 
75 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
76 int min_free_kbytes = 1024;
77 
78 unsigned long __initdata nr_kernel_pages;
79 unsigned long __initdata nr_all_pages;
80 
81 /*
82  * Temporary debugging check for pages not lying within a given zone.
83  */
84 static int bad_range(struct zone *zone, struct page *page)
85 {
86 	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
87 		return 1;
88 	if (page_to_pfn(page) < zone->zone_start_pfn)
89 		return 1;
90 #ifdef CONFIG_HOLES_IN_ZONE
91 	if (!pfn_valid(page_to_pfn(page)))
92 		return 1;
93 #endif
94 	if (zone != page_zone(page))
95 		return 1;
96 	return 0;
97 }
98 
99 static void bad_page(const char *function, struct page *page)
100 {
101 	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
102 		function, current->comm, page);
103 	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
104 		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
105 		page->mapping, page_mapcount(page), page_count(page));
106 	printk(KERN_EMERG "Backtrace:\n");
107 	dump_stack();
108 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
109 	page->flags &= ~(1 << PG_lru	|
110 			1 << PG_private |
111 			1 << PG_locked	|
112 			1 << PG_active	|
113 			1 << PG_dirty	|
114 			1 << PG_reclaim |
115 			1 << PG_slab    |
116 			1 << PG_swapcache |
117 			1 << PG_writeback);
118 	set_page_count(page, 0);
119 	reset_page_mapcount(page);
120 	page->mapping = NULL;
121 	add_taint(TAINT_BAD_PAGE);
122 }
123 
124 #ifndef CONFIG_HUGETLB_PAGE
125 #define prep_compound_page(page, order) do { } while (0)
126 #define destroy_compound_page(page, order) do { } while (0)
127 #else
128 /*
129  * Higher-order pages are called "compound pages".  They are structured thusly:
130  *
131  * The first PAGE_SIZE page is called the "head page".
132  *
133  * The remaining PAGE_SIZE pages are called "tail pages".
134  *
135  * All pages have PG_compound set.  All pages have their ->private pointing at
136  * the head page (even the head page has this).
137  *
138  * The first tail page's ->mapping, if non-zero, holds the address of the
139  * compound page's put_page() function.
140  *
141  * The order of the allocation is stored in the first tail page's ->index
142  * This is only for debug at present.  This usage means that zero-order pages
143  * may not be compound.
144  */
145 static void prep_compound_page(struct page *page, unsigned long order)
146 {
147 	int i;
148 	int nr_pages = 1 << order;
149 
150 	page[1].mapping = NULL;
151 	page[1].index = order;
152 	for (i = 0; i < nr_pages; i++) {
153 		struct page *p = page + i;
154 
155 		SetPageCompound(p);
156 		p->private = (unsigned long)page;
157 	}
158 }
159 
160 static void destroy_compound_page(struct page *page, unsigned long order)
161 {
162 	int i;
163 	int nr_pages = 1 << order;
164 
165 	if (!PageCompound(page))
166 		return;
167 
168 	if (page[1].index != order)
169 		bad_page(__FUNCTION__, page);
170 
171 	for (i = 0; i < nr_pages; i++) {
172 		struct page *p = page + i;
173 
174 		if (!PageCompound(p))
175 			bad_page(__FUNCTION__, page);
176 		if (p->private != (unsigned long)page)
177 			bad_page(__FUNCTION__, page);
178 		ClearPageCompound(p);
179 	}
180 }
181 #endif		/* CONFIG_HUGETLB_PAGE */
182 
183 /*
184  * function for dealing with page's order in buddy system.
185  * zone->lock is already acquired when we use these.
186  * So, we don't need atomic page->flags operations here.
187  */
188 static inline unsigned long page_order(struct page *page) {
189 	return page->private;
190 }
191 
192 static inline void set_page_order(struct page *page, int order) {
193 	page->private = order;
194 	__SetPagePrivate(page);
195 }
196 
197 static inline void rmv_page_order(struct page *page)
198 {
199 	__ClearPagePrivate(page);
200 	page->private = 0;
201 }
202 
203 /*
204  * Locate the struct page for both the matching buddy in our
205  * pair (buddy1) and the combined O(n+1) page they form (page).
206  *
207  * 1) Any buddy B1 will have an order O twin B2 which satisfies
208  * the following equation:
209  *     B2 = B1 ^ (1 << O)
210  * For example, if the starting buddy (buddy2) is #8 its order
211  * 1 buddy is #10:
212  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
213  *
214  * 2) Any buddy B will have an order O+1 parent P which
215  * satisfies the following equation:
216  *     P = B & ~(1 << O)
217  *
218  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
219  */
220 static inline struct page *
221 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
222 {
223 	unsigned long buddy_idx = page_idx ^ (1 << order);
224 
225 	return page + (buddy_idx - page_idx);
226 }
227 
228 static inline unsigned long
229 __find_combined_index(unsigned long page_idx, unsigned int order)
230 {
231 	return (page_idx & ~(1 << order));
232 }
233 
234 /*
235  * This function checks whether a page is free && is the buddy
236  * we can do coalesce a page and its buddy if
237  * (a) the buddy is free &&
238  * (b) the buddy is on the buddy system &&
239  * (c) a page and its buddy have the same order.
240  * for recording page's order, we use page->private and PG_private.
241  *
242  */
243 static inline int page_is_buddy(struct page *page, int order)
244 {
245        if (PagePrivate(page)           &&
246            (page_order(page) == order) &&
247            !PageReserved(page)         &&
248             page_count(page) == 0)
249                return 1;
250        return 0;
251 }
252 
253 /*
254  * Freeing function for a buddy system allocator.
255  *
256  * The concept of a buddy system is to maintain direct-mapped table
257  * (containing bit values) for memory blocks of various "orders".
258  * The bottom level table contains the map for the smallest allocatable
259  * units of memory (here, pages), and each level above it describes
260  * pairs of units from the levels below, hence, "buddies".
261  * At a high level, all that happens here is marking the table entry
262  * at the bottom level available, and propagating the changes upward
263  * as necessary, plus some accounting needed to play nicely with other
264  * parts of the VM system.
265  * At each level, we keep a list of pages, which are heads of continuous
266  * free pages of length of (1 << order) and marked with PG_Private.Page's
267  * order is recorded in page->private field.
268  * So when we are allocating or freeing one, we can derive the state of the
269  * other.  That is, if we allocate a small block, and both were
270  * free, the remainder of the region must be split into blocks.
271  * If a block is freed, and its buddy is also free, then this
272  * triggers coalescing into a block of larger size.
273  *
274  * -- wli
275  */
276 
277 static inline void __free_pages_bulk (struct page *page,
278 		struct zone *zone, unsigned int order)
279 {
280 	unsigned long page_idx;
281 	int order_size = 1 << order;
282 
283 	if (unlikely(order))
284 		destroy_compound_page(page, order);
285 
286 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
287 
288 	BUG_ON(page_idx & (order_size - 1));
289 	BUG_ON(bad_range(zone, page));
290 
291 	zone->free_pages += order_size;
292 	while (order < MAX_ORDER-1) {
293 		unsigned long combined_idx;
294 		struct free_area *area;
295 		struct page *buddy;
296 
297 		combined_idx = __find_combined_index(page_idx, order);
298 		buddy = __page_find_buddy(page, page_idx, order);
299 
300 		if (bad_range(zone, buddy))
301 			break;
302 		if (!page_is_buddy(buddy, order))
303 			break;		/* Move the buddy up one level. */
304 		list_del(&buddy->lru);
305 		area = zone->free_area + order;
306 		area->nr_free--;
307 		rmv_page_order(buddy);
308 		page = page + (combined_idx - page_idx);
309 		page_idx = combined_idx;
310 		order++;
311 	}
312 	set_page_order(page, order);
313 	list_add(&page->lru, &zone->free_area[order].free_list);
314 	zone->free_area[order].nr_free++;
315 }
316 
317 static inline void free_pages_check(const char *function, struct page *page)
318 {
319 	if (	page_mapcount(page) ||
320 		page->mapping != NULL ||
321 		page_count(page) != 0 ||
322 		(page->flags & (
323 			1 << PG_lru	|
324 			1 << PG_private |
325 			1 << PG_locked	|
326 			1 << PG_active	|
327 			1 << PG_reclaim	|
328 			1 << PG_slab	|
329 			1 << PG_swapcache |
330 			1 << PG_writeback )))
331 		bad_page(function, page);
332 	if (PageDirty(page))
333 		__ClearPageDirty(page);
334 }
335 
336 /*
337  * Frees a list of pages.
338  * Assumes all pages on list are in same zone, and of same order.
339  * count is the number of pages to free.
340  *
341  * If the zone was previously in an "all pages pinned" state then look to
342  * see if this freeing clears that state.
343  *
344  * And clear the zone's pages_scanned counter, to hold off the "all pages are
345  * pinned" detection logic.
346  */
347 static int
348 free_pages_bulk(struct zone *zone, int count,
349 		struct list_head *list, unsigned int order)
350 {
351 	unsigned long flags;
352 	struct page *page = NULL;
353 	int ret = 0;
354 
355 	spin_lock_irqsave(&zone->lock, flags);
356 	zone->all_unreclaimable = 0;
357 	zone->pages_scanned = 0;
358 	while (!list_empty(list) && count--) {
359 		page = list_entry(list->prev, struct page, lru);
360 		/* have to delete it as __free_pages_bulk list manipulates */
361 		list_del(&page->lru);
362 		__free_pages_bulk(page, zone, order);
363 		ret++;
364 	}
365 	spin_unlock_irqrestore(&zone->lock, flags);
366 	return ret;
367 }
368 
369 void __free_pages_ok(struct page *page, unsigned int order)
370 {
371 	LIST_HEAD(list);
372 	int i;
373 
374 	arch_free_page(page, order);
375 
376 	mod_page_state(pgfree, 1 << order);
377 
378 #ifndef CONFIG_MMU
379 	if (order > 0)
380 		for (i = 1 ; i < (1 << order) ; ++i)
381 			__put_page(page + i);
382 #endif
383 
384 	for (i = 0 ; i < (1 << order) ; ++i)
385 		free_pages_check(__FUNCTION__, page + i);
386 	list_add(&page->lru, &list);
387 	kernel_map_pages(page, 1<<order, 0);
388 	free_pages_bulk(page_zone(page), 1, &list, order);
389 }
390 
391 
392 /*
393  * The order of subdivision here is critical for the IO subsystem.
394  * Please do not alter this order without good reasons and regression
395  * testing. Specifically, as large blocks of memory are subdivided,
396  * the order in which smaller blocks are delivered depends on the order
397  * they're subdivided in this function. This is the primary factor
398  * influencing the order in which pages are delivered to the IO
399  * subsystem according to empirical testing, and this is also justified
400  * by considering the behavior of a buddy system containing a single
401  * large block of memory acted on by a series of small allocations.
402  * This behavior is a critical factor in sglist merging's success.
403  *
404  * -- wli
405  */
406 static inline struct page *
407 expand(struct zone *zone, struct page *page,
408  	int low, int high, struct free_area *area)
409 {
410 	unsigned long size = 1 << high;
411 
412 	while (high > low) {
413 		area--;
414 		high--;
415 		size >>= 1;
416 		BUG_ON(bad_range(zone, &page[size]));
417 		list_add(&page[size].lru, &area->free_list);
418 		area->nr_free++;
419 		set_page_order(&page[size], high);
420 	}
421 	return page;
422 }
423 
424 void set_page_refs(struct page *page, int order)
425 {
426 #ifdef CONFIG_MMU
427 	set_page_count(page, 1);
428 #else
429 	int i;
430 
431 	/*
432 	 * We need to reference all the pages for this order, otherwise if
433 	 * anyone accesses one of the pages with (get/put) it will be freed.
434 	 * - eg: access_process_vm()
435 	 */
436 	for (i = 0; i < (1 << order); i++)
437 		set_page_count(page + i, 1);
438 #endif /* CONFIG_MMU */
439 }
440 
441 /*
442  * This page is about to be returned from the page allocator
443  */
444 static void prep_new_page(struct page *page, int order)
445 {
446 	if (	page_mapcount(page) ||
447 		page->mapping != NULL ||
448 		page_count(page) != 0 ||
449 		(page->flags & (
450 			1 << PG_lru	|
451 			1 << PG_private	|
452 			1 << PG_locked	|
453 			1 << PG_active	|
454 			1 << PG_dirty	|
455 			1 << PG_reclaim	|
456 			1 << PG_slab    |
457 			1 << PG_swapcache |
458 			1 << PG_writeback )))
459 		bad_page(__FUNCTION__, page);
460 
461 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
462 			1 << PG_referenced | 1 << PG_arch_1 |
463 			1 << PG_checked | 1 << PG_mappedtodisk);
464 	page->private = 0;
465 	set_page_refs(page, order);
466 	kernel_map_pages(page, 1 << order, 1);
467 }
468 
469 /*
470  * Do the hard work of removing an element from the buddy allocator.
471  * Call me with the zone->lock already held.
472  */
473 static struct page *__rmqueue(struct zone *zone, unsigned int order)
474 {
475 	struct free_area * area;
476 	unsigned int current_order;
477 	struct page *page;
478 
479 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
480 		area = zone->free_area + current_order;
481 		if (list_empty(&area->free_list))
482 			continue;
483 
484 		page = list_entry(area->free_list.next, struct page, lru);
485 		list_del(&page->lru);
486 		rmv_page_order(page);
487 		area->nr_free--;
488 		zone->free_pages -= 1UL << order;
489 		return expand(zone, page, order, current_order, area);
490 	}
491 
492 	return NULL;
493 }
494 
495 /*
496  * Obtain a specified number of elements from the buddy allocator, all under
497  * a single hold of the lock, for efficiency.  Add them to the supplied list.
498  * Returns the number of new pages which were placed at *list.
499  */
500 static int rmqueue_bulk(struct zone *zone, unsigned int order,
501 			unsigned long count, struct list_head *list)
502 {
503 	unsigned long flags;
504 	int i;
505 	int allocated = 0;
506 	struct page *page;
507 
508 	spin_lock_irqsave(&zone->lock, flags);
509 	for (i = 0; i < count; ++i) {
510 		page = __rmqueue(zone, order);
511 		if (page == NULL)
512 			break;
513 		allocated++;
514 		list_add_tail(&page->lru, list);
515 	}
516 	spin_unlock_irqrestore(&zone->lock, flags);
517 	return allocated;
518 }
519 
520 #ifdef CONFIG_NUMA
521 /* Called from the slab reaper to drain remote pagesets */
522 void drain_remote_pages(void)
523 {
524 	struct zone *zone;
525 	int i;
526 	unsigned long flags;
527 
528 	local_irq_save(flags);
529 	for_each_zone(zone) {
530 		struct per_cpu_pageset *pset;
531 
532 		/* Do not drain local pagesets */
533 		if (zone->zone_pgdat->node_id == numa_node_id())
534 			continue;
535 
536 		pset = zone->pageset[smp_processor_id()];
537 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
538 			struct per_cpu_pages *pcp;
539 
540 			pcp = &pset->pcp[i];
541 			if (pcp->count)
542 				pcp->count -= free_pages_bulk(zone, pcp->count,
543 						&pcp->list, 0);
544 		}
545 	}
546 	local_irq_restore(flags);
547 }
548 #endif
549 
550 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
551 static void __drain_pages(unsigned int cpu)
552 {
553 	struct zone *zone;
554 	int i;
555 
556 	for_each_zone(zone) {
557 		struct per_cpu_pageset *pset;
558 
559 		pset = zone_pcp(zone, cpu);
560 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
561 			struct per_cpu_pages *pcp;
562 
563 			pcp = &pset->pcp[i];
564 			pcp->count -= free_pages_bulk(zone, pcp->count,
565 						&pcp->list, 0);
566 		}
567 	}
568 }
569 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
570 
571 #ifdef CONFIG_PM
572 
573 void mark_free_pages(struct zone *zone)
574 {
575 	unsigned long zone_pfn, flags;
576 	int order;
577 	struct list_head *curr;
578 
579 	if (!zone->spanned_pages)
580 		return;
581 
582 	spin_lock_irqsave(&zone->lock, flags);
583 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
584 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
585 
586 	for (order = MAX_ORDER - 1; order >= 0; --order)
587 		list_for_each(curr, &zone->free_area[order].free_list) {
588 			unsigned long start_pfn, i;
589 
590 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
591 
592 			for (i=0; i < (1<<order); i++)
593 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
594 	}
595 	spin_unlock_irqrestore(&zone->lock, flags);
596 }
597 
598 /*
599  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
600  */
601 void drain_local_pages(void)
602 {
603 	unsigned long flags;
604 
605 	local_irq_save(flags);
606 	__drain_pages(smp_processor_id());
607 	local_irq_restore(flags);
608 }
609 #endif /* CONFIG_PM */
610 
611 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
612 {
613 #ifdef CONFIG_NUMA
614 	unsigned long flags;
615 	int cpu;
616 	pg_data_t *pg = z->zone_pgdat;
617 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
618 	struct per_cpu_pageset *p;
619 
620 	local_irq_save(flags);
621 	cpu = smp_processor_id();
622 	p = zone_pcp(z,cpu);
623 	if (pg == orig) {
624 		p->numa_hit++;
625 	} else {
626 		p->numa_miss++;
627 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
628 	}
629 	if (pg == NODE_DATA(numa_node_id()))
630 		p->local_node++;
631 	else
632 		p->other_node++;
633 	local_irq_restore(flags);
634 #endif
635 }
636 
637 /*
638  * Free a 0-order page
639  */
640 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
641 static void fastcall free_hot_cold_page(struct page *page, int cold)
642 {
643 	struct zone *zone = page_zone(page);
644 	struct per_cpu_pages *pcp;
645 	unsigned long flags;
646 
647 	arch_free_page(page, 0);
648 
649 	kernel_map_pages(page, 1, 0);
650 	inc_page_state(pgfree);
651 	if (PageAnon(page))
652 		page->mapping = NULL;
653 	free_pages_check(__FUNCTION__, page);
654 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
655 	local_irq_save(flags);
656 	list_add(&page->lru, &pcp->list);
657 	pcp->count++;
658 	if (pcp->count >= pcp->high)
659 		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
660 	local_irq_restore(flags);
661 	put_cpu();
662 }
663 
664 void fastcall free_hot_page(struct page *page)
665 {
666 	free_hot_cold_page(page, 0);
667 }
668 
669 void fastcall free_cold_page(struct page *page)
670 {
671 	free_hot_cold_page(page, 1);
672 }
673 
674 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
675 {
676 	int i;
677 
678 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
679 	for(i = 0; i < (1 << order); i++)
680 		clear_highpage(page + i);
681 }
682 
683 /*
684  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
685  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
686  * or two.
687  */
688 static struct page *
689 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
690 {
691 	unsigned long flags;
692 	struct page *page = NULL;
693 	int cold = !!(gfp_flags & __GFP_COLD);
694 
695 	if (order == 0) {
696 		struct per_cpu_pages *pcp;
697 
698 		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
699 		local_irq_save(flags);
700 		if (pcp->count <= pcp->low)
701 			pcp->count += rmqueue_bulk(zone, 0,
702 						pcp->batch, &pcp->list);
703 		if (pcp->count) {
704 			page = list_entry(pcp->list.next, struct page, lru);
705 			list_del(&page->lru);
706 			pcp->count--;
707 		}
708 		local_irq_restore(flags);
709 		put_cpu();
710 	}
711 
712 	if (page == NULL) {
713 		spin_lock_irqsave(&zone->lock, flags);
714 		page = __rmqueue(zone, order);
715 		spin_unlock_irqrestore(&zone->lock, flags);
716 	}
717 
718 	if (page != NULL) {
719 		BUG_ON(bad_range(zone, page));
720 		mod_page_state_zone(zone, pgalloc, 1 << order);
721 		prep_new_page(page, order);
722 
723 		if (gfp_flags & __GFP_ZERO)
724 			prep_zero_page(page, order, gfp_flags);
725 
726 		if (order && (gfp_flags & __GFP_COMP))
727 			prep_compound_page(page, order);
728 	}
729 	return page;
730 }
731 
732 /*
733  * Return 1 if free pages are above 'mark'. This takes into account the order
734  * of the allocation.
735  */
736 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
737 		      int classzone_idx, int can_try_harder, int gfp_high)
738 {
739 	/* free_pages my go negative - that's OK */
740 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
741 	int o;
742 
743 	if (gfp_high)
744 		min -= min / 2;
745 	if (can_try_harder)
746 		min -= min / 4;
747 
748 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
749 		return 0;
750 	for (o = 0; o < order; o++) {
751 		/* At the next order, this order's pages become unavailable */
752 		free_pages -= z->free_area[o].nr_free << o;
753 
754 		/* Require fewer higher order pages to be free */
755 		min >>= 1;
756 
757 		if (free_pages <= min)
758 			return 0;
759 	}
760 	return 1;
761 }
762 
763 static inline int
764 should_reclaim_zone(struct zone *z, gfp_t gfp_mask)
765 {
766 	if (!z->reclaim_pages)
767 		return 0;
768 	if (gfp_mask & __GFP_NORECLAIM)
769 		return 0;
770 	return 1;
771 }
772 
773 /*
774  * This is the 'heart' of the zoned buddy allocator.
775  */
776 struct page * fastcall
777 __alloc_pages(gfp_t gfp_mask, unsigned int order,
778 		struct zonelist *zonelist)
779 {
780 	const int wait = gfp_mask & __GFP_WAIT;
781 	struct zone **zones, *z;
782 	struct page *page;
783 	struct reclaim_state reclaim_state;
784 	struct task_struct *p = current;
785 	int i;
786 	int classzone_idx;
787 	int do_retry;
788 	int can_try_harder;
789 	int did_some_progress;
790 
791 	might_sleep_if(wait);
792 
793 	/*
794 	 * The caller may dip into page reserves a bit more if the caller
795 	 * cannot run direct reclaim, or is the caller has realtime scheduling
796 	 * policy
797 	 */
798 	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
799 
800 	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
801 
802 	if (unlikely(zones[0] == NULL)) {
803 		/* Should this ever happen?? */
804 		return NULL;
805 	}
806 
807 	classzone_idx = zone_idx(zones[0]);
808 
809 restart:
810 	/*
811 	 * Go through the zonelist once, looking for a zone with enough free.
812 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
813 	 */
814 	for (i = 0; (z = zones[i]) != NULL; i++) {
815 		int do_reclaim = should_reclaim_zone(z, gfp_mask);
816 
817 		if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
818 			continue;
819 
820 		/*
821 		 * If the zone is to attempt early page reclaim then this loop
822 		 * will try to reclaim pages and check the watermark a second
823 		 * time before giving up and falling back to the next zone.
824 		 */
825 zone_reclaim_retry:
826 		if (!zone_watermark_ok(z, order, z->pages_low,
827 				       classzone_idx, 0, 0)) {
828 			if (!do_reclaim)
829 				continue;
830 			else {
831 				zone_reclaim(z, gfp_mask, order);
832 				/* Only try reclaim once */
833 				do_reclaim = 0;
834 				goto zone_reclaim_retry;
835 			}
836 		}
837 
838 		page = buffered_rmqueue(z, order, gfp_mask);
839 		if (page)
840 			goto got_pg;
841 	}
842 
843 	for (i = 0; (z = zones[i]) != NULL; i++)
844 		wakeup_kswapd(z, order);
845 
846 	/*
847 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
848 	 * coming from realtime tasks to go deeper into reserves
849 	 *
850 	 * This is the last chance, in general, before the goto nopage.
851 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
852 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
853 	 */
854 	for (i = 0; (z = zones[i]) != NULL; i++) {
855 		if (!zone_watermark_ok(z, order, z->pages_min,
856 				       classzone_idx, can_try_harder,
857 				       gfp_mask & __GFP_HIGH))
858 			continue;
859 
860 		if (wait && !cpuset_zone_allowed(z, gfp_mask))
861 			continue;
862 
863 		page = buffered_rmqueue(z, order, gfp_mask);
864 		if (page)
865 			goto got_pg;
866 	}
867 
868 	/* This allocation should allow future memory freeing. */
869 
870 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
871 			&& !in_interrupt()) {
872 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
873 			/* go through the zonelist yet again, ignoring mins */
874 			for (i = 0; (z = zones[i]) != NULL; i++) {
875 				if (!cpuset_zone_allowed(z, gfp_mask))
876 					continue;
877 				page = buffered_rmqueue(z, order, gfp_mask);
878 				if (page)
879 					goto got_pg;
880 			}
881 		}
882 		goto nopage;
883 	}
884 
885 	/* Atomic allocations - we can't balance anything */
886 	if (!wait)
887 		goto nopage;
888 
889 rebalance:
890 	cond_resched();
891 
892 	/* We now go into synchronous reclaim */
893 	p->flags |= PF_MEMALLOC;
894 	reclaim_state.reclaimed_slab = 0;
895 	p->reclaim_state = &reclaim_state;
896 
897 	did_some_progress = try_to_free_pages(zones, gfp_mask);
898 
899 	p->reclaim_state = NULL;
900 	p->flags &= ~PF_MEMALLOC;
901 
902 	cond_resched();
903 
904 	if (likely(did_some_progress)) {
905 		for (i = 0; (z = zones[i]) != NULL; i++) {
906 			if (!zone_watermark_ok(z, order, z->pages_min,
907 					       classzone_idx, can_try_harder,
908 					       gfp_mask & __GFP_HIGH))
909 				continue;
910 
911 			if (!cpuset_zone_allowed(z, gfp_mask))
912 				continue;
913 
914 			page = buffered_rmqueue(z, order, gfp_mask);
915 			if (page)
916 				goto got_pg;
917 		}
918 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
919 		/*
920 		 * Go through the zonelist yet one more time, keep
921 		 * very high watermark here, this is only to catch
922 		 * a parallel oom killing, we must fail if we're still
923 		 * under heavy pressure.
924 		 */
925 		for (i = 0; (z = zones[i]) != NULL; i++) {
926 			if (!zone_watermark_ok(z, order, z->pages_high,
927 					       classzone_idx, 0, 0))
928 				continue;
929 
930 			if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
931 				continue;
932 
933 			page = buffered_rmqueue(z, order, gfp_mask);
934 			if (page)
935 				goto got_pg;
936 		}
937 
938 		out_of_memory(gfp_mask, order);
939 		goto restart;
940 	}
941 
942 	/*
943 	 * Don't let big-order allocations loop unless the caller explicitly
944 	 * requests that.  Wait for some write requests to complete then retry.
945 	 *
946 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
947 	 * <= 3, but that may not be true in other implementations.
948 	 */
949 	do_retry = 0;
950 	if (!(gfp_mask & __GFP_NORETRY)) {
951 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
952 			do_retry = 1;
953 		if (gfp_mask & __GFP_NOFAIL)
954 			do_retry = 1;
955 	}
956 	if (do_retry) {
957 		blk_congestion_wait(WRITE, HZ/50);
958 		goto rebalance;
959 	}
960 
961 nopage:
962 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
963 		printk(KERN_WARNING "%s: page allocation failure."
964 			" order:%d, mode:0x%x\n",
965 			p->comm, order, gfp_mask);
966 		dump_stack();
967 		show_mem();
968 	}
969 	return NULL;
970 got_pg:
971 	zone_statistics(zonelist, z);
972 	return page;
973 }
974 
975 EXPORT_SYMBOL(__alloc_pages);
976 
977 /*
978  * Common helper functions.
979  */
980 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
981 {
982 	struct page * page;
983 	page = alloc_pages(gfp_mask, order);
984 	if (!page)
985 		return 0;
986 	return (unsigned long) page_address(page);
987 }
988 
989 EXPORT_SYMBOL(__get_free_pages);
990 
991 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
992 {
993 	struct page * page;
994 
995 	/*
996 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
997 	 * a highmem page
998 	 */
999 	BUG_ON(gfp_mask & __GFP_HIGHMEM);
1000 
1001 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1002 	if (page)
1003 		return (unsigned long) page_address(page);
1004 	return 0;
1005 }
1006 
1007 EXPORT_SYMBOL(get_zeroed_page);
1008 
1009 void __pagevec_free(struct pagevec *pvec)
1010 {
1011 	int i = pagevec_count(pvec);
1012 
1013 	while (--i >= 0)
1014 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1015 }
1016 
1017 fastcall void __free_pages(struct page *page, unsigned int order)
1018 {
1019 	if (!PageReserved(page) && put_page_testzero(page)) {
1020 		if (order == 0)
1021 			free_hot_page(page);
1022 		else
1023 			__free_pages_ok(page, order);
1024 	}
1025 }
1026 
1027 EXPORT_SYMBOL(__free_pages);
1028 
1029 fastcall void free_pages(unsigned long addr, unsigned int order)
1030 {
1031 	if (addr != 0) {
1032 		BUG_ON(!virt_addr_valid((void *)addr));
1033 		__free_pages(virt_to_page((void *)addr), order);
1034 	}
1035 }
1036 
1037 EXPORT_SYMBOL(free_pages);
1038 
1039 /*
1040  * Total amount of free (allocatable) RAM:
1041  */
1042 unsigned int nr_free_pages(void)
1043 {
1044 	unsigned int sum = 0;
1045 	struct zone *zone;
1046 
1047 	for_each_zone(zone)
1048 		sum += zone->free_pages;
1049 
1050 	return sum;
1051 }
1052 
1053 EXPORT_SYMBOL(nr_free_pages);
1054 
1055 #ifdef CONFIG_NUMA
1056 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1057 {
1058 	unsigned int i, sum = 0;
1059 
1060 	for (i = 0; i < MAX_NR_ZONES; i++)
1061 		sum += pgdat->node_zones[i].free_pages;
1062 
1063 	return sum;
1064 }
1065 #endif
1066 
1067 static unsigned int nr_free_zone_pages(int offset)
1068 {
1069 	/* Just pick one node, since fallback list is circular */
1070 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1071 	unsigned int sum = 0;
1072 
1073 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1074 	struct zone **zonep = zonelist->zones;
1075 	struct zone *zone;
1076 
1077 	for (zone = *zonep++; zone; zone = *zonep++) {
1078 		unsigned long size = zone->present_pages;
1079 		unsigned long high = zone->pages_high;
1080 		if (size > high)
1081 			sum += size - high;
1082 	}
1083 
1084 	return sum;
1085 }
1086 
1087 /*
1088  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1089  */
1090 unsigned int nr_free_buffer_pages(void)
1091 {
1092 	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1093 }
1094 
1095 /*
1096  * Amount of free RAM allocatable within all zones
1097  */
1098 unsigned int nr_free_pagecache_pages(void)
1099 {
1100 	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1101 }
1102 
1103 #ifdef CONFIG_HIGHMEM
1104 unsigned int nr_free_highpages (void)
1105 {
1106 	pg_data_t *pgdat;
1107 	unsigned int pages = 0;
1108 
1109 	for_each_pgdat(pgdat)
1110 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1111 
1112 	return pages;
1113 }
1114 #endif
1115 
1116 #ifdef CONFIG_NUMA
1117 static void show_node(struct zone *zone)
1118 {
1119 	printk("Node %d ", zone->zone_pgdat->node_id);
1120 }
1121 #else
1122 #define show_node(zone)	do { } while (0)
1123 #endif
1124 
1125 /*
1126  * Accumulate the page_state information across all CPUs.
1127  * The result is unavoidably approximate - it can change
1128  * during and after execution of this function.
1129  */
1130 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1131 
1132 atomic_t nr_pagecache = ATOMIC_INIT(0);
1133 EXPORT_SYMBOL(nr_pagecache);
1134 #ifdef CONFIG_SMP
1135 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1136 #endif
1137 
1138 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1139 {
1140 	int cpu = 0;
1141 
1142 	memset(ret, 0, sizeof(*ret));
1143 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1144 
1145 	cpu = first_cpu(*cpumask);
1146 	while (cpu < NR_CPUS) {
1147 		unsigned long *in, *out, off;
1148 
1149 		in = (unsigned long *)&per_cpu(page_states, cpu);
1150 
1151 		cpu = next_cpu(cpu, *cpumask);
1152 
1153 		if (cpu < NR_CPUS)
1154 			prefetch(&per_cpu(page_states, cpu));
1155 
1156 		out = (unsigned long *)ret;
1157 		for (off = 0; off < nr; off++)
1158 			*out++ += *in++;
1159 	}
1160 }
1161 
1162 void get_page_state_node(struct page_state *ret, int node)
1163 {
1164 	int nr;
1165 	cpumask_t mask = node_to_cpumask(node);
1166 
1167 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1168 	nr /= sizeof(unsigned long);
1169 
1170 	__get_page_state(ret, nr+1, &mask);
1171 }
1172 
1173 void get_page_state(struct page_state *ret)
1174 {
1175 	int nr;
1176 	cpumask_t mask = CPU_MASK_ALL;
1177 
1178 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1179 	nr /= sizeof(unsigned long);
1180 
1181 	__get_page_state(ret, nr + 1, &mask);
1182 }
1183 
1184 void get_full_page_state(struct page_state *ret)
1185 {
1186 	cpumask_t mask = CPU_MASK_ALL;
1187 
1188 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1189 }
1190 
1191 unsigned long __read_page_state(unsigned long offset)
1192 {
1193 	unsigned long ret = 0;
1194 	int cpu;
1195 
1196 	for_each_online_cpu(cpu) {
1197 		unsigned long in;
1198 
1199 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1200 		ret += *((unsigned long *)in);
1201 	}
1202 	return ret;
1203 }
1204 
1205 void __mod_page_state(unsigned long offset, unsigned long delta)
1206 {
1207 	unsigned long flags;
1208 	void* ptr;
1209 
1210 	local_irq_save(flags);
1211 	ptr = &__get_cpu_var(page_states);
1212 	*(unsigned long*)(ptr + offset) += delta;
1213 	local_irq_restore(flags);
1214 }
1215 
1216 EXPORT_SYMBOL(__mod_page_state);
1217 
1218 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1219 			unsigned long *free, struct pglist_data *pgdat)
1220 {
1221 	struct zone *zones = pgdat->node_zones;
1222 	int i;
1223 
1224 	*active = 0;
1225 	*inactive = 0;
1226 	*free = 0;
1227 	for (i = 0; i < MAX_NR_ZONES; i++) {
1228 		*active += zones[i].nr_active;
1229 		*inactive += zones[i].nr_inactive;
1230 		*free += zones[i].free_pages;
1231 	}
1232 }
1233 
1234 void get_zone_counts(unsigned long *active,
1235 		unsigned long *inactive, unsigned long *free)
1236 {
1237 	struct pglist_data *pgdat;
1238 
1239 	*active = 0;
1240 	*inactive = 0;
1241 	*free = 0;
1242 	for_each_pgdat(pgdat) {
1243 		unsigned long l, m, n;
1244 		__get_zone_counts(&l, &m, &n, pgdat);
1245 		*active += l;
1246 		*inactive += m;
1247 		*free += n;
1248 	}
1249 }
1250 
1251 void si_meminfo(struct sysinfo *val)
1252 {
1253 	val->totalram = totalram_pages;
1254 	val->sharedram = 0;
1255 	val->freeram = nr_free_pages();
1256 	val->bufferram = nr_blockdev_pages();
1257 #ifdef CONFIG_HIGHMEM
1258 	val->totalhigh = totalhigh_pages;
1259 	val->freehigh = nr_free_highpages();
1260 #else
1261 	val->totalhigh = 0;
1262 	val->freehigh = 0;
1263 #endif
1264 	val->mem_unit = PAGE_SIZE;
1265 }
1266 
1267 EXPORT_SYMBOL(si_meminfo);
1268 
1269 #ifdef CONFIG_NUMA
1270 void si_meminfo_node(struct sysinfo *val, int nid)
1271 {
1272 	pg_data_t *pgdat = NODE_DATA(nid);
1273 
1274 	val->totalram = pgdat->node_present_pages;
1275 	val->freeram = nr_free_pages_pgdat(pgdat);
1276 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1277 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1278 	val->mem_unit = PAGE_SIZE;
1279 }
1280 #endif
1281 
1282 #define K(x) ((x) << (PAGE_SHIFT-10))
1283 
1284 /*
1285  * Show free area list (used inside shift_scroll-lock stuff)
1286  * We also calculate the percentage fragmentation. We do this by counting the
1287  * memory on each free list with the exception of the first item on the list.
1288  */
1289 void show_free_areas(void)
1290 {
1291 	struct page_state ps;
1292 	int cpu, temperature;
1293 	unsigned long active;
1294 	unsigned long inactive;
1295 	unsigned long free;
1296 	struct zone *zone;
1297 
1298 	for_each_zone(zone) {
1299 		show_node(zone);
1300 		printk("%s per-cpu:", zone->name);
1301 
1302 		if (!zone->present_pages) {
1303 			printk(" empty\n");
1304 			continue;
1305 		} else
1306 			printk("\n");
1307 
1308 		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1309 			struct per_cpu_pageset *pageset;
1310 
1311 			if (!cpu_possible(cpu))
1312 				continue;
1313 
1314 			pageset = zone_pcp(zone, cpu);
1315 
1316 			for (temperature = 0; temperature < 2; temperature++)
1317 				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1318 					cpu,
1319 					temperature ? "cold" : "hot",
1320 					pageset->pcp[temperature].low,
1321 					pageset->pcp[temperature].high,
1322 					pageset->pcp[temperature].batch,
1323 					pageset->pcp[temperature].count);
1324 		}
1325 	}
1326 
1327 	get_page_state(&ps);
1328 	get_zone_counts(&active, &inactive, &free);
1329 
1330 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1331 		K(nr_free_pages()),
1332 		K(nr_free_highpages()));
1333 
1334 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1335 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1336 		active,
1337 		inactive,
1338 		ps.nr_dirty,
1339 		ps.nr_writeback,
1340 		ps.nr_unstable,
1341 		nr_free_pages(),
1342 		ps.nr_slab,
1343 		ps.nr_mapped,
1344 		ps.nr_page_table_pages);
1345 
1346 	for_each_zone(zone) {
1347 		int i;
1348 
1349 		show_node(zone);
1350 		printk("%s"
1351 			" free:%lukB"
1352 			" min:%lukB"
1353 			" low:%lukB"
1354 			" high:%lukB"
1355 			" active:%lukB"
1356 			" inactive:%lukB"
1357 			" present:%lukB"
1358 			" pages_scanned:%lu"
1359 			" all_unreclaimable? %s"
1360 			"\n",
1361 			zone->name,
1362 			K(zone->free_pages),
1363 			K(zone->pages_min),
1364 			K(zone->pages_low),
1365 			K(zone->pages_high),
1366 			K(zone->nr_active),
1367 			K(zone->nr_inactive),
1368 			K(zone->present_pages),
1369 			zone->pages_scanned,
1370 			(zone->all_unreclaimable ? "yes" : "no")
1371 			);
1372 		printk("lowmem_reserve[]:");
1373 		for (i = 0; i < MAX_NR_ZONES; i++)
1374 			printk(" %lu", zone->lowmem_reserve[i]);
1375 		printk("\n");
1376 	}
1377 
1378 	for_each_zone(zone) {
1379  		unsigned long nr, flags, order, total = 0;
1380 
1381 		show_node(zone);
1382 		printk("%s: ", zone->name);
1383 		if (!zone->present_pages) {
1384 			printk("empty\n");
1385 			continue;
1386 		}
1387 
1388 		spin_lock_irqsave(&zone->lock, flags);
1389 		for (order = 0; order < MAX_ORDER; order++) {
1390 			nr = zone->free_area[order].nr_free;
1391 			total += nr << order;
1392 			printk("%lu*%lukB ", nr, K(1UL) << order);
1393 		}
1394 		spin_unlock_irqrestore(&zone->lock, flags);
1395 		printk("= %lukB\n", K(total));
1396 	}
1397 
1398 	show_swap_cache_info();
1399 }
1400 
1401 /*
1402  * Builds allocation fallback zone lists.
1403  */
1404 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1405 {
1406 	switch (k) {
1407 		struct zone *zone;
1408 	default:
1409 		BUG();
1410 	case ZONE_HIGHMEM:
1411 		zone = pgdat->node_zones + ZONE_HIGHMEM;
1412 		if (zone->present_pages) {
1413 #ifndef CONFIG_HIGHMEM
1414 			BUG();
1415 #endif
1416 			zonelist->zones[j++] = zone;
1417 		}
1418 	case ZONE_NORMAL:
1419 		zone = pgdat->node_zones + ZONE_NORMAL;
1420 		if (zone->present_pages)
1421 			zonelist->zones[j++] = zone;
1422 	case ZONE_DMA:
1423 		zone = pgdat->node_zones + ZONE_DMA;
1424 		if (zone->present_pages)
1425 			zonelist->zones[j++] = zone;
1426 	}
1427 
1428 	return j;
1429 }
1430 
1431 #ifdef CONFIG_NUMA
1432 #define MAX_NODE_LOAD (num_online_nodes())
1433 static int __initdata node_load[MAX_NUMNODES];
1434 /**
1435  * find_next_best_node - find the next node that should appear in a given node's fallback list
1436  * @node: node whose fallback list we're appending
1437  * @used_node_mask: nodemask_t of already used nodes
1438  *
1439  * We use a number of factors to determine which is the next node that should
1440  * appear on a given node's fallback list.  The node should not have appeared
1441  * already in @node's fallback list, and it should be the next closest node
1442  * according to the distance array (which contains arbitrary distance values
1443  * from each node to each node in the system), and should also prefer nodes
1444  * with no CPUs, since presumably they'll have very little allocation pressure
1445  * on them otherwise.
1446  * It returns -1 if no node is found.
1447  */
1448 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1449 {
1450 	int i, n, val;
1451 	int min_val = INT_MAX;
1452 	int best_node = -1;
1453 
1454 	for_each_online_node(i) {
1455 		cpumask_t tmp;
1456 
1457 		/* Start from local node */
1458 		n = (node+i) % num_online_nodes();
1459 
1460 		/* Don't want a node to appear more than once */
1461 		if (node_isset(n, *used_node_mask))
1462 			continue;
1463 
1464 		/* Use the local node if we haven't already */
1465 		if (!node_isset(node, *used_node_mask)) {
1466 			best_node = node;
1467 			break;
1468 		}
1469 
1470 		/* Use the distance array to find the distance */
1471 		val = node_distance(node, n);
1472 
1473 		/* Give preference to headless and unused nodes */
1474 		tmp = node_to_cpumask(n);
1475 		if (!cpus_empty(tmp))
1476 			val += PENALTY_FOR_NODE_WITH_CPUS;
1477 
1478 		/* Slight preference for less loaded node */
1479 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1480 		val += node_load[n];
1481 
1482 		if (val < min_val) {
1483 			min_val = val;
1484 			best_node = n;
1485 		}
1486 	}
1487 
1488 	if (best_node >= 0)
1489 		node_set(best_node, *used_node_mask);
1490 
1491 	return best_node;
1492 }
1493 
1494 static void __init build_zonelists(pg_data_t *pgdat)
1495 {
1496 	int i, j, k, node, local_node;
1497 	int prev_node, load;
1498 	struct zonelist *zonelist;
1499 	nodemask_t used_mask;
1500 
1501 	/* initialize zonelists */
1502 	for (i = 0; i < GFP_ZONETYPES; i++) {
1503 		zonelist = pgdat->node_zonelists + i;
1504 		zonelist->zones[0] = NULL;
1505 	}
1506 
1507 	/* NUMA-aware ordering of nodes */
1508 	local_node = pgdat->node_id;
1509 	load = num_online_nodes();
1510 	prev_node = local_node;
1511 	nodes_clear(used_mask);
1512 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1513 		/*
1514 		 * We don't want to pressure a particular node.
1515 		 * So adding penalty to the first node in same
1516 		 * distance group to make it round-robin.
1517 		 */
1518 		if (node_distance(local_node, node) !=
1519 				node_distance(local_node, prev_node))
1520 			node_load[node] += load;
1521 		prev_node = node;
1522 		load--;
1523 		for (i = 0; i < GFP_ZONETYPES; i++) {
1524 			zonelist = pgdat->node_zonelists + i;
1525 			for (j = 0; zonelist->zones[j] != NULL; j++);
1526 
1527 			k = ZONE_NORMAL;
1528 			if (i & __GFP_HIGHMEM)
1529 				k = ZONE_HIGHMEM;
1530 			if (i & __GFP_DMA)
1531 				k = ZONE_DMA;
1532 
1533 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1534 			zonelist->zones[j] = NULL;
1535 		}
1536 	}
1537 }
1538 
1539 #else	/* CONFIG_NUMA */
1540 
1541 static void __init build_zonelists(pg_data_t *pgdat)
1542 {
1543 	int i, j, k, node, local_node;
1544 
1545 	local_node = pgdat->node_id;
1546 	for (i = 0; i < GFP_ZONETYPES; i++) {
1547 		struct zonelist *zonelist;
1548 
1549 		zonelist = pgdat->node_zonelists + i;
1550 
1551 		j = 0;
1552 		k = ZONE_NORMAL;
1553 		if (i & __GFP_HIGHMEM)
1554 			k = ZONE_HIGHMEM;
1555 		if (i & __GFP_DMA)
1556 			k = ZONE_DMA;
1557 
1558  		j = build_zonelists_node(pgdat, zonelist, j, k);
1559  		/*
1560  		 * Now we build the zonelist so that it contains the zones
1561  		 * of all the other nodes.
1562  		 * We don't want to pressure a particular node, so when
1563  		 * building the zones for node N, we make sure that the
1564  		 * zones coming right after the local ones are those from
1565  		 * node N+1 (modulo N)
1566  		 */
1567 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1568 			if (!node_online(node))
1569 				continue;
1570 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1571 		}
1572 		for (node = 0; node < local_node; node++) {
1573 			if (!node_online(node))
1574 				continue;
1575 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1576 		}
1577 
1578 		zonelist->zones[j] = NULL;
1579 	}
1580 }
1581 
1582 #endif	/* CONFIG_NUMA */
1583 
1584 void __init build_all_zonelists(void)
1585 {
1586 	int i;
1587 
1588 	for_each_online_node(i)
1589 		build_zonelists(NODE_DATA(i));
1590 	printk("Built %i zonelists\n", num_online_nodes());
1591 	cpuset_init_current_mems_allowed();
1592 }
1593 
1594 /*
1595  * Helper functions to size the waitqueue hash table.
1596  * Essentially these want to choose hash table sizes sufficiently
1597  * large so that collisions trying to wait on pages are rare.
1598  * But in fact, the number of active page waitqueues on typical
1599  * systems is ridiculously low, less than 200. So this is even
1600  * conservative, even though it seems large.
1601  *
1602  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1603  * waitqueues, i.e. the size of the waitq table given the number of pages.
1604  */
1605 #define PAGES_PER_WAITQUEUE	256
1606 
1607 static inline unsigned long wait_table_size(unsigned long pages)
1608 {
1609 	unsigned long size = 1;
1610 
1611 	pages /= PAGES_PER_WAITQUEUE;
1612 
1613 	while (size < pages)
1614 		size <<= 1;
1615 
1616 	/*
1617 	 * Once we have dozens or even hundreds of threads sleeping
1618 	 * on IO we've got bigger problems than wait queue collision.
1619 	 * Limit the size of the wait table to a reasonable size.
1620 	 */
1621 	size = min(size, 4096UL);
1622 
1623 	return max(size, 4UL);
1624 }
1625 
1626 /*
1627  * This is an integer logarithm so that shifts can be used later
1628  * to extract the more random high bits from the multiplicative
1629  * hash function before the remainder is taken.
1630  */
1631 static inline unsigned long wait_table_bits(unsigned long size)
1632 {
1633 	return ffz(~size);
1634 }
1635 
1636 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1637 
1638 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1639 		unsigned long *zones_size, unsigned long *zholes_size)
1640 {
1641 	unsigned long realtotalpages, totalpages = 0;
1642 	int i;
1643 
1644 	for (i = 0; i < MAX_NR_ZONES; i++)
1645 		totalpages += zones_size[i];
1646 	pgdat->node_spanned_pages = totalpages;
1647 
1648 	realtotalpages = totalpages;
1649 	if (zholes_size)
1650 		for (i = 0; i < MAX_NR_ZONES; i++)
1651 			realtotalpages -= zholes_size[i];
1652 	pgdat->node_present_pages = realtotalpages;
1653 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1654 }
1655 
1656 
1657 /*
1658  * Initially all pages are reserved - free ones are freed
1659  * up by free_all_bootmem() once the early boot process is
1660  * done. Non-atomic initialization, single-pass.
1661  */
1662 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1663 		unsigned long start_pfn)
1664 {
1665 	struct page *page;
1666 	unsigned long end_pfn = start_pfn + size;
1667 	unsigned long pfn;
1668 
1669 	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1670 		if (!early_pfn_valid(pfn))
1671 			continue;
1672 		if (!early_pfn_in_nid(pfn, nid))
1673 			continue;
1674 		page = pfn_to_page(pfn);
1675 		set_page_links(page, zone, nid, pfn);
1676 		set_page_count(page, 0);
1677 		reset_page_mapcount(page);
1678 		SetPageReserved(page);
1679 		INIT_LIST_HEAD(&page->lru);
1680 #ifdef WANT_PAGE_VIRTUAL
1681 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1682 		if (!is_highmem_idx(zone))
1683 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1684 #endif
1685 	}
1686 }
1687 
1688 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1689 				unsigned long size)
1690 {
1691 	int order;
1692 	for (order = 0; order < MAX_ORDER ; order++) {
1693 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1694 		zone->free_area[order].nr_free = 0;
1695 	}
1696 }
1697 
1698 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1699 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1700 		unsigned long size)
1701 {
1702 	unsigned long snum = pfn_to_section_nr(pfn);
1703 	unsigned long end = pfn_to_section_nr(pfn + size);
1704 
1705 	if (FLAGS_HAS_NODE)
1706 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1707 	else
1708 		for (; snum <= end; snum++)
1709 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1710 }
1711 
1712 #ifndef __HAVE_ARCH_MEMMAP_INIT
1713 #define memmap_init(size, nid, zone, start_pfn) \
1714 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1715 #endif
1716 
1717 static int __devinit zone_batchsize(struct zone *zone)
1718 {
1719 	int batch;
1720 
1721 	/*
1722 	 * The per-cpu-pages pools are set to around 1000th of the
1723 	 * size of the zone.  But no more than 1/4 of a meg - there's
1724 	 * no point in going beyond the size of L2 cache.
1725 	 *
1726 	 * OK, so we don't know how big the cache is.  So guess.
1727 	 */
1728 	batch = zone->present_pages / 1024;
1729 	if (batch * PAGE_SIZE > 256 * 1024)
1730 		batch = (256 * 1024) / PAGE_SIZE;
1731 	batch /= 4;		/* We effectively *= 4 below */
1732 	if (batch < 1)
1733 		batch = 1;
1734 
1735 	/*
1736 	 * Clamp the batch to a 2^n - 1 value. Having a power
1737 	 * of 2 value was found to be more likely to have
1738 	 * suboptimal cache aliasing properties in some cases.
1739 	 *
1740 	 * For example if 2 tasks are alternately allocating
1741 	 * batches of pages, one task can end up with a lot
1742 	 * of pages of one half of the possible page colors
1743 	 * and the other with pages of the other colors.
1744 	 */
1745 	batch = (1 << fls(batch + batch/2)) - 1;
1746 	return batch;
1747 }
1748 
1749 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1750 {
1751 	struct per_cpu_pages *pcp;
1752 
1753 	pcp = &p->pcp[0];		/* hot */
1754 	pcp->count = 0;
1755 	pcp->low = 2 * batch;
1756 	pcp->high = 6 * batch;
1757 	pcp->batch = max(1UL, 1 * batch);
1758 	INIT_LIST_HEAD(&pcp->list);
1759 
1760 	pcp = &p->pcp[1];		/* cold*/
1761 	pcp->count = 0;
1762 	pcp->low = 0;
1763 	pcp->high = 2 * batch;
1764 	pcp->batch = max(1UL, 1 * batch);
1765 	INIT_LIST_HEAD(&pcp->list);
1766 }
1767 
1768 #ifdef CONFIG_NUMA
1769 /*
1770  * Boot pageset table. One per cpu which is going to be used for all
1771  * zones and all nodes. The parameters will be set in such a way
1772  * that an item put on a list will immediately be handed over to
1773  * the buddy list. This is safe since pageset manipulation is done
1774  * with interrupts disabled.
1775  *
1776  * Some NUMA counter updates may also be caught by the boot pagesets.
1777  *
1778  * The boot_pagesets must be kept even after bootup is complete for
1779  * unused processors and/or zones. They do play a role for bootstrapping
1780  * hotplugged processors.
1781  *
1782  * zoneinfo_show() and maybe other functions do
1783  * not check if the processor is online before following the pageset pointer.
1784  * Other parts of the kernel may not check if the zone is available.
1785  */
1786 static struct per_cpu_pageset
1787 	boot_pageset[NR_CPUS];
1788 
1789 /*
1790  * Dynamically allocate memory for the
1791  * per cpu pageset array in struct zone.
1792  */
1793 static int __devinit process_zones(int cpu)
1794 {
1795 	struct zone *zone, *dzone;
1796 
1797 	for_each_zone(zone) {
1798 
1799 		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1800 					 GFP_KERNEL, cpu_to_node(cpu));
1801 		if (!zone->pageset[cpu])
1802 			goto bad;
1803 
1804 		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1805 	}
1806 
1807 	return 0;
1808 bad:
1809 	for_each_zone(dzone) {
1810 		if (dzone == zone)
1811 			break;
1812 		kfree(dzone->pageset[cpu]);
1813 		dzone->pageset[cpu] = NULL;
1814 	}
1815 	return -ENOMEM;
1816 }
1817 
1818 static inline void free_zone_pagesets(int cpu)
1819 {
1820 #ifdef CONFIG_NUMA
1821 	struct zone *zone;
1822 
1823 	for_each_zone(zone) {
1824 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1825 
1826 		zone_pcp(zone, cpu) = NULL;
1827 		kfree(pset);
1828 	}
1829 #endif
1830 }
1831 
1832 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1833 		unsigned long action,
1834 		void *hcpu)
1835 {
1836 	int cpu = (long)hcpu;
1837 	int ret = NOTIFY_OK;
1838 
1839 	switch (action) {
1840 		case CPU_UP_PREPARE:
1841 			if (process_zones(cpu))
1842 				ret = NOTIFY_BAD;
1843 			break;
1844 #ifdef CONFIG_HOTPLUG_CPU
1845 		case CPU_DEAD:
1846 			free_zone_pagesets(cpu);
1847 			break;
1848 #endif
1849 		default:
1850 			break;
1851 	}
1852 	return ret;
1853 }
1854 
1855 static struct notifier_block pageset_notifier =
1856 	{ &pageset_cpuup_callback, NULL, 0 };
1857 
1858 void __init setup_per_cpu_pageset()
1859 {
1860 	int err;
1861 
1862 	/* Initialize per_cpu_pageset for cpu 0.
1863 	 * A cpuup callback will do this for every cpu
1864 	 * as it comes online
1865 	 */
1866 	err = process_zones(smp_processor_id());
1867 	BUG_ON(err);
1868 	register_cpu_notifier(&pageset_notifier);
1869 }
1870 
1871 #endif
1872 
1873 /*
1874  * Set up the zone data structures:
1875  *   - mark all pages reserved
1876  *   - mark all memory queues empty
1877  *   - clear the memory bitmaps
1878  */
1879 static void __init free_area_init_core(struct pglist_data *pgdat,
1880 		unsigned long *zones_size, unsigned long *zholes_size)
1881 {
1882 	unsigned long i, j;
1883 	int cpu, nid = pgdat->node_id;
1884 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1885 
1886 	pgdat->nr_zones = 0;
1887 	init_waitqueue_head(&pgdat->kswapd_wait);
1888 	pgdat->kswapd_max_order = 0;
1889 
1890 	for (j = 0; j < MAX_NR_ZONES; j++) {
1891 		struct zone *zone = pgdat->node_zones + j;
1892 		unsigned long size, realsize;
1893 		unsigned long batch;
1894 
1895 		realsize = size = zones_size[j];
1896 		if (zholes_size)
1897 			realsize -= zholes_size[j];
1898 
1899 		if (j == ZONE_DMA || j == ZONE_NORMAL)
1900 			nr_kernel_pages += realsize;
1901 		nr_all_pages += realsize;
1902 
1903 		zone->spanned_pages = size;
1904 		zone->present_pages = realsize;
1905 		zone->name = zone_names[j];
1906 		spin_lock_init(&zone->lock);
1907 		spin_lock_init(&zone->lru_lock);
1908 		zone->zone_pgdat = pgdat;
1909 		zone->free_pages = 0;
1910 
1911 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1912 
1913 		batch = zone_batchsize(zone);
1914 
1915 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1916 #ifdef CONFIG_NUMA
1917 			/* Early boot. Slab allocator not functional yet */
1918 			zone->pageset[cpu] = &boot_pageset[cpu];
1919 			setup_pageset(&boot_pageset[cpu],0);
1920 #else
1921 			setup_pageset(zone_pcp(zone,cpu), batch);
1922 #endif
1923 		}
1924 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1925 				zone_names[j], realsize, batch);
1926 		INIT_LIST_HEAD(&zone->active_list);
1927 		INIT_LIST_HEAD(&zone->inactive_list);
1928 		zone->nr_scan_active = 0;
1929 		zone->nr_scan_inactive = 0;
1930 		zone->nr_active = 0;
1931 		zone->nr_inactive = 0;
1932 		atomic_set(&zone->reclaim_in_progress, 0);
1933 		if (!size)
1934 			continue;
1935 
1936 		/*
1937 		 * The per-page waitqueue mechanism uses hashed waitqueues
1938 		 * per zone.
1939 		 */
1940 		zone->wait_table_size = wait_table_size(size);
1941 		zone->wait_table_bits =
1942 			wait_table_bits(zone->wait_table_size);
1943 		zone->wait_table = (wait_queue_head_t *)
1944 			alloc_bootmem_node(pgdat, zone->wait_table_size
1945 						* sizeof(wait_queue_head_t));
1946 
1947 		for(i = 0; i < zone->wait_table_size; ++i)
1948 			init_waitqueue_head(zone->wait_table + i);
1949 
1950 		pgdat->nr_zones = j+1;
1951 
1952 		zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1953 		zone->zone_start_pfn = zone_start_pfn;
1954 
1955 		memmap_init(size, nid, j, zone_start_pfn);
1956 
1957 		zonetable_add(zone, nid, j, zone_start_pfn, size);
1958 
1959 		zone_start_pfn += size;
1960 
1961 		zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1962 	}
1963 }
1964 
1965 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1966 {
1967 	/* Skip empty nodes */
1968 	if (!pgdat->node_spanned_pages)
1969 		return;
1970 
1971 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1972 	/* ia64 gets its own node_mem_map, before this, without bootmem */
1973 	if (!pgdat->node_mem_map) {
1974 		unsigned long size;
1975 		struct page *map;
1976 
1977 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1978 		map = alloc_remap(pgdat->node_id, size);
1979 		if (!map)
1980 			map = alloc_bootmem_node(pgdat, size);
1981 		pgdat->node_mem_map = map;
1982 	}
1983 #ifdef CONFIG_FLATMEM
1984 	/*
1985 	 * With no DISCONTIG, the global mem_map is just set as node 0's
1986 	 */
1987 	if (pgdat == NODE_DATA(0))
1988 		mem_map = NODE_DATA(0)->node_mem_map;
1989 #endif
1990 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
1991 }
1992 
1993 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1994 		unsigned long *zones_size, unsigned long node_start_pfn,
1995 		unsigned long *zholes_size)
1996 {
1997 	pgdat->node_id = nid;
1998 	pgdat->node_start_pfn = node_start_pfn;
1999 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2000 
2001 	alloc_node_mem_map(pgdat);
2002 
2003 	free_area_init_core(pgdat, zones_size, zholes_size);
2004 }
2005 
2006 #ifndef CONFIG_NEED_MULTIPLE_NODES
2007 static bootmem_data_t contig_bootmem_data;
2008 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2009 
2010 EXPORT_SYMBOL(contig_page_data);
2011 #endif
2012 
2013 void __init free_area_init(unsigned long *zones_size)
2014 {
2015 	free_area_init_node(0, NODE_DATA(0), zones_size,
2016 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2017 }
2018 
2019 #ifdef CONFIG_PROC_FS
2020 
2021 #include <linux/seq_file.h>
2022 
2023 static void *frag_start(struct seq_file *m, loff_t *pos)
2024 {
2025 	pg_data_t *pgdat;
2026 	loff_t node = *pos;
2027 
2028 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2029 		--node;
2030 
2031 	return pgdat;
2032 }
2033 
2034 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2035 {
2036 	pg_data_t *pgdat = (pg_data_t *)arg;
2037 
2038 	(*pos)++;
2039 	return pgdat->pgdat_next;
2040 }
2041 
2042 static void frag_stop(struct seq_file *m, void *arg)
2043 {
2044 }
2045 
2046 /*
2047  * This walks the free areas for each zone.
2048  */
2049 static int frag_show(struct seq_file *m, void *arg)
2050 {
2051 	pg_data_t *pgdat = (pg_data_t *)arg;
2052 	struct zone *zone;
2053 	struct zone *node_zones = pgdat->node_zones;
2054 	unsigned long flags;
2055 	int order;
2056 
2057 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2058 		if (!zone->present_pages)
2059 			continue;
2060 
2061 		spin_lock_irqsave(&zone->lock, flags);
2062 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2063 		for (order = 0; order < MAX_ORDER; ++order)
2064 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2065 		spin_unlock_irqrestore(&zone->lock, flags);
2066 		seq_putc(m, '\n');
2067 	}
2068 	return 0;
2069 }
2070 
2071 struct seq_operations fragmentation_op = {
2072 	.start	= frag_start,
2073 	.next	= frag_next,
2074 	.stop	= frag_stop,
2075 	.show	= frag_show,
2076 };
2077 
2078 /*
2079  * Output information about zones in @pgdat.
2080  */
2081 static int zoneinfo_show(struct seq_file *m, void *arg)
2082 {
2083 	pg_data_t *pgdat = arg;
2084 	struct zone *zone;
2085 	struct zone *node_zones = pgdat->node_zones;
2086 	unsigned long flags;
2087 
2088 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2089 		int i;
2090 
2091 		if (!zone->present_pages)
2092 			continue;
2093 
2094 		spin_lock_irqsave(&zone->lock, flags);
2095 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2096 		seq_printf(m,
2097 			   "\n  pages free     %lu"
2098 			   "\n        min      %lu"
2099 			   "\n        low      %lu"
2100 			   "\n        high     %lu"
2101 			   "\n        active   %lu"
2102 			   "\n        inactive %lu"
2103 			   "\n        scanned  %lu (a: %lu i: %lu)"
2104 			   "\n        spanned  %lu"
2105 			   "\n        present  %lu",
2106 			   zone->free_pages,
2107 			   zone->pages_min,
2108 			   zone->pages_low,
2109 			   zone->pages_high,
2110 			   zone->nr_active,
2111 			   zone->nr_inactive,
2112 			   zone->pages_scanned,
2113 			   zone->nr_scan_active, zone->nr_scan_inactive,
2114 			   zone->spanned_pages,
2115 			   zone->present_pages);
2116 		seq_printf(m,
2117 			   "\n        protection: (%lu",
2118 			   zone->lowmem_reserve[0]);
2119 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2120 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2121 		seq_printf(m,
2122 			   ")"
2123 			   "\n  pagesets");
2124 		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2125 			struct per_cpu_pageset *pageset;
2126 			int j;
2127 
2128 			pageset = zone_pcp(zone, i);
2129 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2130 				if (pageset->pcp[j].count)
2131 					break;
2132 			}
2133 			if (j == ARRAY_SIZE(pageset->pcp))
2134 				continue;
2135 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2136 				seq_printf(m,
2137 					   "\n    cpu: %i pcp: %i"
2138 					   "\n              count: %i"
2139 					   "\n              low:   %i"
2140 					   "\n              high:  %i"
2141 					   "\n              batch: %i",
2142 					   i, j,
2143 					   pageset->pcp[j].count,
2144 					   pageset->pcp[j].low,
2145 					   pageset->pcp[j].high,
2146 					   pageset->pcp[j].batch);
2147 			}
2148 #ifdef CONFIG_NUMA
2149 			seq_printf(m,
2150 				   "\n            numa_hit:       %lu"
2151 				   "\n            numa_miss:      %lu"
2152 				   "\n            numa_foreign:   %lu"
2153 				   "\n            interleave_hit: %lu"
2154 				   "\n            local_node:     %lu"
2155 				   "\n            other_node:     %lu",
2156 				   pageset->numa_hit,
2157 				   pageset->numa_miss,
2158 				   pageset->numa_foreign,
2159 				   pageset->interleave_hit,
2160 				   pageset->local_node,
2161 				   pageset->other_node);
2162 #endif
2163 		}
2164 		seq_printf(m,
2165 			   "\n  all_unreclaimable: %u"
2166 			   "\n  prev_priority:     %i"
2167 			   "\n  temp_priority:     %i"
2168 			   "\n  start_pfn:         %lu",
2169 			   zone->all_unreclaimable,
2170 			   zone->prev_priority,
2171 			   zone->temp_priority,
2172 			   zone->zone_start_pfn);
2173 		spin_unlock_irqrestore(&zone->lock, flags);
2174 		seq_putc(m, '\n');
2175 	}
2176 	return 0;
2177 }
2178 
2179 struct seq_operations zoneinfo_op = {
2180 	.start	= frag_start, /* iterate over all zones. The same as in
2181 			       * fragmentation. */
2182 	.next	= frag_next,
2183 	.stop	= frag_stop,
2184 	.show	= zoneinfo_show,
2185 };
2186 
2187 static char *vmstat_text[] = {
2188 	"nr_dirty",
2189 	"nr_writeback",
2190 	"nr_unstable",
2191 	"nr_page_table_pages",
2192 	"nr_mapped",
2193 	"nr_slab",
2194 
2195 	"pgpgin",
2196 	"pgpgout",
2197 	"pswpin",
2198 	"pswpout",
2199 	"pgalloc_high",
2200 
2201 	"pgalloc_normal",
2202 	"pgalloc_dma",
2203 	"pgfree",
2204 	"pgactivate",
2205 	"pgdeactivate",
2206 
2207 	"pgfault",
2208 	"pgmajfault",
2209 	"pgrefill_high",
2210 	"pgrefill_normal",
2211 	"pgrefill_dma",
2212 
2213 	"pgsteal_high",
2214 	"pgsteal_normal",
2215 	"pgsteal_dma",
2216 	"pgscan_kswapd_high",
2217 	"pgscan_kswapd_normal",
2218 
2219 	"pgscan_kswapd_dma",
2220 	"pgscan_direct_high",
2221 	"pgscan_direct_normal",
2222 	"pgscan_direct_dma",
2223 	"pginodesteal",
2224 
2225 	"slabs_scanned",
2226 	"kswapd_steal",
2227 	"kswapd_inodesteal",
2228 	"pageoutrun",
2229 	"allocstall",
2230 
2231 	"pgrotated",
2232 	"nr_bounce",
2233 };
2234 
2235 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2236 {
2237 	struct page_state *ps;
2238 
2239 	if (*pos >= ARRAY_SIZE(vmstat_text))
2240 		return NULL;
2241 
2242 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2243 	m->private = ps;
2244 	if (!ps)
2245 		return ERR_PTR(-ENOMEM);
2246 	get_full_page_state(ps);
2247 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2248 	ps->pgpgout /= 2;
2249 	return (unsigned long *)ps + *pos;
2250 }
2251 
2252 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2253 {
2254 	(*pos)++;
2255 	if (*pos >= ARRAY_SIZE(vmstat_text))
2256 		return NULL;
2257 	return (unsigned long *)m->private + *pos;
2258 }
2259 
2260 static int vmstat_show(struct seq_file *m, void *arg)
2261 {
2262 	unsigned long *l = arg;
2263 	unsigned long off = l - (unsigned long *)m->private;
2264 
2265 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2266 	return 0;
2267 }
2268 
2269 static void vmstat_stop(struct seq_file *m, void *arg)
2270 {
2271 	kfree(m->private);
2272 	m->private = NULL;
2273 }
2274 
2275 struct seq_operations vmstat_op = {
2276 	.start	= vmstat_start,
2277 	.next	= vmstat_next,
2278 	.stop	= vmstat_stop,
2279 	.show	= vmstat_show,
2280 };
2281 
2282 #endif /* CONFIG_PROC_FS */
2283 
2284 #ifdef CONFIG_HOTPLUG_CPU
2285 static int page_alloc_cpu_notify(struct notifier_block *self,
2286 				 unsigned long action, void *hcpu)
2287 {
2288 	int cpu = (unsigned long)hcpu;
2289 	long *count;
2290 	unsigned long *src, *dest;
2291 
2292 	if (action == CPU_DEAD) {
2293 		int i;
2294 
2295 		/* Drain local pagecache count. */
2296 		count = &per_cpu(nr_pagecache_local, cpu);
2297 		atomic_add(*count, &nr_pagecache);
2298 		*count = 0;
2299 		local_irq_disable();
2300 		__drain_pages(cpu);
2301 
2302 		/* Add dead cpu's page_states to our own. */
2303 		dest = (unsigned long *)&__get_cpu_var(page_states);
2304 		src = (unsigned long *)&per_cpu(page_states, cpu);
2305 
2306 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2307 				i++) {
2308 			dest[i] += src[i];
2309 			src[i] = 0;
2310 		}
2311 
2312 		local_irq_enable();
2313 	}
2314 	return NOTIFY_OK;
2315 }
2316 #endif /* CONFIG_HOTPLUG_CPU */
2317 
2318 void __init page_alloc_init(void)
2319 {
2320 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2321 }
2322 
2323 /*
2324  * setup_per_zone_lowmem_reserve - called whenever
2325  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2326  *	has a correct pages reserved value, so an adequate number of
2327  *	pages are left in the zone after a successful __alloc_pages().
2328  */
2329 static void setup_per_zone_lowmem_reserve(void)
2330 {
2331 	struct pglist_data *pgdat;
2332 	int j, idx;
2333 
2334 	for_each_pgdat(pgdat) {
2335 		for (j = 0; j < MAX_NR_ZONES; j++) {
2336 			struct zone *zone = pgdat->node_zones + j;
2337 			unsigned long present_pages = zone->present_pages;
2338 
2339 			zone->lowmem_reserve[j] = 0;
2340 
2341 			for (idx = j-1; idx >= 0; idx--) {
2342 				struct zone *lower_zone;
2343 
2344 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2345 					sysctl_lowmem_reserve_ratio[idx] = 1;
2346 
2347 				lower_zone = pgdat->node_zones + idx;
2348 				lower_zone->lowmem_reserve[j] = present_pages /
2349 					sysctl_lowmem_reserve_ratio[idx];
2350 				present_pages += lower_zone->present_pages;
2351 			}
2352 		}
2353 	}
2354 }
2355 
2356 /*
2357  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2358  *	that the pages_{min,low,high} values for each zone are set correctly
2359  *	with respect to min_free_kbytes.
2360  */
2361 static void setup_per_zone_pages_min(void)
2362 {
2363 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2364 	unsigned long lowmem_pages = 0;
2365 	struct zone *zone;
2366 	unsigned long flags;
2367 
2368 	/* Calculate total number of !ZONE_HIGHMEM pages */
2369 	for_each_zone(zone) {
2370 		if (!is_highmem(zone))
2371 			lowmem_pages += zone->present_pages;
2372 	}
2373 
2374 	for_each_zone(zone) {
2375 		spin_lock_irqsave(&zone->lru_lock, flags);
2376 		if (is_highmem(zone)) {
2377 			/*
2378 			 * Often, highmem doesn't need to reserve any pages.
2379 			 * But the pages_min/low/high values are also used for
2380 			 * batching up page reclaim activity so we need a
2381 			 * decent value here.
2382 			 */
2383 			int min_pages;
2384 
2385 			min_pages = zone->present_pages / 1024;
2386 			if (min_pages < SWAP_CLUSTER_MAX)
2387 				min_pages = SWAP_CLUSTER_MAX;
2388 			if (min_pages > 128)
2389 				min_pages = 128;
2390 			zone->pages_min = min_pages;
2391 		} else {
2392 			/* if it's a lowmem zone, reserve a number of pages
2393 			 * proportionate to the zone's size.
2394 			 */
2395 			zone->pages_min = (pages_min * zone->present_pages) /
2396 			                   lowmem_pages;
2397 		}
2398 
2399 		/*
2400 		 * When interpreting these watermarks, just keep in mind that:
2401 		 * zone->pages_min == (zone->pages_min * 4) / 4;
2402 		 */
2403 		zone->pages_low   = (zone->pages_min * 5) / 4;
2404 		zone->pages_high  = (zone->pages_min * 6) / 4;
2405 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2406 	}
2407 }
2408 
2409 /*
2410  * Initialise min_free_kbytes.
2411  *
2412  * For small machines we want it small (128k min).  For large machines
2413  * we want it large (64MB max).  But it is not linear, because network
2414  * bandwidth does not increase linearly with machine size.  We use
2415  *
2416  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2417  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2418  *
2419  * which yields
2420  *
2421  * 16MB:	512k
2422  * 32MB:	724k
2423  * 64MB:	1024k
2424  * 128MB:	1448k
2425  * 256MB:	2048k
2426  * 512MB:	2896k
2427  * 1024MB:	4096k
2428  * 2048MB:	5792k
2429  * 4096MB:	8192k
2430  * 8192MB:	11584k
2431  * 16384MB:	16384k
2432  */
2433 static int __init init_per_zone_pages_min(void)
2434 {
2435 	unsigned long lowmem_kbytes;
2436 
2437 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2438 
2439 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2440 	if (min_free_kbytes < 128)
2441 		min_free_kbytes = 128;
2442 	if (min_free_kbytes > 65536)
2443 		min_free_kbytes = 65536;
2444 	setup_per_zone_pages_min();
2445 	setup_per_zone_lowmem_reserve();
2446 	return 0;
2447 }
2448 module_init(init_per_zone_pages_min)
2449 
2450 /*
2451  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2452  *	that we can call two helper functions whenever min_free_kbytes
2453  *	changes.
2454  */
2455 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2456 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2457 {
2458 	proc_dointvec(table, write, file, buffer, length, ppos);
2459 	setup_per_zone_pages_min();
2460 	return 0;
2461 }
2462 
2463 /*
2464  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2465  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2466  *	whenever sysctl_lowmem_reserve_ratio changes.
2467  *
2468  * The reserve ratio obviously has absolutely no relation with the
2469  * pages_min watermarks. The lowmem reserve ratio can only make sense
2470  * if in function of the boot time zone sizes.
2471  */
2472 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2473 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2474 {
2475 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2476 	setup_per_zone_lowmem_reserve();
2477 	return 0;
2478 }
2479 
2480 __initdata int hashdist = HASHDIST_DEFAULT;
2481 
2482 #ifdef CONFIG_NUMA
2483 static int __init set_hashdist(char *str)
2484 {
2485 	if (!str)
2486 		return 0;
2487 	hashdist = simple_strtoul(str, &str, 0);
2488 	return 1;
2489 }
2490 __setup("hashdist=", set_hashdist);
2491 #endif
2492 
2493 /*
2494  * allocate a large system hash table from bootmem
2495  * - it is assumed that the hash table must contain an exact power-of-2
2496  *   quantity of entries
2497  * - limit is the number of hash buckets, not the total allocation size
2498  */
2499 void *__init alloc_large_system_hash(const char *tablename,
2500 				     unsigned long bucketsize,
2501 				     unsigned long numentries,
2502 				     int scale,
2503 				     int flags,
2504 				     unsigned int *_hash_shift,
2505 				     unsigned int *_hash_mask,
2506 				     unsigned long limit)
2507 {
2508 	unsigned long long max = limit;
2509 	unsigned long log2qty, size;
2510 	void *table = NULL;
2511 
2512 	/* allow the kernel cmdline to have a say */
2513 	if (!numentries) {
2514 		/* round applicable memory size up to nearest megabyte */
2515 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2516 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2517 		numentries >>= 20 - PAGE_SHIFT;
2518 		numentries <<= 20 - PAGE_SHIFT;
2519 
2520 		/* limit to 1 bucket per 2^scale bytes of low memory */
2521 		if (scale > PAGE_SHIFT)
2522 			numentries >>= (scale - PAGE_SHIFT);
2523 		else
2524 			numentries <<= (PAGE_SHIFT - scale);
2525 	}
2526 	/* rounded up to nearest power of 2 in size */
2527 	numentries = 1UL << (long_log2(numentries) + 1);
2528 
2529 	/* limit allocation size to 1/16 total memory by default */
2530 	if (max == 0) {
2531 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2532 		do_div(max, bucketsize);
2533 	}
2534 
2535 	if (numentries > max)
2536 		numentries = max;
2537 
2538 	log2qty = long_log2(numentries);
2539 
2540 	do {
2541 		size = bucketsize << log2qty;
2542 		if (flags & HASH_EARLY)
2543 			table = alloc_bootmem(size);
2544 		else if (hashdist)
2545 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2546 		else {
2547 			unsigned long order;
2548 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2549 				;
2550 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2551 		}
2552 	} while (!table && size > PAGE_SIZE && --log2qty);
2553 
2554 	if (!table)
2555 		panic("Failed to allocate %s hash table\n", tablename);
2556 
2557 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2558 	       tablename,
2559 	       (1U << log2qty),
2560 	       long_log2(size) - PAGE_SHIFT,
2561 	       size);
2562 
2563 	if (_hash_shift)
2564 		*_hash_shift = log2qty;
2565 	if (_hash_mask)
2566 		*_hash_mask = (1 << log2qty) - 1;
2567 
2568 	return table;
2569 }
2570