xref: /linux/mm/page_alloc.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71 
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
75 
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80 
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86  * defined in <linux/topology.h>.
87  */
88 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92 
93 /*
94  * Array of node states.
95  */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 	[N_POSSIBLE] = NODE_MASK_ALL,
98 	[N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 	[N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 	[N_CPU] = { { [0] = 1UL } },
108 #endif	/* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111 
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114 
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118 
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121 
122 /*
123  * A cached value of the page's pageblock's migratetype, used when the page is
124  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126  * Also the migratetype set in the page does not necessarily match the pcplist
127  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128  * other index - this ensures that it will be put on the correct CMA freelist.
129  */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 	return page->index;
133 }
134 
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 	page->index = migratetype;
138 }
139 
140 #ifdef CONFIG_PM_SLEEP
141 /*
142  * The following functions are used by the suspend/hibernate code to temporarily
143  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144  * while devices are suspended.  To avoid races with the suspend/hibernate code,
145  * they should always be called with pm_mutex held (gfp_allowed_mask also should
146  * only be modified with pm_mutex held, unless the suspend/hibernate code is
147  * guaranteed not to run in parallel with that modification).
148  */
149 
150 static gfp_t saved_gfp_mask;
151 
152 void pm_restore_gfp_mask(void)
153 {
154 	WARN_ON(!mutex_is_locked(&pm_mutex));
155 	if (saved_gfp_mask) {
156 		gfp_allowed_mask = saved_gfp_mask;
157 		saved_gfp_mask = 0;
158 	}
159 }
160 
161 void pm_restrict_gfp_mask(void)
162 {
163 	WARN_ON(!mutex_is_locked(&pm_mutex));
164 	WARN_ON(saved_gfp_mask);
165 	saved_gfp_mask = gfp_allowed_mask;
166 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168 
169 bool pm_suspended_storage(void)
170 {
171 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 		return false;
173 	return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176 
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180 
181 static void __free_pages_ok(struct page *page, unsigned int order);
182 
183 /*
184  * results with 256, 32 in the lowmem_reserve sysctl:
185  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186  *	1G machine -> (16M dma, 784M normal, 224M high)
187  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190  *
191  * TBD: should special case ZONE_DMA32 machines here - in those we normally
192  * don't need any ZONE_NORMAL reservation
193  */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 	 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 	 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 	 32,
203 #endif
204 	 32,
205 };
206 
207 EXPORT_SYMBOL(totalram_pages);
208 
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 	 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 	 "DMA32",
215 #endif
216 	 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 	 "HighMem",
219 #endif
220 	 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 	 "Device",
223 #endif
224 };
225 
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 	"Unmovable",
228 	"Movable",
229 	"Reclaimable",
230 	"HighAtomic",
231 #ifdef CONFIG_CMA
232 	"CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 	"Isolate",
236 #endif
237 };
238 
239 compound_page_dtor * const compound_page_dtors[] = {
240 	NULL,
241 	free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 	free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 	free_transhuge_page,
247 #endif
248 };
249 
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 
253 static unsigned long __meminitdata nr_kernel_pages;
254 static unsigned long __meminitdata nr_all_pages;
255 static unsigned long __meminitdata dma_reserve;
256 
257 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
258 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
259 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __initdata required_kernelcore;
261 static unsigned long __initdata required_movablecore;
262 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
263 static bool mirrored_kernelcore;
264 
265 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
266 int movable_zone;
267 EXPORT_SYMBOL(movable_zone);
268 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
269 
270 #if MAX_NUMNODES > 1
271 int nr_node_ids __read_mostly = MAX_NUMNODES;
272 int nr_online_nodes __read_mostly = 1;
273 EXPORT_SYMBOL(nr_node_ids);
274 EXPORT_SYMBOL(nr_online_nodes);
275 #endif
276 
277 int page_group_by_mobility_disabled __read_mostly;
278 
279 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
280 static inline void reset_deferred_meminit(pg_data_t *pgdat)
281 {
282 	pgdat->first_deferred_pfn = ULONG_MAX;
283 }
284 
285 /* Returns true if the struct page for the pfn is uninitialised */
286 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
287 {
288 	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
289 		return true;
290 
291 	return false;
292 }
293 
294 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295 {
296 	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
297 		return true;
298 
299 	return false;
300 }
301 
302 /*
303  * Returns false when the remaining initialisation should be deferred until
304  * later in the boot cycle when it can be parallelised.
305  */
306 static inline bool update_defer_init(pg_data_t *pgdat,
307 				unsigned long pfn, unsigned long zone_end,
308 				unsigned long *nr_initialised)
309 {
310 	/* Always populate low zones for address-contrained allocations */
311 	if (zone_end < pgdat_end_pfn(pgdat))
312 		return true;
313 
314 	/* Initialise at least 2G of the highest zone */
315 	(*nr_initialised)++;
316 	if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
317 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
318 		pgdat->first_deferred_pfn = pfn;
319 		return false;
320 	}
321 
322 	return true;
323 }
324 #else
325 static inline void reset_deferred_meminit(pg_data_t *pgdat)
326 {
327 }
328 
329 static inline bool early_page_uninitialised(unsigned long pfn)
330 {
331 	return false;
332 }
333 
334 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
335 {
336 	return false;
337 }
338 
339 static inline bool update_defer_init(pg_data_t *pgdat,
340 				unsigned long pfn, unsigned long zone_end,
341 				unsigned long *nr_initialised)
342 {
343 	return true;
344 }
345 #endif
346 
347 
348 void set_pageblock_migratetype(struct page *page, int migratetype)
349 {
350 	if (unlikely(page_group_by_mobility_disabled &&
351 		     migratetype < MIGRATE_PCPTYPES))
352 		migratetype = MIGRATE_UNMOVABLE;
353 
354 	set_pageblock_flags_group(page, (unsigned long)migratetype,
355 					PB_migrate, PB_migrate_end);
356 }
357 
358 #ifdef CONFIG_DEBUG_VM
359 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
360 {
361 	int ret = 0;
362 	unsigned seq;
363 	unsigned long pfn = page_to_pfn(page);
364 	unsigned long sp, start_pfn;
365 
366 	do {
367 		seq = zone_span_seqbegin(zone);
368 		start_pfn = zone->zone_start_pfn;
369 		sp = zone->spanned_pages;
370 		if (!zone_spans_pfn(zone, pfn))
371 			ret = 1;
372 	} while (zone_span_seqretry(zone, seq));
373 
374 	if (ret)
375 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
376 			pfn, zone_to_nid(zone), zone->name,
377 			start_pfn, start_pfn + sp);
378 
379 	return ret;
380 }
381 
382 static int page_is_consistent(struct zone *zone, struct page *page)
383 {
384 	if (!pfn_valid_within(page_to_pfn(page)))
385 		return 0;
386 	if (zone != page_zone(page))
387 		return 0;
388 
389 	return 1;
390 }
391 /*
392  * Temporary debugging check for pages not lying within a given zone.
393  */
394 static int bad_range(struct zone *zone, struct page *page)
395 {
396 	if (page_outside_zone_boundaries(zone, page))
397 		return 1;
398 	if (!page_is_consistent(zone, page))
399 		return 1;
400 
401 	return 0;
402 }
403 #else
404 static inline int bad_range(struct zone *zone, struct page *page)
405 {
406 	return 0;
407 }
408 #endif
409 
410 static void bad_page(struct page *page, const char *reason,
411 		unsigned long bad_flags)
412 {
413 	static unsigned long resume;
414 	static unsigned long nr_shown;
415 	static unsigned long nr_unshown;
416 
417 	/* Don't complain about poisoned pages */
418 	if (PageHWPoison(page)) {
419 		page_mapcount_reset(page); /* remove PageBuddy */
420 		return;
421 	}
422 
423 	/*
424 	 * Allow a burst of 60 reports, then keep quiet for that minute;
425 	 * or allow a steady drip of one report per second.
426 	 */
427 	if (nr_shown == 60) {
428 		if (time_before(jiffies, resume)) {
429 			nr_unshown++;
430 			goto out;
431 		}
432 		if (nr_unshown) {
433 			pr_alert(
434 			      "BUG: Bad page state: %lu messages suppressed\n",
435 				nr_unshown);
436 			nr_unshown = 0;
437 		}
438 		nr_shown = 0;
439 	}
440 	if (nr_shown++ == 0)
441 		resume = jiffies + 60 * HZ;
442 
443 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
444 		current->comm, page_to_pfn(page));
445 	__dump_page(page, reason);
446 	bad_flags &= page->flags;
447 	if (bad_flags)
448 		pr_alert("bad because of flags: %#lx(%pGp)\n",
449 						bad_flags, &bad_flags);
450 	dump_page_owner(page);
451 
452 	print_modules();
453 	dump_stack();
454 out:
455 	/* Leave bad fields for debug, except PageBuddy could make trouble */
456 	page_mapcount_reset(page); /* remove PageBuddy */
457 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
458 }
459 
460 /*
461  * Higher-order pages are called "compound pages".  They are structured thusly:
462  *
463  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
464  *
465  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
466  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
467  *
468  * The first tail page's ->compound_dtor holds the offset in array of compound
469  * page destructors. See compound_page_dtors.
470  *
471  * The first tail page's ->compound_order holds the order of allocation.
472  * This usage means that zero-order pages may not be compound.
473  */
474 
475 void free_compound_page(struct page *page)
476 {
477 	__free_pages_ok(page, compound_order(page));
478 }
479 
480 void prep_compound_page(struct page *page, unsigned int order)
481 {
482 	int i;
483 	int nr_pages = 1 << order;
484 
485 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
486 	set_compound_order(page, order);
487 	__SetPageHead(page);
488 	for (i = 1; i < nr_pages; i++) {
489 		struct page *p = page + i;
490 		set_page_count(p, 0);
491 		p->mapping = TAIL_MAPPING;
492 		set_compound_head(p, page);
493 	}
494 	atomic_set(compound_mapcount_ptr(page), -1);
495 }
496 
497 #ifdef CONFIG_DEBUG_PAGEALLOC
498 unsigned int _debug_guardpage_minorder;
499 bool _debug_pagealloc_enabled __read_mostly
500 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
501 bool _debug_guardpage_enabled __read_mostly;
502 
503 static int __init early_debug_pagealloc(char *buf)
504 {
505 	if (!buf)
506 		return -EINVAL;
507 
508 	if (strcmp(buf, "on") == 0)
509 		_debug_pagealloc_enabled = true;
510 
511 	if (strcmp(buf, "off") == 0)
512 		_debug_pagealloc_enabled = false;
513 
514 	return 0;
515 }
516 early_param("debug_pagealloc", early_debug_pagealloc);
517 
518 static bool need_debug_guardpage(void)
519 {
520 	/* If we don't use debug_pagealloc, we don't need guard page */
521 	if (!debug_pagealloc_enabled())
522 		return false;
523 
524 	return true;
525 }
526 
527 static void init_debug_guardpage(void)
528 {
529 	if (!debug_pagealloc_enabled())
530 		return;
531 
532 	_debug_guardpage_enabled = true;
533 }
534 
535 struct page_ext_operations debug_guardpage_ops = {
536 	.need = need_debug_guardpage,
537 	.init = init_debug_guardpage,
538 };
539 
540 static int __init debug_guardpage_minorder_setup(char *buf)
541 {
542 	unsigned long res;
543 
544 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
545 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
546 		return 0;
547 	}
548 	_debug_guardpage_minorder = res;
549 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
550 	return 0;
551 }
552 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
553 
554 static inline void set_page_guard(struct zone *zone, struct page *page,
555 				unsigned int order, int migratetype)
556 {
557 	struct page_ext *page_ext;
558 
559 	if (!debug_guardpage_enabled())
560 		return;
561 
562 	page_ext = lookup_page_ext(page);
563 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
564 
565 	INIT_LIST_HEAD(&page->lru);
566 	set_page_private(page, order);
567 	/* Guard pages are not available for any usage */
568 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
569 }
570 
571 static inline void clear_page_guard(struct zone *zone, struct page *page,
572 				unsigned int order, int migratetype)
573 {
574 	struct page_ext *page_ext;
575 
576 	if (!debug_guardpage_enabled())
577 		return;
578 
579 	page_ext = lookup_page_ext(page);
580 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
581 
582 	set_page_private(page, 0);
583 	if (!is_migrate_isolate(migratetype))
584 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
585 }
586 #else
587 struct page_ext_operations debug_guardpage_ops = { NULL, };
588 static inline void set_page_guard(struct zone *zone, struct page *page,
589 				unsigned int order, int migratetype) {}
590 static inline void clear_page_guard(struct zone *zone, struct page *page,
591 				unsigned int order, int migratetype) {}
592 #endif
593 
594 static inline void set_page_order(struct page *page, unsigned int order)
595 {
596 	set_page_private(page, order);
597 	__SetPageBuddy(page);
598 }
599 
600 static inline void rmv_page_order(struct page *page)
601 {
602 	__ClearPageBuddy(page);
603 	set_page_private(page, 0);
604 }
605 
606 /*
607  * This function checks whether a page is free && is the buddy
608  * we can do coalesce a page and its buddy if
609  * (a) the buddy is not in a hole &&
610  * (b) the buddy is in the buddy system &&
611  * (c) a page and its buddy have the same order &&
612  * (d) a page and its buddy are in the same zone.
613  *
614  * For recording whether a page is in the buddy system, we set ->_mapcount
615  * PAGE_BUDDY_MAPCOUNT_VALUE.
616  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
617  * serialized by zone->lock.
618  *
619  * For recording page's order, we use page_private(page).
620  */
621 static inline int page_is_buddy(struct page *page, struct page *buddy,
622 							unsigned int order)
623 {
624 	if (!pfn_valid_within(page_to_pfn(buddy)))
625 		return 0;
626 
627 	if (page_is_guard(buddy) && page_order(buddy) == order) {
628 		if (page_zone_id(page) != page_zone_id(buddy))
629 			return 0;
630 
631 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
632 
633 		return 1;
634 	}
635 
636 	if (PageBuddy(buddy) && page_order(buddy) == order) {
637 		/*
638 		 * zone check is done late to avoid uselessly
639 		 * calculating zone/node ids for pages that could
640 		 * never merge.
641 		 */
642 		if (page_zone_id(page) != page_zone_id(buddy))
643 			return 0;
644 
645 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
646 
647 		return 1;
648 	}
649 	return 0;
650 }
651 
652 /*
653  * Freeing function for a buddy system allocator.
654  *
655  * The concept of a buddy system is to maintain direct-mapped table
656  * (containing bit values) for memory blocks of various "orders".
657  * The bottom level table contains the map for the smallest allocatable
658  * units of memory (here, pages), and each level above it describes
659  * pairs of units from the levels below, hence, "buddies".
660  * At a high level, all that happens here is marking the table entry
661  * at the bottom level available, and propagating the changes upward
662  * as necessary, plus some accounting needed to play nicely with other
663  * parts of the VM system.
664  * At each level, we keep a list of pages, which are heads of continuous
665  * free pages of length of (1 << order) and marked with _mapcount
666  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
667  * field.
668  * So when we are allocating or freeing one, we can derive the state of the
669  * other.  That is, if we allocate a small block, and both were
670  * free, the remainder of the region must be split into blocks.
671  * If a block is freed, and its buddy is also free, then this
672  * triggers coalescing into a block of larger size.
673  *
674  * -- nyc
675  */
676 
677 static inline void __free_one_page(struct page *page,
678 		unsigned long pfn,
679 		struct zone *zone, unsigned int order,
680 		int migratetype)
681 {
682 	unsigned long page_idx;
683 	unsigned long combined_idx;
684 	unsigned long uninitialized_var(buddy_idx);
685 	struct page *buddy;
686 	unsigned int max_order = MAX_ORDER;
687 
688 	VM_BUG_ON(!zone_is_initialized(zone));
689 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
690 
691 	VM_BUG_ON(migratetype == -1);
692 	if (is_migrate_isolate(migratetype)) {
693 		/*
694 		 * We restrict max order of merging to prevent merge
695 		 * between freepages on isolate pageblock and normal
696 		 * pageblock. Without this, pageblock isolation
697 		 * could cause incorrect freepage accounting.
698 		 */
699 		max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
700 	} else {
701 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
702 	}
703 
704 	page_idx = pfn & ((1 << max_order) - 1);
705 
706 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
707 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
708 
709 	while (order < max_order - 1) {
710 		buddy_idx = __find_buddy_index(page_idx, order);
711 		buddy = page + (buddy_idx - page_idx);
712 		if (!page_is_buddy(page, buddy, order))
713 			break;
714 		/*
715 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
716 		 * merge with it and move up one order.
717 		 */
718 		if (page_is_guard(buddy)) {
719 			clear_page_guard(zone, buddy, order, migratetype);
720 		} else {
721 			list_del(&buddy->lru);
722 			zone->free_area[order].nr_free--;
723 			rmv_page_order(buddy);
724 		}
725 		combined_idx = buddy_idx & page_idx;
726 		page = page + (combined_idx - page_idx);
727 		page_idx = combined_idx;
728 		order++;
729 	}
730 	set_page_order(page, order);
731 
732 	/*
733 	 * If this is not the largest possible page, check if the buddy
734 	 * of the next-highest order is free. If it is, it's possible
735 	 * that pages are being freed that will coalesce soon. In case,
736 	 * that is happening, add the free page to the tail of the list
737 	 * so it's less likely to be used soon and more likely to be merged
738 	 * as a higher order page
739 	 */
740 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
741 		struct page *higher_page, *higher_buddy;
742 		combined_idx = buddy_idx & page_idx;
743 		higher_page = page + (combined_idx - page_idx);
744 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
745 		higher_buddy = higher_page + (buddy_idx - combined_idx);
746 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
747 			list_add_tail(&page->lru,
748 				&zone->free_area[order].free_list[migratetype]);
749 			goto out;
750 		}
751 	}
752 
753 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
754 out:
755 	zone->free_area[order].nr_free++;
756 }
757 
758 static inline int free_pages_check(struct page *page)
759 {
760 	const char *bad_reason = NULL;
761 	unsigned long bad_flags = 0;
762 
763 	if (unlikely(atomic_read(&page->_mapcount) != -1))
764 		bad_reason = "nonzero mapcount";
765 	if (unlikely(page->mapping != NULL))
766 		bad_reason = "non-NULL mapping";
767 	if (unlikely(atomic_read(&page->_count) != 0))
768 		bad_reason = "nonzero _count";
769 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
770 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
771 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
772 	}
773 #ifdef CONFIG_MEMCG
774 	if (unlikely(page->mem_cgroup))
775 		bad_reason = "page still charged to cgroup";
776 #endif
777 	if (unlikely(bad_reason)) {
778 		bad_page(page, bad_reason, bad_flags);
779 		return 1;
780 	}
781 	page_cpupid_reset_last(page);
782 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
783 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
784 	return 0;
785 }
786 
787 /*
788  * Frees a number of pages from the PCP lists
789  * Assumes all pages on list are in same zone, and of same order.
790  * count is the number of pages to free.
791  *
792  * If the zone was previously in an "all pages pinned" state then look to
793  * see if this freeing clears that state.
794  *
795  * And clear the zone's pages_scanned counter, to hold off the "all pages are
796  * pinned" detection logic.
797  */
798 static void free_pcppages_bulk(struct zone *zone, int count,
799 					struct per_cpu_pages *pcp)
800 {
801 	int migratetype = 0;
802 	int batch_free = 0;
803 	int to_free = count;
804 	unsigned long nr_scanned;
805 
806 	spin_lock(&zone->lock);
807 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
808 	if (nr_scanned)
809 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
810 
811 	while (to_free) {
812 		struct page *page;
813 		struct list_head *list;
814 
815 		/*
816 		 * Remove pages from lists in a round-robin fashion. A
817 		 * batch_free count is maintained that is incremented when an
818 		 * empty list is encountered.  This is so more pages are freed
819 		 * off fuller lists instead of spinning excessively around empty
820 		 * lists
821 		 */
822 		do {
823 			batch_free++;
824 			if (++migratetype == MIGRATE_PCPTYPES)
825 				migratetype = 0;
826 			list = &pcp->lists[migratetype];
827 		} while (list_empty(list));
828 
829 		/* This is the only non-empty list. Free them all. */
830 		if (batch_free == MIGRATE_PCPTYPES)
831 			batch_free = to_free;
832 
833 		do {
834 			int mt;	/* migratetype of the to-be-freed page */
835 
836 			page = list_last_entry(list, struct page, lru);
837 			/* must delete as __free_one_page list manipulates */
838 			list_del(&page->lru);
839 
840 			mt = get_pcppage_migratetype(page);
841 			/* MIGRATE_ISOLATE page should not go to pcplists */
842 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
843 			/* Pageblock could have been isolated meanwhile */
844 			if (unlikely(has_isolate_pageblock(zone)))
845 				mt = get_pageblock_migratetype(page);
846 
847 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
848 			trace_mm_page_pcpu_drain(page, 0, mt);
849 		} while (--to_free && --batch_free && !list_empty(list));
850 	}
851 	spin_unlock(&zone->lock);
852 }
853 
854 static void free_one_page(struct zone *zone,
855 				struct page *page, unsigned long pfn,
856 				unsigned int order,
857 				int migratetype)
858 {
859 	unsigned long nr_scanned;
860 	spin_lock(&zone->lock);
861 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
862 	if (nr_scanned)
863 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
864 
865 	if (unlikely(has_isolate_pageblock(zone) ||
866 		is_migrate_isolate(migratetype))) {
867 		migratetype = get_pfnblock_migratetype(page, pfn);
868 	}
869 	__free_one_page(page, pfn, zone, order, migratetype);
870 	spin_unlock(&zone->lock);
871 }
872 
873 static int free_tail_pages_check(struct page *head_page, struct page *page)
874 {
875 	int ret = 1;
876 
877 	/*
878 	 * We rely page->lru.next never has bit 0 set, unless the page
879 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
880 	 */
881 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
882 
883 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
884 		ret = 0;
885 		goto out;
886 	}
887 	switch (page - head_page) {
888 	case 1:
889 		/* the first tail page: ->mapping is compound_mapcount() */
890 		if (unlikely(compound_mapcount(page))) {
891 			bad_page(page, "nonzero compound_mapcount", 0);
892 			goto out;
893 		}
894 		break;
895 	case 2:
896 		/*
897 		 * the second tail page: ->mapping is
898 		 * page_deferred_list().next -- ignore value.
899 		 */
900 		break;
901 	default:
902 		if (page->mapping != TAIL_MAPPING) {
903 			bad_page(page, "corrupted mapping in tail page", 0);
904 			goto out;
905 		}
906 		break;
907 	}
908 	if (unlikely(!PageTail(page))) {
909 		bad_page(page, "PageTail not set", 0);
910 		goto out;
911 	}
912 	if (unlikely(compound_head(page) != head_page)) {
913 		bad_page(page, "compound_head not consistent", 0);
914 		goto out;
915 	}
916 	ret = 0;
917 out:
918 	page->mapping = NULL;
919 	clear_compound_head(page);
920 	return ret;
921 }
922 
923 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
924 				unsigned long zone, int nid)
925 {
926 	set_page_links(page, zone, nid, pfn);
927 	init_page_count(page);
928 	page_mapcount_reset(page);
929 	page_cpupid_reset_last(page);
930 
931 	INIT_LIST_HEAD(&page->lru);
932 #ifdef WANT_PAGE_VIRTUAL
933 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
934 	if (!is_highmem_idx(zone))
935 		set_page_address(page, __va(pfn << PAGE_SHIFT));
936 #endif
937 }
938 
939 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
940 					int nid)
941 {
942 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
943 }
944 
945 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
946 static void init_reserved_page(unsigned long pfn)
947 {
948 	pg_data_t *pgdat;
949 	int nid, zid;
950 
951 	if (!early_page_uninitialised(pfn))
952 		return;
953 
954 	nid = early_pfn_to_nid(pfn);
955 	pgdat = NODE_DATA(nid);
956 
957 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 		struct zone *zone = &pgdat->node_zones[zid];
959 
960 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
961 			break;
962 	}
963 	__init_single_pfn(pfn, zid, nid);
964 }
965 #else
966 static inline void init_reserved_page(unsigned long pfn)
967 {
968 }
969 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
970 
971 /*
972  * Initialised pages do not have PageReserved set. This function is
973  * called for each range allocated by the bootmem allocator and
974  * marks the pages PageReserved. The remaining valid pages are later
975  * sent to the buddy page allocator.
976  */
977 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
978 {
979 	unsigned long start_pfn = PFN_DOWN(start);
980 	unsigned long end_pfn = PFN_UP(end);
981 
982 	for (; start_pfn < end_pfn; start_pfn++) {
983 		if (pfn_valid(start_pfn)) {
984 			struct page *page = pfn_to_page(start_pfn);
985 
986 			init_reserved_page(start_pfn);
987 
988 			/* Avoid false-positive PageTail() */
989 			INIT_LIST_HEAD(&page->lru);
990 
991 			SetPageReserved(page);
992 		}
993 	}
994 }
995 
996 static bool free_pages_prepare(struct page *page, unsigned int order)
997 {
998 	bool compound = PageCompound(page);
999 	int i, bad = 0;
1000 
1001 	VM_BUG_ON_PAGE(PageTail(page), page);
1002 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1003 
1004 	trace_mm_page_free(page, order);
1005 	kmemcheck_free_shadow(page, order);
1006 	kasan_free_pages(page, order);
1007 
1008 	if (PageAnon(page))
1009 		page->mapping = NULL;
1010 	bad += free_pages_check(page);
1011 	for (i = 1; i < (1 << order); i++) {
1012 		if (compound)
1013 			bad += free_tail_pages_check(page, page + i);
1014 		bad += free_pages_check(page + i);
1015 	}
1016 	if (bad)
1017 		return false;
1018 
1019 	reset_page_owner(page, order);
1020 
1021 	if (!PageHighMem(page)) {
1022 		debug_check_no_locks_freed(page_address(page),
1023 					   PAGE_SIZE << order);
1024 		debug_check_no_obj_freed(page_address(page),
1025 					   PAGE_SIZE << order);
1026 	}
1027 	arch_free_page(page, order);
1028 	kernel_poison_pages(page, 1 << order, 0);
1029 	kernel_map_pages(page, 1 << order, 0);
1030 
1031 	return true;
1032 }
1033 
1034 static void __free_pages_ok(struct page *page, unsigned int order)
1035 {
1036 	unsigned long flags;
1037 	int migratetype;
1038 	unsigned long pfn = page_to_pfn(page);
1039 
1040 	if (!free_pages_prepare(page, order))
1041 		return;
1042 
1043 	migratetype = get_pfnblock_migratetype(page, pfn);
1044 	local_irq_save(flags);
1045 	__count_vm_events(PGFREE, 1 << order);
1046 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1047 	local_irq_restore(flags);
1048 }
1049 
1050 static void __init __free_pages_boot_core(struct page *page,
1051 					unsigned long pfn, unsigned int order)
1052 {
1053 	unsigned int nr_pages = 1 << order;
1054 	struct page *p = page;
1055 	unsigned int loop;
1056 
1057 	prefetchw(p);
1058 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1059 		prefetchw(p + 1);
1060 		__ClearPageReserved(p);
1061 		set_page_count(p, 0);
1062 	}
1063 	__ClearPageReserved(p);
1064 	set_page_count(p, 0);
1065 
1066 	page_zone(page)->managed_pages += nr_pages;
1067 	set_page_refcounted(page);
1068 	__free_pages(page, order);
1069 }
1070 
1071 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1072 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1073 
1074 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1075 
1076 int __meminit early_pfn_to_nid(unsigned long pfn)
1077 {
1078 	static DEFINE_SPINLOCK(early_pfn_lock);
1079 	int nid;
1080 
1081 	spin_lock(&early_pfn_lock);
1082 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1083 	if (nid < 0)
1084 		nid = 0;
1085 	spin_unlock(&early_pfn_lock);
1086 
1087 	return nid;
1088 }
1089 #endif
1090 
1091 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1092 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1093 					struct mminit_pfnnid_cache *state)
1094 {
1095 	int nid;
1096 
1097 	nid = __early_pfn_to_nid(pfn, state);
1098 	if (nid >= 0 && nid != node)
1099 		return false;
1100 	return true;
1101 }
1102 
1103 /* Only safe to use early in boot when initialisation is single-threaded */
1104 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1105 {
1106 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1107 }
1108 
1109 #else
1110 
1111 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1112 {
1113 	return true;
1114 }
1115 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1116 					struct mminit_pfnnid_cache *state)
1117 {
1118 	return true;
1119 }
1120 #endif
1121 
1122 
1123 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1124 							unsigned int order)
1125 {
1126 	if (early_page_uninitialised(pfn))
1127 		return;
1128 	return __free_pages_boot_core(page, pfn, order);
1129 }
1130 
1131 /*
1132  * Check that the whole (or subset of) a pageblock given by the interval of
1133  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1134  * with the migration of free compaction scanner. The scanners then need to
1135  * use only pfn_valid_within() check for arches that allow holes within
1136  * pageblocks.
1137  *
1138  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1139  *
1140  * It's possible on some configurations to have a setup like node0 node1 node0
1141  * i.e. it's possible that all pages within a zones range of pages do not
1142  * belong to a single zone. We assume that a border between node0 and node1
1143  * can occur within a single pageblock, but not a node0 node1 node0
1144  * interleaving within a single pageblock. It is therefore sufficient to check
1145  * the first and last page of a pageblock and avoid checking each individual
1146  * page in a pageblock.
1147  */
1148 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1149 				     unsigned long end_pfn, struct zone *zone)
1150 {
1151 	struct page *start_page;
1152 	struct page *end_page;
1153 
1154 	/* end_pfn is one past the range we are checking */
1155 	end_pfn--;
1156 
1157 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1158 		return NULL;
1159 
1160 	start_page = pfn_to_page(start_pfn);
1161 
1162 	if (page_zone(start_page) != zone)
1163 		return NULL;
1164 
1165 	end_page = pfn_to_page(end_pfn);
1166 
1167 	/* This gives a shorter code than deriving page_zone(end_page) */
1168 	if (page_zone_id(start_page) != page_zone_id(end_page))
1169 		return NULL;
1170 
1171 	return start_page;
1172 }
1173 
1174 void set_zone_contiguous(struct zone *zone)
1175 {
1176 	unsigned long block_start_pfn = zone->zone_start_pfn;
1177 	unsigned long block_end_pfn;
1178 
1179 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1180 	for (; block_start_pfn < zone_end_pfn(zone);
1181 			block_start_pfn = block_end_pfn,
1182 			 block_end_pfn += pageblock_nr_pages) {
1183 
1184 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1185 
1186 		if (!__pageblock_pfn_to_page(block_start_pfn,
1187 					     block_end_pfn, zone))
1188 			return;
1189 	}
1190 
1191 	/* We confirm that there is no hole */
1192 	zone->contiguous = true;
1193 }
1194 
1195 void clear_zone_contiguous(struct zone *zone)
1196 {
1197 	zone->contiguous = false;
1198 }
1199 
1200 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1201 static void __init deferred_free_range(struct page *page,
1202 					unsigned long pfn, int nr_pages)
1203 {
1204 	int i;
1205 
1206 	if (!page)
1207 		return;
1208 
1209 	/* Free a large naturally-aligned chunk if possible */
1210 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1211 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1212 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1213 		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
1214 		return;
1215 	}
1216 
1217 	for (i = 0; i < nr_pages; i++, page++, pfn++)
1218 		__free_pages_boot_core(page, pfn, 0);
1219 }
1220 
1221 /* Completion tracking for deferred_init_memmap() threads */
1222 static atomic_t pgdat_init_n_undone __initdata;
1223 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1224 
1225 static inline void __init pgdat_init_report_one_done(void)
1226 {
1227 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1228 		complete(&pgdat_init_all_done_comp);
1229 }
1230 
1231 /* Initialise remaining memory on a node */
1232 static int __init deferred_init_memmap(void *data)
1233 {
1234 	pg_data_t *pgdat = data;
1235 	int nid = pgdat->node_id;
1236 	struct mminit_pfnnid_cache nid_init_state = { };
1237 	unsigned long start = jiffies;
1238 	unsigned long nr_pages = 0;
1239 	unsigned long walk_start, walk_end;
1240 	int i, zid;
1241 	struct zone *zone;
1242 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1243 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1244 
1245 	if (first_init_pfn == ULONG_MAX) {
1246 		pgdat_init_report_one_done();
1247 		return 0;
1248 	}
1249 
1250 	/* Bind memory initialisation thread to a local node if possible */
1251 	if (!cpumask_empty(cpumask))
1252 		set_cpus_allowed_ptr(current, cpumask);
1253 
1254 	/* Sanity check boundaries */
1255 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1256 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1257 	pgdat->first_deferred_pfn = ULONG_MAX;
1258 
1259 	/* Only the highest zone is deferred so find it */
1260 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1261 		zone = pgdat->node_zones + zid;
1262 		if (first_init_pfn < zone_end_pfn(zone))
1263 			break;
1264 	}
1265 
1266 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1267 		unsigned long pfn, end_pfn;
1268 		struct page *page = NULL;
1269 		struct page *free_base_page = NULL;
1270 		unsigned long free_base_pfn = 0;
1271 		int nr_to_free = 0;
1272 
1273 		end_pfn = min(walk_end, zone_end_pfn(zone));
1274 		pfn = first_init_pfn;
1275 		if (pfn < walk_start)
1276 			pfn = walk_start;
1277 		if (pfn < zone->zone_start_pfn)
1278 			pfn = zone->zone_start_pfn;
1279 
1280 		for (; pfn < end_pfn; pfn++) {
1281 			if (!pfn_valid_within(pfn))
1282 				goto free_range;
1283 
1284 			/*
1285 			 * Ensure pfn_valid is checked every
1286 			 * MAX_ORDER_NR_PAGES for memory holes
1287 			 */
1288 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1289 				if (!pfn_valid(pfn)) {
1290 					page = NULL;
1291 					goto free_range;
1292 				}
1293 			}
1294 
1295 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1296 				page = NULL;
1297 				goto free_range;
1298 			}
1299 
1300 			/* Minimise pfn page lookups and scheduler checks */
1301 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1302 				page++;
1303 			} else {
1304 				nr_pages += nr_to_free;
1305 				deferred_free_range(free_base_page,
1306 						free_base_pfn, nr_to_free);
1307 				free_base_page = NULL;
1308 				free_base_pfn = nr_to_free = 0;
1309 
1310 				page = pfn_to_page(pfn);
1311 				cond_resched();
1312 			}
1313 
1314 			if (page->flags) {
1315 				VM_BUG_ON(page_zone(page) != zone);
1316 				goto free_range;
1317 			}
1318 
1319 			__init_single_page(page, pfn, zid, nid);
1320 			if (!free_base_page) {
1321 				free_base_page = page;
1322 				free_base_pfn = pfn;
1323 				nr_to_free = 0;
1324 			}
1325 			nr_to_free++;
1326 
1327 			/* Where possible, batch up pages for a single free */
1328 			continue;
1329 free_range:
1330 			/* Free the current block of pages to allocator */
1331 			nr_pages += nr_to_free;
1332 			deferred_free_range(free_base_page, free_base_pfn,
1333 								nr_to_free);
1334 			free_base_page = NULL;
1335 			free_base_pfn = nr_to_free = 0;
1336 		}
1337 
1338 		first_init_pfn = max(end_pfn, first_init_pfn);
1339 	}
1340 
1341 	/* Sanity check that the next zone really is unpopulated */
1342 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1343 
1344 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1345 					jiffies_to_msecs(jiffies - start));
1346 
1347 	pgdat_init_report_one_done();
1348 	return 0;
1349 }
1350 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1351 
1352 void __init page_alloc_init_late(void)
1353 {
1354 	struct zone *zone;
1355 
1356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1357 	int nid;
1358 
1359 	/* There will be num_node_state(N_MEMORY) threads */
1360 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1361 	for_each_node_state(nid, N_MEMORY) {
1362 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1363 	}
1364 
1365 	/* Block until all are initialised */
1366 	wait_for_completion(&pgdat_init_all_done_comp);
1367 
1368 	/* Reinit limits that are based on free pages after the kernel is up */
1369 	files_maxfiles_init();
1370 #endif
1371 
1372 	for_each_populated_zone(zone)
1373 		set_zone_contiguous(zone);
1374 }
1375 
1376 #ifdef CONFIG_CMA
1377 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1378 void __init init_cma_reserved_pageblock(struct page *page)
1379 {
1380 	unsigned i = pageblock_nr_pages;
1381 	struct page *p = page;
1382 
1383 	do {
1384 		__ClearPageReserved(p);
1385 		set_page_count(p, 0);
1386 	} while (++p, --i);
1387 
1388 	set_pageblock_migratetype(page, MIGRATE_CMA);
1389 
1390 	if (pageblock_order >= MAX_ORDER) {
1391 		i = pageblock_nr_pages;
1392 		p = page;
1393 		do {
1394 			set_page_refcounted(p);
1395 			__free_pages(p, MAX_ORDER - 1);
1396 			p += MAX_ORDER_NR_PAGES;
1397 		} while (i -= MAX_ORDER_NR_PAGES);
1398 	} else {
1399 		set_page_refcounted(page);
1400 		__free_pages(page, pageblock_order);
1401 	}
1402 
1403 	adjust_managed_page_count(page, pageblock_nr_pages);
1404 }
1405 #endif
1406 
1407 /*
1408  * The order of subdivision here is critical for the IO subsystem.
1409  * Please do not alter this order without good reasons and regression
1410  * testing. Specifically, as large blocks of memory are subdivided,
1411  * the order in which smaller blocks are delivered depends on the order
1412  * they're subdivided in this function. This is the primary factor
1413  * influencing the order in which pages are delivered to the IO
1414  * subsystem according to empirical testing, and this is also justified
1415  * by considering the behavior of a buddy system containing a single
1416  * large block of memory acted on by a series of small allocations.
1417  * This behavior is a critical factor in sglist merging's success.
1418  *
1419  * -- nyc
1420  */
1421 static inline void expand(struct zone *zone, struct page *page,
1422 	int low, int high, struct free_area *area,
1423 	int migratetype)
1424 {
1425 	unsigned long size = 1 << high;
1426 
1427 	while (high > low) {
1428 		area--;
1429 		high--;
1430 		size >>= 1;
1431 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1432 
1433 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1434 			debug_guardpage_enabled() &&
1435 			high < debug_guardpage_minorder()) {
1436 			/*
1437 			 * Mark as guard pages (or page), that will allow to
1438 			 * merge back to allocator when buddy will be freed.
1439 			 * Corresponding page table entries will not be touched,
1440 			 * pages will stay not present in virtual address space
1441 			 */
1442 			set_page_guard(zone, &page[size], high, migratetype);
1443 			continue;
1444 		}
1445 		list_add(&page[size].lru, &area->free_list[migratetype]);
1446 		area->nr_free++;
1447 		set_page_order(&page[size], high);
1448 	}
1449 }
1450 
1451 /*
1452  * This page is about to be returned from the page allocator
1453  */
1454 static inline int check_new_page(struct page *page)
1455 {
1456 	const char *bad_reason = NULL;
1457 	unsigned long bad_flags = 0;
1458 
1459 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1460 		bad_reason = "nonzero mapcount";
1461 	if (unlikely(page->mapping != NULL))
1462 		bad_reason = "non-NULL mapping";
1463 	if (unlikely(atomic_read(&page->_count) != 0))
1464 		bad_reason = "nonzero _count";
1465 	if (unlikely(page->flags & __PG_HWPOISON)) {
1466 		bad_reason = "HWPoisoned (hardware-corrupted)";
1467 		bad_flags = __PG_HWPOISON;
1468 	}
1469 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1470 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1471 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1472 	}
1473 #ifdef CONFIG_MEMCG
1474 	if (unlikely(page->mem_cgroup))
1475 		bad_reason = "page still charged to cgroup";
1476 #endif
1477 	if (unlikely(bad_reason)) {
1478 		bad_page(page, bad_reason, bad_flags);
1479 		return 1;
1480 	}
1481 	return 0;
1482 }
1483 
1484 static inline bool free_pages_prezeroed(bool poisoned)
1485 {
1486 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1487 		page_poisoning_enabled() && poisoned;
1488 }
1489 
1490 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1491 								int alloc_flags)
1492 {
1493 	int i;
1494 	bool poisoned = true;
1495 
1496 	for (i = 0; i < (1 << order); i++) {
1497 		struct page *p = page + i;
1498 		if (unlikely(check_new_page(p)))
1499 			return 1;
1500 		if (poisoned)
1501 			poisoned &= page_is_poisoned(p);
1502 	}
1503 
1504 	set_page_private(page, 0);
1505 	set_page_refcounted(page);
1506 
1507 	arch_alloc_page(page, order);
1508 	kernel_map_pages(page, 1 << order, 1);
1509 	kernel_poison_pages(page, 1 << order, 1);
1510 	kasan_alloc_pages(page, order);
1511 
1512 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1513 		for (i = 0; i < (1 << order); i++)
1514 			clear_highpage(page + i);
1515 
1516 	if (order && (gfp_flags & __GFP_COMP))
1517 		prep_compound_page(page, order);
1518 
1519 	set_page_owner(page, order, gfp_flags);
1520 
1521 	/*
1522 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1523 	 * allocate the page. The expectation is that the caller is taking
1524 	 * steps that will free more memory. The caller should avoid the page
1525 	 * being used for !PFMEMALLOC purposes.
1526 	 */
1527 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1528 		set_page_pfmemalloc(page);
1529 	else
1530 		clear_page_pfmemalloc(page);
1531 
1532 	return 0;
1533 }
1534 
1535 /*
1536  * Go through the free lists for the given migratetype and remove
1537  * the smallest available page from the freelists
1538  */
1539 static inline
1540 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1541 						int migratetype)
1542 {
1543 	unsigned int current_order;
1544 	struct free_area *area;
1545 	struct page *page;
1546 
1547 	/* Find a page of the appropriate size in the preferred list */
1548 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1549 		area = &(zone->free_area[current_order]);
1550 		page = list_first_entry_or_null(&area->free_list[migratetype],
1551 							struct page, lru);
1552 		if (!page)
1553 			continue;
1554 		list_del(&page->lru);
1555 		rmv_page_order(page);
1556 		area->nr_free--;
1557 		expand(zone, page, order, current_order, area, migratetype);
1558 		set_pcppage_migratetype(page, migratetype);
1559 		return page;
1560 	}
1561 
1562 	return NULL;
1563 }
1564 
1565 
1566 /*
1567  * This array describes the order lists are fallen back to when
1568  * the free lists for the desirable migrate type are depleted
1569  */
1570 static int fallbacks[MIGRATE_TYPES][4] = {
1571 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1572 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1573 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1574 #ifdef CONFIG_CMA
1575 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1576 #endif
1577 #ifdef CONFIG_MEMORY_ISOLATION
1578 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1579 #endif
1580 };
1581 
1582 #ifdef CONFIG_CMA
1583 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1584 					unsigned int order)
1585 {
1586 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1587 }
1588 #else
1589 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1590 					unsigned int order) { return NULL; }
1591 #endif
1592 
1593 /*
1594  * Move the free pages in a range to the free lists of the requested type.
1595  * Note that start_page and end_pages are not aligned on a pageblock
1596  * boundary. If alignment is required, use move_freepages_block()
1597  */
1598 int move_freepages(struct zone *zone,
1599 			  struct page *start_page, struct page *end_page,
1600 			  int migratetype)
1601 {
1602 	struct page *page;
1603 	unsigned int order;
1604 	int pages_moved = 0;
1605 
1606 #ifndef CONFIG_HOLES_IN_ZONE
1607 	/*
1608 	 * page_zone is not safe to call in this context when
1609 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1610 	 * anyway as we check zone boundaries in move_freepages_block().
1611 	 * Remove at a later date when no bug reports exist related to
1612 	 * grouping pages by mobility
1613 	 */
1614 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1615 #endif
1616 
1617 	for (page = start_page; page <= end_page;) {
1618 		/* Make sure we are not inadvertently changing nodes */
1619 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1620 
1621 		if (!pfn_valid_within(page_to_pfn(page))) {
1622 			page++;
1623 			continue;
1624 		}
1625 
1626 		if (!PageBuddy(page)) {
1627 			page++;
1628 			continue;
1629 		}
1630 
1631 		order = page_order(page);
1632 		list_move(&page->lru,
1633 			  &zone->free_area[order].free_list[migratetype]);
1634 		page += 1 << order;
1635 		pages_moved += 1 << order;
1636 	}
1637 
1638 	return pages_moved;
1639 }
1640 
1641 int move_freepages_block(struct zone *zone, struct page *page,
1642 				int migratetype)
1643 {
1644 	unsigned long start_pfn, end_pfn;
1645 	struct page *start_page, *end_page;
1646 
1647 	start_pfn = page_to_pfn(page);
1648 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1649 	start_page = pfn_to_page(start_pfn);
1650 	end_page = start_page + pageblock_nr_pages - 1;
1651 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1652 
1653 	/* Do not cross zone boundaries */
1654 	if (!zone_spans_pfn(zone, start_pfn))
1655 		start_page = page;
1656 	if (!zone_spans_pfn(zone, end_pfn))
1657 		return 0;
1658 
1659 	return move_freepages(zone, start_page, end_page, migratetype);
1660 }
1661 
1662 static void change_pageblock_range(struct page *pageblock_page,
1663 					int start_order, int migratetype)
1664 {
1665 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1666 
1667 	while (nr_pageblocks--) {
1668 		set_pageblock_migratetype(pageblock_page, migratetype);
1669 		pageblock_page += pageblock_nr_pages;
1670 	}
1671 }
1672 
1673 /*
1674  * When we are falling back to another migratetype during allocation, try to
1675  * steal extra free pages from the same pageblocks to satisfy further
1676  * allocations, instead of polluting multiple pageblocks.
1677  *
1678  * If we are stealing a relatively large buddy page, it is likely there will
1679  * be more free pages in the pageblock, so try to steal them all. For
1680  * reclaimable and unmovable allocations, we steal regardless of page size,
1681  * as fragmentation caused by those allocations polluting movable pageblocks
1682  * is worse than movable allocations stealing from unmovable and reclaimable
1683  * pageblocks.
1684  */
1685 static bool can_steal_fallback(unsigned int order, int start_mt)
1686 {
1687 	/*
1688 	 * Leaving this order check is intended, although there is
1689 	 * relaxed order check in next check. The reason is that
1690 	 * we can actually steal whole pageblock if this condition met,
1691 	 * but, below check doesn't guarantee it and that is just heuristic
1692 	 * so could be changed anytime.
1693 	 */
1694 	if (order >= pageblock_order)
1695 		return true;
1696 
1697 	if (order >= pageblock_order / 2 ||
1698 		start_mt == MIGRATE_RECLAIMABLE ||
1699 		start_mt == MIGRATE_UNMOVABLE ||
1700 		page_group_by_mobility_disabled)
1701 		return true;
1702 
1703 	return false;
1704 }
1705 
1706 /*
1707  * This function implements actual steal behaviour. If order is large enough,
1708  * we can steal whole pageblock. If not, we first move freepages in this
1709  * pageblock and check whether half of pages are moved or not. If half of
1710  * pages are moved, we can change migratetype of pageblock and permanently
1711  * use it's pages as requested migratetype in the future.
1712  */
1713 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1714 							  int start_type)
1715 {
1716 	unsigned int current_order = page_order(page);
1717 	int pages;
1718 
1719 	/* Take ownership for orders >= pageblock_order */
1720 	if (current_order >= pageblock_order) {
1721 		change_pageblock_range(page, current_order, start_type);
1722 		return;
1723 	}
1724 
1725 	pages = move_freepages_block(zone, page, start_type);
1726 
1727 	/* Claim the whole block if over half of it is free */
1728 	if (pages >= (1 << (pageblock_order-1)) ||
1729 			page_group_by_mobility_disabled)
1730 		set_pageblock_migratetype(page, start_type);
1731 }
1732 
1733 /*
1734  * Check whether there is a suitable fallback freepage with requested order.
1735  * If only_stealable is true, this function returns fallback_mt only if
1736  * we can steal other freepages all together. This would help to reduce
1737  * fragmentation due to mixed migratetype pages in one pageblock.
1738  */
1739 int find_suitable_fallback(struct free_area *area, unsigned int order,
1740 			int migratetype, bool only_stealable, bool *can_steal)
1741 {
1742 	int i;
1743 	int fallback_mt;
1744 
1745 	if (area->nr_free == 0)
1746 		return -1;
1747 
1748 	*can_steal = false;
1749 	for (i = 0;; i++) {
1750 		fallback_mt = fallbacks[migratetype][i];
1751 		if (fallback_mt == MIGRATE_TYPES)
1752 			break;
1753 
1754 		if (list_empty(&area->free_list[fallback_mt]))
1755 			continue;
1756 
1757 		if (can_steal_fallback(order, migratetype))
1758 			*can_steal = true;
1759 
1760 		if (!only_stealable)
1761 			return fallback_mt;
1762 
1763 		if (*can_steal)
1764 			return fallback_mt;
1765 	}
1766 
1767 	return -1;
1768 }
1769 
1770 /*
1771  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1772  * there are no empty page blocks that contain a page with a suitable order
1773  */
1774 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1775 				unsigned int alloc_order)
1776 {
1777 	int mt;
1778 	unsigned long max_managed, flags;
1779 
1780 	/*
1781 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1782 	 * Check is race-prone but harmless.
1783 	 */
1784 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1785 	if (zone->nr_reserved_highatomic >= max_managed)
1786 		return;
1787 
1788 	spin_lock_irqsave(&zone->lock, flags);
1789 
1790 	/* Recheck the nr_reserved_highatomic limit under the lock */
1791 	if (zone->nr_reserved_highatomic >= max_managed)
1792 		goto out_unlock;
1793 
1794 	/* Yoink! */
1795 	mt = get_pageblock_migratetype(page);
1796 	if (mt != MIGRATE_HIGHATOMIC &&
1797 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1798 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1799 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1800 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1801 	}
1802 
1803 out_unlock:
1804 	spin_unlock_irqrestore(&zone->lock, flags);
1805 }
1806 
1807 /*
1808  * Used when an allocation is about to fail under memory pressure. This
1809  * potentially hurts the reliability of high-order allocations when under
1810  * intense memory pressure but failed atomic allocations should be easier
1811  * to recover from than an OOM.
1812  */
1813 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1814 {
1815 	struct zonelist *zonelist = ac->zonelist;
1816 	unsigned long flags;
1817 	struct zoneref *z;
1818 	struct zone *zone;
1819 	struct page *page;
1820 	int order;
1821 
1822 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1823 								ac->nodemask) {
1824 		/* Preserve at least one pageblock */
1825 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1826 			continue;
1827 
1828 		spin_lock_irqsave(&zone->lock, flags);
1829 		for (order = 0; order < MAX_ORDER; order++) {
1830 			struct free_area *area = &(zone->free_area[order]);
1831 
1832 			page = list_first_entry_or_null(
1833 					&area->free_list[MIGRATE_HIGHATOMIC],
1834 					struct page, lru);
1835 			if (!page)
1836 				continue;
1837 
1838 			/*
1839 			 * It should never happen but changes to locking could
1840 			 * inadvertently allow a per-cpu drain to add pages
1841 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1842 			 * and watch for underflows.
1843 			 */
1844 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1845 				zone->nr_reserved_highatomic);
1846 
1847 			/*
1848 			 * Convert to ac->migratetype and avoid the normal
1849 			 * pageblock stealing heuristics. Minimally, the caller
1850 			 * is doing the work and needs the pages. More
1851 			 * importantly, if the block was always converted to
1852 			 * MIGRATE_UNMOVABLE or another type then the number
1853 			 * of pageblocks that cannot be completely freed
1854 			 * may increase.
1855 			 */
1856 			set_pageblock_migratetype(page, ac->migratetype);
1857 			move_freepages_block(zone, page, ac->migratetype);
1858 			spin_unlock_irqrestore(&zone->lock, flags);
1859 			return;
1860 		}
1861 		spin_unlock_irqrestore(&zone->lock, flags);
1862 	}
1863 }
1864 
1865 /* Remove an element from the buddy allocator from the fallback list */
1866 static inline struct page *
1867 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1868 {
1869 	struct free_area *area;
1870 	unsigned int current_order;
1871 	struct page *page;
1872 	int fallback_mt;
1873 	bool can_steal;
1874 
1875 	/* Find the largest possible block of pages in the other list */
1876 	for (current_order = MAX_ORDER-1;
1877 				current_order >= order && current_order <= MAX_ORDER-1;
1878 				--current_order) {
1879 		area = &(zone->free_area[current_order]);
1880 		fallback_mt = find_suitable_fallback(area, current_order,
1881 				start_migratetype, false, &can_steal);
1882 		if (fallback_mt == -1)
1883 			continue;
1884 
1885 		page = list_first_entry(&area->free_list[fallback_mt],
1886 						struct page, lru);
1887 		if (can_steal)
1888 			steal_suitable_fallback(zone, page, start_migratetype);
1889 
1890 		/* Remove the page from the freelists */
1891 		area->nr_free--;
1892 		list_del(&page->lru);
1893 		rmv_page_order(page);
1894 
1895 		expand(zone, page, order, current_order, area,
1896 					start_migratetype);
1897 		/*
1898 		 * The pcppage_migratetype may differ from pageblock's
1899 		 * migratetype depending on the decisions in
1900 		 * find_suitable_fallback(). This is OK as long as it does not
1901 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
1902 		 * fallback only via special __rmqueue_cma_fallback() function
1903 		 */
1904 		set_pcppage_migratetype(page, start_migratetype);
1905 
1906 		trace_mm_page_alloc_extfrag(page, order, current_order,
1907 			start_migratetype, fallback_mt);
1908 
1909 		return page;
1910 	}
1911 
1912 	return NULL;
1913 }
1914 
1915 /*
1916  * Do the hard work of removing an element from the buddy allocator.
1917  * Call me with the zone->lock already held.
1918  */
1919 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1920 				int migratetype)
1921 {
1922 	struct page *page;
1923 
1924 	page = __rmqueue_smallest(zone, order, migratetype);
1925 	if (unlikely(!page)) {
1926 		if (migratetype == MIGRATE_MOVABLE)
1927 			page = __rmqueue_cma_fallback(zone, order);
1928 
1929 		if (!page)
1930 			page = __rmqueue_fallback(zone, order, migratetype);
1931 	}
1932 
1933 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1934 	return page;
1935 }
1936 
1937 /*
1938  * Obtain a specified number of elements from the buddy allocator, all under
1939  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1940  * Returns the number of new pages which were placed at *list.
1941  */
1942 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1943 			unsigned long count, struct list_head *list,
1944 			int migratetype, bool cold)
1945 {
1946 	int i;
1947 
1948 	spin_lock(&zone->lock);
1949 	for (i = 0; i < count; ++i) {
1950 		struct page *page = __rmqueue(zone, order, migratetype);
1951 		if (unlikely(page == NULL))
1952 			break;
1953 
1954 		/*
1955 		 * Split buddy pages returned by expand() are received here
1956 		 * in physical page order. The page is added to the callers and
1957 		 * list and the list head then moves forward. From the callers
1958 		 * perspective, the linked list is ordered by page number in
1959 		 * some conditions. This is useful for IO devices that can
1960 		 * merge IO requests if the physical pages are ordered
1961 		 * properly.
1962 		 */
1963 		if (likely(!cold))
1964 			list_add(&page->lru, list);
1965 		else
1966 			list_add_tail(&page->lru, list);
1967 		list = &page->lru;
1968 		if (is_migrate_cma(get_pcppage_migratetype(page)))
1969 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1970 					      -(1 << order));
1971 	}
1972 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1973 	spin_unlock(&zone->lock);
1974 	return i;
1975 }
1976 
1977 #ifdef CONFIG_NUMA
1978 /*
1979  * Called from the vmstat counter updater to drain pagesets of this
1980  * currently executing processor on remote nodes after they have
1981  * expired.
1982  *
1983  * Note that this function must be called with the thread pinned to
1984  * a single processor.
1985  */
1986 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1987 {
1988 	unsigned long flags;
1989 	int to_drain, batch;
1990 
1991 	local_irq_save(flags);
1992 	batch = READ_ONCE(pcp->batch);
1993 	to_drain = min(pcp->count, batch);
1994 	if (to_drain > 0) {
1995 		free_pcppages_bulk(zone, to_drain, pcp);
1996 		pcp->count -= to_drain;
1997 	}
1998 	local_irq_restore(flags);
1999 }
2000 #endif
2001 
2002 /*
2003  * Drain pcplists of the indicated processor and zone.
2004  *
2005  * The processor must either be the current processor and the
2006  * thread pinned to the current processor or a processor that
2007  * is not online.
2008  */
2009 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2010 {
2011 	unsigned long flags;
2012 	struct per_cpu_pageset *pset;
2013 	struct per_cpu_pages *pcp;
2014 
2015 	local_irq_save(flags);
2016 	pset = per_cpu_ptr(zone->pageset, cpu);
2017 
2018 	pcp = &pset->pcp;
2019 	if (pcp->count) {
2020 		free_pcppages_bulk(zone, pcp->count, pcp);
2021 		pcp->count = 0;
2022 	}
2023 	local_irq_restore(flags);
2024 }
2025 
2026 /*
2027  * Drain pcplists of all zones on the indicated processor.
2028  *
2029  * The processor must either be the current processor and the
2030  * thread pinned to the current processor or a processor that
2031  * is not online.
2032  */
2033 static void drain_pages(unsigned int cpu)
2034 {
2035 	struct zone *zone;
2036 
2037 	for_each_populated_zone(zone) {
2038 		drain_pages_zone(cpu, zone);
2039 	}
2040 }
2041 
2042 /*
2043  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2044  *
2045  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2046  * the single zone's pages.
2047  */
2048 void drain_local_pages(struct zone *zone)
2049 {
2050 	int cpu = smp_processor_id();
2051 
2052 	if (zone)
2053 		drain_pages_zone(cpu, zone);
2054 	else
2055 		drain_pages(cpu);
2056 }
2057 
2058 /*
2059  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2060  *
2061  * When zone parameter is non-NULL, spill just the single zone's pages.
2062  *
2063  * Note that this code is protected against sending an IPI to an offline
2064  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2065  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2066  * nothing keeps CPUs from showing up after we populated the cpumask and
2067  * before the call to on_each_cpu_mask().
2068  */
2069 void drain_all_pages(struct zone *zone)
2070 {
2071 	int cpu;
2072 
2073 	/*
2074 	 * Allocate in the BSS so we wont require allocation in
2075 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2076 	 */
2077 	static cpumask_t cpus_with_pcps;
2078 
2079 	/*
2080 	 * We don't care about racing with CPU hotplug event
2081 	 * as offline notification will cause the notified
2082 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2083 	 * disables preemption as part of its processing
2084 	 */
2085 	for_each_online_cpu(cpu) {
2086 		struct per_cpu_pageset *pcp;
2087 		struct zone *z;
2088 		bool has_pcps = false;
2089 
2090 		if (zone) {
2091 			pcp = per_cpu_ptr(zone->pageset, cpu);
2092 			if (pcp->pcp.count)
2093 				has_pcps = true;
2094 		} else {
2095 			for_each_populated_zone(z) {
2096 				pcp = per_cpu_ptr(z->pageset, cpu);
2097 				if (pcp->pcp.count) {
2098 					has_pcps = true;
2099 					break;
2100 				}
2101 			}
2102 		}
2103 
2104 		if (has_pcps)
2105 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2106 		else
2107 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2108 	}
2109 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2110 								zone, 1);
2111 }
2112 
2113 #ifdef CONFIG_HIBERNATION
2114 
2115 void mark_free_pages(struct zone *zone)
2116 {
2117 	unsigned long pfn, max_zone_pfn;
2118 	unsigned long flags;
2119 	unsigned int order, t;
2120 	struct page *page;
2121 
2122 	if (zone_is_empty(zone))
2123 		return;
2124 
2125 	spin_lock_irqsave(&zone->lock, flags);
2126 
2127 	max_zone_pfn = zone_end_pfn(zone);
2128 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2129 		if (pfn_valid(pfn)) {
2130 			page = pfn_to_page(pfn);
2131 			if (!swsusp_page_is_forbidden(page))
2132 				swsusp_unset_page_free(page);
2133 		}
2134 
2135 	for_each_migratetype_order(order, t) {
2136 		list_for_each_entry(page,
2137 				&zone->free_area[order].free_list[t], lru) {
2138 			unsigned long i;
2139 
2140 			pfn = page_to_pfn(page);
2141 			for (i = 0; i < (1UL << order); i++)
2142 				swsusp_set_page_free(pfn_to_page(pfn + i));
2143 		}
2144 	}
2145 	spin_unlock_irqrestore(&zone->lock, flags);
2146 }
2147 #endif /* CONFIG_PM */
2148 
2149 /*
2150  * Free a 0-order page
2151  * cold == true ? free a cold page : free a hot page
2152  */
2153 void free_hot_cold_page(struct page *page, bool cold)
2154 {
2155 	struct zone *zone = page_zone(page);
2156 	struct per_cpu_pages *pcp;
2157 	unsigned long flags;
2158 	unsigned long pfn = page_to_pfn(page);
2159 	int migratetype;
2160 
2161 	if (!free_pages_prepare(page, 0))
2162 		return;
2163 
2164 	migratetype = get_pfnblock_migratetype(page, pfn);
2165 	set_pcppage_migratetype(page, migratetype);
2166 	local_irq_save(flags);
2167 	__count_vm_event(PGFREE);
2168 
2169 	/*
2170 	 * We only track unmovable, reclaimable and movable on pcp lists.
2171 	 * Free ISOLATE pages back to the allocator because they are being
2172 	 * offlined but treat RESERVE as movable pages so we can get those
2173 	 * areas back if necessary. Otherwise, we may have to free
2174 	 * excessively into the page allocator
2175 	 */
2176 	if (migratetype >= MIGRATE_PCPTYPES) {
2177 		if (unlikely(is_migrate_isolate(migratetype))) {
2178 			free_one_page(zone, page, pfn, 0, migratetype);
2179 			goto out;
2180 		}
2181 		migratetype = MIGRATE_MOVABLE;
2182 	}
2183 
2184 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2185 	if (!cold)
2186 		list_add(&page->lru, &pcp->lists[migratetype]);
2187 	else
2188 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2189 	pcp->count++;
2190 	if (pcp->count >= pcp->high) {
2191 		unsigned long batch = READ_ONCE(pcp->batch);
2192 		free_pcppages_bulk(zone, batch, pcp);
2193 		pcp->count -= batch;
2194 	}
2195 
2196 out:
2197 	local_irq_restore(flags);
2198 }
2199 
2200 /*
2201  * Free a list of 0-order pages
2202  */
2203 void free_hot_cold_page_list(struct list_head *list, bool cold)
2204 {
2205 	struct page *page, *next;
2206 
2207 	list_for_each_entry_safe(page, next, list, lru) {
2208 		trace_mm_page_free_batched(page, cold);
2209 		free_hot_cold_page(page, cold);
2210 	}
2211 }
2212 
2213 /*
2214  * split_page takes a non-compound higher-order page, and splits it into
2215  * n (1<<order) sub-pages: page[0..n]
2216  * Each sub-page must be freed individually.
2217  *
2218  * Note: this is probably too low level an operation for use in drivers.
2219  * Please consult with lkml before using this in your driver.
2220  */
2221 void split_page(struct page *page, unsigned int order)
2222 {
2223 	int i;
2224 	gfp_t gfp_mask;
2225 
2226 	VM_BUG_ON_PAGE(PageCompound(page), page);
2227 	VM_BUG_ON_PAGE(!page_count(page), page);
2228 
2229 #ifdef CONFIG_KMEMCHECK
2230 	/*
2231 	 * Split shadow pages too, because free(page[0]) would
2232 	 * otherwise free the whole shadow.
2233 	 */
2234 	if (kmemcheck_page_is_tracked(page))
2235 		split_page(virt_to_page(page[0].shadow), order);
2236 #endif
2237 
2238 	gfp_mask = get_page_owner_gfp(page);
2239 	set_page_owner(page, 0, gfp_mask);
2240 	for (i = 1; i < (1 << order); i++) {
2241 		set_page_refcounted(page + i);
2242 		set_page_owner(page + i, 0, gfp_mask);
2243 	}
2244 }
2245 EXPORT_SYMBOL_GPL(split_page);
2246 
2247 int __isolate_free_page(struct page *page, unsigned int order)
2248 {
2249 	unsigned long watermark;
2250 	struct zone *zone;
2251 	int mt;
2252 
2253 	BUG_ON(!PageBuddy(page));
2254 
2255 	zone = page_zone(page);
2256 	mt = get_pageblock_migratetype(page);
2257 
2258 	if (!is_migrate_isolate(mt)) {
2259 		/* Obey watermarks as if the page was being allocated */
2260 		watermark = low_wmark_pages(zone) + (1 << order);
2261 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2262 			return 0;
2263 
2264 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2265 	}
2266 
2267 	/* Remove page from free list */
2268 	list_del(&page->lru);
2269 	zone->free_area[order].nr_free--;
2270 	rmv_page_order(page);
2271 
2272 	set_page_owner(page, order, __GFP_MOVABLE);
2273 
2274 	/* Set the pageblock if the isolated page is at least a pageblock */
2275 	if (order >= pageblock_order - 1) {
2276 		struct page *endpage = page + (1 << order) - 1;
2277 		for (; page < endpage; page += pageblock_nr_pages) {
2278 			int mt = get_pageblock_migratetype(page);
2279 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2280 				set_pageblock_migratetype(page,
2281 							  MIGRATE_MOVABLE);
2282 		}
2283 	}
2284 
2285 
2286 	return 1UL << order;
2287 }
2288 
2289 /*
2290  * Similar to split_page except the page is already free. As this is only
2291  * being used for migration, the migratetype of the block also changes.
2292  * As this is called with interrupts disabled, the caller is responsible
2293  * for calling arch_alloc_page() and kernel_map_page() after interrupts
2294  * are enabled.
2295  *
2296  * Note: this is probably too low level an operation for use in drivers.
2297  * Please consult with lkml before using this in your driver.
2298  */
2299 int split_free_page(struct page *page)
2300 {
2301 	unsigned int order;
2302 	int nr_pages;
2303 
2304 	order = page_order(page);
2305 
2306 	nr_pages = __isolate_free_page(page, order);
2307 	if (!nr_pages)
2308 		return 0;
2309 
2310 	/* Split into individual pages */
2311 	set_page_refcounted(page);
2312 	split_page(page, order);
2313 	return nr_pages;
2314 }
2315 
2316 /*
2317  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2318  */
2319 static inline
2320 struct page *buffered_rmqueue(struct zone *preferred_zone,
2321 			struct zone *zone, unsigned int order,
2322 			gfp_t gfp_flags, int alloc_flags, int migratetype)
2323 {
2324 	unsigned long flags;
2325 	struct page *page;
2326 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2327 
2328 	if (likely(order == 0)) {
2329 		struct per_cpu_pages *pcp;
2330 		struct list_head *list;
2331 
2332 		local_irq_save(flags);
2333 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
2334 		list = &pcp->lists[migratetype];
2335 		if (list_empty(list)) {
2336 			pcp->count += rmqueue_bulk(zone, 0,
2337 					pcp->batch, list,
2338 					migratetype, cold);
2339 			if (unlikely(list_empty(list)))
2340 				goto failed;
2341 		}
2342 
2343 		if (cold)
2344 			page = list_last_entry(list, struct page, lru);
2345 		else
2346 			page = list_first_entry(list, struct page, lru);
2347 
2348 		list_del(&page->lru);
2349 		pcp->count--;
2350 	} else {
2351 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2352 			/*
2353 			 * __GFP_NOFAIL is not to be used in new code.
2354 			 *
2355 			 * All __GFP_NOFAIL callers should be fixed so that they
2356 			 * properly detect and handle allocation failures.
2357 			 *
2358 			 * We most definitely don't want callers attempting to
2359 			 * allocate greater than order-1 page units with
2360 			 * __GFP_NOFAIL.
2361 			 */
2362 			WARN_ON_ONCE(order > 1);
2363 		}
2364 		spin_lock_irqsave(&zone->lock, flags);
2365 
2366 		page = NULL;
2367 		if (alloc_flags & ALLOC_HARDER) {
2368 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2369 			if (page)
2370 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2371 		}
2372 		if (!page)
2373 			page = __rmqueue(zone, order, migratetype);
2374 		spin_unlock(&zone->lock);
2375 		if (!page)
2376 			goto failed;
2377 		__mod_zone_freepage_state(zone, -(1 << order),
2378 					  get_pcppage_migratetype(page));
2379 	}
2380 
2381 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2382 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2383 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2384 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2385 
2386 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2387 	zone_statistics(preferred_zone, zone, gfp_flags);
2388 	local_irq_restore(flags);
2389 
2390 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2391 	return page;
2392 
2393 failed:
2394 	local_irq_restore(flags);
2395 	return NULL;
2396 }
2397 
2398 #ifdef CONFIG_FAIL_PAGE_ALLOC
2399 
2400 static struct {
2401 	struct fault_attr attr;
2402 
2403 	bool ignore_gfp_highmem;
2404 	bool ignore_gfp_reclaim;
2405 	u32 min_order;
2406 } fail_page_alloc = {
2407 	.attr = FAULT_ATTR_INITIALIZER,
2408 	.ignore_gfp_reclaim = true,
2409 	.ignore_gfp_highmem = true,
2410 	.min_order = 1,
2411 };
2412 
2413 static int __init setup_fail_page_alloc(char *str)
2414 {
2415 	return setup_fault_attr(&fail_page_alloc.attr, str);
2416 }
2417 __setup("fail_page_alloc=", setup_fail_page_alloc);
2418 
2419 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2420 {
2421 	if (order < fail_page_alloc.min_order)
2422 		return false;
2423 	if (gfp_mask & __GFP_NOFAIL)
2424 		return false;
2425 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2426 		return false;
2427 	if (fail_page_alloc.ignore_gfp_reclaim &&
2428 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2429 		return false;
2430 
2431 	return should_fail(&fail_page_alloc.attr, 1 << order);
2432 }
2433 
2434 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2435 
2436 static int __init fail_page_alloc_debugfs(void)
2437 {
2438 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2439 	struct dentry *dir;
2440 
2441 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2442 					&fail_page_alloc.attr);
2443 	if (IS_ERR(dir))
2444 		return PTR_ERR(dir);
2445 
2446 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2447 				&fail_page_alloc.ignore_gfp_reclaim))
2448 		goto fail;
2449 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2450 				&fail_page_alloc.ignore_gfp_highmem))
2451 		goto fail;
2452 	if (!debugfs_create_u32("min-order", mode, dir,
2453 				&fail_page_alloc.min_order))
2454 		goto fail;
2455 
2456 	return 0;
2457 fail:
2458 	debugfs_remove_recursive(dir);
2459 
2460 	return -ENOMEM;
2461 }
2462 
2463 late_initcall(fail_page_alloc_debugfs);
2464 
2465 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2466 
2467 #else /* CONFIG_FAIL_PAGE_ALLOC */
2468 
2469 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2470 {
2471 	return false;
2472 }
2473 
2474 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2475 
2476 /*
2477  * Return true if free base pages are above 'mark'. For high-order checks it
2478  * will return true of the order-0 watermark is reached and there is at least
2479  * one free page of a suitable size. Checking now avoids taking the zone lock
2480  * to check in the allocation paths if no pages are free.
2481  */
2482 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2483 			unsigned long mark, int classzone_idx, int alloc_flags,
2484 			long free_pages)
2485 {
2486 	long min = mark;
2487 	int o;
2488 	const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2489 
2490 	/* free_pages may go negative - that's OK */
2491 	free_pages -= (1 << order) - 1;
2492 
2493 	if (alloc_flags & ALLOC_HIGH)
2494 		min -= min / 2;
2495 
2496 	/*
2497 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2498 	 * the high-atomic reserves. This will over-estimate the size of the
2499 	 * atomic reserve but it avoids a search.
2500 	 */
2501 	if (likely(!alloc_harder))
2502 		free_pages -= z->nr_reserved_highatomic;
2503 	else
2504 		min -= min / 4;
2505 
2506 #ifdef CONFIG_CMA
2507 	/* If allocation can't use CMA areas don't use free CMA pages */
2508 	if (!(alloc_flags & ALLOC_CMA))
2509 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2510 #endif
2511 
2512 	/*
2513 	 * Check watermarks for an order-0 allocation request. If these
2514 	 * are not met, then a high-order request also cannot go ahead
2515 	 * even if a suitable page happened to be free.
2516 	 */
2517 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2518 		return false;
2519 
2520 	/* If this is an order-0 request then the watermark is fine */
2521 	if (!order)
2522 		return true;
2523 
2524 	/* For a high-order request, check at least one suitable page is free */
2525 	for (o = order; o < MAX_ORDER; o++) {
2526 		struct free_area *area = &z->free_area[o];
2527 		int mt;
2528 
2529 		if (!area->nr_free)
2530 			continue;
2531 
2532 		if (alloc_harder)
2533 			return true;
2534 
2535 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2536 			if (!list_empty(&area->free_list[mt]))
2537 				return true;
2538 		}
2539 
2540 #ifdef CONFIG_CMA
2541 		if ((alloc_flags & ALLOC_CMA) &&
2542 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2543 			return true;
2544 		}
2545 #endif
2546 	}
2547 	return false;
2548 }
2549 
2550 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2551 		      int classzone_idx, int alloc_flags)
2552 {
2553 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2554 					zone_page_state(z, NR_FREE_PAGES));
2555 }
2556 
2557 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2558 			unsigned long mark, int classzone_idx)
2559 {
2560 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2561 
2562 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2563 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2564 
2565 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2566 								free_pages);
2567 }
2568 
2569 #ifdef CONFIG_NUMA
2570 static bool zone_local(struct zone *local_zone, struct zone *zone)
2571 {
2572 	return local_zone->node == zone->node;
2573 }
2574 
2575 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2576 {
2577 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2578 				RECLAIM_DISTANCE;
2579 }
2580 #else	/* CONFIG_NUMA */
2581 static bool zone_local(struct zone *local_zone, struct zone *zone)
2582 {
2583 	return true;
2584 }
2585 
2586 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2587 {
2588 	return true;
2589 }
2590 #endif	/* CONFIG_NUMA */
2591 
2592 static void reset_alloc_batches(struct zone *preferred_zone)
2593 {
2594 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2595 
2596 	do {
2597 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2598 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2599 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2600 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2601 	} while (zone++ != preferred_zone);
2602 }
2603 
2604 /*
2605  * get_page_from_freelist goes through the zonelist trying to allocate
2606  * a page.
2607  */
2608 static struct page *
2609 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2610 						const struct alloc_context *ac)
2611 {
2612 	struct zonelist *zonelist = ac->zonelist;
2613 	struct zoneref *z;
2614 	struct page *page = NULL;
2615 	struct zone *zone;
2616 	int nr_fair_skipped = 0;
2617 	bool zonelist_rescan;
2618 
2619 zonelist_scan:
2620 	zonelist_rescan = false;
2621 
2622 	/*
2623 	 * Scan zonelist, looking for a zone with enough free.
2624 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2625 	 */
2626 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2627 								ac->nodemask) {
2628 		unsigned long mark;
2629 
2630 		if (cpusets_enabled() &&
2631 			(alloc_flags & ALLOC_CPUSET) &&
2632 			!cpuset_zone_allowed(zone, gfp_mask))
2633 				continue;
2634 		/*
2635 		 * Distribute pages in proportion to the individual
2636 		 * zone size to ensure fair page aging.  The zone a
2637 		 * page was allocated in should have no effect on the
2638 		 * time the page has in memory before being reclaimed.
2639 		 */
2640 		if (alloc_flags & ALLOC_FAIR) {
2641 			if (!zone_local(ac->preferred_zone, zone))
2642 				break;
2643 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2644 				nr_fair_skipped++;
2645 				continue;
2646 			}
2647 		}
2648 		/*
2649 		 * When allocating a page cache page for writing, we
2650 		 * want to get it from a zone that is within its dirty
2651 		 * limit, such that no single zone holds more than its
2652 		 * proportional share of globally allowed dirty pages.
2653 		 * The dirty limits take into account the zone's
2654 		 * lowmem reserves and high watermark so that kswapd
2655 		 * should be able to balance it without having to
2656 		 * write pages from its LRU list.
2657 		 *
2658 		 * This may look like it could increase pressure on
2659 		 * lower zones by failing allocations in higher zones
2660 		 * before they are full.  But the pages that do spill
2661 		 * over are limited as the lower zones are protected
2662 		 * by this very same mechanism.  It should not become
2663 		 * a practical burden to them.
2664 		 *
2665 		 * XXX: For now, allow allocations to potentially
2666 		 * exceed the per-zone dirty limit in the slowpath
2667 		 * (spread_dirty_pages unset) before going into reclaim,
2668 		 * which is important when on a NUMA setup the allowed
2669 		 * zones are together not big enough to reach the
2670 		 * global limit.  The proper fix for these situations
2671 		 * will require awareness of zones in the
2672 		 * dirty-throttling and the flusher threads.
2673 		 */
2674 		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2675 			continue;
2676 
2677 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2678 		if (!zone_watermark_ok(zone, order, mark,
2679 				       ac->classzone_idx, alloc_flags)) {
2680 			int ret;
2681 
2682 			/* Checked here to keep the fast path fast */
2683 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2684 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2685 				goto try_this_zone;
2686 
2687 			if (zone_reclaim_mode == 0 ||
2688 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2689 				continue;
2690 
2691 			ret = zone_reclaim(zone, gfp_mask, order);
2692 			switch (ret) {
2693 			case ZONE_RECLAIM_NOSCAN:
2694 				/* did not scan */
2695 				continue;
2696 			case ZONE_RECLAIM_FULL:
2697 				/* scanned but unreclaimable */
2698 				continue;
2699 			default:
2700 				/* did we reclaim enough */
2701 				if (zone_watermark_ok(zone, order, mark,
2702 						ac->classzone_idx, alloc_flags))
2703 					goto try_this_zone;
2704 
2705 				continue;
2706 			}
2707 		}
2708 
2709 try_this_zone:
2710 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2711 				gfp_mask, alloc_flags, ac->migratetype);
2712 		if (page) {
2713 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2714 				goto try_this_zone;
2715 
2716 			/*
2717 			 * If this is a high-order atomic allocation then check
2718 			 * if the pageblock should be reserved for the future
2719 			 */
2720 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2721 				reserve_highatomic_pageblock(page, zone, order);
2722 
2723 			return page;
2724 		}
2725 	}
2726 
2727 	/*
2728 	 * The first pass makes sure allocations are spread fairly within the
2729 	 * local node.  However, the local node might have free pages left
2730 	 * after the fairness batches are exhausted, and remote zones haven't
2731 	 * even been considered yet.  Try once more without fairness, and
2732 	 * include remote zones now, before entering the slowpath and waking
2733 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2734 	 */
2735 	if (alloc_flags & ALLOC_FAIR) {
2736 		alloc_flags &= ~ALLOC_FAIR;
2737 		if (nr_fair_skipped) {
2738 			zonelist_rescan = true;
2739 			reset_alloc_batches(ac->preferred_zone);
2740 		}
2741 		if (nr_online_nodes > 1)
2742 			zonelist_rescan = true;
2743 	}
2744 
2745 	if (zonelist_rescan)
2746 		goto zonelist_scan;
2747 
2748 	return NULL;
2749 }
2750 
2751 /*
2752  * Large machines with many possible nodes should not always dump per-node
2753  * meminfo in irq context.
2754  */
2755 static inline bool should_suppress_show_mem(void)
2756 {
2757 	bool ret = false;
2758 
2759 #if NODES_SHIFT > 8
2760 	ret = in_interrupt();
2761 #endif
2762 	return ret;
2763 }
2764 
2765 static DEFINE_RATELIMIT_STATE(nopage_rs,
2766 		DEFAULT_RATELIMIT_INTERVAL,
2767 		DEFAULT_RATELIMIT_BURST);
2768 
2769 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2770 {
2771 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2772 
2773 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2774 	    debug_guardpage_minorder() > 0)
2775 		return;
2776 
2777 	/*
2778 	 * This documents exceptions given to allocations in certain
2779 	 * contexts that are allowed to allocate outside current's set
2780 	 * of allowed nodes.
2781 	 */
2782 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2783 		if (test_thread_flag(TIF_MEMDIE) ||
2784 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2785 			filter &= ~SHOW_MEM_FILTER_NODES;
2786 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2787 		filter &= ~SHOW_MEM_FILTER_NODES;
2788 
2789 	if (fmt) {
2790 		struct va_format vaf;
2791 		va_list args;
2792 
2793 		va_start(args, fmt);
2794 
2795 		vaf.fmt = fmt;
2796 		vaf.va = &args;
2797 
2798 		pr_warn("%pV", &vaf);
2799 
2800 		va_end(args);
2801 	}
2802 
2803 	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2804 		current->comm, order, gfp_mask, &gfp_mask);
2805 	dump_stack();
2806 	if (!should_suppress_show_mem())
2807 		show_mem(filter);
2808 }
2809 
2810 static inline struct page *
2811 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2812 	const struct alloc_context *ac, unsigned long *did_some_progress)
2813 {
2814 	struct oom_control oc = {
2815 		.zonelist = ac->zonelist,
2816 		.nodemask = ac->nodemask,
2817 		.gfp_mask = gfp_mask,
2818 		.order = order,
2819 	};
2820 	struct page *page;
2821 
2822 	*did_some_progress = 0;
2823 
2824 	/*
2825 	 * Acquire the oom lock.  If that fails, somebody else is
2826 	 * making progress for us.
2827 	 */
2828 	if (!mutex_trylock(&oom_lock)) {
2829 		*did_some_progress = 1;
2830 		schedule_timeout_uninterruptible(1);
2831 		return NULL;
2832 	}
2833 
2834 	/*
2835 	 * Go through the zonelist yet one more time, keep very high watermark
2836 	 * here, this is only to catch a parallel oom killing, we must fail if
2837 	 * we're still under heavy pressure.
2838 	 */
2839 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2840 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2841 	if (page)
2842 		goto out;
2843 
2844 	if (!(gfp_mask & __GFP_NOFAIL)) {
2845 		/* Coredumps can quickly deplete all memory reserves */
2846 		if (current->flags & PF_DUMPCORE)
2847 			goto out;
2848 		/* The OOM killer will not help higher order allocs */
2849 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2850 			goto out;
2851 		/* The OOM killer does not needlessly kill tasks for lowmem */
2852 		if (ac->high_zoneidx < ZONE_NORMAL)
2853 			goto out;
2854 		/* The OOM killer does not compensate for IO-less reclaim */
2855 		if (!(gfp_mask & __GFP_FS)) {
2856 			/*
2857 			 * XXX: Page reclaim didn't yield anything,
2858 			 * and the OOM killer can't be invoked, but
2859 			 * keep looping as per tradition.
2860 			 */
2861 			*did_some_progress = 1;
2862 			goto out;
2863 		}
2864 		if (pm_suspended_storage())
2865 			goto out;
2866 		/* The OOM killer may not free memory on a specific node */
2867 		if (gfp_mask & __GFP_THISNODE)
2868 			goto out;
2869 	}
2870 	/* Exhausted what can be done so it's blamo time */
2871 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2872 		*did_some_progress = 1;
2873 
2874 		if (gfp_mask & __GFP_NOFAIL) {
2875 			page = get_page_from_freelist(gfp_mask, order,
2876 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2877 			/*
2878 			 * fallback to ignore cpuset restriction if our nodes
2879 			 * are depleted
2880 			 */
2881 			if (!page)
2882 				page = get_page_from_freelist(gfp_mask, order,
2883 					ALLOC_NO_WATERMARKS, ac);
2884 		}
2885 	}
2886 out:
2887 	mutex_unlock(&oom_lock);
2888 	return page;
2889 }
2890 
2891 #ifdef CONFIG_COMPACTION
2892 /* Try memory compaction for high-order allocations before reclaim */
2893 static struct page *
2894 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2895 		int alloc_flags, const struct alloc_context *ac,
2896 		enum migrate_mode mode, int *contended_compaction,
2897 		bool *deferred_compaction)
2898 {
2899 	unsigned long compact_result;
2900 	struct page *page;
2901 
2902 	if (!order)
2903 		return NULL;
2904 
2905 	current->flags |= PF_MEMALLOC;
2906 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2907 						mode, contended_compaction);
2908 	current->flags &= ~PF_MEMALLOC;
2909 
2910 	switch (compact_result) {
2911 	case COMPACT_DEFERRED:
2912 		*deferred_compaction = true;
2913 		/* fall-through */
2914 	case COMPACT_SKIPPED:
2915 		return NULL;
2916 	default:
2917 		break;
2918 	}
2919 
2920 	/*
2921 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2922 	 * count a compaction stall
2923 	 */
2924 	count_vm_event(COMPACTSTALL);
2925 
2926 	page = get_page_from_freelist(gfp_mask, order,
2927 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2928 
2929 	if (page) {
2930 		struct zone *zone = page_zone(page);
2931 
2932 		zone->compact_blockskip_flush = false;
2933 		compaction_defer_reset(zone, order, true);
2934 		count_vm_event(COMPACTSUCCESS);
2935 		return page;
2936 	}
2937 
2938 	/*
2939 	 * It's bad if compaction run occurs and fails. The most likely reason
2940 	 * is that pages exist, but not enough to satisfy watermarks.
2941 	 */
2942 	count_vm_event(COMPACTFAIL);
2943 
2944 	cond_resched();
2945 
2946 	return NULL;
2947 }
2948 #else
2949 static inline struct page *
2950 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2951 		int alloc_flags, const struct alloc_context *ac,
2952 		enum migrate_mode mode, int *contended_compaction,
2953 		bool *deferred_compaction)
2954 {
2955 	return NULL;
2956 }
2957 #endif /* CONFIG_COMPACTION */
2958 
2959 /* Perform direct synchronous page reclaim */
2960 static int
2961 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2962 					const struct alloc_context *ac)
2963 {
2964 	struct reclaim_state reclaim_state;
2965 	int progress;
2966 
2967 	cond_resched();
2968 
2969 	/* We now go into synchronous reclaim */
2970 	cpuset_memory_pressure_bump();
2971 	current->flags |= PF_MEMALLOC;
2972 	lockdep_set_current_reclaim_state(gfp_mask);
2973 	reclaim_state.reclaimed_slab = 0;
2974 	current->reclaim_state = &reclaim_state;
2975 
2976 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2977 								ac->nodemask);
2978 
2979 	current->reclaim_state = NULL;
2980 	lockdep_clear_current_reclaim_state();
2981 	current->flags &= ~PF_MEMALLOC;
2982 
2983 	cond_resched();
2984 
2985 	return progress;
2986 }
2987 
2988 /* The really slow allocator path where we enter direct reclaim */
2989 static inline struct page *
2990 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2991 		int alloc_flags, const struct alloc_context *ac,
2992 		unsigned long *did_some_progress)
2993 {
2994 	struct page *page = NULL;
2995 	bool drained = false;
2996 
2997 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2998 	if (unlikely(!(*did_some_progress)))
2999 		return NULL;
3000 
3001 retry:
3002 	page = get_page_from_freelist(gfp_mask, order,
3003 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3004 
3005 	/*
3006 	 * If an allocation failed after direct reclaim, it could be because
3007 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3008 	 * Shrink them them and try again
3009 	 */
3010 	if (!page && !drained) {
3011 		unreserve_highatomic_pageblock(ac);
3012 		drain_all_pages(NULL);
3013 		drained = true;
3014 		goto retry;
3015 	}
3016 
3017 	return page;
3018 }
3019 
3020 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3021 {
3022 	struct zoneref *z;
3023 	struct zone *zone;
3024 
3025 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3026 						ac->high_zoneidx, ac->nodemask)
3027 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3028 }
3029 
3030 static inline int
3031 gfp_to_alloc_flags(gfp_t gfp_mask)
3032 {
3033 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3034 
3035 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3036 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3037 
3038 	/*
3039 	 * The caller may dip into page reserves a bit more if the caller
3040 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3041 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3042 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3043 	 */
3044 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3045 
3046 	if (gfp_mask & __GFP_ATOMIC) {
3047 		/*
3048 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3049 		 * if it can't schedule.
3050 		 */
3051 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3052 			alloc_flags |= ALLOC_HARDER;
3053 		/*
3054 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3055 		 * comment for __cpuset_node_allowed().
3056 		 */
3057 		alloc_flags &= ~ALLOC_CPUSET;
3058 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3059 		alloc_flags |= ALLOC_HARDER;
3060 
3061 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3062 		if (gfp_mask & __GFP_MEMALLOC)
3063 			alloc_flags |= ALLOC_NO_WATERMARKS;
3064 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3065 			alloc_flags |= ALLOC_NO_WATERMARKS;
3066 		else if (!in_interrupt() &&
3067 				((current->flags & PF_MEMALLOC) ||
3068 				 unlikely(test_thread_flag(TIF_MEMDIE))))
3069 			alloc_flags |= ALLOC_NO_WATERMARKS;
3070 	}
3071 #ifdef CONFIG_CMA
3072 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3073 		alloc_flags |= ALLOC_CMA;
3074 #endif
3075 	return alloc_flags;
3076 }
3077 
3078 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3079 {
3080 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3081 }
3082 
3083 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3084 {
3085 	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3086 }
3087 
3088 static inline struct page *
3089 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3090 						struct alloc_context *ac)
3091 {
3092 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3093 	struct page *page = NULL;
3094 	int alloc_flags;
3095 	unsigned long pages_reclaimed = 0;
3096 	unsigned long did_some_progress;
3097 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
3098 	bool deferred_compaction = false;
3099 	int contended_compaction = COMPACT_CONTENDED_NONE;
3100 
3101 	/*
3102 	 * In the slowpath, we sanity check order to avoid ever trying to
3103 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3104 	 * be using allocators in order of preference for an area that is
3105 	 * too large.
3106 	 */
3107 	if (order >= MAX_ORDER) {
3108 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3109 		return NULL;
3110 	}
3111 
3112 	/*
3113 	 * We also sanity check to catch abuse of atomic reserves being used by
3114 	 * callers that are not in atomic context.
3115 	 */
3116 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3117 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3118 		gfp_mask &= ~__GFP_ATOMIC;
3119 
3120 	/*
3121 	 * If this allocation cannot block and it is for a specific node, then
3122 	 * fail early.  There's no need to wakeup kswapd or retry for a
3123 	 * speculative node-specific allocation.
3124 	 */
3125 	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3126 		goto nopage;
3127 
3128 retry:
3129 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3130 		wake_all_kswapds(order, ac);
3131 
3132 	/*
3133 	 * OK, we're below the kswapd watermark and have kicked background
3134 	 * reclaim. Now things get more complex, so set up alloc_flags according
3135 	 * to how we want to proceed.
3136 	 */
3137 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3138 
3139 	/*
3140 	 * Find the true preferred zone if the allocation is unconstrained by
3141 	 * cpusets.
3142 	 */
3143 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3144 		struct zoneref *preferred_zoneref;
3145 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
3146 				ac->high_zoneidx, NULL, &ac->preferred_zone);
3147 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3148 	}
3149 
3150 	/* This is the last chance, in general, before the goto nopage. */
3151 	page = get_page_from_freelist(gfp_mask, order,
3152 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3153 	if (page)
3154 		goto got_pg;
3155 
3156 	/* Allocate without watermarks if the context allows */
3157 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3158 		/*
3159 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3160 		 * the allocation is high priority and these type of
3161 		 * allocations are system rather than user orientated
3162 		 */
3163 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3164 		page = get_page_from_freelist(gfp_mask, order,
3165 						ALLOC_NO_WATERMARKS, ac);
3166 		if (page)
3167 			goto got_pg;
3168 	}
3169 
3170 	/* Caller is not willing to reclaim, we can't balance anything */
3171 	if (!can_direct_reclaim) {
3172 		/*
3173 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3174 		 * of any new users that actually allow this type of allocation
3175 		 * to fail.
3176 		 */
3177 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3178 		goto nopage;
3179 	}
3180 
3181 	/* Avoid recursion of direct reclaim */
3182 	if (current->flags & PF_MEMALLOC) {
3183 		/*
3184 		 * __GFP_NOFAIL request from this context is rather bizarre
3185 		 * because we cannot reclaim anything and only can loop waiting
3186 		 * for somebody to do a work for us.
3187 		 */
3188 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3189 			cond_resched();
3190 			goto retry;
3191 		}
3192 		goto nopage;
3193 	}
3194 
3195 	/* Avoid allocations with no watermarks from looping endlessly */
3196 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3197 		goto nopage;
3198 
3199 	/*
3200 	 * Try direct compaction. The first pass is asynchronous. Subsequent
3201 	 * attempts after direct reclaim are synchronous
3202 	 */
3203 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3204 					migration_mode,
3205 					&contended_compaction,
3206 					&deferred_compaction);
3207 	if (page)
3208 		goto got_pg;
3209 
3210 	/* Checks for THP-specific high-order allocations */
3211 	if (is_thp_gfp_mask(gfp_mask)) {
3212 		/*
3213 		 * If compaction is deferred for high-order allocations, it is
3214 		 * because sync compaction recently failed. If this is the case
3215 		 * and the caller requested a THP allocation, we do not want
3216 		 * to heavily disrupt the system, so we fail the allocation
3217 		 * instead of entering direct reclaim.
3218 		 */
3219 		if (deferred_compaction)
3220 			goto nopage;
3221 
3222 		/*
3223 		 * In all zones where compaction was attempted (and not
3224 		 * deferred or skipped), lock contention has been detected.
3225 		 * For THP allocation we do not want to disrupt the others
3226 		 * so we fallback to base pages instead.
3227 		 */
3228 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
3229 			goto nopage;
3230 
3231 		/*
3232 		 * If compaction was aborted due to need_resched(), we do not
3233 		 * want to further increase allocation latency, unless it is
3234 		 * khugepaged trying to collapse.
3235 		 */
3236 		if (contended_compaction == COMPACT_CONTENDED_SCHED
3237 			&& !(current->flags & PF_KTHREAD))
3238 			goto nopage;
3239 	}
3240 
3241 	/*
3242 	 * It can become very expensive to allocate transparent hugepages at
3243 	 * fault, so use asynchronous memory compaction for THP unless it is
3244 	 * khugepaged trying to collapse.
3245 	 */
3246 	if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3247 		migration_mode = MIGRATE_SYNC_LIGHT;
3248 
3249 	/* Try direct reclaim and then allocating */
3250 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3251 							&did_some_progress);
3252 	if (page)
3253 		goto got_pg;
3254 
3255 	/* Do not loop if specifically requested */
3256 	if (gfp_mask & __GFP_NORETRY)
3257 		goto noretry;
3258 
3259 	/* Keep reclaiming pages as long as there is reasonable progress */
3260 	pages_reclaimed += did_some_progress;
3261 	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3262 	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3263 		/* Wait for some write requests to complete then retry */
3264 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3265 		goto retry;
3266 	}
3267 
3268 	/* Reclaim has failed us, start killing things */
3269 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3270 	if (page)
3271 		goto got_pg;
3272 
3273 	/* Retry as long as the OOM killer is making progress */
3274 	if (did_some_progress)
3275 		goto retry;
3276 
3277 noretry:
3278 	/*
3279 	 * High-order allocations do not necessarily loop after
3280 	 * direct reclaim and reclaim/compaction depends on compaction
3281 	 * being called after reclaim so call directly if necessary
3282 	 */
3283 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3284 					    ac, migration_mode,
3285 					    &contended_compaction,
3286 					    &deferred_compaction);
3287 	if (page)
3288 		goto got_pg;
3289 nopage:
3290 	warn_alloc_failed(gfp_mask, order, NULL);
3291 got_pg:
3292 	return page;
3293 }
3294 
3295 /*
3296  * This is the 'heart' of the zoned buddy allocator.
3297  */
3298 struct page *
3299 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3300 			struct zonelist *zonelist, nodemask_t *nodemask)
3301 {
3302 	struct zoneref *preferred_zoneref;
3303 	struct page *page = NULL;
3304 	unsigned int cpuset_mems_cookie;
3305 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3306 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3307 	struct alloc_context ac = {
3308 		.high_zoneidx = gfp_zone(gfp_mask),
3309 		.nodemask = nodemask,
3310 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3311 	};
3312 
3313 	gfp_mask &= gfp_allowed_mask;
3314 
3315 	lockdep_trace_alloc(gfp_mask);
3316 
3317 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3318 
3319 	if (should_fail_alloc_page(gfp_mask, order))
3320 		return NULL;
3321 
3322 	/*
3323 	 * Check the zones suitable for the gfp_mask contain at least one
3324 	 * valid zone. It's possible to have an empty zonelist as a result
3325 	 * of __GFP_THISNODE and a memoryless node
3326 	 */
3327 	if (unlikely(!zonelist->_zonerefs->zone))
3328 		return NULL;
3329 
3330 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3331 		alloc_flags |= ALLOC_CMA;
3332 
3333 retry_cpuset:
3334 	cpuset_mems_cookie = read_mems_allowed_begin();
3335 
3336 	/* We set it here, as __alloc_pages_slowpath might have changed it */
3337 	ac.zonelist = zonelist;
3338 
3339 	/* Dirty zone balancing only done in the fast path */
3340 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3341 
3342 	/* The preferred zone is used for statistics later */
3343 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3344 				ac.nodemask ? : &cpuset_current_mems_allowed,
3345 				&ac.preferred_zone);
3346 	if (!ac.preferred_zone)
3347 		goto out;
3348 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3349 
3350 	/* First allocation attempt */
3351 	alloc_mask = gfp_mask|__GFP_HARDWALL;
3352 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3353 	if (unlikely(!page)) {
3354 		/*
3355 		 * Runtime PM, block IO and its error handling path
3356 		 * can deadlock because I/O on the device might not
3357 		 * complete.
3358 		 */
3359 		alloc_mask = memalloc_noio_flags(gfp_mask);
3360 		ac.spread_dirty_pages = false;
3361 
3362 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3363 	}
3364 
3365 	if (kmemcheck_enabled && page)
3366 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3367 
3368 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3369 
3370 out:
3371 	/*
3372 	 * When updating a task's mems_allowed, it is possible to race with
3373 	 * parallel threads in such a way that an allocation can fail while
3374 	 * the mask is being updated. If a page allocation is about to fail,
3375 	 * check if the cpuset changed during allocation and if so, retry.
3376 	 */
3377 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3378 		goto retry_cpuset;
3379 
3380 	return page;
3381 }
3382 EXPORT_SYMBOL(__alloc_pages_nodemask);
3383 
3384 /*
3385  * Common helper functions.
3386  */
3387 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3388 {
3389 	struct page *page;
3390 
3391 	/*
3392 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3393 	 * a highmem page
3394 	 */
3395 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3396 
3397 	page = alloc_pages(gfp_mask, order);
3398 	if (!page)
3399 		return 0;
3400 	return (unsigned long) page_address(page);
3401 }
3402 EXPORT_SYMBOL(__get_free_pages);
3403 
3404 unsigned long get_zeroed_page(gfp_t gfp_mask)
3405 {
3406 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3407 }
3408 EXPORT_SYMBOL(get_zeroed_page);
3409 
3410 void __free_pages(struct page *page, unsigned int order)
3411 {
3412 	if (put_page_testzero(page)) {
3413 		if (order == 0)
3414 			free_hot_cold_page(page, false);
3415 		else
3416 			__free_pages_ok(page, order);
3417 	}
3418 }
3419 
3420 EXPORT_SYMBOL(__free_pages);
3421 
3422 void free_pages(unsigned long addr, unsigned int order)
3423 {
3424 	if (addr != 0) {
3425 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3426 		__free_pages(virt_to_page((void *)addr), order);
3427 	}
3428 }
3429 
3430 EXPORT_SYMBOL(free_pages);
3431 
3432 /*
3433  * Page Fragment:
3434  *  An arbitrary-length arbitrary-offset area of memory which resides
3435  *  within a 0 or higher order page.  Multiple fragments within that page
3436  *  are individually refcounted, in the page's reference counter.
3437  *
3438  * The page_frag functions below provide a simple allocation framework for
3439  * page fragments.  This is used by the network stack and network device
3440  * drivers to provide a backing region of memory for use as either an
3441  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3442  */
3443 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3444 				       gfp_t gfp_mask)
3445 {
3446 	struct page *page = NULL;
3447 	gfp_t gfp = gfp_mask;
3448 
3449 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3450 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3451 		    __GFP_NOMEMALLOC;
3452 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3453 				PAGE_FRAG_CACHE_MAX_ORDER);
3454 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3455 #endif
3456 	if (unlikely(!page))
3457 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3458 
3459 	nc->va = page ? page_address(page) : NULL;
3460 
3461 	return page;
3462 }
3463 
3464 void *__alloc_page_frag(struct page_frag_cache *nc,
3465 			unsigned int fragsz, gfp_t gfp_mask)
3466 {
3467 	unsigned int size = PAGE_SIZE;
3468 	struct page *page;
3469 	int offset;
3470 
3471 	if (unlikely(!nc->va)) {
3472 refill:
3473 		page = __page_frag_refill(nc, gfp_mask);
3474 		if (!page)
3475 			return NULL;
3476 
3477 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3478 		/* if size can vary use size else just use PAGE_SIZE */
3479 		size = nc->size;
3480 #endif
3481 		/* Even if we own the page, we do not use atomic_set().
3482 		 * This would break get_page_unless_zero() users.
3483 		 */
3484 		atomic_add(size - 1, &page->_count);
3485 
3486 		/* reset page count bias and offset to start of new frag */
3487 		nc->pfmemalloc = page_is_pfmemalloc(page);
3488 		nc->pagecnt_bias = size;
3489 		nc->offset = size;
3490 	}
3491 
3492 	offset = nc->offset - fragsz;
3493 	if (unlikely(offset < 0)) {
3494 		page = virt_to_page(nc->va);
3495 
3496 		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3497 			goto refill;
3498 
3499 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3500 		/* if size can vary use size else just use PAGE_SIZE */
3501 		size = nc->size;
3502 #endif
3503 		/* OK, page count is 0, we can safely set it */
3504 		atomic_set(&page->_count, size);
3505 
3506 		/* reset page count bias and offset to start of new frag */
3507 		nc->pagecnt_bias = size;
3508 		offset = size - fragsz;
3509 	}
3510 
3511 	nc->pagecnt_bias--;
3512 	nc->offset = offset;
3513 
3514 	return nc->va + offset;
3515 }
3516 EXPORT_SYMBOL(__alloc_page_frag);
3517 
3518 /*
3519  * Frees a page fragment allocated out of either a compound or order 0 page.
3520  */
3521 void __free_page_frag(void *addr)
3522 {
3523 	struct page *page = virt_to_head_page(addr);
3524 
3525 	if (unlikely(put_page_testzero(page)))
3526 		__free_pages_ok(page, compound_order(page));
3527 }
3528 EXPORT_SYMBOL(__free_page_frag);
3529 
3530 /*
3531  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3532  * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3533  * equivalent to alloc_pages.
3534  *
3535  * It should be used when the caller would like to use kmalloc, but since the
3536  * allocation is large, it has to fall back to the page allocator.
3537  */
3538 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3539 {
3540 	struct page *page;
3541 
3542 	page = alloc_pages(gfp_mask, order);
3543 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3544 		__free_pages(page, order);
3545 		page = NULL;
3546 	}
3547 	return page;
3548 }
3549 
3550 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3551 {
3552 	struct page *page;
3553 
3554 	page = alloc_pages_node(nid, gfp_mask, order);
3555 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3556 		__free_pages(page, order);
3557 		page = NULL;
3558 	}
3559 	return page;
3560 }
3561 
3562 /*
3563  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3564  * alloc_kmem_pages.
3565  */
3566 void __free_kmem_pages(struct page *page, unsigned int order)
3567 {
3568 	memcg_kmem_uncharge(page, order);
3569 	__free_pages(page, order);
3570 }
3571 
3572 void free_kmem_pages(unsigned long addr, unsigned int order)
3573 {
3574 	if (addr != 0) {
3575 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3576 		__free_kmem_pages(virt_to_page((void *)addr), order);
3577 	}
3578 }
3579 
3580 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3581 		size_t size)
3582 {
3583 	if (addr) {
3584 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3585 		unsigned long used = addr + PAGE_ALIGN(size);
3586 
3587 		split_page(virt_to_page((void *)addr), order);
3588 		while (used < alloc_end) {
3589 			free_page(used);
3590 			used += PAGE_SIZE;
3591 		}
3592 	}
3593 	return (void *)addr;
3594 }
3595 
3596 /**
3597  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3598  * @size: the number of bytes to allocate
3599  * @gfp_mask: GFP flags for the allocation
3600  *
3601  * This function is similar to alloc_pages(), except that it allocates the
3602  * minimum number of pages to satisfy the request.  alloc_pages() can only
3603  * allocate memory in power-of-two pages.
3604  *
3605  * This function is also limited by MAX_ORDER.
3606  *
3607  * Memory allocated by this function must be released by free_pages_exact().
3608  */
3609 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3610 {
3611 	unsigned int order = get_order(size);
3612 	unsigned long addr;
3613 
3614 	addr = __get_free_pages(gfp_mask, order);
3615 	return make_alloc_exact(addr, order, size);
3616 }
3617 EXPORT_SYMBOL(alloc_pages_exact);
3618 
3619 /**
3620  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3621  *			   pages on a node.
3622  * @nid: the preferred node ID where memory should be allocated
3623  * @size: the number of bytes to allocate
3624  * @gfp_mask: GFP flags for the allocation
3625  *
3626  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3627  * back.
3628  */
3629 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3630 {
3631 	unsigned int order = get_order(size);
3632 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3633 	if (!p)
3634 		return NULL;
3635 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3636 }
3637 
3638 /**
3639  * free_pages_exact - release memory allocated via alloc_pages_exact()
3640  * @virt: the value returned by alloc_pages_exact.
3641  * @size: size of allocation, same value as passed to alloc_pages_exact().
3642  *
3643  * Release the memory allocated by a previous call to alloc_pages_exact.
3644  */
3645 void free_pages_exact(void *virt, size_t size)
3646 {
3647 	unsigned long addr = (unsigned long)virt;
3648 	unsigned long end = addr + PAGE_ALIGN(size);
3649 
3650 	while (addr < end) {
3651 		free_page(addr);
3652 		addr += PAGE_SIZE;
3653 	}
3654 }
3655 EXPORT_SYMBOL(free_pages_exact);
3656 
3657 /**
3658  * nr_free_zone_pages - count number of pages beyond high watermark
3659  * @offset: The zone index of the highest zone
3660  *
3661  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3662  * high watermark within all zones at or below a given zone index.  For each
3663  * zone, the number of pages is calculated as:
3664  *     managed_pages - high_pages
3665  */
3666 static unsigned long nr_free_zone_pages(int offset)
3667 {
3668 	struct zoneref *z;
3669 	struct zone *zone;
3670 
3671 	/* Just pick one node, since fallback list is circular */
3672 	unsigned long sum = 0;
3673 
3674 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3675 
3676 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3677 		unsigned long size = zone->managed_pages;
3678 		unsigned long high = high_wmark_pages(zone);
3679 		if (size > high)
3680 			sum += size - high;
3681 	}
3682 
3683 	return sum;
3684 }
3685 
3686 /**
3687  * nr_free_buffer_pages - count number of pages beyond high watermark
3688  *
3689  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3690  * watermark within ZONE_DMA and ZONE_NORMAL.
3691  */
3692 unsigned long nr_free_buffer_pages(void)
3693 {
3694 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3695 }
3696 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3697 
3698 /**
3699  * nr_free_pagecache_pages - count number of pages beyond high watermark
3700  *
3701  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3702  * high watermark within all zones.
3703  */
3704 unsigned long nr_free_pagecache_pages(void)
3705 {
3706 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3707 }
3708 
3709 static inline void show_node(struct zone *zone)
3710 {
3711 	if (IS_ENABLED(CONFIG_NUMA))
3712 		printk("Node %d ", zone_to_nid(zone));
3713 }
3714 
3715 void si_meminfo(struct sysinfo *val)
3716 {
3717 	val->totalram = totalram_pages;
3718 	val->sharedram = global_page_state(NR_SHMEM);
3719 	val->freeram = global_page_state(NR_FREE_PAGES);
3720 	val->bufferram = nr_blockdev_pages();
3721 	val->totalhigh = totalhigh_pages;
3722 	val->freehigh = nr_free_highpages();
3723 	val->mem_unit = PAGE_SIZE;
3724 }
3725 
3726 EXPORT_SYMBOL(si_meminfo);
3727 
3728 #ifdef CONFIG_NUMA
3729 void si_meminfo_node(struct sysinfo *val, int nid)
3730 {
3731 	int zone_type;		/* needs to be signed */
3732 	unsigned long managed_pages = 0;
3733 	pg_data_t *pgdat = NODE_DATA(nid);
3734 
3735 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3736 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3737 	val->totalram = managed_pages;
3738 	val->sharedram = node_page_state(nid, NR_SHMEM);
3739 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3740 #ifdef CONFIG_HIGHMEM
3741 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3742 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3743 			NR_FREE_PAGES);
3744 #else
3745 	val->totalhigh = 0;
3746 	val->freehigh = 0;
3747 #endif
3748 	val->mem_unit = PAGE_SIZE;
3749 }
3750 #endif
3751 
3752 /*
3753  * Determine whether the node should be displayed or not, depending on whether
3754  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3755  */
3756 bool skip_free_areas_node(unsigned int flags, int nid)
3757 {
3758 	bool ret = false;
3759 	unsigned int cpuset_mems_cookie;
3760 
3761 	if (!(flags & SHOW_MEM_FILTER_NODES))
3762 		goto out;
3763 
3764 	do {
3765 		cpuset_mems_cookie = read_mems_allowed_begin();
3766 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3767 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3768 out:
3769 	return ret;
3770 }
3771 
3772 #define K(x) ((x) << (PAGE_SHIFT-10))
3773 
3774 static void show_migration_types(unsigned char type)
3775 {
3776 	static const char types[MIGRATE_TYPES] = {
3777 		[MIGRATE_UNMOVABLE]	= 'U',
3778 		[MIGRATE_MOVABLE]	= 'M',
3779 		[MIGRATE_RECLAIMABLE]	= 'E',
3780 		[MIGRATE_HIGHATOMIC]	= 'H',
3781 #ifdef CONFIG_CMA
3782 		[MIGRATE_CMA]		= 'C',
3783 #endif
3784 #ifdef CONFIG_MEMORY_ISOLATION
3785 		[MIGRATE_ISOLATE]	= 'I',
3786 #endif
3787 	};
3788 	char tmp[MIGRATE_TYPES + 1];
3789 	char *p = tmp;
3790 	int i;
3791 
3792 	for (i = 0; i < MIGRATE_TYPES; i++) {
3793 		if (type & (1 << i))
3794 			*p++ = types[i];
3795 	}
3796 
3797 	*p = '\0';
3798 	printk("(%s) ", tmp);
3799 }
3800 
3801 /*
3802  * Show free area list (used inside shift_scroll-lock stuff)
3803  * We also calculate the percentage fragmentation. We do this by counting the
3804  * memory on each free list with the exception of the first item on the list.
3805  *
3806  * Bits in @filter:
3807  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3808  *   cpuset.
3809  */
3810 void show_free_areas(unsigned int filter)
3811 {
3812 	unsigned long free_pcp = 0;
3813 	int cpu;
3814 	struct zone *zone;
3815 
3816 	for_each_populated_zone(zone) {
3817 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3818 			continue;
3819 
3820 		for_each_online_cpu(cpu)
3821 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3822 	}
3823 
3824 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3825 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3826 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3827 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3828 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3829 		" free:%lu free_pcp:%lu free_cma:%lu\n",
3830 		global_page_state(NR_ACTIVE_ANON),
3831 		global_page_state(NR_INACTIVE_ANON),
3832 		global_page_state(NR_ISOLATED_ANON),
3833 		global_page_state(NR_ACTIVE_FILE),
3834 		global_page_state(NR_INACTIVE_FILE),
3835 		global_page_state(NR_ISOLATED_FILE),
3836 		global_page_state(NR_UNEVICTABLE),
3837 		global_page_state(NR_FILE_DIRTY),
3838 		global_page_state(NR_WRITEBACK),
3839 		global_page_state(NR_UNSTABLE_NFS),
3840 		global_page_state(NR_SLAB_RECLAIMABLE),
3841 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3842 		global_page_state(NR_FILE_MAPPED),
3843 		global_page_state(NR_SHMEM),
3844 		global_page_state(NR_PAGETABLE),
3845 		global_page_state(NR_BOUNCE),
3846 		global_page_state(NR_FREE_PAGES),
3847 		free_pcp,
3848 		global_page_state(NR_FREE_CMA_PAGES));
3849 
3850 	for_each_populated_zone(zone) {
3851 		int i;
3852 
3853 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3854 			continue;
3855 
3856 		free_pcp = 0;
3857 		for_each_online_cpu(cpu)
3858 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3859 
3860 		show_node(zone);
3861 		printk("%s"
3862 			" free:%lukB"
3863 			" min:%lukB"
3864 			" low:%lukB"
3865 			" high:%lukB"
3866 			" active_anon:%lukB"
3867 			" inactive_anon:%lukB"
3868 			" active_file:%lukB"
3869 			" inactive_file:%lukB"
3870 			" unevictable:%lukB"
3871 			" isolated(anon):%lukB"
3872 			" isolated(file):%lukB"
3873 			" present:%lukB"
3874 			" managed:%lukB"
3875 			" mlocked:%lukB"
3876 			" dirty:%lukB"
3877 			" writeback:%lukB"
3878 			" mapped:%lukB"
3879 			" shmem:%lukB"
3880 			" slab_reclaimable:%lukB"
3881 			" slab_unreclaimable:%lukB"
3882 			" kernel_stack:%lukB"
3883 			" pagetables:%lukB"
3884 			" unstable:%lukB"
3885 			" bounce:%lukB"
3886 			" free_pcp:%lukB"
3887 			" local_pcp:%ukB"
3888 			" free_cma:%lukB"
3889 			" writeback_tmp:%lukB"
3890 			" pages_scanned:%lu"
3891 			" all_unreclaimable? %s"
3892 			"\n",
3893 			zone->name,
3894 			K(zone_page_state(zone, NR_FREE_PAGES)),
3895 			K(min_wmark_pages(zone)),
3896 			K(low_wmark_pages(zone)),
3897 			K(high_wmark_pages(zone)),
3898 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3899 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3900 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3901 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3902 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3903 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3904 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3905 			K(zone->present_pages),
3906 			K(zone->managed_pages),
3907 			K(zone_page_state(zone, NR_MLOCK)),
3908 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3909 			K(zone_page_state(zone, NR_WRITEBACK)),
3910 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3911 			K(zone_page_state(zone, NR_SHMEM)),
3912 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3913 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3914 			zone_page_state(zone, NR_KERNEL_STACK) *
3915 				THREAD_SIZE / 1024,
3916 			K(zone_page_state(zone, NR_PAGETABLE)),
3917 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3918 			K(zone_page_state(zone, NR_BOUNCE)),
3919 			K(free_pcp),
3920 			K(this_cpu_read(zone->pageset->pcp.count)),
3921 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3922 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3923 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3924 			(!zone_reclaimable(zone) ? "yes" : "no")
3925 			);
3926 		printk("lowmem_reserve[]:");
3927 		for (i = 0; i < MAX_NR_ZONES; i++)
3928 			printk(" %ld", zone->lowmem_reserve[i]);
3929 		printk("\n");
3930 	}
3931 
3932 	for_each_populated_zone(zone) {
3933 		unsigned int order;
3934 		unsigned long nr[MAX_ORDER], flags, total = 0;
3935 		unsigned char types[MAX_ORDER];
3936 
3937 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3938 			continue;
3939 		show_node(zone);
3940 		printk("%s: ", zone->name);
3941 
3942 		spin_lock_irqsave(&zone->lock, flags);
3943 		for (order = 0; order < MAX_ORDER; order++) {
3944 			struct free_area *area = &zone->free_area[order];
3945 			int type;
3946 
3947 			nr[order] = area->nr_free;
3948 			total += nr[order] << order;
3949 
3950 			types[order] = 0;
3951 			for (type = 0; type < MIGRATE_TYPES; type++) {
3952 				if (!list_empty(&area->free_list[type]))
3953 					types[order] |= 1 << type;
3954 			}
3955 		}
3956 		spin_unlock_irqrestore(&zone->lock, flags);
3957 		for (order = 0; order < MAX_ORDER; order++) {
3958 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3959 			if (nr[order])
3960 				show_migration_types(types[order]);
3961 		}
3962 		printk("= %lukB\n", K(total));
3963 	}
3964 
3965 	hugetlb_show_meminfo();
3966 
3967 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3968 
3969 	show_swap_cache_info();
3970 }
3971 
3972 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3973 {
3974 	zoneref->zone = zone;
3975 	zoneref->zone_idx = zone_idx(zone);
3976 }
3977 
3978 /*
3979  * Builds allocation fallback zone lists.
3980  *
3981  * Add all populated zones of a node to the zonelist.
3982  */
3983 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3984 				int nr_zones)
3985 {
3986 	struct zone *zone;
3987 	enum zone_type zone_type = MAX_NR_ZONES;
3988 
3989 	do {
3990 		zone_type--;
3991 		zone = pgdat->node_zones + zone_type;
3992 		if (populated_zone(zone)) {
3993 			zoneref_set_zone(zone,
3994 				&zonelist->_zonerefs[nr_zones++]);
3995 			check_highest_zone(zone_type);
3996 		}
3997 	} while (zone_type);
3998 
3999 	return nr_zones;
4000 }
4001 
4002 
4003 /*
4004  *  zonelist_order:
4005  *  0 = automatic detection of better ordering.
4006  *  1 = order by ([node] distance, -zonetype)
4007  *  2 = order by (-zonetype, [node] distance)
4008  *
4009  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4010  *  the same zonelist. So only NUMA can configure this param.
4011  */
4012 #define ZONELIST_ORDER_DEFAULT  0
4013 #define ZONELIST_ORDER_NODE     1
4014 #define ZONELIST_ORDER_ZONE     2
4015 
4016 /* zonelist order in the kernel.
4017  * set_zonelist_order() will set this to NODE or ZONE.
4018  */
4019 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4020 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4021 
4022 
4023 #ifdef CONFIG_NUMA
4024 /* The value user specified ....changed by config */
4025 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4026 /* string for sysctl */
4027 #define NUMA_ZONELIST_ORDER_LEN	16
4028 char numa_zonelist_order[16] = "default";
4029 
4030 /*
4031  * interface for configure zonelist ordering.
4032  * command line option "numa_zonelist_order"
4033  *	= "[dD]efault	- default, automatic configuration.
4034  *	= "[nN]ode 	- order by node locality, then by zone within node
4035  *	= "[zZ]one      - order by zone, then by locality within zone
4036  */
4037 
4038 static int __parse_numa_zonelist_order(char *s)
4039 {
4040 	if (*s == 'd' || *s == 'D') {
4041 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4042 	} else if (*s == 'n' || *s == 'N') {
4043 		user_zonelist_order = ZONELIST_ORDER_NODE;
4044 	} else if (*s == 'z' || *s == 'Z') {
4045 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4046 	} else {
4047 		printk(KERN_WARNING
4048 			"Ignoring invalid numa_zonelist_order value:  "
4049 			"%s\n", s);
4050 		return -EINVAL;
4051 	}
4052 	return 0;
4053 }
4054 
4055 static __init int setup_numa_zonelist_order(char *s)
4056 {
4057 	int ret;
4058 
4059 	if (!s)
4060 		return 0;
4061 
4062 	ret = __parse_numa_zonelist_order(s);
4063 	if (ret == 0)
4064 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4065 
4066 	return ret;
4067 }
4068 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4069 
4070 /*
4071  * sysctl handler for numa_zonelist_order
4072  */
4073 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4074 		void __user *buffer, size_t *length,
4075 		loff_t *ppos)
4076 {
4077 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4078 	int ret;
4079 	static DEFINE_MUTEX(zl_order_mutex);
4080 
4081 	mutex_lock(&zl_order_mutex);
4082 	if (write) {
4083 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4084 			ret = -EINVAL;
4085 			goto out;
4086 		}
4087 		strcpy(saved_string, (char *)table->data);
4088 	}
4089 	ret = proc_dostring(table, write, buffer, length, ppos);
4090 	if (ret)
4091 		goto out;
4092 	if (write) {
4093 		int oldval = user_zonelist_order;
4094 
4095 		ret = __parse_numa_zonelist_order((char *)table->data);
4096 		if (ret) {
4097 			/*
4098 			 * bogus value.  restore saved string
4099 			 */
4100 			strncpy((char *)table->data, saved_string,
4101 				NUMA_ZONELIST_ORDER_LEN);
4102 			user_zonelist_order = oldval;
4103 		} else if (oldval != user_zonelist_order) {
4104 			mutex_lock(&zonelists_mutex);
4105 			build_all_zonelists(NULL, NULL);
4106 			mutex_unlock(&zonelists_mutex);
4107 		}
4108 	}
4109 out:
4110 	mutex_unlock(&zl_order_mutex);
4111 	return ret;
4112 }
4113 
4114 
4115 #define MAX_NODE_LOAD (nr_online_nodes)
4116 static int node_load[MAX_NUMNODES];
4117 
4118 /**
4119  * find_next_best_node - find the next node that should appear in a given node's fallback list
4120  * @node: node whose fallback list we're appending
4121  * @used_node_mask: nodemask_t of already used nodes
4122  *
4123  * We use a number of factors to determine which is the next node that should
4124  * appear on a given node's fallback list.  The node should not have appeared
4125  * already in @node's fallback list, and it should be the next closest node
4126  * according to the distance array (which contains arbitrary distance values
4127  * from each node to each node in the system), and should also prefer nodes
4128  * with no CPUs, since presumably they'll have very little allocation pressure
4129  * on them otherwise.
4130  * It returns -1 if no node is found.
4131  */
4132 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4133 {
4134 	int n, val;
4135 	int min_val = INT_MAX;
4136 	int best_node = NUMA_NO_NODE;
4137 	const struct cpumask *tmp = cpumask_of_node(0);
4138 
4139 	/* Use the local node if we haven't already */
4140 	if (!node_isset(node, *used_node_mask)) {
4141 		node_set(node, *used_node_mask);
4142 		return node;
4143 	}
4144 
4145 	for_each_node_state(n, N_MEMORY) {
4146 
4147 		/* Don't want a node to appear more than once */
4148 		if (node_isset(n, *used_node_mask))
4149 			continue;
4150 
4151 		/* Use the distance array to find the distance */
4152 		val = node_distance(node, n);
4153 
4154 		/* Penalize nodes under us ("prefer the next node") */
4155 		val += (n < node);
4156 
4157 		/* Give preference to headless and unused nodes */
4158 		tmp = cpumask_of_node(n);
4159 		if (!cpumask_empty(tmp))
4160 			val += PENALTY_FOR_NODE_WITH_CPUS;
4161 
4162 		/* Slight preference for less loaded node */
4163 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4164 		val += node_load[n];
4165 
4166 		if (val < min_val) {
4167 			min_val = val;
4168 			best_node = n;
4169 		}
4170 	}
4171 
4172 	if (best_node >= 0)
4173 		node_set(best_node, *used_node_mask);
4174 
4175 	return best_node;
4176 }
4177 
4178 
4179 /*
4180  * Build zonelists ordered by node and zones within node.
4181  * This results in maximum locality--normal zone overflows into local
4182  * DMA zone, if any--but risks exhausting DMA zone.
4183  */
4184 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4185 {
4186 	int j;
4187 	struct zonelist *zonelist;
4188 
4189 	zonelist = &pgdat->node_zonelists[0];
4190 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4191 		;
4192 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4193 	zonelist->_zonerefs[j].zone = NULL;
4194 	zonelist->_zonerefs[j].zone_idx = 0;
4195 }
4196 
4197 /*
4198  * Build gfp_thisnode zonelists
4199  */
4200 static void build_thisnode_zonelists(pg_data_t *pgdat)
4201 {
4202 	int j;
4203 	struct zonelist *zonelist;
4204 
4205 	zonelist = &pgdat->node_zonelists[1];
4206 	j = build_zonelists_node(pgdat, zonelist, 0);
4207 	zonelist->_zonerefs[j].zone = NULL;
4208 	zonelist->_zonerefs[j].zone_idx = 0;
4209 }
4210 
4211 /*
4212  * Build zonelists ordered by zone and nodes within zones.
4213  * This results in conserving DMA zone[s] until all Normal memory is
4214  * exhausted, but results in overflowing to remote node while memory
4215  * may still exist in local DMA zone.
4216  */
4217 static int node_order[MAX_NUMNODES];
4218 
4219 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4220 {
4221 	int pos, j, node;
4222 	int zone_type;		/* needs to be signed */
4223 	struct zone *z;
4224 	struct zonelist *zonelist;
4225 
4226 	zonelist = &pgdat->node_zonelists[0];
4227 	pos = 0;
4228 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4229 		for (j = 0; j < nr_nodes; j++) {
4230 			node = node_order[j];
4231 			z = &NODE_DATA(node)->node_zones[zone_type];
4232 			if (populated_zone(z)) {
4233 				zoneref_set_zone(z,
4234 					&zonelist->_zonerefs[pos++]);
4235 				check_highest_zone(zone_type);
4236 			}
4237 		}
4238 	}
4239 	zonelist->_zonerefs[pos].zone = NULL;
4240 	zonelist->_zonerefs[pos].zone_idx = 0;
4241 }
4242 
4243 #if defined(CONFIG_64BIT)
4244 /*
4245  * Devices that require DMA32/DMA are relatively rare and do not justify a
4246  * penalty to every machine in case the specialised case applies. Default
4247  * to Node-ordering on 64-bit NUMA machines
4248  */
4249 static int default_zonelist_order(void)
4250 {
4251 	return ZONELIST_ORDER_NODE;
4252 }
4253 #else
4254 /*
4255  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4256  * by the kernel. If processes running on node 0 deplete the low memory zone
4257  * then reclaim will occur more frequency increasing stalls and potentially
4258  * be easier to OOM if a large percentage of the zone is under writeback or
4259  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4260  * Hence, default to zone ordering on 32-bit.
4261  */
4262 static int default_zonelist_order(void)
4263 {
4264 	return ZONELIST_ORDER_ZONE;
4265 }
4266 #endif /* CONFIG_64BIT */
4267 
4268 static void set_zonelist_order(void)
4269 {
4270 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4271 		current_zonelist_order = default_zonelist_order();
4272 	else
4273 		current_zonelist_order = user_zonelist_order;
4274 }
4275 
4276 static void build_zonelists(pg_data_t *pgdat)
4277 {
4278 	int i, node, load;
4279 	nodemask_t used_mask;
4280 	int local_node, prev_node;
4281 	struct zonelist *zonelist;
4282 	unsigned int order = current_zonelist_order;
4283 
4284 	/* initialize zonelists */
4285 	for (i = 0; i < MAX_ZONELISTS; i++) {
4286 		zonelist = pgdat->node_zonelists + i;
4287 		zonelist->_zonerefs[0].zone = NULL;
4288 		zonelist->_zonerefs[0].zone_idx = 0;
4289 	}
4290 
4291 	/* NUMA-aware ordering of nodes */
4292 	local_node = pgdat->node_id;
4293 	load = nr_online_nodes;
4294 	prev_node = local_node;
4295 	nodes_clear(used_mask);
4296 
4297 	memset(node_order, 0, sizeof(node_order));
4298 	i = 0;
4299 
4300 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4301 		/*
4302 		 * We don't want to pressure a particular node.
4303 		 * So adding penalty to the first node in same
4304 		 * distance group to make it round-robin.
4305 		 */
4306 		if (node_distance(local_node, node) !=
4307 		    node_distance(local_node, prev_node))
4308 			node_load[node] = load;
4309 
4310 		prev_node = node;
4311 		load--;
4312 		if (order == ZONELIST_ORDER_NODE)
4313 			build_zonelists_in_node_order(pgdat, node);
4314 		else
4315 			node_order[i++] = node;	/* remember order */
4316 	}
4317 
4318 	if (order == ZONELIST_ORDER_ZONE) {
4319 		/* calculate node order -- i.e., DMA last! */
4320 		build_zonelists_in_zone_order(pgdat, i);
4321 	}
4322 
4323 	build_thisnode_zonelists(pgdat);
4324 }
4325 
4326 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4327 /*
4328  * Return node id of node used for "local" allocations.
4329  * I.e., first node id of first zone in arg node's generic zonelist.
4330  * Used for initializing percpu 'numa_mem', which is used primarily
4331  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4332  */
4333 int local_memory_node(int node)
4334 {
4335 	struct zone *zone;
4336 
4337 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4338 				   gfp_zone(GFP_KERNEL),
4339 				   NULL,
4340 				   &zone);
4341 	return zone->node;
4342 }
4343 #endif
4344 
4345 #else	/* CONFIG_NUMA */
4346 
4347 static void set_zonelist_order(void)
4348 {
4349 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4350 }
4351 
4352 static void build_zonelists(pg_data_t *pgdat)
4353 {
4354 	int node, local_node;
4355 	enum zone_type j;
4356 	struct zonelist *zonelist;
4357 
4358 	local_node = pgdat->node_id;
4359 
4360 	zonelist = &pgdat->node_zonelists[0];
4361 	j = build_zonelists_node(pgdat, zonelist, 0);
4362 
4363 	/*
4364 	 * Now we build the zonelist so that it contains the zones
4365 	 * of all the other nodes.
4366 	 * We don't want to pressure a particular node, so when
4367 	 * building the zones for node N, we make sure that the
4368 	 * zones coming right after the local ones are those from
4369 	 * node N+1 (modulo N)
4370 	 */
4371 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4372 		if (!node_online(node))
4373 			continue;
4374 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4375 	}
4376 	for (node = 0; node < local_node; node++) {
4377 		if (!node_online(node))
4378 			continue;
4379 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4380 	}
4381 
4382 	zonelist->_zonerefs[j].zone = NULL;
4383 	zonelist->_zonerefs[j].zone_idx = 0;
4384 }
4385 
4386 #endif	/* CONFIG_NUMA */
4387 
4388 /*
4389  * Boot pageset table. One per cpu which is going to be used for all
4390  * zones and all nodes. The parameters will be set in such a way
4391  * that an item put on a list will immediately be handed over to
4392  * the buddy list. This is safe since pageset manipulation is done
4393  * with interrupts disabled.
4394  *
4395  * The boot_pagesets must be kept even after bootup is complete for
4396  * unused processors and/or zones. They do play a role for bootstrapping
4397  * hotplugged processors.
4398  *
4399  * zoneinfo_show() and maybe other functions do
4400  * not check if the processor is online before following the pageset pointer.
4401  * Other parts of the kernel may not check if the zone is available.
4402  */
4403 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4404 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4405 static void setup_zone_pageset(struct zone *zone);
4406 
4407 /*
4408  * Global mutex to protect against size modification of zonelists
4409  * as well as to serialize pageset setup for the new populated zone.
4410  */
4411 DEFINE_MUTEX(zonelists_mutex);
4412 
4413 /* return values int ....just for stop_machine() */
4414 static int __build_all_zonelists(void *data)
4415 {
4416 	int nid;
4417 	int cpu;
4418 	pg_data_t *self = data;
4419 
4420 #ifdef CONFIG_NUMA
4421 	memset(node_load, 0, sizeof(node_load));
4422 #endif
4423 
4424 	if (self && !node_online(self->node_id)) {
4425 		build_zonelists(self);
4426 	}
4427 
4428 	for_each_online_node(nid) {
4429 		pg_data_t *pgdat = NODE_DATA(nid);
4430 
4431 		build_zonelists(pgdat);
4432 	}
4433 
4434 	/*
4435 	 * Initialize the boot_pagesets that are going to be used
4436 	 * for bootstrapping processors. The real pagesets for
4437 	 * each zone will be allocated later when the per cpu
4438 	 * allocator is available.
4439 	 *
4440 	 * boot_pagesets are used also for bootstrapping offline
4441 	 * cpus if the system is already booted because the pagesets
4442 	 * are needed to initialize allocators on a specific cpu too.
4443 	 * F.e. the percpu allocator needs the page allocator which
4444 	 * needs the percpu allocator in order to allocate its pagesets
4445 	 * (a chicken-egg dilemma).
4446 	 */
4447 	for_each_possible_cpu(cpu) {
4448 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4449 
4450 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4451 		/*
4452 		 * We now know the "local memory node" for each node--
4453 		 * i.e., the node of the first zone in the generic zonelist.
4454 		 * Set up numa_mem percpu variable for on-line cpus.  During
4455 		 * boot, only the boot cpu should be on-line;  we'll init the
4456 		 * secondary cpus' numa_mem as they come on-line.  During
4457 		 * node/memory hotplug, we'll fixup all on-line cpus.
4458 		 */
4459 		if (cpu_online(cpu))
4460 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4461 #endif
4462 	}
4463 
4464 	return 0;
4465 }
4466 
4467 static noinline void __init
4468 build_all_zonelists_init(void)
4469 {
4470 	__build_all_zonelists(NULL);
4471 	mminit_verify_zonelist();
4472 	cpuset_init_current_mems_allowed();
4473 }
4474 
4475 /*
4476  * Called with zonelists_mutex held always
4477  * unless system_state == SYSTEM_BOOTING.
4478  *
4479  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4480  * [we're only called with non-NULL zone through __meminit paths] and
4481  * (2) call of __init annotated helper build_all_zonelists_init
4482  * [protected by SYSTEM_BOOTING].
4483  */
4484 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4485 {
4486 	set_zonelist_order();
4487 
4488 	if (system_state == SYSTEM_BOOTING) {
4489 		build_all_zonelists_init();
4490 	} else {
4491 #ifdef CONFIG_MEMORY_HOTPLUG
4492 		if (zone)
4493 			setup_zone_pageset(zone);
4494 #endif
4495 		/* we have to stop all cpus to guarantee there is no user
4496 		   of zonelist */
4497 		stop_machine(__build_all_zonelists, pgdat, NULL);
4498 		/* cpuset refresh routine should be here */
4499 	}
4500 	vm_total_pages = nr_free_pagecache_pages();
4501 	/*
4502 	 * Disable grouping by mobility if the number of pages in the
4503 	 * system is too low to allow the mechanism to work. It would be
4504 	 * more accurate, but expensive to check per-zone. This check is
4505 	 * made on memory-hotadd so a system can start with mobility
4506 	 * disabled and enable it later
4507 	 */
4508 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4509 		page_group_by_mobility_disabled = 1;
4510 	else
4511 		page_group_by_mobility_disabled = 0;
4512 
4513 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
4514 		"Total pages: %ld\n",
4515 			nr_online_nodes,
4516 			zonelist_order_name[current_zonelist_order],
4517 			page_group_by_mobility_disabled ? "off" : "on",
4518 			vm_total_pages);
4519 #ifdef CONFIG_NUMA
4520 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4521 #endif
4522 }
4523 
4524 /*
4525  * Helper functions to size the waitqueue hash table.
4526  * Essentially these want to choose hash table sizes sufficiently
4527  * large so that collisions trying to wait on pages are rare.
4528  * But in fact, the number of active page waitqueues on typical
4529  * systems is ridiculously low, less than 200. So this is even
4530  * conservative, even though it seems large.
4531  *
4532  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4533  * waitqueues, i.e. the size of the waitq table given the number of pages.
4534  */
4535 #define PAGES_PER_WAITQUEUE	256
4536 
4537 #ifndef CONFIG_MEMORY_HOTPLUG
4538 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4539 {
4540 	unsigned long size = 1;
4541 
4542 	pages /= PAGES_PER_WAITQUEUE;
4543 
4544 	while (size < pages)
4545 		size <<= 1;
4546 
4547 	/*
4548 	 * Once we have dozens or even hundreds of threads sleeping
4549 	 * on IO we've got bigger problems than wait queue collision.
4550 	 * Limit the size of the wait table to a reasonable size.
4551 	 */
4552 	size = min(size, 4096UL);
4553 
4554 	return max(size, 4UL);
4555 }
4556 #else
4557 /*
4558  * A zone's size might be changed by hot-add, so it is not possible to determine
4559  * a suitable size for its wait_table.  So we use the maximum size now.
4560  *
4561  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4562  *
4563  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4564  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4565  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4566  *
4567  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4568  * or more by the traditional way. (See above).  It equals:
4569  *
4570  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4571  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4572  *    powerpc (64K page size)             : =  (32G +16M)byte.
4573  */
4574 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4575 {
4576 	return 4096UL;
4577 }
4578 #endif
4579 
4580 /*
4581  * This is an integer logarithm so that shifts can be used later
4582  * to extract the more random high bits from the multiplicative
4583  * hash function before the remainder is taken.
4584  */
4585 static inline unsigned long wait_table_bits(unsigned long size)
4586 {
4587 	return ffz(~size);
4588 }
4589 
4590 /*
4591  * Initially all pages are reserved - free ones are freed
4592  * up by free_all_bootmem() once the early boot process is
4593  * done. Non-atomic initialization, single-pass.
4594  */
4595 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4596 		unsigned long start_pfn, enum memmap_context context)
4597 {
4598 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4599 	unsigned long end_pfn = start_pfn + size;
4600 	pg_data_t *pgdat = NODE_DATA(nid);
4601 	unsigned long pfn;
4602 	unsigned long nr_initialised = 0;
4603 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4604 	struct memblock_region *r = NULL, *tmp;
4605 #endif
4606 
4607 	if (highest_memmap_pfn < end_pfn - 1)
4608 		highest_memmap_pfn = end_pfn - 1;
4609 
4610 	/*
4611 	 * Honor reservation requested by the driver for this ZONE_DEVICE
4612 	 * memory
4613 	 */
4614 	if (altmap && start_pfn == altmap->base_pfn)
4615 		start_pfn += altmap->reserve;
4616 
4617 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4618 		/*
4619 		 * There can be holes in boot-time mem_map[]s handed to this
4620 		 * function.  They do not exist on hotplugged memory.
4621 		 */
4622 		if (context != MEMMAP_EARLY)
4623 			goto not_early;
4624 
4625 		if (!early_pfn_valid(pfn))
4626 			continue;
4627 		if (!early_pfn_in_nid(pfn, nid))
4628 			continue;
4629 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4630 			break;
4631 
4632 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4633 		/*
4634 		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4635 		 * from zone_movable_pfn[nid] to end of each node should be
4636 		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4637 		 */
4638 		if (!mirrored_kernelcore && zone_movable_pfn[nid])
4639 			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4640 				continue;
4641 
4642 		/*
4643 		 * Check given memblock attribute by firmware which can affect
4644 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
4645 		 * mirrored, it's an overlapped memmap init. skip it.
4646 		 */
4647 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4648 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4649 				for_each_memblock(memory, tmp)
4650 					if (pfn < memblock_region_memory_end_pfn(tmp))
4651 						break;
4652 				r = tmp;
4653 			}
4654 			if (pfn >= memblock_region_memory_base_pfn(r) &&
4655 			    memblock_is_mirror(r)) {
4656 				/* already initialized as NORMAL */
4657 				pfn = memblock_region_memory_end_pfn(r);
4658 				continue;
4659 			}
4660 		}
4661 #endif
4662 
4663 not_early:
4664 		/*
4665 		 * Mark the block movable so that blocks are reserved for
4666 		 * movable at startup. This will force kernel allocations
4667 		 * to reserve their blocks rather than leaking throughout
4668 		 * the address space during boot when many long-lived
4669 		 * kernel allocations are made.
4670 		 *
4671 		 * bitmap is created for zone's valid pfn range. but memmap
4672 		 * can be created for invalid pages (for alignment)
4673 		 * check here not to call set_pageblock_migratetype() against
4674 		 * pfn out of zone.
4675 		 */
4676 		if (!(pfn & (pageblock_nr_pages - 1))) {
4677 			struct page *page = pfn_to_page(pfn);
4678 
4679 			__init_single_page(page, pfn, zone, nid);
4680 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4681 		} else {
4682 			__init_single_pfn(pfn, zone, nid);
4683 		}
4684 	}
4685 }
4686 
4687 static void __meminit zone_init_free_lists(struct zone *zone)
4688 {
4689 	unsigned int order, t;
4690 	for_each_migratetype_order(order, t) {
4691 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4692 		zone->free_area[order].nr_free = 0;
4693 	}
4694 }
4695 
4696 #ifndef __HAVE_ARCH_MEMMAP_INIT
4697 #define memmap_init(size, nid, zone, start_pfn) \
4698 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4699 #endif
4700 
4701 static int zone_batchsize(struct zone *zone)
4702 {
4703 #ifdef CONFIG_MMU
4704 	int batch;
4705 
4706 	/*
4707 	 * The per-cpu-pages pools are set to around 1000th of the
4708 	 * size of the zone.  But no more than 1/2 of a meg.
4709 	 *
4710 	 * OK, so we don't know how big the cache is.  So guess.
4711 	 */
4712 	batch = zone->managed_pages / 1024;
4713 	if (batch * PAGE_SIZE > 512 * 1024)
4714 		batch = (512 * 1024) / PAGE_SIZE;
4715 	batch /= 4;		/* We effectively *= 4 below */
4716 	if (batch < 1)
4717 		batch = 1;
4718 
4719 	/*
4720 	 * Clamp the batch to a 2^n - 1 value. Having a power
4721 	 * of 2 value was found to be more likely to have
4722 	 * suboptimal cache aliasing properties in some cases.
4723 	 *
4724 	 * For example if 2 tasks are alternately allocating
4725 	 * batches of pages, one task can end up with a lot
4726 	 * of pages of one half of the possible page colors
4727 	 * and the other with pages of the other colors.
4728 	 */
4729 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4730 
4731 	return batch;
4732 
4733 #else
4734 	/* The deferral and batching of frees should be suppressed under NOMMU
4735 	 * conditions.
4736 	 *
4737 	 * The problem is that NOMMU needs to be able to allocate large chunks
4738 	 * of contiguous memory as there's no hardware page translation to
4739 	 * assemble apparent contiguous memory from discontiguous pages.
4740 	 *
4741 	 * Queueing large contiguous runs of pages for batching, however,
4742 	 * causes the pages to actually be freed in smaller chunks.  As there
4743 	 * can be a significant delay between the individual batches being
4744 	 * recycled, this leads to the once large chunks of space being
4745 	 * fragmented and becoming unavailable for high-order allocations.
4746 	 */
4747 	return 0;
4748 #endif
4749 }
4750 
4751 /*
4752  * pcp->high and pcp->batch values are related and dependent on one another:
4753  * ->batch must never be higher then ->high.
4754  * The following function updates them in a safe manner without read side
4755  * locking.
4756  *
4757  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4758  * those fields changing asynchronously (acording the the above rule).
4759  *
4760  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4761  * outside of boot time (or some other assurance that no concurrent updaters
4762  * exist).
4763  */
4764 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4765 		unsigned long batch)
4766 {
4767        /* start with a fail safe value for batch */
4768 	pcp->batch = 1;
4769 	smp_wmb();
4770 
4771        /* Update high, then batch, in order */
4772 	pcp->high = high;
4773 	smp_wmb();
4774 
4775 	pcp->batch = batch;
4776 }
4777 
4778 /* a companion to pageset_set_high() */
4779 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4780 {
4781 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4782 }
4783 
4784 static void pageset_init(struct per_cpu_pageset *p)
4785 {
4786 	struct per_cpu_pages *pcp;
4787 	int migratetype;
4788 
4789 	memset(p, 0, sizeof(*p));
4790 
4791 	pcp = &p->pcp;
4792 	pcp->count = 0;
4793 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4794 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4795 }
4796 
4797 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4798 {
4799 	pageset_init(p);
4800 	pageset_set_batch(p, batch);
4801 }
4802 
4803 /*
4804  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4805  * to the value high for the pageset p.
4806  */
4807 static void pageset_set_high(struct per_cpu_pageset *p,
4808 				unsigned long high)
4809 {
4810 	unsigned long batch = max(1UL, high / 4);
4811 	if ((high / 4) > (PAGE_SHIFT * 8))
4812 		batch = PAGE_SHIFT * 8;
4813 
4814 	pageset_update(&p->pcp, high, batch);
4815 }
4816 
4817 static void pageset_set_high_and_batch(struct zone *zone,
4818 				       struct per_cpu_pageset *pcp)
4819 {
4820 	if (percpu_pagelist_fraction)
4821 		pageset_set_high(pcp,
4822 			(zone->managed_pages /
4823 				percpu_pagelist_fraction));
4824 	else
4825 		pageset_set_batch(pcp, zone_batchsize(zone));
4826 }
4827 
4828 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4829 {
4830 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4831 
4832 	pageset_init(pcp);
4833 	pageset_set_high_and_batch(zone, pcp);
4834 }
4835 
4836 static void __meminit setup_zone_pageset(struct zone *zone)
4837 {
4838 	int cpu;
4839 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4840 	for_each_possible_cpu(cpu)
4841 		zone_pageset_init(zone, cpu);
4842 }
4843 
4844 /*
4845  * Allocate per cpu pagesets and initialize them.
4846  * Before this call only boot pagesets were available.
4847  */
4848 void __init setup_per_cpu_pageset(void)
4849 {
4850 	struct zone *zone;
4851 
4852 	for_each_populated_zone(zone)
4853 		setup_zone_pageset(zone);
4854 }
4855 
4856 static noinline __init_refok
4857 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4858 {
4859 	int i;
4860 	size_t alloc_size;
4861 
4862 	/*
4863 	 * The per-page waitqueue mechanism uses hashed waitqueues
4864 	 * per zone.
4865 	 */
4866 	zone->wait_table_hash_nr_entries =
4867 		 wait_table_hash_nr_entries(zone_size_pages);
4868 	zone->wait_table_bits =
4869 		wait_table_bits(zone->wait_table_hash_nr_entries);
4870 	alloc_size = zone->wait_table_hash_nr_entries
4871 					* sizeof(wait_queue_head_t);
4872 
4873 	if (!slab_is_available()) {
4874 		zone->wait_table = (wait_queue_head_t *)
4875 			memblock_virt_alloc_node_nopanic(
4876 				alloc_size, zone->zone_pgdat->node_id);
4877 	} else {
4878 		/*
4879 		 * This case means that a zone whose size was 0 gets new memory
4880 		 * via memory hot-add.
4881 		 * But it may be the case that a new node was hot-added.  In
4882 		 * this case vmalloc() will not be able to use this new node's
4883 		 * memory - this wait_table must be initialized to use this new
4884 		 * node itself as well.
4885 		 * To use this new node's memory, further consideration will be
4886 		 * necessary.
4887 		 */
4888 		zone->wait_table = vmalloc(alloc_size);
4889 	}
4890 	if (!zone->wait_table)
4891 		return -ENOMEM;
4892 
4893 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4894 		init_waitqueue_head(zone->wait_table + i);
4895 
4896 	return 0;
4897 }
4898 
4899 static __meminit void zone_pcp_init(struct zone *zone)
4900 {
4901 	/*
4902 	 * per cpu subsystem is not up at this point. The following code
4903 	 * relies on the ability of the linker to provide the
4904 	 * offset of a (static) per cpu variable into the per cpu area.
4905 	 */
4906 	zone->pageset = &boot_pageset;
4907 
4908 	if (populated_zone(zone))
4909 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4910 			zone->name, zone->present_pages,
4911 					 zone_batchsize(zone));
4912 }
4913 
4914 int __meminit init_currently_empty_zone(struct zone *zone,
4915 					unsigned long zone_start_pfn,
4916 					unsigned long size)
4917 {
4918 	struct pglist_data *pgdat = zone->zone_pgdat;
4919 	int ret;
4920 	ret = zone_wait_table_init(zone, size);
4921 	if (ret)
4922 		return ret;
4923 	pgdat->nr_zones = zone_idx(zone) + 1;
4924 
4925 	zone->zone_start_pfn = zone_start_pfn;
4926 
4927 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4928 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4929 			pgdat->node_id,
4930 			(unsigned long)zone_idx(zone),
4931 			zone_start_pfn, (zone_start_pfn + size));
4932 
4933 	zone_init_free_lists(zone);
4934 
4935 	return 0;
4936 }
4937 
4938 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4939 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4940 
4941 /*
4942  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4943  */
4944 int __meminit __early_pfn_to_nid(unsigned long pfn,
4945 					struct mminit_pfnnid_cache *state)
4946 {
4947 	unsigned long start_pfn, end_pfn;
4948 	int nid;
4949 
4950 	if (state->last_start <= pfn && pfn < state->last_end)
4951 		return state->last_nid;
4952 
4953 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4954 	if (nid != -1) {
4955 		state->last_start = start_pfn;
4956 		state->last_end = end_pfn;
4957 		state->last_nid = nid;
4958 	}
4959 
4960 	return nid;
4961 }
4962 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4963 
4964 /**
4965  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4966  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4967  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4968  *
4969  * If an architecture guarantees that all ranges registered contain no holes
4970  * and may be freed, this this function may be used instead of calling
4971  * memblock_free_early_nid() manually.
4972  */
4973 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4974 {
4975 	unsigned long start_pfn, end_pfn;
4976 	int i, this_nid;
4977 
4978 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4979 		start_pfn = min(start_pfn, max_low_pfn);
4980 		end_pfn = min(end_pfn, max_low_pfn);
4981 
4982 		if (start_pfn < end_pfn)
4983 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4984 					(end_pfn - start_pfn) << PAGE_SHIFT,
4985 					this_nid);
4986 	}
4987 }
4988 
4989 /**
4990  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4991  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4992  *
4993  * If an architecture guarantees that all ranges registered contain no holes and may
4994  * be freed, this function may be used instead of calling memory_present() manually.
4995  */
4996 void __init sparse_memory_present_with_active_regions(int nid)
4997 {
4998 	unsigned long start_pfn, end_pfn;
4999 	int i, this_nid;
5000 
5001 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5002 		memory_present(this_nid, start_pfn, end_pfn);
5003 }
5004 
5005 /**
5006  * get_pfn_range_for_nid - Return the start and end page frames for a node
5007  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5008  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5009  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5010  *
5011  * It returns the start and end page frame of a node based on information
5012  * provided by memblock_set_node(). If called for a node
5013  * with no available memory, a warning is printed and the start and end
5014  * PFNs will be 0.
5015  */
5016 void __meminit get_pfn_range_for_nid(unsigned int nid,
5017 			unsigned long *start_pfn, unsigned long *end_pfn)
5018 {
5019 	unsigned long this_start_pfn, this_end_pfn;
5020 	int i;
5021 
5022 	*start_pfn = -1UL;
5023 	*end_pfn = 0;
5024 
5025 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5026 		*start_pfn = min(*start_pfn, this_start_pfn);
5027 		*end_pfn = max(*end_pfn, this_end_pfn);
5028 	}
5029 
5030 	if (*start_pfn == -1UL)
5031 		*start_pfn = 0;
5032 }
5033 
5034 /*
5035  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5036  * assumption is made that zones within a node are ordered in monotonic
5037  * increasing memory addresses so that the "highest" populated zone is used
5038  */
5039 static void __init find_usable_zone_for_movable(void)
5040 {
5041 	int zone_index;
5042 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5043 		if (zone_index == ZONE_MOVABLE)
5044 			continue;
5045 
5046 		if (arch_zone_highest_possible_pfn[zone_index] >
5047 				arch_zone_lowest_possible_pfn[zone_index])
5048 			break;
5049 	}
5050 
5051 	VM_BUG_ON(zone_index == -1);
5052 	movable_zone = zone_index;
5053 }
5054 
5055 /*
5056  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5057  * because it is sized independent of architecture. Unlike the other zones,
5058  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5059  * in each node depending on the size of each node and how evenly kernelcore
5060  * is distributed. This helper function adjusts the zone ranges
5061  * provided by the architecture for a given node by using the end of the
5062  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5063  * zones within a node are in order of monotonic increases memory addresses
5064  */
5065 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5066 					unsigned long zone_type,
5067 					unsigned long node_start_pfn,
5068 					unsigned long node_end_pfn,
5069 					unsigned long *zone_start_pfn,
5070 					unsigned long *zone_end_pfn)
5071 {
5072 	/* Only adjust if ZONE_MOVABLE is on this node */
5073 	if (zone_movable_pfn[nid]) {
5074 		/* Size ZONE_MOVABLE */
5075 		if (zone_type == ZONE_MOVABLE) {
5076 			*zone_start_pfn = zone_movable_pfn[nid];
5077 			*zone_end_pfn = min(node_end_pfn,
5078 				arch_zone_highest_possible_pfn[movable_zone]);
5079 
5080 		/* Check if this whole range is within ZONE_MOVABLE */
5081 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5082 			*zone_start_pfn = *zone_end_pfn;
5083 	}
5084 }
5085 
5086 /*
5087  * Return the number of pages a zone spans in a node, including holes
5088  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5089  */
5090 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5091 					unsigned long zone_type,
5092 					unsigned long node_start_pfn,
5093 					unsigned long node_end_pfn,
5094 					unsigned long *zone_start_pfn,
5095 					unsigned long *zone_end_pfn,
5096 					unsigned long *ignored)
5097 {
5098 	/* When hotadd a new node from cpu_up(), the node should be empty */
5099 	if (!node_start_pfn && !node_end_pfn)
5100 		return 0;
5101 
5102 	/* Get the start and end of the zone */
5103 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5104 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5105 	adjust_zone_range_for_zone_movable(nid, zone_type,
5106 				node_start_pfn, node_end_pfn,
5107 				zone_start_pfn, zone_end_pfn);
5108 
5109 	/* Check that this node has pages within the zone's required range */
5110 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5111 		return 0;
5112 
5113 	/* Move the zone boundaries inside the node if necessary */
5114 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5115 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5116 
5117 	/* Return the spanned pages */
5118 	return *zone_end_pfn - *zone_start_pfn;
5119 }
5120 
5121 /*
5122  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5123  * then all holes in the requested range will be accounted for.
5124  */
5125 unsigned long __meminit __absent_pages_in_range(int nid,
5126 				unsigned long range_start_pfn,
5127 				unsigned long range_end_pfn)
5128 {
5129 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5130 	unsigned long start_pfn, end_pfn;
5131 	int i;
5132 
5133 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5134 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5135 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5136 		nr_absent -= end_pfn - start_pfn;
5137 	}
5138 	return nr_absent;
5139 }
5140 
5141 /**
5142  * absent_pages_in_range - Return number of page frames in holes within a range
5143  * @start_pfn: The start PFN to start searching for holes
5144  * @end_pfn: The end PFN to stop searching for holes
5145  *
5146  * It returns the number of pages frames in memory holes within a range.
5147  */
5148 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5149 							unsigned long end_pfn)
5150 {
5151 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5152 }
5153 
5154 /* Return the number of page frames in holes in a zone on a node */
5155 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5156 					unsigned long zone_type,
5157 					unsigned long node_start_pfn,
5158 					unsigned long node_end_pfn,
5159 					unsigned long *ignored)
5160 {
5161 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5162 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5163 	unsigned long zone_start_pfn, zone_end_pfn;
5164 	unsigned long nr_absent;
5165 
5166 	/* When hotadd a new node from cpu_up(), the node should be empty */
5167 	if (!node_start_pfn && !node_end_pfn)
5168 		return 0;
5169 
5170 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5171 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5172 
5173 	adjust_zone_range_for_zone_movable(nid, zone_type,
5174 			node_start_pfn, node_end_pfn,
5175 			&zone_start_pfn, &zone_end_pfn);
5176 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5177 
5178 	/*
5179 	 * ZONE_MOVABLE handling.
5180 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5181 	 * and vice versa.
5182 	 */
5183 	if (zone_movable_pfn[nid]) {
5184 		if (mirrored_kernelcore) {
5185 			unsigned long start_pfn, end_pfn;
5186 			struct memblock_region *r;
5187 
5188 			for_each_memblock(memory, r) {
5189 				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5190 						  zone_start_pfn, zone_end_pfn);
5191 				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5192 						zone_start_pfn, zone_end_pfn);
5193 
5194 				if (zone_type == ZONE_MOVABLE &&
5195 				    memblock_is_mirror(r))
5196 					nr_absent += end_pfn - start_pfn;
5197 
5198 				if (zone_type == ZONE_NORMAL &&
5199 				    !memblock_is_mirror(r))
5200 					nr_absent += end_pfn - start_pfn;
5201 			}
5202 		} else {
5203 			if (zone_type == ZONE_NORMAL)
5204 				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5205 		}
5206 	}
5207 
5208 	return nr_absent;
5209 }
5210 
5211 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5212 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5213 					unsigned long zone_type,
5214 					unsigned long node_start_pfn,
5215 					unsigned long node_end_pfn,
5216 					unsigned long *zone_start_pfn,
5217 					unsigned long *zone_end_pfn,
5218 					unsigned long *zones_size)
5219 {
5220 	unsigned int zone;
5221 
5222 	*zone_start_pfn = node_start_pfn;
5223 	for (zone = 0; zone < zone_type; zone++)
5224 		*zone_start_pfn += zones_size[zone];
5225 
5226 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5227 
5228 	return zones_size[zone_type];
5229 }
5230 
5231 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5232 						unsigned long zone_type,
5233 						unsigned long node_start_pfn,
5234 						unsigned long node_end_pfn,
5235 						unsigned long *zholes_size)
5236 {
5237 	if (!zholes_size)
5238 		return 0;
5239 
5240 	return zholes_size[zone_type];
5241 }
5242 
5243 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5244 
5245 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5246 						unsigned long node_start_pfn,
5247 						unsigned long node_end_pfn,
5248 						unsigned long *zones_size,
5249 						unsigned long *zholes_size)
5250 {
5251 	unsigned long realtotalpages = 0, totalpages = 0;
5252 	enum zone_type i;
5253 
5254 	for (i = 0; i < MAX_NR_ZONES; i++) {
5255 		struct zone *zone = pgdat->node_zones + i;
5256 		unsigned long zone_start_pfn, zone_end_pfn;
5257 		unsigned long size, real_size;
5258 
5259 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5260 						  node_start_pfn,
5261 						  node_end_pfn,
5262 						  &zone_start_pfn,
5263 						  &zone_end_pfn,
5264 						  zones_size);
5265 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5266 						  node_start_pfn, node_end_pfn,
5267 						  zholes_size);
5268 		if (size)
5269 			zone->zone_start_pfn = zone_start_pfn;
5270 		else
5271 			zone->zone_start_pfn = 0;
5272 		zone->spanned_pages = size;
5273 		zone->present_pages = real_size;
5274 
5275 		totalpages += size;
5276 		realtotalpages += real_size;
5277 	}
5278 
5279 	pgdat->node_spanned_pages = totalpages;
5280 	pgdat->node_present_pages = realtotalpages;
5281 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5282 							realtotalpages);
5283 }
5284 
5285 #ifndef CONFIG_SPARSEMEM
5286 /*
5287  * Calculate the size of the zone->blockflags rounded to an unsigned long
5288  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5289  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5290  * round what is now in bits to nearest long in bits, then return it in
5291  * bytes.
5292  */
5293 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5294 {
5295 	unsigned long usemapsize;
5296 
5297 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5298 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5299 	usemapsize = usemapsize >> pageblock_order;
5300 	usemapsize *= NR_PAGEBLOCK_BITS;
5301 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5302 
5303 	return usemapsize / 8;
5304 }
5305 
5306 static void __init setup_usemap(struct pglist_data *pgdat,
5307 				struct zone *zone,
5308 				unsigned long zone_start_pfn,
5309 				unsigned long zonesize)
5310 {
5311 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5312 	zone->pageblock_flags = NULL;
5313 	if (usemapsize)
5314 		zone->pageblock_flags =
5315 			memblock_virt_alloc_node_nopanic(usemapsize,
5316 							 pgdat->node_id);
5317 }
5318 #else
5319 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5320 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5321 #endif /* CONFIG_SPARSEMEM */
5322 
5323 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5324 
5325 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5326 void __paginginit set_pageblock_order(void)
5327 {
5328 	unsigned int order;
5329 
5330 	/* Check that pageblock_nr_pages has not already been setup */
5331 	if (pageblock_order)
5332 		return;
5333 
5334 	if (HPAGE_SHIFT > PAGE_SHIFT)
5335 		order = HUGETLB_PAGE_ORDER;
5336 	else
5337 		order = MAX_ORDER - 1;
5338 
5339 	/*
5340 	 * Assume the largest contiguous order of interest is a huge page.
5341 	 * This value may be variable depending on boot parameters on IA64 and
5342 	 * powerpc.
5343 	 */
5344 	pageblock_order = order;
5345 }
5346 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5347 
5348 /*
5349  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5350  * is unused as pageblock_order is set at compile-time. See
5351  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5352  * the kernel config
5353  */
5354 void __paginginit set_pageblock_order(void)
5355 {
5356 }
5357 
5358 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5359 
5360 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5361 						   unsigned long present_pages)
5362 {
5363 	unsigned long pages = spanned_pages;
5364 
5365 	/*
5366 	 * Provide a more accurate estimation if there are holes within
5367 	 * the zone and SPARSEMEM is in use. If there are holes within the
5368 	 * zone, each populated memory region may cost us one or two extra
5369 	 * memmap pages due to alignment because memmap pages for each
5370 	 * populated regions may not naturally algined on page boundary.
5371 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5372 	 */
5373 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5374 	    IS_ENABLED(CONFIG_SPARSEMEM))
5375 		pages = present_pages;
5376 
5377 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5378 }
5379 
5380 /*
5381  * Set up the zone data structures:
5382  *   - mark all pages reserved
5383  *   - mark all memory queues empty
5384  *   - clear the memory bitmaps
5385  *
5386  * NOTE: pgdat should get zeroed by caller.
5387  */
5388 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5389 {
5390 	enum zone_type j;
5391 	int nid = pgdat->node_id;
5392 	int ret;
5393 
5394 	pgdat_resize_init(pgdat);
5395 #ifdef CONFIG_NUMA_BALANCING
5396 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5397 	pgdat->numabalancing_migrate_nr_pages = 0;
5398 	pgdat->numabalancing_migrate_next_window = jiffies;
5399 #endif
5400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5401 	spin_lock_init(&pgdat->split_queue_lock);
5402 	INIT_LIST_HEAD(&pgdat->split_queue);
5403 	pgdat->split_queue_len = 0;
5404 #endif
5405 	init_waitqueue_head(&pgdat->kswapd_wait);
5406 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5407 	pgdat_page_ext_init(pgdat);
5408 
5409 	for (j = 0; j < MAX_NR_ZONES; j++) {
5410 		struct zone *zone = pgdat->node_zones + j;
5411 		unsigned long size, realsize, freesize, memmap_pages;
5412 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5413 
5414 		size = zone->spanned_pages;
5415 		realsize = freesize = zone->present_pages;
5416 
5417 		/*
5418 		 * Adjust freesize so that it accounts for how much memory
5419 		 * is used by this zone for memmap. This affects the watermark
5420 		 * and per-cpu initialisations
5421 		 */
5422 		memmap_pages = calc_memmap_size(size, realsize);
5423 		if (!is_highmem_idx(j)) {
5424 			if (freesize >= memmap_pages) {
5425 				freesize -= memmap_pages;
5426 				if (memmap_pages)
5427 					printk(KERN_DEBUG
5428 					       "  %s zone: %lu pages used for memmap\n",
5429 					       zone_names[j], memmap_pages);
5430 			} else
5431 				printk(KERN_WARNING
5432 					"  %s zone: %lu pages exceeds freesize %lu\n",
5433 					zone_names[j], memmap_pages, freesize);
5434 		}
5435 
5436 		/* Account for reserved pages */
5437 		if (j == 0 && freesize > dma_reserve) {
5438 			freesize -= dma_reserve;
5439 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5440 					zone_names[0], dma_reserve);
5441 		}
5442 
5443 		if (!is_highmem_idx(j))
5444 			nr_kernel_pages += freesize;
5445 		/* Charge for highmem memmap if there are enough kernel pages */
5446 		else if (nr_kernel_pages > memmap_pages * 2)
5447 			nr_kernel_pages -= memmap_pages;
5448 		nr_all_pages += freesize;
5449 
5450 		/*
5451 		 * Set an approximate value for lowmem here, it will be adjusted
5452 		 * when the bootmem allocator frees pages into the buddy system.
5453 		 * And all highmem pages will be managed by the buddy system.
5454 		 */
5455 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5456 #ifdef CONFIG_NUMA
5457 		zone->node = nid;
5458 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5459 						/ 100;
5460 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5461 #endif
5462 		zone->name = zone_names[j];
5463 		spin_lock_init(&zone->lock);
5464 		spin_lock_init(&zone->lru_lock);
5465 		zone_seqlock_init(zone);
5466 		zone->zone_pgdat = pgdat;
5467 		zone_pcp_init(zone);
5468 
5469 		/* For bootup, initialized properly in watermark setup */
5470 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5471 
5472 		lruvec_init(&zone->lruvec);
5473 		if (!size)
5474 			continue;
5475 
5476 		set_pageblock_order();
5477 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5478 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5479 		BUG_ON(ret);
5480 		memmap_init(size, nid, j, zone_start_pfn);
5481 	}
5482 }
5483 
5484 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5485 {
5486 	unsigned long __maybe_unused start = 0;
5487 	unsigned long __maybe_unused offset = 0;
5488 
5489 	/* Skip empty nodes */
5490 	if (!pgdat->node_spanned_pages)
5491 		return;
5492 
5493 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5494 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5495 	offset = pgdat->node_start_pfn - start;
5496 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5497 	if (!pgdat->node_mem_map) {
5498 		unsigned long size, end;
5499 		struct page *map;
5500 
5501 		/*
5502 		 * The zone's endpoints aren't required to be MAX_ORDER
5503 		 * aligned but the node_mem_map endpoints must be in order
5504 		 * for the buddy allocator to function correctly.
5505 		 */
5506 		end = pgdat_end_pfn(pgdat);
5507 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5508 		size =  (end - start) * sizeof(struct page);
5509 		map = alloc_remap(pgdat->node_id, size);
5510 		if (!map)
5511 			map = memblock_virt_alloc_node_nopanic(size,
5512 							       pgdat->node_id);
5513 		pgdat->node_mem_map = map + offset;
5514 	}
5515 #ifndef CONFIG_NEED_MULTIPLE_NODES
5516 	/*
5517 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5518 	 */
5519 	if (pgdat == NODE_DATA(0)) {
5520 		mem_map = NODE_DATA(0)->node_mem_map;
5521 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5522 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5523 			mem_map -= offset;
5524 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5525 	}
5526 #endif
5527 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5528 }
5529 
5530 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5531 		unsigned long node_start_pfn, unsigned long *zholes_size)
5532 {
5533 	pg_data_t *pgdat = NODE_DATA(nid);
5534 	unsigned long start_pfn = 0;
5535 	unsigned long end_pfn = 0;
5536 
5537 	/* pg_data_t should be reset to zero when it's allocated */
5538 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5539 
5540 	reset_deferred_meminit(pgdat);
5541 	pgdat->node_id = nid;
5542 	pgdat->node_start_pfn = node_start_pfn;
5543 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5544 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5545 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5546 		(u64)start_pfn << PAGE_SHIFT,
5547 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5548 #else
5549 	start_pfn = node_start_pfn;
5550 #endif
5551 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5552 				  zones_size, zholes_size);
5553 
5554 	alloc_node_mem_map(pgdat);
5555 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5556 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5557 		nid, (unsigned long)pgdat,
5558 		(unsigned long)pgdat->node_mem_map);
5559 #endif
5560 
5561 	free_area_init_core(pgdat);
5562 }
5563 
5564 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5565 
5566 #if MAX_NUMNODES > 1
5567 /*
5568  * Figure out the number of possible node ids.
5569  */
5570 void __init setup_nr_node_ids(void)
5571 {
5572 	unsigned int highest;
5573 
5574 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5575 	nr_node_ids = highest + 1;
5576 }
5577 #endif
5578 
5579 /**
5580  * node_map_pfn_alignment - determine the maximum internode alignment
5581  *
5582  * This function should be called after node map is populated and sorted.
5583  * It calculates the maximum power of two alignment which can distinguish
5584  * all the nodes.
5585  *
5586  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5587  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5588  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5589  * shifted, 1GiB is enough and this function will indicate so.
5590  *
5591  * This is used to test whether pfn -> nid mapping of the chosen memory
5592  * model has fine enough granularity to avoid incorrect mapping for the
5593  * populated node map.
5594  *
5595  * Returns the determined alignment in pfn's.  0 if there is no alignment
5596  * requirement (single node).
5597  */
5598 unsigned long __init node_map_pfn_alignment(void)
5599 {
5600 	unsigned long accl_mask = 0, last_end = 0;
5601 	unsigned long start, end, mask;
5602 	int last_nid = -1;
5603 	int i, nid;
5604 
5605 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5606 		if (!start || last_nid < 0 || last_nid == nid) {
5607 			last_nid = nid;
5608 			last_end = end;
5609 			continue;
5610 		}
5611 
5612 		/*
5613 		 * Start with a mask granular enough to pin-point to the
5614 		 * start pfn and tick off bits one-by-one until it becomes
5615 		 * too coarse to separate the current node from the last.
5616 		 */
5617 		mask = ~((1 << __ffs(start)) - 1);
5618 		while (mask && last_end <= (start & (mask << 1)))
5619 			mask <<= 1;
5620 
5621 		/* accumulate all internode masks */
5622 		accl_mask |= mask;
5623 	}
5624 
5625 	/* convert mask to number of pages */
5626 	return ~accl_mask + 1;
5627 }
5628 
5629 /* Find the lowest pfn for a node */
5630 static unsigned long __init find_min_pfn_for_node(int nid)
5631 {
5632 	unsigned long min_pfn = ULONG_MAX;
5633 	unsigned long start_pfn;
5634 	int i;
5635 
5636 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5637 		min_pfn = min(min_pfn, start_pfn);
5638 
5639 	if (min_pfn == ULONG_MAX) {
5640 		printk(KERN_WARNING
5641 			"Could not find start_pfn for node %d\n", nid);
5642 		return 0;
5643 	}
5644 
5645 	return min_pfn;
5646 }
5647 
5648 /**
5649  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5650  *
5651  * It returns the minimum PFN based on information provided via
5652  * memblock_set_node().
5653  */
5654 unsigned long __init find_min_pfn_with_active_regions(void)
5655 {
5656 	return find_min_pfn_for_node(MAX_NUMNODES);
5657 }
5658 
5659 /*
5660  * early_calculate_totalpages()
5661  * Sum pages in active regions for movable zone.
5662  * Populate N_MEMORY for calculating usable_nodes.
5663  */
5664 static unsigned long __init early_calculate_totalpages(void)
5665 {
5666 	unsigned long totalpages = 0;
5667 	unsigned long start_pfn, end_pfn;
5668 	int i, nid;
5669 
5670 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5671 		unsigned long pages = end_pfn - start_pfn;
5672 
5673 		totalpages += pages;
5674 		if (pages)
5675 			node_set_state(nid, N_MEMORY);
5676 	}
5677 	return totalpages;
5678 }
5679 
5680 /*
5681  * Find the PFN the Movable zone begins in each node. Kernel memory
5682  * is spread evenly between nodes as long as the nodes have enough
5683  * memory. When they don't, some nodes will have more kernelcore than
5684  * others
5685  */
5686 static void __init find_zone_movable_pfns_for_nodes(void)
5687 {
5688 	int i, nid;
5689 	unsigned long usable_startpfn;
5690 	unsigned long kernelcore_node, kernelcore_remaining;
5691 	/* save the state before borrow the nodemask */
5692 	nodemask_t saved_node_state = node_states[N_MEMORY];
5693 	unsigned long totalpages = early_calculate_totalpages();
5694 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5695 	struct memblock_region *r;
5696 
5697 	/* Need to find movable_zone earlier when movable_node is specified. */
5698 	find_usable_zone_for_movable();
5699 
5700 	/*
5701 	 * If movable_node is specified, ignore kernelcore and movablecore
5702 	 * options.
5703 	 */
5704 	if (movable_node_is_enabled()) {
5705 		for_each_memblock(memory, r) {
5706 			if (!memblock_is_hotpluggable(r))
5707 				continue;
5708 
5709 			nid = r->nid;
5710 
5711 			usable_startpfn = PFN_DOWN(r->base);
5712 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5713 				min(usable_startpfn, zone_movable_pfn[nid]) :
5714 				usable_startpfn;
5715 		}
5716 
5717 		goto out2;
5718 	}
5719 
5720 	/*
5721 	 * If kernelcore=mirror is specified, ignore movablecore option
5722 	 */
5723 	if (mirrored_kernelcore) {
5724 		bool mem_below_4gb_not_mirrored = false;
5725 
5726 		for_each_memblock(memory, r) {
5727 			if (memblock_is_mirror(r))
5728 				continue;
5729 
5730 			nid = r->nid;
5731 
5732 			usable_startpfn = memblock_region_memory_base_pfn(r);
5733 
5734 			if (usable_startpfn < 0x100000) {
5735 				mem_below_4gb_not_mirrored = true;
5736 				continue;
5737 			}
5738 
5739 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5740 				min(usable_startpfn, zone_movable_pfn[nid]) :
5741 				usable_startpfn;
5742 		}
5743 
5744 		if (mem_below_4gb_not_mirrored)
5745 			pr_warn("This configuration results in unmirrored kernel memory.");
5746 
5747 		goto out2;
5748 	}
5749 
5750 	/*
5751 	 * If movablecore=nn[KMG] was specified, calculate what size of
5752 	 * kernelcore that corresponds so that memory usable for
5753 	 * any allocation type is evenly spread. If both kernelcore
5754 	 * and movablecore are specified, then the value of kernelcore
5755 	 * will be used for required_kernelcore if it's greater than
5756 	 * what movablecore would have allowed.
5757 	 */
5758 	if (required_movablecore) {
5759 		unsigned long corepages;
5760 
5761 		/*
5762 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5763 		 * was requested by the user
5764 		 */
5765 		required_movablecore =
5766 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5767 		required_movablecore = min(totalpages, required_movablecore);
5768 		corepages = totalpages - required_movablecore;
5769 
5770 		required_kernelcore = max(required_kernelcore, corepages);
5771 	}
5772 
5773 	/*
5774 	 * If kernelcore was not specified or kernelcore size is larger
5775 	 * than totalpages, there is no ZONE_MOVABLE.
5776 	 */
5777 	if (!required_kernelcore || required_kernelcore >= totalpages)
5778 		goto out;
5779 
5780 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5781 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5782 
5783 restart:
5784 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5785 	kernelcore_node = required_kernelcore / usable_nodes;
5786 	for_each_node_state(nid, N_MEMORY) {
5787 		unsigned long start_pfn, end_pfn;
5788 
5789 		/*
5790 		 * Recalculate kernelcore_node if the division per node
5791 		 * now exceeds what is necessary to satisfy the requested
5792 		 * amount of memory for the kernel
5793 		 */
5794 		if (required_kernelcore < kernelcore_node)
5795 			kernelcore_node = required_kernelcore / usable_nodes;
5796 
5797 		/*
5798 		 * As the map is walked, we track how much memory is usable
5799 		 * by the kernel using kernelcore_remaining. When it is
5800 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5801 		 */
5802 		kernelcore_remaining = kernelcore_node;
5803 
5804 		/* Go through each range of PFNs within this node */
5805 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5806 			unsigned long size_pages;
5807 
5808 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5809 			if (start_pfn >= end_pfn)
5810 				continue;
5811 
5812 			/* Account for what is only usable for kernelcore */
5813 			if (start_pfn < usable_startpfn) {
5814 				unsigned long kernel_pages;
5815 				kernel_pages = min(end_pfn, usable_startpfn)
5816 								- start_pfn;
5817 
5818 				kernelcore_remaining -= min(kernel_pages,
5819 							kernelcore_remaining);
5820 				required_kernelcore -= min(kernel_pages,
5821 							required_kernelcore);
5822 
5823 				/* Continue if range is now fully accounted */
5824 				if (end_pfn <= usable_startpfn) {
5825 
5826 					/*
5827 					 * Push zone_movable_pfn to the end so
5828 					 * that if we have to rebalance
5829 					 * kernelcore across nodes, we will
5830 					 * not double account here
5831 					 */
5832 					zone_movable_pfn[nid] = end_pfn;
5833 					continue;
5834 				}
5835 				start_pfn = usable_startpfn;
5836 			}
5837 
5838 			/*
5839 			 * The usable PFN range for ZONE_MOVABLE is from
5840 			 * start_pfn->end_pfn. Calculate size_pages as the
5841 			 * number of pages used as kernelcore
5842 			 */
5843 			size_pages = end_pfn - start_pfn;
5844 			if (size_pages > kernelcore_remaining)
5845 				size_pages = kernelcore_remaining;
5846 			zone_movable_pfn[nid] = start_pfn + size_pages;
5847 
5848 			/*
5849 			 * Some kernelcore has been met, update counts and
5850 			 * break if the kernelcore for this node has been
5851 			 * satisfied
5852 			 */
5853 			required_kernelcore -= min(required_kernelcore,
5854 								size_pages);
5855 			kernelcore_remaining -= size_pages;
5856 			if (!kernelcore_remaining)
5857 				break;
5858 		}
5859 	}
5860 
5861 	/*
5862 	 * If there is still required_kernelcore, we do another pass with one
5863 	 * less node in the count. This will push zone_movable_pfn[nid] further
5864 	 * along on the nodes that still have memory until kernelcore is
5865 	 * satisfied
5866 	 */
5867 	usable_nodes--;
5868 	if (usable_nodes && required_kernelcore > usable_nodes)
5869 		goto restart;
5870 
5871 out2:
5872 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5873 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5874 		zone_movable_pfn[nid] =
5875 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5876 
5877 out:
5878 	/* restore the node_state */
5879 	node_states[N_MEMORY] = saved_node_state;
5880 }
5881 
5882 /* Any regular or high memory on that node ? */
5883 static void check_for_memory(pg_data_t *pgdat, int nid)
5884 {
5885 	enum zone_type zone_type;
5886 
5887 	if (N_MEMORY == N_NORMAL_MEMORY)
5888 		return;
5889 
5890 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5891 		struct zone *zone = &pgdat->node_zones[zone_type];
5892 		if (populated_zone(zone)) {
5893 			node_set_state(nid, N_HIGH_MEMORY);
5894 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5895 			    zone_type <= ZONE_NORMAL)
5896 				node_set_state(nid, N_NORMAL_MEMORY);
5897 			break;
5898 		}
5899 	}
5900 }
5901 
5902 /**
5903  * free_area_init_nodes - Initialise all pg_data_t and zone data
5904  * @max_zone_pfn: an array of max PFNs for each zone
5905  *
5906  * This will call free_area_init_node() for each active node in the system.
5907  * Using the page ranges provided by memblock_set_node(), the size of each
5908  * zone in each node and their holes is calculated. If the maximum PFN
5909  * between two adjacent zones match, it is assumed that the zone is empty.
5910  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5911  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5912  * starts where the previous one ended. For example, ZONE_DMA32 starts
5913  * at arch_max_dma_pfn.
5914  */
5915 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5916 {
5917 	unsigned long start_pfn, end_pfn;
5918 	int i, nid;
5919 
5920 	/* Record where the zone boundaries are */
5921 	memset(arch_zone_lowest_possible_pfn, 0,
5922 				sizeof(arch_zone_lowest_possible_pfn));
5923 	memset(arch_zone_highest_possible_pfn, 0,
5924 				sizeof(arch_zone_highest_possible_pfn));
5925 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5926 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5927 	for (i = 1; i < MAX_NR_ZONES; i++) {
5928 		if (i == ZONE_MOVABLE)
5929 			continue;
5930 		arch_zone_lowest_possible_pfn[i] =
5931 			arch_zone_highest_possible_pfn[i-1];
5932 		arch_zone_highest_possible_pfn[i] =
5933 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5934 	}
5935 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5936 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5937 
5938 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5939 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5940 	find_zone_movable_pfns_for_nodes();
5941 
5942 	/* Print out the zone ranges */
5943 	pr_info("Zone ranges:\n");
5944 	for (i = 0; i < MAX_NR_ZONES; i++) {
5945 		if (i == ZONE_MOVABLE)
5946 			continue;
5947 		pr_info("  %-8s ", zone_names[i]);
5948 		if (arch_zone_lowest_possible_pfn[i] ==
5949 				arch_zone_highest_possible_pfn[i])
5950 			pr_cont("empty\n");
5951 		else
5952 			pr_cont("[mem %#018Lx-%#018Lx]\n",
5953 				(u64)arch_zone_lowest_possible_pfn[i]
5954 					<< PAGE_SHIFT,
5955 				((u64)arch_zone_highest_possible_pfn[i]
5956 					<< PAGE_SHIFT) - 1);
5957 	}
5958 
5959 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5960 	pr_info("Movable zone start for each node\n");
5961 	for (i = 0; i < MAX_NUMNODES; i++) {
5962 		if (zone_movable_pfn[i])
5963 			pr_info("  Node %d: %#018Lx\n", i,
5964 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5965 	}
5966 
5967 	/* Print out the early node map */
5968 	pr_info("Early memory node ranges\n");
5969 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5970 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5971 			(u64)start_pfn << PAGE_SHIFT,
5972 			((u64)end_pfn << PAGE_SHIFT) - 1);
5973 
5974 	/* Initialise every node */
5975 	mminit_verify_pageflags_layout();
5976 	setup_nr_node_ids();
5977 	for_each_online_node(nid) {
5978 		pg_data_t *pgdat = NODE_DATA(nid);
5979 		free_area_init_node(nid, NULL,
5980 				find_min_pfn_for_node(nid), NULL);
5981 
5982 		/* Any memory on that node */
5983 		if (pgdat->node_present_pages)
5984 			node_set_state(nid, N_MEMORY);
5985 		check_for_memory(pgdat, nid);
5986 	}
5987 }
5988 
5989 static int __init cmdline_parse_core(char *p, unsigned long *core)
5990 {
5991 	unsigned long long coremem;
5992 	if (!p)
5993 		return -EINVAL;
5994 
5995 	coremem = memparse(p, &p);
5996 	*core = coremem >> PAGE_SHIFT;
5997 
5998 	/* Paranoid check that UL is enough for the coremem value */
5999 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6000 
6001 	return 0;
6002 }
6003 
6004 /*
6005  * kernelcore=size sets the amount of memory for use for allocations that
6006  * cannot be reclaimed or migrated.
6007  */
6008 static int __init cmdline_parse_kernelcore(char *p)
6009 {
6010 	/* parse kernelcore=mirror */
6011 	if (parse_option_str(p, "mirror")) {
6012 		mirrored_kernelcore = true;
6013 		return 0;
6014 	}
6015 
6016 	return cmdline_parse_core(p, &required_kernelcore);
6017 }
6018 
6019 /*
6020  * movablecore=size sets the amount of memory for use for allocations that
6021  * can be reclaimed or migrated.
6022  */
6023 static int __init cmdline_parse_movablecore(char *p)
6024 {
6025 	return cmdline_parse_core(p, &required_movablecore);
6026 }
6027 
6028 early_param("kernelcore", cmdline_parse_kernelcore);
6029 early_param("movablecore", cmdline_parse_movablecore);
6030 
6031 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6032 
6033 void adjust_managed_page_count(struct page *page, long count)
6034 {
6035 	spin_lock(&managed_page_count_lock);
6036 	page_zone(page)->managed_pages += count;
6037 	totalram_pages += count;
6038 #ifdef CONFIG_HIGHMEM
6039 	if (PageHighMem(page))
6040 		totalhigh_pages += count;
6041 #endif
6042 	spin_unlock(&managed_page_count_lock);
6043 }
6044 EXPORT_SYMBOL(adjust_managed_page_count);
6045 
6046 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6047 {
6048 	void *pos;
6049 	unsigned long pages = 0;
6050 
6051 	start = (void *)PAGE_ALIGN((unsigned long)start);
6052 	end = (void *)((unsigned long)end & PAGE_MASK);
6053 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6054 		if ((unsigned int)poison <= 0xFF)
6055 			memset(pos, poison, PAGE_SIZE);
6056 		free_reserved_page(virt_to_page(pos));
6057 	}
6058 
6059 	if (pages && s)
6060 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6061 			s, pages << (PAGE_SHIFT - 10), start, end);
6062 
6063 	return pages;
6064 }
6065 EXPORT_SYMBOL(free_reserved_area);
6066 
6067 #ifdef	CONFIG_HIGHMEM
6068 void free_highmem_page(struct page *page)
6069 {
6070 	__free_reserved_page(page);
6071 	totalram_pages++;
6072 	page_zone(page)->managed_pages++;
6073 	totalhigh_pages++;
6074 }
6075 #endif
6076 
6077 
6078 void __init mem_init_print_info(const char *str)
6079 {
6080 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6081 	unsigned long init_code_size, init_data_size;
6082 
6083 	physpages = get_num_physpages();
6084 	codesize = _etext - _stext;
6085 	datasize = _edata - _sdata;
6086 	rosize = __end_rodata - __start_rodata;
6087 	bss_size = __bss_stop - __bss_start;
6088 	init_data_size = __init_end - __init_begin;
6089 	init_code_size = _einittext - _sinittext;
6090 
6091 	/*
6092 	 * Detect special cases and adjust section sizes accordingly:
6093 	 * 1) .init.* may be embedded into .data sections
6094 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6095 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6096 	 * 3) .rodata.* may be embedded into .text or .data sections.
6097 	 */
6098 #define adj_init_size(start, end, size, pos, adj) \
6099 	do { \
6100 		if (start <= pos && pos < end && size > adj) \
6101 			size -= adj; \
6102 	} while (0)
6103 
6104 	adj_init_size(__init_begin, __init_end, init_data_size,
6105 		     _sinittext, init_code_size);
6106 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6107 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6108 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6109 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6110 
6111 #undef	adj_init_size
6112 
6113 	pr_info("Memory: %luK/%luK available "
6114 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
6115 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
6116 #ifdef	CONFIG_HIGHMEM
6117 	       ", %luK highmem"
6118 #endif
6119 	       "%s%s)\n",
6120 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6121 	       codesize >> 10, datasize >> 10, rosize >> 10,
6122 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
6123 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6124 	       totalcma_pages << (PAGE_SHIFT-10),
6125 #ifdef	CONFIG_HIGHMEM
6126 	       totalhigh_pages << (PAGE_SHIFT-10),
6127 #endif
6128 	       str ? ", " : "", str ? str : "");
6129 }
6130 
6131 /**
6132  * set_dma_reserve - set the specified number of pages reserved in the first zone
6133  * @new_dma_reserve: The number of pages to mark reserved
6134  *
6135  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6136  * In the DMA zone, a significant percentage may be consumed by kernel image
6137  * and other unfreeable allocations which can skew the watermarks badly. This
6138  * function may optionally be used to account for unfreeable pages in the
6139  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6140  * smaller per-cpu batchsize.
6141  */
6142 void __init set_dma_reserve(unsigned long new_dma_reserve)
6143 {
6144 	dma_reserve = new_dma_reserve;
6145 }
6146 
6147 void __init free_area_init(unsigned long *zones_size)
6148 {
6149 	free_area_init_node(0, zones_size,
6150 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6151 }
6152 
6153 static int page_alloc_cpu_notify(struct notifier_block *self,
6154 				 unsigned long action, void *hcpu)
6155 {
6156 	int cpu = (unsigned long)hcpu;
6157 
6158 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6159 		lru_add_drain_cpu(cpu);
6160 		drain_pages(cpu);
6161 
6162 		/*
6163 		 * Spill the event counters of the dead processor
6164 		 * into the current processors event counters.
6165 		 * This artificially elevates the count of the current
6166 		 * processor.
6167 		 */
6168 		vm_events_fold_cpu(cpu);
6169 
6170 		/*
6171 		 * Zero the differential counters of the dead processor
6172 		 * so that the vm statistics are consistent.
6173 		 *
6174 		 * This is only okay since the processor is dead and cannot
6175 		 * race with what we are doing.
6176 		 */
6177 		cpu_vm_stats_fold(cpu);
6178 	}
6179 	return NOTIFY_OK;
6180 }
6181 
6182 void __init page_alloc_init(void)
6183 {
6184 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6185 }
6186 
6187 /*
6188  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6189  *	or min_free_kbytes changes.
6190  */
6191 static void calculate_totalreserve_pages(void)
6192 {
6193 	struct pglist_data *pgdat;
6194 	unsigned long reserve_pages = 0;
6195 	enum zone_type i, j;
6196 
6197 	for_each_online_pgdat(pgdat) {
6198 		for (i = 0; i < MAX_NR_ZONES; i++) {
6199 			struct zone *zone = pgdat->node_zones + i;
6200 			long max = 0;
6201 
6202 			/* Find valid and maximum lowmem_reserve in the zone */
6203 			for (j = i; j < MAX_NR_ZONES; j++) {
6204 				if (zone->lowmem_reserve[j] > max)
6205 					max = zone->lowmem_reserve[j];
6206 			}
6207 
6208 			/* we treat the high watermark as reserved pages. */
6209 			max += high_wmark_pages(zone);
6210 
6211 			if (max > zone->managed_pages)
6212 				max = zone->managed_pages;
6213 
6214 			zone->totalreserve_pages = max;
6215 
6216 			reserve_pages += max;
6217 		}
6218 	}
6219 	totalreserve_pages = reserve_pages;
6220 }
6221 
6222 /*
6223  * setup_per_zone_lowmem_reserve - called whenever
6224  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6225  *	has a correct pages reserved value, so an adequate number of
6226  *	pages are left in the zone after a successful __alloc_pages().
6227  */
6228 static void setup_per_zone_lowmem_reserve(void)
6229 {
6230 	struct pglist_data *pgdat;
6231 	enum zone_type j, idx;
6232 
6233 	for_each_online_pgdat(pgdat) {
6234 		for (j = 0; j < MAX_NR_ZONES; j++) {
6235 			struct zone *zone = pgdat->node_zones + j;
6236 			unsigned long managed_pages = zone->managed_pages;
6237 
6238 			zone->lowmem_reserve[j] = 0;
6239 
6240 			idx = j;
6241 			while (idx) {
6242 				struct zone *lower_zone;
6243 
6244 				idx--;
6245 
6246 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6247 					sysctl_lowmem_reserve_ratio[idx] = 1;
6248 
6249 				lower_zone = pgdat->node_zones + idx;
6250 				lower_zone->lowmem_reserve[j] = managed_pages /
6251 					sysctl_lowmem_reserve_ratio[idx];
6252 				managed_pages += lower_zone->managed_pages;
6253 			}
6254 		}
6255 	}
6256 
6257 	/* update totalreserve_pages */
6258 	calculate_totalreserve_pages();
6259 }
6260 
6261 static void __setup_per_zone_wmarks(void)
6262 {
6263 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6264 	unsigned long lowmem_pages = 0;
6265 	struct zone *zone;
6266 	unsigned long flags;
6267 
6268 	/* Calculate total number of !ZONE_HIGHMEM pages */
6269 	for_each_zone(zone) {
6270 		if (!is_highmem(zone))
6271 			lowmem_pages += zone->managed_pages;
6272 	}
6273 
6274 	for_each_zone(zone) {
6275 		u64 tmp;
6276 
6277 		spin_lock_irqsave(&zone->lock, flags);
6278 		tmp = (u64)pages_min * zone->managed_pages;
6279 		do_div(tmp, lowmem_pages);
6280 		if (is_highmem(zone)) {
6281 			/*
6282 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6283 			 * need highmem pages, so cap pages_min to a small
6284 			 * value here.
6285 			 *
6286 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6287 			 * deltas control asynch page reclaim, and so should
6288 			 * not be capped for highmem.
6289 			 */
6290 			unsigned long min_pages;
6291 
6292 			min_pages = zone->managed_pages / 1024;
6293 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6294 			zone->watermark[WMARK_MIN] = min_pages;
6295 		} else {
6296 			/*
6297 			 * If it's a lowmem zone, reserve a number of pages
6298 			 * proportionate to the zone's size.
6299 			 */
6300 			zone->watermark[WMARK_MIN] = tmp;
6301 		}
6302 
6303 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
6304 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6305 
6306 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6307 			high_wmark_pages(zone) - low_wmark_pages(zone) -
6308 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6309 
6310 		spin_unlock_irqrestore(&zone->lock, flags);
6311 	}
6312 
6313 	/* update totalreserve_pages */
6314 	calculate_totalreserve_pages();
6315 }
6316 
6317 /**
6318  * setup_per_zone_wmarks - called when min_free_kbytes changes
6319  * or when memory is hot-{added|removed}
6320  *
6321  * Ensures that the watermark[min,low,high] values for each zone are set
6322  * correctly with respect to min_free_kbytes.
6323  */
6324 void setup_per_zone_wmarks(void)
6325 {
6326 	mutex_lock(&zonelists_mutex);
6327 	__setup_per_zone_wmarks();
6328 	mutex_unlock(&zonelists_mutex);
6329 }
6330 
6331 /*
6332  * The inactive anon list should be small enough that the VM never has to
6333  * do too much work, but large enough that each inactive page has a chance
6334  * to be referenced again before it is swapped out.
6335  *
6336  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6337  * INACTIVE_ANON pages on this zone's LRU, maintained by the
6338  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6339  * the anonymous pages are kept on the inactive list.
6340  *
6341  * total     target    max
6342  * memory    ratio     inactive anon
6343  * -------------------------------------
6344  *   10MB       1         5MB
6345  *  100MB       1        50MB
6346  *    1GB       3       250MB
6347  *   10GB      10       0.9GB
6348  *  100GB      31         3GB
6349  *    1TB     101        10GB
6350  *   10TB     320        32GB
6351  */
6352 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6353 {
6354 	unsigned int gb, ratio;
6355 
6356 	/* Zone size in gigabytes */
6357 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6358 	if (gb)
6359 		ratio = int_sqrt(10 * gb);
6360 	else
6361 		ratio = 1;
6362 
6363 	zone->inactive_ratio = ratio;
6364 }
6365 
6366 static void __meminit setup_per_zone_inactive_ratio(void)
6367 {
6368 	struct zone *zone;
6369 
6370 	for_each_zone(zone)
6371 		calculate_zone_inactive_ratio(zone);
6372 }
6373 
6374 /*
6375  * Initialise min_free_kbytes.
6376  *
6377  * For small machines we want it small (128k min).  For large machines
6378  * we want it large (64MB max).  But it is not linear, because network
6379  * bandwidth does not increase linearly with machine size.  We use
6380  *
6381  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6382  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6383  *
6384  * which yields
6385  *
6386  * 16MB:	512k
6387  * 32MB:	724k
6388  * 64MB:	1024k
6389  * 128MB:	1448k
6390  * 256MB:	2048k
6391  * 512MB:	2896k
6392  * 1024MB:	4096k
6393  * 2048MB:	5792k
6394  * 4096MB:	8192k
6395  * 8192MB:	11584k
6396  * 16384MB:	16384k
6397  */
6398 int __meminit init_per_zone_wmark_min(void)
6399 {
6400 	unsigned long lowmem_kbytes;
6401 	int new_min_free_kbytes;
6402 
6403 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6404 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6405 
6406 	if (new_min_free_kbytes > user_min_free_kbytes) {
6407 		min_free_kbytes = new_min_free_kbytes;
6408 		if (min_free_kbytes < 128)
6409 			min_free_kbytes = 128;
6410 		if (min_free_kbytes > 65536)
6411 			min_free_kbytes = 65536;
6412 	} else {
6413 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6414 				new_min_free_kbytes, user_min_free_kbytes);
6415 	}
6416 	setup_per_zone_wmarks();
6417 	refresh_zone_stat_thresholds();
6418 	setup_per_zone_lowmem_reserve();
6419 	setup_per_zone_inactive_ratio();
6420 	return 0;
6421 }
6422 module_init(init_per_zone_wmark_min)
6423 
6424 /*
6425  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6426  *	that we can call two helper functions whenever min_free_kbytes
6427  *	changes.
6428  */
6429 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6430 	void __user *buffer, size_t *length, loff_t *ppos)
6431 {
6432 	int rc;
6433 
6434 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6435 	if (rc)
6436 		return rc;
6437 
6438 	if (write) {
6439 		user_min_free_kbytes = min_free_kbytes;
6440 		setup_per_zone_wmarks();
6441 	}
6442 	return 0;
6443 }
6444 
6445 #ifdef CONFIG_NUMA
6446 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6447 	void __user *buffer, size_t *length, loff_t *ppos)
6448 {
6449 	struct zone *zone;
6450 	int rc;
6451 
6452 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6453 	if (rc)
6454 		return rc;
6455 
6456 	for_each_zone(zone)
6457 		zone->min_unmapped_pages = (zone->managed_pages *
6458 				sysctl_min_unmapped_ratio) / 100;
6459 	return 0;
6460 }
6461 
6462 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6463 	void __user *buffer, size_t *length, loff_t *ppos)
6464 {
6465 	struct zone *zone;
6466 	int rc;
6467 
6468 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6469 	if (rc)
6470 		return rc;
6471 
6472 	for_each_zone(zone)
6473 		zone->min_slab_pages = (zone->managed_pages *
6474 				sysctl_min_slab_ratio) / 100;
6475 	return 0;
6476 }
6477 #endif
6478 
6479 /*
6480  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6481  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6482  *	whenever sysctl_lowmem_reserve_ratio changes.
6483  *
6484  * The reserve ratio obviously has absolutely no relation with the
6485  * minimum watermarks. The lowmem reserve ratio can only make sense
6486  * if in function of the boot time zone sizes.
6487  */
6488 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6489 	void __user *buffer, size_t *length, loff_t *ppos)
6490 {
6491 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6492 	setup_per_zone_lowmem_reserve();
6493 	return 0;
6494 }
6495 
6496 /*
6497  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6498  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6499  * pagelist can have before it gets flushed back to buddy allocator.
6500  */
6501 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6502 	void __user *buffer, size_t *length, loff_t *ppos)
6503 {
6504 	struct zone *zone;
6505 	int old_percpu_pagelist_fraction;
6506 	int ret;
6507 
6508 	mutex_lock(&pcp_batch_high_lock);
6509 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6510 
6511 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6512 	if (!write || ret < 0)
6513 		goto out;
6514 
6515 	/* Sanity checking to avoid pcp imbalance */
6516 	if (percpu_pagelist_fraction &&
6517 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6518 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6519 		ret = -EINVAL;
6520 		goto out;
6521 	}
6522 
6523 	/* No change? */
6524 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6525 		goto out;
6526 
6527 	for_each_populated_zone(zone) {
6528 		unsigned int cpu;
6529 
6530 		for_each_possible_cpu(cpu)
6531 			pageset_set_high_and_batch(zone,
6532 					per_cpu_ptr(zone->pageset, cpu));
6533 	}
6534 out:
6535 	mutex_unlock(&pcp_batch_high_lock);
6536 	return ret;
6537 }
6538 
6539 #ifdef CONFIG_NUMA
6540 int hashdist = HASHDIST_DEFAULT;
6541 
6542 static int __init set_hashdist(char *str)
6543 {
6544 	if (!str)
6545 		return 0;
6546 	hashdist = simple_strtoul(str, &str, 0);
6547 	return 1;
6548 }
6549 __setup("hashdist=", set_hashdist);
6550 #endif
6551 
6552 /*
6553  * allocate a large system hash table from bootmem
6554  * - it is assumed that the hash table must contain an exact power-of-2
6555  *   quantity of entries
6556  * - limit is the number of hash buckets, not the total allocation size
6557  */
6558 void *__init alloc_large_system_hash(const char *tablename,
6559 				     unsigned long bucketsize,
6560 				     unsigned long numentries,
6561 				     int scale,
6562 				     int flags,
6563 				     unsigned int *_hash_shift,
6564 				     unsigned int *_hash_mask,
6565 				     unsigned long low_limit,
6566 				     unsigned long high_limit)
6567 {
6568 	unsigned long long max = high_limit;
6569 	unsigned long log2qty, size;
6570 	void *table = NULL;
6571 
6572 	/* allow the kernel cmdline to have a say */
6573 	if (!numentries) {
6574 		/* round applicable memory size up to nearest megabyte */
6575 		numentries = nr_kernel_pages;
6576 
6577 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6578 		if (PAGE_SHIFT < 20)
6579 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6580 
6581 		/* limit to 1 bucket per 2^scale bytes of low memory */
6582 		if (scale > PAGE_SHIFT)
6583 			numentries >>= (scale - PAGE_SHIFT);
6584 		else
6585 			numentries <<= (PAGE_SHIFT - scale);
6586 
6587 		/* Make sure we've got at least a 0-order allocation.. */
6588 		if (unlikely(flags & HASH_SMALL)) {
6589 			/* Makes no sense without HASH_EARLY */
6590 			WARN_ON(!(flags & HASH_EARLY));
6591 			if (!(numentries >> *_hash_shift)) {
6592 				numentries = 1UL << *_hash_shift;
6593 				BUG_ON(!numentries);
6594 			}
6595 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6596 			numentries = PAGE_SIZE / bucketsize;
6597 	}
6598 	numentries = roundup_pow_of_two(numentries);
6599 
6600 	/* limit allocation size to 1/16 total memory by default */
6601 	if (max == 0) {
6602 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6603 		do_div(max, bucketsize);
6604 	}
6605 	max = min(max, 0x80000000ULL);
6606 
6607 	if (numentries < low_limit)
6608 		numentries = low_limit;
6609 	if (numentries > max)
6610 		numentries = max;
6611 
6612 	log2qty = ilog2(numentries);
6613 
6614 	do {
6615 		size = bucketsize << log2qty;
6616 		if (flags & HASH_EARLY)
6617 			table = memblock_virt_alloc_nopanic(size, 0);
6618 		else if (hashdist)
6619 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6620 		else {
6621 			/*
6622 			 * If bucketsize is not a power-of-two, we may free
6623 			 * some pages at the end of hash table which
6624 			 * alloc_pages_exact() automatically does
6625 			 */
6626 			if (get_order(size) < MAX_ORDER) {
6627 				table = alloc_pages_exact(size, GFP_ATOMIC);
6628 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6629 			}
6630 		}
6631 	} while (!table && size > PAGE_SIZE && --log2qty);
6632 
6633 	if (!table)
6634 		panic("Failed to allocate %s hash table\n", tablename);
6635 
6636 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6637 	       tablename,
6638 	       (1UL << log2qty),
6639 	       ilog2(size) - PAGE_SHIFT,
6640 	       size);
6641 
6642 	if (_hash_shift)
6643 		*_hash_shift = log2qty;
6644 	if (_hash_mask)
6645 		*_hash_mask = (1 << log2qty) - 1;
6646 
6647 	return table;
6648 }
6649 
6650 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6651 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6652 							unsigned long pfn)
6653 {
6654 #ifdef CONFIG_SPARSEMEM
6655 	return __pfn_to_section(pfn)->pageblock_flags;
6656 #else
6657 	return zone->pageblock_flags;
6658 #endif /* CONFIG_SPARSEMEM */
6659 }
6660 
6661 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6662 {
6663 #ifdef CONFIG_SPARSEMEM
6664 	pfn &= (PAGES_PER_SECTION-1);
6665 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6666 #else
6667 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6668 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6669 #endif /* CONFIG_SPARSEMEM */
6670 }
6671 
6672 /**
6673  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6674  * @page: The page within the block of interest
6675  * @pfn: The target page frame number
6676  * @end_bitidx: The last bit of interest to retrieve
6677  * @mask: mask of bits that the caller is interested in
6678  *
6679  * Return: pageblock_bits flags
6680  */
6681 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6682 					unsigned long end_bitidx,
6683 					unsigned long mask)
6684 {
6685 	struct zone *zone;
6686 	unsigned long *bitmap;
6687 	unsigned long bitidx, word_bitidx;
6688 	unsigned long word;
6689 
6690 	zone = page_zone(page);
6691 	bitmap = get_pageblock_bitmap(zone, pfn);
6692 	bitidx = pfn_to_bitidx(zone, pfn);
6693 	word_bitidx = bitidx / BITS_PER_LONG;
6694 	bitidx &= (BITS_PER_LONG-1);
6695 
6696 	word = bitmap[word_bitidx];
6697 	bitidx += end_bitidx;
6698 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6699 }
6700 
6701 /**
6702  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6703  * @page: The page within the block of interest
6704  * @flags: The flags to set
6705  * @pfn: The target page frame number
6706  * @end_bitidx: The last bit of interest
6707  * @mask: mask of bits that the caller is interested in
6708  */
6709 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6710 					unsigned long pfn,
6711 					unsigned long end_bitidx,
6712 					unsigned long mask)
6713 {
6714 	struct zone *zone;
6715 	unsigned long *bitmap;
6716 	unsigned long bitidx, word_bitidx;
6717 	unsigned long old_word, word;
6718 
6719 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6720 
6721 	zone = page_zone(page);
6722 	bitmap = get_pageblock_bitmap(zone, pfn);
6723 	bitidx = pfn_to_bitidx(zone, pfn);
6724 	word_bitidx = bitidx / BITS_PER_LONG;
6725 	bitidx &= (BITS_PER_LONG-1);
6726 
6727 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6728 
6729 	bitidx += end_bitidx;
6730 	mask <<= (BITS_PER_LONG - bitidx - 1);
6731 	flags <<= (BITS_PER_LONG - bitidx - 1);
6732 
6733 	word = READ_ONCE(bitmap[word_bitidx]);
6734 	for (;;) {
6735 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6736 		if (word == old_word)
6737 			break;
6738 		word = old_word;
6739 	}
6740 }
6741 
6742 /*
6743  * This function checks whether pageblock includes unmovable pages or not.
6744  * If @count is not zero, it is okay to include less @count unmovable pages
6745  *
6746  * PageLRU check without isolation or lru_lock could race so that
6747  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6748  * expect this function should be exact.
6749  */
6750 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6751 			 bool skip_hwpoisoned_pages)
6752 {
6753 	unsigned long pfn, iter, found;
6754 	int mt;
6755 
6756 	/*
6757 	 * For avoiding noise data, lru_add_drain_all() should be called
6758 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6759 	 */
6760 	if (zone_idx(zone) == ZONE_MOVABLE)
6761 		return false;
6762 	mt = get_pageblock_migratetype(page);
6763 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6764 		return false;
6765 
6766 	pfn = page_to_pfn(page);
6767 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6768 		unsigned long check = pfn + iter;
6769 
6770 		if (!pfn_valid_within(check))
6771 			continue;
6772 
6773 		page = pfn_to_page(check);
6774 
6775 		/*
6776 		 * Hugepages are not in LRU lists, but they're movable.
6777 		 * We need not scan over tail pages bacause we don't
6778 		 * handle each tail page individually in migration.
6779 		 */
6780 		if (PageHuge(page)) {
6781 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6782 			continue;
6783 		}
6784 
6785 		/*
6786 		 * We can't use page_count without pin a page
6787 		 * because another CPU can free compound page.
6788 		 * This check already skips compound tails of THP
6789 		 * because their page->_count is zero at all time.
6790 		 */
6791 		if (!atomic_read(&page->_count)) {
6792 			if (PageBuddy(page))
6793 				iter += (1 << page_order(page)) - 1;
6794 			continue;
6795 		}
6796 
6797 		/*
6798 		 * The HWPoisoned page may be not in buddy system, and
6799 		 * page_count() is not 0.
6800 		 */
6801 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6802 			continue;
6803 
6804 		if (!PageLRU(page))
6805 			found++;
6806 		/*
6807 		 * If there are RECLAIMABLE pages, we need to check
6808 		 * it.  But now, memory offline itself doesn't call
6809 		 * shrink_node_slabs() and it still to be fixed.
6810 		 */
6811 		/*
6812 		 * If the page is not RAM, page_count()should be 0.
6813 		 * we don't need more check. This is an _used_ not-movable page.
6814 		 *
6815 		 * The problematic thing here is PG_reserved pages. PG_reserved
6816 		 * is set to both of a memory hole page and a _used_ kernel
6817 		 * page at boot.
6818 		 */
6819 		if (found > count)
6820 			return true;
6821 	}
6822 	return false;
6823 }
6824 
6825 bool is_pageblock_removable_nolock(struct page *page)
6826 {
6827 	struct zone *zone;
6828 	unsigned long pfn;
6829 
6830 	/*
6831 	 * We have to be careful here because we are iterating over memory
6832 	 * sections which are not zone aware so we might end up outside of
6833 	 * the zone but still within the section.
6834 	 * We have to take care about the node as well. If the node is offline
6835 	 * its NODE_DATA will be NULL - see page_zone.
6836 	 */
6837 	if (!node_online(page_to_nid(page)))
6838 		return false;
6839 
6840 	zone = page_zone(page);
6841 	pfn = page_to_pfn(page);
6842 	if (!zone_spans_pfn(zone, pfn))
6843 		return false;
6844 
6845 	return !has_unmovable_pages(zone, page, 0, true);
6846 }
6847 
6848 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6849 
6850 static unsigned long pfn_max_align_down(unsigned long pfn)
6851 {
6852 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6853 			     pageblock_nr_pages) - 1);
6854 }
6855 
6856 static unsigned long pfn_max_align_up(unsigned long pfn)
6857 {
6858 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6859 				pageblock_nr_pages));
6860 }
6861 
6862 /* [start, end) must belong to a single zone. */
6863 static int __alloc_contig_migrate_range(struct compact_control *cc,
6864 					unsigned long start, unsigned long end)
6865 {
6866 	/* This function is based on compact_zone() from compaction.c. */
6867 	unsigned long nr_reclaimed;
6868 	unsigned long pfn = start;
6869 	unsigned int tries = 0;
6870 	int ret = 0;
6871 
6872 	migrate_prep();
6873 
6874 	while (pfn < end || !list_empty(&cc->migratepages)) {
6875 		if (fatal_signal_pending(current)) {
6876 			ret = -EINTR;
6877 			break;
6878 		}
6879 
6880 		if (list_empty(&cc->migratepages)) {
6881 			cc->nr_migratepages = 0;
6882 			pfn = isolate_migratepages_range(cc, pfn, end);
6883 			if (!pfn) {
6884 				ret = -EINTR;
6885 				break;
6886 			}
6887 			tries = 0;
6888 		} else if (++tries == 5) {
6889 			ret = ret < 0 ? ret : -EBUSY;
6890 			break;
6891 		}
6892 
6893 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6894 							&cc->migratepages);
6895 		cc->nr_migratepages -= nr_reclaimed;
6896 
6897 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6898 				    NULL, 0, cc->mode, MR_CMA);
6899 	}
6900 	if (ret < 0) {
6901 		putback_movable_pages(&cc->migratepages);
6902 		return ret;
6903 	}
6904 	return 0;
6905 }
6906 
6907 /**
6908  * alloc_contig_range() -- tries to allocate given range of pages
6909  * @start:	start PFN to allocate
6910  * @end:	one-past-the-last PFN to allocate
6911  * @migratetype:	migratetype of the underlaying pageblocks (either
6912  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6913  *			in range must have the same migratetype and it must
6914  *			be either of the two.
6915  *
6916  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6917  * aligned, however it's the caller's responsibility to guarantee that
6918  * we are the only thread that changes migrate type of pageblocks the
6919  * pages fall in.
6920  *
6921  * The PFN range must belong to a single zone.
6922  *
6923  * Returns zero on success or negative error code.  On success all
6924  * pages which PFN is in [start, end) are allocated for the caller and
6925  * need to be freed with free_contig_range().
6926  */
6927 int alloc_contig_range(unsigned long start, unsigned long end,
6928 		       unsigned migratetype)
6929 {
6930 	unsigned long outer_start, outer_end;
6931 	unsigned int order;
6932 	int ret = 0;
6933 
6934 	struct compact_control cc = {
6935 		.nr_migratepages = 0,
6936 		.order = -1,
6937 		.zone = page_zone(pfn_to_page(start)),
6938 		.mode = MIGRATE_SYNC,
6939 		.ignore_skip_hint = true,
6940 	};
6941 	INIT_LIST_HEAD(&cc.migratepages);
6942 
6943 	/*
6944 	 * What we do here is we mark all pageblocks in range as
6945 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6946 	 * have different sizes, and due to the way page allocator
6947 	 * work, we align the range to biggest of the two pages so
6948 	 * that page allocator won't try to merge buddies from
6949 	 * different pageblocks and change MIGRATE_ISOLATE to some
6950 	 * other migration type.
6951 	 *
6952 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6953 	 * migrate the pages from an unaligned range (ie. pages that
6954 	 * we are interested in).  This will put all the pages in
6955 	 * range back to page allocator as MIGRATE_ISOLATE.
6956 	 *
6957 	 * When this is done, we take the pages in range from page
6958 	 * allocator removing them from the buddy system.  This way
6959 	 * page allocator will never consider using them.
6960 	 *
6961 	 * This lets us mark the pageblocks back as
6962 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6963 	 * aligned range but not in the unaligned, original range are
6964 	 * put back to page allocator so that buddy can use them.
6965 	 */
6966 
6967 	ret = start_isolate_page_range(pfn_max_align_down(start),
6968 				       pfn_max_align_up(end), migratetype,
6969 				       false);
6970 	if (ret)
6971 		return ret;
6972 
6973 	/*
6974 	 * In case of -EBUSY, we'd like to know which page causes problem.
6975 	 * So, just fall through. We will check it in test_pages_isolated().
6976 	 */
6977 	ret = __alloc_contig_migrate_range(&cc, start, end);
6978 	if (ret && ret != -EBUSY)
6979 		goto done;
6980 
6981 	/*
6982 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6983 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6984 	 * more, all pages in [start, end) are free in page allocator.
6985 	 * What we are going to do is to allocate all pages from
6986 	 * [start, end) (that is remove them from page allocator).
6987 	 *
6988 	 * The only problem is that pages at the beginning and at the
6989 	 * end of interesting range may be not aligned with pages that
6990 	 * page allocator holds, ie. they can be part of higher order
6991 	 * pages.  Because of this, we reserve the bigger range and
6992 	 * once this is done free the pages we are not interested in.
6993 	 *
6994 	 * We don't have to hold zone->lock here because the pages are
6995 	 * isolated thus they won't get removed from buddy.
6996 	 */
6997 
6998 	lru_add_drain_all();
6999 	drain_all_pages(cc.zone);
7000 
7001 	order = 0;
7002 	outer_start = start;
7003 	while (!PageBuddy(pfn_to_page(outer_start))) {
7004 		if (++order >= MAX_ORDER) {
7005 			outer_start = start;
7006 			break;
7007 		}
7008 		outer_start &= ~0UL << order;
7009 	}
7010 
7011 	if (outer_start != start) {
7012 		order = page_order(pfn_to_page(outer_start));
7013 
7014 		/*
7015 		 * outer_start page could be small order buddy page and
7016 		 * it doesn't include start page. Adjust outer_start
7017 		 * in this case to report failed page properly
7018 		 * on tracepoint in test_pages_isolated()
7019 		 */
7020 		if (outer_start + (1UL << order) <= start)
7021 			outer_start = start;
7022 	}
7023 
7024 	/* Make sure the range is really isolated. */
7025 	if (test_pages_isolated(outer_start, end, false)) {
7026 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7027 			__func__, outer_start, end);
7028 		ret = -EBUSY;
7029 		goto done;
7030 	}
7031 
7032 	/* Grab isolated pages from freelists. */
7033 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7034 	if (!outer_end) {
7035 		ret = -EBUSY;
7036 		goto done;
7037 	}
7038 
7039 	/* Free head and tail (if any) */
7040 	if (start != outer_start)
7041 		free_contig_range(outer_start, start - outer_start);
7042 	if (end != outer_end)
7043 		free_contig_range(end, outer_end - end);
7044 
7045 done:
7046 	undo_isolate_page_range(pfn_max_align_down(start),
7047 				pfn_max_align_up(end), migratetype);
7048 	return ret;
7049 }
7050 
7051 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7052 {
7053 	unsigned int count = 0;
7054 
7055 	for (; nr_pages--; pfn++) {
7056 		struct page *page = pfn_to_page(pfn);
7057 
7058 		count += page_count(page) != 1;
7059 		__free_page(page);
7060 	}
7061 	WARN(count != 0, "%d pages are still in use!\n", count);
7062 }
7063 #endif
7064 
7065 #ifdef CONFIG_MEMORY_HOTPLUG
7066 /*
7067  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7068  * page high values need to be recalulated.
7069  */
7070 void __meminit zone_pcp_update(struct zone *zone)
7071 {
7072 	unsigned cpu;
7073 	mutex_lock(&pcp_batch_high_lock);
7074 	for_each_possible_cpu(cpu)
7075 		pageset_set_high_and_batch(zone,
7076 				per_cpu_ptr(zone->pageset, cpu));
7077 	mutex_unlock(&pcp_batch_high_lock);
7078 }
7079 #endif
7080 
7081 void zone_pcp_reset(struct zone *zone)
7082 {
7083 	unsigned long flags;
7084 	int cpu;
7085 	struct per_cpu_pageset *pset;
7086 
7087 	/* avoid races with drain_pages()  */
7088 	local_irq_save(flags);
7089 	if (zone->pageset != &boot_pageset) {
7090 		for_each_online_cpu(cpu) {
7091 			pset = per_cpu_ptr(zone->pageset, cpu);
7092 			drain_zonestat(zone, pset);
7093 		}
7094 		free_percpu(zone->pageset);
7095 		zone->pageset = &boot_pageset;
7096 	}
7097 	local_irq_restore(flags);
7098 }
7099 
7100 #ifdef CONFIG_MEMORY_HOTREMOVE
7101 /*
7102  * All pages in the range must be isolated before calling this.
7103  */
7104 void
7105 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7106 {
7107 	struct page *page;
7108 	struct zone *zone;
7109 	unsigned int order, i;
7110 	unsigned long pfn;
7111 	unsigned long flags;
7112 	/* find the first valid pfn */
7113 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7114 		if (pfn_valid(pfn))
7115 			break;
7116 	if (pfn == end_pfn)
7117 		return;
7118 	zone = page_zone(pfn_to_page(pfn));
7119 	spin_lock_irqsave(&zone->lock, flags);
7120 	pfn = start_pfn;
7121 	while (pfn < end_pfn) {
7122 		if (!pfn_valid(pfn)) {
7123 			pfn++;
7124 			continue;
7125 		}
7126 		page = pfn_to_page(pfn);
7127 		/*
7128 		 * The HWPoisoned page may be not in buddy system, and
7129 		 * page_count() is not 0.
7130 		 */
7131 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7132 			pfn++;
7133 			SetPageReserved(page);
7134 			continue;
7135 		}
7136 
7137 		BUG_ON(page_count(page));
7138 		BUG_ON(!PageBuddy(page));
7139 		order = page_order(page);
7140 #ifdef CONFIG_DEBUG_VM
7141 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
7142 		       pfn, 1 << order, end_pfn);
7143 #endif
7144 		list_del(&page->lru);
7145 		rmv_page_order(page);
7146 		zone->free_area[order].nr_free--;
7147 		for (i = 0; i < (1 << order); i++)
7148 			SetPageReserved((page+i));
7149 		pfn += (1 << order);
7150 	}
7151 	spin_unlock_irqrestore(&zone->lock, flags);
7152 }
7153 #endif
7154 
7155 #ifdef CONFIG_MEMORY_FAILURE
7156 bool is_free_buddy_page(struct page *page)
7157 {
7158 	struct zone *zone = page_zone(page);
7159 	unsigned long pfn = page_to_pfn(page);
7160 	unsigned long flags;
7161 	unsigned int order;
7162 
7163 	spin_lock_irqsave(&zone->lock, flags);
7164 	for (order = 0; order < MAX_ORDER; order++) {
7165 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7166 
7167 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7168 			break;
7169 	}
7170 	spin_unlock_irqrestore(&zone->lock, flags);
7171 
7172 	return order < MAX_ORDER;
7173 }
7174 #endif
7175