xref: /linux/mm/page_alloc.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44 #include <linux/page-isolation.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 #include "internal.h"
49 
50 /*
51  * Array of node states.
52  */
53 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
54 	[N_POSSIBLE] = NODE_MASK_ALL,
55 	[N_ONLINE] = { { [0] = 1UL } },
56 #ifndef CONFIG_NUMA
57 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
58 #ifdef CONFIG_HIGHMEM
59 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
60 #endif
61 	[N_CPU] = { { [0] = 1UL } },
62 #endif	/* NUMA */
63 };
64 EXPORT_SYMBOL(node_states);
65 
66 unsigned long totalram_pages __read_mostly;
67 unsigned long totalreserve_pages __read_mostly;
68 long nr_swap_pages;
69 int percpu_pagelist_fraction;
70 
71 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
72 int pageblock_order __read_mostly;
73 #endif
74 
75 static void __free_pages_ok(struct page *page, unsigned int order);
76 
77 /*
78  * results with 256, 32 in the lowmem_reserve sysctl:
79  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
80  *	1G machine -> (16M dma, 784M normal, 224M high)
81  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
82  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
83  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
84  *
85  * TBD: should special case ZONE_DMA32 machines here - in those we normally
86  * don't need any ZONE_NORMAL reservation
87  */
88 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
89 #ifdef CONFIG_ZONE_DMA
90 	 256,
91 #endif
92 #ifdef CONFIG_ZONE_DMA32
93 	 256,
94 #endif
95 #ifdef CONFIG_HIGHMEM
96 	 32,
97 #endif
98 	 32,
99 };
100 
101 EXPORT_SYMBOL(totalram_pages);
102 
103 static char * const zone_names[MAX_NR_ZONES] = {
104 #ifdef CONFIG_ZONE_DMA
105 	 "DMA",
106 #endif
107 #ifdef CONFIG_ZONE_DMA32
108 	 "DMA32",
109 #endif
110 	 "Normal",
111 #ifdef CONFIG_HIGHMEM
112 	 "HighMem",
113 #endif
114 	 "Movable",
115 };
116 
117 int min_free_kbytes = 1024;
118 
119 unsigned long __meminitdata nr_kernel_pages;
120 unsigned long __meminitdata nr_all_pages;
121 static unsigned long __meminitdata dma_reserve;
122 
123 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
124   /*
125    * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
126    * ranges of memory (RAM) that may be registered with add_active_range().
127    * Ranges passed to add_active_range() will be merged if possible
128    * so the number of times add_active_range() can be called is
129    * related to the number of nodes and the number of holes
130    */
131   #ifdef CONFIG_MAX_ACTIVE_REGIONS
132     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
133     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
134   #else
135     #if MAX_NUMNODES >= 32
136       /* If there can be many nodes, allow up to 50 holes per node */
137       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
138     #else
139       /* By default, allow up to 256 distinct regions */
140       #define MAX_ACTIVE_REGIONS 256
141     #endif
142   #endif
143 
144   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
145   static int __meminitdata nr_nodemap_entries;
146   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
147   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
148 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
149   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
150   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
151 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
152   unsigned long __initdata required_kernelcore;
153   static unsigned long __initdata required_movablecore;
154   unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
155 
156   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
157   int movable_zone;
158   EXPORT_SYMBOL(movable_zone);
159 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
160 
161 #if MAX_NUMNODES > 1
162 int nr_node_ids __read_mostly = MAX_NUMNODES;
163 EXPORT_SYMBOL(nr_node_ids);
164 #endif
165 
166 int page_group_by_mobility_disabled __read_mostly;
167 
168 static void set_pageblock_migratetype(struct page *page, int migratetype)
169 {
170 	set_pageblock_flags_group(page, (unsigned long)migratetype,
171 					PB_migrate, PB_migrate_end);
172 }
173 
174 #ifdef CONFIG_DEBUG_VM
175 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
176 {
177 	int ret = 0;
178 	unsigned seq;
179 	unsigned long pfn = page_to_pfn(page);
180 
181 	do {
182 		seq = zone_span_seqbegin(zone);
183 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
184 			ret = 1;
185 		else if (pfn < zone->zone_start_pfn)
186 			ret = 1;
187 	} while (zone_span_seqretry(zone, seq));
188 
189 	return ret;
190 }
191 
192 static int page_is_consistent(struct zone *zone, struct page *page)
193 {
194 	if (!pfn_valid_within(page_to_pfn(page)))
195 		return 0;
196 	if (zone != page_zone(page))
197 		return 0;
198 
199 	return 1;
200 }
201 /*
202  * Temporary debugging check for pages not lying within a given zone.
203  */
204 static int bad_range(struct zone *zone, struct page *page)
205 {
206 	if (page_outside_zone_boundaries(zone, page))
207 		return 1;
208 	if (!page_is_consistent(zone, page))
209 		return 1;
210 
211 	return 0;
212 }
213 #else
214 static inline int bad_range(struct zone *zone, struct page *page)
215 {
216 	return 0;
217 }
218 #endif
219 
220 static void bad_page(struct page *page)
221 {
222 	printk(KERN_EMERG "Bad page state in process '%s'\n"
223 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
224 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
225 		KERN_EMERG "Backtrace:\n",
226 		current->comm, page, (int)(2*sizeof(unsigned long)),
227 		(unsigned long)page->flags, page->mapping,
228 		page_mapcount(page), page_count(page));
229 	dump_stack();
230 	page->flags &= ~(1 << PG_lru	|
231 			1 << PG_private |
232 			1 << PG_locked	|
233 			1 << PG_active	|
234 			1 << PG_dirty	|
235 			1 << PG_reclaim |
236 			1 << PG_slab    |
237 			1 << PG_swapcache |
238 			1 << PG_writeback |
239 			1 << PG_buddy );
240 	set_page_count(page, 0);
241 	reset_page_mapcount(page);
242 	page->mapping = NULL;
243 	add_taint(TAINT_BAD_PAGE);
244 }
245 
246 /*
247  * Higher-order pages are called "compound pages".  They are structured thusly:
248  *
249  * The first PAGE_SIZE page is called the "head page".
250  *
251  * The remaining PAGE_SIZE pages are called "tail pages".
252  *
253  * All pages have PG_compound set.  All pages have their ->private pointing at
254  * the head page (even the head page has this).
255  *
256  * The first tail page's ->lru.next holds the address of the compound page's
257  * put_page() function.  Its ->lru.prev holds the order of allocation.
258  * This usage means that zero-order pages may not be compound.
259  */
260 
261 static void free_compound_page(struct page *page)
262 {
263 	__free_pages_ok(page, compound_order(page));
264 }
265 
266 static void prep_compound_page(struct page *page, unsigned long order)
267 {
268 	int i;
269 	int nr_pages = 1 << order;
270 
271 	set_compound_page_dtor(page, free_compound_page);
272 	set_compound_order(page, order);
273 	__SetPageHead(page);
274 	for (i = 1; i < nr_pages; i++) {
275 		struct page *p = page + i;
276 
277 		__SetPageTail(p);
278 		p->first_page = page;
279 	}
280 }
281 
282 static void destroy_compound_page(struct page *page, unsigned long order)
283 {
284 	int i;
285 	int nr_pages = 1 << order;
286 
287 	if (unlikely(compound_order(page) != order))
288 		bad_page(page);
289 
290 	if (unlikely(!PageHead(page)))
291 			bad_page(page);
292 	__ClearPageHead(page);
293 	for (i = 1; i < nr_pages; i++) {
294 		struct page *p = page + i;
295 
296 		if (unlikely(!PageTail(p) |
297 				(p->first_page != page)))
298 			bad_page(page);
299 		__ClearPageTail(p);
300 	}
301 }
302 
303 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
304 {
305 	int i;
306 
307 	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
308 	/*
309 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
311 	 */
312 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 	for (i = 0; i < (1 << order); i++)
314 		clear_highpage(page + i);
315 }
316 
317 static inline void set_page_order(struct page *page, int order)
318 {
319 	set_page_private(page, order);
320 	__SetPageBuddy(page);
321 }
322 
323 static inline void rmv_page_order(struct page *page)
324 {
325 	__ClearPageBuddy(page);
326 	set_page_private(page, 0);
327 }
328 
329 /*
330  * Locate the struct page for both the matching buddy in our
331  * pair (buddy1) and the combined O(n+1) page they form (page).
332  *
333  * 1) Any buddy B1 will have an order O twin B2 which satisfies
334  * the following equation:
335  *     B2 = B1 ^ (1 << O)
336  * For example, if the starting buddy (buddy2) is #8 its order
337  * 1 buddy is #10:
338  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339  *
340  * 2) Any buddy B will have an order O+1 parent P which
341  * satisfies the following equation:
342  *     P = B & ~(1 << O)
343  *
344  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345  */
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348 {
349 	unsigned long buddy_idx = page_idx ^ (1 << order);
350 
351 	return page + (buddy_idx - page_idx);
352 }
353 
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
356 {
357 	return (page_idx & ~(1 << order));
358 }
359 
360 /*
361  * This function checks whether a page is free && is the buddy
362  * we can do coalesce a page and its buddy if
363  * (a) the buddy is not in a hole &&
364  * (b) the buddy is in the buddy system &&
365  * (c) a page and its buddy have the same order &&
366  * (d) a page and its buddy are in the same zone.
367  *
368  * For recording whether a page is in the buddy system, we use PG_buddy.
369  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370  *
371  * For recording page's order, we use page_private(page).
372  */
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 								int order)
375 {
376 	if (!pfn_valid_within(page_to_pfn(buddy)))
377 		return 0;
378 
379 	if (page_zone_id(page) != page_zone_id(buddy))
380 		return 0;
381 
382 	if (PageBuddy(buddy) && page_order(buddy) == order) {
383 		BUG_ON(page_count(buddy) != 0);
384 		return 1;
385 	}
386 	return 0;
387 }
388 
389 /*
390  * Freeing function for a buddy system allocator.
391  *
392  * The concept of a buddy system is to maintain direct-mapped table
393  * (containing bit values) for memory blocks of various "orders".
394  * The bottom level table contains the map for the smallest allocatable
395  * units of memory (here, pages), and each level above it describes
396  * pairs of units from the levels below, hence, "buddies".
397  * At a high level, all that happens here is marking the table entry
398  * at the bottom level available, and propagating the changes upward
399  * as necessary, plus some accounting needed to play nicely with other
400  * parts of the VM system.
401  * At each level, we keep a list of pages, which are heads of continuous
402  * free pages of length of (1 << order) and marked with PG_buddy. Page's
403  * order is recorded in page_private(page) field.
404  * So when we are allocating or freeing one, we can derive the state of the
405  * other.  That is, if we allocate a small block, and both were
406  * free, the remainder of the region must be split into blocks.
407  * If a block is freed, and its buddy is also free, then this
408  * triggers coalescing into a block of larger size.
409  *
410  * -- wli
411  */
412 
413 static inline void __free_one_page(struct page *page,
414 		struct zone *zone, unsigned int order)
415 {
416 	unsigned long page_idx;
417 	int order_size = 1 << order;
418 	int migratetype = get_pageblock_migratetype(page);
419 
420 	if (unlikely(PageCompound(page)))
421 		destroy_compound_page(page, order);
422 
423 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424 
425 	VM_BUG_ON(page_idx & (order_size - 1));
426 	VM_BUG_ON(bad_range(zone, page));
427 
428 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 	while (order < MAX_ORDER-1) {
430 		unsigned long combined_idx;
431 		struct page *buddy;
432 
433 		buddy = __page_find_buddy(page, page_idx, order);
434 		if (!page_is_buddy(page, buddy, order))
435 			break;		/* Move the buddy up one level. */
436 
437 		list_del(&buddy->lru);
438 		zone->free_area[order].nr_free--;
439 		rmv_page_order(buddy);
440 		combined_idx = __find_combined_index(page_idx, order);
441 		page = page + (combined_idx - page_idx);
442 		page_idx = combined_idx;
443 		order++;
444 	}
445 	set_page_order(page, order);
446 	list_add(&page->lru,
447 		&zone->free_area[order].free_list[migratetype]);
448 	zone->free_area[order].nr_free++;
449 }
450 
451 static inline int free_pages_check(struct page *page)
452 {
453 	if (unlikely(page_mapcount(page) |
454 		(page->mapping != NULL)  |
455 		(page_count(page) != 0)  |
456 		(page->flags & (
457 			1 << PG_lru	|
458 			1 << PG_private |
459 			1 << PG_locked	|
460 			1 << PG_active	|
461 			1 << PG_slab	|
462 			1 << PG_swapcache |
463 			1 << PG_writeback |
464 			1 << PG_reserved |
465 			1 << PG_buddy ))))
466 		bad_page(page);
467 	if (PageDirty(page))
468 		__ClearPageDirty(page);
469 	/*
470 	 * For now, we report if PG_reserved was found set, but do not
471 	 * clear it, and do not free the page.  But we shall soon need
472 	 * to do more, for when the ZERO_PAGE count wraps negative.
473 	 */
474 	return PageReserved(page);
475 }
476 
477 /*
478  * Frees a list of pages.
479  * Assumes all pages on list are in same zone, and of same order.
480  * count is the number of pages to free.
481  *
482  * If the zone was previously in an "all pages pinned" state then look to
483  * see if this freeing clears that state.
484  *
485  * And clear the zone's pages_scanned counter, to hold off the "all pages are
486  * pinned" detection logic.
487  */
488 static void free_pages_bulk(struct zone *zone, int count,
489 					struct list_head *list, int order)
490 {
491 	spin_lock(&zone->lock);
492 	zone->all_unreclaimable = 0;
493 	zone->pages_scanned = 0;
494 	while (count--) {
495 		struct page *page;
496 
497 		VM_BUG_ON(list_empty(list));
498 		page = list_entry(list->prev, struct page, lru);
499 		/* have to delete it as __free_one_page list manipulates */
500 		list_del(&page->lru);
501 		__free_one_page(page, zone, order);
502 	}
503 	spin_unlock(&zone->lock);
504 }
505 
506 static void free_one_page(struct zone *zone, struct page *page, int order)
507 {
508 	spin_lock(&zone->lock);
509 	zone->all_unreclaimable = 0;
510 	zone->pages_scanned = 0;
511 	__free_one_page(page, zone, order);
512 	spin_unlock(&zone->lock);
513 }
514 
515 static void __free_pages_ok(struct page *page, unsigned int order)
516 {
517 	unsigned long flags;
518 	int i;
519 	int reserved = 0;
520 
521 	for (i = 0 ; i < (1 << order) ; ++i)
522 		reserved += free_pages_check(page + i);
523 	if (reserved)
524 		return;
525 
526 	if (!PageHighMem(page))
527 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
528 	arch_free_page(page, order);
529 	kernel_map_pages(page, 1 << order, 0);
530 
531 	local_irq_save(flags);
532 	__count_vm_events(PGFREE, 1 << order);
533 	free_one_page(page_zone(page), page, order);
534 	local_irq_restore(flags);
535 }
536 
537 /*
538  * permit the bootmem allocator to evade page validation on high-order frees
539  */
540 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
541 {
542 	if (order == 0) {
543 		__ClearPageReserved(page);
544 		set_page_count(page, 0);
545 		set_page_refcounted(page);
546 		__free_page(page);
547 	} else {
548 		int loop;
549 
550 		prefetchw(page);
551 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
552 			struct page *p = &page[loop];
553 
554 			if (loop + 1 < BITS_PER_LONG)
555 				prefetchw(p + 1);
556 			__ClearPageReserved(p);
557 			set_page_count(p, 0);
558 		}
559 
560 		set_page_refcounted(page);
561 		__free_pages(page, order);
562 	}
563 }
564 
565 
566 /*
567  * The order of subdivision here is critical for the IO subsystem.
568  * Please do not alter this order without good reasons and regression
569  * testing. Specifically, as large blocks of memory are subdivided,
570  * the order in which smaller blocks are delivered depends on the order
571  * they're subdivided in this function. This is the primary factor
572  * influencing the order in which pages are delivered to the IO
573  * subsystem according to empirical testing, and this is also justified
574  * by considering the behavior of a buddy system containing a single
575  * large block of memory acted on by a series of small allocations.
576  * This behavior is a critical factor in sglist merging's success.
577  *
578  * -- wli
579  */
580 static inline void expand(struct zone *zone, struct page *page,
581 	int low, int high, struct free_area *area,
582 	int migratetype)
583 {
584 	unsigned long size = 1 << high;
585 
586 	while (high > low) {
587 		area--;
588 		high--;
589 		size >>= 1;
590 		VM_BUG_ON(bad_range(zone, &page[size]));
591 		list_add(&page[size].lru, &area->free_list[migratetype]);
592 		area->nr_free++;
593 		set_page_order(&page[size], high);
594 	}
595 }
596 
597 /*
598  * This page is about to be returned from the page allocator
599  */
600 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
601 {
602 	if (unlikely(page_mapcount(page) |
603 		(page->mapping != NULL)  |
604 		(page_count(page) != 0)  |
605 		(page->flags & (
606 			1 << PG_lru	|
607 			1 << PG_private	|
608 			1 << PG_locked	|
609 			1 << PG_active	|
610 			1 << PG_dirty	|
611 			1 << PG_slab    |
612 			1 << PG_swapcache |
613 			1 << PG_writeback |
614 			1 << PG_reserved |
615 			1 << PG_buddy ))))
616 		bad_page(page);
617 
618 	/*
619 	 * For now, we report if PG_reserved was found set, but do not
620 	 * clear it, and do not allocate the page: as a safety net.
621 	 */
622 	if (PageReserved(page))
623 		return 1;
624 
625 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
626 			1 << PG_referenced | 1 << PG_arch_1 |
627 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
628 	set_page_private(page, 0);
629 	set_page_refcounted(page);
630 
631 	arch_alloc_page(page, order);
632 	kernel_map_pages(page, 1 << order, 1);
633 
634 	if (gfp_flags & __GFP_ZERO)
635 		prep_zero_page(page, order, gfp_flags);
636 
637 	if (order && (gfp_flags & __GFP_COMP))
638 		prep_compound_page(page, order);
639 
640 	return 0;
641 }
642 
643 /*
644  * Go through the free lists for the given migratetype and remove
645  * the smallest available page from the freelists
646  */
647 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
648 						int migratetype)
649 {
650 	unsigned int current_order;
651 	struct free_area * area;
652 	struct page *page;
653 
654 	/* Find a page of the appropriate size in the preferred list */
655 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
656 		area = &(zone->free_area[current_order]);
657 		if (list_empty(&area->free_list[migratetype]))
658 			continue;
659 
660 		page = list_entry(area->free_list[migratetype].next,
661 							struct page, lru);
662 		list_del(&page->lru);
663 		rmv_page_order(page);
664 		area->nr_free--;
665 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
666 		expand(zone, page, order, current_order, area, migratetype);
667 		return page;
668 	}
669 
670 	return NULL;
671 }
672 
673 
674 /*
675  * This array describes the order lists are fallen back to when
676  * the free lists for the desirable migrate type are depleted
677  */
678 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
680 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
681 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
682 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
683 };
684 
685 /*
686  * Move the free pages in a range to the free lists of the requested type.
687  * Note that start_page and end_pages are not aligned on a pageblock
688  * boundary. If alignment is required, use move_freepages_block()
689  */
690 int move_freepages(struct zone *zone,
691 			struct page *start_page, struct page *end_page,
692 			int migratetype)
693 {
694 	struct page *page;
695 	unsigned long order;
696 	int pages_moved = 0;
697 
698 #ifndef CONFIG_HOLES_IN_ZONE
699 	/*
700 	 * page_zone is not safe to call in this context when
701 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
702 	 * anyway as we check zone boundaries in move_freepages_block().
703 	 * Remove at a later date when no bug reports exist related to
704 	 * grouping pages by mobility
705 	 */
706 	BUG_ON(page_zone(start_page) != page_zone(end_page));
707 #endif
708 
709 	for (page = start_page; page <= end_page;) {
710 		if (!pfn_valid_within(page_to_pfn(page))) {
711 			page++;
712 			continue;
713 		}
714 
715 		if (!PageBuddy(page)) {
716 			page++;
717 			continue;
718 		}
719 
720 		order = page_order(page);
721 		list_del(&page->lru);
722 		list_add(&page->lru,
723 			&zone->free_area[order].free_list[migratetype]);
724 		page += 1 << order;
725 		pages_moved += 1 << order;
726 	}
727 
728 	return pages_moved;
729 }
730 
731 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
732 {
733 	unsigned long start_pfn, end_pfn;
734 	struct page *start_page, *end_page;
735 
736 	start_pfn = page_to_pfn(page);
737 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
738 	start_page = pfn_to_page(start_pfn);
739 	end_page = start_page + pageblock_nr_pages - 1;
740 	end_pfn = start_pfn + pageblock_nr_pages - 1;
741 
742 	/* Do not cross zone boundaries */
743 	if (start_pfn < zone->zone_start_pfn)
744 		start_page = page;
745 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
746 		return 0;
747 
748 	return move_freepages(zone, start_page, end_page, migratetype);
749 }
750 
751 /* Return the page with the lowest PFN in the list */
752 static struct page *min_page(struct list_head *list)
753 {
754 	unsigned long min_pfn = -1UL;
755 	struct page *min_page = NULL, *page;;
756 
757 	list_for_each_entry(page, list, lru) {
758 		unsigned long pfn = page_to_pfn(page);
759 		if (pfn < min_pfn) {
760 			min_pfn = pfn;
761 			min_page = page;
762 		}
763 	}
764 
765 	return min_page;
766 }
767 
768 /* Remove an element from the buddy allocator from the fallback list */
769 static struct page *__rmqueue_fallback(struct zone *zone, int order,
770 						int start_migratetype)
771 {
772 	struct free_area * area;
773 	int current_order;
774 	struct page *page;
775 	int migratetype, i;
776 
777 	/* Find the largest possible block of pages in the other list */
778 	for (current_order = MAX_ORDER-1; current_order >= order;
779 						--current_order) {
780 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
781 			migratetype = fallbacks[start_migratetype][i];
782 
783 			/* MIGRATE_RESERVE handled later if necessary */
784 			if (migratetype == MIGRATE_RESERVE)
785 				continue;
786 
787 			area = &(zone->free_area[current_order]);
788 			if (list_empty(&area->free_list[migratetype]))
789 				continue;
790 
791 			/* Bias kernel allocations towards low pfns */
792 			page = list_entry(area->free_list[migratetype].next,
793 					struct page, lru);
794 			if (unlikely(start_migratetype != MIGRATE_MOVABLE))
795 				page = min_page(&area->free_list[migratetype]);
796 			area->nr_free--;
797 
798 			/*
799 			 * If breaking a large block of pages, move all free
800 			 * pages to the preferred allocation list. If falling
801 			 * back for a reclaimable kernel allocation, be more
802 			 * agressive about taking ownership of free pages
803 			 */
804 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
805 					start_migratetype == MIGRATE_RECLAIMABLE) {
806 				unsigned long pages;
807 				pages = move_freepages_block(zone, page,
808 								start_migratetype);
809 
810 				/* Claim the whole block if over half of it is free */
811 				if (pages >= (1 << (pageblock_order-1)))
812 					set_pageblock_migratetype(page,
813 								start_migratetype);
814 
815 				migratetype = start_migratetype;
816 			}
817 
818 			/* Remove the page from the freelists */
819 			list_del(&page->lru);
820 			rmv_page_order(page);
821 			__mod_zone_page_state(zone, NR_FREE_PAGES,
822 							-(1UL << order));
823 
824 			if (current_order == pageblock_order)
825 				set_pageblock_migratetype(page,
826 							start_migratetype);
827 
828 			expand(zone, page, order, current_order, area, migratetype);
829 			return page;
830 		}
831 	}
832 
833 	/* Use MIGRATE_RESERVE rather than fail an allocation */
834 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
835 }
836 
837 /*
838  * Do the hard work of removing an element from the buddy allocator.
839  * Call me with the zone->lock already held.
840  */
841 static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 						int migratetype)
843 {
844 	struct page *page;
845 
846 	page = __rmqueue_smallest(zone, order, migratetype);
847 
848 	if (unlikely(!page))
849 		page = __rmqueue_fallback(zone, order, migratetype);
850 
851 	return page;
852 }
853 
854 /*
855  * Obtain a specified number of elements from the buddy allocator, all under
856  * a single hold of the lock, for efficiency.  Add them to the supplied list.
857  * Returns the number of new pages which were placed at *list.
858  */
859 static int rmqueue_bulk(struct zone *zone, unsigned int order,
860 			unsigned long count, struct list_head *list,
861 			int migratetype)
862 {
863 	int i;
864 
865 	spin_lock(&zone->lock);
866 	for (i = 0; i < count; ++i) {
867 		struct page *page = __rmqueue(zone, order, migratetype);
868 		if (unlikely(page == NULL))
869 			break;
870 		list_add(&page->lru, list);
871 		set_page_private(page, migratetype);
872 	}
873 	spin_unlock(&zone->lock);
874 	return i;
875 }
876 
877 #ifdef CONFIG_NUMA
878 /*
879  * Called from the vmstat counter updater to drain pagesets of this
880  * currently executing processor on remote nodes after they have
881  * expired.
882  *
883  * Note that this function must be called with the thread pinned to
884  * a single processor.
885  */
886 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
887 {
888 	unsigned long flags;
889 	int to_drain;
890 
891 	local_irq_save(flags);
892 	if (pcp->count >= pcp->batch)
893 		to_drain = pcp->batch;
894 	else
895 		to_drain = pcp->count;
896 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
897 	pcp->count -= to_drain;
898 	local_irq_restore(flags);
899 }
900 #endif
901 
902 static void __drain_pages(unsigned int cpu)
903 {
904 	unsigned long flags;
905 	struct zone *zone;
906 	int i;
907 
908 	for_each_zone(zone) {
909 		struct per_cpu_pageset *pset;
910 
911 		if (!populated_zone(zone))
912 			continue;
913 
914 		pset = zone_pcp(zone, cpu);
915 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
916 			struct per_cpu_pages *pcp;
917 
918 			pcp = &pset->pcp[i];
919 			local_irq_save(flags);
920 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
921 			pcp->count = 0;
922 			local_irq_restore(flags);
923 		}
924 	}
925 }
926 
927 #ifdef CONFIG_HIBERNATION
928 
929 void mark_free_pages(struct zone *zone)
930 {
931 	unsigned long pfn, max_zone_pfn;
932 	unsigned long flags;
933 	int order, t;
934 	struct list_head *curr;
935 
936 	if (!zone->spanned_pages)
937 		return;
938 
939 	spin_lock_irqsave(&zone->lock, flags);
940 
941 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
942 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
943 		if (pfn_valid(pfn)) {
944 			struct page *page = pfn_to_page(pfn);
945 
946 			if (!swsusp_page_is_forbidden(page))
947 				swsusp_unset_page_free(page);
948 		}
949 
950 	for_each_migratetype_order(order, t) {
951 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
952 			unsigned long i;
953 
954 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
955 			for (i = 0; i < (1UL << order); i++)
956 				swsusp_set_page_free(pfn_to_page(pfn + i));
957 		}
958 	}
959 	spin_unlock_irqrestore(&zone->lock, flags);
960 }
961 #endif /* CONFIG_PM */
962 
963 /*
964  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
965  */
966 void drain_local_pages(void)
967 {
968 	unsigned long flags;
969 
970 	local_irq_save(flags);
971 	__drain_pages(smp_processor_id());
972 	local_irq_restore(flags);
973 }
974 
975 void smp_drain_local_pages(void *arg)
976 {
977 	drain_local_pages();
978 }
979 
980 /*
981  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
982  */
983 void drain_all_local_pages(void)
984 {
985 	unsigned long flags;
986 
987 	local_irq_save(flags);
988 	__drain_pages(smp_processor_id());
989 	local_irq_restore(flags);
990 
991 	smp_call_function(smp_drain_local_pages, NULL, 0, 1);
992 }
993 
994 /*
995  * Free a 0-order page
996  */
997 static void fastcall free_hot_cold_page(struct page *page, int cold)
998 {
999 	struct zone *zone = page_zone(page);
1000 	struct per_cpu_pages *pcp;
1001 	unsigned long flags;
1002 
1003 	if (PageAnon(page))
1004 		page->mapping = NULL;
1005 	if (free_pages_check(page))
1006 		return;
1007 
1008 	if (!PageHighMem(page))
1009 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1010 	arch_free_page(page, 0);
1011 	kernel_map_pages(page, 1, 0);
1012 
1013 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1014 	local_irq_save(flags);
1015 	__count_vm_event(PGFREE);
1016 	list_add(&page->lru, &pcp->list);
1017 	set_page_private(page, get_pageblock_migratetype(page));
1018 	pcp->count++;
1019 	if (pcp->count >= pcp->high) {
1020 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1021 		pcp->count -= pcp->batch;
1022 	}
1023 	local_irq_restore(flags);
1024 	put_cpu();
1025 }
1026 
1027 void fastcall free_hot_page(struct page *page)
1028 {
1029 	free_hot_cold_page(page, 0);
1030 }
1031 
1032 void fastcall free_cold_page(struct page *page)
1033 {
1034 	free_hot_cold_page(page, 1);
1035 }
1036 
1037 /*
1038  * split_page takes a non-compound higher-order page, and splits it into
1039  * n (1<<order) sub-pages: page[0..n]
1040  * Each sub-page must be freed individually.
1041  *
1042  * Note: this is probably too low level an operation for use in drivers.
1043  * Please consult with lkml before using this in your driver.
1044  */
1045 void split_page(struct page *page, unsigned int order)
1046 {
1047 	int i;
1048 
1049 	VM_BUG_ON(PageCompound(page));
1050 	VM_BUG_ON(!page_count(page));
1051 	for (i = 1; i < (1 << order); i++)
1052 		set_page_refcounted(page + i);
1053 }
1054 
1055 /*
1056  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1057  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1058  * or two.
1059  */
1060 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1061 			struct zone *zone, int order, gfp_t gfp_flags)
1062 {
1063 	unsigned long flags;
1064 	struct page *page;
1065 	int cold = !!(gfp_flags & __GFP_COLD);
1066 	int cpu;
1067 	int migratetype = allocflags_to_migratetype(gfp_flags);
1068 
1069 again:
1070 	cpu  = get_cpu();
1071 	if (likely(order == 0)) {
1072 		struct per_cpu_pages *pcp;
1073 
1074 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
1075 		local_irq_save(flags);
1076 		if (!pcp->count) {
1077 			pcp->count = rmqueue_bulk(zone, 0,
1078 					pcp->batch, &pcp->list, migratetype);
1079 			if (unlikely(!pcp->count))
1080 				goto failed;
1081 		}
1082 
1083 		/* Find a page of the appropriate migrate type */
1084 		list_for_each_entry(page, &pcp->list, lru)
1085 			if (page_private(page) == migratetype)
1086 				break;
1087 
1088 		/* Allocate more to the pcp list if necessary */
1089 		if (unlikely(&page->lru == &pcp->list)) {
1090 			pcp->count += rmqueue_bulk(zone, 0,
1091 					pcp->batch, &pcp->list, migratetype);
1092 			page = list_entry(pcp->list.next, struct page, lru);
1093 		}
1094 
1095 		list_del(&page->lru);
1096 		pcp->count--;
1097 	} else {
1098 		spin_lock_irqsave(&zone->lock, flags);
1099 		page = __rmqueue(zone, order, migratetype);
1100 		spin_unlock(&zone->lock);
1101 		if (!page)
1102 			goto failed;
1103 	}
1104 
1105 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1106 	zone_statistics(zonelist, zone);
1107 	local_irq_restore(flags);
1108 	put_cpu();
1109 
1110 	VM_BUG_ON(bad_range(zone, page));
1111 	if (prep_new_page(page, order, gfp_flags))
1112 		goto again;
1113 	return page;
1114 
1115 failed:
1116 	local_irq_restore(flags);
1117 	put_cpu();
1118 	return NULL;
1119 }
1120 
1121 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1122 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1123 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1124 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1125 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1126 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1127 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1128 
1129 #ifdef CONFIG_FAIL_PAGE_ALLOC
1130 
1131 static struct fail_page_alloc_attr {
1132 	struct fault_attr attr;
1133 
1134 	u32 ignore_gfp_highmem;
1135 	u32 ignore_gfp_wait;
1136 	u32 min_order;
1137 
1138 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1139 
1140 	struct dentry *ignore_gfp_highmem_file;
1141 	struct dentry *ignore_gfp_wait_file;
1142 	struct dentry *min_order_file;
1143 
1144 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1145 
1146 } fail_page_alloc = {
1147 	.attr = FAULT_ATTR_INITIALIZER,
1148 	.ignore_gfp_wait = 1,
1149 	.ignore_gfp_highmem = 1,
1150 	.min_order = 1,
1151 };
1152 
1153 static int __init setup_fail_page_alloc(char *str)
1154 {
1155 	return setup_fault_attr(&fail_page_alloc.attr, str);
1156 }
1157 __setup("fail_page_alloc=", setup_fail_page_alloc);
1158 
1159 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1160 {
1161 	if (order < fail_page_alloc.min_order)
1162 		return 0;
1163 	if (gfp_mask & __GFP_NOFAIL)
1164 		return 0;
1165 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1166 		return 0;
1167 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1168 		return 0;
1169 
1170 	return should_fail(&fail_page_alloc.attr, 1 << order);
1171 }
1172 
1173 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1174 
1175 static int __init fail_page_alloc_debugfs(void)
1176 {
1177 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1178 	struct dentry *dir;
1179 	int err;
1180 
1181 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1182 				       "fail_page_alloc");
1183 	if (err)
1184 		return err;
1185 	dir = fail_page_alloc.attr.dentries.dir;
1186 
1187 	fail_page_alloc.ignore_gfp_wait_file =
1188 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1189 				      &fail_page_alloc.ignore_gfp_wait);
1190 
1191 	fail_page_alloc.ignore_gfp_highmem_file =
1192 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1193 				      &fail_page_alloc.ignore_gfp_highmem);
1194 	fail_page_alloc.min_order_file =
1195 		debugfs_create_u32("min-order", mode, dir,
1196 				   &fail_page_alloc.min_order);
1197 
1198 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1199             !fail_page_alloc.ignore_gfp_highmem_file ||
1200             !fail_page_alloc.min_order_file) {
1201 		err = -ENOMEM;
1202 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1203 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1204 		debugfs_remove(fail_page_alloc.min_order_file);
1205 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1206 	}
1207 
1208 	return err;
1209 }
1210 
1211 late_initcall(fail_page_alloc_debugfs);
1212 
1213 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1214 
1215 #else /* CONFIG_FAIL_PAGE_ALLOC */
1216 
1217 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1218 {
1219 	return 0;
1220 }
1221 
1222 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1223 
1224 /*
1225  * Return 1 if free pages are above 'mark'. This takes into account the order
1226  * of the allocation.
1227  */
1228 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1229 		      int classzone_idx, int alloc_flags)
1230 {
1231 	/* free_pages my go negative - that's OK */
1232 	long min = mark;
1233 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1234 	int o;
1235 
1236 	if (alloc_flags & ALLOC_HIGH)
1237 		min -= min / 2;
1238 	if (alloc_flags & ALLOC_HARDER)
1239 		min -= min / 4;
1240 
1241 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1242 		return 0;
1243 	for (o = 0; o < order; o++) {
1244 		/* At the next order, this order's pages become unavailable */
1245 		free_pages -= z->free_area[o].nr_free << o;
1246 
1247 		/* Require fewer higher order pages to be free */
1248 		min >>= 1;
1249 
1250 		if (free_pages <= min)
1251 			return 0;
1252 	}
1253 	return 1;
1254 }
1255 
1256 #ifdef CONFIG_NUMA
1257 /*
1258  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1259  * skip over zones that are not allowed by the cpuset, or that have
1260  * been recently (in last second) found to be nearly full.  See further
1261  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1262  * that have to skip over alot of full or unallowed zones.
1263  *
1264  * If the zonelist cache is present in the passed in zonelist, then
1265  * returns a pointer to the allowed node mask (either the current
1266  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1267  *
1268  * If the zonelist cache is not available for this zonelist, does
1269  * nothing and returns NULL.
1270  *
1271  * If the fullzones BITMAP in the zonelist cache is stale (more than
1272  * a second since last zap'd) then we zap it out (clear its bits.)
1273  *
1274  * We hold off even calling zlc_setup, until after we've checked the
1275  * first zone in the zonelist, on the theory that most allocations will
1276  * be satisfied from that first zone, so best to examine that zone as
1277  * quickly as we can.
1278  */
1279 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1280 {
1281 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1282 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1283 
1284 	zlc = zonelist->zlcache_ptr;
1285 	if (!zlc)
1286 		return NULL;
1287 
1288 	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1289 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1290 		zlc->last_full_zap = jiffies;
1291 	}
1292 
1293 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1294 					&cpuset_current_mems_allowed :
1295 					&node_states[N_HIGH_MEMORY];
1296 	return allowednodes;
1297 }
1298 
1299 /*
1300  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1301  * if it is worth looking at further for free memory:
1302  *  1) Check that the zone isn't thought to be full (doesn't have its
1303  *     bit set in the zonelist_cache fullzones BITMAP).
1304  *  2) Check that the zones node (obtained from the zonelist_cache
1305  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1306  * Return true (non-zero) if zone is worth looking at further, or
1307  * else return false (zero) if it is not.
1308  *
1309  * This check -ignores- the distinction between various watermarks,
1310  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1311  * found to be full for any variation of these watermarks, it will
1312  * be considered full for up to one second by all requests, unless
1313  * we are so low on memory on all allowed nodes that we are forced
1314  * into the second scan of the zonelist.
1315  *
1316  * In the second scan we ignore this zonelist cache and exactly
1317  * apply the watermarks to all zones, even it is slower to do so.
1318  * We are low on memory in the second scan, and should leave no stone
1319  * unturned looking for a free page.
1320  */
1321 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1322 						nodemask_t *allowednodes)
1323 {
1324 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1325 	int i;				/* index of *z in zonelist zones */
1326 	int n;				/* node that zone *z is on */
1327 
1328 	zlc = zonelist->zlcache_ptr;
1329 	if (!zlc)
1330 		return 1;
1331 
1332 	i = z - zonelist->zones;
1333 	n = zlc->z_to_n[i];
1334 
1335 	/* This zone is worth trying if it is allowed but not full */
1336 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1337 }
1338 
1339 /*
1340  * Given 'z' scanning a zonelist, set the corresponding bit in
1341  * zlc->fullzones, so that subsequent attempts to allocate a page
1342  * from that zone don't waste time re-examining it.
1343  */
1344 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1345 {
1346 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1347 	int i;				/* index of *z in zonelist zones */
1348 
1349 	zlc = zonelist->zlcache_ptr;
1350 	if (!zlc)
1351 		return;
1352 
1353 	i = z - zonelist->zones;
1354 
1355 	set_bit(i, zlc->fullzones);
1356 }
1357 
1358 #else	/* CONFIG_NUMA */
1359 
1360 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1361 {
1362 	return NULL;
1363 }
1364 
1365 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1366 				nodemask_t *allowednodes)
1367 {
1368 	return 1;
1369 }
1370 
1371 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1372 {
1373 }
1374 #endif	/* CONFIG_NUMA */
1375 
1376 /*
1377  * get_page_from_freelist goes through the zonelist trying to allocate
1378  * a page.
1379  */
1380 static struct page *
1381 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1382 		struct zonelist *zonelist, int alloc_flags)
1383 {
1384 	struct zone **z;
1385 	struct page *page = NULL;
1386 	int classzone_idx = zone_idx(zonelist->zones[0]);
1387 	struct zone *zone;
1388 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1389 	int zlc_active = 0;		/* set if using zonelist_cache */
1390 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1391 	enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1392 
1393 zonelist_scan:
1394 	/*
1395 	 * Scan zonelist, looking for a zone with enough free.
1396 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1397 	 */
1398 	z = zonelist->zones;
1399 
1400 	do {
1401 		/*
1402 		 * In NUMA, this could be a policy zonelist which contains
1403 		 * zones that may not be allowed by the current gfp_mask.
1404 		 * Check the zone is allowed by the current flags
1405 		 */
1406 		if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1407 			if (highest_zoneidx == -1)
1408 				highest_zoneidx = gfp_zone(gfp_mask);
1409 			if (zone_idx(*z) > highest_zoneidx)
1410 				continue;
1411 		}
1412 
1413 		if (NUMA_BUILD && zlc_active &&
1414 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1415 				continue;
1416 		zone = *z;
1417 		if ((alloc_flags & ALLOC_CPUSET) &&
1418 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1419 				goto try_next_zone;
1420 
1421 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1422 			unsigned long mark;
1423 			if (alloc_flags & ALLOC_WMARK_MIN)
1424 				mark = zone->pages_min;
1425 			else if (alloc_flags & ALLOC_WMARK_LOW)
1426 				mark = zone->pages_low;
1427 			else
1428 				mark = zone->pages_high;
1429 			if (!zone_watermark_ok(zone, order, mark,
1430 				    classzone_idx, alloc_flags)) {
1431 				if (!zone_reclaim_mode ||
1432 				    !zone_reclaim(zone, gfp_mask, order))
1433 					goto this_zone_full;
1434 			}
1435 		}
1436 
1437 		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1438 		if (page)
1439 			break;
1440 this_zone_full:
1441 		if (NUMA_BUILD)
1442 			zlc_mark_zone_full(zonelist, z);
1443 try_next_zone:
1444 		if (NUMA_BUILD && !did_zlc_setup) {
1445 			/* we do zlc_setup after the first zone is tried */
1446 			allowednodes = zlc_setup(zonelist, alloc_flags);
1447 			zlc_active = 1;
1448 			did_zlc_setup = 1;
1449 		}
1450 	} while (*(++z) != NULL);
1451 
1452 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453 		/* Disable zlc cache for second zonelist scan */
1454 		zlc_active = 0;
1455 		goto zonelist_scan;
1456 	}
1457 	return page;
1458 }
1459 
1460 /*
1461  * This is the 'heart' of the zoned buddy allocator.
1462  */
1463 struct page * fastcall
1464 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1465 		struct zonelist *zonelist)
1466 {
1467 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1468 	struct zone **z;
1469 	struct page *page;
1470 	struct reclaim_state reclaim_state;
1471 	struct task_struct *p = current;
1472 	int do_retry;
1473 	int alloc_flags;
1474 	int did_some_progress;
1475 
1476 	might_sleep_if(wait);
1477 
1478 	if (should_fail_alloc_page(gfp_mask, order))
1479 		return NULL;
1480 
1481 restart:
1482 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1483 
1484 	if (unlikely(*z == NULL)) {
1485 		/*
1486 		 * Happens if we have an empty zonelist as a result of
1487 		 * GFP_THISNODE being used on a memoryless node
1488 		 */
1489 		return NULL;
1490 	}
1491 
1492 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1493 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1494 	if (page)
1495 		goto got_pg;
1496 
1497 	/*
1498 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1499 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1500 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1501 	 * using a larger set of nodes after it has established that the
1502 	 * allowed per node queues are empty and that nodes are
1503 	 * over allocated.
1504 	 */
1505 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1506 		goto nopage;
1507 
1508 	for (z = zonelist->zones; *z; z++)
1509 		wakeup_kswapd(*z, order);
1510 
1511 	/*
1512 	 * OK, we're below the kswapd watermark and have kicked background
1513 	 * reclaim. Now things get more complex, so set up alloc_flags according
1514 	 * to how we want to proceed.
1515 	 *
1516 	 * The caller may dip into page reserves a bit more if the caller
1517 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1518 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1519 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1520 	 */
1521 	alloc_flags = ALLOC_WMARK_MIN;
1522 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1523 		alloc_flags |= ALLOC_HARDER;
1524 	if (gfp_mask & __GFP_HIGH)
1525 		alloc_flags |= ALLOC_HIGH;
1526 	if (wait)
1527 		alloc_flags |= ALLOC_CPUSET;
1528 
1529 	/*
1530 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1531 	 * coming from realtime tasks go deeper into reserves.
1532 	 *
1533 	 * This is the last chance, in general, before the goto nopage.
1534 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1535 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1536 	 */
1537 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1538 	if (page)
1539 		goto got_pg;
1540 
1541 	/* This allocation should allow future memory freeing. */
1542 
1543 rebalance:
1544 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1545 			&& !in_interrupt()) {
1546 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1547 nofail_alloc:
1548 			/* go through the zonelist yet again, ignoring mins */
1549 			page = get_page_from_freelist(gfp_mask, order,
1550 				zonelist, ALLOC_NO_WATERMARKS);
1551 			if (page)
1552 				goto got_pg;
1553 			if (gfp_mask & __GFP_NOFAIL) {
1554 				congestion_wait(WRITE, HZ/50);
1555 				goto nofail_alloc;
1556 			}
1557 		}
1558 		goto nopage;
1559 	}
1560 
1561 	/* Atomic allocations - we can't balance anything */
1562 	if (!wait)
1563 		goto nopage;
1564 
1565 	cond_resched();
1566 
1567 	/* We now go into synchronous reclaim */
1568 	cpuset_memory_pressure_bump();
1569 	p->flags |= PF_MEMALLOC;
1570 	reclaim_state.reclaimed_slab = 0;
1571 	p->reclaim_state = &reclaim_state;
1572 
1573 	did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1574 
1575 	p->reclaim_state = NULL;
1576 	p->flags &= ~PF_MEMALLOC;
1577 
1578 	cond_resched();
1579 
1580 	if (order != 0)
1581 		drain_all_local_pages();
1582 
1583 	if (likely(did_some_progress)) {
1584 		page = get_page_from_freelist(gfp_mask, order,
1585 						zonelist, alloc_flags);
1586 		if (page)
1587 			goto got_pg;
1588 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1589 		/*
1590 		 * Go through the zonelist yet one more time, keep
1591 		 * very high watermark here, this is only to catch
1592 		 * a parallel oom killing, we must fail if we're still
1593 		 * under heavy pressure.
1594 		 */
1595 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1596 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1597 		if (page)
1598 			goto got_pg;
1599 
1600 		/* The OOM killer will not help higher order allocs so fail */
1601 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1602 			goto nopage;
1603 
1604 		out_of_memory(zonelist, gfp_mask, order);
1605 		goto restart;
1606 	}
1607 
1608 	/*
1609 	 * Don't let big-order allocations loop unless the caller explicitly
1610 	 * requests that.  Wait for some write requests to complete then retry.
1611 	 *
1612 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1613 	 * <= 3, but that may not be true in other implementations.
1614 	 */
1615 	do_retry = 0;
1616 	if (!(gfp_mask & __GFP_NORETRY)) {
1617 		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1618 						(gfp_mask & __GFP_REPEAT))
1619 			do_retry = 1;
1620 		if (gfp_mask & __GFP_NOFAIL)
1621 			do_retry = 1;
1622 	}
1623 	if (do_retry) {
1624 		congestion_wait(WRITE, HZ/50);
1625 		goto rebalance;
1626 	}
1627 
1628 nopage:
1629 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1630 		printk(KERN_WARNING "%s: page allocation failure."
1631 			" order:%d, mode:0x%x\n",
1632 			p->comm, order, gfp_mask);
1633 		dump_stack();
1634 		show_mem();
1635 	}
1636 got_pg:
1637 	return page;
1638 }
1639 
1640 EXPORT_SYMBOL(__alloc_pages);
1641 
1642 /*
1643  * Common helper functions.
1644  */
1645 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1646 {
1647 	struct page * page;
1648 	page = alloc_pages(gfp_mask, order);
1649 	if (!page)
1650 		return 0;
1651 	return (unsigned long) page_address(page);
1652 }
1653 
1654 EXPORT_SYMBOL(__get_free_pages);
1655 
1656 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1657 {
1658 	struct page * page;
1659 
1660 	/*
1661 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1662 	 * a highmem page
1663 	 */
1664 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1665 
1666 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1667 	if (page)
1668 		return (unsigned long) page_address(page);
1669 	return 0;
1670 }
1671 
1672 EXPORT_SYMBOL(get_zeroed_page);
1673 
1674 void __pagevec_free(struct pagevec *pvec)
1675 {
1676 	int i = pagevec_count(pvec);
1677 
1678 	while (--i >= 0)
1679 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1680 }
1681 
1682 fastcall void __free_pages(struct page *page, unsigned int order)
1683 {
1684 	if (put_page_testzero(page)) {
1685 		if (order == 0)
1686 			free_hot_page(page);
1687 		else
1688 			__free_pages_ok(page, order);
1689 	}
1690 }
1691 
1692 EXPORT_SYMBOL(__free_pages);
1693 
1694 fastcall void free_pages(unsigned long addr, unsigned int order)
1695 {
1696 	if (addr != 0) {
1697 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1698 		__free_pages(virt_to_page((void *)addr), order);
1699 	}
1700 }
1701 
1702 EXPORT_SYMBOL(free_pages);
1703 
1704 static unsigned int nr_free_zone_pages(int offset)
1705 {
1706 	/* Just pick one node, since fallback list is circular */
1707 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1708 	unsigned int sum = 0;
1709 
1710 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1711 	struct zone **zonep = zonelist->zones;
1712 	struct zone *zone;
1713 
1714 	for (zone = *zonep++; zone; zone = *zonep++) {
1715 		unsigned long size = zone->present_pages;
1716 		unsigned long high = zone->pages_high;
1717 		if (size > high)
1718 			sum += size - high;
1719 	}
1720 
1721 	return sum;
1722 }
1723 
1724 /*
1725  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1726  */
1727 unsigned int nr_free_buffer_pages(void)
1728 {
1729 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1730 }
1731 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1732 
1733 /*
1734  * Amount of free RAM allocatable within all zones
1735  */
1736 unsigned int nr_free_pagecache_pages(void)
1737 {
1738 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1739 }
1740 
1741 static inline void show_node(struct zone *zone)
1742 {
1743 	if (NUMA_BUILD)
1744 		printk("Node %d ", zone_to_nid(zone));
1745 }
1746 
1747 void si_meminfo(struct sysinfo *val)
1748 {
1749 	val->totalram = totalram_pages;
1750 	val->sharedram = 0;
1751 	val->freeram = global_page_state(NR_FREE_PAGES);
1752 	val->bufferram = nr_blockdev_pages();
1753 	val->totalhigh = totalhigh_pages;
1754 	val->freehigh = nr_free_highpages();
1755 	val->mem_unit = PAGE_SIZE;
1756 }
1757 
1758 EXPORT_SYMBOL(si_meminfo);
1759 
1760 #ifdef CONFIG_NUMA
1761 void si_meminfo_node(struct sysinfo *val, int nid)
1762 {
1763 	pg_data_t *pgdat = NODE_DATA(nid);
1764 
1765 	val->totalram = pgdat->node_present_pages;
1766 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1767 #ifdef CONFIG_HIGHMEM
1768 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1769 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1770 			NR_FREE_PAGES);
1771 #else
1772 	val->totalhigh = 0;
1773 	val->freehigh = 0;
1774 #endif
1775 	val->mem_unit = PAGE_SIZE;
1776 }
1777 #endif
1778 
1779 #define K(x) ((x) << (PAGE_SHIFT-10))
1780 
1781 /*
1782  * Show free area list (used inside shift_scroll-lock stuff)
1783  * We also calculate the percentage fragmentation. We do this by counting the
1784  * memory on each free list with the exception of the first item on the list.
1785  */
1786 void show_free_areas(void)
1787 {
1788 	int cpu;
1789 	struct zone *zone;
1790 
1791 	for_each_zone(zone) {
1792 		if (!populated_zone(zone))
1793 			continue;
1794 
1795 		show_node(zone);
1796 		printk("%s per-cpu:\n", zone->name);
1797 
1798 		for_each_online_cpu(cpu) {
1799 			struct per_cpu_pageset *pageset;
1800 
1801 			pageset = zone_pcp(zone, cpu);
1802 
1803 			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1804 			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1805 			       cpu, pageset->pcp[0].high,
1806 			       pageset->pcp[0].batch, pageset->pcp[0].count,
1807 			       pageset->pcp[1].high, pageset->pcp[1].batch,
1808 			       pageset->pcp[1].count);
1809 		}
1810 	}
1811 
1812 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1813 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1814 		global_page_state(NR_ACTIVE),
1815 		global_page_state(NR_INACTIVE),
1816 		global_page_state(NR_FILE_DIRTY),
1817 		global_page_state(NR_WRITEBACK),
1818 		global_page_state(NR_UNSTABLE_NFS),
1819 		global_page_state(NR_FREE_PAGES),
1820 		global_page_state(NR_SLAB_RECLAIMABLE) +
1821 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1822 		global_page_state(NR_FILE_MAPPED),
1823 		global_page_state(NR_PAGETABLE),
1824 		global_page_state(NR_BOUNCE));
1825 
1826 	for_each_zone(zone) {
1827 		int i;
1828 
1829 		if (!populated_zone(zone))
1830 			continue;
1831 
1832 		show_node(zone);
1833 		printk("%s"
1834 			" free:%lukB"
1835 			" min:%lukB"
1836 			" low:%lukB"
1837 			" high:%lukB"
1838 			" active:%lukB"
1839 			" inactive:%lukB"
1840 			" present:%lukB"
1841 			" pages_scanned:%lu"
1842 			" all_unreclaimable? %s"
1843 			"\n",
1844 			zone->name,
1845 			K(zone_page_state(zone, NR_FREE_PAGES)),
1846 			K(zone->pages_min),
1847 			K(zone->pages_low),
1848 			K(zone->pages_high),
1849 			K(zone_page_state(zone, NR_ACTIVE)),
1850 			K(zone_page_state(zone, NR_INACTIVE)),
1851 			K(zone->present_pages),
1852 			zone->pages_scanned,
1853 			(zone->all_unreclaimable ? "yes" : "no")
1854 			);
1855 		printk("lowmem_reserve[]:");
1856 		for (i = 0; i < MAX_NR_ZONES; i++)
1857 			printk(" %lu", zone->lowmem_reserve[i]);
1858 		printk("\n");
1859 	}
1860 
1861 	for_each_zone(zone) {
1862  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1863 
1864 		if (!populated_zone(zone))
1865 			continue;
1866 
1867 		show_node(zone);
1868 		printk("%s: ", zone->name);
1869 
1870 		spin_lock_irqsave(&zone->lock, flags);
1871 		for (order = 0; order < MAX_ORDER; order++) {
1872 			nr[order] = zone->free_area[order].nr_free;
1873 			total += nr[order] << order;
1874 		}
1875 		spin_unlock_irqrestore(&zone->lock, flags);
1876 		for (order = 0; order < MAX_ORDER; order++)
1877 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1878 		printk("= %lukB\n", K(total));
1879 	}
1880 
1881 	show_swap_cache_info();
1882 }
1883 
1884 /*
1885  * Builds allocation fallback zone lists.
1886  *
1887  * Add all populated zones of a node to the zonelist.
1888  */
1889 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1890 				int nr_zones, enum zone_type zone_type)
1891 {
1892 	struct zone *zone;
1893 
1894 	BUG_ON(zone_type >= MAX_NR_ZONES);
1895 	zone_type++;
1896 
1897 	do {
1898 		zone_type--;
1899 		zone = pgdat->node_zones + zone_type;
1900 		if (populated_zone(zone)) {
1901 			zonelist->zones[nr_zones++] = zone;
1902 			check_highest_zone(zone_type);
1903 		}
1904 
1905 	} while (zone_type);
1906 	return nr_zones;
1907 }
1908 
1909 
1910 /*
1911  *  zonelist_order:
1912  *  0 = automatic detection of better ordering.
1913  *  1 = order by ([node] distance, -zonetype)
1914  *  2 = order by (-zonetype, [node] distance)
1915  *
1916  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1917  *  the same zonelist. So only NUMA can configure this param.
1918  */
1919 #define ZONELIST_ORDER_DEFAULT  0
1920 #define ZONELIST_ORDER_NODE     1
1921 #define ZONELIST_ORDER_ZONE     2
1922 
1923 /* zonelist order in the kernel.
1924  * set_zonelist_order() will set this to NODE or ZONE.
1925  */
1926 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1927 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1928 
1929 
1930 #ifdef CONFIG_NUMA
1931 /* The value user specified ....changed by config */
1932 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1933 /* string for sysctl */
1934 #define NUMA_ZONELIST_ORDER_LEN	16
1935 char numa_zonelist_order[16] = "default";
1936 
1937 /*
1938  * interface for configure zonelist ordering.
1939  * command line option "numa_zonelist_order"
1940  *	= "[dD]efault	- default, automatic configuration.
1941  *	= "[nN]ode 	- order by node locality, then by zone within node
1942  *	= "[zZ]one      - order by zone, then by locality within zone
1943  */
1944 
1945 static int __parse_numa_zonelist_order(char *s)
1946 {
1947 	if (*s == 'd' || *s == 'D') {
1948 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1949 	} else if (*s == 'n' || *s == 'N') {
1950 		user_zonelist_order = ZONELIST_ORDER_NODE;
1951 	} else if (*s == 'z' || *s == 'Z') {
1952 		user_zonelist_order = ZONELIST_ORDER_ZONE;
1953 	} else {
1954 		printk(KERN_WARNING
1955 			"Ignoring invalid numa_zonelist_order value:  "
1956 			"%s\n", s);
1957 		return -EINVAL;
1958 	}
1959 	return 0;
1960 }
1961 
1962 static __init int setup_numa_zonelist_order(char *s)
1963 {
1964 	if (s)
1965 		return __parse_numa_zonelist_order(s);
1966 	return 0;
1967 }
1968 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1969 
1970 /*
1971  * sysctl handler for numa_zonelist_order
1972  */
1973 int numa_zonelist_order_handler(ctl_table *table, int write,
1974 		struct file *file, void __user *buffer, size_t *length,
1975 		loff_t *ppos)
1976 {
1977 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1978 	int ret;
1979 
1980 	if (write)
1981 		strncpy(saved_string, (char*)table->data,
1982 			NUMA_ZONELIST_ORDER_LEN);
1983 	ret = proc_dostring(table, write, file, buffer, length, ppos);
1984 	if (ret)
1985 		return ret;
1986 	if (write) {
1987 		int oldval = user_zonelist_order;
1988 		if (__parse_numa_zonelist_order((char*)table->data)) {
1989 			/*
1990 			 * bogus value.  restore saved string
1991 			 */
1992 			strncpy((char*)table->data, saved_string,
1993 				NUMA_ZONELIST_ORDER_LEN);
1994 			user_zonelist_order = oldval;
1995 		} else if (oldval != user_zonelist_order)
1996 			build_all_zonelists();
1997 	}
1998 	return 0;
1999 }
2000 
2001 
2002 #define MAX_NODE_LOAD (num_online_nodes())
2003 static int node_load[MAX_NUMNODES];
2004 
2005 /**
2006  * find_next_best_node - find the next node that should appear in a given node's fallback list
2007  * @node: node whose fallback list we're appending
2008  * @used_node_mask: nodemask_t of already used nodes
2009  *
2010  * We use a number of factors to determine which is the next node that should
2011  * appear on a given node's fallback list.  The node should not have appeared
2012  * already in @node's fallback list, and it should be the next closest node
2013  * according to the distance array (which contains arbitrary distance values
2014  * from each node to each node in the system), and should also prefer nodes
2015  * with no CPUs, since presumably they'll have very little allocation pressure
2016  * on them otherwise.
2017  * It returns -1 if no node is found.
2018  */
2019 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2020 {
2021 	int n, val;
2022 	int min_val = INT_MAX;
2023 	int best_node = -1;
2024 
2025 	/* Use the local node if we haven't already */
2026 	if (!node_isset(node, *used_node_mask)) {
2027 		node_set(node, *used_node_mask);
2028 		return node;
2029 	}
2030 
2031 	for_each_node_state(n, N_HIGH_MEMORY) {
2032 		cpumask_t tmp;
2033 
2034 		/* Don't want a node to appear more than once */
2035 		if (node_isset(n, *used_node_mask))
2036 			continue;
2037 
2038 		/* Use the distance array to find the distance */
2039 		val = node_distance(node, n);
2040 
2041 		/* Penalize nodes under us ("prefer the next node") */
2042 		val += (n < node);
2043 
2044 		/* Give preference to headless and unused nodes */
2045 		tmp = node_to_cpumask(n);
2046 		if (!cpus_empty(tmp))
2047 			val += PENALTY_FOR_NODE_WITH_CPUS;
2048 
2049 		/* Slight preference for less loaded node */
2050 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2051 		val += node_load[n];
2052 
2053 		if (val < min_val) {
2054 			min_val = val;
2055 			best_node = n;
2056 		}
2057 	}
2058 
2059 	if (best_node >= 0)
2060 		node_set(best_node, *used_node_mask);
2061 
2062 	return best_node;
2063 }
2064 
2065 
2066 /*
2067  * Build zonelists ordered by node and zones within node.
2068  * This results in maximum locality--normal zone overflows into local
2069  * DMA zone, if any--but risks exhausting DMA zone.
2070  */
2071 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2072 {
2073 	enum zone_type i;
2074 	int j;
2075 	struct zonelist *zonelist;
2076 
2077 	for (i = 0; i < MAX_NR_ZONES; i++) {
2078 		zonelist = pgdat->node_zonelists + i;
2079 		for (j = 0; zonelist->zones[j] != NULL; j++)
2080 			;
2081  		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2082 		zonelist->zones[j] = NULL;
2083 	}
2084 }
2085 
2086 /*
2087  * Build gfp_thisnode zonelists
2088  */
2089 static void build_thisnode_zonelists(pg_data_t *pgdat)
2090 {
2091 	enum zone_type i;
2092 	int j;
2093 	struct zonelist *zonelist;
2094 
2095 	for (i = 0; i < MAX_NR_ZONES; i++) {
2096 		zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2097 		j = build_zonelists_node(pgdat, zonelist, 0, i);
2098 		zonelist->zones[j] = NULL;
2099 	}
2100 }
2101 
2102 /*
2103  * Build zonelists ordered by zone and nodes within zones.
2104  * This results in conserving DMA zone[s] until all Normal memory is
2105  * exhausted, but results in overflowing to remote node while memory
2106  * may still exist in local DMA zone.
2107  */
2108 static int node_order[MAX_NUMNODES];
2109 
2110 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2111 {
2112 	enum zone_type i;
2113 	int pos, j, node;
2114 	int zone_type;		/* needs to be signed */
2115 	struct zone *z;
2116 	struct zonelist *zonelist;
2117 
2118 	for (i = 0; i < MAX_NR_ZONES; i++) {
2119 		zonelist = pgdat->node_zonelists + i;
2120 		pos = 0;
2121 		for (zone_type = i; zone_type >= 0; zone_type--) {
2122 			for (j = 0; j < nr_nodes; j++) {
2123 				node = node_order[j];
2124 				z = &NODE_DATA(node)->node_zones[zone_type];
2125 				if (populated_zone(z)) {
2126 					zonelist->zones[pos++] = z;
2127 					check_highest_zone(zone_type);
2128 				}
2129 			}
2130 		}
2131 		zonelist->zones[pos] = NULL;
2132 	}
2133 }
2134 
2135 static int default_zonelist_order(void)
2136 {
2137 	int nid, zone_type;
2138 	unsigned long low_kmem_size,total_size;
2139 	struct zone *z;
2140 	int average_size;
2141 	/*
2142          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2143 	 * If they are really small and used heavily, the system can fall
2144 	 * into OOM very easily.
2145 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2146 	 */
2147 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2148 	low_kmem_size = 0;
2149 	total_size = 0;
2150 	for_each_online_node(nid) {
2151 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2152 			z = &NODE_DATA(nid)->node_zones[zone_type];
2153 			if (populated_zone(z)) {
2154 				if (zone_type < ZONE_NORMAL)
2155 					low_kmem_size += z->present_pages;
2156 				total_size += z->present_pages;
2157 			}
2158 		}
2159 	}
2160 	if (!low_kmem_size ||  /* there are no DMA area. */
2161 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2162 		return ZONELIST_ORDER_NODE;
2163 	/*
2164 	 * look into each node's config.
2165   	 * If there is a node whose DMA/DMA32 memory is very big area on
2166  	 * local memory, NODE_ORDER may be suitable.
2167          */
2168 	average_size = total_size /
2169 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2170 	for_each_online_node(nid) {
2171 		low_kmem_size = 0;
2172 		total_size = 0;
2173 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2174 			z = &NODE_DATA(nid)->node_zones[zone_type];
2175 			if (populated_zone(z)) {
2176 				if (zone_type < ZONE_NORMAL)
2177 					low_kmem_size += z->present_pages;
2178 				total_size += z->present_pages;
2179 			}
2180 		}
2181 		if (low_kmem_size &&
2182 		    total_size > average_size && /* ignore small node */
2183 		    low_kmem_size > total_size * 70/100)
2184 			return ZONELIST_ORDER_NODE;
2185 	}
2186 	return ZONELIST_ORDER_ZONE;
2187 }
2188 
2189 static void set_zonelist_order(void)
2190 {
2191 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2192 		current_zonelist_order = default_zonelist_order();
2193 	else
2194 		current_zonelist_order = user_zonelist_order;
2195 }
2196 
2197 static void build_zonelists(pg_data_t *pgdat)
2198 {
2199 	int j, node, load;
2200 	enum zone_type i;
2201 	nodemask_t used_mask;
2202 	int local_node, prev_node;
2203 	struct zonelist *zonelist;
2204 	int order = current_zonelist_order;
2205 
2206 	/* initialize zonelists */
2207 	for (i = 0; i < MAX_ZONELISTS; i++) {
2208 		zonelist = pgdat->node_zonelists + i;
2209 		zonelist->zones[0] = NULL;
2210 	}
2211 
2212 	/* NUMA-aware ordering of nodes */
2213 	local_node = pgdat->node_id;
2214 	load = num_online_nodes();
2215 	prev_node = local_node;
2216 	nodes_clear(used_mask);
2217 
2218 	memset(node_load, 0, sizeof(node_load));
2219 	memset(node_order, 0, sizeof(node_order));
2220 	j = 0;
2221 
2222 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2223 		int distance = node_distance(local_node, node);
2224 
2225 		/*
2226 		 * If another node is sufficiently far away then it is better
2227 		 * to reclaim pages in a zone before going off node.
2228 		 */
2229 		if (distance > RECLAIM_DISTANCE)
2230 			zone_reclaim_mode = 1;
2231 
2232 		/*
2233 		 * We don't want to pressure a particular node.
2234 		 * So adding penalty to the first node in same
2235 		 * distance group to make it round-robin.
2236 		 */
2237 		if (distance != node_distance(local_node, prev_node))
2238 			node_load[node] = load;
2239 
2240 		prev_node = node;
2241 		load--;
2242 		if (order == ZONELIST_ORDER_NODE)
2243 			build_zonelists_in_node_order(pgdat, node);
2244 		else
2245 			node_order[j++] = node;	/* remember order */
2246 	}
2247 
2248 	if (order == ZONELIST_ORDER_ZONE) {
2249 		/* calculate node order -- i.e., DMA last! */
2250 		build_zonelists_in_zone_order(pgdat, j);
2251 	}
2252 
2253 	build_thisnode_zonelists(pgdat);
2254 }
2255 
2256 /* Construct the zonelist performance cache - see further mmzone.h */
2257 static void build_zonelist_cache(pg_data_t *pgdat)
2258 {
2259 	int i;
2260 
2261 	for (i = 0; i < MAX_NR_ZONES; i++) {
2262 		struct zonelist *zonelist;
2263 		struct zonelist_cache *zlc;
2264 		struct zone **z;
2265 
2266 		zonelist = pgdat->node_zonelists + i;
2267 		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2268 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2269 		for (z = zonelist->zones; *z; z++)
2270 			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2271 	}
2272 }
2273 
2274 
2275 #else	/* CONFIG_NUMA */
2276 
2277 static void set_zonelist_order(void)
2278 {
2279 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2280 }
2281 
2282 static void build_zonelists(pg_data_t *pgdat)
2283 {
2284 	int node, local_node;
2285 	enum zone_type i,j;
2286 
2287 	local_node = pgdat->node_id;
2288 	for (i = 0; i < MAX_NR_ZONES; i++) {
2289 		struct zonelist *zonelist;
2290 
2291 		zonelist = pgdat->node_zonelists + i;
2292 
2293  		j = build_zonelists_node(pgdat, zonelist, 0, i);
2294  		/*
2295  		 * Now we build the zonelist so that it contains the zones
2296  		 * of all the other nodes.
2297  		 * We don't want to pressure a particular node, so when
2298  		 * building the zones for node N, we make sure that the
2299  		 * zones coming right after the local ones are those from
2300  		 * node N+1 (modulo N)
2301  		 */
2302 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2303 			if (!node_online(node))
2304 				continue;
2305 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2306 		}
2307 		for (node = 0; node < local_node; node++) {
2308 			if (!node_online(node))
2309 				continue;
2310 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2311 		}
2312 
2313 		zonelist->zones[j] = NULL;
2314 	}
2315 }
2316 
2317 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2318 static void build_zonelist_cache(pg_data_t *pgdat)
2319 {
2320 	int i;
2321 
2322 	for (i = 0; i < MAX_NR_ZONES; i++)
2323 		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2324 }
2325 
2326 #endif	/* CONFIG_NUMA */
2327 
2328 /* return values int ....just for stop_machine_run() */
2329 static int __build_all_zonelists(void *dummy)
2330 {
2331 	int nid;
2332 
2333 	for_each_online_node(nid) {
2334 		pg_data_t *pgdat = NODE_DATA(nid);
2335 
2336 		build_zonelists(pgdat);
2337 		build_zonelist_cache(pgdat);
2338 	}
2339 	return 0;
2340 }
2341 
2342 void build_all_zonelists(void)
2343 {
2344 	set_zonelist_order();
2345 
2346 	if (system_state == SYSTEM_BOOTING) {
2347 		__build_all_zonelists(NULL);
2348 		cpuset_init_current_mems_allowed();
2349 	} else {
2350 		/* we have to stop all cpus to guaranntee there is no user
2351 		   of zonelist */
2352 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2353 		/* cpuset refresh routine should be here */
2354 	}
2355 	vm_total_pages = nr_free_pagecache_pages();
2356 	/*
2357 	 * Disable grouping by mobility if the number of pages in the
2358 	 * system is too low to allow the mechanism to work. It would be
2359 	 * more accurate, but expensive to check per-zone. This check is
2360 	 * made on memory-hotadd so a system can start with mobility
2361 	 * disabled and enable it later
2362 	 */
2363 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2364 		page_group_by_mobility_disabled = 1;
2365 	else
2366 		page_group_by_mobility_disabled = 0;
2367 
2368 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2369 		"Total pages: %ld\n",
2370 			num_online_nodes(),
2371 			zonelist_order_name[current_zonelist_order],
2372 			page_group_by_mobility_disabled ? "off" : "on",
2373 			vm_total_pages);
2374 #ifdef CONFIG_NUMA
2375 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2376 #endif
2377 }
2378 
2379 /*
2380  * Helper functions to size the waitqueue hash table.
2381  * Essentially these want to choose hash table sizes sufficiently
2382  * large so that collisions trying to wait on pages are rare.
2383  * But in fact, the number of active page waitqueues on typical
2384  * systems is ridiculously low, less than 200. So this is even
2385  * conservative, even though it seems large.
2386  *
2387  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2388  * waitqueues, i.e. the size of the waitq table given the number of pages.
2389  */
2390 #define PAGES_PER_WAITQUEUE	256
2391 
2392 #ifndef CONFIG_MEMORY_HOTPLUG
2393 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2394 {
2395 	unsigned long size = 1;
2396 
2397 	pages /= PAGES_PER_WAITQUEUE;
2398 
2399 	while (size < pages)
2400 		size <<= 1;
2401 
2402 	/*
2403 	 * Once we have dozens or even hundreds of threads sleeping
2404 	 * on IO we've got bigger problems than wait queue collision.
2405 	 * Limit the size of the wait table to a reasonable size.
2406 	 */
2407 	size = min(size, 4096UL);
2408 
2409 	return max(size, 4UL);
2410 }
2411 #else
2412 /*
2413  * A zone's size might be changed by hot-add, so it is not possible to determine
2414  * a suitable size for its wait_table.  So we use the maximum size now.
2415  *
2416  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2417  *
2418  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2419  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2420  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2421  *
2422  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2423  * or more by the traditional way. (See above).  It equals:
2424  *
2425  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2426  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2427  *    powerpc (64K page size)             : =  (32G +16M)byte.
2428  */
2429 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2430 {
2431 	return 4096UL;
2432 }
2433 #endif
2434 
2435 /*
2436  * This is an integer logarithm so that shifts can be used later
2437  * to extract the more random high bits from the multiplicative
2438  * hash function before the remainder is taken.
2439  */
2440 static inline unsigned long wait_table_bits(unsigned long size)
2441 {
2442 	return ffz(~size);
2443 }
2444 
2445 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2446 
2447 /*
2448  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2449  * of blocks reserved is based on zone->pages_min. The memory within the
2450  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2451  * higher will lead to a bigger reserve which will get freed as contiguous
2452  * blocks as reclaim kicks in
2453  */
2454 static void setup_zone_migrate_reserve(struct zone *zone)
2455 {
2456 	unsigned long start_pfn, pfn, end_pfn;
2457 	struct page *page;
2458 	unsigned long reserve, block_migratetype;
2459 
2460 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2461 	start_pfn = zone->zone_start_pfn;
2462 	end_pfn = start_pfn + zone->spanned_pages;
2463 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2464 							pageblock_order;
2465 
2466 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2467 		if (!pfn_valid(pfn))
2468 			continue;
2469 		page = pfn_to_page(pfn);
2470 
2471 		/* Blocks with reserved pages will never free, skip them. */
2472 		if (PageReserved(page))
2473 			continue;
2474 
2475 		block_migratetype = get_pageblock_migratetype(page);
2476 
2477 		/* If this block is reserved, account for it */
2478 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2479 			reserve--;
2480 			continue;
2481 		}
2482 
2483 		/* Suitable for reserving if this block is movable */
2484 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2485 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2486 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2487 			reserve--;
2488 			continue;
2489 		}
2490 
2491 		/*
2492 		 * If the reserve is met and this is a previous reserved block,
2493 		 * take it back
2494 		 */
2495 		if (block_migratetype == MIGRATE_RESERVE) {
2496 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2497 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2498 		}
2499 	}
2500 }
2501 
2502 /*
2503  * Initially all pages are reserved - free ones are freed
2504  * up by free_all_bootmem() once the early boot process is
2505  * done. Non-atomic initialization, single-pass.
2506  */
2507 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2508 		unsigned long start_pfn, enum memmap_context context)
2509 {
2510 	struct page *page;
2511 	unsigned long end_pfn = start_pfn + size;
2512 	unsigned long pfn;
2513 
2514 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2515 		/*
2516 		 * There can be holes in boot-time mem_map[]s
2517 		 * handed to this function.  They do not
2518 		 * exist on hotplugged memory.
2519 		 */
2520 		if (context == MEMMAP_EARLY) {
2521 			if (!early_pfn_valid(pfn))
2522 				continue;
2523 			if (!early_pfn_in_nid(pfn, nid))
2524 				continue;
2525 		}
2526 		page = pfn_to_page(pfn);
2527 		set_page_links(page, zone, nid, pfn);
2528 		init_page_count(page);
2529 		reset_page_mapcount(page);
2530 		SetPageReserved(page);
2531 
2532 		/*
2533 		 * Mark the block movable so that blocks are reserved for
2534 		 * movable at startup. This will force kernel allocations
2535 		 * to reserve their blocks rather than leaking throughout
2536 		 * the address space during boot when many long-lived
2537 		 * kernel allocations are made. Later some blocks near
2538 		 * the start are marked MIGRATE_RESERVE by
2539 		 * setup_zone_migrate_reserve()
2540 		 */
2541 		if ((pfn & (pageblock_nr_pages-1)))
2542 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2543 
2544 		INIT_LIST_HEAD(&page->lru);
2545 #ifdef WANT_PAGE_VIRTUAL
2546 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2547 		if (!is_highmem_idx(zone))
2548 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2549 #endif
2550 	}
2551 }
2552 
2553 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2554 				struct zone *zone, unsigned long size)
2555 {
2556 	int order, t;
2557 	for_each_migratetype_order(order, t) {
2558 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2559 		zone->free_area[order].nr_free = 0;
2560 	}
2561 }
2562 
2563 #ifndef __HAVE_ARCH_MEMMAP_INIT
2564 #define memmap_init(size, nid, zone, start_pfn) \
2565 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2566 #endif
2567 
2568 static int __devinit zone_batchsize(struct zone *zone)
2569 {
2570 	int batch;
2571 
2572 	/*
2573 	 * The per-cpu-pages pools are set to around 1000th of the
2574 	 * size of the zone.  But no more than 1/2 of a meg.
2575 	 *
2576 	 * OK, so we don't know how big the cache is.  So guess.
2577 	 */
2578 	batch = zone->present_pages / 1024;
2579 	if (batch * PAGE_SIZE > 512 * 1024)
2580 		batch = (512 * 1024) / PAGE_SIZE;
2581 	batch /= 4;		/* We effectively *= 4 below */
2582 	if (batch < 1)
2583 		batch = 1;
2584 
2585 	/*
2586 	 * Clamp the batch to a 2^n - 1 value. Having a power
2587 	 * of 2 value was found to be more likely to have
2588 	 * suboptimal cache aliasing properties in some cases.
2589 	 *
2590 	 * For example if 2 tasks are alternately allocating
2591 	 * batches of pages, one task can end up with a lot
2592 	 * of pages of one half of the possible page colors
2593 	 * and the other with pages of the other colors.
2594 	 */
2595 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2596 
2597 	return batch;
2598 }
2599 
2600 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2601 {
2602 	struct per_cpu_pages *pcp;
2603 
2604 	memset(p, 0, sizeof(*p));
2605 
2606 	pcp = &p->pcp[0];		/* hot */
2607 	pcp->count = 0;
2608 	pcp->high = 6 * batch;
2609 	pcp->batch = max(1UL, 1 * batch);
2610 	INIT_LIST_HEAD(&pcp->list);
2611 
2612 	pcp = &p->pcp[1];		/* cold*/
2613 	pcp->count = 0;
2614 	pcp->high = 2 * batch;
2615 	pcp->batch = max(1UL, batch/2);
2616 	INIT_LIST_HEAD(&pcp->list);
2617 }
2618 
2619 /*
2620  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2621  * to the value high for the pageset p.
2622  */
2623 
2624 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2625 				unsigned long high)
2626 {
2627 	struct per_cpu_pages *pcp;
2628 
2629 	pcp = &p->pcp[0]; /* hot list */
2630 	pcp->high = high;
2631 	pcp->batch = max(1UL, high/4);
2632 	if ((high/4) > (PAGE_SHIFT * 8))
2633 		pcp->batch = PAGE_SHIFT * 8;
2634 }
2635 
2636 
2637 #ifdef CONFIG_NUMA
2638 /*
2639  * Boot pageset table. One per cpu which is going to be used for all
2640  * zones and all nodes. The parameters will be set in such a way
2641  * that an item put on a list will immediately be handed over to
2642  * the buddy list. This is safe since pageset manipulation is done
2643  * with interrupts disabled.
2644  *
2645  * Some NUMA counter updates may also be caught by the boot pagesets.
2646  *
2647  * The boot_pagesets must be kept even after bootup is complete for
2648  * unused processors and/or zones. They do play a role for bootstrapping
2649  * hotplugged processors.
2650  *
2651  * zoneinfo_show() and maybe other functions do
2652  * not check if the processor is online before following the pageset pointer.
2653  * Other parts of the kernel may not check if the zone is available.
2654  */
2655 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2656 
2657 /*
2658  * Dynamically allocate memory for the
2659  * per cpu pageset array in struct zone.
2660  */
2661 static int __cpuinit process_zones(int cpu)
2662 {
2663 	struct zone *zone, *dzone;
2664 	int node = cpu_to_node(cpu);
2665 
2666 	node_set_state(node, N_CPU);	/* this node has a cpu */
2667 
2668 	for_each_zone(zone) {
2669 
2670 		if (!populated_zone(zone))
2671 			continue;
2672 
2673 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2674 					 GFP_KERNEL, node);
2675 		if (!zone_pcp(zone, cpu))
2676 			goto bad;
2677 
2678 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2679 
2680 		if (percpu_pagelist_fraction)
2681 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2682 			 	(zone->present_pages / percpu_pagelist_fraction));
2683 	}
2684 
2685 	return 0;
2686 bad:
2687 	for_each_zone(dzone) {
2688 		if (!populated_zone(dzone))
2689 			continue;
2690 		if (dzone == zone)
2691 			break;
2692 		kfree(zone_pcp(dzone, cpu));
2693 		zone_pcp(dzone, cpu) = NULL;
2694 	}
2695 	return -ENOMEM;
2696 }
2697 
2698 static inline void free_zone_pagesets(int cpu)
2699 {
2700 	struct zone *zone;
2701 
2702 	for_each_zone(zone) {
2703 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2704 
2705 		/* Free per_cpu_pageset if it is slab allocated */
2706 		if (pset != &boot_pageset[cpu])
2707 			kfree(pset);
2708 		zone_pcp(zone, cpu) = NULL;
2709 	}
2710 }
2711 
2712 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2713 		unsigned long action,
2714 		void *hcpu)
2715 {
2716 	int cpu = (long)hcpu;
2717 	int ret = NOTIFY_OK;
2718 
2719 	switch (action) {
2720 	case CPU_UP_PREPARE:
2721 	case CPU_UP_PREPARE_FROZEN:
2722 		if (process_zones(cpu))
2723 			ret = NOTIFY_BAD;
2724 		break;
2725 	case CPU_UP_CANCELED:
2726 	case CPU_UP_CANCELED_FROZEN:
2727 	case CPU_DEAD:
2728 	case CPU_DEAD_FROZEN:
2729 		free_zone_pagesets(cpu);
2730 		break;
2731 	default:
2732 		break;
2733 	}
2734 	return ret;
2735 }
2736 
2737 static struct notifier_block __cpuinitdata pageset_notifier =
2738 	{ &pageset_cpuup_callback, NULL, 0 };
2739 
2740 void __init setup_per_cpu_pageset(void)
2741 {
2742 	int err;
2743 
2744 	/* Initialize per_cpu_pageset for cpu 0.
2745 	 * A cpuup callback will do this for every cpu
2746 	 * as it comes online
2747 	 */
2748 	err = process_zones(smp_processor_id());
2749 	BUG_ON(err);
2750 	register_cpu_notifier(&pageset_notifier);
2751 }
2752 
2753 #endif
2754 
2755 static noinline __init_refok
2756 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2757 {
2758 	int i;
2759 	struct pglist_data *pgdat = zone->zone_pgdat;
2760 	size_t alloc_size;
2761 
2762 	/*
2763 	 * The per-page waitqueue mechanism uses hashed waitqueues
2764 	 * per zone.
2765 	 */
2766 	zone->wait_table_hash_nr_entries =
2767 		 wait_table_hash_nr_entries(zone_size_pages);
2768 	zone->wait_table_bits =
2769 		wait_table_bits(zone->wait_table_hash_nr_entries);
2770 	alloc_size = zone->wait_table_hash_nr_entries
2771 					* sizeof(wait_queue_head_t);
2772 
2773  	if (system_state == SYSTEM_BOOTING) {
2774 		zone->wait_table = (wait_queue_head_t *)
2775 			alloc_bootmem_node(pgdat, alloc_size);
2776 	} else {
2777 		/*
2778 		 * This case means that a zone whose size was 0 gets new memory
2779 		 * via memory hot-add.
2780 		 * But it may be the case that a new node was hot-added.  In
2781 		 * this case vmalloc() will not be able to use this new node's
2782 		 * memory - this wait_table must be initialized to use this new
2783 		 * node itself as well.
2784 		 * To use this new node's memory, further consideration will be
2785 		 * necessary.
2786 		 */
2787 		zone->wait_table = vmalloc(alloc_size);
2788 	}
2789 	if (!zone->wait_table)
2790 		return -ENOMEM;
2791 
2792 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2793 		init_waitqueue_head(zone->wait_table + i);
2794 
2795 	return 0;
2796 }
2797 
2798 static __meminit void zone_pcp_init(struct zone *zone)
2799 {
2800 	int cpu;
2801 	unsigned long batch = zone_batchsize(zone);
2802 
2803 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2804 #ifdef CONFIG_NUMA
2805 		/* Early boot. Slab allocator not functional yet */
2806 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2807 		setup_pageset(&boot_pageset[cpu],0);
2808 #else
2809 		setup_pageset(zone_pcp(zone,cpu), batch);
2810 #endif
2811 	}
2812 	if (zone->present_pages)
2813 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2814 			zone->name, zone->present_pages, batch);
2815 }
2816 
2817 __meminit int init_currently_empty_zone(struct zone *zone,
2818 					unsigned long zone_start_pfn,
2819 					unsigned long size,
2820 					enum memmap_context context)
2821 {
2822 	struct pglist_data *pgdat = zone->zone_pgdat;
2823 	int ret;
2824 	ret = zone_wait_table_init(zone, size);
2825 	if (ret)
2826 		return ret;
2827 	pgdat->nr_zones = zone_idx(zone) + 1;
2828 
2829 	zone->zone_start_pfn = zone_start_pfn;
2830 
2831 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2832 
2833 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2834 
2835 	return 0;
2836 }
2837 
2838 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2839 /*
2840  * Basic iterator support. Return the first range of PFNs for a node
2841  * Note: nid == MAX_NUMNODES returns first region regardless of node
2842  */
2843 static int __meminit first_active_region_index_in_nid(int nid)
2844 {
2845 	int i;
2846 
2847 	for (i = 0; i < nr_nodemap_entries; i++)
2848 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2849 			return i;
2850 
2851 	return -1;
2852 }
2853 
2854 /*
2855  * Basic iterator support. Return the next active range of PFNs for a node
2856  * Note: nid == MAX_NUMNODES returns next region regardles of node
2857  */
2858 static int __meminit next_active_region_index_in_nid(int index, int nid)
2859 {
2860 	for (index = index + 1; index < nr_nodemap_entries; index++)
2861 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2862 			return index;
2863 
2864 	return -1;
2865 }
2866 
2867 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2868 /*
2869  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2870  * Architectures may implement their own version but if add_active_range()
2871  * was used and there are no special requirements, this is a convenient
2872  * alternative
2873  */
2874 int __meminit early_pfn_to_nid(unsigned long pfn)
2875 {
2876 	int i;
2877 
2878 	for (i = 0; i < nr_nodemap_entries; i++) {
2879 		unsigned long start_pfn = early_node_map[i].start_pfn;
2880 		unsigned long end_pfn = early_node_map[i].end_pfn;
2881 
2882 		if (start_pfn <= pfn && pfn < end_pfn)
2883 			return early_node_map[i].nid;
2884 	}
2885 
2886 	return 0;
2887 }
2888 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2889 
2890 /* Basic iterator support to walk early_node_map[] */
2891 #define for_each_active_range_index_in_nid(i, nid) \
2892 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2893 				i = next_active_region_index_in_nid(i, nid))
2894 
2895 /**
2896  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2897  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2898  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2899  *
2900  * If an architecture guarantees that all ranges registered with
2901  * add_active_ranges() contain no holes and may be freed, this
2902  * this function may be used instead of calling free_bootmem() manually.
2903  */
2904 void __init free_bootmem_with_active_regions(int nid,
2905 						unsigned long max_low_pfn)
2906 {
2907 	int i;
2908 
2909 	for_each_active_range_index_in_nid(i, nid) {
2910 		unsigned long size_pages = 0;
2911 		unsigned long end_pfn = early_node_map[i].end_pfn;
2912 
2913 		if (early_node_map[i].start_pfn >= max_low_pfn)
2914 			continue;
2915 
2916 		if (end_pfn > max_low_pfn)
2917 			end_pfn = max_low_pfn;
2918 
2919 		size_pages = end_pfn - early_node_map[i].start_pfn;
2920 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2921 				PFN_PHYS(early_node_map[i].start_pfn),
2922 				size_pages << PAGE_SHIFT);
2923 	}
2924 }
2925 
2926 /**
2927  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2928  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2929  *
2930  * If an architecture guarantees that all ranges registered with
2931  * add_active_ranges() contain no holes and may be freed, this
2932  * function may be used instead of calling memory_present() manually.
2933  */
2934 void __init sparse_memory_present_with_active_regions(int nid)
2935 {
2936 	int i;
2937 
2938 	for_each_active_range_index_in_nid(i, nid)
2939 		memory_present(early_node_map[i].nid,
2940 				early_node_map[i].start_pfn,
2941 				early_node_map[i].end_pfn);
2942 }
2943 
2944 /**
2945  * push_node_boundaries - Push node boundaries to at least the requested boundary
2946  * @nid: The nid of the node to push the boundary for
2947  * @start_pfn: The start pfn of the node
2948  * @end_pfn: The end pfn of the node
2949  *
2950  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2951  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2952  * be hotplugged even though no physical memory exists. This function allows
2953  * an arch to push out the node boundaries so mem_map is allocated that can
2954  * be used later.
2955  */
2956 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2957 void __init push_node_boundaries(unsigned int nid,
2958 		unsigned long start_pfn, unsigned long end_pfn)
2959 {
2960 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2961 			nid, start_pfn, end_pfn);
2962 
2963 	/* Initialise the boundary for this node if necessary */
2964 	if (node_boundary_end_pfn[nid] == 0)
2965 		node_boundary_start_pfn[nid] = -1UL;
2966 
2967 	/* Update the boundaries */
2968 	if (node_boundary_start_pfn[nid] > start_pfn)
2969 		node_boundary_start_pfn[nid] = start_pfn;
2970 	if (node_boundary_end_pfn[nid] < end_pfn)
2971 		node_boundary_end_pfn[nid] = end_pfn;
2972 }
2973 
2974 /* If necessary, push the node boundary out for reserve hotadd */
2975 static void __meminit account_node_boundary(unsigned int nid,
2976 		unsigned long *start_pfn, unsigned long *end_pfn)
2977 {
2978 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2979 			nid, *start_pfn, *end_pfn);
2980 
2981 	/* Return if boundary information has not been provided */
2982 	if (node_boundary_end_pfn[nid] == 0)
2983 		return;
2984 
2985 	/* Check the boundaries and update if necessary */
2986 	if (node_boundary_start_pfn[nid] < *start_pfn)
2987 		*start_pfn = node_boundary_start_pfn[nid];
2988 	if (node_boundary_end_pfn[nid] > *end_pfn)
2989 		*end_pfn = node_boundary_end_pfn[nid];
2990 }
2991 #else
2992 void __init push_node_boundaries(unsigned int nid,
2993 		unsigned long start_pfn, unsigned long end_pfn) {}
2994 
2995 static void __meminit account_node_boundary(unsigned int nid,
2996 		unsigned long *start_pfn, unsigned long *end_pfn) {}
2997 #endif
2998 
2999 
3000 /**
3001  * get_pfn_range_for_nid - Return the start and end page frames for a node
3002  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3003  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3004  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3005  *
3006  * It returns the start and end page frame of a node based on information
3007  * provided by an arch calling add_active_range(). If called for a node
3008  * with no available memory, a warning is printed and the start and end
3009  * PFNs will be 0.
3010  */
3011 void __meminit get_pfn_range_for_nid(unsigned int nid,
3012 			unsigned long *start_pfn, unsigned long *end_pfn)
3013 {
3014 	int i;
3015 	*start_pfn = -1UL;
3016 	*end_pfn = 0;
3017 
3018 	for_each_active_range_index_in_nid(i, nid) {
3019 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3020 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3021 	}
3022 
3023 	if (*start_pfn == -1UL)
3024 		*start_pfn = 0;
3025 
3026 	/* Push the node boundaries out if requested */
3027 	account_node_boundary(nid, start_pfn, end_pfn);
3028 }
3029 
3030 /*
3031  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3032  * assumption is made that zones within a node are ordered in monotonic
3033  * increasing memory addresses so that the "highest" populated zone is used
3034  */
3035 void __init find_usable_zone_for_movable(void)
3036 {
3037 	int zone_index;
3038 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3039 		if (zone_index == ZONE_MOVABLE)
3040 			continue;
3041 
3042 		if (arch_zone_highest_possible_pfn[zone_index] >
3043 				arch_zone_lowest_possible_pfn[zone_index])
3044 			break;
3045 	}
3046 
3047 	VM_BUG_ON(zone_index == -1);
3048 	movable_zone = zone_index;
3049 }
3050 
3051 /*
3052  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3053  * because it is sized independant of architecture. Unlike the other zones,
3054  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3055  * in each node depending on the size of each node and how evenly kernelcore
3056  * is distributed. This helper function adjusts the zone ranges
3057  * provided by the architecture for a given node by using the end of the
3058  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3059  * zones within a node are in order of monotonic increases memory addresses
3060  */
3061 void __meminit adjust_zone_range_for_zone_movable(int nid,
3062 					unsigned long zone_type,
3063 					unsigned long node_start_pfn,
3064 					unsigned long node_end_pfn,
3065 					unsigned long *zone_start_pfn,
3066 					unsigned long *zone_end_pfn)
3067 {
3068 	/* Only adjust if ZONE_MOVABLE is on this node */
3069 	if (zone_movable_pfn[nid]) {
3070 		/* Size ZONE_MOVABLE */
3071 		if (zone_type == ZONE_MOVABLE) {
3072 			*zone_start_pfn = zone_movable_pfn[nid];
3073 			*zone_end_pfn = min(node_end_pfn,
3074 				arch_zone_highest_possible_pfn[movable_zone]);
3075 
3076 		/* Adjust for ZONE_MOVABLE starting within this range */
3077 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3078 				*zone_end_pfn > zone_movable_pfn[nid]) {
3079 			*zone_end_pfn = zone_movable_pfn[nid];
3080 
3081 		/* Check if this whole range is within ZONE_MOVABLE */
3082 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3083 			*zone_start_pfn = *zone_end_pfn;
3084 	}
3085 }
3086 
3087 /*
3088  * Return the number of pages a zone spans in a node, including holes
3089  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3090  */
3091 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3092 					unsigned long zone_type,
3093 					unsigned long *ignored)
3094 {
3095 	unsigned long node_start_pfn, node_end_pfn;
3096 	unsigned long zone_start_pfn, zone_end_pfn;
3097 
3098 	/* Get the start and end of the node and zone */
3099 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3100 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3101 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3102 	adjust_zone_range_for_zone_movable(nid, zone_type,
3103 				node_start_pfn, node_end_pfn,
3104 				&zone_start_pfn, &zone_end_pfn);
3105 
3106 	/* Check that this node has pages within the zone's required range */
3107 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3108 		return 0;
3109 
3110 	/* Move the zone boundaries inside the node if necessary */
3111 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3112 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3113 
3114 	/* Return the spanned pages */
3115 	return zone_end_pfn - zone_start_pfn;
3116 }
3117 
3118 /*
3119  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3120  * then all holes in the requested range will be accounted for.
3121  */
3122 unsigned long __meminit __absent_pages_in_range(int nid,
3123 				unsigned long range_start_pfn,
3124 				unsigned long range_end_pfn)
3125 {
3126 	int i = 0;
3127 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3128 	unsigned long start_pfn;
3129 
3130 	/* Find the end_pfn of the first active range of pfns in the node */
3131 	i = first_active_region_index_in_nid(nid);
3132 	if (i == -1)
3133 		return 0;
3134 
3135 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3136 
3137 	/* Account for ranges before physical memory on this node */
3138 	if (early_node_map[i].start_pfn > range_start_pfn)
3139 		hole_pages = prev_end_pfn - range_start_pfn;
3140 
3141 	/* Find all holes for the zone within the node */
3142 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3143 
3144 		/* No need to continue if prev_end_pfn is outside the zone */
3145 		if (prev_end_pfn >= range_end_pfn)
3146 			break;
3147 
3148 		/* Make sure the end of the zone is not within the hole */
3149 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3150 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3151 
3152 		/* Update the hole size cound and move on */
3153 		if (start_pfn > range_start_pfn) {
3154 			BUG_ON(prev_end_pfn > start_pfn);
3155 			hole_pages += start_pfn - prev_end_pfn;
3156 		}
3157 		prev_end_pfn = early_node_map[i].end_pfn;
3158 	}
3159 
3160 	/* Account for ranges past physical memory on this node */
3161 	if (range_end_pfn > prev_end_pfn)
3162 		hole_pages += range_end_pfn -
3163 				max(range_start_pfn, prev_end_pfn);
3164 
3165 	return hole_pages;
3166 }
3167 
3168 /**
3169  * absent_pages_in_range - Return number of page frames in holes within a range
3170  * @start_pfn: The start PFN to start searching for holes
3171  * @end_pfn: The end PFN to stop searching for holes
3172  *
3173  * It returns the number of pages frames in memory holes within a range.
3174  */
3175 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3176 							unsigned long end_pfn)
3177 {
3178 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3179 }
3180 
3181 /* Return the number of page frames in holes in a zone on a node */
3182 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3183 					unsigned long zone_type,
3184 					unsigned long *ignored)
3185 {
3186 	unsigned long node_start_pfn, node_end_pfn;
3187 	unsigned long zone_start_pfn, zone_end_pfn;
3188 
3189 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3190 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3191 							node_start_pfn);
3192 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3193 							node_end_pfn);
3194 
3195 	adjust_zone_range_for_zone_movable(nid, zone_type,
3196 			node_start_pfn, node_end_pfn,
3197 			&zone_start_pfn, &zone_end_pfn);
3198 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3199 }
3200 
3201 #else
3202 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3203 					unsigned long zone_type,
3204 					unsigned long *zones_size)
3205 {
3206 	return zones_size[zone_type];
3207 }
3208 
3209 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3210 						unsigned long zone_type,
3211 						unsigned long *zholes_size)
3212 {
3213 	if (!zholes_size)
3214 		return 0;
3215 
3216 	return zholes_size[zone_type];
3217 }
3218 
3219 #endif
3220 
3221 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3222 		unsigned long *zones_size, unsigned long *zholes_size)
3223 {
3224 	unsigned long realtotalpages, totalpages = 0;
3225 	enum zone_type i;
3226 
3227 	for (i = 0; i < MAX_NR_ZONES; i++)
3228 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3229 								zones_size);
3230 	pgdat->node_spanned_pages = totalpages;
3231 
3232 	realtotalpages = totalpages;
3233 	for (i = 0; i < MAX_NR_ZONES; i++)
3234 		realtotalpages -=
3235 			zone_absent_pages_in_node(pgdat->node_id, i,
3236 								zholes_size);
3237 	pgdat->node_present_pages = realtotalpages;
3238 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3239 							realtotalpages);
3240 }
3241 
3242 #ifndef CONFIG_SPARSEMEM
3243 /*
3244  * Calculate the size of the zone->blockflags rounded to an unsigned long
3245  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3246  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3247  * round what is now in bits to nearest long in bits, then return it in
3248  * bytes.
3249  */
3250 static unsigned long __init usemap_size(unsigned long zonesize)
3251 {
3252 	unsigned long usemapsize;
3253 
3254 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3255 	usemapsize = usemapsize >> pageblock_order;
3256 	usemapsize *= NR_PAGEBLOCK_BITS;
3257 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3258 
3259 	return usemapsize / 8;
3260 }
3261 
3262 static void __init setup_usemap(struct pglist_data *pgdat,
3263 				struct zone *zone, unsigned long zonesize)
3264 {
3265 	unsigned long usemapsize = usemap_size(zonesize);
3266 	zone->pageblock_flags = NULL;
3267 	if (usemapsize) {
3268 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3269 		memset(zone->pageblock_flags, 0, usemapsize);
3270 	}
3271 }
3272 #else
3273 static void inline setup_usemap(struct pglist_data *pgdat,
3274 				struct zone *zone, unsigned long zonesize) {}
3275 #endif /* CONFIG_SPARSEMEM */
3276 
3277 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3278 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3279 static inline void __init set_pageblock_order(unsigned int order)
3280 {
3281 	/* Check that pageblock_nr_pages has not already been setup */
3282 	if (pageblock_order)
3283 		return;
3284 
3285 	/*
3286 	 * Assume the largest contiguous order of interest is a huge page.
3287 	 * This value may be variable depending on boot parameters on IA64
3288 	 */
3289 	pageblock_order = order;
3290 }
3291 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3292 
3293 /* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
3294 #define set_pageblock_order(x)	do {} while (0)
3295 
3296 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3297 
3298 /*
3299  * Set up the zone data structures:
3300  *   - mark all pages reserved
3301  *   - mark all memory queues empty
3302  *   - clear the memory bitmaps
3303  */
3304 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3305 		unsigned long *zones_size, unsigned long *zholes_size)
3306 {
3307 	enum zone_type j;
3308 	int nid = pgdat->node_id;
3309 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3310 	int ret;
3311 
3312 	pgdat_resize_init(pgdat);
3313 	pgdat->nr_zones = 0;
3314 	init_waitqueue_head(&pgdat->kswapd_wait);
3315 	pgdat->kswapd_max_order = 0;
3316 
3317 	for (j = 0; j < MAX_NR_ZONES; j++) {
3318 		struct zone *zone = pgdat->node_zones + j;
3319 		unsigned long size, realsize, memmap_pages;
3320 
3321 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3322 		realsize = size - zone_absent_pages_in_node(nid, j,
3323 								zholes_size);
3324 
3325 		/*
3326 		 * Adjust realsize so that it accounts for how much memory
3327 		 * is used by this zone for memmap. This affects the watermark
3328 		 * and per-cpu initialisations
3329 		 */
3330 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3331 		if (realsize >= memmap_pages) {
3332 			realsize -= memmap_pages;
3333 			printk(KERN_DEBUG
3334 				"  %s zone: %lu pages used for memmap\n",
3335 				zone_names[j], memmap_pages);
3336 		} else
3337 			printk(KERN_WARNING
3338 				"  %s zone: %lu pages exceeds realsize %lu\n",
3339 				zone_names[j], memmap_pages, realsize);
3340 
3341 		/* Account for reserved pages */
3342 		if (j == 0 && realsize > dma_reserve) {
3343 			realsize -= dma_reserve;
3344 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3345 					zone_names[0], dma_reserve);
3346 		}
3347 
3348 		if (!is_highmem_idx(j))
3349 			nr_kernel_pages += realsize;
3350 		nr_all_pages += realsize;
3351 
3352 		zone->spanned_pages = size;
3353 		zone->present_pages = realsize;
3354 #ifdef CONFIG_NUMA
3355 		zone->node = nid;
3356 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3357 						/ 100;
3358 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3359 #endif
3360 		zone->name = zone_names[j];
3361 		spin_lock_init(&zone->lock);
3362 		spin_lock_init(&zone->lru_lock);
3363 		zone_seqlock_init(zone);
3364 		zone->zone_pgdat = pgdat;
3365 
3366 		zone->prev_priority = DEF_PRIORITY;
3367 
3368 		zone_pcp_init(zone);
3369 		INIT_LIST_HEAD(&zone->active_list);
3370 		INIT_LIST_HEAD(&zone->inactive_list);
3371 		zone->nr_scan_active = 0;
3372 		zone->nr_scan_inactive = 0;
3373 		zap_zone_vm_stats(zone);
3374 		atomic_set(&zone->reclaim_in_progress, 0);
3375 		if (!size)
3376 			continue;
3377 
3378 		set_pageblock_order(HUGETLB_PAGE_ORDER);
3379 		setup_usemap(pgdat, zone, size);
3380 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3381 						size, MEMMAP_EARLY);
3382 		BUG_ON(ret);
3383 		zone_start_pfn += size;
3384 	}
3385 }
3386 
3387 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3388 {
3389 	/* Skip empty nodes */
3390 	if (!pgdat->node_spanned_pages)
3391 		return;
3392 
3393 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3394 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3395 	if (!pgdat->node_mem_map) {
3396 		unsigned long size, start, end;
3397 		struct page *map;
3398 
3399 		/*
3400 		 * The zone's endpoints aren't required to be MAX_ORDER
3401 		 * aligned but the node_mem_map endpoints must be in order
3402 		 * for the buddy allocator to function correctly.
3403 		 */
3404 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3405 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3406 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3407 		size =  (end - start) * sizeof(struct page);
3408 		map = alloc_remap(pgdat->node_id, size);
3409 		if (!map)
3410 			map = alloc_bootmem_node(pgdat, size);
3411 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3412 	}
3413 #ifndef CONFIG_NEED_MULTIPLE_NODES
3414 	/*
3415 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3416 	 */
3417 	if (pgdat == NODE_DATA(0)) {
3418 		mem_map = NODE_DATA(0)->node_mem_map;
3419 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3420 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3421 			mem_map -= pgdat->node_start_pfn;
3422 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3423 	}
3424 #endif
3425 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3426 }
3427 
3428 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3429 		unsigned long *zones_size, unsigned long node_start_pfn,
3430 		unsigned long *zholes_size)
3431 {
3432 	pgdat->node_id = nid;
3433 	pgdat->node_start_pfn = node_start_pfn;
3434 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3435 
3436 	alloc_node_mem_map(pgdat);
3437 
3438 	free_area_init_core(pgdat, zones_size, zholes_size);
3439 }
3440 
3441 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3442 
3443 #if MAX_NUMNODES > 1
3444 /*
3445  * Figure out the number of possible node ids.
3446  */
3447 static void __init setup_nr_node_ids(void)
3448 {
3449 	unsigned int node;
3450 	unsigned int highest = 0;
3451 
3452 	for_each_node_mask(node, node_possible_map)
3453 		highest = node;
3454 	nr_node_ids = highest + 1;
3455 }
3456 #else
3457 static inline void setup_nr_node_ids(void)
3458 {
3459 }
3460 #endif
3461 
3462 /**
3463  * add_active_range - Register a range of PFNs backed by physical memory
3464  * @nid: The node ID the range resides on
3465  * @start_pfn: The start PFN of the available physical memory
3466  * @end_pfn: The end PFN of the available physical memory
3467  *
3468  * These ranges are stored in an early_node_map[] and later used by
3469  * free_area_init_nodes() to calculate zone sizes and holes. If the
3470  * range spans a memory hole, it is up to the architecture to ensure
3471  * the memory is not freed by the bootmem allocator. If possible
3472  * the range being registered will be merged with existing ranges.
3473  */
3474 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3475 						unsigned long end_pfn)
3476 {
3477 	int i;
3478 
3479 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3480 			  "%d entries of %d used\n",
3481 			  nid, start_pfn, end_pfn,
3482 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3483 
3484 	/* Merge with existing active regions if possible */
3485 	for (i = 0; i < nr_nodemap_entries; i++) {
3486 		if (early_node_map[i].nid != nid)
3487 			continue;
3488 
3489 		/* Skip if an existing region covers this new one */
3490 		if (start_pfn >= early_node_map[i].start_pfn &&
3491 				end_pfn <= early_node_map[i].end_pfn)
3492 			return;
3493 
3494 		/* Merge forward if suitable */
3495 		if (start_pfn <= early_node_map[i].end_pfn &&
3496 				end_pfn > early_node_map[i].end_pfn) {
3497 			early_node_map[i].end_pfn = end_pfn;
3498 			return;
3499 		}
3500 
3501 		/* Merge backward if suitable */
3502 		if (start_pfn < early_node_map[i].end_pfn &&
3503 				end_pfn >= early_node_map[i].start_pfn) {
3504 			early_node_map[i].start_pfn = start_pfn;
3505 			return;
3506 		}
3507 	}
3508 
3509 	/* Check that early_node_map is large enough */
3510 	if (i >= MAX_ACTIVE_REGIONS) {
3511 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3512 							MAX_ACTIVE_REGIONS);
3513 		return;
3514 	}
3515 
3516 	early_node_map[i].nid = nid;
3517 	early_node_map[i].start_pfn = start_pfn;
3518 	early_node_map[i].end_pfn = end_pfn;
3519 	nr_nodemap_entries = i + 1;
3520 }
3521 
3522 /**
3523  * shrink_active_range - Shrink an existing registered range of PFNs
3524  * @nid: The node id the range is on that should be shrunk
3525  * @old_end_pfn: The old end PFN of the range
3526  * @new_end_pfn: The new PFN of the range
3527  *
3528  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3529  * The map is kept at the end physical page range that has already been
3530  * registered with add_active_range(). This function allows an arch to shrink
3531  * an existing registered range.
3532  */
3533 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3534 						unsigned long new_end_pfn)
3535 {
3536 	int i;
3537 
3538 	/* Find the old active region end and shrink */
3539 	for_each_active_range_index_in_nid(i, nid)
3540 		if (early_node_map[i].end_pfn == old_end_pfn) {
3541 			early_node_map[i].end_pfn = new_end_pfn;
3542 			break;
3543 		}
3544 }
3545 
3546 /**
3547  * remove_all_active_ranges - Remove all currently registered regions
3548  *
3549  * During discovery, it may be found that a table like SRAT is invalid
3550  * and an alternative discovery method must be used. This function removes
3551  * all currently registered regions.
3552  */
3553 void __init remove_all_active_ranges(void)
3554 {
3555 	memset(early_node_map, 0, sizeof(early_node_map));
3556 	nr_nodemap_entries = 0;
3557 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3558 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3559 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3560 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3561 }
3562 
3563 /* Compare two active node_active_regions */
3564 static int __init cmp_node_active_region(const void *a, const void *b)
3565 {
3566 	struct node_active_region *arange = (struct node_active_region *)a;
3567 	struct node_active_region *brange = (struct node_active_region *)b;
3568 
3569 	/* Done this way to avoid overflows */
3570 	if (arange->start_pfn > brange->start_pfn)
3571 		return 1;
3572 	if (arange->start_pfn < brange->start_pfn)
3573 		return -1;
3574 
3575 	return 0;
3576 }
3577 
3578 /* sort the node_map by start_pfn */
3579 static void __init sort_node_map(void)
3580 {
3581 	sort(early_node_map, (size_t)nr_nodemap_entries,
3582 			sizeof(struct node_active_region),
3583 			cmp_node_active_region, NULL);
3584 }
3585 
3586 /* Find the lowest pfn for a node */
3587 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3588 {
3589 	int i;
3590 	unsigned long min_pfn = ULONG_MAX;
3591 
3592 	/* Assuming a sorted map, the first range found has the starting pfn */
3593 	for_each_active_range_index_in_nid(i, nid)
3594 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3595 
3596 	if (min_pfn == ULONG_MAX) {
3597 		printk(KERN_WARNING
3598 			"Could not find start_pfn for node %lu\n", nid);
3599 		return 0;
3600 	}
3601 
3602 	return min_pfn;
3603 }
3604 
3605 /**
3606  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3607  *
3608  * It returns the minimum PFN based on information provided via
3609  * add_active_range().
3610  */
3611 unsigned long __init find_min_pfn_with_active_regions(void)
3612 {
3613 	return find_min_pfn_for_node(MAX_NUMNODES);
3614 }
3615 
3616 /**
3617  * find_max_pfn_with_active_regions - Find the maximum PFN registered
3618  *
3619  * It returns the maximum PFN based on information provided via
3620  * add_active_range().
3621  */
3622 unsigned long __init find_max_pfn_with_active_regions(void)
3623 {
3624 	int i;
3625 	unsigned long max_pfn = 0;
3626 
3627 	for (i = 0; i < nr_nodemap_entries; i++)
3628 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3629 
3630 	return max_pfn;
3631 }
3632 
3633 /*
3634  * early_calculate_totalpages()
3635  * Sum pages in active regions for movable zone.
3636  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3637  */
3638 static unsigned long __init early_calculate_totalpages(void)
3639 {
3640 	int i;
3641 	unsigned long totalpages = 0;
3642 
3643 	for (i = 0; i < nr_nodemap_entries; i++) {
3644 		unsigned long pages = early_node_map[i].end_pfn -
3645 						early_node_map[i].start_pfn;
3646 		totalpages += pages;
3647 		if (pages)
3648 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3649 	}
3650   	return totalpages;
3651 }
3652 
3653 /*
3654  * Find the PFN the Movable zone begins in each node. Kernel memory
3655  * is spread evenly between nodes as long as the nodes have enough
3656  * memory. When they don't, some nodes will have more kernelcore than
3657  * others
3658  */
3659 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3660 {
3661 	int i, nid;
3662 	unsigned long usable_startpfn;
3663 	unsigned long kernelcore_node, kernelcore_remaining;
3664 	unsigned long totalpages = early_calculate_totalpages();
3665 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3666 
3667 	/*
3668 	 * If movablecore was specified, calculate what size of
3669 	 * kernelcore that corresponds so that memory usable for
3670 	 * any allocation type is evenly spread. If both kernelcore
3671 	 * and movablecore are specified, then the value of kernelcore
3672 	 * will be used for required_kernelcore if it's greater than
3673 	 * what movablecore would have allowed.
3674 	 */
3675 	if (required_movablecore) {
3676 		unsigned long corepages;
3677 
3678 		/*
3679 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3680 		 * was requested by the user
3681 		 */
3682 		required_movablecore =
3683 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3684 		corepages = totalpages - required_movablecore;
3685 
3686 		required_kernelcore = max(required_kernelcore, corepages);
3687 	}
3688 
3689 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3690 	if (!required_kernelcore)
3691 		return;
3692 
3693 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3694 	find_usable_zone_for_movable();
3695 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3696 
3697 restart:
3698 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3699 	kernelcore_node = required_kernelcore / usable_nodes;
3700 	for_each_node_state(nid, N_HIGH_MEMORY) {
3701 		/*
3702 		 * Recalculate kernelcore_node if the division per node
3703 		 * now exceeds what is necessary to satisfy the requested
3704 		 * amount of memory for the kernel
3705 		 */
3706 		if (required_kernelcore < kernelcore_node)
3707 			kernelcore_node = required_kernelcore / usable_nodes;
3708 
3709 		/*
3710 		 * As the map is walked, we track how much memory is usable
3711 		 * by the kernel using kernelcore_remaining. When it is
3712 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3713 		 */
3714 		kernelcore_remaining = kernelcore_node;
3715 
3716 		/* Go through each range of PFNs within this node */
3717 		for_each_active_range_index_in_nid(i, nid) {
3718 			unsigned long start_pfn, end_pfn;
3719 			unsigned long size_pages;
3720 
3721 			start_pfn = max(early_node_map[i].start_pfn,
3722 						zone_movable_pfn[nid]);
3723 			end_pfn = early_node_map[i].end_pfn;
3724 			if (start_pfn >= end_pfn)
3725 				continue;
3726 
3727 			/* Account for what is only usable for kernelcore */
3728 			if (start_pfn < usable_startpfn) {
3729 				unsigned long kernel_pages;
3730 				kernel_pages = min(end_pfn, usable_startpfn)
3731 								- start_pfn;
3732 
3733 				kernelcore_remaining -= min(kernel_pages,
3734 							kernelcore_remaining);
3735 				required_kernelcore -= min(kernel_pages,
3736 							required_kernelcore);
3737 
3738 				/* Continue if range is now fully accounted */
3739 				if (end_pfn <= usable_startpfn) {
3740 
3741 					/*
3742 					 * Push zone_movable_pfn to the end so
3743 					 * that if we have to rebalance
3744 					 * kernelcore across nodes, we will
3745 					 * not double account here
3746 					 */
3747 					zone_movable_pfn[nid] = end_pfn;
3748 					continue;
3749 				}
3750 				start_pfn = usable_startpfn;
3751 			}
3752 
3753 			/*
3754 			 * The usable PFN range for ZONE_MOVABLE is from
3755 			 * start_pfn->end_pfn. Calculate size_pages as the
3756 			 * number of pages used as kernelcore
3757 			 */
3758 			size_pages = end_pfn - start_pfn;
3759 			if (size_pages > kernelcore_remaining)
3760 				size_pages = kernelcore_remaining;
3761 			zone_movable_pfn[nid] = start_pfn + size_pages;
3762 
3763 			/*
3764 			 * Some kernelcore has been met, update counts and
3765 			 * break if the kernelcore for this node has been
3766 			 * satisified
3767 			 */
3768 			required_kernelcore -= min(required_kernelcore,
3769 								size_pages);
3770 			kernelcore_remaining -= size_pages;
3771 			if (!kernelcore_remaining)
3772 				break;
3773 		}
3774 	}
3775 
3776 	/*
3777 	 * If there is still required_kernelcore, we do another pass with one
3778 	 * less node in the count. This will push zone_movable_pfn[nid] further
3779 	 * along on the nodes that still have memory until kernelcore is
3780 	 * satisified
3781 	 */
3782 	usable_nodes--;
3783 	if (usable_nodes && required_kernelcore > usable_nodes)
3784 		goto restart;
3785 
3786 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3787 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3788 		zone_movable_pfn[nid] =
3789 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3790 }
3791 
3792 /* Any regular memory on that node ? */
3793 static void check_for_regular_memory(pg_data_t *pgdat)
3794 {
3795 #ifdef CONFIG_HIGHMEM
3796 	enum zone_type zone_type;
3797 
3798 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3799 		struct zone *zone = &pgdat->node_zones[zone_type];
3800 		if (zone->present_pages)
3801 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3802 	}
3803 #endif
3804 }
3805 
3806 /**
3807  * free_area_init_nodes - Initialise all pg_data_t and zone data
3808  * @max_zone_pfn: an array of max PFNs for each zone
3809  *
3810  * This will call free_area_init_node() for each active node in the system.
3811  * Using the page ranges provided by add_active_range(), the size of each
3812  * zone in each node and their holes is calculated. If the maximum PFN
3813  * between two adjacent zones match, it is assumed that the zone is empty.
3814  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3815  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3816  * starts where the previous one ended. For example, ZONE_DMA32 starts
3817  * at arch_max_dma_pfn.
3818  */
3819 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3820 {
3821 	unsigned long nid;
3822 	enum zone_type i;
3823 
3824 	/* Sort early_node_map as initialisation assumes it is sorted */
3825 	sort_node_map();
3826 
3827 	/* Record where the zone boundaries are */
3828 	memset(arch_zone_lowest_possible_pfn, 0,
3829 				sizeof(arch_zone_lowest_possible_pfn));
3830 	memset(arch_zone_highest_possible_pfn, 0,
3831 				sizeof(arch_zone_highest_possible_pfn));
3832 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3833 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3834 	for (i = 1; i < MAX_NR_ZONES; i++) {
3835 		if (i == ZONE_MOVABLE)
3836 			continue;
3837 		arch_zone_lowest_possible_pfn[i] =
3838 			arch_zone_highest_possible_pfn[i-1];
3839 		arch_zone_highest_possible_pfn[i] =
3840 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3841 	}
3842 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3843 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3844 
3845 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3846 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3847 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3848 
3849 	/* Print out the zone ranges */
3850 	printk("Zone PFN ranges:\n");
3851 	for (i = 0; i < MAX_NR_ZONES; i++) {
3852 		if (i == ZONE_MOVABLE)
3853 			continue;
3854 		printk("  %-8s %8lu -> %8lu\n",
3855 				zone_names[i],
3856 				arch_zone_lowest_possible_pfn[i],
3857 				arch_zone_highest_possible_pfn[i]);
3858 	}
3859 
3860 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3861 	printk("Movable zone start PFN for each node\n");
3862 	for (i = 0; i < MAX_NUMNODES; i++) {
3863 		if (zone_movable_pfn[i])
3864 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3865 	}
3866 
3867 	/* Print out the early_node_map[] */
3868 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3869 	for (i = 0; i < nr_nodemap_entries; i++)
3870 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3871 						early_node_map[i].start_pfn,
3872 						early_node_map[i].end_pfn);
3873 
3874 	/* Initialise every node */
3875 	setup_nr_node_ids();
3876 	for_each_online_node(nid) {
3877 		pg_data_t *pgdat = NODE_DATA(nid);
3878 		free_area_init_node(nid, pgdat, NULL,
3879 				find_min_pfn_for_node(nid), NULL);
3880 
3881 		/* Any memory on that node */
3882 		if (pgdat->node_present_pages)
3883 			node_set_state(nid, N_HIGH_MEMORY);
3884 		check_for_regular_memory(pgdat);
3885 	}
3886 }
3887 
3888 static int __init cmdline_parse_core(char *p, unsigned long *core)
3889 {
3890 	unsigned long long coremem;
3891 	if (!p)
3892 		return -EINVAL;
3893 
3894 	coremem = memparse(p, &p);
3895 	*core = coremem >> PAGE_SHIFT;
3896 
3897 	/* Paranoid check that UL is enough for the coremem value */
3898 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3899 
3900 	return 0;
3901 }
3902 
3903 /*
3904  * kernelcore=size sets the amount of memory for use for allocations that
3905  * cannot be reclaimed or migrated.
3906  */
3907 static int __init cmdline_parse_kernelcore(char *p)
3908 {
3909 	return cmdline_parse_core(p, &required_kernelcore);
3910 }
3911 
3912 /*
3913  * movablecore=size sets the amount of memory for use for allocations that
3914  * can be reclaimed or migrated.
3915  */
3916 static int __init cmdline_parse_movablecore(char *p)
3917 {
3918 	return cmdline_parse_core(p, &required_movablecore);
3919 }
3920 
3921 early_param("kernelcore", cmdline_parse_kernelcore);
3922 early_param("movablecore", cmdline_parse_movablecore);
3923 
3924 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3925 
3926 /**
3927  * set_dma_reserve - set the specified number of pages reserved in the first zone
3928  * @new_dma_reserve: The number of pages to mark reserved
3929  *
3930  * The per-cpu batchsize and zone watermarks are determined by present_pages.
3931  * In the DMA zone, a significant percentage may be consumed by kernel image
3932  * and other unfreeable allocations which can skew the watermarks badly. This
3933  * function may optionally be used to account for unfreeable pages in the
3934  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3935  * smaller per-cpu batchsize.
3936  */
3937 void __init set_dma_reserve(unsigned long new_dma_reserve)
3938 {
3939 	dma_reserve = new_dma_reserve;
3940 }
3941 
3942 #ifndef CONFIG_NEED_MULTIPLE_NODES
3943 static bootmem_data_t contig_bootmem_data;
3944 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3945 
3946 EXPORT_SYMBOL(contig_page_data);
3947 #endif
3948 
3949 void __init free_area_init(unsigned long *zones_size)
3950 {
3951 	free_area_init_node(0, NODE_DATA(0), zones_size,
3952 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3953 }
3954 
3955 static int page_alloc_cpu_notify(struct notifier_block *self,
3956 				 unsigned long action, void *hcpu)
3957 {
3958 	int cpu = (unsigned long)hcpu;
3959 
3960 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3961 		local_irq_disable();
3962 		__drain_pages(cpu);
3963 		vm_events_fold_cpu(cpu);
3964 		local_irq_enable();
3965 		refresh_cpu_vm_stats(cpu);
3966 	}
3967 	return NOTIFY_OK;
3968 }
3969 
3970 void __init page_alloc_init(void)
3971 {
3972 	hotcpu_notifier(page_alloc_cpu_notify, 0);
3973 }
3974 
3975 /*
3976  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3977  *	or min_free_kbytes changes.
3978  */
3979 static void calculate_totalreserve_pages(void)
3980 {
3981 	struct pglist_data *pgdat;
3982 	unsigned long reserve_pages = 0;
3983 	enum zone_type i, j;
3984 
3985 	for_each_online_pgdat(pgdat) {
3986 		for (i = 0; i < MAX_NR_ZONES; i++) {
3987 			struct zone *zone = pgdat->node_zones + i;
3988 			unsigned long max = 0;
3989 
3990 			/* Find valid and maximum lowmem_reserve in the zone */
3991 			for (j = i; j < MAX_NR_ZONES; j++) {
3992 				if (zone->lowmem_reserve[j] > max)
3993 					max = zone->lowmem_reserve[j];
3994 			}
3995 
3996 			/* we treat pages_high as reserved pages. */
3997 			max += zone->pages_high;
3998 
3999 			if (max > zone->present_pages)
4000 				max = zone->present_pages;
4001 			reserve_pages += max;
4002 		}
4003 	}
4004 	totalreserve_pages = reserve_pages;
4005 }
4006 
4007 /*
4008  * setup_per_zone_lowmem_reserve - called whenever
4009  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4010  *	has a correct pages reserved value, so an adequate number of
4011  *	pages are left in the zone after a successful __alloc_pages().
4012  */
4013 static void setup_per_zone_lowmem_reserve(void)
4014 {
4015 	struct pglist_data *pgdat;
4016 	enum zone_type j, idx;
4017 
4018 	for_each_online_pgdat(pgdat) {
4019 		for (j = 0; j < MAX_NR_ZONES; j++) {
4020 			struct zone *zone = pgdat->node_zones + j;
4021 			unsigned long present_pages = zone->present_pages;
4022 
4023 			zone->lowmem_reserve[j] = 0;
4024 
4025 			idx = j;
4026 			while (idx) {
4027 				struct zone *lower_zone;
4028 
4029 				idx--;
4030 
4031 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4032 					sysctl_lowmem_reserve_ratio[idx] = 1;
4033 
4034 				lower_zone = pgdat->node_zones + idx;
4035 				lower_zone->lowmem_reserve[j] = present_pages /
4036 					sysctl_lowmem_reserve_ratio[idx];
4037 				present_pages += lower_zone->present_pages;
4038 			}
4039 		}
4040 	}
4041 
4042 	/* update totalreserve_pages */
4043 	calculate_totalreserve_pages();
4044 }
4045 
4046 /**
4047  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4048  *
4049  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4050  * with respect to min_free_kbytes.
4051  */
4052 void setup_per_zone_pages_min(void)
4053 {
4054 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4055 	unsigned long lowmem_pages = 0;
4056 	struct zone *zone;
4057 	unsigned long flags;
4058 
4059 	/* Calculate total number of !ZONE_HIGHMEM pages */
4060 	for_each_zone(zone) {
4061 		if (!is_highmem(zone))
4062 			lowmem_pages += zone->present_pages;
4063 	}
4064 
4065 	for_each_zone(zone) {
4066 		u64 tmp;
4067 
4068 		spin_lock_irqsave(&zone->lru_lock, flags);
4069 		tmp = (u64)pages_min * zone->present_pages;
4070 		do_div(tmp, lowmem_pages);
4071 		if (is_highmem(zone)) {
4072 			/*
4073 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4074 			 * need highmem pages, so cap pages_min to a small
4075 			 * value here.
4076 			 *
4077 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4078 			 * deltas controls asynch page reclaim, and so should
4079 			 * not be capped for highmem.
4080 			 */
4081 			int min_pages;
4082 
4083 			min_pages = zone->present_pages / 1024;
4084 			if (min_pages < SWAP_CLUSTER_MAX)
4085 				min_pages = SWAP_CLUSTER_MAX;
4086 			if (min_pages > 128)
4087 				min_pages = 128;
4088 			zone->pages_min = min_pages;
4089 		} else {
4090 			/*
4091 			 * If it's a lowmem zone, reserve a number of pages
4092 			 * proportionate to the zone's size.
4093 			 */
4094 			zone->pages_min = tmp;
4095 		}
4096 
4097 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4098 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4099 		setup_zone_migrate_reserve(zone);
4100 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4101 	}
4102 
4103 	/* update totalreserve_pages */
4104 	calculate_totalreserve_pages();
4105 }
4106 
4107 /*
4108  * Initialise min_free_kbytes.
4109  *
4110  * For small machines we want it small (128k min).  For large machines
4111  * we want it large (64MB max).  But it is not linear, because network
4112  * bandwidth does not increase linearly with machine size.  We use
4113  *
4114  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4115  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4116  *
4117  * which yields
4118  *
4119  * 16MB:	512k
4120  * 32MB:	724k
4121  * 64MB:	1024k
4122  * 128MB:	1448k
4123  * 256MB:	2048k
4124  * 512MB:	2896k
4125  * 1024MB:	4096k
4126  * 2048MB:	5792k
4127  * 4096MB:	8192k
4128  * 8192MB:	11584k
4129  * 16384MB:	16384k
4130  */
4131 static int __init init_per_zone_pages_min(void)
4132 {
4133 	unsigned long lowmem_kbytes;
4134 
4135 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4136 
4137 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4138 	if (min_free_kbytes < 128)
4139 		min_free_kbytes = 128;
4140 	if (min_free_kbytes > 65536)
4141 		min_free_kbytes = 65536;
4142 	setup_per_zone_pages_min();
4143 	setup_per_zone_lowmem_reserve();
4144 	return 0;
4145 }
4146 module_init(init_per_zone_pages_min)
4147 
4148 /*
4149  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4150  *	that we can call two helper functions whenever min_free_kbytes
4151  *	changes.
4152  */
4153 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4154 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4155 {
4156 	proc_dointvec(table, write, file, buffer, length, ppos);
4157 	if (write)
4158 		setup_per_zone_pages_min();
4159 	return 0;
4160 }
4161 
4162 #ifdef CONFIG_NUMA
4163 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4164 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4165 {
4166 	struct zone *zone;
4167 	int rc;
4168 
4169 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4170 	if (rc)
4171 		return rc;
4172 
4173 	for_each_zone(zone)
4174 		zone->min_unmapped_pages = (zone->present_pages *
4175 				sysctl_min_unmapped_ratio) / 100;
4176 	return 0;
4177 }
4178 
4179 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4180 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4181 {
4182 	struct zone *zone;
4183 	int rc;
4184 
4185 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4186 	if (rc)
4187 		return rc;
4188 
4189 	for_each_zone(zone)
4190 		zone->min_slab_pages = (zone->present_pages *
4191 				sysctl_min_slab_ratio) / 100;
4192 	return 0;
4193 }
4194 #endif
4195 
4196 /*
4197  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4198  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4199  *	whenever sysctl_lowmem_reserve_ratio changes.
4200  *
4201  * The reserve ratio obviously has absolutely no relation with the
4202  * pages_min watermarks. The lowmem reserve ratio can only make sense
4203  * if in function of the boot time zone sizes.
4204  */
4205 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4206 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4207 {
4208 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4209 	setup_per_zone_lowmem_reserve();
4210 	return 0;
4211 }
4212 
4213 /*
4214  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4215  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4216  * can have before it gets flushed back to buddy allocator.
4217  */
4218 
4219 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4220 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4221 {
4222 	struct zone *zone;
4223 	unsigned int cpu;
4224 	int ret;
4225 
4226 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4227 	if (!write || (ret == -EINVAL))
4228 		return ret;
4229 	for_each_zone(zone) {
4230 		for_each_online_cpu(cpu) {
4231 			unsigned long  high;
4232 			high = zone->present_pages / percpu_pagelist_fraction;
4233 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4234 		}
4235 	}
4236 	return 0;
4237 }
4238 
4239 int hashdist = HASHDIST_DEFAULT;
4240 
4241 #ifdef CONFIG_NUMA
4242 static int __init set_hashdist(char *str)
4243 {
4244 	if (!str)
4245 		return 0;
4246 	hashdist = simple_strtoul(str, &str, 0);
4247 	return 1;
4248 }
4249 __setup("hashdist=", set_hashdist);
4250 #endif
4251 
4252 /*
4253  * allocate a large system hash table from bootmem
4254  * - it is assumed that the hash table must contain an exact power-of-2
4255  *   quantity of entries
4256  * - limit is the number of hash buckets, not the total allocation size
4257  */
4258 void *__init alloc_large_system_hash(const char *tablename,
4259 				     unsigned long bucketsize,
4260 				     unsigned long numentries,
4261 				     int scale,
4262 				     int flags,
4263 				     unsigned int *_hash_shift,
4264 				     unsigned int *_hash_mask,
4265 				     unsigned long limit)
4266 {
4267 	unsigned long long max = limit;
4268 	unsigned long log2qty, size;
4269 	void *table = NULL;
4270 
4271 	/* allow the kernel cmdline to have a say */
4272 	if (!numentries) {
4273 		/* round applicable memory size up to nearest megabyte */
4274 		numentries = nr_kernel_pages;
4275 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4276 		numentries >>= 20 - PAGE_SHIFT;
4277 		numentries <<= 20 - PAGE_SHIFT;
4278 
4279 		/* limit to 1 bucket per 2^scale bytes of low memory */
4280 		if (scale > PAGE_SHIFT)
4281 			numentries >>= (scale - PAGE_SHIFT);
4282 		else
4283 			numentries <<= (PAGE_SHIFT - scale);
4284 
4285 		/* Make sure we've got at least a 0-order allocation.. */
4286 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4287 			numentries = PAGE_SIZE / bucketsize;
4288 	}
4289 	numentries = roundup_pow_of_two(numentries);
4290 
4291 	/* limit allocation size to 1/16 total memory by default */
4292 	if (max == 0) {
4293 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4294 		do_div(max, bucketsize);
4295 	}
4296 
4297 	if (numentries > max)
4298 		numentries = max;
4299 
4300 	log2qty = ilog2(numentries);
4301 
4302 	do {
4303 		size = bucketsize << log2qty;
4304 		if (flags & HASH_EARLY)
4305 			table = alloc_bootmem(size);
4306 		else if (hashdist)
4307 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4308 		else {
4309 			unsigned long order;
4310 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4311 				;
4312 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4313 			/*
4314 			 * If bucketsize is not a power-of-two, we may free
4315 			 * some pages at the end of hash table.
4316 			 */
4317 			if (table) {
4318 				unsigned long alloc_end = (unsigned long)table +
4319 						(PAGE_SIZE << order);
4320 				unsigned long used = (unsigned long)table +
4321 						PAGE_ALIGN(size);
4322 				split_page(virt_to_page(table), order);
4323 				while (used < alloc_end) {
4324 					free_page(used);
4325 					used += PAGE_SIZE;
4326 				}
4327 			}
4328 		}
4329 	} while (!table && size > PAGE_SIZE && --log2qty);
4330 
4331 	if (!table)
4332 		panic("Failed to allocate %s hash table\n", tablename);
4333 
4334 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4335 	       tablename,
4336 	       (1U << log2qty),
4337 	       ilog2(size) - PAGE_SHIFT,
4338 	       size);
4339 
4340 	if (_hash_shift)
4341 		*_hash_shift = log2qty;
4342 	if (_hash_mask)
4343 		*_hash_mask = (1 << log2qty) - 1;
4344 
4345 	return table;
4346 }
4347 
4348 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4349 struct page *pfn_to_page(unsigned long pfn)
4350 {
4351 	return __pfn_to_page(pfn);
4352 }
4353 unsigned long page_to_pfn(struct page *page)
4354 {
4355 	return __page_to_pfn(page);
4356 }
4357 EXPORT_SYMBOL(pfn_to_page);
4358 EXPORT_SYMBOL(page_to_pfn);
4359 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4360 
4361 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4362 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4363 							unsigned long pfn)
4364 {
4365 #ifdef CONFIG_SPARSEMEM
4366 	return __pfn_to_section(pfn)->pageblock_flags;
4367 #else
4368 	return zone->pageblock_flags;
4369 #endif /* CONFIG_SPARSEMEM */
4370 }
4371 
4372 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4373 {
4374 #ifdef CONFIG_SPARSEMEM
4375 	pfn &= (PAGES_PER_SECTION-1);
4376 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4377 #else
4378 	pfn = pfn - zone->zone_start_pfn;
4379 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4380 #endif /* CONFIG_SPARSEMEM */
4381 }
4382 
4383 /**
4384  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4385  * @page: The page within the block of interest
4386  * @start_bitidx: The first bit of interest to retrieve
4387  * @end_bitidx: The last bit of interest
4388  * returns pageblock_bits flags
4389  */
4390 unsigned long get_pageblock_flags_group(struct page *page,
4391 					int start_bitidx, int end_bitidx)
4392 {
4393 	struct zone *zone;
4394 	unsigned long *bitmap;
4395 	unsigned long pfn, bitidx;
4396 	unsigned long flags = 0;
4397 	unsigned long value = 1;
4398 
4399 	zone = page_zone(page);
4400 	pfn = page_to_pfn(page);
4401 	bitmap = get_pageblock_bitmap(zone, pfn);
4402 	bitidx = pfn_to_bitidx(zone, pfn);
4403 
4404 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4405 		if (test_bit(bitidx + start_bitidx, bitmap))
4406 			flags |= value;
4407 
4408 	return flags;
4409 }
4410 
4411 /**
4412  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4413  * @page: The page within the block of interest
4414  * @start_bitidx: The first bit of interest
4415  * @end_bitidx: The last bit of interest
4416  * @flags: The flags to set
4417  */
4418 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4419 					int start_bitidx, int end_bitidx)
4420 {
4421 	struct zone *zone;
4422 	unsigned long *bitmap;
4423 	unsigned long pfn, bitidx;
4424 	unsigned long value = 1;
4425 
4426 	zone = page_zone(page);
4427 	pfn = page_to_pfn(page);
4428 	bitmap = get_pageblock_bitmap(zone, pfn);
4429 	bitidx = pfn_to_bitidx(zone, pfn);
4430 
4431 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4432 		if (flags & value)
4433 			__set_bit(bitidx + start_bitidx, bitmap);
4434 		else
4435 			__clear_bit(bitidx + start_bitidx, bitmap);
4436 }
4437 
4438 /*
4439  * This is designed as sub function...plz see page_isolation.c also.
4440  * set/clear page block's type to be ISOLATE.
4441  * page allocater never alloc memory from ISOLATE block.
4442  */
4443 
4444 int set_migratetype_isolate(struct page *page)
4445 {
4446 	struct zone *zone;
4447 	unsigned long flags;
4448 	int ret = -EBUSY;
4449 
4450 	zone = page_zone(page);
4451 	spin_lock_irqsave(&zone->lock, flags);
4452 	/*
4453 	 * In future, more migrate types will be able to be isolation target.
4454 	 */
4455 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4456 		goto out;
4457 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4458 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4459 	ret = 0;
4460 out:
4461 	spin_unlock_irqrestore(&zone->lock, flags);
4462 	if (!ret)
4463 		drain_all_local_pages();
4464 	return ret;
4465 }
4466 
4467 void unset_migratetype_isolate(struct page *page)
4468 {
4469 	struct zone *zone;
4470 	unsigned long flags;
4471 	zone = page_zone(page);
4472 	spin_lock_irqsave(&zone->lock, flags);
4473 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4474 		goto out;
4475 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4476 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4477 out:
4478 	spin_unlock_irqrestore(&zone->lock, flags);
4479 }
4480 
4481 #ifdef CONFIG_MEMORY_HOTREMOVE
4482 /*
4483  * All pages in the range must be isolated before calling this.
4484  */
4485 void
4486 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4487 {
4488 	struct page *page;
4489 	struct zone *zone;
4490 	int order, i;
4491 	unsigned long pfn;
4492 	unsigned long flags;
4493 	/* find the first valid pfn */
4494 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4495 		if (pfn_valid(pfn))
4496 			break;
4497 	if (pfn == end_pfn)
4498 		return;
4499 	zone = page_zone(pfn_to_page(pfn));
4500 	spin_lock_irqsave(&zone->lock, flags);
4501 	pfn = start_pfn;
4502 	while (pfn < end_pfn) {
4503 		if (!pfn_valid(pfn)) {
4504 			pfn++;
4505 			continue;
4506 		}
4507 		page = pfn_to_page(pfn);
4508 		BUG_ON(page_count(page));
4509 		BUG_ON(!PageBuddy(page));
4510 		order = page_order(page);
4511 #ifdef CONFIG_DEBUG_VM
4512 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4513 		       pfn, 1 << order, end_pfn);
4514 #endif
4515 		list_del(&page->lru);
4516 		rmv_page_order(page);
4517 		zone->free_area[order].nr_free--;
4518 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4519 				      - (1UL << order));
4520 		for (i = 0; i < (1 << order); i++)
4521 			SetPageReserved((page+i));
4522 		pfn += (1 << order);
4523 	}
4524 	spin_unlock_irqrestore(&zone->lock, flags);
4525 }
4526 #endif
4527