1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page_ext.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 67 #include <asm/sections.h> 68 #include <asm/tlbflush.h> 69 #include <asm/div64.h> 70 #include "internal.h" 71 72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 73 static DEFINE_MUTEX(pcp_batch_high_lock); 74 #define MIN_PERCPU_PAGELIST_FRACTION (8) 75 76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 77 DEFINE_PER_CPU(int, numa_node); 78 EXPORT_PER_CPU_SYMBOL(numa_node); 79 #endif 80 81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 82 /* 83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 86 * defined in <linux/topology.h>. 87 */ 88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 89 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 90 int _node_numa_mem_[MAX_NUMNODES]; 91 #endif 92 93 /* 94 * Array of node states. 95 */ 96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 97 [N_POSSIBLE] = NODE_MASK_ALL, 98 [N_ONLINE] = { { [0] = 1UL } }, 99 #ifndef CONFIG_NUMA 100 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 101 #ifdef CONFIG_HIGHMEM 102 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 103 #endif 104 #ifdef CONFIG_MOVABLE_NODE 105 [N_MEMORY] = { { [0] = 1UL } }, 106 #endif 107 [N_CPU] = { { [0] = 1UL } }, 108 #endif /* NUMA */ 109 }; 110 EXPORT_SYMBOL(node_states); 111 112 /* Protect totalram_pages and zone->managed_pages */ 113 static DEFINE_SPINLOCK(managed_page_count_lock); 114 115 unsigned long totalram_pages __read_mostly; 116 unsigned long totalreserve_pages __read_mostly; 117 unsigned long totalcma_pages __read_mostly; 118 119 int percpu_pagelist_fraction; 120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 121 122 /* 123 * A cached value of the page's pageblock's migratetype, used when the page is 124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 125 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 126 * Also the migratetype set in the page does not necessarily match the pcplist 127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 128 * other index - this ensures that it will be put on the correct CMA freelist. 129 */ 130 static inline int get_pcppage_migratetype(struct page *page) 131 { 132 return page->index; 133 } 134 135 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 136 { 137 page->index = migratetype; 138 } 139 140 #ifdef CONFIG_PM_SLEEP 141 /* 142 * The following functions are used by the suspend/hibernate code to temporarily 143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 144 * while devices are suspended. To avoid races with the suspend/hibernate code, 145 * they should always be called with pm_mutex held (gfp_allowed_mask also should 146 * only be modified with pm_mutex held, unless the suspend/hibernate code is 147 * guaranteed not to run in parallel with that modification). 148 */ 149 150 static gfp_t saved_gfp_mask; 151 152 void pm_restore_gfp_mask(void) 153 { 154 WARN_ON(!mutex_is_locked(&pm_mutex)); 155 if (saved_gfp_mask) { 156 gfp_allowed_mask = saved_gfp_mask; 157 saved_gfp_mask = 0; 158 } 159 } 160 161 void pm_restrict_gfp_mask(void) 162 { 163 WARN_ON(!mutex_is_locked(&pm_mutex)); 164 WARN_ON(saved_gfp_mask); 165 saved_gfp_mask = gfp_allowed_mask; 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 167 } 168 169 bool pm_suspended_storage(void) 170 { 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 172 return false; 173 return true; 174 } 175 #endif /* CONFIG_PM_SLEEP */ 176 177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 178 unsigned int pageblock_order __read_mostly; 179 #endif 180 181 static void __free_pages_ok(struct page *page, unsigned int order); 182 183 /* 184 * results with 256, 32 in the lowmem_reserve sysctl: 185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 186 * 1G machine -> (16M dma, 784M normal, 224M high) 187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 190 * 191 * TBD: should special case ZONE_DMA32 machines here - in those we normally 192 * don't need any ZONE_NORMAL reservation 193 */ 194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 195 #ifdef CONFIG_ZONE_DMA 196 256, 197 #endif 198 #ifdef CONFIG_ZONE_DMA32 199 256, 200 #endif 201 #ifdef CONFIG_HIGHMEM 202 32, 203 #endif 204 32, 205 }; 206 207 EXPORT_SYMBOL(totalram_pages); 208 209 static char * const zone_names[MAX_NR_ZONES] = { 210 #ifdef CONFIG_ZONE_DMA 211 "DMA", 212 #endif 213 #ifdef CONFIG_ZONE_DMA32 214 "DMA32", 215 #endif 216 "Normal", 217 #ifdef CONFIG_HIGHMEM 218 "HighMem", 219 #endif 220 "Movable", 221 #ifdef CONFIG_ZONE_DEVICE 222 "Device", 223 #endif 224 }; 225 226 char * const migratetype_names[MIGRATE_TYPES] = { 227 "Unmovable", 228 "Movable", 229 "Reclaimable", 230 "HighAtomic", 231 #ifdef CONFIG_CMA 232 "CMA", 233 #endif 234 #ifdef CONFIG_MEMORY_ISOLATION 235 "Isolate", 236 #endif 237 }; 238 239 compound_page_dtor * const compound_page_dtors[] = { 240 NULL, 241 free_compound_page, 242 #ifdef CONFIG_HUGETLB_PAGE 243 free_huge_page, 244 #endif 245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 246 free_transhuge_page, 247 #endif 248 }; 249 250 int min_free_kbytes = 1024; 251 int user_min_free_kbytes = -1; 252 253 static unsigned long __meminitdata nr_kernel_pages; 254 static unsigned long __meminitdata nr_all_pages; 255 static unsigned long __meminitdata dma_reserve; 256 257 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 258 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 259 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 260 static unsigned long __initdata required_kernelcore; 261 static unsigned long __initdata required_movablecore; 262 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 263 static bool mirrored_kernelcore; 264 265 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 266 int movable_zone; 267 EXPORT_SYMBOL(movable_zone); 268 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 269 270 #if MAX_NUMNODES > 1 271 int nr_node_ids __read_mostly = MAX_NUMNODES; 272 int nr_online_nodes __read_mostly = 1; 273 EXPORT_SYMBOL(nr_node_ids); 274 EXPORT_SYMBOL(nr_online_nodes); 275 #endif 276 277 int page_group_by_mobility_disabled __read_mostly; 278 279 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 280 static inline void reset_deferred_meminit(pg_data_t *pgdat) 281 { 282 pgdat->first_deferred_pfn = ULONG_MAX; 283 } 284 285 /* Returns true if the struct page for the pfn is uninitialised */ 286 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 287 { 288 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn) 289 return true; 290 291 return false; 292 } 293 294 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) 295 { 296 if (pfn >= NODE_DATA(nid)->first_deferred_pfn) 297 return true; 298 299 return false; 300 } 301 302 /* 303 * Returns false when the remaining initialisation should be deferred until 304 * later in the boot cycle when it can be parallelised. 305 */ 306 static inline bool update_defer_init(pg_data_t *pgdat, 307 unsigned long pfn, unsigned long zone_end, 308 unsigned long *nr_initialised) 309 { 310 /* Always populate low zones for address-contrained allocations */ 311 if (zone_end < pgdat_end_pfn(pgdat)) 312 return true; 313 314 /* Initialise at least 2G of the highest zone */ 315 (*nr_initialised)++; 316 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) && 317 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 318 pgdat->first_deferred_pfn = pfn; 319 return false; 320 } 321 322 return true; 323 } 324 #else 325 static inline void reset_deferred_meminit(pg_data_t *pgdat) 326 { 327 } 328 329 static inline bool early_page_uninitialised(unsigned long pfn) 330 { 331 return false; 332 } 333 334 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) 335 { 336 return false; 337 } 338 339 static inline bool update_defer_init(pg_data_t *pgdat, 340 unsigned long pfn, unsigned long zone_end, 341 unsigned long *nr_initialised) 342 { 343 return true; 344 } 345 #endif 346 347 348 void set_pageblock_migratetype(struct page *page, int migratetype) 349 { 350 if (unlikely(page_group_by_mobility_disabled && 351 migratetype < MIGRATE_PCPTYPES)) 352 migratetype = MIGRATE_UNMOVABLE; 353 354 set_pageblock_flags_group(page, (unsigned long)migratetype, 355 PB_migrate, PB_migrate_end); 356 } 357 358 #ifdef CONFIG_DEBUG_VM 359 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 360 { 361 int ret = 0; 362 unsigned seq; 363 unsigned long pfn = page_to_pfn(page); 364 unsigned long sp, start_pfn; 365 366 do { 367 seq = zone_span_seqbegin(zone); 368 start_pfn = zone->zone_start_pfn; 369 sp = zone->spanned_pages; 370 if (!zone_spans_pfn(zone, pfn)) 371 ret = 1; 372 } while (zone_span_seqretry(zone, seq)); 373 374 if (ret) 375 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 376 pfn, zone_to_nid(zone), zone->name, 377 start_pfn, start_pfn + sp); 378 379 return ret; 380 } 381 382 static int page_is_consistent(struct zone *zone, struct page *page) 383 { 384 if (!pfn_valid_within(page_to_pfn(page))) 385 return 0; 386 if (zone != page_zone(page)) 387 return 0; 388 389 return 1; 390 } 391 /* 392 * Temporary debugging check for pages not lying within a given zone. 393 */ 394 static int bad_range(struct zone *zone, struct page *page) 395 { 396 if (page_outside_zone_boundaries(zone, page)) 397 return 1; 398 if (!page_is_consistent(zone, page)) 399 return 1; 400 401 return 0; 402 } 403 #else 404 static inline int bad_range(struct zone *zone, struct page *page) 405 { 406 return 0; 407 } 408 #endif 409 410 static void bad_page(struct page *page, const char *reason, 411 unsigned long bad_flags) 412 { 413 static unsigned long resume; 414 static unsigned long nr_shown; 415 static unsigned long nr_unshown; 416 417 /* Don't complain about poisoned pages */ 418 if (PageHWPoison(page)) { 419 page_mapcount_reset(page); /* remove PageBuddy */ 420 return; 421 } 422 423 /* 424 * Allow a burst of 60 reports, then keep quiet for that minute; 425 * or allow a steady drip of one report per second. 426 */ 427 if (nr_shown == 60) { 428 if (time_before(jiffies, resume)) { 429 nr_unshown++; 430 goto out; 431 } 432 if (nr_unshown) { 433 pr_alert( 434 "BUG: Bad page state: %lu messages suppressed\n", 435 nr_unshown); 436 nr_unshown = 0; 437 } 438 nr_shown = 0; 439 } 440 if (nr_shown++ == 0) 441 resume = jiffies + 60 * HZ; 442 443 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 444 current->comm, page_to_pfn(page)); 445 __dump_page(page, reason); 446 bad_flags &= page->flags; 447 if (bad_flags) 448 pr_alert("bad because of flags: %#lx(%pGp)\n", 449 bad_flags, &bad_flags); 450 dump_page_owner(page); 451 452 print_modules(); 453 dump_stack(); 454 out: 455 /* Leave bad fields for debug, except PageBuddy could make trouble */ 456 page_mapcount_reset(page); /* remove PageBuddy */ 457 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 458 } 459 460 /* 461 * Higher-order pages are called "compound pages". They are structured thusly: 462 * 463 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 464 * 465 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 466 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 467 * 468 * The first tail page's ->compound_dtor holds the offset in array of compound 469 * page destructors. See compound_page_dtors. 470 * 471 * The first tail page's ->compound_order holds the order of allocation. 472 * This usage means that zero-order pages may not be compound. 473 */ 474 475 void free_compound_page(struct page *page) 476 { 477 __free_pages_ok(page, compound_order(page)); 478 } 479 480 void prep_compound_page(struct page *page, unsigned int order) 481 { 482 int i; 483 int nr_pages = 1 << order; 484 485 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 486 set_compound_order(page, order); 487 __SetPageHead(page); 488 for (i = 1; i < nr_pages; i++) { 489 struct page *p = page + i; 490 set_page_count(p, 0); 491 p->mapping = TAIL_MAPPING; 492 set_compound_head(p, page); 493 } 494 atomic_set(compound_mapcount_ptr(page), -1); 495 } 496 497 #ifdef CONFIG_DEBUG_PAGEALLOC 498 unsigned int _debug_guardpage_minorder; 499 bool _debug_pagealloc_enabled __read_mostly 500 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 501 bool _debug_guardpage_enabled __read_mostly; 502 503 static int __init early_debug_pagealloc(char *buf) 504 { 505 if (!buf) 506 return -EINVAL; 507 508 if (strcmp(buf, "on") == 0) 509 _debug_pagealloc_enabled = true; 510 511 if (strcmp(buf, "off") == 0) 512 _debug_pagealloc_enabled = false; 513 514 return 0; 515 } 516 early_param("debug_pagealloc", early_debug_pagealloc); 517 518 static bool need_debug_guardpage(void) 519 { 520 /* If we don't use debug_pagealloc, we don't need guard page */ 521 if (!debug_pagealloc_enabled()) 522 return false; 523 524 return true; 525 } 526 527 static void init_debug_guardpage(void) 528 { 529 if (!debug_pagealloc_enabled()) 530 return; 531 532 _debug_guardpage_enabled = true; 533 } 534 535 struct page_ext_operations debug_guardpage_ops = { 536 .need = need_debug_guardpage, 537 .init = init_debug_guardpage, 538 }; 539 540 static int __init debug_guardpage_minorder_setup(char *buf) 541 { 542 unsigned long res; 543 544 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 545 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 546 return 0; 547 } 548 _debug_guardpage_minorder = res; 549 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 550 return 0; 551 } 552 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 553 554 static inline void set_page_guard(struct zone *zone, struct page *page, 555 unsigned int order, int migratetype) 556 { 557 struct page_ext *page_ext; 558 559 if (!debug_guardpage_enabled()) 560 return; 561 562 page_ext = lookup_page_ext(page); 563 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 564 565 INIT_LIST_HEAD(&page->lru); 566 set_page_private(page, order); 567 /* Guard pages are not available for any usage */ 568 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 569 } 570 571 static inline void clear_page_guard(struct zone *zone, struct page *page, 572 unsigned int order, int migratetype) 573 { 574 struct page_ext *page_ext; 575 576 if (!debug_guardpage_enabled()) 577 return; 578 579 page_ext = lookup_page_ext(page); 580 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 581 582 set_page_private(page, 0); 583 if (!is_migrate_isolate(migratetype)) 584 __mod_zone_freepage_state(zone, (1 << order), migratetype); 585 } 586 #else 587 struct page_ext_operations debug_guardpage_ops = { NULL, }; 588 static inline void set_page_guard(struct zone *zone, struct page *page, 589 unsigned int order, int migratetype) {} 590 static inline void clear_page_guard(struct zone *zone, struct page *page, 591 unsigned int order, int migratetype) {} 592 #endif 593 594 static inline void set_page_order(struct page *page, unsigned int order) 595 { 596 set_page_private(page, order); 597 __SetPageBuddy(page); 598 } 599 600 static inline void rmv_page_order(struct page *page) 601 { 602 __ClearPageBuddy(page); 603 set_page_private(page, 0); 604 } 605 606 /* 607 * This function checks whether a page is free && is the buddy 608 * we can do coalesce a page and its buddy if 609 * (a) the buddy is not in a hole && 610 * (b) the buddy is in the buddy system && 611 * (c) a page and its buddy have the same order && 612 * (d) a page and its buddy are in the same zone. 613 * 614 * For recording whether a page is in the buddy system, we set ->_mapcount 615 * PAGE_BUDDY_MAPCOUNT_VALUE. 616 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 617 * serialized by zone->lock. 618 * 619 * For recording page's order, we use page_private(page). 620 */ 621 static inline int page_is_buddy(struct page *page, struct page *buddy, 622 unsigned int order) 623 { 624 if (!pfn_valid_within(page_to_pfn(buddy))) 625 return 0; 626 627 if (page_is_guard(buddy) && page_order(buddy) == order) { 628 if (page_zone_id(page) != page_zone_id(buddy)) 629 return 0; 630 631 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 632 633 return 1; 634 } 635 636 if (PageBuddy(buddy) && page_order(buddy) == order) { 637 /* 638 * zone check is done late to avoid uselessly 639 * calculating zone/node ids for pages that could 640 * never merge. 641 */ 642 if (page_zone_id(page) != page_zone_id(buddy)) 643 return 0; 644 645 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 646 647 return 1; 648 } 649 return 0; 650 } 651 652 /* 653 * Freeing function for a buddy system allocator. 654 * 655 * The concept of a buddy system is to maintain direct-mapped table 656 * (containing bit values) for memory blocks of various "orders". 657 * The bottom level table contains the map for the smallest allocatable 658 * units of memory (here, pages), and each level above it describes 659 * pairs of units from the levels below, hence, "buddies". 660 * At a high level, all that happens here is marking the table entry 661 * at the bottom level available, and propagating the changes upward 662 * as necessary, plus some accounting needed to play nicely with other 663 * parts of the VM system. 664 * At each level, we keep a list of pages, which are heads of continuous 665 * free pages of length of (1 << order) and marked with _mapcount 666 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 667 * field. 668 * So when we are allocating or freeing one, we can derive the state of the 669 * other. That is, if we allocate a small block, and both were 670 * free, the remainder of the region must be split into blocks. 671 * If a block is freed, and its buddy is also free, then this 672 * triggers coalescing into a block of larger size. 673 * 674 * -- nyc 675 */ 676 677 static inline void __free_one_page(struct page *page, 678 unsigned long pfn, 679 struct zone *zone, unsigned int order, 680 int migratetype) 681 { 682 unsigned long page_idx; 683 unsigned long combined_idx; 684 unsigned long uninitialized_var(buddy_idx); 685 struct page *buddy; 686 unsigned int max_order = MAX_ORDER; 687 688 VM_BUG_ON(!zone_is_initialized(zone)); 689 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 690 691 VM_BUG_ON(migratetype == -1); 692 if (is_migrate_isolate(migratetype)) { 693 /* 694 * We restrict max order of merging to prevent merge 695 * between freepages on isolate pageblock and normal 696 * pageblock. Without this, pageblock isolation 697 * could cause incorrect freepage accounting. 698 */ 699 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 700 } else { 701 __mod_zone_freepage_state(zone, 1 << order, migratetype); 702 } 703 704 page_idx = pfn & ((1 << max_order) - 1); 705 706 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 707 VM_BUG_ON_PAGE(bad_range(zone, page), page); 708 709 while (order < max_order - 1) { 710 buddy_idx = __find_buddy_index(page_idx, order); 711 buddy = page + (buddy_idx - page_idx); 712 if (!page_is_buddy(page, buddy, order)) 713 break; 714 /* 715 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 716 * merge with it and move up one order. 717 */ 718 if (page_is_guard(buddy)) { 719 clear_page_guard(zone, buddy, order, migratetype); 720 } else { 721 list_del(&buddy->lru); 722 zone->free_area[order].nr_free--; 723 rmv_page_order(buddy); 724 } 725 combined_idx = buddy_idx & page_idx; 726 page = page + (combined_idx - page_idx); 727 page_idx = combined_idx; 728 order++; 729 } 730 set_page_order(page, order); 731 732 /* 733 * If this is not the largest possible page, check if the buddy 734 * of the next-highest order is free. If it is, it's possible 735 * that pages are being freed that will coalesce soon. In case, 736 * that is happening, add the free page to the tail of the list 737 * so it's less likely to be used soon and more likely to be merged 738 * as a higher order page 739 */ 740 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 741 struct page *higher_page, *higher_buddy; 742 combined_idx = buddy_idx & page_idx; 743 higher_page = page + (combined_idx - page_idx); 744 buddy_idx = __find_buddy_index(combined_idx, order + 1); 745 higher_buddy = higher_page + (buddy_idx - combined_idx); 746 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 747 list_add_tail(&page->lru, 748 &zone->free_area[order].free_list[migratetype]); 749 goto out; 750 } 751 } 752 753 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 754 out: 755 zone->free_area[order].nr_free++; 756 } 757 758 static inline int free_pages_check(struct page *page) 759 { 760 const char *bad_reason = NULL; 761 unsigned long bad_flags = 0; 762 763 if (unlikely(atomic_read(&page->_mapcount) != -1)) 764 bad_reason = "nonzero mapcount"; 765 if (unlikely(page->mapping != NULL)) 766 bad_reason = "non-NULL mapping"; 767 if (unlikely(atomic_read(&page->_count) != 0)) 768 bad_reason = "nonzero _count"; 769 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 770 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 771 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 772 } 773 #ifdef CONFIG_MEMCG 774 if (unlikely(page->mem_cgroup)) 775 bad_reason = "page still charged to cgroup"; 776 #endif 777 if (unlikely(bad_reason)) { 778 bad_page(page, bad_reason, bad_flags); 779 return 1; 780 } 781 page_cpupid_reset_last(page); 782 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 783 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 784 return 0; 785 } 786 787 /* 788 * Frees a number of pages from the PCP lists 789 * Assumes all pages on list are in same zone, and of same order. 790 * count is the number of pages to free. 791 * 792 * If the zone was previously in an "all pages pinned" state then look to 793 * see if this freeing clears that state. 794 * 795 * And clear the zone's pages_scanned counter, to hold off the "all pages are 796 * pinned" detection logic. 797 */ 798 static void free_pcppages_bulk(struct zone *zone, int count, 799 struct per_cpu_pages *pcp) 800 { 801 int migratetype = 0; 802 int batch_free = 0; 803 int to_free = count; 804 unsigned long nr_scanned; 805 806 spin_lock(&zone->lock); 807 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 808 if (nr_scanned) 809 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 810 811 while (to_free) { 812 struct page *page; 813 struct list_head *list; 814 815 /* 816 * Remove pages from lists in a round-robin fashion. A 817 * batch_free count is maintained that is incremented when an 818 * empty list is encountered. This is so more pages are freed 819 * off fuller lists instead of spinning excessively around empty 820 * lists 821 */ 822 do { 823 batch_free++; 824 if (++migratetype == MIGRATE_PCPTYPES) 825 migratetype = 0; 826 list = &pcp->lists[migratetype]; 827 } while (list_empty(list)); 828 829 /* This is the only non-empty list. Free them all. */ 830 if (batch_free == MIGRATE_PCPTYPES) 831 batch_free = to_free; 832 833 do { 834 int mt; /* migratetype of the to-be-freed page */ 835 836 page = list_last_entry(list, struct page, lru); 837 /* must delete as __free_one_page list manipulates */ 838 list_del(&page->lru); 839 840 mt = get_pcppage_migratetype(page); 841 /* MIGRATE_ISOLATE page should not go to pcplists */ 842 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 843 /* Pageblock could have been isolated meanwhile */ 844 if (unlikely(has_isolate_pageblock(zone))) 845 mt = get_pageblock_migratetype(page); 846 847 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 848 trace_mm_page_pcpu_drain(page, 0, mt); 849 } while (--to_free && --batch_free && !list_empty(list)); 850 } 851 spin_unlock(&zone->lock); 852 } 853 854 static void free_one_page(struct zone *zone, 855 struct page *page, unsigned long pfn, 856 unsigned int order, 857 int migratetype) 858 { 859 unsigned long nr_scanned; 860 spin_lock(&zone->lock); 861 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 862 if (nr_scanned) 863 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 864 865 if (unlikely(has_isolate_pageblock(zone) || 866 is_migrate_isolate(migratetype))) { 867 migratetype = get_pfnblock_migratetype(page, pfn); 868 } 869 __free_one_page(page, pfn, zone, order, migratetype); 870 spin_unlock(&zone->lock); 871 } 872 873 static int free_tail_pages_check(struct page *head_page, struct page *page) 874 { 875 int ret = 1; 876 877 /* 878 * We rely page->lru.next never has bit 0 set, unless the page 879 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 880 */ 881 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 882 883 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 884 ret = 0; 885 goto out; 886 } 887 switch (page - head_page) { 888 case 1: 889 /* the first tail page: ->mapping is compound_mapcount() */ 890 if (unlikely(compound_mapcount(page))) { 891 bad_page(page, "nonzero compound_mapcount", 0); 892 goto out; 893 } 894 break; 895 case 2: 896 /* 897 * the second tail page: ->mapping is 898 * page_deferred_list().next -- ignore value. 899 */ 900 break; 901 default: 902 if (page->mapping != TAIL_MAPPING) { 903 bad_page(page, "corrupted mapping in tail page", 0); 904 goto out; 905 } 906 break; 907 } 908 if (unlikely(!PageTail(page))) { 909 bad_page(page, "PageTail not set", 0); 910 goto out; 911 } 912 if (unlikely(compound_head(page) != head_page)) { 913 bad_page(page, "compound_head not consistent", 0); 914 goto out; 915 } 916 ret = 0; 917 out: 918 page->mapping = NULL; 919 clear_compound_head(page); 920 return ret; 921 } 922 923 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 924 unsigned long zone, int nid) 925 { 926 set_page_links(page, zone, nid, pfn); 927 init_page_count(page); 928 page_mapcount_reset(page); 929 page_cpupid_reset_last(page); 930 931 INIT_LIST_HEAD(&page->lru); 932 #ifdef WANT_PAGE_VIRTUAL 933 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 934 if (!is_highmem_idx(zone)) 935 set_page_address(page, __va(pfn << PAGE_SHIFT)); 936 #endif 937 } 938 939 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 940 int nid) 941 { 942 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 943 } 944 945 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 946 static void init_reserved_page(unsigned long pfn) 947 { 948 pg_data_t *pgdat; 949 int nid, zid; 950 951 if (!early_page_uninitialised(pfn)) 952 return; 953 954 nid = early_pfn_to_nid(pfn); 955 pgdat = NODE_DATA(nid); 956 957 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 958 struct zone *zone = &pgdat->node_zones[zid]; 959 960 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 961 break; 962 } 963 __init_single_pfn(pfn, zid, nid); 964 } 965 #else 966 static inline void init_reserved_page(unsigned long pfn) 967 { 968 } 969 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 970 971 /* 972 * Initialised pages do not have PageReserved set. This function is 973 * called for each range allocated by the bootmem allocator and 974 * marks the pages PageReserved. The remaining valid pages are later 975 * sent to the buddy page allocator. 976 */ 977 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end) 978 { 979 unsigned long start_pfn = PFN_DOWN(start); 980 unsigned long end_pfn = PFN_UP(end); 981 982 for (; start_pfn < end_pfn; start_pfn++) { 983 if (pfn_valid(start_pfn)) { 984 struct page *page = pfn_to_page(start_pfn); 985 986 init_reserved_page(start_pfn); 987 988 /* Avoid false-positive PageTail() */ 989 INIT_LIST_HEAD(&page->lru); 990 991 SetPageReserved(page); 992 } 993 } 994 } 995 996 static bool free_pages_prepare(struct page *page, unsigned int order) 997 { 998 bool compound = PageCompound(page); 999 int i, bad = 0; 1000 1001 VM_BUG_ON_PAGE(PageTail(page), page); 1002 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1003 1004 trace_mm_page_free(page, order); 1005 kmemcheck_free_shadow(page, order); 1006 kasan_free_pages(page, order); 1007 1008 if (PageAnon(page)) 1009 page->mapping = NULL; 1010 bad += free_pages_check(page); 1011 for (i = 1; i < (1 << order); i++) { 1012 if (compound) 1013 bad += free_tail_pages_check(page, page + i); 1014 bad += free_pages_check(page + i); 1015 } 1016 if (bad) 1017 return false; 1018 1019 reset_page_owner(page, order); 1020 1021 if (!PageHighMem(page)) { 1022 debug_check_no_locks_freed(page_address(page), 1023 PAGE_SIZE << order); 1024 debug_check_no_obj_freed(page_address(page), 1025 PAGE_SIZE << order); 1026 } 1027 arch_free_page(page, order); 1028 kernel_poison_pages(page, 1 << order, 0); 1029 kernel_map_pages(page, 1 << order, 0); 1030 1031 return true; 1032 } 1033 1034 static void __free_pages_ok(struct page *page, unsigned int order) 1035 { 1036 unsigned long flags; 1037 int migratetype; 1038 unsigned long pfn = page_to_pfn(page); 1039 1040 if (!free_pages_prepare(page, order)) 1041 return; 1042 1043 migratetype = get_pfnblock_migratetype(page, pfn); 1044 local_irq_save(flags); 1045 __count_vm_events(PGFREE, 1 << order); 1046 free_one_page(page_zone(page), page, pfn, order, migratetype); 1047 local_irq_restore(flags); 1048 } 1049 1050 static void __init __free_pages_boot_core(struct page *page, 1051 unsigned long pfn, unsigned int order) 1052 { 1053 unsigned int nr_pages = 1 << order; 1054 struct page *p = page; 1055 unsigned int loop; 1056 1057 prefetchw(p); 1058 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1059 prefetchw(p + 1); 1060 __ClearPageReserved(p); 1061 set_page_count(p, 0); 1062 } 1063 __ClearPageReserved(p); 1064 set_page_count(p, 0); 1065 1066 page_zone(page)->managed_pages += nr_pages; 1067 set_page_refcounted(page); 1068 __free_pages(page, order); 1069 } 1070 1071 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1072 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1073 1074 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1075 1076 int __meminit early_pfn_to_nid(unsigned long pfn) 1077 { 1078 static DEFINE_SPINLOCK(early_pfn_lock); 1079 int nid; 1080 1081 spin_lock(&early_pfn_lock); 1082 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1083 if (nid < 0) 1084 nid = 0; 1085 spin_unlock(&early_pfn_lock); 1086 1087 return nid; 1088 } 1089 #endif 1090 1091 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1092 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1093 struct mminit_pfnnid_cache *state) 1094 { 1095 int nid; 1096 1097 nid = __early_pfn_to_nid(pfn, state); 1098 if (nid >= 0 && nid != node) 1099 return false; 1100 return true; 1101 } 1102 1103 /* Only safe to use early in boot when initialisation is single-threaded */ 1104 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1105 { 1106 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1107 } 1108 1109 #else 1110 1111 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1112 { 1113 return true; 1114 } 1115 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1116 struct mminit_pfnnid_cache *state) 1117 { 1118 return true; 1119 } 1120 #endif 1121 1122 1123 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1124 unsigned int order) 1125 { 1126 if (early_page_uninitialised(pfn)) 1127 return; 1128 return __free_pages_boot_core(page, pfn, order); 1129 } 1130 1131 /* 1132 * Check that the whole (or subset of) a pageblock given by the interval of 1133 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1134 * with the migration of free compaction scanner. The scanners then need to 1135 * use only pfn_valid_within() check for arches that allow holes within 1136 * pageblocks. 1137 * 1138 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1139 * 1140 * It's possible on some configurations to have a setup like node0 node1 node0 1141 * i.e. it's possible that all pages within a zones range of pages do not 1142 * belong to a single zone. We assume that a border between node0 and node1 1143 * can occur within a single pageblock, but not a node0 node1 node0 1144 * interleaving within a single pageblock. It is therefore sufficient to check 1145 * the first and last page of a pageblock and avoid checking each individual 1146 * page in a pageblock. 1147 */ 1148 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1149 unsigned long end_pfn, struct zone *zone) 1150 { 1151 struct page *start_page; 1152 struct page *end_page; 1153 1154 /* end_pfn is one past the range we are checking */ 1155 end_pfn--; 1156 1157 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1158 return NULL; 1159 1160 start_page = pfn_to_page(start_pfn); 1161 1162 if (page_zone(start_page) != zone) 1163 return NULL; 1164 1165 end_page = pfn_to_page(end_pfn); 1166 1167 /* This gives a shorter code than deriving page_zone(end_page) */ 1168 if (page_zone_id(start_page) != page_zone_id(end_page)) 1169 return NULL; 1170 1171 return start_page; 1172 } 1173 1174 void set_zone_contiguous(struct zone *zone) 1175 { 1176 unsigned long block_start_pfn = zone->zone_start_pfn; 1177 unsigned long block_end_pfn; 1178 1179 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1180 for (; block_start_pfn < zone_end_pfn(zone); 1181 block_start_pfn = block_end_pfn, 1182 block_end_pfn += pageblock_nr_pages) { 1183 1184 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1185 1186 if (!__pageblock_pfn_to_page(block_start_pfn, 1187 block_end_pfn, zone)) 1188 return; 1189 } 1190 1191 /* We confirm that there is no hole */ 1192 zone->contiguous = true; 1193 } 1194 1195 void clear_zone_contiguous(struct zone *zone) 1196 { 1197 zone->contiguous = false; 1198 } 1199 1200 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1201 static void __init deferred_free_range(struct page *page, 1202 unsigned long pfn, int nr_pages) 1203 { 1204 int i; 1205 1206 if (!page) 1207 return; 1208 1209 /* Free a large naturally-aligned chunk if possible */ 1210 if (nr_pages == MAX_ORDER_NR_PAGES && 1211 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) { 1212 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1213 __free_pages_boot_core(page, pfn, MAX_ORDER-1); 1214 return; 1215 } 1216 1217 for (i = 0; i < nr_pages; i++, page++, pfn++) 1218 __free_pages_boot_core(page, pfn, 0); 1219 } 1220 1221 /* Completion tracking for deferred_init_memmap() threads */ 1222 static atomic_t pgdat_init_n_undone __initdata; 1223 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1224 1225 static inline void __init pgdat_init_report_one_done(void) 1226 { 1227 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1228 complete(&pgdat_init_all_done_comp); 1229 } 1230 1231 /* Initialise remaining memory on a node */ 1232 static int __init deferred_init_memmap(void *data) 1233 { 1234 pg_data_t *pgdat = data; 1235 int nid = pgdat->node_id; 1236 struct mminit_pfnnid_cache nid_init_state = { }; 1237 unsigned long start = jiffies; 1238 unsigned long nr_pages = 0; 1239 unsigned long walk_start, walk_end; 1240 int i, zid; 1241 struct zone *zone; 1242 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1243 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1244 1245 if (first_init_pfn == ULONG_MAX) { 1246 pgdat_init_report_one_done(); 1247 return 0; 1248 } 1249 1250 /* Bind memory initialisation thread to a local node if possible */ 1251 if (!cpumask_empty(cpumask)) 1252 set_cpus_allowed_ptr(current, cpumask); 1253 1254 /* Sanity check boundaries */ 1255 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1256 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1257 pgdat->first_deferred_pfn = ULONG_MAX; 1258 1259 /* Only the highest zone is deferred so find it */ 1260 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1261 zone = pgdat->node_zones + zid; 1262 if (first_init_pfn < zone_end_pfn(zone)) 1263 break; 1264 } 1265 1266 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1267 unsigned long pfn, end_pfn; 1268 struct page *page = NULL; 1269 struct page *free_base_page = NULL; 1270 unsigned long free_base_pfn = 0; 1271 int nr_to_free = 0; 1272 1273 end_pfn = min(walk_end, zone_end_pfn(zone)); 1274 pfn = first_init_pfn; 1275 if (pfn < walk_start) 1276 pfn = walk_start; 1277 if (pfn < zone->zone_start_pfn) 1278 pfn = zone->zone_start_pfn; 1279 1280 for (; pfn < end_pfn; pfn++) { 1281 if (!pfn_valid_within(pfn)) 1282 goto free_range; 1283 1284 /* 1285 * Ensure pfn_valid is checked every 1286 * MAX_ORDER_NR_PAGES for memory holes 1287 */ 1288 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 1289 if (!pfn_valid(pfn)) { 1290 page = NULL; 1291 goto free_range; 1292 } 1293 } 1294 1295 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1296 page = NULL; 1297 goto free_range; 1298 } 1299 1300 /* Minimise pfn page lookups and scheduler checks */ 1301 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) { 1302 page++; 1303 } else { 1304 nr_pages += nr_to_free; 1305 deferred_free_range(free_base_page, 1306 free_base_pfn, nr_to_free); 1307 free_base_page = NULL; 1308 free_base_pfn = nr_to_free = 0; 1309 1310 page = pfn_to_page(pfn); 1311 cond_resched(); 1312 } 1313 1314 if (page->flags) { 1315 VM_BUG_ON(page_zone(page) != zone); 1316 goto free_range; 1317 } 1318 1319 __init_single_page(page, pfn, zid, nid); 1320 if (!free_base_page) { 1321 free_base_page = page; 1322 free_base_pfn = pfn; 1323 nr_to_free = 0; 1324 } 1325 nr_to_free++; 1326 1327 /* Where possible, batch up pages for a single free */ 1328 continue; 1329 free_range: 1330 /* Free the current block of pages to allocator */ 1331 nr_pages += nr_to_free; 1332 deferred_free_range(free_base_page, free_base_pfn, 1333 nr_to_free); 1334 free_base_page = NULL; 1335 free_base_pfn = nr_to_free = 0; 1336 } 1337 1338 first_init_pfn = max(end_pfn, first_init_pfn); 1339 } 1340 1341 /* Sanity check that the next zone really is unpopulated */ 1342 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1343 1344 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1345 jiffies_to_msecs(jiffies - start)); 1346 1347 pgdat_init_report_one_done(); 1348 return 0; 1349 } 1350 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1351 1352 void __init page_alloc_init_late(void) 1353 { 1354 struct zone *zone; 1355 1356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1357 int nid; 1358 1359 /* There will be num_node_state(N_MEMORY) threads */ 1360 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1361 for_each_node_state(nid, N_MEMORY) { 1362 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1363 } 1364 1365 /* Block until all are initialised */ 1366 wait_for_completion(&pgdat_init_all_done_comp); 1367 1368 /* Reinit limits that are based on free pages after the kernel is up */ 1369 files_maxfiles_init(); 1370 #endif 1371 1372 for_each_populated_zone(zone) 1373 set_zone_contiguous(zone); 1374 } 1375 1376 #ifdef CONFIG_CMA 1377 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1378 void __init init_cma_reserved_pageblock(struct page *page) 1379 { 1380 unsigned i = pageblock_nr_pages; 1381 struct page *p = page; 1382 1383 do { 1384 __ClearPageReserved(p); 1385 set_page_count(p, 0); 1386 } while (++p, --i); 1387 1388 set_pageblock_migratetype(page, MIGRATE_CMA); 1389 1390 if (pageblock_order >= MAX_ORDER) { 1391 i = pageblock_nr_pages; 1392 p = page; 1393 do { 1394 set_page_refcounted(p); 1395 __free_pages(p, MAX_ORDER - 1); 1396 p += MAX_ORDER_NR_PAGES; 1397 } while (i -= MAX_ORDER_NR_PAGES); 1398 } else { 1399 set_page_refcounted(page); 1400 __free_pages(page, pageblock_order); 1401 } 1402 1403 adjust_managed_page_count(page, pageblock_nr_pages); 1404 } 1405 #endif 1406 1407 /* 1408 * The order of subdivision here is critical for the IO subsystem. 1409 * Please do not alter this order without good reasons and regression 1410 * testing. Specifically, as large blocks of memory are subdivided, 1411 * the order in which smaller blocks are delivered depends on the order 1412 * they're subdivided in this function. This is the primary factor 1413 * influencing the order in which pages are delivered to the IO 1414 * subsystem according to empirical testing, and this is also justified 1415 * by considering the behavior of a buddy system containing a single 1416 * large block of memory acted on by a series of small allocations. 1417 * This behavior is a critical factor in sglist merging's success. 1418 * 1419 * -- nyc 1420 */ 1421 static inline void expand(struct zone *zone, struct page *page, 1422 int low, int high, struct free_area *area, 1423 int migratetype) 1424 { 1425 unsigned long size = 1 << high; 1426 1427 while (high > low) { 1428 area--; 1429 high--; 1430 size >>= 1; 1431 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1432 1433 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 1434 debug_guardpage_enabled() && 1435 high < debug_guardpage_minorder()) { 1436 /* 1437 * Mark as guard pages (or page), that will allow to 1438 * merge back to allocator when buddy will be freed. 1439 * Corresponding page table entries will not be touched, 1440 * pages will stay not present in virtual address space 1441 */ 1442 set_page_guard(zone, &page[size], high, migratetype); 1443 continue; 1444 } 1445 list_add(&page[size].lru, &area->free_list[migratetype]); 1446 area->nr_free++; 1447 set_page_order(&page[size], high); 1448 } 1449 } 1450 1451 /* 1452 * This page is about to be returned from the page allocator 1453 */ 1454 static inline int check_new_page(struct page *page) 1455 { 1456 const char *bad_reason = NULL; 1457 unsigned long bad_flags = 0; 1458 1459 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1460 bad_reason = "nonzero mapcount"; 1461 if (unlikely(page->mapping != NULL)) 1462 bad_reason = "non-NULL mapping"; 1463 if (unlikely(atomic_read(&page->_count) != 0)) 1464 bad_reason = "nonzero _count"; 1465 if (unlikely(page->flags & __PG_HWPOISON)) { 1466 bad_reason = "HWPoisoned (hardware-corrupted)"; 1467 bad_flags = __PG_HWPOISON; 1468 } 1469 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1470 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1471 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1472 } 1473 #ifdef CONFIG_MEMCG 1474 if (unlikely(page->mem_cgroup)) 1475 bad_reason = "page still charged to cgroup"; 1476 #endif 1477 if (unlikely(bad_reason)) { 1478 bad_page(page, bad_reason, bad_flags); 1479 return 1; 1480 } 1481 return 0; 1482 } 1483 1484 static inline bool free_pages_prezeroed(bool poisoned) 1485 { 1486 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1487 page_poisoning_enabled() && poisoned; 1488 } 1489 1490 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1491 int alloc_flags) 1492 { 1493 int i; 1494 bool poisoned = true; 1495 1496 for (i = 0; i < (1 << order); i++) { 1497 struct page *p = page + i; 1498 if (unlikely(check_new_page(p))) 1499 return 1; 1500 if (poisoned) 1501 poisoned &= page_is_poisoned(p); 1502 } 1503 1504 set_page_private(page, 0); 1505 set_page_refcounted(page); 1506 1507 arch_alloc_page(page, order); 1508 kernel_map_pages(page, 1 << order, 1); 1509 kernel_poison_pages(page, 1 << order, 1); 1510 kasan_alloc_pages(page, order); 1511 1512 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO)) 1513 for (i = 0; i < (1 << order); i++) 1514 clear_highpage(page + i); 1515 1516 if (order && (gfp_flags & __GFP_COMP)) 1517 prep_compound_page(page, order); 1518 1519 set_page_owner(page, order, gfp_flags); 1520 1521 /* 1522 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1523 * allocate the page. The expectation is that the caller is taking 1524 * steps that will free more memory. The caller should avoid the page 1525 * being used for !PFMEMALLOC purposes. 1526 */ 1527 if (alloc_flags & ALLOC_NO_WATERMARKS) 1528 set_page_pfmemalloc(page); 1529 else 1530 clear_page_pfmemalloc(page); 1531 1532 return 0; 1533 } 1534 1535 /* 1536 * Go through the free lists for the given migratetype and remove 1537 * the smallest available page from the freelists 1538 */ 1539 static inline 1540 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1541 int migratetype) 1542 { 1543 unsigned int current_order; 1544 struct free_area *area; 1545 struct page *page; 1546 1547 /* Find a page of the appropriate size in the preferred list */ 1548 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1549 area = &(zone->free_area[current_order]); 1550 page = list_first_entry_or_null(&area->free_list[migratetype], 1551 struct page, lru); 1552 if (!page) 1553 continue; 1554 list_del(&page->lru); 1555 rmv_page_order(page); 1556 area->nr_free--; 1557 expand(zone, page, order, current_order, area, migratetype); 1558 set_pcppage_migratetype(page, migratetype); 1559 return page; 1560 } 1561 1562 return NULL; 1563 } 1564 1565 1566 /* 1567 * This array describes the order lists are fallen back to when 1568 * the free lists for the desirable migrate type are depleted 1569 */ 1570 static int fallbacks[MIGRATE_TYPES][4] = { 1571 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1572 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1573 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1574 #ifdef CONFIG_CMA 1575 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1576 #endif 1577 #ifdef CONFIG_MEMORY_ISOLATION 1578 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1579 #endif 1580 }; 1581 1582 #ifdef CONFIG_CMA 1583 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1584 unsigned int order) 1585 { 1586 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1587 } 1588 #else 1589 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1590 unsigned int order) { return NULL; } 1591 #endif 1592 1593 /* 1594 * Move the free pages in a range to the free lists of the requested type. 1595 * Note that start_page and end_pages are not aligned on a pageblock 1596 * boundary. If alignment is required, use move_freepages_block() 1597 */ 1598 int move_freepages(struct zone *zone, 1599 struct page *start_page, struct page *end_page, 1600 int migratetype) 1601 { 1602 struct page *page; 1603 unsigned int order; 1604 int pages_moved = 0; 1605 1606 #ifndef CONFIG_HOLES_IN_ZONE 1607 /* 1608 * page_zone is not safe to call in this context when 1609 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1610 * anyway as we check zone boundaries in move_freepages_block(). 1611 * Remove at a later date when no bug reports exist related to 1612 * grouping pages by mobility 1613 */ 1614 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1615 #endif 1616 1617 for (page = start_page; page <= end_page;) { 1618 /* Make sure we are not inadvertently changing nodes */ 1619 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1620 1621 if (!pfn_valid_within(page_to_pfn(page))) { 1622 page++; 1623 continue; 1624 } 1625 1626 if (!PageBuddy(page)) { 1627 page++; 1628 continue; 1629 } 1630 1631 order = page_order(page); 1632 list_move(&page->lru, 1633 &zone->free_area[order].free_list[migratetype]); 1634 page += 1 << order; 1635 pages_moved += 1 << order; 1636 } 1637 1638 return pages_moved; 1639 } 1640 1641 int move_freepages_block(struct zone *zone, struct page *page, 1642 int migratetype) 1643 { 1644 unsigned long start_pfn, end_pfn; 1645 struct page *start_page, *end_page; 1646 1647 start_pfn = page_to_pfn(page); 1648 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1649 start_page = pfn_to_page(start_pfn); 1650 end_page = start_page + pageblock_nr_pages - 1; 1651 end_pfn = start_pfn + pageblock_nr_pages - 1; 1652 1653 /* Do not cross zone boundaries */ 1654 if (!zone_spans_pfn(zone, start_pfn)) 1655 start_page = page; 1656 if (!zone_spans_pfn(zone, end_pfn)) 1657 return 0; 1658 1659 return move_freepages(zone, start_page, end_page, migratetype); 1660 } 1661 1662 static void change_pageblock_range(struct page *pageblock_page, 1663 int start_order, int migratetype) 1664 { 1665 int nr_pageblocks = 1 << (start_order - pageblock_order); 1666 1667 while (nr_pageblocks--) { 1668 set_pageblock_migratetype(pageblock_page, migratetype); 1669 pageblock_page += pageblock_nr_pages; 1670 } 1671 } 1672 1673 /* 1674 * When we are falling back to another migratetype during allocation, try to 1675 * steal extra free pages from the same pageblocks to satisfy further 1676 * allocations, instead of polluting multiple pageblocks. 1677 * 1678 * If we are stealing a relatively large buddy page, it is likely there will 1679 * be more free pages in the pageblock, so try to steal them all. For 1680 * reclaimable and unmovable allocations, we steal regardless of page size, 1681 * as fragmentation caused by those allocations polluting movable pageblocks 1682 * is worse than movable allocations stealing from unmovable and reclaimable 1683 * pageblocks. 1684 */ 1685 static bool can_steal_fallback(unsigned int order, int start_mt) 1686 { 1687 /* 1688 * Leaving this order check is intended, although there is 1689 * relaxed order check in next check. The reason is that 1690 * we can actually steal whole pageblock if this condition met, 1691 * but, below check doesn't guarantee it and that is just heuristic 1692 * so could be changed anytime. 1693 */ 1694 if (order >= pageblock_order) 1695 return true; 1696 1697 if (order >= pageblock_order / 2 || 1698 start_mt == MIGRATE_RECLAIMABLE || 1699 start_mt == MIGRATE_UNMOVABLE || 1700 page_group_by_mobility_disabled) 1701 return true; 1702 1703 return false; 1704 } 1705 1706 /* 1707 * This function implements actual steal behaviour. If order is large enough, 1708 * we can steal whole pageblock. If not, we first move freepages in this 1709 * pageblock and check whether half of pages are moved or not. If half of 1710 * pages are moved, we can change migratetype of pageblock and permanently 1711 * use it's pages as requested migratetype in the future. 1712 */ 1713 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1714 int start_type) 1715 { 1716 unsigned int current_order = page_order(page); 1717 int pages; 1718 1719 /* Take ownership for orders >= pageblock_order */ 1720 if (current_order >= pageblock_order) { 1721 change_pageblock_range(page, current_order, start_type); 1722 return; 1723 } 1724 1725 pages = move_freepages_block(zone, page, start_type); 1726 1727 /* Claim the whole block if over half of it is free */ 1728 if (pages >= (1 << (pageblock_order-1)) || 1729 page_group_by_mobility_disabled) 1730 set_pageblock_migratetype(page, start_type); 1731 } 1732 1733 /* 1734 * Check whether there is a suitable fallback freepage with requested order. 1735 * If only_stealable is true, this function returns fallback_mt only if 1736 * we can steal other freepages all together. This would help to reduce 1737 * fragmentation due to mixed migratetype pages in one pageblock. 1738 */ 1739 int find_suitable_fallback(struct free_area *area, unsigned int order, 1740 int migratetype, bool only_stealable, bool *can_steal) 1741 { 1742 int i; 1743 int fallback_mt; 1744 1745 if (area->nr_free == 0) 1746 return -1; 1747 1748 *can_steal = false; 1749 for (i = 0;; i++) { 1750 fallback_mt = fallbacks[migratetype][i]; 1751 if (fallback_mt == MIGRATE_TYPES) 1752 break; 1753 1754 if (list_empty(&area->free_list[fallback_mt])) 1755 continue; 1756 1757 if (can_steal_fallback(order, migratetype)) 1758 *can_steal = true; 1759 1760 if (!only_stealable) 1761 return fallback_mt; 1762 1763 if (*can_steal) 1764 return fallback_mt; 1765 } 1766 1767 return -1; 1768 } 1769 1770 /* 1771 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1772 * there are no empty page blocks that contain a page with a suitable order 1773 */ 1774 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 1775 unsigned int alloc_order) 1776 { 1777 int mt; 1778 unsigned long max_managed, flags; 1779 1780 /* 1781 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 1782 * Check is race-prone but harmless. 1783 */ 1784 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 1785 if (zone->nr_reserved_highatomic >= max_managed) 1786 return; 1787 1788 spin_lock_irqsave(&zone->lock, flags); 1789 1790 /* Recheck the nr_reserved_highatomic limit under the lock */ 1791 if (zone->nr_reserved_highatomic >= max_managed) 1792 goto out_unlock; 1793 1794 /* Yoink! */ 1795 mt = get_pageblock_migratetype(page); 1796 if (mt != MIGRATE_HIGHATOMIC && 1797 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { 1798 zone->nr_reserved_highatomic += pageblock_nr_pages; 1799 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1800 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); 1801 } 1802 1803 out_unlock: 1804 spin_unlock_irqrestore(&zone->lock, flags); 1805 } 1806 1807 /* 1808 * Used when an allocation is about to fail under memory pressure. This 1809 * potentially hurts the reliability of high-order allocations when under 1810 * intense memory pressure but failed atomic allocations should be easier 1811 * to recover from than an OOM. 1812 */ 1813 static void unreserve_highatomic_pageblock(const struct alloc_context *ac) 1814 { 1815 struct zonelist *zonelist = ac->zonelist; 1816 unsigned long flags; 1817 struct zoneref *z; 1818 struct zone *zone; 1819 struct page *page; 1820 int order; 1821 1822 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 1823 ac->nodemask) { 1824 /* Preserve at least one pageblock */ 1825 if (zone->nr_reserved_highatomic <= pageblock_nr_pages) 1826 continue; 1827 1828 spin_lock_irqsave(&zone->lock, flags); 1829 for (order = 0; order < MAX_ORDER; order++) { 1830 struct free_area *area = &(zone->free_area[order]); 1831 1832 page = list_first_entry_or_null( 1833 &area->free_list[MIGRATE_HIGHATOMIC], 1834 struct page, lru); 1835 if (!page) 1836 continue; 1837 1838 /* 1839 * It should never happen but changes to locking could 1840 * inadvertently allow a per-cpu drain to add pages 1841 * to MIGRATE_HIGHATOMIC while unreserving so be safe 1842 * and watch for underflows. 1843 */ 1844 zone->nr_reserved_highatomic -= min(pageblock_nr_pages, 1845 zone->nr_reserved_highatomic); 1846 1847 /* 1848 * Convert to ac->migratetype and avoid the normal 1849 * pageblock stealing heuristics. Minimally, the caller 1850 * is doing the work and needs the pages. More 1851 * importantly, if the block was always converted to 1852 * MIGRATE_UNMOVABLE or another type then the number 1853 * of pageblocks that cannot be completely freed 1854 * may increase. 1855 */ 1856 set_pageblock_migratetype(page, ac->migratetype); 1857 move_freepages_block(zone, page, ac->migratetype); 1858 spin_unlock_irqrestore(&zone->lock, flags); 1859 return; 1860 } 1861 spin_unlock_irqrestore(&zone->lock, flags); 1862 } 1863 } 1864 1865 /* Remove an element from the buddy allocator from the fallback list */ 1866 static inline struct page * 1867 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1868 { 1869 struct free_area *area; 1870 unsigned int current_order; 1871 struct page *page; 1872 int fallback_mt; 1873 bool can_steal; 1874 1875 /* Find the largest possible block of pages in the other list */ 1876 for (current_order = MAX_ORDER-1; 1877 current_order >= order && current_order <= MAX_ORDER-1; 1878 --current_order) { 1879 area = &(zone->free_area[current_order]); 1880 fallback_mt = find_suitable_fallback(area, current_order, 1881 start_migratetype, false, &can_steal); 1882 if (fallback_mt == -1) 1883 continue; 1884 1885 page = list_first_entry(&area->free_list[fallback_mt], 1886 struct page, lru); 1887 if (can_steal) 1888 steal_suitable_fallback(zone, page, start_migratetype); 1889 1890 /* Remove the page from the freelists */ 1891 area->nr_free--; 1892 list_del(&page->lru); 1893 rmv_page_order(page); 1894 1895 expand(zone, page, order, current_order, area, 1896 start_migratetype); 1897 /* 1898 * The pcppage_migratetype may differ from pageblock's 1899 * migratetype depending on the decisions in 1900 * find_suitable_fallback(). This is OK as long as it does not 1901 * differ for MIGRATE_CMA pageblocks. Those can be used as 1902 * fallback only via special __rmqueue_cma_fallback() function 1903 */ 1904 set_pcppage_migratetype(page, start_migratetype); 1905 1906 trace_mm_page_alloc_extfrag(page, order, current_order, 1907 start_migratetype, fallback_mt); 1908 1909 return page; 1910 } 1911 1912 return NULL; 1913 } 1914 1915 /* 1916 * Do the hard work of removing an element from the buddy allocator. 1917 * Call me with the zone->lock already held. 1918 */ 1919 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1920 int migratetype) 1921 { 1922 struct page *page; 1923 1924 page = __rmqueue_smallest(zone, order, migratetype); 1925 if (unlikely(!page)) { 1926 if (migratetype == MIGRATE_MOVABLE) 1927 page = __rmqueue_cma_fallback(zone, order); 1928 1929 if (!page) 1930 page = __rmqueue_fallback(zone, order, migratetype); 1931 } 1932 1933 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1934 return page; 1935 } 1936 1937 /* 1938 * Obtain a specified number of elements from the buddy allocator, all under 1939 * a single hold of the lock, for efficiency. Add them to the supplied list. 1940 * Returns the number of new pages which were placed at *list. 1941 */ 1942 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1943 unsigned long count, struct list_head *list, 1944 int migratetype, bool cold) 1945 { 1946 int i; 1947 1948 spin_lock(&zone->lock); 1949 for (i = 0; i < count; ++i) { 1950 struct page *page = __rmqueue(zone, order, migratetype); 1951 if (unlikely(page == NULL)) 1952 break; 1953 1954 /* 1955 * Split buddy pages returned by expand() are received here 1956 * in physical page order. The page is added to the callers and 1957 * list and the list head then moves forward. From the callers 1958 * perspective, the linked list is ordered by page number in 1959 * some conditions. This is useful for IO devices that can 1960 * merge IO requests if the physical pages are ordered 1961 * properly. 1962 */ 1963 if (likely(!cold)) 1964 list_add(&page->lru, list); 1965 else 1966 list_add_tail(&page->lru, list); 1967 list = &page->lru; 1968 if (is_migrate_cma(get_pcppage_migratetype(page))) 1969 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1970 -(1 << order)); 1971 } 1972 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1973 spin_unlock(&zone->lock); 1974 return i; 1975 } 1976 1977 #ifdef CONFIG_NUMA 1978 /* 1979 * Called from the vmstat counter updater to drain pagesets of this 1980 * currently executing processor on remote nodes after they have 1981 * expired. 1982 * 1983 * Note that this function must be called with the thread pinned to 1984 * a single processor. 1985 */ 1986 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1987 { 1988 unsigned long flags; 1989 int to_drain, batch; 1990 1991 local_irq_save(flags); 1992 batch = READ_ONCE(pcp->batch); 1993 to_drain = min(pcp->count, batch); 1994 if (to_drain > 0) { 1995 free_pcppages_bulk(zone, to_drain, pcp); 1996 pcp->count -= to_drain; 1997 } 1998 local_irq_restore(flags); 1999 } 2000 #endif 2001 2002 /* 2003 * Drain pcplists of the indicated processor and zone. 2004 * 2005 * The processor must either be the current processor and the 2006 * thread pinned to the current processor or a processor that 2007 * is not online. 2008 */ 2009 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2010 { 2011 unsigned long flags; 2012 struct per_cpu_pageset *pset; 2013 struct per_cpu_pages *pcp; 2014 2015 local_irq_save(flags); 2016 pset = per_cpu_ptr(zone->pageset, cpu); 2017 2018 pcp = &pset->pcp; 2019 if (pcp->count) { 2020 free_pcppages_bulk(zone, pcp->count, pcp); 2021 pcp->count = 0; 2022 } 2023 local_irq_restore(flags); 2024 } 2025 2026 /* 2027 * Drain pcplists of all zones on the indicated processor. 2028 * 2029 * The processor must either be the current processor and the 2030 * thread pinned to the current processor or a processor that 2031 * is not online. 2032 */ 2033 static void drain_pages(unsigned int cpu) 2034 { 2035 struct zone *zone; 2036 2037 for_each_populated_zone(zone) { 2038 drain_pages_zone(cpu, zone); 2039 } 2040 } 2041 2042 /* 2043 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2044 * 2045 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2046 * the single zone's pages. 2047 */ 2048 void drain_local_pages(struct zone *zone) 2049 { 2050 int cpu = smp_processor_id(); 2051 2052 if (zone) 2053 drain_pages_zone(cpu, zone); 2054 else 2055 drain_pages(cpu); 2056 } 2057 2058 /* 2059 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2060 * 2061 * When zone parameter is non-NULL, spill just the single zone's pages. 2062 * 2063 * Note that this code is protected against sending an IPI to an offline 2064 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 2065 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 2066 * nothing keeps CPUs from showing up after we populated the cpumask and 2067 * before the call to on_each_cpu_mask(). 2068 */ 2069 void drain_all_pages(struct zone *zone) 2070 { 2071 int cpu; 2072 2073 /* 2074 * Allocate in the BSS so we wont require allocation in 2075 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2076 */ 2077 static cpumask_t cpus_with_pcps; 2078 2079 /* 2080 * We don't care about racing with CPU hotplug event 2081 * as offline notification will cause the notified 2082 * cpu to drain that CPU pcps and on_each_cpu_mask 2083 * disables preemption as part of its processing 2084 */ 2085 for_each_online_cpu(cpu) { 2086 struct per_cpu_pageset *pcp; 2087 struct zone *z; 2088 bool has_pcps = false; 2089 2090 if (zone) { 2091 pcp = per_cpu_ptr(zone->pageset, cpu); 2092 if (pcp->pcp.count) 2093 has_pcps = true; 2094 } else { 2095 for_each_populated_zone(z) { 2096 pcp = per_cpu_ptr(z->pageset, cpu); 2097 if (pcp->pcp.count) { 2098 has_pcps = true; 2099 break; 2100 } 2101 } 2102 } 2103 2104 if (has_pcps) 2105 cpumask_set_cpu(cpu, &cpus_with_pcps); 2106 else 2107 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2108 } 2109 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 2110 zone, 1); 2111 } 2112 2113 #ifdef CONFIG_HIBERNATION 2114 2115 void mark_free_pages(struct zone *zone) 2116 { 2117 unsigned long pfn, max_zone_pfn; 2118 unsigned long flags; 2119 unsigned int order, t; 2120 struct page *page; 2121 2122 if (zone_is_empty(zone)) 2123 return; 2124 2125 spin_lock_irqsave(&zone->lock, flags); 2126 2127 max_zone_pfn = zone_end_pfn(zone); 2128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2129 if (pfn_valid(pfn)) { 2130 page = pfn_to_page(pfn); 2131 if (!swsusp_page_is_forbidden(page)) 2132 swsusp_unset_page_free(page); 2133 } 2134 2135 for_each_migratetype_order(order, t) { 2136 list_for_each_entry(page, 2137 &zone->free_area[order].free_list[t], lru) { 2138 unsigned long i; 2139 2140 pfn = page_to_pfn(page); 2141 for (i = 0; i < (1UL << order); i++) 2142 swsusp_set_page_free(pfn_to_page(pfn + i)); 2143 } 2144 } 2145 spin_unlock_irqrestore(&zone->lock, flags); 2146 } 2147 #endif /* CONFIG_PM */ 2148 2149 /* 2150 * Free a 0-order page 2151 * cold == true ? free a cold page : free a hot page 2152 */ 2153 void free_hot_cold_page(struct page *page, bool cold) 2154 { 2155 struct zone *zone = page_zone(page); 2156 struct per_cpu_pages *pcp; 2157 unsigned long flags; 2158 unsigned long pfn = page_to_pfn(page); 2159 int migratetype; 2160 2161 if (!free_pages_prepare(page, 0)) 2162 return; 2163 2164 migratetype = get_pfnblock_migratetype(page, pfn); 2165 set_pcppage_migratetype(page, migratetype); 2166 local_irq_save(flags); 2167 __count_vm_event(PGFREE); 2168 2169 /* 2170 * We only track unmovable, reclaimable and movable on pcp lists. 2171 * Free ISOLATE pages back to the allocator because they are being 2172 * offlined but treat RESERVE as movable pages so we can get those 2173 * areas back if necessary. Otherwise, we may have to free 2174 * excessively into the page allocator 2175 */ 2176 if (migratetype >= MIGRATE_PCPTYPES) { 2177 if (unlikely(is_migrate_isolate(migratetype))) { 2178 free_one_page(zone, page, pfn, 0, migratetype); 2179 goto out; 2180 } 2181 migratetype = MIGRATE_MOVABLE; 2182 } 2183 2184 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2185 if (!cold) 2186 list_add(&page->lru, &pcp->lists[migratetype]); 2187 else 2188 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2189 pcp->count++; 2190 if (pcp->count >= pcp->high) { 2191 unsigned long batch = READ_ONCE(pcp->batch); 2192 free_pcppages_bulk(zone, batch, pcp); 2193 pcp->count -= batch; 2194 } 2195 2196 out: 2197 local_irq_restore(flags); 2198 } 2199 2200 /* 2201 * Free a list of 0-order pages 2202 */ 2203 void free_hot_cold_page_list(struct list_head *list, bool cold) 2204 { 2205 struct page *page, *next; 2206 2207 list_for_each_entry_safe(page, next, list, lru) { 2208 trace_mm_page_free_batched(page, cold); 2209 free_hot_cold_page(page, cold); 2210 } 2211 } 2212 2213 /* 2214 * split_page takes a non-compound higher-order page, and splits it into 2215 * n (1<<order) sub-pages: page[0..n] 2216 * Each sub-page must be freed individually. 2217 * 2218 * Note: this is probably too low level an operation for use in drivers. 2219 * Please consult with lkml before using this in your driver. 2220 */ 2221 void split_page(struct page *page, unsigned int order) 2222 { 2223 int i; 2224 gfp_t gfp_mask; 2225 2226 VM_BUG_ON_PAGE(PageCompound(page), page); 2227 VM_BUG_ON_PAGE(!page_count(page), page); 2228 2229 #ifdef CONFIG_KMEMCHECK 2230 /* 2231 * Split shadow pages too, because free(page[0]) would 2232 * otherwise free the whole shadow. 2233 */ 2234 if (kmemcheck_page_is_tracked(page)) 2235 split_page(virt_to_page(page[0].shadow), order); 2236 #endif 2237 2238 gfp_mask = get_page_owner_gfp(page); 2239 set_page_owner(page, 0, gfp_mask); 2240 for (i = 1; i < (1 << order); i++) { 2241 set_page_refcounted(page + i); 2242 set_page_owner(page + i, 0, gfp_mask); 2243 } 2244 } 2245 EXPORT_SYMBOL_GPL(split_page); 2246 2247 int __isolate_free_page(struct page *page, unsigned int order) 2248 { 2249 unsigned long watermark; 2250 struct zone *zone; 2251 int mt; 2252 2253 BUG_ON(!PageBuddy(page)); 2254 2255 zone = page_zone(page); 2256 mt = get_pageblock_migratetype(page); 2257 2258 if (!is_migrate_isolate(mt)) { 2259 /* Obey watermarks as if the page was being allocated */ 2260 watermark = low_wmark_pages(zone) + (1 << order); 2261 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 2262 return 0; 2263 2264 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2265 } 2266 2267 /* Remove page from free list */ 2268 list_del(&page->lru); 2269 zone->free_area[order].nr_free--; 2270 rmv_page_order(page); 2271 2272 set_page_owner(page, order, __GFP_MOVABLE); 2273 2274 /* Set the pageblock if the isolated page is at least a pageblock */ 2275 if (order >= pageblock_order - 1) { 2276 struct page *endpage = page + (1 << order) - 1; 2277 for (; page < endpage; page += pageblock_nr_pages) { 2278 int mt = get_pageblock_migratetype(page); 2279 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 2280 set_pageblock_migratetype(page, 2281 MIGRATE_MOVABLE); 2282 } 2283 } 2284 2285 2286 return 1UL << order; 2287 } 2288 2289 /* 2290 * Similar to split_page except the page is already free. As this is only 2291 * being used for migration, the migratetype of the block also changes. 2292 * As this is called with interrupts disabled, the caller is responsible 2293 * for calling arch_alloc_page() and kernel_map_page() after interrupts 2294 * are enabled. 2295 * 2296 * Note: this is probably too low level an operation for use in drivers. 2297 * Please consult with lkml before using this in your driver. 2298 */ 2299 int split_free_page(struct page *page) 2300 { 2301 unsigned int order; 2302 int nr_pages; 2303 2304 order = page_order(page); 2305 2306 nr_pages = __isolate_free_page(page, order); 2307 if (!nr_pages) 2308 return 0; 2309 2310 /* Split into individual pages */ 2311 set_page_refcounted(page); 2312 split_page(page, order); 2313 return nr_pages; 2314 } 2315 2316 /* 2317 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2318 */ 2319 static inline 2320 struct page *buffered_rmqueue(struct zone *preferred_zone, 2321 struct zone *zone, unsigned int order, 2322 gfp_t gfp_flags, int alloc_flags, int migratetype) 2323 { 2324 unsigned long flags; 2325 struct page *page; 2326 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2327 2328 if (likely(order == 0)) { 2329 struct per_cpu_pages *pcp; 2330 struct list_head *list; 2331 2332 local_irq_save(flags); 2333 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2334 list = &pcp->lists[migratetype]; 2335 if (list_empty(list)) { 2336 pcp->count += rmqueue_bulk(zone, 0, 2337 pcp->batch, list, 2338 migratetype, cold); 2339 if (unlikely(list_empty(list))) 2340 goto failed; 2341 } 2342 2343 if (cold) 2344 page = list_last_entry(list, struct page, lru); 2345 else 2346 page = list_first_entry(list, struct page, lru); 2347 2348 list_del(&page->lru); 2349 pcp->count--; 2350 } else { 2351 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 2352 /* 2353 * __GFP_NOFAIL is not to be used in new code. 2354 * 2355 * All __GFP_NOFAIL callers should be fixed so that they 2356 * properly detect and handle allocation failures. 2357 * 2358 * We most definitely don't want callers attempting to 2359 * allocate greater than order-1 page units with 2360 * __GFP_NOFAIL. 2361 */ 2362 WARN_ON_ONCE(order > 1); 2363 } 2364 spin_lock_irqsave(&zone->lock, flags); 2365 2366 page = NULL; 2367 if (alloc_flags & ALLOC_HARDER) { 2368 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2369 if (page) 2370 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2371 } 2372 if (!page) 2373 page = __rmqueue(zone, order, migratetype); 2374 spin_unlock(&zone->lock); 2375 if (!page) 2376 goto failed; 2377 __mod_zone_freepage_state(zone, -(1 << order), 2378 get_pcppage_migratetype(page)); 2379 } 2380 2381 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 2382 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 2383 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 2384 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2385 2386 __count_zone_vm_events(PGALLOC, zone, 1 << order); 2387 zone_statistics(preferred_zone, zone, gfp_flags); 2388 local_irq_restore(flags); 2389 2390 VM_BUG_ON_PAGE(bad_range(zone, page), page); 2391 return page; 2392 2393 failed: 2394 local_irq_restore(flags); 2395 return NULL; 2396 } 2397 2398 #ifdef CONFIG_FAIL_PAGE_ALLOC 2399 2400 static struct { 2401 struct fault_attr attr; 2402 2403 bool ignore_gfp_highmem; 2404 bool ignore_gfp_reclaim; 2405 u32 min_order; 2406 } fail_page_alloc = { 2407 .attr = FAULT_ATTR_INITIALIZER, 2408 .ignore_gfp_reclaim = true, 2409 .ignore_gfp_highmem = true, 2410 .min_order = 1, 2411 }; 2412 2413 static int __init setup_fail_page_alloc(char *str) 2414 { 2415 return setup_fault_attr(&fail_page_alloc.attr, str); 2416 } 2417 __setup("fail_page_alloc=", setup_fail_page_alloc); 2418 2419 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2420 { 2421 if (order < fail_page_alloc.min_order) 2422 return false; 2423 if (gfp_mask & __GFP_NOFAIL) 2424 return false; 2425 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2426 return false; 2427 if (fail_page_alloc.ignore_gfp_reclaim && 2428 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2429 return false; 2430 2431 return should_fail(&fail_page_alloc.attr, 1 << order); 2432 } 2433 2434 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2435 2436 static int __init fail_page_alloc_debugfs(void) 2437 { 2438 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2439 struct dentry *dir; 2440 2441 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2442 &fail_page_alloc.attr); 2443 if (IS_ERR(dir)) 2444 return PTR_ERR(dir); 2445 2446 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2447 &fail_page_alloc.ignore_gfp_reclaim)) 2448 goto fail; 2449 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2450 &fail_page_alloc.ignore_gfp_highmem)) 2451 goto fail; 2452 if (!debugfs_create_u32("min-order", mode, dir, 2453 &fail_page_alloc.min_order)) 2454 goto fail; 2455 2456 return 0; 2457 fail: 2458 debugfs_remove_recursive(dir); 2459 2460 return -ENOMEM; 2461 } 2462 2463 late_initcall(fail_page_alloc_debugfs); 2464 2465 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2466 2467 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2468 2469 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2470 { 2471 return false; 2472 } 2473 2474 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2475 2476 /* 2477 * Return true if free base pages are above 'mark'. For high-order checks it 2478 * will return true of the order-0 watermark is reached and there is at least 2479 * one free page of a suitable size. Checking now avoids taking the zone lock 2480 * to check in the allocation paths if no pages are free. 2481 */ 2482 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 2483 unsigned long mark, int classzone_idx, int alloc_flags, 2484 long free_pages) 2485 { 2486 long min = mark; 2487 int o; 2488 const int alloc_harder = (alloc_flags & ALLOC_HARDER); 2489 2490 /* free_pages may go negative - that's OK */ 2491 free_pages -= (1 << order) - 1; 2492 2493 if (alloc_flags & ALLOC_HIGH) 2494 min -= min / 2; 2495 2496 /* 2497 * If the caller does not have rights to ALLOC_HARDER then subtract 2498 * the high-atomic reserves. This will over-estimate the size of the 2499 * atomic reserve but it avoids a search. 2500 */ 2501 if (likely(!alloc_harder)) 2502 free_pages -= z->nr_reserved_highatomic; 2503 else 2504 min -= min / 4; 2505 2506 #ifdef CONFIG_CMA 2507 /* If allocation can't use CMA areas don't use free CMA pages */ 2508 if (!(alloc_flags & ALLOC_CMA)) 2509 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2510 #endif 2511 2512 /* 2513 * Check watermarks for an order-0 allocation request. If these 2514 * are not met, then a high-order request also cannot go ahead 2515 * even if a suitable page happened to be free. 2516 */ 2517 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2518 return false; 2519 2520 /* If this is an order-0 request then the watermark is fine */ 2521 if (!order) 2522 return true; 2523 2524 /* For a high-order request, check at least one suitable page is free */ 2525 for (o = order; o < MAX_ORDER; o++) { 2526 struct free_area *area = &z->free_area[o]; 2527 int mt; 2528 2529 if (!area->nr_free) 2530 continue; 2531 2532 if (alloc_harder) 2533 return true; 2534 2535 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2536 if (!list_empty(&area->free_list[mt])) 2537 return true; 2538 } 2539 2540 #ifdef CONFIG_CMA 2541 if ((alloc_flags & ALLOC_CMA) && 2542 !list_empty(&area->free_list[MIGRATE_CMA])) { 2543 return true; 2544 } 2545 #endif 2546 } 2547 return false; 2548 } 2549 2550 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2551 int classzone_idx, int alloc_flags) 2552 { 2553 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2554 zone_page_state(z, NR_FREE_PAGES)); 2555 } 2556 2557 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2558 unsigned long mark, int classzone_idx) 2559 { 2560 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2561 2562 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2563 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2564 2565 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 2566 free_pages); 2567 } 2568 2569 #ifdef CONFIG_NUMA 2570 static bool zone_local(struct zone *local_zone, struct zone *zone) 2571 { 2572 return local_zone->node == zone->node; 2573 } 2574 2575 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2576 { 2577 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2578 RECLAIM_DISTANCE; 2579 } 2580 #else /* CONFIG_NUMA */ 2581 static bool zone_local(struct zone *local_zone, struct zone *zone) 2582 { 2583 return true; 2584 } 2585 2586 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2587 { 2588 return true; 2589 } 2590 #endif /* CONFIG_NUMA */ 2591 2592 static void reset_alloc_batches(struct zone *preferred_zone) 2593 { 2594 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2595 2596 do { 2597 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2598 high_wmark_pages(zone) - low_wmark_pages(zone) - 2599 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2600 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2601 } while (zone++ != preferred_zone); 2602 } 2603 2604 /* 2605 * get_page_from_freelist goes through the zonelist trying to allocate 2606 * a page. 2607 */ 2608 static struct page * 2609 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2610 const struct alloc_context *ac) 2611 { 2612 struct zonelist *zonelist = ac->zonelist; 2613 struct zoneref *z; 2614 struct page *page = NULL; 2615 struct zone *zone; 2616 int nr_fair_skipped = 0; 2617 bool zonelist_rescan; 2618 2619 zonelist_scan: 2620 zonelist_rescan = false; 2621 2622 /* 2623 * Scan zonelist, looking for a zone with enough free. 2624 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2625 */ 2626 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2627 ac->nodemask) { 2628 unsigned long mark; 2629 2630 if (cpusets_enabled() && 2631 (alloc_flags & ALLOC_CPUSET) && 2632 !cpuset_zone_allowed(zone, gfp_mask)) 2633 continue; 2634 /* 2635 * Distribute pages in proportion to the individual 2636 * zone size to ensure fair page aging. The zone a 2637 * page was allocated in should have no effect on the 2638 * time the page has in memory before being reclaimed. 2639 */ 2640 if (alloc_flags & ALLOC_FAIR) { 2641 if (!zone_local(ac->preferred_zone, zone)) 2642 break; 2643 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2644 nr_fair_skipped++; 2645 continue; 2646 } 2647 } 2648 /* 2649 * When allocating a page cache page for writing, we 2650 * want to get it from a zone that is within its dirty 2651 * limit, such that no single zone holds more than its 2652 * proportional share of globally allowed dirty pages. 2653 * The dirty limits take into account the zone's 2654 * lowmem reserves and high watermark so that kswapd 2655 * should be able to balance it without having to 2656 * write pages from its LRU list. 2657 * 2658 * This may look like it could increase pressure on 2659 * lower zones by failing allocations in higher zones 2660 * before they are full. But the pages that do spill 2661 * over are limited as the lower zones are protected 2662 * by this very same mechanism. It should not become 2663 * a practical burden to them. 2664 * 2665 * XXX: For now, allow allocations to potentially 2666 * exceed the per-zone dirty limit in the slowpath 2667 * (spread_dirty_pages unset) before going into reclaim, 2668 * which is important when on a NUMA setup the allowed 2669 * zones are together not big enough to reach the 2670 * global limit. The proper fix for these situations 2671 * will require awareness of zones in the 2672 * dirty-throttling and the flusher threads. 2673 */ 2674 if (ac->spread_dirty_pages && !zone_dirty_ok(zone)) 2675 continue; 2676 2677 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2678 if (!zone_watermark_ok(zone, order, mark, 2679 ac->classzone_idx, alloc_flags)) { 2680 int ret; 2681 2682 /* Checked here to keep the fast path fast */ 2683 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2684 if (alloc_flags & ALLOC_NO_WATERMARKS) 2685 goto try_this_zone; 2686 2687 if (zone_reclaim_mode == 0 || 2688 !zone_allows_reclaim(ac->preferred_zone, zone)) 2689 continue; 2690 2691 ret = zone_reclaim(zone, gfp_mask, order); 2692 switch (ret) { 2693 case ZONE_RECLAIM_NOSCAN: 2694 /* did not scan */ 2695 continue; 2696 case ZONE_RECLAIM_FULL: 2697 /* scanned but unreclaimable */ 2698 continue; 2699 default: 2700 /* did we reclaim enough */ 2701 if (zone_watermark_ok(zone, order, mark, 2702 ac->classzone_idx, alloc_flags)) 2703 goto try_this_zone; 2704 2705 continue; 2706 } 2707 } 2708 2709 try_this_zone: 2710 page = buffered_rmqueue(ac->preferred_zone, zone, order, 2711 gfp_mask, alloc_flags, ac->migratetype); 2712 if (page) { 2713 if (prep_new_page(page, order, gfp_mask, alloc_flags)) 2714 goto try_this_zone; 2715 2716 /* 2717 * If this is a high-order atomic allocation then check 2718 * if the pageblock should be reserved for the future 2719 */ 2720 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 2721 reserve_highatomic_pageblock(page, zone, order); 2722 2723 return page; 2724 } 2725 } 2726 2727 /* 2728 * The first pass makes sure allocations are spread fairly within the 2729 * local node. However, the local node might have free pages left 2730 * after the fairness batches are exhausted, and remote zones haven't 2731 * even been considered yet. Try once more without fairness, and 2732 * include remote zones now, before entering the slowpath and waking 2733 * kswapd: prefer spilling to a remote zone over swapping locally. 2734 */ 2735 if (alloc_flags & ALLOC_FAIR) { 2736 alloc_flags &= ~ALLOC_FAIR; 2737 if (nr_fair_skipped) { 2738 zonelist_rescan = true; 2739 reset_alloc_batches(ac->preferred_zone); 2740 } 2741 if (nr_online_nodes > 1) 2742 zonelist_rescan = true; 2743 } 2744 2745 if (zonelist_rescan) 2746 goto zonelist_scan; 2747 2748 return NULL; 2749 } 2750 2751 /* 2752 * Large machines with many possible nodes should not always dump per-node 2753 * meminfo in irq context. 2754 */ 2755 static inline bool should_suppress_show_mem(void) 2756 { 2757 bool ret = false; 2758 2759 #if NODES_SHIFT > 8 2760 ret = in_interrupt(); 2761 #endif 2762 return ret; 2763 } 2764 2765 static DEFINE_RATELIMIT_STATE(nopage_rs, 2766 DEFAULT_RATELIMIT_INTERVAL, 2767 DEFAULT_RATELIMIT_BURST); 2768 2769 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...) 2770 { 2771 unsigned int filter = SHOW_MEM_FILTER_NODES; 2772 2773 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2774 debug_guardpage_minorder() > 0) 2775 return; 2776 2777 /* 2778 * This documents exceptions given to allocations in certain 2779 * contexts that are allowed to allocate outside current's set 2780 * of allowed nodes. 2781 */ 2782 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2783 if (test_thread_flag(TIF_MEMDIE) || 2784 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2785 filter &= ~SHOW_MEM_FILTER_NODES; 2786 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 2787 filter &= ~SHOW_MEM_FILTER_NODES; 2788 2789 if (fmt) { 2790 struct va_format vaf; 2791 va_list args; 2792 2793 va_start(args, fmt); 2794 2795 vaf.fmt = fmt; 2796 vaf.va = &args; 2797 2798 pr_warn("%pV", &vaf); 2799 2800 va_end(args); 2801 } 2802 2803 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n", 2804 current->comm, order, gfp_mask, &gfp_mask); 2805 dump_stack(); 2806 if (!should_suppress_show_mem()) 2807 show_mem(filter); 2808 } 2809 2810 static inline struct page * 2811 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2812 const struct alloc_context *ac, unsigned long *did_some_progress) 2813 { 2814 struct oom_control oc = { 2815 .zonelist = ac->zonelist, 2816 .nodemask = ac->nodemask, 2817 .gfp_mask = gfp_mask, 2818 .order = order, 2819 }; 2820 struct page *page; 2821 2822 *did_some_progress = 0; 2823 2824 /* 2825 * Acquire the oom lock. If that fails, somebody else is 2826 * making progress for us. 2827 */ 2828 if (!mutex_trylock(&oom_lock)) { 2829 *did_some_progress = 1; 2830 schedule_timeout_uninterruptible(1); 2831 return NULL; 2832 } 2833 2834 /* 2835 * Go through the zonelist yet one more time, keep very high watermark 2836 * here, this is only to catch a parallel oom killing, we must fail if 2837 * we're still under heavy pressure. 2838 */ 2839 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 2840 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 2841 if (page) 2842 goto out; 2843 2844 if (!(gfp_mask & __GFP_NOFAIL)) { 2845 /* Coredumps can quickly deplete all memory reserves */ 2846 if (current->flags & PF_DUMPCORE) 2847 goto out; 2848 /* The OOM killer will not help higher order allocs */ 2849 if (order > PAGE_ALLOC_COSTLY_ORDER) 2850 goto out; 2851 /* The OOM killer does not needlessly kill tasks for lowmem */ 2852 if (ac->high_zoneidx < ZONE_NORMAL) 2853 goto out; 2854 /* The OOM killer does not compensate for IO-less reclaim */ 2855 if (!(gfp_mask & __GFP_FS)) { 2856 /* 2857 * XXX: Page reclaim didn't yield anything, 2858 * and the OOM killer can't be invoked, but 2859 * keep looping as per tradition. 2860 */ 2861 *did_some_progress = 1; 2862 goto out; 2863 } 2864 if (pm_suspended_storage()) 2865 goto out; 2866 /* The OOM killer may not free memory on a specific node */ 2867 if (gfp_mask & __GFP_THISNODE) 2868 goto out; 2869 } 2870 /* Exhausted what can be done so it's blamo time */ 2871 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 2872 *did_some_progress = 1; 2873 2874 if (gfp_mask & __GFP_NOFAIL) { 2875 page = get_page_from_freelist(gfp_mask, order, 2876 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac); 2877 /* 2878 * fallback to ignore cpuset restriction if our nodes 2879 * are depleted 2880 */ 2881 if (!page) 2882 page = get_page_from_freelist(gfp_mask, order, 2883 ALLOC_NO_WATERMARKS, ac); 2884 } 2885 } 2886 out: 2887 mutex_unlock(&oom_lock); 2888 return page; 2889 } 2890 2891 #ifdef CONFIG_COMPACTION 2892 /* Try memory compaction for high-order allocations before reclaim */ 2893 static struct page * 2894 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2895 int alloc_flags, const struct alloc_context *ac, 2896 enum migrate_mode mode, int *contended_compaction, 2897 bool *deferred_compaction) 2898 { 2899 unsigned long compact_result; 2900 struct page *page; 2901 2902 if (!order) 2903 return NULL; 2904 2905 current->flags |= PF_MEMALLOC; 2906 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 2907 mode, contended_compaction); 2908 current->flags &= ~PF_MEMALLOC; 2909 2910 switch (compact_result) { 2911 case COMPACT_DEFERRED: 2912 *deferred_compaction = true; 2913 /* fall-through */ 2914 case COMPACT_SKIPPED: 2915 return NULL; 2916 default: 2917 break; 2918 } 2919 2920 /* 2921 * At least in one zone compaction wasn't deferred or skipped, so let's 2922 * count a compaction stall 2923 */ 2924 count_vm_event(COMPACTSTALL); 2925 2926 page = get_page_from_freelist(gfp_mask, order, 2927 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2928 2929 if (page) { 2930 struct zone *zone = page_zone(page); 2931 2932 zone->compact_blockskip_flush = false; 2933 compaction_defer_reset(zone, order, true); 2934 count_vm_event(COMPACTSUCCESS); 2935 return page; 2936 } 2937 2938 /* 2939 * It's bad if compaction run occurs and fails. The most likely reason 2940 * is that pages exist, but not enough to satisfy watermarks. 2941 */ 2942 count_vm_event(COMPACTFAIL); 2943 2944 cond_resched(); 2945 2946 return NULL; 2947 } 2948 #else 2949 static inline struct page * 2950 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2951 int alloc_flags, const struct alloc_context *ac, 2952 enum migrate_mode mode, int *contended_compaction, 2953 bool *deferred_compaction) 2954 { 2955 return NULL; 2956 } 2957 #endif /* CONFIG_COMPACTION */ 2958 2959 /* Perform direct synchronous page reclaim */ 2960 static int 2961 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 2962 const struct alloc_context *ac) 2963 { 2964 struct reclaim_state reclaim_state; 2965 int progress; 2966 2967 cond_resched(); 2968 2969 /* We now go into synchronous reclaim */ 2970 cpuset_memory_pressure_bump(); 2971 current->flags |= PF_MEMALLOC; 2972 lockdep_set_current_reclaim_state(gfp_mask); 2973 reclaim_state.reclaimed_slab = 0; 2974 current->reclaim_state = &reclaim_state; 2975 2976 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 2977 ac->nodemask); 2978 2979 current->reclaim_state = NULL; 2980 lockdep_clear_current_reclaim_state(); 2981 current->flags &= ~PF_MEMALLOC; 2982 2983 cond_resched(); 2984 2985 return progress; 2986 } 2987 2988 /* The really slow allocator path where we enter direct reclaim */ 2989 static inline struct page * 2990 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2991 int alloc_flags, const struct alloc_context *ac, 2992 unsigned long *did_some_progress) 2993 { 2994 struct page *page = NULL; 2995 bool drained = false; 2996 2997 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 2998 if (unlikely(!(*did_some_progress))) 2999 return NULL; 3000 3001 retry: 3002 page = get_page_from_freelist(gfp_mask, order, 3003 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 3004 3005 /* 3006 * If an allocation failed after direct reclaim, it could be because 3007 * pages are pinned on the per-cpu lists or in high alloc reserves. 3008 * Shrink them them and try again 3009 */ 3010 if (!page && !drained) { 3011 unreserve_highatomic_pageblock(ac); 3012 drain_all_pages(NULL); 3013 drained = true; 3014 goto retry; 3015 } 3016 3017 return page; 3018 } 3019 3020 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3021 { 3022 struct zoneref *z; 3023 struct zone *zone; 3024 3025 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3026 ac->high_zoneidx, ac->nodemask) 3027 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); 3028 } 3029 3030 static inline int 3031 gfp_to_alloc_flags(gfp_t gfp_mask) 3032 { 3033 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3034 3035 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3036 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3037 3038 /* 3039 * The caller may dip into page reserves a bit more if the caller 3040 * cannot run direct reclaim, or if the caller has realtime scheduling 3041 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3042 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3043 */ 3044 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3045 3046 if (gfp_mask & __GFP_ATOMIC) { 3047 /* 3048 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3049 * if it can't schedule. 3050 */ 3051 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3052 alloc_flags |= ALLOC_HARDER; 3053 /* 3054 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3055 * comment for __cpuset_node_allowed(). 3056 */ 3057 alloc_flags &= ~ALLOC_CPUSET; 3058 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3059 alloc_flags |= ALLOC_HARDER; 3060 3061 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 3062 if (gfp_mask & __GFP_MEMALLOC) 3063 alloc_flags |= ALLOC_NO_WATERMARKS; 3064 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3065 alloc_flags |= ALLOC_NO_WATERMARKS; 3066 else if (!in_interrupt() && 3067 ((current->flags & PF_MEMALLOC) || 3068 unlikely(test_thread_flag(TIF_MEMDIE)))) 3069 alloc_flags |= ALLOC_NO_WATERMARKS; 3070 } 3071 #ifdef CONFIG_CMA 3072 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3073 alloc_flags |= ALLOC_CMA; 3074 #endif 3075 return alloc_flags; 3076 } 3077 3078 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3079 { 3080 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 3081 } 3082 3083 static inline bool is_thp_gfp_mask(gfp_t gfp_mask) 3084 { 3085 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE; 3086 } 3087 3088 static inline struct page * 3089 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3090 struct alloc_context *ac) 3091 { 3092 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3093 struct page *page = NULL; 3094 int alloc_flags; 3095 unsigned long pages_reclaimed = 0; 3096 unsigned long did_some_progress; 3097 enum migrate_mode migration_mode = MIGRATE_ASYNC; 3098 bool deferred_compaction = false; 3099 int contended_compaction = COMPACT_CONTENDED_NONE; 3100 3101 /* 3102 * In the slowpath, we sanity check order to avoid ever trying to 3103 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3104 * be using allocators in order of preference for an area that is 3105 * too large. 3106 */ 3107 if (order >= MAX_ORDER) { 3108 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3109 return NULL; 3110 } 3111 3112 /* 3113 * We also sanity check to catch abuse of atomic reserves being used by 3114 * callers that are not in atomic context. 3115 */ 3116 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3117 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3118 gfp_mask &= ~__GFP_ATOMIC; 3119 3120 /* 3121 * If this allocation cannot block and it is for a specific node, then 3122 * fail early. There's no need to wakeup kswapd or retry for a 3123 * speculative node-specific allocation. 3124 */ 3125 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim) 3126 goto nopage; 3127 3128 retry: 3129 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3130 wake_all_kswapds(order, ac); 3131 3132 /* 3133 * OK, we're below the kswapd watermark and have kicked background 3134 * reclaim. Now things get more complex, so set up alloc_flags according 3135 * to how we want to proceed. 3136 */ 3137 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3138 3139 /* 3140 * Find the true preferred zone if the allocation is unconstrained by 3141 * cpusets. 3142 */ 3143 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { 3144 struct zoneref *preferred_zoneref; 3145 preferred_zoneref = first_zones_zonelist(ac->zonelist, 3146 ac->high_zoneidx, NULL, &ac->preferred_zone); 3147 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); 3148 } 3149 3150 /* This is the last chance, in general, before the goto nopage. */ 3151 page = get_page_from_freelist(gfp_mask, order, 3152 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 3153 if (page) 3154 goto got_pg; 3155 3156 /* Allocate without watermarks if the context allows */ 3157 if (alloc_flags & ALLOC_NO_WATERMARKS) { 3158 /* 3159 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 3160 * the allocation is high priority and these type of 3161 * allocations are system rather than user orientated 3162 */ 3163 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3164 page = get_page_from_freelist(gfp_mask, order, 3165 ALLOC_NO_WATERMARKS, ac); 3166 if (page) 3167 goto got_pg; 3168 } 3169 3170 /* Caller is not willing to reclaim, we can't balance anything */ 3171 if (!can_direct_reclaim) { 3172 /* 3173 * All existing users of the __GFP_NOFAIL are blockable, so warn 3174 * of any new users that actually allow this type of allocation 3175 * to fail. 3176 */ 3177 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 3178 goto nopage; 3179 } 3180 3181 /* Avoid recursion of direct reclaim */ 3182 if (current->flags & PF_MEMALLOC) { 3183 /* 3184 * __GFP_NOFAIL request from this context is rather bizarre 3185 * because we cannot reclaim anything and only can loop waiting 3186 * for somebody to do a work for us. 3187 */ 3188 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3189 cond_resched(); 3190 goto retry; 3191 } 3192 goto nopage; 3193 } 3194 3195 /* Avoid allocations with no watermarks from looping endlessly */ 3196 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 3197 goto nopage; 3198 3199 /* 3200 * Try direct compaction. The first pass is asynchronous. Subsequent 3201 * attempts after direct reclaim are synchronous 3202 */ 3203 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3204 migration_mode, 3205 &contended_compaction, 3206 &deferred_compaction); 3207 if (page) 3208 goto got_pg; 3209 3210 /* Checks for THP-specific high-order allocations */ 3211 if (is_thp_gfp_mask(gfp_mask)) { 3212 /* 3213 * If compaction is deferred for high-order allocations, it is 3214 * because sync compaction recently failed. If this is the case 3215 * and the caller requested a THP allocation, we do not want 3216 * to heavily disrupt the system, so we fail the allocation 3217 * instead of entering direct reclaim. 3218 */ 3219 if (deferred_compaction) 3220 goto nopage; 3221 3222 /* 3223 * In all zones where compaction was attempted (and not 3224 * deferred or skipped), lock contention has been detected. 3225 * For THP allocation we do not want to disrupt the others 3226 * so we fallback to base pages instead. 3227 */ 3228 if (contended_compaction == COMPACT_CONTENDED_LOCK) 3229 goto nopage; 3230 3231 /* 3232 * If compaction was aborted due to need_resched(), we do not 3233 * want to further increase allocation latency, unless it is 3234 * khugepaged trying to collapse. 3235 */ 3236 if (contended_compaction == COMPACT_CONTENDED_SCHED 3237 && !(current->flags & PF_KTHREAD)) 3238 goto nopage; 3239 } 3240 3241 /* 3242 * It can become very expensive to allocate transparent hugepages at 3243 * fault, so use asynchronous memory compaction for THP unless it is 3244 * khugepaged trying to collapse. 3245 */ 3246 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD)) 3247 migration_mode = MIGRATE_SYNC_LIGHT; 3248 3249 /* Try direct reclaim and then allocating */ 3250 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3251 &did_some_progress); 3252 if (page) 3253 goto got_pg; 3254 3255 /* Do not loop if specifically requested */ 3256 if (gfp_mask & __GFP_NORETRY) 3257 goto noretry; 3258 3259 /* Keep reclaiming pages as long as there is reasonable progress */ 3260 pages_reclaimed += did_some_progress; 3261 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) || 3262 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) { 3263 /* Wait for some write requests to complete then retry */ 3264 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); 3265 goto retry; 3266 } 3267 3268 /* Reclaim has failed us, start killing things */ 3269 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3270 if (page) 3271 goto got_pg; 3272 3273 /* Retry as long as the OOM killer is making progress */ 3274 if (did_some_progress) 3275 goto retry; 3276 3277 noretry: 3278 /* 3279 * High-order allocations do not necessarily loop after 3280 * direct reclaim and reclaim/compaction depends on compaction 3281 * being called after reclaim so call directly if necessary 3282 */ 3283 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, 3284 ac, migration_mode, 3285 &contended_compaction, 3286 &deferred_compaction); 3287 if (page) 3288 goto got_pg; 3289 nopage: 3290 warn_alloc_failed(gfp_mask, order, NULL); 3291 got_pg: 3292 return page; 3293 } 3294 3295 /* 3296 * This is the 'heart' of the zoned buddy allocator. 3297 */ 3298 struct page * 3299 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3300 struct zonelist *zonelist, nodemask_t *nodemask) 3301 { 3302 struct zoneref *preferred_zoneref; 3303 struct page *page = NULL; 3304 unsigned int cpuset_mems_cookie; 3305 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 3306 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 3307 struct alloc_context ac = { 3308 .high_zoneidx = gfp_zone(gfp_mask), 3309 .nodemask = nodemask, 3310 .migratetype = gfpflags_to_migratetype(gfp_mask), 3311 }; 3312 3313 gfp_mask &= gfp_allowed_mask; 3314 3315 lockdep_trace_alloc(gfp_mask); 3316 3317 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 3318 3319 if (should_fail_alloc_page(gfp_mask, order)) 3320 return NULL; 3321 3322 /* 3323 * Check the zones suitable for the gfp_mask contain at least one 3324 * valid zone. It's possible to have an empty zonelist as a result 3325 * of __GFP_THISNODE and a memoryless node 3326 */ 3327 if (unlikely(!zonelist->_zonerefs->zone)) 3328 return NULL; 3329 3330 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 3331 alloc_flags |= ALLOC_CMA; 3332 3333 retry_cpuset: 3334 cpuset_mems_cookie = read_mems_allowed_begin(); 3335 3336 /* We set it here, as __alloc_pages_slowpath might have changed it */ 3337 ac.zonelist = zonelist; 3338 3339 /* Dirty zone balancing only done in the fast path */ 3340 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE); 3341 3342 /* The preferred zone is used for statistics later */ 3343 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, 3344 ac.nodemask ? : &cpuset_current_mems_allowed, 3345 &ac.preferred_zone); 3346 if (!ac.preferred_zone) 3347 goto out; 3348 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); 3349 3350 /* First allocation attempt */ 3351 alloc_mask = gfp_mask|__GFP_HARDWALL; 3352 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3353 if (unlikely(!page)) { 3354 /* 3355 * Runtime PM, block IO and its error handling path 3356 * can deadlock because I/O on the device might not 3357 * complete. 3358 */ 3359 alloc_mask = memalloc_noio_flags(gfp_mask); 3360 ac.spread_dirty_pages = false; 3361 3362 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3363 } 3364 3365 if (kmemcheck_enabled && page) 3366 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 3367 3368 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 3369 3370 out: 3371 /* 3372 * When updating a task's mems_allowed, it is possible to race with 3373 * parallel threads in such a way that an allocation can fail while 3374 * the mask is being updated. If a page allocation is about to fail, 3375 * check if the cpuset changed during allocation and if so, retry. 3376 */ 3377 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 3378 goto retry_cpuset; 3379 3380 return page; 3381 } 3382 EXPORT_SYMBOL(__alloc_pages_nodemask); 3383 3384 /* 3385 * Common helper functions. 3386 */ 3387 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 3388 { 3389 struct page *page; 3390 3391 /* 3392 * __get_free_pages() returns a 32-bit address, which cannot represent 3393 * a highmem page 3394 */ 3395 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 3396 3397 page = alloc_pages(gfp_mask, order); 3398 if (!page) 3399 return 0; 3400 return (unsigned long) page_address(page); 3401 } 3402 EXPORT_SYMBOL(__get_free_pages); 3403 3404 unsigned long get_zeroed_page(gfp_t gfp_mask) 3405 { 3406 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 3407 } 3408 EXPORT_SYMBOL(get_zeroed_page); 3409 3410 void __free_pages(struct page *page, unsigned int order) 3411 { 3412 if (put_page_testzero(page)) { 3413 if (order == 0) 3414 free_hot_cold_page(page, false); 3415 else 3416 __free_pages_ok(page, order); 3417 } 3418 } 3419 3420 EXPORT_SYMBOL(__free_pages); 3421 3422 void free_pages(unsigned long addr, unsigned int order) 3423 { 3424 if (addr != 0) { 3425 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3426 __free_pages(virt_to_page((void *)addr), order); 3427 } 3428 } 3429 3430 EXPORT_SYMBOL(free_pages); 3431 3432 /* 3433 * Page Fragment: 3434 * An arbitrary-length arbitrary-offset area of memory which resides 3435 * within a 0 or higher order page. Multiple fragments within that page 3436 * are individually refcounted, in the page's reference counter. 3437 * 3438 * The page_frag functions below provide a simple allocation framework for 3439 * page fragments. This is used by the network stack and network device 3440 * drivers to provide a backing region of memory for use as either an 3441 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 3442 */ 3443 static struct page *__page_frag_refill(struct page_frag_cache *nc, 3444 gfp_t gfp_mask) 3445 { 3446 struct page *page = NULL; 3447 gfp_t gfp = gfp_mask; 3448 3449 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3450 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 3451 __GFP_NOMEMALLOC; 3452 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 3453 PAGE_FRAG_CACHE_MAX_ORDER); 3454 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 3455 #endif 3456 if (unlikely(!page)) 3457 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 3458 3459 nc->va = page ? page_address(page) : NULL; 3460 3461 return page; 3462 } 3463 3464 void *__alloc_page_frag(struct page_frag_cache *nc, 3465 unsigned int fragsz, gfp_t gfp_mask) 3466 { 3467 unsigned int size = PAGE_SIZE; 3468 struct page *page; 3469 int offset; 3470 3471 if (unlikely(!nc->va)) { 3472 refill: 3473 page = __page_frag_refill(nc, gfp_mask); 3474 if (!page) 3475 return NULL; 3476 3477 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3478 /* if size can vary use size else just use PAGE_SIZE */ 3479 size = nc->size; 3480 #endif 3481 /* Even if we own the page, we do not use atomic_set(). 3482 * This would break get_page_unless_zero() users. 3483 */ 3484 atomic_add(size - 1, &page->_count); 3485 3486 /* reset page count bias and offset to start of new frag */ 3487 nc->pfmemalloc = page_is_pfmemalloc(page); 3488 nc->pagecnt_bias = size; 3489 nc->offset = size; 3490 } 3491 3492 offset = nc->offset - fragsz; 3493 if (unlikely(offset < 0)) { 3494 page = virt_to_page(nc->va); 3495 3496 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count)) 3497 goto refill; 3498 3499 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3500 /* if size can vary use size else just use PAGE_SIZE */ 3501 size = nc->size; 3502 #endif 3503 /* OK, page count is 0, we can safely set it */ 3504 atomic_set(&page->_count, size); 3505 3506 /* reset page count bias and offset to start of new frag */ 3507 nc->pagecnt_bias = size; 3508 offset = size - fragsz; 3509 } 3510 3511 nc->pagecnt_bias--; 3512 nc->offset = offset; 3513 3514 return nc->va + offset; 3515 } 3516 EXPORT_SYMBOL(__alloc_page_frag); 3517 3518 /* 3519 * Frees a page fragment allocated out of either a compound or order 0 page. 3520 */ 3521 void __free_page_frag(void *addr) 3522 { 3523 struct page *page = virt_to_head_page(addr); 3524 3525 if (unlikely(put_page_testzero(page))) 3526 __free_pages_ok(page, compound_order(page)); 3527 } 3528 EXPORT_SYMBOL(__free_page_frag); 3529 3530 /* 3531 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 3532 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is 3533 * equivalent to alloc_pages. 3534 * 3535 * It should be used when the caller would like to use kmalloc, but since the 3536 * allocation is large, it has to fall back to the page allocator. 3537 */ 3538 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 3539 { 3540 struct page *page; 3541 3542 page = alloc_pages(gfp_mask, order); 3543 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) { 3544 __free_pages(page, order); 3545 page = NULL; 3546 } 3547 return page; 3548 } 3549 3550 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 3551 { 3552 struct page *page; 3553 3554 page = alloc_pages_node(nid, gfp_mask, order); 3555 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) { 3556 __free_pages(page, order); 3557 page = NULL; 3558 } 3559 return page; 3560 } 3561 3562 /* 3563 * __free_kmem_pages and free_kmem_pages will free pages allocated with 3564 * alloc_kmem_pages. 3565 */ 3566 void __free_kmem_pages(struct page *page, unsigned int order) 3567 { 3568 memcg_kmem_uncharge(page, order); 3569 __free_pages(page, order); 3570 } 3571 3572 void free_kmem_pages(unsigned long addr, unsigned int order) 3573 { 3574 if (addr != 0) { 3575 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3576 __free_kmem_pages(virt_to_page((void *)addr), order); 3577 } 3578 } 3579 3580 static void *make_alloc_exact(unsigned long addr, unsigned int order, 3581 size_t size) 3582 { 3583 if (addr) { 3584 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3585 unsigned long used = addr + PAGE_ALIGN(size); 3586 3587 split_page(virt_to_page((void *)addr), order); 3588 while (used < alloc_end) { 3589 free_page(used); 3590 used += PAGE_SIZE; 3591 } 3592 } 3593 return (void *)addr; 3594 } 3595 3596 /** 3597 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3598 * @size: the number of bytes to allocate 3599 * @gfp_mask: GFP flags for the allocation 3600 * 3601 * This function is similar to alloc_pages(), except that it allocates the 3602 * minimum number of pages to satisfy the request. alloc_pages() can only 3603 * allocate memory in power-of-two pages. 3604 * 3605 * This function is also limited by MAX_ORDER. 3606 * 3607 * Memory allocated by this function must be released by free_pages_exact(). 3608 */ 3609 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3610 { 3611 unsigned int order = get_order(size); 3612 unsigned long addr; 3613 3614 addr = __get_free_pages(gfp_mask, order); 3615 return make_alloc_exact(addr, order, size); 3616 } 3617 EXPORT_SYMBOL(alloc_pages_exact); 3618 3619 /** 3620 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3621 * pages on a node. 3622 * @nid: the preferred node ID where memory should be allocated 3623 * @size: the number of bytes to allocate 3624 * @gfp_mask: GFP flags for the allocation 3625 * 3626 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3627 * back. 3628 */ 3629 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3630 { 3631 unsigned int order = get_order(size); 3632 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3633 if (!p) 3634 return NULL; 3635 return make_alloc_exact((unsigned long)page_address(p), order, size); 3636 } 3637 3638 /** 3639 * free_pages_exact - release memory allocated via alloc_pages_exact() 3640 * @virt: the value returned by alloc_pages_exact. 3641 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3642 * 3643 * Release the memory allocated by a previous call to alloc_pages_exact. 3644 */ 3645 void free_pages_exact(void *virt, size_t size) 3646 { 3647 unsigned long addr = (unsigned long)virt; 3648 unsigned long end = addr + PAGE_ALIGN(size); 3649 3650 while (addr < end) { 3651 free_page(addr); 3652 addr += PAGE_SIZE; 3653 } 3654 } 3655 EXPORT_SYMBOL(free_pages_exact); 3656 3657 /** 3658 * nr_free_zone_pages - count number of pages beyond high watermark 3659 * @offset: The zone index of the highest zone 3660 * 3661 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3662 * high watermark within all zones at or below a given zone index. For each 3663 * zone, the number of pages is calculated as: 3664 * managed_pages - high_pages 3665 */ 3666 static unsigned long nr_free_zone_pages(int offset) 3667 { 3668 struct zoneref *z; 3669 struct zone *zone; 3670 3671 /* Just pick one node, since fallback list is circular */ 3672 unsigned long sum = 0; 3673 3674 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3675 3676 for_each_zone_zonelist(zone, z, zonelist, offset) { 3677 unsigned long size = zone->managed_pages; 3678 unsigned long high = high_wmark_pages(zone); 3679 if (size > high) 3680 sum += size - high; 3681 } 3682 3683 return sum; 3684 } 3685 3686 /** 3687 * nr_free_buffer_pages - count number of pages beyond high watermark 3688 * 3689 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3690 * watermark within ZONE_DMA and ZONE_NORMAL. 3691 */ 3692 unsigned long nr_free_buffer_pages(void) 3693 { 3694 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3695 } 3696 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3697 3698 /** 3699 * nr_free_pagecache_pages - count number of pages beyond high watermark 3700 * 3701 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3702 * high watermark within all zones. 3703 */ 3704 unsigned long nr_free_pagecache_pages(void) 3705 { 3706 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3707 } 3708 3709 static inline void show_node(struct zone *zone) 3710 { 3711 if (IS_ENABLED(CONFIG_NUMA)) 3712 printk("Node %d ", zone_to_nid(zone)); 3713 } 3714 3715 void si_meminfo(struct sysinfo *val) 3716 { 3717 val->totalram = totalram_pages; 3718 val->sharedram = global_page_state(NR_SHMEM); 3719 val->freeram = global_page_state(NR_FREE_PAGES); 3720 val->bufferram = nr_blockdev_pages(); 3721 val->totalhigh = totalhigh_pages; 3722 val->freehigh = nr_free_highpages(); 3723 val->mem_unit = PAGE_SIZE; 3724 } 3725 3726 EXPORT_SYMBOL(si_meminfo); 3727 3728 #ifdef CONFIG_NUMA 3729 void si_meminfo_node(struct sysinfo *val, int nid) 3730 { 3731 int zone_type; /* needs to be signed */ 3732 unsigned long managed_pages = 0; 3733 pg_data_t *pgdat = NODE_DATA(nid); 3734 3735 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3736 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3737 val->totalram = managed_pages; 3738 val->sharedram = node_page_state(nid, NR_SHMEM); 3739 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3740 #ifdef CONFIG_HIGHMEM 3741 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3742 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3743 NR_FREE_PAGES); 3744 #else 3745 val->totalhigh = 0; 3746 val->freehigh = 0; 3747 #endif 3748 val->mem_unit = PAGE_SIZE; 3749 } 3750 #endif 3751 3752 /* 3753 * Determine whether the node should be displayed or not, depending on whether 3754 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3755 */ 3756 bool skip_free_areas_node(unsigned int flags, int nid) 3757 { 3758 bool ret = false; 3759 unsigned int cpuset_mems_cookie; 3760 3761 if (!(flags & SHOW_MEM_FILTER_NODES)) 3762 goto out; 3763 3764 do { 3765 cpuset_mems_cookie = read_mems_allowed_begin(); 3766 ret = !node_isset(nid, cpuset_current_mems_allowed); 3767 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3768 out: 3769 return ret; 3770 } 3771 3772 #define K(x) ((x) << (PAGE_SHIFT-10)) 3773 3774 static void show_migration_types(unsigned char type) 3775 { 3776 static const char types[MIGRATE_TYPES] = { 3777 [MIGRATE_UNMOVABLE] = 'U', 3778 [MIGRATE_MOVABLE] = 'M', 3779 [MIGRATE_RECLAIMABLE] = 'E', 3780 [MIGRATE_HIGHATOMIC] = 'H', 3781 #ifdef CONFIG_CMA 3782 [MIGRATE_CMA] = 'C', 3783 #endif 3784 #ifdef CONFIG_MEMORY_ISOLATION 3785 [MIGRATE_ISOLATE] = 'I', 3786 #endif 3787 }; 3788 char tmp[MIGRATE_TYPES + 1]; 3789 char *p = tmp; 3790 int i; 3791 3792 for (i = 0; i < MIGRATE_TYPES; i++) { 3793 if (type & (1 << i)) 3794 *p++ = types[i]; 3795 } 3796 3797 *p = '\0'; 3798 printk("(%s) ", tmp); 3799 } 3800 3801 /* 3802 * Show free area list (used inside shift_scroll-lock stuff) 3803 * We also calculate the percentage fragmentation. We do this by counting the 3804 * memory on each free list with the exception of the first item on the list. 3805 * 3806 * Bits in @filter: 3807 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 3808 * cpuset. 3809 */ 3810 void show_free_areas(unsigned int filter) 3811 { 3812 unsigned long free_pcp = 0; 3813 int cpu; 3814 struct zone *zone; 3815 3816 for_each_populated_zone(zone) { 3817 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3818 continue; 3819 3820 for_each_online_cpu(cpu) 3821 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3822 } 3823 3824 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3825 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3826 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 3827 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3828 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3829 " free:%lu free_pcp:%lu free_cma:%lu\n", 3830 global_page_state(NR_ACTIVE_ANON), 3831 global_page_state(NR_INACTIVE_ANON), 3832 global_page_state(NR_ISOLATED_ANON), 3833 global_page_state(NR_ACTIVE_FILE), 3834 global_page_state(NR_INACTIVE_FILE), 3835 global_page_state(NR_ISOLATED_FILE), 3836 global_page_state(NR_UNEVICTABLE), 3837 global_page_state(NR_FILE_DIRTY), 3838 global_page_state(NR_WRITEBACK), 3839 global_page_state(NR_UNSTABLE_NFS), 3840 global_page_state(NR_SLAB_RECLAIMABLE), 3841 global_page_state(NR_SLAB_UNRECLAIMABLE), 3842 global_page_state(NR_FILE_MAPPED), 3843 global_page_state(NR_SHMEM), 3844 global_page_state(NR_PAGETABLE), 3845 global_page_state(NR_BOUNCE), 3846 global_page_state(NR_FREE_PAGES), 3847 free_pcp, 3848 global_page_state(NR_FREE_CMA_PAGES)); 3849 3850 for_each_populated_zone(zone) { 3851 int i; 3852 3853 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3854 continue; 3855 3856 free_pcp = 0; 3857 for_each_online_cpu(cpu) 3858 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3859 3860 show_node(zone); 3861 printk("%s" 3862 " free:%lukB" 3863 " min:%lukB" 3864 " low:%lukB" 3865 " high:%lukB" 3866 " active_anon:%lukB" 3867 " inactive_anon:%lukB" 3868 " active_file:%lukB" 3869 " inactive_file:%lukB" 3870 " unevictable:%lukB" 3871 " isolated(anon):%lukB" 3872 " isolated(file):%lukB" 3873 " present:%lukB" 3874 " managed:%lukB" 3875 " mlocked:%lukB" 3876 " dirty:%lukB" 3877 " writeback:%lukB" 3878 " mapped:%lukB" 3879 " shmem:%lukB" 3880 " slab_reclaimable:%lukB" 3881 " slab_unreclaimable:%lukB" 3882 " kernel_stack:%lukB" 3883 " pagetables:%lukB" 3884 " unstable:%lukB" 3885 " bounce:%lukB" 3886 " free_pcp:%lukB" 3887 " local_pcp:%ukB" 3888 " free_cma:%lukB" 3889 " writeback_tmp:%lukB" 3890 " pages_scanned:%lu" 3891 " all_unreclaimable? %s" 3892 "\n", 3893 zone->name, 3894 K(zone_page_state(zone, NR_FREE_PAGES)), 3895 K(min_wmark_pages(zone)), 3896 K(low_wmark_pages(zone)), 3897 K(high_wmark_pages(zone)), 3898 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3899 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3900 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3901 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3902 K(zone_page_state(zone, NR_UNEVICTABLE)), 3903 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3904 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3905 K(zone->present_pages), 3906 K(zone->managed_pages), 3907 K(zone_page_state(zone, NR_MLOCK)), 3908 K(zone_page_state(zone, NR_FILE_DIRTY)), 3909 K(zone_page_state(zone, NR_WRITEBACK)), 3910 K(zone_page_state(zone, NR_FILE_MAPPED)), 3911 K(zone_page_state(zone, NR_SHMEM)), 3912 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3913 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3914 zone_page_state(zone, NR_KERNEL_STACK) * 3915 THREAD_SIZE / 1024, 3916 K(zone_page_state(zone, NR_PAGETABLE)), 3917 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3918 K(zone_page_state(zone, NR_BOUNCE)), 3919 K(free_pcp), 3920 K(this_cpu_read(zone->pageset->pcp.count)), 3921 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3922 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3923 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3924 (!zone_reclaimable(zone) ? "yes" : "no") 3925 ); 3926 printk("lowmem_reserve[]:"); 3927 for (i = 0; i < MAX_NR_ZONES; i++) 3928 printk(" %ld", zone->lowmem_reserve[i]); 3929 printk("\n"); 3930 } 3931 3932 for_each_populated_zone(zone) { 3933 unsigned int order; 3934 unsigned long nr[MAX_ORDER], flags, total = 0; 3935 unsigned char types[MAX_ORDER]; 3936 3937 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3938 continue; 3939 show_node(zone); 3940 printk("%s: ", zone->name); 3941 3942 spin_lock_irqsave(&zone->lock, flags); 3943 for (order = 0; order < MAX_ORDER; order++) { 3944 struct free_area *area = &zone->free_area[order]; 3945 int type; 3946 3947 nr[order] = area->nr_free; 3948 total += nr[order] << order; 3949 3950 types[order] = 0; 3951 for (type = 0; type < MIGRATE_TYPES; type++) { 3952 if (!list_empty(&area->free_list[type])) 3953 types[order] |= 1 << type; 3954 } 3955 } 3956 spin_unlock_irqrestore(&zone->lock, flags); 3957 for (order = 0; order < MAX_ORDER; order++) { 3958 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3959 if (nr[order]) 3960 show_migration_types(types[order]); 3961 } 3962 printk("= %lukB\n", K(total)); 3963 } 3964 3965 hugetlb_show_meminfo(); 3966 3967 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3968 3969 show_swap_cache_info(); 3970 } 3971 3972 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3973 { 3974 zoneref->zone = zone; 3975 zoneref->zone_idx = zone_idx(zone); 3976 } 3977 3978 /* 3979 * Builds allocation fallback zone lists. 3980 * 3981 * Add all populated zones of a node to the zonelist. 3982 */ 3983 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3984 int nr_zones) 3985 { 3986 struct zone *zone; 3987 enum zone_type zone_type = MAX_NR_ZONES; 3988 3989 do { 3990 zone_type--; 3991 zone = pgdat->node_zones + zone_type; 3992 if (populated_zone(zone)) { 3993 zoneref_set_zone(zone, 3994 &zonelist->_zonerefs[nr_zones++]); 3995 check_highest_zone(zone_type); 3996 } 3997 } while (zone_type); 3998 3999 return nr_zones; 4000 } 4001 4002 4003 /* 4004 * zonelist_order: 4005 * 0 = automatic detection of better ordering. 4006 * 1 = order by ([node] distance, -zonetype) 4007 * 2 = order by (-zonetype, [node] distance) 4008 * 4009 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4010 * the same zonelist. So only NUMA can configure this param. 4011 */ 4012 #define ZONELIST_ORDER_DEFAULT 0 4013 #define ZONELIST_ORDER_NODE 1 4014 #define ZONELIST_ORDER_ZONE 2 4015 4016 /* zonelist order in the kernel. 4017 * set_zonelist_order() will set this to NODE or ZONE. 4018 */ 4019 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4020 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4021 4022 4023 #ifdef CONFIG_NUMA 4024 /* The value user specified ....changed by config */ 4025 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4026 /* string for sysctl */ 4027 #define NUMA_ZONELIST_ORDER_LEN 16 4028 char numa_zonelist_order[16] = "default"; 4029 4030 /* 4031 * interface for configure zonelist ordering. 4032 * command line option "numa_zonelist_order" 4033 * = "[dD]efault - default, automatic configuration. 4034 * = "[nN]ode - order by node locality, then by zone within node 4035 * = "[zZ]one - order by zone, then by locality within zone 4036 */ 4037 4038 static int __parse_numa_zonelist_order(char *s) 4039 { 4040 if (*s == 'd' || *s == 'D') { 4041 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4042 } else if (*s == 'n' || *s == 'N') { 4043 user_zonelist_order = ZONELIST_ORDER_NODE; 4044 } else if (*s == 'z' || *s == 'Z') { 4045 user_zonelist_order = ZONELIST_ORDER_ZONE; 4046 } else { 4047 printk(KERN_WARNING 4048 "Ignoring invalid numa_zonelist_order value: " 4049 "%s\n", s); 4050 return -EINVAL; 4051 } 4052 return 0; 4053 } 4054 4055 static __init int setup_numa_zonelist_order(char *s) 4056 { 4057 int ret; 4058 4059 if (!s) 4060 return 0; 4061 4062 ret = __parse_numa_zonelist_order(s); 4063 if (ret == 0) 4064 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4065 4066 return ret; 4067 } 4068 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4069 4070 /* 4071 * sysctl handler for numa_zonelist_order 4072 */ 4073 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4074 void __user *buffer, size_t *length, 4075 loff_t *ppos) 4076 { 4077 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4078 int ret; 4079 static DEFINE_MUTEX(zl_order_mutex); 4080 4081 mutex_lock(&zl_order_mutex); 4082 if (write) { 4083 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4084 ret = -EINVAL; 4085 goto out; 4086 } 4087 strcpy(saved_string, (char *)table->data); 4088 } 4089 ret = proc_dostring(table, write, buffer, length, ppos); 4090 if (ret) 4091 goto out; 4092 if (write) { 4093 int oldval = user_zonelist_order; 4094 4095 ret = __parse_numa_zonelist_order((char *)table->data); 4096 if (ret) { 4097 /* 4098 * bogus value. restore saved string 4099 */ 4100 strncpy((char *)table->data, saved_string, 4101 NUMA_ZONELIST_ORDER_LEN); 4102 user_zonelist_order = oldval; 4103 } else if (oldval != user_zonelist_order) { 4104 mutex_lock(&zonelists_mutex); 4105 build_all_zonelists(NULL, NULL); 4106 mutex_unlock(&zonelists_mutex); 4107 } 4108 } 4109 out: 4110 mutex_unlock(&zl_order_mutex); 4111 return ret; 4112 } 4113 4114 4115 #define MAX_NODE_LOAD (nr_online_nodes) 4116 static int node_load[MAX_NUMNODES]; 4117 4118 /** 4119 * find_next_best_node - find the next node that should appear in a given node's fallback list 4120 * @node: node whose fallback list we're appending 4121 * @used_node_mask: nodemask_t of already used nodes 4122 * 4123 * We use a number of factors to determine which is the next node that should 4124 * appear on a given node's fallback list. The node should not have appeared 4125 * already in @node's fallback list, and it should be the next closest node 4126 * according to the distance array (which contains arbitrary distance values 4127 * from each node to each node in the system), and should also prefer nodes 4128 * with no CPUs, since presumably they'll have very little allocation pressure 4129 * on them otherwise. 4130 * It returns -1 if no node is found. 4131 */ 4132 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4133 { 4134 int n, val; 4135 int min_val = INT_MAX; 4136 int best_node = NUMA_NO_NODE; 4137 const struct cpumask *tmp = cpumask_of_node(0); 4138 4139 /* Use the local node if we haven't already */ 4140 if (!node_isset(node, *used_node_mask)) { 4141 node_set(node, *used_node_mask); 4142 return node; 4143 } 4144 4145 for_each_node_state(n, N_MEMORY) { 4146 4147 /* Don't want a node to appear more than once */ 4148 if (node_isset(n, *used_node_mask)) 4149 continue; 4150 4151 /* Use the distance array to find the distance */ 4152 val = node_distance(node, n); 4153 4154 /* Penalize nodes under us ("prefer the next node") */ 4155 val += (n < node); 4156 4157 /* Give preference to headless and unused nodes */ 4158 tmp = cpumask_of_node(n); 4159 if (!cpumask_empty(tmp)) 4160 val += PENALTY_FOR_NODE_WITH_CPUS; 4161 4162 /* Slight preference for less loaded node */ 4163 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4164 val += node_load[n]; 4165 4166 if (val < min_val) { 4167 min_val = val; 4168 best_node = n; 4169 } 4170 } 4171 4172 if (best_node >= 0) 4173 node_set(best_node, *used_node_mask); 4174 4175 return best_node; 4176 } 4177 4178 4179 /* 4180 * Build zonelists ordered by node and zones within node. 4181 * This results in maximum locality--normal zone overflows into local 4182 * DMA zone, if any--but risks exhausting DMA zone. 4183 */ 4184 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4185 { 4186 int j; 4187 struct zonelist *zonelist; 4188 4189 zonelist = &pgdat->node_zonelists[0]; 4190 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4191 ; 4192 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4193 zonelist->_zonerefs[j].zone = NULL; 4194 zonelist->_zonerefs[j].zone_idx = 0; 4195 } 4196 4197 /* 4198 * Build gfp_thisnode zonelists 4199 */ 4200 static void build_thisnode_zonelists(pg_data_t *pgdat) 4201 { 4202 int j; 4203 struct zonelist *zonelist; 4204 4205 zonelist = &pgdat->node_zonelists[1]; 4206 j = build_zonelists_node(pgdat, zonelist, 0); 4207 zonelist->_zonerefs[j].zone = NULL; 4208 zonelist->_zonerefs[j].zone_idx = 0; 4209 } 4210 4211 /* 4212 * Build zonelists ordered by zone and nodes within zones. 4213 * This results in conserving DMA zone[s] until all Normal memory is 4214 * exhausted, but results in overflowing to remote node while memory 4215 * may still exist in local DMA zone. 4216 */ 4217 static int node_order[MAX_NUMNODES]; 4218 4219 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4220 { 4221 int pos, j, node; 4222 int zone_type; /* needs to be signed */ 4223 struct zone *z; 4224 struct zonelist *zonelist; 4225 4226 zonelist = &pgdat->node_zonelists[0]; 4227 pos = 0; 4228 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4229 for (j = 0; j < nr_nodes; j++) { 4230 node = node_order[j]; 4231 z = &NODE_DATA(node)->node_zones[zone_type]; 4232 if (populated_zone(z)) { 4233 zoneref_set_zone(z, 4234 &zonelist->_zonerefs[pos++]); 4235 check_highest_zone(zone_type); 4236 } 4237 } 4238 } 4239 zonelist->_zonerefs[pos].zone = NULL; 4240 zonelist->_zonerefs[pos].zone_idx = 0; 4241 } 4242 4243 #if defined(CONFIG_64BIT) 4244 /* 4245 * Devices that require DMA32/DMA are relatively rare and do not justify a 4246 * penalty to every machine in case the specialised case applies. Default 4247 * to Node-ordering on 64-bit NUMA machines 4248 */ 4249 static int default_zonelist_order(void) 4250 { 4251 return ZONELIST_ORDER_NODE; 4252 } 4253 #else 4254 /* 4255 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4256 * by the kernel. If processes running on node 0 deplete the low memory zone 4257 * then reclaim will occur more frequency increasing stalls and potentially 4258 * be easier to OOM if a large percentage of the zone is under writeback or 4259 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4260 * Hence, default to zone ordering on 32-bit. 4261 */ 4262 static int default_zonelist_order(void) 4263 { 4264 return ZONELIST_ORDER_ZONE; 4265 } 4266 #endif /* CONFIG_64BIT */ 4267 4268 static void set_zonelist_order(void) 4269 { 4270 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4271 current_zonelist_order = default_zonelist_order(); 4272 else 4273 current_zonelist_order = user_zonelist_order; 4274 } 4275 4276 static void build_zonelists(pg_data_t *pgdat) 4277 { 4278 int i, node, load; 4279 nodemask_t used_mask; 4280 int local_node, prev_node; 4281 struct zonelist *zonelist; 4282 unsigned int order = current_zonelist_order; 4283 4284 /* initialize zonelists */ 4285 for (i = 0; i < MAX_ZONELISTS; i++) { 4286 zonelist = pgdat->node_zonelists + i; 4287 zonelist->_zonerefs[0].zone = NULL; 4288 zonelist->_zonerefs[0].zone_idx = 0; 4289 } 4290 4291 /* NUMA-aware ordering of nodes */ 4292 local_node = pgdat->node_id; 4293 load = nr_online_nodes; 4294 prev_node = local_node; 4295 nodes_clear(used_mask); 4296 4297 memset(node_order, 0, sizeof(node_order)); 4298 i = 0; 4299 4300 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4301 /* 4302 * We don't want to pressure a particular node. 4303 * So adding penalty to the first node in same 4304 * distance group to make it round-robin. 4305 */ 4306 if (node_distance(local_node, node) != 4307 node_distance(local_node, prev_node)) 4308 node_load[node] = load; 4309 4310 prev_node = node; 4311 load--; 4312 if (order == ZONELIST_ORDER_NODE) 4313 build_zonelists_in_node_order(pgdat, node); 4314 else 4315 node_order[i++] = node; /* remember order */ 4316 } 4317 4318 if (order == ZONELIST_ORDER_ZONE) { 4319 /* calculate node order -- i.e., DMA last! */ 4320 build_zonelists_in_zone_order(pgdat, i); 4321 } 4322 4323 build_thisnode_zonelists(pgdat); 4324 } 4325 4326 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4327 /* 4328 * Return node id of node used for "local" allocations. 4329 * I.e., first node id of first zone in arg node's generic zonelist. 4330 * Used for initializing percpu 'numa_mem', which is used primarily 4331 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 4332 */ 4333 int local_memory_node(int node) 4334 { 4335 struct zone *zone; 4336 4337 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 4338 gfp_zone(GFP_KERNEL), 4339 NULL, 4340 &zone); 4341 return zone->node; 4342 } 4343 #endif 4344 4345 #else /* CONFIG_NUMA */ 4346 4347 static void set_zonelist_order(void) 4348 { 4349 current_zonelist_order = ZONELIST_ORDER_ZONE; 4350 } 4351 4352 static void build_zonelists(pg_data_t *pgdat) 4353 { 4354 int node, local_node; 4355 enum zone_type j; 4356 struct zonelist *zonelist; 4357 4358 local_node = pgdat->node_id; 4359 4360 zonelist = &pgdat->node_zonelists[0]; 4361 j = build_zonelists_node(pgdat, zonelist, 0); 4362 4363 /* 4364 * Now we build the zonelist so that it contains the zones 4365 * of all the other nodes. 4366 * We don't want to pressure a particular node, so when 4367 * building the zones for node N, we make sure that the 4368 * zones coming right after the local ones are those from 4369 * node N+1 (modulo N) 4370 */ 4371 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 4372 if (!node_online(node)) 4373 continue; 4374 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4375 } 4376 for (node = 0; node < local_node; node++) { 4377 if (!node_online(node)) 4378 continue; 4379 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4380 } 4381 4382 zonelist->_zonerefs[j].zone = NULL; 4383 zonelist->_zonerefs[j].zone_idx = 0; 4384 } 4385 4386 #endif /* CONFIG_NUMA */ 4387 4388 /* 4389 * Boot pageset table. One per cpu which is going to be used for all 4390 * zones and all nodes. The parameters will be set in such a way 4391 * that an item put on a list will immediately be handed over to 4392 * the buddy list. This is safe since pageset manipulation is done 4393 * with interrupts disabled. 4394 * 4395 * The boot_pagesets must be kept even after bootup is complete for 4396 * unused processors and/or zones. They do play a role for bootstrapping 4397 * hotplugged processors. 4398 * 4399 * zoneinfo_show() and maybe other functions do 4400 * not check if the processor is online before following the pageset pointer. 4401 * Other parts of the kernel may not check if the zone is available. 4402 */ 4403 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 4404 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 4405 static void setup_zone_pageset(struct zone *zone); 4406 4407 /* 4408 * Global mutex to protect against size modification of zonelists 4409 * as well as to serialize pageset setup for the new populated zone. 4410 */ 4411 DEFINE_MUTEX(zonelists_mutex); 4412 4413 /* return values int ....just for stop_machine() */ 4414 static int __build_all_zonelists(void *data) 4415 { 4416 int nid; 4417 int cpu; 4418 pg_data_t *self = data; 4419 4420 #ifdef CONFIG_NUMA 4421 memset(node_load, 0, sizeof(node_load)); 4422 #endif 4423 4424 if (self && !node_online(self->node_id)) { 4425 build_zonelists(self); 4426 } 4427 4428 for_each_online_node(nid) { 4429 pg_data_t *pgdat = NODE_DATA(nid); 4430 4431 build_zonelists(pgdat); 4432 } 4433 4434 /* 4435 * Initialize the boot_pagesets that are going to be used 4436 * for bootstrapping processors. The real pagesets for 4437 * each zone will be allocated later when the per cpu 4438 * allocator is available. 4439 * 4440 * boot_pagesets are used also for bootstrapping offline 4441 * cpus if the system is already booted because the pagesets 4442 * are needed to initialize allocators on a specific cpu too. 4443 * F.e. the percpu allocator needs the page allocator which 4444 * needs the percpu allocator in order to allocate its pagesets 4445 * (a chicken-egg dilemma). 4446 */ 4447 for_each_possible_cpu(cpu) { 4448 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 4449 4450 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4451 /* 4452 * We now know the "local memory node" for each node-- 4453 * i.e., the node of the first zone in the generic zonelist. 4454 * Set up numa_mem percpu variable for on-line cpus. During 4455 * boot, only the boot cpu should be on-line; we'll init the 4456 * secondary cpus' numa_mem as they come on-line. During 4457 * node/memory hotplug, we'll fixup all on-line cpus. 4458 */ 4459 if (cpu_online(cpu)) 4460 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 4461 #endif 4462 } 4463 4464 return 0; 4465 } 4466 4467 static noinline void __init 4468 build_all_zonelists_init(void) 4469 { 4470 __build_all_zonelists(NULL); 4471 mminit_verify_zonelist(); 4472 cpuset_init_current_mems_allowed(); 4473 } 4474 4475 /* 4476 * Called with zonelists_mutex held always 4477 * unless system_state == SYSTEM_BOOTING. 4478 * 4479 * __ref due to (1) call of __meminit annotated setup_zone_pageset 4480 * [we're only called with non-NULL zone through __meminit paths] and 4481 * (2) call of __init annotated helper build_all_zonelists_init 4482 * [protected by SYSTEM_BOOTING]. 4483 */ 4484 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 4485 { 4486 set_zonelist_order(); 4487 4488 if (system_state == SYSTEM_BOOTING) { 4489 build_all_zonelists_init(); 4490 } else { 4491 #ifdef CONFIG_MEMORY_HOTPLUG 4492 if (zone) 4493 setup_zone_pageset(zone); 4494 #endif 4495 /* we have to stop all cpus to guarantee there is no user 4496 of zonelist */ 4497 stop_machine(__build_all_zonelists, pgdat, NULL); 4498 /* cpuset refresh routine should be here */ 4499 } 4500 vm_total_pages = nr_free_pagecache_pages(); 4501 /* 4502 * Disable grouping by mobility if the number of pages in the 4503 * system is too low to allow the mechanism to work. It would be 4504 * more accurate, but expensive to check per-zone. This check is 4505 * made on memory-hotadd so a system can start with mobility 4506 * disabled and enable it later 4507 */ 4508 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 4509 page_group_by_mobility_disabled = 1; 4510 else 4511 page_group_by_mobility_disabled = 0; 4512 4513 pr_info("Built %i zonelists in %s order, mobility grouping %s. " 4514 "Total pages: %ld\n", 4515 nr_online_nodes, 4516 zonelist_order_name[current_zonelist_order], 4517 page_group_by_mobility_disabled ? "off" : "on", 4518 vm_total_pages); 4519 #ifdef CONFIG_NUMA 4520 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 4521 #endif 4522 } 4523 4524 /* 4525 * Helper functions to size the waitqueue hash table. 4526 * Essentially these want to choose hash table sizes sufficiently 4527 * large so that collisions trying to wait on pages are rare. 4528 * But in fact, the number of active page waitqueues on typical 4529 * systems is ridiculously low, less than 200. So this is even 4530 * conservative, even though it seems large. 4531 * 4532 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 4533 * waitqueues, i.e. the size of the waitq table given the number of pages. 4534 */ 4535 #define PAGES_PER_WAITQUEUE 256 4536 4537 #ifndef CONFIG_MEMORY_HOTPLUG 4538 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4539 { 4540 unsigned long size = 1; 4541 4542 pages /= PAGES_PER_WAITQUEUE; 4543 4544 while (size < pages) 4545 size <<= 1; 4546 4547 /* 4548 * Once we have dozens or even hundreds of threads sleeping 4549 * on IO we've got bigger problems than wait queue collision. 4550 * Limit the size of the wait table to a reasonable size. 4551 */ 4552 size = min(size, 4096UL); 4553 4554 return max(size, 4UL); 4555 } 4556 #else 4557 /* 4558 * A zone's size might be changed by hot-add, so it is not possible to determine 4559 * a suitable size for its wait_table. So we use the maximum size now. 4560 * 4561 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 4562 * 4563 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 4564 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 4565 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 4566 * 4567 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 4568 * or more by the traditional way. (See above). It equals: 4569 * 4570 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 4571 * ia64(16K page size) : = ( 8G + 4M)byte. 4572 * powerpc (64K page size) : = (32G +16M)byte. 4573 */ 4574 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4575 { 4576 return 4096UL; 4577 } 4578 #endif 4579 4580 /* 4581 * This is an integer logarithm so that shifts can be used later 4582 * to extract the more random high bits from the multiplicative 4583 * hash function before the remainder is taken. 4584 */ 4585 static inline unsigned long wait_table_bits(unsigned long size) 4586 { 4587 return ffz(~size); 4588 } 4589 4590 /* 4591 * Initially all pages are reserved - free ones are freed 4592 * up by free_all_bootmem() once the early boot process is 4593 * done. Non-atomic initialization, single-pass. 4594 */ 4595 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4596 unsigned long start_pfn, enum memmap_context context) 4597 { 4598 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 4599 unsigned long end_pfn = start_pfn + size; 4600 pg_data_t *pgdat = NODE_DATA(nid); 4601 unsigned long pfn; 4602 unsigned long nr_initialised = 0; 4603 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4604 struct memblock_region *r = NULL, *tmp; 4605 #endif 4606 4607 if (highest_memmap_pfn < end_pfn - 1) 4608 highest_memmap_pfn = end_pfn - 1; 4609 4610 /* 4611 * Honor reservation requested by the driver for this ZONE_DEVICE 4612 * memory 4613 */ 4614 if (altmap && start_pfn == altmap->base_pfn) 4615 start_pfn += altmap->reserve; 4616 4617 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4618 /* 4619 * There can be holes in boot-time mem_map[]s handed to this 4620 * function. They do not exist on hotplugged memory. 4621 */ 4622 if (context != MEMMAP_EARLY) 4623 goto not_early; 4624 4625 if (!early_pfn_valid(pfn)) 4626 continue; 4627 if (!early_pfn_in_nid(pfn, nid)) 4628 continue; 4629 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 4630 break; 4631 4632 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4633 /* 4634 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range 4635 * from zone_movable_pfn[nid] to end of each node should be 4636 * ZONE_MOVABLE not ZONE_NORMAL. skip it. 4637 */ 4638 if (!mirrored_kernelcore && zone_movable_pfn[nid]) 4639 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid]) 4640 continue; 4641 4642 /* 4643 * Check given memblock attribute by firmware which can affect 4644 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 4645 * mirrored, it's an overlapped memmap init. skip it. 4646 */ 4647 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 4648 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 4649 for_each_memblock(memory, tmp) 4650 if (pfn < memblock_region_memory_end_pfn(tmp)) 4651 break; 4652 r = tmp; 4653 } 4654 if (pfn >= memblock_region_memory_base_pfn(r) && 4655 memblock_is_mirror(r)) { 4656 /* already initialized as NORMAL */ 4657 pfn = memblock_region_memory_end_pfn(r); 4658 continue; 4659 } 4660 } 4661 #endif 4662 4663 not_early: 4664 /* 4665 * Mark the block movable so that blocks are reserved for 4666 * movable at startup. This will force kernel allocations 4667 * to reserve their blocks rather than leaking throughout 4668 * the address space during boot when many long-lived 4669 * kernel allocations are made. 4670 * 4671 * bitmap is created for zone's valid pfn range. but memmap 4672 * can be created for invalid pages (for alignment) 4673 * check here not to call set_pageblock_migratetype() against 4674 * pfn out of zone. 4675 */ 4676 if (!(pfn & (pageblock_nr_pages - 1))) { 4677 struct page *page = pfn_to_page(pfn); 4678 4679 __init_single_page(page, pfn, zone, nid); 4680 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4681 } else { 4682 __init_single_pfn(pfn, zone, nid); 4683 } 4684 } 4685 } 4686 4687 static void __meminit zone_init_free_lists(struct zone *zone) 4688 { 4689 unsigned int order, t; 4690 for_each_migratetype_order(order, t) { 4691 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4692 zone->free_area[order].nr_free = 0; 4693 } 4694 } 4695 4696 #ifndef __HAVE_ARCH_MEMMAP_INIT 4697 #define memmap_init(size, nid, zone, start_pfn) \ 4698 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4699 #endif 4700 4701 static int zone_batchsize(struct zone *zone) 4702 { 4703 #ifdef CONFIG_MMU 4704 int batch; 4705 4706 /* 4707 * The per-cpu-pages pools are set to around 1000th of the 4708 * size of the zone. But no more than 1/2 of a meg. 4709 * 4710 * OK, so we don't know how big the cache is. So guess. 4711 */ 4712 batch = zone->managed_pages / 1024; 4713 if (batch * PAGE_SIZE > 512 * 1024) 4714 batch = (512 * 1024) / PAGE_SIZE; 4715 batch /= 4; /* We effectively *= 4 below */ 4716 if (batch < 1) 4717 batch = 1; 4718 4719 /* 4720 * Clamp the batch to a 2^n - 1 value. Having a power 4721 * of 2 value was found to be more likely to have 4722 * suboptimal cache aliasing properties in some cases. 4723 * 4724 * For example if 2 tasks are alternately allocating 4725 * batches of pages, one task can end up with a lot 4726 * of pages of one half of the possible page colors 4727 * and the other with pages of the other colors. 4728 */ 4729 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4730 4731 return batch; 4732 4733 #else 4734 /* The deferral and batching of frees should be suppressed under NOMMU 4735 * conditions. 4736 * 4737 * The problem is that NOMMU needs to be able to allocate large chunks 4738 * of contiguous memory as there's no hardware page translation to 4739 * assemble apparent contiguous memory from discontiguous pages. 4740 * 4741 * Queueing large contiguous runs of pages for batching, however, 4742 * causes the pages to actually be freed in smaller chunks. As there 4743 * can be a significant delay between the individual batches being 4744 * recycled, this leads to the once large chunks of space being 4745 * fragmented and becoming unavailable for high-order allocations. 4746 */ 4747 return 0; 4748 #endif 4749 } 4750 4751 /* 4752 * pcp->high and pcp->batch values are related and dependent on one another: 4753 * ->batch must never be higher then ->high. 4754 * The following function updates them in a safe manner without read side 4755 * locking. 4756 * 4757 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4758 * those fields changing asynchronously (acording the the above rule). 4759 * 4760 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4761 * outside of boot time (or some other assurance that no concurrent updaters 4762 * exist). 4763 */ 4764 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4765 unsigned long batch) 4766 { 4767 /* start with a fail safe value for batch */ 4768 pcp->batch = 1; 4769 smp_wmb(); 4770 4771 /* Update high, then batch, in order */ 4772 pcp->high = high; 4773 smp_wmb(); 4774 4775 pcp->batch = batch; 4776 } 4777 4778 /* a companion to pageset_set_high() */ 4779 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4780 { 4781 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4782 } 4783 4784 static void pageset_init(struct per_cpu_pageset *p) 4785 { 4786 struct per_cpu_pages *pcp; 4787 int migratetype; 4788 4789 memset(p, 0, sizeof(*p)); 4790 4791 pcp = &p->pcp; 4792 pcp->count = 0; 4793 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4794 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4795 } 4796 4797 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4798 { 4799 pageset_init(p); 4800 pageset_set_batch(p, batch); 4801 } 4802 4803 /* 4804 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4805 * to the value high for the pageset p. 4806 */ 4807 static void pageset_set_high(struct per_cpu_pageset *p, 4808 unsigned long high) 4809 { 4810 unsigned long batch = max(1UL, high / 4); 4811 if ((high / 4) > (PAGE_SHIFT * 8)) 4812 batch = PAGE_SHIFT * 8; 4813 4814 pageset_update(&p->pcp, high, batch); 4815 } 4816 4817 static void pageset_set_high_and_batch(struct zone *zone, 4818 struct per_cpu_pageset *pcp) 4819 { 4820 if (percpu_pagelist_fraction) 4821 pageset_set_high(pcp, 4822 (zone->managed_pages / 4823 percpu_pagelist_fraction)); 4824 else 4825 pageset_set_batch(pcp, zone_batchsize(zone)); 4826 } 4827 4828 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4829 { 4830 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4831 4832 pageset_init(pcp); 4833 pageset_set_high_and_batch(zone, pcp); 4834 } 4835 4836 static void __meminit setup_zone_pageset(struct zone *zone) 4837 { 4838 int cpu; 4839 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4840 for_each_possible_cpu(cpu) 4841 zone_pageset_init(zone, cpu); 4842 } 4843 4844 /* 4845 * Allocate per cpu pagesets and initialize them. 4846 * Before this call only boot pagesets were available. 4847 */ 4848 void __init setup_per_cpu_pageset(void) 4849 { 4850 struct zone *zone; 4851 4852 for_each_populated_zone(zone) 4853 setup_zone_pageset(zone); 4854 } 4855 4856 static noinline __init_refok 4857 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4858 { 4859 int i; 4860 size_t alloc_size; 4861 4862 /* 4863 * The per-page waitqueue mechanism uses hashed waitqueues 4864 * per zone. 4865 */ 4866 zone->wait_table_hash_nr_entries = 4867 wait_table_hash_nr_entries(zone_size_pages); 4868 zone->wait_table_bits = 4869 wait_table_bits(zone->wait_table_hash_nr_entries); 4870 alloc_size = zone->wait_table_hash_nr_entries 4871 * sizeof(wait_queue_head_t); 4872 4873 if (!slab_is_available()) { 4874 zone->wait_table = (wait_queue_head_t *) 4875 memblock_virt_alloc_node_nopanic( 4876 alloc_size, zone->zone_pgdat->node_id); 4877 } else { 4878 /* 4879 * This case means that a zone whose size was 0 gets new memory 4880 * via memory hot-add. 4881 * But it may be the case that a new node was hot-added. In 4882 * this case vmalloc() will not be able to use this new node's 4883 * memory - this wait_table must be initialized to use this new 4884 * node itself as well. 4885 * To use this new node's memory, further consideration will be 4886 * necessary. 4887 */ 4888 zone->wait_table = vmalloc(alloc_size); 4889 } 4890 if (!zone->wait_table) 4891 return -ENOMEM; 4892 4893 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4894 init_waitqueue_head(zone->wait_table + i); 4895 4896 return 0; 4897 } 4898 4899 static __meminit void zone_pcp_init(struct zone *zone) 4900 { 4901 /* 4902 * per cpu subsystem is not up at this point. The following code 4903 * relies on the ability of the linker to provide the 4904 * offset of a (static) per cpu variable into the per cpu area. 4905 */ 4906 zone->pageset = &boot_pageset; 4907 4908 if (populated_zone(zone)) 4909 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4910 zone->name, zone->present_pages, 4911 zone_batchsize(zone)); 4912 } 4913 4914 int __meminit init_currently_empty_zone(struct zone *zone, 4915 unsigned long zone_start_pfn, 4916 unsigned long size) 4917 { 4918 struct pglist_data *pgdat = zone->zone_pgdat; 4919 int ret; 4920 ret = zone_wait_table_init(zone, size); 4921 if (ret) 4922 return ret; 4923 pgdat->nr_zones = zone_idx(zone) + 1; 4924 4925 zone->zone_start_pfn = zone_start_pfn; 4926 4927 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4928 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4929 pgdat->node_id, 4930 (unsigned long)zone_idx(zone), 4931 zone_start_pfn, (zone_start_pfn + size)); 4932 4933 zone_init_free_lists(zone); 4934 4935 return 0; 4936 } 4937 4938 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4939 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4940 4941 /* 4942 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4943 */ 4944 int __meminit __early_pfn_to_nid(unsigned long pfn, 4945 struct mminit_pfnnid_cache *state) 4946 { 4947 unsigned long start_pfn, end_pfn; 4948 int nid; 4949 4950 if (state->last_start <= pfn && pfn < state->last_end) 4951 return state->last_nid; 4952 4953 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4954 if (nid != -1) { 4955 state->last_start = start_pfn; 4956 state->last_end = end_pfn; 4957 state->last_nid = nid; 4958 } 4959 4960 return nid; 4961 } 4962 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4963 4964 /** 4965 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4966 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4967 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4968 * 4969 * If an architecture guarantees that all ranges registered contain no holes 4970 * and may be freed, this this function may be used instead of calling 4971 * memblock_free_early_nid() manually. 4972 */ 4973 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4974 { 4975 unsigned long start_pfn, end_pfn; 4976 int i, this_nid; 4977 4978 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4979 start_pfn = min(start_pfn, max_low_pfn); 4980 end_pfn = min(end_pfn, max_low_pfn); 4981 4982 if (start_pfn < end_pfn) 4983 memblock_free_early_nid(PFN_PHYS(start_pfn), 4984 (end_pfn - start_pfn) << PAGE_SHIFT, 4985 this_nid); 4986 } 4987 } 4988 4989 /** 4990 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4991 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4992 * 4993 * If an architecture guarantees that all ranges registered contain no holes and may 4994 * be freed, this function may be used instead of calling memory_present() manually. 4995 */ 4996 void __init sparse_memory_present_with_active_regions(int nid) 4997 { 4998 unsigned long start_pfn, end_pfn; 4999 int i, this_nid; 5000 5001 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5002 memory_present(this_nid, start_pfn, end_pfn); 5003 } 5004 5005 /** 5006 * get_pfn_range_for_nid - Return the start and end page frames for a node 5007 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5008 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5009 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5010 * 5011 * It returns the start and end page frame of a node based on information 5012 * provided by memblock_set_node(). If called for a node 5013 * with no available memory, a warning is printed and the start and end 5014 * PFNs will be 0. 5015 */ 5016 void __meminit get_pfn_range_for_nid(unsigned int nid, 5017 unsigned long *start_pfn, unsigned long *end_pfn) 5018 { 5019 unsigned long this_start_pfn, this_end_pfn; 5020 int i; 5021 5022 *start_pfn = -1UL; 5023 *end_pfn = 0; 5024 5025 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5026 *start_pfn = min(*start_pfn, this_start_pfn); 5027 *end_pfn = max(*end_pfn, this_end_pfn); 5028 } 5029 5030 if (*start_pfn == -1UL) 5031 *start_pfn = 0; 5032 } 5033 5034 /* 5035 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5036 * assumption is made that zones within a node are ordered in monotonic 5037 * increasing memory addresses so that the "highest" populated zone is used 5038 */ 5039 static void __init find_usable_zone_for_movable(void) 5040 { 5041 int zone_index; 5042 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5043 if (zone_index == ZONE_MOVABLE) 5044 continue; 5045 5046 if (arch_zone_highest_possible_pfn[zone_index] > 5047 arch_zone_lowest_possible_pfn[zone_index]) 5048 break; 5049 } 5050 5051 VM_BUG_ON(zone_index == -1); 5052 movable_zone = zone_index; 5053 } 5054 5055 /* 5056 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5057 * because it is sized independent of architecture. Unlike the other zones, 5058 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5059 * in each node depending on the size of each node and how evenly kernelcore 5060 * is distributed. This helper function adjusts the zone ranges 5061 * provided by the architecture for a given node by using the end of the 5062 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5063 * zones within a node are in order of monotonic increases memory addresses 5064 */ 5065 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5066 unsigned long zone_type, 5067 unsigned long node_start_pfn, 5068 unsigned long node_end_pfn, 5069 unsigned long *zone_start_pfn, 5070 unsigned long *zone_end_pfn) 5071 { 5072 /* Only adjust if ZONE_MOVABLE is on this node */ 5073 if (zone_movable_pfn[nid]) { 5074 /* Size ZONE_MOVABLE */ 5075 if (zone_type == ZONE_MOVABLE) { 5076 *zone_start_pfn = zone_movable_pfn[nid]; 5077 *zone_end_pfn = min(node_end_pfn, 5078 arch_zone_highest_possible_pfn[movable_zone]); 5079 5080 /* Check if this whole range is within ZONE_MOVABLE */ 5081 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5082 *zone_start_pfn = *zone_end_pfn; 5083 } 5084 } 5085 5086 /* 5087 * Return the number of pages a zone spans in a node, including holes 5088 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5089 */ 5090 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5091 unsigned long zone_type, 5092 unsigned long node_start_pfn, 5093 unsigned long node_end_pfn, 5094 unsigned long *zone_start_pfn, 5095 unsigned long *zone_end_pfn, 5096 unsigned long *ignored) 5097 { 5098 /* When hotadd a new node from cpu_up(), the node should be empty */ 5099 if (!node_start_pfn && !node_end_pfn) 5100 return 0; 5101 5102 /* Get the start and end of the zone */ 5103 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5104 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5105 adjust_zone_range_for_zone_movable(nid, zone_type, 5106 node_start_pfn, node_end_pfn, 5107 zone_start_pfn, zone_end_pfn); 5108 5109 /* Check that this node has pages within the zone's required range */ 5110 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5111 return 0; 5112 5113 /* Move the zone boundaries inside the node if necessary */ 5114 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5115 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5116 5117 /* Return the spanned pages */ 5118 return *zone_end_pfn - *zone_start_pfn; 5119 } 5120 5121 /* 5122 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5123 * then all holes in the requested range will be accounted for. 5124 */ 5125 unsigned long __meminit __absent_pages_in_range(int nid, 5126 unsigned long range_start_pfn, 5127 unsigned long range_end_pfn) 5128 { 5129 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5130 unsigned long start_pfn, end_pfn; 5131 int i; 5132 5133 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5134 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5135 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5136 nr_absent -= end_pfn - start_pfn; 5137 } 5138 return nr_absent; 5139 } 5140 5141 /** 5142 * absent_pages_in_range - Return number of page frames in holes within a range 5143 * @start_pfn: The start PFN to start searching for holes 5144 * @end_pfn: The end PFN to stop searching for holes 5145 * 5146 * It returns the number of pages frames in memory holes within a range. 5147 */ 5148 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5149 unsigned long end_pfn) 5150 { 5151 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5152 } 5153 5154 /* Return the number of page frames in holes in a zone on a node */ 5155 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5156 unsigned long zone_type, 5157 unsigned long node_start_pfn, 5158 unsigned long node_end_pfn, 5159 unsigned long *ignored) 5160 { 5161 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5162 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5163 unsigned long zone_start_pfn, zone_end_pfn; 5164 unsigned long nr_absent; 5165 5166 /* When hotadd a new node from cpu_up(), the node should be empty */ 5167 if (!node_start_pfn && !node_end_pfn) 5168 return 0; 5169 5170 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5171 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5172 5173 adjust_zone_range_for_zone_movable(nid, zone_type, 5174 node_start_pfn, node_end_pfn, 5175 &zone_start_pfn, &zone_end_pfn); 5176 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5177 5178 /* 5179 * ZONE_MOVABLE handling. 5180 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5181 * and vice versa. 5182 */ 5183 if (zone_movable_pfn[nid]) { 5184 if (mirrored_kernelcore) { 5185 unsigned long start_pfn, end_pfn; 5186 struct memblock_region *r; 5187 5188 for_each_memblock(memory, r) { 5189 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5190 zone_start_pfn, zone_end_pfn); 5191 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5192 zone_start_pfn, zone_end_pfn); 5193 5194 if (zone_type == ZONE_MOVABLE && 5195 memblock_is_mirror(r)) 5196 nr_absent += end_pfn - start_pfn; 5197 5198 if (zone_type == ZONE_NORMAL && 5199 !memblock_is_mirror(r)) 5200 nr_absent += end_pfn - start_pfn; 5201 } 5202 } else { 5203 if (zone_type == ZONE_NORMAL) 5204 nr_absent += node_end_pfn - zone_movable_pfn[nid]; 5205 } 5206 } 5207 5208 return nr_absent; 5209 } 5210 5211 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5212 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5213 unsigned long zone_type, 5214 unsigned long node_start_pfn, 5215 unsigned long node_end_pfn, 5216 unsigned long *zone_start_pfn, 5217 unsigned long *zone_end_pfn, 5218 unsigned long *zones_size) 5219 { 5220 unsigned int zone; 5221 5222 *zone_start_pfn = node_start_pfn; 5223 for (zone = 0; zone < zone_type; zone++) 5224 *zone_start_pfn += zones_size[zone]; 5225 5226 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5227 5228 return zones_size[zone_type]; 5229 } 5230 5231 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5232 unsigned long zone_type, 5233 unsigned long node_start_pfn, 5234 unsigned long node_end_pfn, 5235 unsigned long *zholes_size) 5236 { 5237 if (!zholes_size) 5238 return 0; 5239 5240 return zholes_size[zone_type]; 5241 } 5242 5243 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5244 5245 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5246 unsigned long node_start_pfn, 5247 unsigned long node_end_pfn, 5248 unsigned long *zones_size, 5249 unsigned long *zholes_size) 5250 { 5251 unsigned long realtotalpages = 0, totalpages = 0; 5252 enum zone_type i; 5253 5254 for (i = 0; i < MAX_NR_ZONES; i++) { 5255 struct zone *zone = pgdat->node_zones + i; 5256 unsigned long zone_start_pfn, zone_end_pfn; 5257 unsigned long size, real_size; 5258 5259 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5260 node_start_pfn, 5261 node_end_pfn, 5262 &zone_start_pfn, 5263 &zone_end_pfn, 5264 zones_size); 5265 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5266 node_start_pfn, node_end_pfn, 5267 zholes_size); 5268 if (size) 5269 zone->zone_start_pfn = zone_start_pfn; 5270 else 5271 zone->zone_start_pfn = 0; 5272 zone->spanned_pages = size; 5273 zone->present_pages = real_size; 5274 5275 totalpages += size; 5276 realtotalpages += real_size; 5277 } 5278 5279 pgdat->node_spanned_pages = totalpages; 5280 pgdat->node_present_pages = realtotalpages; 5281 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5282 realtotalpages); 5283 } 5284 5285 #ifndef CONFIG_SPARSEMEM 5286 /* 5287 * Calculate the size of the zone->blockflags rounded to an unsigned long 5288 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5289 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5290 * round what is now in bits to nearest long in bits, then return it in 5291 * bytes. 5292 */ 5293 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5294 { 5295 unsigned long usemapsize; 5296 5297 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5298 usemapsize = roundup(zonesize, pageblock_nr_pages); 5299 usemapsize = usemapsize >> pageblock_order; 5300 usemapsize *= NR_PAGEBLOCK_BITS; 5301 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5302 5303 return usemapsize / 8; 5304 } 5305 5306 static void __init setup_usemap(struct pglist_data *pgdat, 5307 struct zone *zone, 5308 unsigned long zone_start_pfn, 5309 unsigned long zonesize) 5310 { 5311 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5312 zone->pageblock_flags = NULL; 5313 if (usemapsize) 5314 zone->pageblock_flags = 5315 memblock_virt_alloc_node_nopanic(usemapsize, 5316 pgdat->node_id); 5317 } 5318 #else 5319 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5320 unsigned long zone_start_pfn, unsigned long zonesize) {} 5321 #endif /* CONFIG_SPARSEMEM */ 5322 5323 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5324 5325 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5326 void __paginginit set_pageblock_order(void) 5327 { 5328 unsigned int order; 5329 5330 /* Check that pageblock_nr_pages has not already been setup */ 5331 if (pageblock_order) 5332 return; 5333 5334 if (HPAGE_SHIFT > PAGE_SHIFT) 5335 order = HUGETLB_PAGE_ORDER; 5336 else 5337 order = MAX_ORDER - 1; 5338 5339 /* 5340 * Assume the largest contiguous order of interest is a huge page. 5341 * This value may be variable depending on boot parameters on IA64 and 5342 * powerpc. 5343 */ 5344 pageblock_order = order; 5345 } 5346 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5347 5348 /* 5349 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5350 * is unused as pageblock_order is set at compile-time. See 5351 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5352 * the kernel config 5353 */ 5354 void __paginginit set_pageblock_order(void) 5355 { 5356 } 5357 5358 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5359 5360 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5361 unsigned long present_pages) 5362 { 5363 unsigned long pages = spanned_pages; 5364 5365 /* 5366 * Provide a more accurate estimation if there are holes within 5367 * the zone and SPARSEMEM is in use. If there are holes within the 5368 * zone, each populated memory region may cost us one or two extra 5369 * memmap pages due to alignment because memmap pages for each 5370 * populated regions may not naturally algined on page boundary. 5371 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5372 */ 5373 if (spanned_pages > present_pages + (present_pages >> 4) && 5374 IS_ENABLED(CONFIG_SPARSEMEM)) 5375 pages = present_pages; 5376 5377 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5378 } 5379 5380 /* 5381 * Set up the zone data structures: 5382 * - mark all pages reserved 5383 * - mark all memory queues empty 5384 * - clear the memory bitmaps 5385 * 5386 * NOTE: pgdat should get zeroed by caller. 5387 */ 5388 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 5389 { 5390 enum zone_type j; 5391 int nid = pgdat->node_id; 5392 int ret; 5393 5394 pgdat_resize_init(pgdat); 5395 #ifdef CONFIG_NUMA_BALANCING 5396 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5397 pgdat->numabalancing_migrate_nr_pages = 0; 5398 pgdat->numabalancing_migrate_next_window = jiffies; 5399 #endif 5400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5401 spin_lock_init(&pgdat->split_queue_lock); 5402 INIT_LIST_HEAD(&pgdat->split_queue); 5403 pgdat->split_queue_len = 0; 5404 #endif 5405 init_waitqueue_head(&pgdat->kswapd_wait); 5406 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5407 pgdat_page_ext_init(pgdat); 5408 5409 for (j = 0; j < MAX_NR_ZONES; j++) { 5410 struct zone *zone = pgdat->node_zones + j; 5411 unsigned long size, realsize, freesize, memmap_pages; 5412 unsigned long zone_start_pfn = zone->zone_start_pfn; 5413 5414 size = zone->spanned_pages; 5415 realsize = freesize = zone->present_pages; 5416 5417 /* 5418 * Adjust freesize so that it accounts for how much memory 5419 * is used by this zone for memmap. This affects the watermark 5420 * and per-cpu initialisations 5421 */ 5422 memmap_pages = calc_memmap_size(size, realsize); 5423 if (!is_highmem_idx(j)) { 5424 if (freesize >= memmap_pages) { 5425 freesize -= memmap_pages; 5426 if (memmap_pages) 5427 printk(KERN_DEBUG 5428 " %s zone: %lu pages used for memmap\n", 5429 zone_names[j], memmap_pages); 5430 } else 5431 printk(KERN_WARNING 5432 " %s zone: %lu pages exceeds freesize %lu\n", 5433 zone_names[j], memmap_pages, freesize); 5434 } 5435 5436 /* Account for reserved pages */ 5437 if (j == 0 && freesize > dma_reserve) { 5438 freesize -= dma_reserve; 5439 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 5440 zone_names[0], dma_reserve); 5441 } 5442 5443 if (!is_highmem_idx(j)) 5444 nr_kernel_pages += freesize; 5445 /* Charge for highmem memmap if there are enough kernel pages */ 5446 else if (nr_kernel_pages > memmap_pages * 2) 5447 nr_kernel_pages -= memmap_pages; 5448 nr_all_pages += freesize; 5449 5450 /* 5451 * Set an approximate value for lowmem here, it will be adjusted 5452 * when the bootmem allocator frees pages into the buddy system. 5453 * And all highmem pages will be managed by the buddy system. 5454 */ 5455 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 5456 #ifdef CONFIG_NUMA 5457 zone->node = nid; 5458 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 5459 / 100; 5460 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 5461 #endif 5462 zone->name = zone_names[j]; 5463 spin_lock_init(&zone->lock); 5464 spin_lock_init(&zone->lru_lock); 5465 zone_seqlock_init(zone); 5466 zone->zone_pgdat = pgdat; 5467 zone_pcp_init(zone); 5468 5469 /* For bootup, initialized properly in watermark setup */ 5470 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 5471 5472 lruvec_init(&zone->lruvec); 5473 if (!size) 5474 continue; 5475 5476 set_pageblock_order(); 5477 setup_usemap(pgdat, zone, zone_start_pfn, size); 5478 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 5479 BUG_ON(ret); 5480 memmap_init(size, nid, j, zone_start_pfn); 5481 } 5482 } 5483 5484 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 5485 { 5486 unsigned long __maybe_unused start = 0; 5487 unsigned long __maybe_unused offset = 0; 5488 5489 /* Skip empty nodes */ 5490 if (!pgdat->node_spanned_pages) 5491 return; 5492 5493 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5494 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5495 offset = pgdat->node_start_pfn - start; 5496 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5497 if (!pgdat->node_mem_map) { 5498 unsigned long size, end; 5499 struct page *map; 5500 5501 /* 5502 * The zone's endpoints aren't required to be MAX_ORDER 5503 * aligned but the node_mem_map endpoints must be in order 5504 * for the buddy allocator to function correctly. 5505 */ 5506 end = pgdat_end_pfn(pgdat); 5507 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5508 size = (end - start) * sizeof(struct page); 5509 map = alloc_remap(pgdat->node_id, size); 5510 if (!map) 5511 map = memblock_virt_alloc_node_nopanic(size, 5512 pgdat->node_id); 5513 pgdat->node_mem_map = map + offset; 5514 } 5515 #ifndef CONFIG_NEED_MULTIPLE_NODES 5516 /* 5517 * With no DISCONTIG, the global mem_map is just set as node 0's 5518 */ 5519 if (pgdat == NODE_DATA(0)) { 5520 mem_map = NODE_DATA(0)->node_mem_map; 5521 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 5522 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5523 mem_map -= offset; 5524 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5525 } 5526 #endif 5527 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5528 } 5529 5530 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5531 unsigned long node_start_pfn, unsigned long *zholes_size) 5532 { 5533 pg_data_t *pgdat = NODE_DATA(nid); 5534 unsigned long start_pfn = 0; 5535 unsigned long end_pfn = 0; 5536 5537 /* pg_data_t should be reset to zero when it's allocated */ 5538 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 5539 5540 reset_deferred_meminit(pgdat); 5541 pgdat->node_id = nid; 5542 pgdat->node_start_pfn = node_start_pfn; 5543 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5544 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5545 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5546 (u64)start_pfn << PAGE_SHIFT, 5547 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 5548 #else 5549 start_pfn = node_start_pfn; 5550 #endif 5551 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5552 zones_size, zholes_size); 5553 5554 alloc_node_mem_map(pgdat); 5555 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5556 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5557 nid, (unsigned long)pgdat, 5558 (unsigned long)pgdat->node_mem_map); 5559 #endif 5560 5561 free_area_init_core(pgdat); 5562 } 5563 5564 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5565 5566 #if MAX_NUMNODES > 1 5567 /* 5568 * Figure out the number of possible node ids. 5569 */ 5570 void __init setup_nr_node_ids(void) 5571 { 5572 unsigned int highest; 5573 5574 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 5575 nr_node_ids = highest + 1; 5576 } 5577 #endif 5578 5579 /** 5580 * node_map_pfn_alignment - determine the maximum internode alignment 5581 * 5582 * This function should be called after node map is populated and sorted. 5583 * It calculates the maximum power of two alignment which can distinguish 5584 * all the nodes. 5585 * 5586 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5587 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5588 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5589 * shifted, 1GiB is enough and this function will indicate so. 5590 * 5591 * This is used to test whether pfn -> nid mapping of the chosen memory 5592 * model has fine enough granularity to avoid incorrect mapping for the 5593 * populated node map. 5594 * 5595 * Returns the determined alignment in pfn's. 0 if there is no alignment 5596 * requirement (single node). 5597 */ 5598 unsigned long __init node_map_pfn_alignment(void) 5599 { 5600 unsigned long accl_mask = 0, last_end = 0; 5601 unsigned long start, end, mask; 5602 int last_nid = -1; 5603 int i, nid; 5604 5605 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5606 if (!start || last_nid < 0 || last_nid == nid) { 5607 last_nid = nid; 5608 last_end = end; 5609 continue; 5610 } 5611 5612 /* 5613 * Start with a mask granular enough to pin-point to the 5614 * start pfn and tick off bits one-by-one until it becomes 5615 * too coarse to separate the current node from the last. 5616 */ 5617 mask = ~((1 << __ffs(start)) - 1); 5618 while (mask && last_end <= (start & (mask << 1))) 5619 mask <<= 1; 5620 5621 /* accumulate all internode masks */ 5622 accl_mask |= mask; 5623 } 5624 5625 /* convert mask to number of pages */ 5626 return ~accl_mask + 1; 5627 } 5628 5629 /* Find the lowest pfn for a node */ 5630 static unsigned long __init find_min_pfn_for_node(int nid) 5631 { 5632 unsigned long min_pfn = ULONG_MAX; 5633 unsigned long start_pfn; 5634 int i; 5635 5636 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5637 min_pfn = min(min_pfn, start_pfn); 5638 5639 if (min_pfn == ULONG_MAX) { 5640 printk(KERN_WARNING 5641 "Could not find start_pfn for node %d\n", nid); 5642 return 0; 5643 } 5644 5645 return min_pfn; 5646 } 5647 5648 /** 5649 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5650 * 5651 * It returns the minimum PFN based on information provided via 5652 * memblock_set_node(). 5653 */ 5654 unsigned long __init find_min_pfn_with_active_regions(void) 5655 { 5656 return find_min_pfn_for_node(MAX_NUMNODES); 5657 } 5658 5659 /* 5660 * early_calculate_totalpages() 5661 * Sum pages in active regions for movable zone. 5662 * Populate N_MEMORY for calculating usable_nodes. 5663 */ 5664 static unsigned long __init early_calculate_totalpages(void) 5665 { 5666 unsigned long totalpages = 0; 5667 unsigned long start_pfn, end_pfn; 5668 int i, nid; 5669 5670 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5671 unsigned long pages = end_pfn - start_pfn; 5672 5673 totalpages += pages; 5674 if (pages) 5675 node_set_state(nid, N_MEMORY); 5676 } 5677 return totalpages; 5678 } 5679 5680 /* 5681 * Find the PFN the Movable zone begins in each node. Kernel memory 5682 * is spread evenly between nodes as long as the nodes have enough 5683 * memory. When they don't, some nodes will have more kernelcore than 5684 * others 5685 */ 5686 static void __init find_zone_movable_pfns_for_nodes(void) 5687 { 5688 int i, nid; 5689 unsigned long usable_startpfn; 5690 unsigned long kernelcore_node, kernelcore_remaining; 5691 /* save the state before borrow the nodemask */ 5692 nodemask_t saved_node_state = node_states[N_MEMORY]; 5693 unsigned long totalpages = early_calculate_totalpages(); 5694 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5695 struct memblock_region *r; 5696 5697 /* Need to find movable_zone earlier when movable_node is specified. */ 5698 find_usable_zone_for_movable(); 5699 5700 /* 5701 * If movable_node is specified, ignore kernelcore and movablecore 5702 * options. 5703 */ 5704 if (movable_node_is_enabled()) { 5705 for_each_memblock(memory, r) { 5706 if (!memblock_is_hotpluggable(r)) 5707 continue; 5708 5709 nid = r->nid; 5710 5711 usable_startpfn = PFN_DOWN(r->base); 5712 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5713 min(usable_startpfn, zone_movable_pfn[nid]) : 5714 usable_startpfn; 5715 } 5716 5717 goto out2; 5718 } 5719 5720 /* 5721 * If kernelcore=mirror is specified, ignore movablecore option 5722 */ 5723 if (mirrored_kernelcore) { 5724 bool mem_below_4gb_not_mirrored = false; 5725 5726 for_each_memblock(memory, r) { 5727 if (memblock_is_mirror(r)) 5728 continue; 5729 5730 nid = r->nid; 5731 5732 usable_startpfn = memblock_region_memory_base_pfn(r); 5733 5734 if (usable_startpfn < 0x100000) { 5735 mem_below_4gb_not_mirrored = true; 5736 continue; 5737 } 5738 5739 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5740 min(usable_startpfn, zone_movable_pfn[nid]) : 5741 usable_startpfn; 5742 } 5743 5744 if (mem_below_4gb_not_mirrored) 5745 pr_warn("This configuration results in unmirrored kernel memory."); 5746 5747 goto out2; 5748 } 5749 5750 /* 5751 * If movablecore=nn[KMG] was specified, calculate what size of 5752 * kernelcore that corresponds so that memory usable for 5753 * any allocation type is evenly spread. If both kernelcore 5754 * and movablecore are specified, then the value of kernelcore 5755 * will be used for required_kernelcore if it's greater than 5756 * what movablecore would have allowed. 5757 */ 5758 if (required_movablecore) { 5759 unsigned long corepages; 5760 5761 /* 5762 * Round-up so that ZONE_MOVABLE is at least as large as what 5763 * was requested by the user 5764 */ 5765 required_movablecore = 5766 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5767 required_movablecore = min(totalpages, required_movablecore); 5768 corepages = totalpages - required_movablecore; 5769 5770 required_kernelcore = max(required_kernelcore, corepages); 5771 } 5772 5773 /* 5774 * If kernelcore was not specified or kernelcore size is larger 5775 * than totalpages, there is no ZONE_MOVABLE. 5776 */ 5777 if (!required_kernelcore || required_kernelcore >= totalpages) 5778 goto out; 5779 5780 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5781 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5782 5783 restart: 5784 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5785 kernelcore_node = required_kernelcore / usable_nodes; 5786 for_each_node_state(nid, N_MEMORY) { 5787 unsigned long start_pfn, end_pfn; 5788 5789 /* 5790 * Recalculate kernelcore_node if the division per node 5791 * now exceeds what is necessary to satisfy the requested 5792 * amount of memory for the kernel 5793 */ 5794 if (required_kernelcore < kernelcore_node) 5795 kernelcore_node = required_kernelcore / usable_nodes; 5796 5797 /* 5798 * As the map is walked, we track how much memory is usable 5799 * by the kernel using kernelcore_remaining. When it is 5800 * 0, the rest of the node is usable by ZONE_MOVABLE 5801 */ 5802 kernelcore_remaining = kernelcore_node; 5803 5804 /* Go through each range of PFNs within this node */ 5805 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5806 unsigned long size_pages; 5807 5808 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5809 if (start_pfn >= end_pfn) 5810 continue; 5811 5812 /* Account for what is only usable for kernelcore */ 5813 if (start_pfn < usable_startpfn) { 5814 unsigned long kernel_pages; 5815 kernel_pages = min(end_pfn, usable_startpfn) 5816 - start_pfn; 5817 5818 kernelcore_remaining -= min(kernel_pages, 5819 kernelcore_remaining); 5820 required_kernelcore -= min(kernel_pages, 5821 required_kernelcore); 5822 5823 /* Continue if range is now fully accounted */ 5824 if (end_pfn <= usable_startpfn) { 5825 5826 /* 5827 * Push zone_movable_pfn to the end so 5828 * that if we have to rebalance 5829 * kernelcore across nodes, we will 5830 * not double account here 5831 */ 5832 zone_movable_pfn[nid] = end_pfn; 5833 continue; 5834 } 5835 start_pfn = usable_startpfn; 5836 } 5837 5838 /* 5839 * The usable PFN range for ZONE_MOVABLE is from 5840 * start_pfn->end_pfn. Calculate size_pages as the 5841 * number of pages used as kernelcore 5842 */ 5843 size_pages = end_pfn - start_pfn; 5844 if (size_pages > kernelcore_remaining) 5845 size_pages = kernelcore_remaining; 5846 zone_movable_pfn[nid] = start_pfn + size_pages; 5847 5848 /* 5849 * Some kernelcore has been met, update counts and 5850 * break if the kernelcore for this node has been 5851 * satisfied 5852 */ 5853 required_kernelcore -= min(required_kernelcore, 5854 size_pages); 5855 kernelcore_remaining -= size_pages; 5856 if (!kernelcore_remaining) 5857 break; 5858 } 5859 } 5860 5861 /* 5862 * If there is still required_kernelcore, we do another pass with one 5863 * less node in the count. This will push zone_movable_pfn[nid] further 5864 * along on the nodes that still have memory until kernelcore is 5865 * satisfied 5866 */ 5867 usable_nodes--; 5868 if (usable_nodes && required_kernelcore > usable_nodes) 5869 goto restart; 5870 5871 out2: 5872 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5873 for (nid = 0; nid < MAX_NUMNODES; nid++) 5874 zone_movable_pfn[nid] = 5875 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5876 5877 out: 5878 /* restore the node_state */ 5879 node_states[N_MEMORY] = saved_node_state; 5880 } 5881 5882 /* Any regular or high memory on that node ? */ 5883 static void check_for_memory(pg_data_t *pgdat, int nid) 5884 { 5885 enum zone_type zone_type; 5886 5887 if (N_MEMORY == N_NORMAL_MEMORY) 5888 return; 5889 5890 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5891 struct zone *zone = &pgdat->node_zones[zone_type]; 5892 if (populated_zone(zone)) { 5893 node_set_state(nid, N_HIGH_MEMORY); 5894 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5895 zone_type <= ZONE_NORMAL) 5896 node_set_state(nid, N_NORMAL_MEMORY); 5897 break; 5898 } 5899 } 5900 } 5901 5902 /** 5903 * free_area_init_nodes - Initialise all pg_data_t and zone data 5904 * @max_zone_pfn: an array of max PFNs for each zone 5905 * 5906 * This will call free_area_init_node() for each active node in the system. 5907 * Using the page ranges provided by memblock_set_node(), the size of each 5908 * zone in each node and their holes is calculated. If the maximum PFN 5909 * between two adjacent zones match, it is assumed that the zone is empty. 5910 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5911 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5912 * starts where the previous one ended. For example, ZONE_DMA32 starts 5913 * at arch_max_dma_pfn. 5914 */ 5915 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5916 { 5917 unsigned long start_pfn, end_pfn; 5918 int i, nid; 5919 5920 /* Record where the zone boundaries are */ 5921 memset(arch_zone_lowest_possible_pfn, 0, 5922 sizeof(arch_zone_lowest_possible_pfn)); 5923 memset(arch_zone_highest_possible_pfn, 0, 5924 sizeof(arch_zone_highest_possible_pfn)); 5925 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5926 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5927 for (i = 1; i < MAX_NR_ZONES; i++) { 5928 if (i == ZONE_MOVABLE) 5929 continue; 5930 arch_zone_lowest_possible_pfn[i] = 5931 arch_zone_highest_possible_pfn[i-1]; 5932 arch_zone_highest_possible_pfn[i] = 5933 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5934 } 5935 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5936 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5937 5938 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5939 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5940 find_zone_movable_pfns_for_nodes(); 5941 5942 /* Print out the zone ranges */ 5943 pr_info("Zone ranges:\n"); 5944 for (i = 0; i < MAX_NR_ZONES; i++) { 5945 if (i == ZONE_MOVABLE) 5946 continue; 5947 pr_info(" %-8s ", zone_names[i]); 5948 if (arch_zone_lowest_possible_pfn[i] == 5949 arch_zone_highest_possible_pfn[i]) 5950 pr_cont("empty\n"); 5951 else 5952 pr_cont("[mem %#018Lx-%#018Lx]\n", 5953 (u64)arch_zone_lowest_possible_pfn[i] 5954 << PAGE_SHIFT, 5955 ((u64)arch_zone_highest_possible_pfn[i] 5956 << PAGE_SHIFT) - 1); 5957 } 5958 5959 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5960 pr_info("Movable zone start for each node\n"); 5961 for (i = 0; i < MAX_NUMNODES; i++) { 5962 if (zone_movable_pfn[i]) 5963 pr_info(" Node %d: %#018Lx\n", i, 5964 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 5965 } 5966 5967 /* Print out the early node map */ 5968 pr_info("Early memory node ranges\n"); 5969 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5970 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 5971 (u64)start_pfn << PAGE_SHIFT, 5972 ((u64)end_pfn << PAGE_SHIFT) - 1); 5973 5974 /* Initialise every node */ 5975 mminit_verify_pageflags_layout(); 5976 setup_nr_node_ids(); 5977 for_each_online_node(nid) { 5978 pg_data_t *pgdat = NODE_DATA(nid); 5979 free_area_init_node(nid, NULL, 5980 find_min_pfn_for_node(nid), NULL); 5981 5982 /* Any memory on that node */ 5983 if (pgdat->node_present_pages) 5984 node_set_state(nid, N_MEMORY); 5985 check_for_memory(pgdat, nid); 5986 } 5987 } 5988 5989 static int __init cmdline_parse_core(char *p, unsigned long *core) 5990 { 5991 unsigned long long coremem; 5992 if (!p) 5993 return -EINVAL; 5994 5995 coremem = memparse(p, &p); 5996 *core = coremem >> PAGE_SHIFT; 5997 5998 /* Paranoid check that UL is enough for the coremem value */ 5999 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6000 6001 return 0; 6002 } 6003 6004 /* 6005 * kernelcore=size sets the amount of memory for use for allocations that 6006 * cannot be reclaimed or migrated. 6007 */ 6008 static int __init cmdline_parse_kernelcore(char *p) 6009 { 6010 /* parse kernelcore=mirror */ 6011 if (parse_option_str(p, "mirror")) { 6012 mirrored_kernelcore = true; 6013 return 0; 6014 } 6015 6016 return cmdline_parse_core(p, &required_kernelcore); 6017 } 6018 6019 /* 6020 * movablecore=size sets the amount of memory for use for allocations that 6021 * can be reclaimed or migrated. 6022 */ 6023 static int __init cmdline_parse_movablecore(char *p) 6024 { 6025 return cmdline_parse_core(p, &required_movablecore); 6026 } 6027 6028 early_param("kernelcore", cmdline_parse_kernelcore); 6029 early_param("movablecore", cmdline_parse_movablecore); 6030 6031 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6032 6033 void adjust_managed_page_count(struct page *page, long count) 6034 { 6035 spin_lock(&managed_page_count_lock); 6036 page_zone(page)->managed_pages += count; 6037 totalram_pages += count; 6038 #ifdef CONFIG_HIGHMEM 6039 if (PageHighMem(page)) 6040 totalhigh_pages += count; 6041 #endif 6042 spin_unlock(&managed_page_count_lock); 6043 } 6044 EXPORT_SYMBOL(adjust_managed_page_count); 6045 6046 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6047 { 6048 void *pos; 6049 unsigned long pages = 0; 6050 6051 start = (void *)PAGE_ALIGN((unsigned long)start); 6052 end = (void *)((unsigned long)end & PAGE_MASK); 6053 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6054 if ((unsigned int)poison <= 0xFF) 6055 memset(pos, poison, PAGE_SIZE); 6056 free_reserved_page(virt_to_page(pos)); 6057 } 6058 6059 if (pages && s) 6060 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 6061 s, pages << (PAGE_SHIFT - 10), start, end); 6062 6063 return pages; 6064 } 6065 EXPORT_SYMBOL(free_reserved_area); 6066 6067 #ifdef CONFIG_HIGHMEM 6068 void free_highmem_page(struct page *page) 6069 { 6070 __free_reserved_page(page); 6071 totalram_pages++; 6072 page_zone(page)->managed_pages++; 6073 totalhigh_pages++; 6074 } 6075 #endif 6076 6077 6078 void __init mem_init_print_info(const char *str) 6079 { 6080 unsigned long physpages, codesize, datasize, rosize, bss_size; 6081 unsigned long init_code_size, init_data_size; 6082 6083 physpages = get_num_physpages(); 6084 codesize = _etext - _stext; 6085 datasize = _edata - _sdata; 6086 rosize = __end_rodata - __start_rodata; 6087 bss_size = __bss_stop - __bss_start; 6088 init_data_size = __init_end - __init_begin; 6089 init_code_size = _einittext - _sinittext; 6090 6091 /* 6092 * Detect special cases and adjust section sizes accordingly: 6093 * 1) .init.* may be embedded into .data sections 6094 * 2) .init.text.* may be out of [__init_begin, __init_end], 6095 * please refer to arch/tile/kernel/vmlinux.lds.S. 6096 * 3) .rodata.* may be embedded into .text or .data sections. 6097 */ 6098 #define adj_init_size(start, end, size, pos, adj) \ 6099 do { \ 6100 if (start <= pos && pos < end && size > adj) \ 6101 size -= adj; \ 6102 } while (0) 6103 6104 adj_init_size(__init_begin, __init_end, init_data_size, 6105 _sinittext, init_code_size); 6106 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6107 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6108 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6109 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6110 6111 #undef adj_init_size 6112 6113 pr_info("Memory: %luK/%luK available " 6114 "(%luK kernel code, %luK rwdata, %luK rodata, " 6115 "%luK init, %luK bss, %luK reserved, %luK cma-reserved" 6116 #ifdef CONFIG_HIGHMEM 6117 ", %luK highmem" 6118 #endif 6119 "%s%s)\n", 6120 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 6121 codesize >> 10, datasize >> 10, rosize >> 10, 6122 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6123 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), 6124 totalcma_pages << (PAGE_SHIFT-10), 6125 #ifdef CONFIG_HIGHMEM 6126 totalhigh_pages << (PAGE_SHIFT-10), 6127 #endif 6128 str ? ", " : "", str ? str : ""); 6129 } 6130 6131 /** 6132 * set_dma_reserve - set the specified number of pages reserved in the first zone 6133 * @new_dma_reserve: The number of pages to mark reserved 6134 * 6135 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6136 * In the DMA zone, a significant percentage may be consumed by kernel image 6137 * and other unfreeable allocations which can skew the watermarks badly. This 6138 * function may optionally be used to account for unfreeable pages in the 6139 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6140 * smaller per-cpu batchsize. 6141 */ 6142 void __init set_dma_reserve(unsigned long new_dma_reserve) 6143 { 6144 dma_reserve = new_dma_reserve; 6145 } 6146 6147 void __init free_area_init(unsigned long *zones_size) 6148 { 6149 free_area_init_node(0, zones_size, 6150 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6151 } 6152 6153 static int page_alloc_cpu_notify(struct notifier_block *self, 6154 unsigned long action, void *hcpu) 6155 { 6156 int cpu = (unsigned long)hcpu; 6157 6158 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 6159 lru_add_drain_cpu(cpu); 6160 drain_pages(cpu); 6161 6162 /* 6163 * Spill the event counters of the dead processor 6164 * into the current processors event counters. 6165 * This artificially elevates the count of the current 6166 * processor. 6167 */ 6168 vm_events_fold_cpu(cpu); 6169 6170 /* 6171 * Zero the differential counters of the dead processor 6172 * so that the vm statistics are consistent. 6173 * 6174 * This is only okay since the processor is dead and cannot 6175 * race with what we are doing. 6176 */ 6177 cpu_vm_stats_fold(cpu); 6178 } 6179 return NOTIFY_OK; 6180 } 6181 6182 void __init page_alloc_init(void) 6183 { 6184 hotcpu_notifier(page_alloc_cpu_notify, 0); 6185 } 6186 6187 /* 6188 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6189 * or min_free_kbytes changes. 6190 */ 6191 static void calculate_totalreserve_pages(void) 6192 { 6193 struct pglist_data *pgdat; 6194 unsigned long reserve_pages = 0; 6195 enum zone_type i, j; 6196 6197 for_each_online_pgdat(pgdat) { 6198 for (i = 0; i < MAX_NR_ZONES; i++) { 6199 struct zone *zone = pgdat->node_zones + i; 6200 long max = 0; 6201 6202 /* Find valid and maximum lowmem_reserve in the zone */ 6203 for (j = i; j < MAX_NR_ZONES; j++) { 6204 if (zone->lowmem_reserve[j] > max) 6205 max = zone->lowmem_reserve[j]; 6206 } 6207 6208 /* we treat the high watermark as reserved pages. */ 6209 max += high_wmark_pages(zone); 6210 6211 if (max > zone->managed_pages) 6212 max = zone->managed_pages; 6213 6214 zone->totalreserve_pages = max; 6215 6216 reserve_pages += max; 6217 } 6218 } 6219 totalreserve_pages = reserve_pages; 6220 } 6221 6222 /* 6223 * setup_per_zone_lowmem_reserve - called whenever 6224 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6225 * has a correct pages reserved value, so an adequate number of 6226 * pages are left in the zone after a successful __alloc_pages(). 6227 */ 6228 static void setup_per_zone_lowmem_reserve(void) 6229 { 6230 struct pglist_data *pgdat; 6231 enum zone_type j, idx; 6232 6233 for_each_online_pgdat(pgdat) { 6234 for (j = 0; j < MAX_NR_ZONES; j++) { 6235 struct zone *zone = pgdat->node_zones + j; 6236 unsigned long managed_pages = zone->managed_pages; 6237 6238 zone->lowmem_reserve[j] = 0; 6239 6240 idx = j; 6241 while (idx) { 6242 struct zone *lower_zone; 6243 6244 idx--; 6245 6246 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6247 sysctl_lowmem_reserve_ratio[idx] = 1; 6248 6249 lower_zone = pgdat->node_zones + idx; 6250 lower_zone->lowmem_reserve[j] = managed_pages / 6251 sysctl_lowmem_reserve_ratio[idx]; 6252 managed_pages += lower_zone->managed_pages; 6253 } 6254 } 6255 } 6256 6257 /* update totalreserve_pages */ 6258 calculate_totalreserve_pages(); 6259 } 6260 6261 static void __setup_per_zone_wmarks(void) 6262 { 6263 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6264 unsigned long lowmem_pages = 0; 6265 struct zone *zone; 6266 unsigned long flags; 6267 6268 /* Calculate total number of !ZONE_HIGHMEM pages */ 6269 for_each_zone(zone) { 6270 if (!is_highmem(zone)) 6271 lowmem_pages += zone->managed_pages; 6272 } 6273 6274 for_each_zone(zone) { 6275 u64 tmp; 6276 6277 spin_lock_irqsave(&zone->lock, flags); 6278 tmp = (u64)pages_min * zone->managed_pages; 6279 do_div(tmp, lowmem_pages); 6280 if (is_highmem(zone)) { 6281 /* 6282 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6283 * need highmem pages, so cap pages_min to a small 6284 * value here. 6285 * 6286 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6287 * deltas control asynch page reclaim, and so should 6288 * not be capped for highmem. 6289 */ 6290 unsigned long min_pages; 6291 6292 min_pages = zone->managed_pages / 1024; 6293 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6294 zone->watermark[WMARK_MIN] = min_pages; 6295 } else { 6296 /* 6297 * If it's a lowmem zone, reserve a number of pages 6298 * proportionate to the zone's size. 6299 */ 6300 zone->watermark[WMARK_MIN] = tmp; 6301 } 6302 6303 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 6304 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 6305 6306 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 6307 high_wmark_pages(zone) - low_wmark_pages(zone) - 6308 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 6309 6310 spin_unlock_irqrestore(&zone->lock, flags); 6311 } 6312 6313 /* update totalreserve_pages */ 6314 calculate_totalreserve_pages(); 6315 } 6316 6317 /** 6318 * setup_per_zone_wmarks - called when min_free_kbytes changes 6319 * or when memory is hot-{added|removed} 6320 * 6321 * Ensures that the watermark[min,low,high] values for each zone are set 6322 * correctly with respect to min_free_kbytes. 6323 */ 6324 void setup_per_zone_wmarks(void) 6325 { 6326 mutex_lock(&zonelists_mutex); 6327 __setup_per_zone_wmarks(); 6328 mutex_unlock(&zonelists_mutex); 6329 } 6330 6331 /* 6332 * The inactive anon list should be small enough that the VM never has to 6333 * do too much work, but large enough that each inactive page has a chance 6334 * to be referenced again before it is swapped out. 6335 * 6336 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 6337 * INACTIVE_ANON pages on this zone's LRU, maintained by the 6338 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 6339 * the anonymous pages are kept on the inactive list. 6340 * 6341 * total target max 6342 * memory ratio inactive anon 6343 * ------------------------------------- 6344 * 10MB 1 5MB 6345 * 100MB 1 50MB 6346 * 1GB 3 250MB 6347 * 10GB 10 0.9GB 6348 * 100GB 31 3GB 6349 * 1TB 101 10GB 6350 * 10TB 320 32GB 6351 */ 6352 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 6353 { 6354 unsigned int gb, ratio; 6355 6356 /* Zone size in gigabytes */ 6357 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 6358 if (gb) 6359 ratio = int_sqrt(10 * gb); 6360 else 6361 ratio = 1; 6362 6363 zone->inactive_ratio = ratio; 6364 } 6365 6366 static void __meminit setup_per_zone_inactive_ratio(void) 6367 { 6368 struct zone *zone; 6369 6370 for_each_zone(zone) 6371 calculate_zone_inactive_ratio(zone); 6372 } 6373 6374 /* 6375 * Initialise min_free_kbytes. 6376 * 6377 * For small machines we want it small (128k min). For large machines 6378 * we want it large (64MB max). But it is not linear, because network 6379 * bandwidth does not increase linearly with machine size. We use 6380 * 6381 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6382 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6383 * 6384 * which yields 6385 * 6386 * 16MB: 512k 6387 * 32MB: 724k 6388 * 64MB: 1024k 6389 * 128MB: 1448k 6390 * 256MB: 2048k 6391 * 512MB: 2896k 6392 * 1024MB: 4096k 6393 * 2048MB: 5792k 6394 * 4096MB: 8192k 6395 * 8192MB: 11584k 6396 * 16384MB: 16384k 6397 */ 6398 int __meminit init_per_zone_wmark_min(void) 6399 { 6400 unsigned long lowmem_kbytes; 6401 int new_min_free_kbytes; 6402 6403 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6404 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6405 6406 if (new_min_free_kbytes > user_min_free_kbytes) { 6407 min_free_kbytes = new_min_free_kbytes; 6408 if (min_free_kbytes < 128) 6409 min_free_kbytes = 128; 6410 if (min_free_kbytes > 65536) 6411 min_free_kbytes = 65536; 6412 } else { 6413 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6414 new_min_free_kbytes, user_min_free_kbytes); 6415 } 6416 setup_per_zone_wmarks(); 6417 refresh_zone_stat_thresholds(); 6418 setup_per_zone_lowmem_reserve(); 6419 setup_per_zone_inactive_ratio(); 6420 return 0; 6421 } 6422 module_init(init_per_zone_wmark_min) 6423 6424 /* 6425 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6426 * that we can call two helper functions whenever min_free_kbytes 6427 * changes. 6428 */ 6429 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6430 void __user *buffer, size_t *length, loff_t *ppos) 6431 { 6432 int rc; 6433 6434 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6435 if (rc) 6436 return rc; 6437 6438 if (write) { 6439 user_min_free_kbytes = min_free_kbytes; 6440 setup_per_zone_wmarks(); 6441 } 6442 return 0; 6443 } 6444 6445 #ifdef CONFIG_NUMA 6446 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6447 void __user *buffer, size_t *length, loff_t *ppos) 6448 { 6449 struct zone *zone; 6450 int rc; 6451 6452 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6453 if (rc) 6454 return rc; 6455 6456 for_each_zone(zone) 6457 zone->min_unmapped_pages = (zone->managed_pages * 6458 sysctl_min_unmapped_ratio) / 100; 6459 return 0; 6460 } 6461 6462 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6463 void __user *buffer, size_t *length, loff_t *ppos) 6464 { 6465 struct zone *zone; 6466 int rc; 6467 6468 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6469 if (rc) 6470 return rc; 6471 6472 for_each_zone(zone) 6473 zone->min_slab_pages = (zone->managed_pages * 6474 sysctl_min_slab_ratio) / 100; 6475 return 0; 6476 } 6477 #endif 6478 6479 /* 6480 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6481 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6482 * whenever sysctl_lowmem_reserve_ratio changes. 6483 * 6484 * The reserve ratio obviously has absolutely no relation with the 6485 * minimum watermarks. The lowmem reserve ratio can only make sense 6486 * if in function of the boot time zone sizes. 6487 */ 6488 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6489 void __user *buffer, size_t *length, loff_t *ppos) 6490 { 6491 proc_dointvec_minmax(table, write, buffer, length, ppos); 6492 setup_per_zone_lowmem_reserve(); 6493 return 0; 6494 } 6495 6496 /* 6497 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 6498 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6499 * pagelist can have before it gets flushed back to buddy allocator. 6500 */ 6501 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 6502 void __user *buffer, size_t *length, loff_t *ppos) 6503 { 6504 struct zone *zone; 6505 int old_percpu_pagelist_fraction; 6506 int ret; 6507 6508 mutex_lock(&pcp_batch_high_lock); 6509 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 6510 6511 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6512 if (!write || ret < 0) 6513 goto out; 6514 6515 /* Sanity checking to avoid pcp imbalance */ 6516 if (percpu_pagelist_fraction && 6517 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6518 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6519 ret = -EINVAL; 6520 goto out; 6521 } 6522 6523 /* No change? */ 6524 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6525 goto out; 6526 6527 for_each_populated_zone(zone) { 6528 unsigned int cpu; 6529 6530 for_each_possible_cpu(cpu) 6531 pageset_set_high_and_batch(zone, 6532 per_cpu_ptr(zone->pageset, cpu)); 6533 } 6534 out: 6535 mutex_unlock(&pcp_batch_high_lock); 6536 return ret; 6537 } 6538 6539 #ifdef CONFIG_NUMA 6540 int hashdist = HASHDIST_DEFAULT; 6541 6542 static int __init set_hashdist(char *str) 6543 { 6544 if (!str) 6545 return 0; 6546 hashdist = simple_strtoul(str, &str, 0); 6547 return 1; 6548 } 6549 __setup("hashdist=", set_hashdist); 6550 #endif 6551 6552 /* 6553 * allocate a large system hash table from bootmem 6554 * - it is assumed that the hash table must contain an exact power-of-2 6555 * quantity of entries 6556 * - limit is the number of hash buckets, not the total allocation size 6557 */ 6558 void *__init alloc_large_system_hash(const char *tablename, 6559 unsigned long bucketsize, 6560 unsigned long numentries, 6561 int scale, 6562 int flags, 6563 unsigned int *_hash_shift, 6564 unsigned int *_hash_mask, 6565 unsigned long low_limit, 6566 unsigned long high_limit) 6567 { 6568 unsigned long long max = high_limit; 6569 unsigned long log2qty, size; 6570 void *table = NULL; 6571 6572 /* allow the kernel cmdline to have a say */ 6573 if (!numentries) { 6574 /* round applicable memory size up to nearest megabyte */ 6575 numentries = nr_kernel_pages; 6576 6577 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6578 if (PAGE_SHIFT < 20) 6579 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6580 6581 /* limit to 1 bucket per 2^scale bytes of low memory */ 6582 if (scale > PAGE_SHIFT) 6583 numentries >>= (scale - PAGE_SHIFT); 6584 else 6585 numentries <<= (PAGE_SHIFT - scale); 6586 6587 /* Make sure we've got at least a 0-order allocation.. */ 6588 if (unlikely(flags & HASH_SMALL)) { 6589 /* Makes no sense without HASH_EARLY */ 6590 WARN_ON(!(flags & HASH_EARLY)); 6591 if (!(numentries >> *_hash_shift)) { 6592 numentries = 1UL << *_hash_shift; 6593 BUG_ON(!numentries); 6594 } 6595 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6596 numentries = PAGE_SIZE / bucketsize; 6597 } 6598 numentries = roundup_pow_of_two(numentries); 6599 6600 /* limit allocation size to 1/16 total memory by default */ 6601 if (max == 0) { 6602 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6603 do_div(max, bucketsize); 6604 } 6605 max = min(max, 0x80000000ULL); 6606 6607 if (numentries < low_limit) 6608 numentries = low_limit; 6609 if (numentries > max) 6610 numentries = max; 6611 6612 log2qty = ilog2(numentries); 6613 6614 do { 6615 size = bucketsize << log2qty; 6616 if (flags & HASH_EARLY) 6617 table = memblock_virt_alloc_nopanic(size, 0); 6618 else if (hashdist) 6619 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6620 else { 6621 /* 6622 * If bucketsize is not a power-of-two, we may free 6623 * some pages at the end of hash table which 6624 * alloc_pages_exact() automatically does 6625 */ 6626 if (get_order(size) < MAX_ORDER) { 6627 table = alloc_pages_exact(size, GFP_ATOMIC); 6628 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6629 } 6630 } 6631 } while (!table && size > PAGE_SIZE && --log2qty); 6632 6633 if (!table) 6634 panic("Failed to allocate %s hash table\n", tablename); 6635 6636 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6637 tablename, 6638 (1UL << log2qty), 6639 ilog2(size) - PAGE_SHIFT, 6640 size); 6641 6642 if (_hash_shift) 6643 *_hash_shift = log2qty; 6644 if (_hash_mask) 6645 *_hash_mask = (1 << log2qty) - 1; 6646 6647 return table; 6648 } 6649 6650 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6651 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6652 unsigned long pfn) 6653 { 6654 #ifdef CONFIG_SPARSEMEM 6655 return __pfn_to_section(pfn)->pageblock_flags; 6656 #else 6657 return zone->pageblock_flags; 6658 #endif /* CONFIG_SPARSEMEM */ 6659 } 6660 6661 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6662 { 6663 #ifdef CONFIG_SPARSEMEM 6664 pfn &= (PAGES_PER_SECTION-1); 6665 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6666 #else 6667 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6668 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6669 #endif /* CONFIG_SPARSEMEM */ 6670 } 6671 6672 /** 6673 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6674 * @page: The page within the block of interest 6675 * @pfn: The target page frame number 6676 * @end_bitidx: The last bit of interest to retrieve 6677 * @mask: mask of bits that the caller is interested in 6678 * 6679 * Return: pageblock_bits flags 6680 */ 6681 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6682 unsigned long end_bitidx, 6683 unsigned long mask) 6684 { 6685 struct zone *zone; 6686 unsigned long *bitmap; 6687 unsigned long bitidx, word_bitidx; 6688 unsigned long word; 6689 6690 zone = page_zone(page); 6691 bitmap = get_pageblock_bitmap(zone, pfn); 6692 bitidx = pfn_to_bitidx(zone, pfn); 6693 word_bitidx = bitidx / BITS_PER_LONG; 6694 bitidx &= (BITS_PER_LONG-1); 6695 6696 word = bitmap[word_bitidx]; 6697 bitidx += end_bitidx; 6698 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6699 } 6700 6701 /** 6702 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6703 * @page: The page within the block of interest 6704 * @flags: The flags to set 6705 * @pfn: The target page frame number 6706 * @end_bitidx: The last bit of interest 6707 * @mask: mask of bits that the caller is interested in 6708 */ 6709 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6710 unsigned long pfn, 6711 unsigned long end_bitidx, 6712 unsigned long mask) 6713 { 6714 struct zone *zone; 6715 unsigned long *bitmap; 6716 unsigned long bitidx, word_bitidx; 6717 unsigned long old_word, word; 6718 6719 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6720 6721 zone = page_zone(page); 6722 bitmap = get_pageblock_bitmap(zone, pfn); 6723 bitidx = pfn_to_bitidx(zone, pfn); 6724 word_bitidx = bitidx / BITS_PER_LONG; 6725 bitidx &= (BITS_PER_LONG-1); 6726 6727 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6728 6729 bitidx += end_bitidx; 6730 mask <<= (BITS_PER_LONG - bitidx - 1); 6731 flags <<= (BITS_PER_LONG - bitidx - 1); 6732 6733 word = READ_ONCE(bitmap[word_bitidx]); 6734 for (;;) { 6735 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6736 if (word == old_word) 6737 break; 6738 word = old_word; 6739 } 6740 } 6741 6742 /* 6743 * This function checks whether pageblock includes unmovable pages or not. 6744 * If @count is not zero, it is okay to include less @count unmovable pages 6745 * 6746 * PageLRU check without isolation or lru_lock could race so that 6747 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6748 * expect this function should be exact. 6749 */ 6750 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6751 bool skip_hwpoisoned_pages) 6752 { 6753 unsigned long pfn, iter, found; 6754 int mt; 6755 6756 /* 6757 * For avoiding noise data, lru_add_drain_all() should be called 6758 * If ZONE_MOVABLE, the zone never contains unmovable pages 6759 */ 6760 if (zone_idx(zone) == ZONE_MOVABLE) 6761 return false; 6762 mt = get_pageblock_migratetype(page); 6763 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6764 return false; 6765 6766 pfn = page_to_pfn(page); 6767 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6768 unsigned long check = pfn + iter; 6769 6770 if (!pfn_valid_within(check)) 6771 continue; 6772 6773 page = pfn_to_page(check); 6774 6775 /* 6776 * Hugepages are not in LRU lists, but they're movable. 6777 * We need not scan over tail pages bacause we don't 6778 * handle each tail page individually in migration. 6779 */ 6780 if (PageHuge(page)) { 6781 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6782 continue; 6783 } 6784 6785 /* 6786 * We can't use page_count without pin a page 6787 * because another CPU can free compound page. 6788 * This check already skips compound tails of THP 6789 * because their page->_count is zero at all time. 6790 */ 6791 if (!atomic_read(&page->_count)) { 6792 if (PageBuddy(page)) 6793 iter += (1 << page_order(page)) - 1; 6794 continue; 6795 } 6796 6797 /* 6798 * The HWPoisoned page may be not in buddy system, and 6799 * page_count() is not 0. 6800 */ 6801 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6802 continue; 6803 6804 if (!PageLRU(page)) 6805 found++; 6806 /* 6807 * If there are RECLAIMABLE pages, we need to check 6808 * it. But now, memory offline itself doesn't call 6809 * shrink_node_slabs() and it still to be fixed. 6810 */ 6811 /* 6812 * If the page is not RAM, page_count()should be 0. 6813 * we don't need more check. This is an _used_ not-movable page. 6814 * 6815 * The problematic thing here is PG_reserved pages. PG_reserved 6816 * is set to both of a memory hole page and a _used_ kernel 6817 * page at boot. 6818 */ 6819 if (found > count) 6820 return true; 6821 } 6822 return false; 6823 } 6824 6825 bool is_pageblock_removable_nolock(struct page *page) 6826 { 6827 struct zone *zone; 6828 unsigned long pfn; 6829 6830 /* 6831 * We have to be careful here because we are iterating over memory 6832 * sections which are not zone aware so we might end up outside of 6833 * the zone but still within the section. 6834 * We have to take care about the node as well. If the node is offline 6835 * its NODE_DATA will be NULL - see page_zone. 6836 */ 6837 if (!node_online(page_to_nid(page))) 6838 return false; 6839 6840 zone = page_zone(page); 6841 pfn = page_to_pfn(page); 6842 if (!zone_spans_pfn(zone, pfn)) 6843 return false; 6844 6845 return !has_unmovable_pages(zone, page, 0, true); 6846 } 6847 6848 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 6849 6850 static unsigned long pfn_max_align_down(unsigned long pfn) 6851 { 6852 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6853 pageblock_nr_pages) - 1); 6854 } 6855 6856 static unsigned long pfn_max_align_up(unsigned long pfn) 6857 { 6858 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6859 pageblock_nr_pages)); 6860 } 6861 6862 /* [start, end) must belong to a single zone. */ 6863 static int __alloc_contig_migrate_range(struct compact_control *cc, 6864 unsigned long start, unsigned long end) 6865 { 6866 /* This function is based on compact_zone() from compaction.c. */ 6867 unsigned long nr_reclaimed; 6868 unsigned long pfn = start; 6869 unsigned int tries = 0; 6870 int ret = 0; 6871 6872 migrate_prep(); 6873 6874 while (pfn < end || !list_empty(&cc->migratepages)) { 6875 if (fatal_signal_pending(current)) { 6876 ret = -EINTR; 6877 break; 6878 } 6879 6880 if (list_empty(&cc->migratepages)) { 6881 cc->nr_migratepages = 0; 6882 pfn = isolate_migratepages_range(cc, pfn, end); 6883 if (!pfn) { 6884 ret = -EINTR; 6885 break; 6886 } 6887 tries = 0; 6888 } else if (++tries == 5) { 6889 ret = ret < 0 ? ret : -EBUSY; 6890 break; 6891 } 6892 6893 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6894 &cc->migratepages); 6895 cc->nr_migratepages -= nr_reclaimed; 6896 6897 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6898 NULL, 0, cc->mode, MR_CMA); 6899 } 6900 if (ret < 0) { 6901 putback_movable_pages(&cc->migratepages); 6902 return ret; 6903 } 6904 return 0; 6905 } 6906 6907 /** 6908 * alloc_contig_range() -- tries to allocate given range of pages 6909 * @start: start PFN to allocate 6910 * @end: one-past-the-last PFN to allocate 6911 * @migratetype: migratetype of the underlaying pageblocks (either 6912 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6913 * in range must have the same migratetype and it must 6914 * be either of the two. 6915 * 6916 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6917 * aligned, however it's the caller's responsibility to guarantee that 6918 * we are the only thread that changes migrate type of pageblocks the 6919 * pages fall in. 6920 * 6921 * The PFN range must belong to a single zone. 6922 * 6923 * Returns zero on success or negative error code. On success all 6924 * pages which PFN is in [start, end) are allocated for the caller and 6925 * need to be freed with free_contig_range(). 6926 */ 6927 int alloc_contig_range(unsigned long start, unsigned long end, 6928 unsigned migratetype) 6929 { 6930 unsigned long outer_start, outer_end; 6931 unsigned int order; 6932 int ret = 0; 6933 6934 struct compact_control cc = { 6935 .nr_migratepages = 0, 6936 .order = -1, 6937 .zone = page_zone(pfn_to_page(start)), 6938 .mode = MIGRATE_SYNC, 6939 .ignore_skip_hint = true, 6940 }; 6941 INIT_LIST_HEAD(&cc.migratepages); 6942 6943 /* 6944 * What we do here is we mark all pageblocks in range as 6945 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6946 * have different sizes, and due to the way page allocator 6947 * work, we align the range to biggest of the two pages so 6948 * that page allocator won't try to merge buddies from 6949 * different pageblocks and change MIGRATE_ISOLATE to some 6950 * other migration type. 6951 * 6952 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6953 * migrate the pages from an unaligned range (ie. pages that 6954 * we are interested in). This will put all the pages in 6955 * range back to page allocator as MIGRATE_ISOLATE. 6956 * 6957 * When this is done, we take the pages in range from page 6958 * allocator removing them from the buddy system. This way 6959 * page allocator will never consider using them. 6960 * 6961 * This lets us mark the pageblocks back as 6962 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6963 * aligned range but not in the unaligned, original range are 6964 * put back to page allocator so that buddy can use them. 6965 */ 6966 6967 ret = start_isolate_page_range(pfn_max_align_down(start), 6968 pfn_max_align_up(end), migratetype, 6969 false); 6970 if (ret) 6971 return ret; 6972 6973 /* 6974 * In case of -EBUSY, we'd like to know which page causes problem. 6975 * So, just fall through. We will check it in test_pages_isolated(). 6976 */ 6977 ret = __alloc_contig_migrate_range(&cc, start, end); 6978 if (ret && ret != -EBUSY) 6979 goto done; 6980 6981 /* 6982 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6983 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6984 * more, all pages in [start, end) are free in page allocator. 6985 * What we are going to do is to allocate all pages from 6986 * [start, end) (that is remove them from page allocator). 6987 * 6988 * The only problem is that pages at the beginning and at the 6989 * end of interesting range may be not aligned with pages that 6990 * page allocator holds, ie. they can be part of higher order 6991 * pages. Because of this, we reserve the bigger range and 6992 * once this is done free the pages we are not interested in. 6993 * 6994 * We don't have to hold zone->lock here because the pages are 6995 * isolated thus they won't get removed from buddy. 6996 */ 6997 6998 lru_add_drain_all(); 6999 drain_all_pages(cc.zone); 7000 7001 order = 0; 7002 outer_start = start; 7003 while (!PageBuddy(pfn_to_page(outer_start))) { 7004 if (++order >= MAX_ORDER) { 7005 outer_start = start; 7006 break; 7007 } 7008 outer_start &= ~0UL << order; 7009 } 7010 7011 if (outer_start != start) { 7012 order = page_order(pfn_to_page(outer_start)); 7013 7014 /* 7015 * outer_start page could be small order buddy page and 7016 * it doesn't include start page. Adjust outer_start 7017 * in this case to report failed page properly 7018 * on tracepoint in test_pages_isolated() 7019 */ 7020 if (outer_start + (1UL << order) <= start) 7021 outer_start = start; 7022 } 7023 7024 /* Make sure the range is really isolated. */ 7025 if (test_pages_isolated(outer_start, end, false)) { 7026 pr_info("%s: [%lx, %lx) PFNs busy\n", 7027 __func__, outer_start, end); 7028 ret = -EBUSY; 7029 goto done; 7030 } 7031 7032 /* Grab isolated pages from freelists. */ 7033 outer_end = isolate_freepages_range(&cc, outer_start, end); 7034 if (!outer_end) { 7035 ret = -EBUSY; 7036 goto done; 7037 } 7038 7039 /* Free head and tail (if any) */ 7040 if (start != outer_start) 7041 free_contig_range(outer_start, start - outer_start); 7042 if (end != outer_end) 7043 free_contig_range(end, outer_end - end); 7044 7045 done: 7046 undo_isolate_page_range(pfn_max_align_down(start), 7047 pfn_max_align_up(end), migratetype); 7048 return ret; 7049 } 7050 7051 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7052 { 7053 unsigned int count = 0; 7054 7055 for (; nr_pages--; pfn++) { 7056 struct page *page = pfn_to_page(pfn); 7057 7058 count += page_count(page) != 1; 7059 __free_page(page); 7060 } 7061 WARN(count != 0, "%d pages are still in use!\n", count); 7062 } 7063 #endif 7064 7065 #ifdef CONFIG_MEMORY_HOTPLUG 7066 /* 7067 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7068 * page high values need to be recalulated. 7069 */ 7070 void __meminit zone_pcp_update(struct zone *zone) 7071 { 7072 unsigned cpu; 7073 mutex_lock(&pcp_batch_high_lock); 7074 for_each_possible_cpu(cpu) 7075 pageset_set_high_and_batch(zone, 7076 per_cpu_ptr(zone->pageset, cpu)); 7077 mutex_unlock(&pcp_batch_high_lock); 7078 } 7079 #endif 7080 7081 void zone_pcp_reset(struct zone *zone) 7082 { 7083 unsigned long flags; 7084 int cpu; 7085 struct per_cpu_pageset *pset; 7086 7087 /* avoid races with drain_pages() */ 7088 local_irq_save(flags); 7089 if (zone->pageset != &boot_pageset) { 7090 for_each_online_cpu(cpu) { 7091 pset = per_cpu_ptr(zone->pageset, cpu); 7092 drain_zonestat(zone, pset); 7093 } 7094 free_percpu(zone->pageset); 7095 zone->pageset = &boot_pageset; 7096 } 7097 local_irq_restore(flags); 7098 } 7099 7100 #ifdef CONFIG_MEMORY_HOTREMOVE 7101 /* 7102 * All pages in the range must be isolated before calling this. 7103 */ 7104 void 7105 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7106 { 7107 struct page *page; 7108 struct zone *zone; 7109 unsigned int order, i; 7110 unsigned long pfn; 7111 unsigned long flags; 7112 /* find the first valid pfn */ 7113 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7114 if (pfn_valid(pfn)) 7115 break; 7116 if (pfn == end_pfn) 7117 return; 7118 zone = page_zone(pfn_to_page(pfn)); 7119 spin_lock_irqsave(&zone->lock, flags); 7120 pfn = start_pfn; 7121 while (pfn < end_pfn) { 7122 if (!pfn_valid(pfn)) { 7123 pfn++; 7124 continue; 7125 } 7126 page = pfn_to_page(pfn); 7127 /* 7128 * The HWPoisoned page may be not in buddy system, and 7129 * page_count() is not 0. 7130 */ 7131 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7132 pfn++; 7133 SetPageReserved(page); 7134 continue; 7135 } 7136 7137 BUG_ON(page_count(page)); 7138 BUG_ON(!PageBuddy(page)); 7139 order = page_order(page); 7140 #ifdef CONFIG_DEBUG_VM 7141 printk(KERN_INFO "remove from free list %lx %d %lx\n", 7142 pfn, 1 << order, end_pfn); 7143 #endif 7144 list_del(&page->lru); 7145 rmv_page_order(page); 7146 zone->free_area[order].nr_free--; 7147 for (i = 0; i < (1 << order); i++) 7148 SetPageReserved((page+i)); 7149 pfn += (1 << order); 7150 } 7151 spin_unlock_irqrestore(&zone->lock, flags); 7152 } 7153 #endif 7154 7155 #ifdef CONFIG_MEMORY_FAILURE 7156 bool is_free_buddy_page(struct page *page) 7157 { 7158 struct zone *zone = page_zone(page); 7159 unsigned long pfn = page_to_pfn(page); 7160 unsigned long flags; 7161 unsigned int order; 7162 7163 spin_lock_irqsave(&zone->lock, flags); 7164 for (order = 0; order < MAX_ORDER; order++) { 7165 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7166 7167 if (PageBuddy(page_head) && page_order(page_head) >= order) 7168 break; 7169 } 7170 spin_unlock_irqrestore(&zone->lock, flags); 7171 7172 return order < MAX_ORDER; 7173 } 7174 #endif 7175