xref: /linux/mm/page_alloc.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72 
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
76 
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81 
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87  * defined in <linux/topology.h>.
88  */
89 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93 
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy;
96 EXPORT_SYMBOL(latent_entropy);
97 #endif
98 
99 /*
100  * Array of node states.
101  */
102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 	[N_POSSIBLE] = NODE_MASK_ALL,
104 	[N_ONLINE] = { { [0] = 1UL } },
105 #ifndef CONFIG_NUMA
106 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
109 #endif
110 #ifdef CONFIG_MOVABLE_NODE
111 	[N_MEMORY] = { { [0] = 1UL } },
112 #endif
113 	[N_CPU] = { { [0] = 1UL } },
114 #endif	/* NUMA */
115 };
116 EXPORT_SYMBOL(node_states);
117 
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock);
120 
121 unsigned long totalram_pages __read_mostly;
122 unsigned long totalreserve_pages __read_mostly;
123 unsigned long totalcma_pages __read_mostly;
124 
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127 
128 /*
129  * A cached value of the page's pageblock's migratetype, used when the page is
130  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132  * Also the migratetype set in the page does not necessarily match the pcplist
133  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134  * other index - this ensures that it will be put on the correct CMA freelist.
135  */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 	return page->index;
139 }
140 
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 	page->index = migratetype;
144 }
145 
146 #ifdef CONFIG_PM_SLEEP
147 /*
148  * The following functions are used by the suspend/hibernate code to temporarily
149  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150  * while devices are suspended.  To avoid races with the suspend/hibernate code,
151  * they should always be called with pm_mutex held (gfp_allowed_mask also should
152  * only be modified with pm_mutex held, unless the suspend/hibernate code is
153  * guaranteed not to run in parallel with that modification).
154  */
155 
156 static gfp_t saved_gfp_mask;
157 
158 void pm_restore_gfp_mask(void)
159 {
160 	WARN_ON(!mutex_is_locked(&pm_mutex));
161 	if (saved_gfp_mask) {
162 		gfp_allowed_mask = saved_gfp_mask;
163 		saved_gfp_mask = 0;
164 	}
165 }
166 
167 void pm_restrict_gfp_mask(void)
168 {
169 	WARN_ON(!mutex_is_locked(&pm_mutex));
170 	WARN_ON(saved_gfp_mask);
171 	saved_gfp_mask = gfp_allowed_mask;
172 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174 
175 bool pm_suspended_storage(void)
176 {
177 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 		return false;
179 	return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182 
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186 
187 static void __free_pages_ok(struct page *page, unsigned int order);
188 
189 /*
190  * results with 256, 32 in the lowmem_reserve sysctl:
191  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192  *	1G machine -> (16M dma, 784M normal, 224M high)
193  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196  *
197  * TBD: should special case ZONE_DMA32 machines here - in those we normally
198  * don't need any ZONE_NORMAL reservation
199  */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 	 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 	 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 	 32,
209 #endif
210 	 32,
211 };
212 
213 EXPORT_SYMBOL(totalram_pages);
214 
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 	 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 	 "DMA32",
221 #endif
222 	 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 	 "HighMem",
225 #endif
226 	 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 	 "Device",
229 #endif
230 };
231 
232 char * const migratetype_names[MIGRATE_TYPES] = {
233 	"Unmovable",
234 	"Movable",
235 	"Reclaimable",
236 	"HighAtomic",
237 #ifdef CONFIG_CMA
238 	"CMA",
239 #endif
240 #ifdef CONFIG_MEMORY_ISOLATION
241 	"Isolate",
242 #endif
243 };
244 
245 compound_page_dtor * const compound_page_dtors[] = {
246 	NULL,
247 	free_compound_page,
248 #ifdef CONFIG_HUGETLB_PAGE
249 	free_huge_page,
250 #endif
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 	free_transhuge_page,
253 #endif
254 };
255 
256 int min_free_kbytes = 1024;
257 int user_min_free_kbytes = -1;
258 int watermark_scale_factor = 10;
259 
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
263 
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
271 
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
276 
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
283 
284 int page_group_by_mobility_disabled __read_mostly;
285 
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 static inline void reset_deferred_meminit(pg_data_t *pgdat)
288 {
289 	pgdat->first_deferred_pfn = ULONG_MAX;
290 }
291 
292 /* Returns true if the struct page for the pfn is uninitialised */
293 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
294 {
295 	int nid = early_pfn_to_nid(pfn);
296 
297 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 		return true;
299 
300 	return false;
301 }
302 
303 /*
304  * Returns false when the remaining initialisation should be deferred until
305  * later in the boot cycle when it can be parallelised.
306  */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 				unsigned long pfn, unsigned long zone_end,
309 				unsigned long *nr_initialised)
310 {
311 	unsigned long max_initialise;
312 
313 	/* Always populate low zones for address-contrained allocations */
314 	if (zone_end < pgdat_end_pfn(pgdat))
315 		return true;
316 	/*
317 	 * Initialise at least 2G of a node but also take into account that
318 	 * two large system hashes that can take up 1GB for 0.25TB/node.
319 	 */
320 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 		(pgdat->node_spanned_pages >> 8));
322 
323 	(*nr_initialised)++;
324 	if ((*nr_initialised > max_initialise) &&
325 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 		pgdat->first_deferred_pfn = pfn;
327 		return false;
328 	}
329 
330 	return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336 
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 	return false;
340 }
341 
342 static inline bool update_defer_init(pg_data_t *pgdat,
343 				unsigned long pfn, unsigned long zone_end,
344 				unsigned long *nr_initialised)
345 {
346 	return true;
347 }
348 #endif
349 
350 /* Return a pointer to the bitmap storing bits affecting a block of pages */
351 static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 							unsigned long pfn)
353 {
354 #ifdef CONFIG_SPARSEMEM
355 	return __pfn_to_section(pfn)->pageblock_flags;
356 #else
357 	return page_zone(page)->pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359 }
360 
361 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362 {
363 #ifdef CONFIG_SPARSEMEM
364 	pfn &= (PAGES_PER_SECTION-1);
365 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366 #else
367 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369 #endif /* CONFIG_SPARSEMEM */
370 }
371 
372 /**
373  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374  * @page: The page within the block of interest
375  * @pfn: The target page frame number
376  * @end_bitidx: The last bit of interest to retrieve
377  * @mask: mask of bits that the caller is interested in
378  *
379  * Return: pageblock_bits flags
380  */
381 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 					unsigned long pfn,
383 					unsigned long end_bitidx,
384 					unsigned long mask)
385 {
386 	unsigned long *bitmap;
387 	unsigned long bitidx, word_bitidx;
388 	unsigned long word;
389 
390 	bitmap = get_pageblock_bitmap(page, pfn);
391 	bitidx = pfn_to_bitidx(page, pfn);
392 	word_bitidx = bitidx / BITS_PER_LONG;
393 	bitidx &= (BITS_PER_LONG-1);
394 
395 	word = bitmap[word_bitidx];
396 	bitidx += end_bitidx;
397 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398 }
399 
400 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 					unsigned long end_bitidx,
402 					unsigned long mask)
403 {
404 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405 }
406 
407 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408 {
409 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410 }
411 
412 /**
413  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414  * @page: The page within the block of interest
415  * @flags: The flags to set
416  * @pfn: The target page frame number
417  * @end_bitidx: The last bit of interest
418  * @mask: mask of bits that the caller is interested in
419  */
420 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 					unsigned long pfn,
422 					unsigned long end_bitidx,
423 					unsigned long mask)
424 {
425 	unsigned long *bitmap;
426 	unsigned long bitidx, word_bitidx;
427 	unsigned long old_word, word;
428 
429 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430 
431 	bitmap = get_pageblock_bitmap(page, pfn);
432 	bitidx = pfn_to_bitidx(page, pfn);
433 	word_bitidx = bitidx / BITS_PER_LONG;
434 	bitidx &= (BITS_PER_LONG-1);
435 
436 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437 
438 	bitidx += end_bitidx;
439 	mask <<= (BITS_PER_LONG - bitidx - 1);
440 	flags <<= (BITS_PER_LONG - bitidx - 1);
441 
442 	word = READ_ONCE(bitmap[word_bitidx]);
443 	for (;;) {
444 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 		if (word == old_word)
446 			break;
447 		word = old_word;
448 	}
449 }
450 
451 void set_pageblock_migratetype(struct page *page, int migratetype)
452 {
453 	if (unlikely(page_group_by_mobility_disabled &&
454 		     migratetype < MIGRATE_PCPTYPES))
455 		migratetype = MIGRATE_UNMOVABLE;
456 
457 	set_pageblock_flags_group(page, (unsigned long)migratetype,
458 					PB_migrate, PB_migrate_end);
459 }
460 
461 #ifdef CONFIG_DEBUG_VM
462 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
463 {
464 	int ret = 0;
465 	unsigned seq;
466 	unsigned long pfn = page_to_pfn(page);
467 	unsigned long sp, start_pfn;
468 
469 	do {
470 		seq = zone_span_seqbegin(zone);
471 		start_pfn = zone->zone_start_pfn;
472 		sp = zone->spanned_pages;
473 		if (!zone_spans_pfn(zone, pfn))
474 			ret = 1;
475 	} while (zone_span_seqretry(zone, seq));
476 
477 	if (ret)
478 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 			pfn, zone_to_nid(zone), zone->name,
480 			start_pfn, start_pfn + sp);
481 
482 	return ret;
483 }
484 
485 static int page_is_consistent(struct zone *zone, struct page *page)
486 {
487 	if (!pfn_valid_within(page_to_pfn(page)))
488 		return 0;
489 	if (zone != page_zone(page))
490 		return 0;
491 
492 	return 1;
493 }
494 /*
495  * Temporary debugging check for pages not lying within a given zone.
496  */
497 static int bad_range(struct zone *zone, struct page *page)
498 {
499 	if (page_outside_zone_boundaries(zone, page))
500 		return 1;
501 	if (!page_is_consistent(zone, page))
502 		return 1;
503 
504 	return 0;
505 }
506 #else
507 static inline int bad_range(struct zone *zone, struct page *page)
508 {
509 	return 0;
510 }
511 #endif
512 
513 static void bad_page(struct page *page, const char *reason,
514 		unsigned long bad_flags)
515 {
516 	static unsigned long resume;
517 	static unsigned long nr_shown;
518 	static unsigned long nr_unshown;
519 
520 	/*
521 	 * Allow a burst of 60 reports, then keep quiet for that minute;
522 	 * or allow a steady drip of one report per second.
523 	 */
524 	if (nr_shown == 60) {
525 		if (time_before(jiffies, resume)) {
526 			nr_unshown++;
527 			goto out;
528 		}
529 		if (nr_unshown) {
530 			pr_alert(
531 			      "BUG: Bad page state: %lu messages suppressed\n",
532 				nr_unshown);
533 			nr_unshown = 0;
534 		}
535 		nr_shown = 0;
536 	}
537 	if (nr_shown++ == 0)
538 		resume = jiffies + 60 * HZ;
539 
540 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
541 		current->comm, page_to_pfn(page));
542 	__dump_page(page, reason);
543 	bad_flags &= page->flags;
544 	if (bad_flags)
545 		pr_alert("bad because of flags: %#lx(%pGp)\n",
546 						bad_flags, &bad_flags);
547 	dump_page_owner(page);
548 
549 	print_modules();
550 	dump_stack();
551 out:
552 	/* Leave bad fields for debug, except PageBuddy could make trouble */
553 	page_mapcount_reset(page); /* remove PageBuddy */
554 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
555 }
556 
557 /*
558  * Higher-order pages are called "compound pages".  They are structured thusly:
559  *
560  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561  *
562  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564  *
565  * The first tail page's ->compound_dtor holds the offset in array of compound
566  * page destructors. See compound_page_dtors.
567  *
568  * The first tail page's ->compound_order holds the order of allocation.
569  * This usage means that zero-order pages may not be compound.
570  */
571 
572 void free_compound_page(struct page *page)
573 {
574 	__free_pages_ok(page, compound_order(page));
575 }
576 
577 void prep_compound_page(struct page *page, unsigned int order)
578 {
579 	int i;
580 	int nr_pages = 1 << order;
581 
582 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
583 	set_compound_order(page, order);
584 	__SetPageHead(page);
585 	for (i = 1; i < nr_pages; i++) {
586 		struct page *p = page + i;
587 		set_page_count(p, 0);
588 		p->mapping = TAIL_MAPPING;
589 		set_compound_head(p, page);
590 	}
591 	atomic_set(compound_mapcount_ptr(page), -1);
592 }
593 
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 unsigned int _debug_guardpage_minorder;
596 bool _debug_pagealloc_enabled __read_mostly
597 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
598 EXPORT_SYMBOL(_debug_pagealloc_enabled);
599 bool _debug_guardpage_enabled __read_mostly;
600 
601 static int __init early_debug_pagealloc(char *buf)
602 {
603 	if (!buf)
604 		return -EINVAL;
605 	return kstrtobool(buf, &_debug_pagealloc_enabled);
606 }
607 early_param("debug_pagealloc", early_debug_pagealloc);
608 
609 static bool need_debug_guardpage(void)
610 {
611 	/* If we don't use debug_pagealloc, we don't need guard page */
612 	if (!debug_pagealloc_enabled())
613 		return false;
614 
615 	if (!debug_guardpage_minorder())
616 		return false;
617 
618 	return true;
619 }
620 
621 static void init_debug_guardpage(void)
622 {
623 	if (!debug_pagealloc_enabled())
624 		return;
625 
626 	if (!debug_guardpage_minorder())
627 		return;
628 
629 	_debug_guardpage_enabled = true;
630 }
631 
632 struct page_ext_operations debug_guardpage_ops = {
633 	.need = need_debug_guardpage,
634 	.init = init_debug_guardpage,
635 };
636 
637 static int __init debug_guardpage_minorder_setup(char *buf)
638 {
639 	unsigned long res;
640 
641 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
642 		pr_err("Bad debug_guardpage_minorder value\n");
643 		return 0;
644 	}
645 	_debug_guardpage_minorder = res;
646 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
647 	return 0;
648 }
649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
650 
651 static inline bool set_page_guard(struct zone *zone, struct page *page,
652 				unsigned int order, int migratetype)
653 {
654 	struct page_ext *page_ext;
655 
656 	if (!debug_guardpage_enabled())
657 		return false;
658 
659 	if (order >= debug_guardpage_minorder())
660 		return false;
661 
662 	page_ext = lookup_page_ext(page);
663 	if (unlikely(!page_ext))
664 		return false;
665 
666 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667 
668 	INIT_LIST_HEAD(&page->lru);
669 	set_page_private(page, order);
670 	/* Guard pages are not available for any usage */
671 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
672 
673 	return true;
674 }
675 
676 static inline void clear_page_guard(struct zone *zone, struct page *page,
677 				unsigned int order, int migratetype)
678 {
679 	struct page_ext *page_ext;
680 
681 	if (!debug_guardpage_enabled())
682 		return;
683 
684 	page_ext = lookup_page_ext(page);
685 	if (unlikely(!page_ext))
686 		return;
687 
688 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689 
690 	set_page_private(page, 0);
691 	if (!is_migrate_isolate(migratetype))
692 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
693 }
694 #else
695 struct page_ext_operations debug_guardpage_ops;
696 static inline bool set_page_guard(struct zone *zone, struct page *page,
697 			unsigned int order, int migratetype) { return false; }
698 static inline void clear_page_guard(struct zone *zone, struct page *page,
699 				unsigned int order, int migratetype) {}
700 #endif
701 
702 static inline void set_page_order(struct page *page, unsigned int order)
703 {
704 	set_page_private(page, order);
705 	__SetPageBuddy(page);
706 }
707 
708 static inline void rmv_page_order(struct page *page)
709 {
710 	__ClearPageBuddy(page);
711 	set_page_private(page, 0);
712 }
713 
714 /*
715  * This function checks whether a page is free && is the buddy
716  * we can do coalesce a page and its buddy if
717  * (a) the buddy is not in a hole &&
718  * (b) the buddy is in the buddy system &&
719  * (c) a page and its buddy have the same order &&
720  * (d) a page and its buddy are in the same zone.
721  *
722  * For recording whether a page is in the buddy system, we set ->_mapcount
723  * PAGE_BUDDY_MAPCOUNT_VALUE.
724  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725  * serialized by zone->lock.
726  *
727  * For recording page's order, we use page_private(page).
728  */
729 static inline int page_is_buddy(struct page *page, struct page *buddy,
730 							unsigned int order)
731 {
732 	if (!pfn_valid_within(page_to_pfn(buddy)))
733 		return 0;
734 
735 	if (page_is_guard(buddy) && page_order(buddy) == order) {
736 		if (page_zone_id(page) != page_zone_id(buddy))
737 			return 0;
738 
739 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740 
741 		return 1;
742 	}
743 
744 	if (PageBuddy(buddy) && page_order(buddy) == order) {
745 		/*
746 		 * zone check is done late to avoid uselessly
747 		 * calculating zone/node ids for pages that could
748 		 * never merge.
749 		 */
750 		if (page_zone_id(page) != page_zone_id(buddy))
751 			return 0;
752 
753 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754 
755 		return 1;
756 	}
757 	return 0;
758 }
759 
760 /*
761  * Freeing function for a buddy system allocator.
762  *
763  * The concept of a buddy system is to maintain direct-mapped table
764  * (containing bit values) for memory blocks of various "orders".
765  * The bottom level table contains the map for the smallest allocatable
766  * units of memory (here, pages), and each level above it describes
767  * pairs of units from the levels below, hence, "buddies".
768  * At a high level, all that happens here is marking the table entry
769  * at the bottom level available, and propagating the changes upward
770  * as necessary, plus some accounting needed to play nicely with other
771  * parts of the VM system.
772  * At each level, we keep a list of pages, which are heads of continuous
773  * free pages of length of (1 << order) and marked with _mapcount
774  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775  * field.
776  * So when we are allocating or freeing one, we can derive the state of the
777  * other.  That is, if we allocate a small block, and both were
778  * free, the remainder of the region must be split into blocks.
779  * If a block is freed, and its buddy is also free, then this
780  * triggers coalescing into a block of larger size.
781  *
782  * -- nyc
783  */
784 
785 static inline void __free_one_page(struct page *page,
786 		unsigned long pfn,
787 		struct zone *zone, unsigned int order,
788 		int migratetype)
789 {
790 	unsigned long page_idx;
791 	unsigned long combined_idx;
792 	unsigned long uninitialized_var(buddy_idx);
793 	struct page *buddy;
794 	unsigned int max_order;
795 
796 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
797 
798 	VM_BUG_ON(!zone_is_initialized(zone));
799 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
800 
801 	VM_BUG_ON(migratetype == -1);
802 	if (likely(!is_migrate_isolate(migratetype)))
803 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
804 
805 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
806 
807 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
809 
810 continue_merging:
811 	while (order < max_order - 1) {
812 		buddy_idx = __find_buddy_index(page_idx, order);
813 		buddy = page + (buddy_idx - page_idx);
814 		if (!page_is_buddy(page, buddy, order))
815 			goto done_merging;
816 		/*
817 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 		 * merge with it and move up one order.
819 		 */
820 		if (page_is_guard(buddy)) {
821 			clear_page_guard(zone, buddy, order, migratetype);
822 		} else {
823 			list_del(&buddy->lru);
824 			zone->free_area[order].nr_free--;
825 			rmv_page_order(buddy);
826 		}
827 		combined_idx = buddy_idx & page_idx;
828 		page = page + (combined_idx - page_idx);
829 		page_idx = combined_idx;
830 		order++;
831 	}
832 	if (max_order < MAX_ORDER) {
833 		/* If we are here, it means order is >= pageblock_order.
834 		 * We want to prevent merge between freepages on isolate
835 		 * pageblock and normal pageblock. Without this, pageblock
836 		 * isolation could cause incorrect freepage or CMA accounting.
837 		 *
838 		 * We don't want to hit this code for the more frequent
839 		 * low-order merging.
840 		 */
841 		if (unlikely(has_isolate_pageblock(zone))) {
842 			int buddy_mt;
843 
844 			buddy_idx = __find_buddy_index(page_idx, order);
845 			buddy = page + (buddy_idx - page_idx);
846 			buddy_mt = get_pageblock_migratetype(buddy);
847 
848 			if (migratetype != buddy_mt
849 					&& (is_migrate_isolate(migratetype) ||
850 						is_migrate_isolate(buddy_mt)))
851 				goto done_merging;
852 		}
853 		max_order++;
854 		goto continue_merging;
855 	}
856 
857 done_merging:
858 	set_page_order(page, order);
859 
860 	/*
861 	 * If this is not the largest possible page, check if the buddy
862 	 * of the next-highest order is free. If it is, it's possible
863 	 * that pages are being freed that will coalesce soon. In case,
864 	 * that is happening, add the free page to the tail of the list
865 	 * so it's less likely to be used soon and more likely to be merged
866 	 * as a higher order page
867 	 */
868 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
869 		struct page *higher_page, *higher_buddy;
870 		combined_idx = buddy_idx & page_idx;
871 		higher_page = page + (combined_idx - page_idx);
872 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
873 		higher_buddy = higher_page + (buddy_idx - combined_idx);
874 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 			list_add_tail(&page->lru,
876 				&zone->free_area[order].free_list[migratetype]);
877 			goto out;
878 		}
879 	}
880 
881 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882 out:
883 	zone->free_area[order].nr_free++;
884 }
885 
886 /*
887  * A bad page could be due to a number of fields. Instead of multiple branches,
888  * try and check multiple fields with one check. The caller must do a detailed
889  * check if necessary.
890  */
891 static inline bool page_expected_state(struct page *page,
892 					unsigned long check_flags)
893 {
894 	if (unlikely(atomic_read(&page->_mapcount) != -1))
895 		return false;
896 
897 	if (unlikely((unsigned long)page->mapping |
898 			page_ref_count(page) |
899 #ifdef CONFIG_MEMCG
900 			(unsigned long)page->mem_cgroup |
901 #endif
902 			(page->flags & check_flags)))
903 		return false;
904 
905 	return true;
906 }
907 
908 static void free_pages_check_bad(struct page *page)
909 {
910 	const char *bad_reason;
911 	unsigned long bad_flags;
912 
913 	bad_reason = NULL;
914 	bad_flags = 0;
915 
916 	if (unlikely(atomic_read(&page->_mapcount) != -1))
917 		bad_reason = "nonzero mapcount";
918 	if (unlikely(page->mapping != NULL))
919 		bad_reason = "non-NULL mapping";
920 	if (unlikely(page_ref_count(page) != 0))
921 		bad_reason = "nonzero _refcount";
922 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 	}
926 #ifdef CONFIG_MEMCG
927 	if (unlikely(page->mem_cgroup))
928 		bad_reason = "page still charged to cgroup";
929 #endif
930 	bad_page(page, bad_reason, bad_flags);
931 }
932 
933 static inline int free_pages_check(struct page *page)
934 {
935 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
936 		return 0;
937 
938 	/* Something has gone sideways, find it */
939 	free_pages_check_bad(page);
940 	return 1;
941 }
942 
943 static int free_tail_pages_check(struct page *head_page, struct page *page)
944 {
945 	int ret = 1;
946 
947 	/*
948 	 * We rely page->lru.next never has bit 0 set, unless the page
949 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 	 */
951 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952 
953 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 		ret = 0;
955 		goto out;
956 	}
957 	switch (page - head_page) {
958 	case 1:
959 		/* the first tail page: ->mapping is compound_mapcount() */
960 		if (unlikely(compound_mapcount(page))) {
961 			bad_page(page, "nonzero compound_mapcount", 0);
962 			goto out;
963 		}
964 		break;
965 	case 2:
966 		/*
967 		 * the second tail page: ->mapping is
968 		 * page_deferred_list().next -- ignore value.
969 		 */
970 		break;
971 	default:
972 		if (page->mapping != TAIL_MAPPING) {
973 			bad_page(page, "corrupted mapping in tail page", 0);
974 			goto out;
975 		}
976 		break;
977 	}
978 	if (unlikely(!PageTail(page))) {
979 		bad_page(page, "PageTail not set", 0);
980 		goto out;
981 	}
982 	if (unlikely(compound_head(page) != head_page)) {
983 		bad_page(page, "compound_head not consistent", 0);
984 		goto out;
985 	}
986 	ret = 0;
987 out:
988 	page->mapping = NULL;
989 	clear_compound_head(page);
990 	return ret;
991 }
992 
993 static __always_inline bool free_pages_prepare(struct page *page,
994 					unsigned int order, bool check_free)
995 {
996 	int bad = 0;
997 
998 	VM_BUG_ON_PAGE(PageTail(page), page);
999 
1000 	trace_mm_page_free(page, order);
1001 	kmemcheck_free_shadow(page, order);
1002 
1003 	/*
1004 	 * Check tail pages before head page information is cleared to
1005 	 * avoid checking PageCompound for order-0 pages.
1006 	 */
1007 	if (unlikely(order)) {
1008 		bool compound = PageCompound(page);
1009 		int i;
1010 
1011 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1012 
1013 		if (compound)
1014 			ClearPageDoubleMap(page);
1015 		for (i = 1; i < (1 << order); i++) {
1016 			if (compound)
1017 				bad += free_tail_pages_check(page, page + i);
1018 			if (unlikely(free_pages_check(page + i))) {
1019 				bad++;
1020 				continue;
1021 			}
1022 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 		}
1024 	}
1025 	if (PageMappingFlags(page))
1026 		page->mapping = NULL;
1027 	if (memcg_kmem_enabled() && PageKmemcg(page))
1028 		memcg_kmem_uncharge(page, order);
1029 	if (check_free)
1030 		bad += free_pages_check(page);
1031 	if (bad)
1032 		return false;
1033 
1034 	page_cpupid_reset_last(page);
1035 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 	reset_page_owner(page, order);
1037 
1038 	if (!PageHighMem(page)) {
1039 		debug_check_no_locks_freed(page_address(page),
1040 					   PAGE_SIZE << order);
1041 		debug_check_no_obj_freed(page_address(page),
1042 					   PAGE_SIZE << order);
1043 	}
1044 	arch_free_page(page, order);
1045 	kernel_poison_pages(page, 1 << order, 0);
1046 	kernel_map_pages(page, 1 << order, 0);
1047 	kasan_free_pages(page, order);
1048 
1049 	return true;
1050 }
1051 
1052 #ifdef CONFIG_DEBUG_VM
1053 static inline bool free_pcp_prepare(struct page *page)
1054 {
1055 	return free_pages_prepare(page, 0, true);
1056 }
1057 
1058 static inline bool bulkfree_pcp_prepare(struct page *page)
1059 {
1060 	return false;
1061 }
1062 #else
1063 static bool free_pcp_prepare(struct page *page)
1064 {
1065 	return free_pages_prepare(page, 0, false);
1066 }
1067 
1068 static bool bulkfree_pcp_prepare(struct page *page)
1069 {
1070 	return free_pages_check(page);
1071 }
1072 #endif /* CONFIG_DEBUG_VM */
1073 
1074 /*
1075  * Frees a number of pages from the PCP lists
1076  * Assumes all pages on list are in same zone, and of same order.
1077  * count is the number of pages to free.
1078  *
1079  * If the zone was previously in an "all pages pinned" state then look to
1080  * see if this freeing clears that state.
1081  *
1082  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083  * pinned" detection logic.
1084  */
1085 static void free_pcppages_bulk(struct zone *zone, int count,
1086 					struct per_cpu_pages *pcp)
1087 {
1088 	int migratetype = 0;
1089 	int batch_free = 0;
1090 	unsigned long nr_scanned;
1091 	bool isolated_pageblocks;
1092 
1093 	spin_lock(&zone->lock);
1094 	isolated_pageblocks = has_isolate_pageblock(zone);
1095 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1096 	if (nr_scanned)
1097 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1098 
1099 	while (count) {
1100 		struct page *page;
1101 		struct list_head *list;
1102 
1103 		/*
1104 		 * Remove pages from lists in a round-robin fashion. A
1105 		 * batch_free count is maintained that is incremented when an
1106 		 * empty list is encountered.  This is so more pages are freed
1107 		 * off fuller lists instead of spinning excessively around empty
1108 		 * lists
1109 		 */
1110 		do {
1111 			batch_free++;
1112 			if (++migratetype == MIGRATE_PCPTYPES)
1113 				migratetype = 0;
1114 			list = &pcp->lists[migratetype];
1115 		} while (list_empty(list));
1116 
1117 		/* This is the only non-empty list. Free them all. */
1118 		if (batch_free == MIGRATE_PCPTYPES)
1119 			batch_free = count;
1120 
1121 		do {
1122 			int mt;	/* migratetype of the to-be-freed page */
1123 
1124 			page = list_last_entry(list, struct page, lru);
1125 			/* must delete as __free_one_page list manipulates */
1126 			list_del(&page->lru);
1127 
1128 			mt = get_pcppage_migratetype(page);
1129 			/* MIGRATE_ISOLATE page should not go to pcplists */
1130 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 			/* Pageblock could have been isolated meanwhile */
1132 			if (unlikely(isolated_pageblocks))
1133 				mt = get_pageblock_migratetype(page);
1134 
1135 			if (bulkfree_pcp_prepare(page))
1136 				continue;
1137 
1138 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 			trace_mm_page_pcpu_drain(page, 0, mt);
1140 		} while (--count && --batch_free && !list_empty(list));
1141 	}
1142 	spin_unlock(&zone->lock);
1143 }
1144 
1145 static void free_one_page(struct zone *zone,
1146 				struct page *page, unsigned long pfn,
1147 				unsigned int order,
1148 				int migratetype)
1149 {
1150 	unsigned long nr_scanned;
1151 	spin_lock(&zone->lock);
1152 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1153 	if (nr_scanned)
1154 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1155 
1156 	if (unlikely(has_isolate_pageblock(zone) ||
1157 		is_migrate_isolate(migratetype))) {
1158 		migratetype = get_pfnblock_migratetype(page, pfn);
1159 	}
1160 	__free_one_page(page, pfn, zone, order, migratetype);
1161 	spin_unlock(&zone->lock);
1162 }
1163 
1164 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 				unsigned long zone, int nid)
1166 {
1167 	set_page_links(page, zone, nid, pfn);
1168 	init_page_count(page);
1169 	page_mapcount_reset(page);
1170 	page_cpupid_reset_last(page);
1171 
1172 	INIT_LIST_HEAD(&page->lru);
1173 #ifdef WANT_PAGE_VIRTUAL
1174 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 	if (!is_highmem_idx(zone))
1176 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1177 #endif
1178 }
1179 
1180 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 					int nid)
1182 {
1183 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184 }
1185 
1186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187 static void init_reserved_page(unsigned long pfn)
1188 {
1189 	pg_data_t *pgdat;
1190 	int nid, zid;
1191 
1192 	if (!early_page_uninitialised(pfn))
1193 		return;
1194 
1195 	nid = early_pfn_to_nid(pfn);
1196 	pgdat = NODE_DATA(nid);
1197 
1198 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 		struct zone *zone = &pgdat->node_zones[zid];
1200 
1201 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 			break;
1203 	}
1204 	__init_single_pfn(pfn, zid, nid);
1205 }
1206 #else
1207 static inline void init_reserved_page(unsigned long pfn)
1208 {
1209 }
1210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211 
1212 /*
1213  * Initialised pages do not have PageReserved set. This function is
1214  * called for each range allocated by the bootmem allocator and
1215  * marks the pages PageReserved. The remaining valid pages are later
1216  * sent to the buddy page allocator.
1217  */
1218 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1219 {
1220 	unsigned long start_pfn = PFN_DOWN(start);
1221 	unsigned long end_pfn = PFN_UP(end);
1222 
1223 	for (; start_pfn < end_pfn; start_pfn++) {
1224 		if (pfn_valid(start_pfn)) {
1225 			struct page *page = pfn_to_page(start_pfn);
1226 
1227 			init_reserved_page(start_pfn);
1228 
1229 			/* Avoid false-positive PageTail() */
1230 			INIT_LIST_HEAD(&page->lru);
1231 
1232 			SetPageReserved(page);
1233 		}
1234 	}
1235 }
1236 
1237 static void __free_pages_ok(struct page *page, unsigned int order)
1238 {
1239 	unsigned long flags;
1240 	int migratetype;
1241 	unsigned long pfn = page_to_pfn(page);
1242 
1243 	if (!free_pages_prepare(page, order, true))
1244 		return;
1245 
1246 	migratetype = get_pfnblock_migratetype(page, pfn);
1247 	local_irq_save(flags);
1248 	__count_vm_events(PGFREE, 1 << order);
1249 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1250 	local_irq_restore(flags);
1251 }
1252 
1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254 {
1255 	unsigned int nr_pages = 1 << order;
1256 	struct page *p = page;
1257 	unsigned int loop;
1258 
1259 	prefetchw(p);
1260 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 		prefetchw(p + 1);
1262 		__ClearPageReserved(p);
1263 		set_page_count(p, 0);
1264 	}
1265 	__ClearPageReserved(p);
1266 	set_page_count(p, 0);
1267 
1268 	page_zone(page)->managed_pages += nr_pages;
1269 	set_page_refcounted(page);
1270 	__free_pages(page, order);
1271 }
1272 
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275 
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277 
1278 int __meminit early_pfn_to_nid(unsigned long pfn)
1279 {
1280 	static DEFINE_SPINLOCK(early_pfn_lock);
1281 	int nid;
1282 
1283 	spin_lock(&early_pfn_lock);
1284 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285 	if (nid < 0)
1286 		nid = first_online_node;
1287 	spin_unlock(&early_pfn_lock);
1288 
1289 	return nid;
1290 }
1291 #endif
1292 
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 					struct mminit_pfnnid_cache *state)
1296 {
1297 	int nid;
1298 
1299 	nid = __early_pfn_to_nid(pfn, state);
1300 	if (nid >= 0 && nid != node)
1301 		return false;
1302 	return true;
1303 }
1304 
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307 {
1308 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 }
1310 
1311 #else
1312 
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 	return true;
1316 }
1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 					struct mminit_pfnnid_cache *state)
1319 {
1320 	return true;
1321 }
1322 #endif
1323 
1324 
1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 							unsigned int order)
1327 {
1328 	if (early_page_uninitialised(pfn))
1329 		return;
1330 	return __free_pages_boot_core(page, order);
1331 }
1332 
1333 /*
1334  * Check that the whole (or subset of) a pageblock given by the interval of
1335  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336  * with the migration of free compaction scanner. The scanners then need to
1337  * use only pfn_valid_within() check for arches that allow holes within
1338  * pageblocks.
1339  *
1340  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341  *
1342  * It's possible on some configurations to have a setup like node0 node1 node0
1343  * i.e. it's possible that all pages within a zones range of pages do not
1344  * belong to a single zone. We assume that a border between node0 and node1
1345  * can occur within a single pageblock, but not a node0 node1 node0
1346  * interleaving within a single pageblock. It is therefore sufficient to check
1347  * the first and last page of a pageblock and avoid checking each individual
1348  * page in a pageblock.
1349  */
1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 				     unsigned long end_pfn, struct zone *zone)
1352 {
1353 	struct page *start_page;
1354 	struct page *end_page;
1355 
1356 	/* end_pfn is one past the range we are checking */
1357 	end_pfn--;
1358 
1359 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 		return NULL;
1361 
1362 	start_page = pfn_to_page(start_pfn);
1363 
1364 	if (page_zone(start_page) != zone)
1365 		return NULL;
1366 
1367 	end_page = pfn_to_page(end_pfn);
1368 
1369 	/* This gives a shorter code than deriving page_zone(end_page) */
1370 	if (page_zone_id(start_page) != page_zone_id(end_page))
1371 		return NULL;
1372 
1373 	return start_page;
1374 }
1375 
1376 void set_zone_contiguous(struct zone *zone)
1377 {
1378 	unsigned long block_start_pfn = zone->zone_start_pfn;
1379 	unsigned long block_end_pfn;
1380 
1381 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 	for (; block_start_pfn < zone_end_pfn(zone);
1383 			block_start_pfn = block_end_pfn,
1384 			 block_end_pfn += pageblock_nr_pages) {
1385 
1386 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387 
1388 		if (!__pageblock_pfn_to_page(block_start_pfn,
1389 					     block_end_pfn, zone))
1390 			return;
1391 	}
1392 
1393 	/* We confirm that there is no hole */
1394 	zone->contiguous = true;
1395 }
1396 
1397 void clear_zone_contiguous(struct zone *zone)
1398 {
1399 	zone->contiguous = false;
1400 }
1401 
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init deferred_free_range(struct page *page,
1404 					unsigned long pfn, int nr_pages)
1405 {
1406 	int i;
1407 
1408 	if (!page)
1409 		return;
1410 
1411 	/* Free a large naturally-aligned chunk if possible */
1412 	if (nr_pages == pageblock_nr_pages &&
1413 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1414 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415 		__free_pages_boot_core(page, pageblock_order);
1416 		return;
1417 	}
1418 
1419 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422 		__free_pages_boot_core(page, 0);
1423 	}
1424 }
1425 
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata;
1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429 
1430 static inline void __init pgdat_init_report_one_done(void)
1431 {
1432 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 		complete(&pgdat_init_all_done_comp);
1434 }
1435 
1436 /* Initialise remaining memory on a node */
1437 static int __init deferred_init_memmap(void *data)
1438 {
1439 	pg_data_t *pgdat = data;
1440 	int nid = pgdat->node_id;
1441 	struct mminit_pfnnid_cache nid_init_state = { };
1442 	unsigned long start = jiffies;
1443 	unsigned long nr_pages = 0;
1444 	unsigned long walk_start, walk_end;
1445 	int i, zid;
1446 	struct zone *zone;
1447 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449 
1450 	if (first_init_pfn == ULONG_MAX) {
1451 		pgdat_init_report_one_done();
1452 		return 0;
1453 	}
1454 
1455 	/* Bind memory initialisation thread to a local node if possible */
1456 	if (!cpumask_empty(cpumask))
1457 		set_cpus_allowed_ptr(current, cpumask);
1458 
1459 	/* Sanity check boundaries */
1460 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 	pgdat->first_deferred_pfn = ULONG_MAX;
1463 
1464 	/* Only the highest zone is deferred so find it */
1465 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 		zone = pgdat->node_zones + zid;
1467 		if (first_init_pfn < zone_end_pfn(zone))
1468 			break;
1469 	}
1470 
1471 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 		unsigned long pfn, end_pfn;
1473 		struct page *page = NULL;
1474 		struct page *free_base_page = NULL;
1475 		unsigned long free_base_pfn = 0;
1476 		int nr_to_free = 0;
1477 
1478 		end_pfn = min(walk_end, zone_end_pfn(zone));
1479 		pfn = first_init_pfn;
1480 		if (pfn < walk_start)
1481 			pfn = walk_start;
1482 		if (pfn < zone->zone_start_pfn)
1483 			pfn = zone->zone_start_pfn;
1484 
1485 		for (; pfn < end_pfn; pfn++) {
1486 			if (!pfn_valid_within(pfn))
1487 				goto free_range;
1488 
1489 			/*
1490 			 * Ensure pfn_valid is checked every
1491 			 * pageblock_nr_pages for memory holes
1492 			 */
1493 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 				if (!pfn_valid(pfn)) {
1495 					page = NULL;
1496 					goto free_range;
1497 				}
1498 			}
1499 
1500 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 				page = NULL;
1502 				goto free_range;
1503 			}
1504 
1505 			/* Minimise pfn page lookups and scheduler checks */
1506 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 				page++;
1508 			} else {
1509 				nr_pages += nr_to_free;
1510 				deferred_free_range(free_base_page,
1511 						free_base_pfn, nr_to_free);
1512 				free_base_page = NULL;
1513 				free_base_pfn = nr_to_free = 0;
1514 
1515 				page = pfn_to_page(pfn);
1516 				cond_resched();
1517 			}
1518 
1519 			if (page->flags) {
1520 				VM_BUG_ON(page_zone(page) != zone);
1521 				goto free_range;
1522 			}
1523 
1524 			__init_single_page(page, pfn, zid, nid);
1525 			if (!free_base_page) {
1526 				free_base_page = page;
1527 				free_base_pfn = pfn;
1528 				nr_to_free = 0;
1529 			}
1530 			nr_to_free++;
1531 
1532 			/* Where possible, batch up pages for a single free */
1533 			continue;
1534 free_range:
1535 			/* Free the current block of pages to allocator */
1536 			nr_pages += nr_to_free;
1537 			deferred_free_range(free_base_page, free_base_pfn,
1538 								nr_to_free);
1539 			free_base_page = NULL;
1540 			free_base_pfn = nr_to_free = 0;
1541 		}
1542 		/* Free the last block of pages to allocator */
1543 		nr_pages += nr_to_free;
1544 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545 
1546 		first_init_pfn = max(end_pfn, first_init_pfn);
1547 	}
1548 
1549 	/* Sanity check that the next zone really is unpopulated */
1550 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551 
1552 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553 					jiffies_to_msecs(jiffies - start));
1554 
1555 	pgdat_init_report_one_done();
1556 	return 0;
1557 }
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559 
1560 void __init page_alloc_init_late(void)
1561 {
1562 	struct zone *zone;
1563 
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 	int nid;
1566 
1567 	/* There will be num_node_state(N_MEMORY) threads */
1568 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 	for_each_node_state(nid, N_MEMORY) {
1570 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 	}
1572 
1573 	/* Block until all are initialised */
1574 	wait_for_completion(&pgdat_init_all_done_comp);
1575 
1576 	/* Reinit limits that are based on free pages after the kernel is up */
1577 	files_maxfiles_init();
1578 #endif
1579 
1580 	for_each_populated_zone(zone)
1581 		set_zone_contiguous(zone);
1582 }
1583 
1584 #ifdef CONFIG_CMA
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init init_cma_reserved_pageblock(struct page *page)
1587 {
1588 	unsigned i = pageblock_nr_pages;
1589 	struct page *p = page;
1590 
1591 	do {
1592 		__ClearPageReserved(p);
1593 		set_page_count(p, 0);
1594 	} while (++p, --i);
1595 
1596 	set_pageblock_migratetype(page, MIGRATE_CMA);
1597 
1598 	if (pageblock_order >= MAX_ORDER) {
1599 		i = pageblock_nr_pages;
1600 		p = page;
1601 		do {
1602 			set_page_refcounted(p);
1603 			__free_pages(p, MAX_ORDER - 1);
1604 			p += MAX_ORDER_NR_PAGES;
1605 		} while (i -= MAX_ORDER_NR_PAGES);
1606 	} else {
1607 		set_page_refcounted(page);
1608 		__free_pages(page, pageblock_order);
1609 	}
1610 
1611 	adjust_managed_page_count(page, pageblock_nr_pages);
1612 }
1613 #endif
1614 
1615 /*
1616  * The order of subdivision here is critical for the IO subsystem.
1617  * Please do not alter this order without good reasons and regression
1618  * testing. Specifically, as large blocks of memory are subdivided,
1619  * the order in which smaller blocks are delivered depends on the order
1620  * they're subdivided in this function. This is the primary factor
1621  * influencing the order in which pages are delivered to the IO
1622  * subsystem according to empirical testing, and this is also justified
1623  * by considering the behavior of a buddy system containing a single
1624  * large block of memory acted on by a series of small allocations.
1625  * This behavior is a critical factor in sglist merging's success.
1626  *
1627  * -- nyc
1628  */
1629 static inline void expand(struct zone *zone, struct page *page,
1630 	int low, int high, struct free_area *area,
1631 	int migratetype)
1632 {
1633 	unsigned long size = 1 << high;
1634 
1635 	while (high > low) {
1636 		area--;
1637 		high--;
1638 		size >>= 1;
1639 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640 
1641 		/*
1642 		 * Mark as guard pages (or page), that will allow to
1643 		 * merge back to allocator when buddy will be freed.
1644 		 * Corresponding page table entries will not be touched,
1645 		 * pages will stay not present in virtual address space
1646 		 */
1647 		if (set_page_guard(zone, &page[size], high, migratetype))
1648 			continue;
1649 
1650 		list_add(&page[size].lru, &area->free_list[migratetype]);
1651 		area->nr_free++;
1652 		set_page_order(&page[size], high);
1653 	}
1654 }
1655 
1656 static void check_new_page_bad(struct page *page)
1657 {
1658 	const char *bad_reason = NULL;
1659 	unsigned long bad_flags = 0;
1660 
1661 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 		bad_reason = "nonzero mapcount";
1663 	if (unlikely(page->mapping != NULL))
1664 		bad_reason = "non-NULL mapping";
1665 	if (unlikely(page_ref_count(page) != 0))
1666 		bad_reason = "nonzero _count";
1667 	if (unlikely(page->flags & __PG_HWPOISON)) {
1668 		bad_reason = "HWPoisoned (hardware-corrupted)";
1669 		bad_flags = __PG_HWPOISON;
1670 		/* Don't complain about hwpoisoned pages */
1671 		page_mapcount_reset(page); /* remove PageBuddy */
1672 		return;
1673 	}
1674 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 	}
1678 #ifdef CONFIG_MEMCG
1679 	if (unlikely(page->mem_cgroup))
1680 		bad_reason = "page still charged to cgroup";
1681 #endif
1682 	bad_page(page, bad_reason, bad_flags);
1683 }
1684 
1685 /*
1686  * This page is about to be returned from the page allocator
1687  */
1688 static inline int check_new_page(struct page *page)
1689 {
1690 	if (likely(page_expected_state(page,
1691 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 		return 0;
1693 
1694 	check_new_page_bad(page);
1695 	return 1;
1696 }
1697 
1698 static inline bool free_pages_prezeroed(bool poisoned)
1699 {
1700 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 		page_poisoning_enabled() && poisoned;
1702 }
1703 
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page *page)
1706 {
1707 	return false;
1708 }
1709 
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 	return check_new_page(page);
1713 }
1714 #else
1715 static bool check_pcp_refill(struct page *page)
1716 {
1717 	return check_new_page(page);
1718 }
1719 static bool check_new_pcp(struct page *page)
1720 {
1721 	return false;
1722 }
1723 #endif /* CONFIG_DEBUG_VM */
1724 
1725 static bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 	int i;
1728 	for (i = 0; i < (1 << order); i++) {
1729 		struct page *p = page + i;
1730 
1731 		if (unlikely(check_new_page(p)))
1732 			return true;
1733 	}
1734 
1735 	return false;
1736 }
1737 
1738 inline void post_alloc_hook(struct page *page, unsigned int order,
1739 				gfp_t gfp_flags)
1740 {
1741 	set_page_private(page, 0);
1742 	set_page_refcounted(page);
1743 
1744 	arch_alloc_page(page, order);
1745 	kernel_map_pages(page, 1 << order, 1);
1746 	kernel_poison_pages(page, 1 << order, 1);
1747 	kasan_alloc_pages(page, order);
1748 	set_page_owner(page, order, gfp_flags);
1749 }
1750 
1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752 							unsigned int alloc_flags)
1753 {
1754 	int i;
1755 	bool poisoned = true;
1756 
1757 	for (i = 0; i < (1 << order); i++) {
1758 		struct page *p = page + i;
1759 		if (poisoned)
1760 			poisoned &= page_is_poisoned(p);
1761 	}
1762 
1763 	post_alloc_hook(page, order, gfp_flags);
1764 
1765 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 		for (i = 0; i < (1 << order); i++)
1767 			clear_highpage(page + i);
1768 
1769 	if (order && (gfp_flags & __GFP_COMP))
1770 		prep_compound_page(page, order);
1771 
1772 	/*
1773 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 	 * allocate the page. The expectation is that the caller is taking
1775 	 * steps that will free more memory. The caller should avoid the page
1776 	 * being used for !PFMEMALLOC purposes.
1777 	 */
1778 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 		set_page_pfmemalloc(page);
1780 	else
1781 		clear_page_pfmemalloc(page);
1782 }
1783 
1784 /*
1785  * Go through the free lists for the given migratetype and remove
1786  * the smallest available page from the freelists
1787  */
1788 static inline
1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 						int migratetype)
1791 {
1792 	unsigned int current_order;
1793 	struct free_area *area;
1794 	struct page *page;
1795 
1796 	/* Find a page of the appropriate size in the preferred list */
1797 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 		area = &(zone->free_area[current_order]);
1799 		page = list_first_entry_or_null(&area->free_list[migratetype],
1800 							struct page, lru);
1801 		if (!page)
1802 			continue;
1803 		list_del(&page->lru);
1804 		rmv_page_order(page);
1805 		area->nr_free--;
1806 		expand(zone, page, order, current_order, area, migratetype);
1807 		set_pcppage_migratetype(page, migratetype);
1808 		return page;
1809 	}
1810 
1811 	return NULL;
1812 }
1813 
1814 
1815 /*
1816  * This array describes the order lists are fallen back to when
1817  * the free lists for the desirable migrate type are depleted
1818  */
1819 static int fallbacks[MIGRATE_TYPES][4] = {
1820 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1821 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1822 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823 #ifdef CONFIG_CMA
1824 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1825 #endif
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 };
1830 
1831 #ifdef CONFIG_CMA
1832 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 					unsigned int order)
1834 {
1835 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836 }
1837 #else
1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 					unsigned int order) { return NULL; }
1840 #endif
1841 
1842 /*
1843  * Move the free pages in a range to the free lists of the requested type.
1844  * Note that start_page and end_pages are not aligned on a pageblock
1845  * boundary. If alignment is required, use move_freepages_block()
1846  */
1847 int move_freepages(struct zone *zone,
1848 			  struct page *start_page, struct page *end_page,
1849 			  int migratetype)
1850 {
1851 	struct page *page;
1852 	unsigned int order;
1853 	int pages_moved = 0;
1854 
1855 #ifndef CONFIG_HOLES_IN_ZONE
1856 	/*
1857 	 * page_zone is not safe to call in this context when
1858 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 	 * anyway as we check zone boundaries in move_freepages_block().
1860 	 * Remove at a later date when no bug reports exist related to
1861 	 * grouping pages by mobility
1862 	 */
1863 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 #endif
1865 
1866 	for (page = start_page; page <= end_page;) {
1867 		/* Make sure we are not inadvertently changing nodes */
1868 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1869 
1870 		if (!pfn_valid_within(page_to_pfn(page))) {
1871 			page++;
1872 			continue;
1873 		}
1874 
1875 		if (!PageBuddy(page)) {
1876 			page++;
1877 			continue;
1878 		}
1879 
1880 		order = page_order(page);
1881 		list_move(&page->lru,
1882 			  &zone->free_area[order].free_list[migratetype]);
1883 		page += 1 << order;
1884 		pages_moved += 1 << order;
1885 	}
1886 
1887 	return pages_moved;
1888 }
1889 
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 				int migratetype)
1892 {
1893 	unsigned long start_pfn, end_pfn;
1894 	struct page *start_page, *end_page;
1895 
1896 	start_pfn = page_to_pfn(page);
1897 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 	start_page = pfn_to_page(start_pfn);
1899 	end_page = start_page + pageblock_nr_pages - 1;
1900 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1901 
1902 	/* Do not cross zone boundaries */
1903 	if (!zone_spans_pfn(zone, start_pfn))
1904 		start_page = page;
1905 	if (!zone_spans_pfn(zone, end_pfn))
1906 		return 0;
1907 
1908 	return move_freepages(zone, start_page, end_page, migratetype);
1909 }
1910 
1911 static void change_pageblock_range(struct page *pageblock_page,
1912 					int start_order, int migratetype)
1913 {
1914 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1915 
1916 	while (nr_pageblocks--) {
1917 		set_pageblock_migratetype(pageblock_page, migratetype);
1918 		pageblock_page += pageblock_nr_pages;
1919 	}
1920 }
1921 
1922 /*
1923  * When we are falling back to another migratetype during allocation, try to
1924  * steal extra free pages from the same pageblocks to satisfy further
1925  * allocations, instead of polluting multiple pageblocks.
1926  *
1927  * If we are stealing a relatively large buddy page, it is likely there will
1928  * be more free pages in the pageblock, so try to steal them all. For
1929  * reclaimable and unmovable allocations, we steal regardless of page size,
1930  * as fragmentation caused by those allocations polluting movable pageblocks
1931  * is worse than movable allocations stealing from unmovable and reclaimable
1932  * pageblocks.
1933  */
1934 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 {
1936 	/*
1937 	 * Leaving this order check is intended, although there is
1938 	 * relaxed order check in next check. The reason is that
1939 	 * we can actually steal whole pageblock if this condition met,
1940 	 * but, below check doesn't guarantee it and that is just heuristic
1941 	 * so could be changed anytime.
1942 	 */
1943 	if (order >= pageblock_order)
1944 		return true;
1945 
1946 	if (order >= pageblock_order / 2 ||
1947 		start_mt == MIGRATE_RECLAIMABLE ||
1948 		start_mt == MIGRATE_UNMOVABLE ||
1949 		page_group_by_mobility_disabled)
1950 		return true;
1951 
1952 	return false;
1953 }
1954 
1955 /*
1956  * This function implements actual steal behaviour. If order is large enough,
1957  * we can steal whole pageblock. If not, we first move freepages in this
1958  * pageblock and check whether half of pages are moved or not. If half of
1959  * pages are moved, we can change migratetype of pageblock and permanently
1960  * use it's pages as requested migratetype in the future.
1961  */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 							  int start_type)
1964 {
1965 	unsigned int current_order = page_order(page);
1966 	int pages;
1967 
1968 	/* Take ownership for orders >= pageblock_order */
1969 	if (current_order >= pageblock_order) {
1970 		change_pageblock_range(page, current_order, start_type);
1971 		return;
1972 	}
1973 
1974 	pages = move_freepages_block(zone, page, start_type);
1975 
1976 	/* Claim the whole block if over half of it is free */
1977 	if (pages >= (1 << (pageblock_order-1)) ||
1978 			page_group_by_mobility_disabled)
1979 		set_pageblock_migratetype(page, start_type);
1980 }
1981 
1982 /*
1983  * Check whether there is a suitable fallback freepage with requested order.
1984  * If only_stealable is true, this function returns fallback_mt only if
1985  * we can steal other freepages all together. This would help to reduce
1986  * fragmentation due to mixed migratetype pages in one pageblock.
1987  */
1988 int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 			int migratetype, bool only_stealable, bool *can_steal)
1990 {
1991 	int i;
1992 	int fallback_mt;
1993 
1994 	if (area->nr_free == 0)
1995 		return -1;
1996 
1997 	*can_steal = false;
1998 	for (i = 0;; i++) {
1999 		fallback_mt = fallbacks[migratetype][i];
2000 		if (fallback_mt == MIGRATE_TYPES)
2001 			break;
2002 
2003 		if (list_empty(&area->free_list[fallback_mt]))
2004 			continue;
2005 
2006 		if (can_steal_fallback(order, migratetype))
2007 			*can_steal = true;
2008 
2009 		if (!only_stealable)
2010 			return fallback_mt;
2011 
2012 		if (*can_steal)
2013 			return fallback_mt;
2014 	}
2015 
2016 	return -1;
2017 }
2018 
2019 /*
2020  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021  * there are no empty page blocks that contain a page with a suitable order
2022  */
2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 				unsigned int alloc_order)
2025 {
2026 	int mt;
2027 	unsigned long max_managed, flags;
2028 
2029 	/*
2030 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 	 * Check is race-prone but harmless.
2032 	 */
2033 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 	if (zone->nr_reserved_highatomic >= max_managed)
2035 		return;
2036 
2037 	spin_lock_irqsave(&zone->lock, flags);
2038 
2039 	/* Recheck the nr_reserved_highatomic limit under the lock */
2040 	if (zone->nr_reserved_highatomic >= max_managed)
2041 		goto out_unlock;
2042 
2043 	/* Yoink! */
2044 	mt = get_pageblock_migratetype(page);
2045 	if (mt != MIGRATE_HIGHATOMIC &&
2046 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 	}
2051 
2052 out_unlock:
2053 	spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055 
2056 /*
2057  * Used when an allocation is about to fail under memory pressure. This
2058  * potentially hurts the reliability of high-order allocations when under
2059  * intense memory pressure but failed atomic allocations should be easier
2060  * to recover from than an OOM.
2061  *
2062  * If @force is true, try to unreserve a pageblock even though highatomic
2063  * pageblock is exhausted.
2064  */
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 						bool force)
2067 {
2068 	struct zonelist *zonelist = ac->zonelist;
2069 	unsigned long flags;
2070 	struct zoneref *z;
2071 	struct zone *zone;
2072 	struct page *page;
2073 	int order;
2074 	bool ret;
2075 
2076 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 								ac->nodemask) {
2078 		/*
2079 		 * Preserve at least one pageblock unless memory pressure
2080 		 * is really high.
2081 		 */
2082 		if (!force && zone->nr_reserved_highatomic <=
2083 					pageblock_nr_pages)
2084 			continue;
2085 
2086 		spin_lock_irqsave(&zone->lock, flags);
2087 		for (order = 0; order < MAX_ORDER; order++) {
2088 			struct free_area *area = &(zone->free_area[order]);
2089 
2090 			page = list_first_entry_or_null(
2091 					&area->free_list[MIGRATE_HIGHATOMIC],
2092 					struct page, lru);
2093 			if (!page)
2094 				continue;
2095 
2096 			/*
2097 			 * In page freeing path, migratetype change is racy so
2098 			 * we can counter several free pages in a pageblock
2099 			 * in this loop althoug we changed the pageblock type
2100 			 * from highatomic to ac->migratetype. So we should
2101 			 * adjust the count once.
2102 			 */
2103 			if (get_pageblock_migratetype(page) ==
2104 							MIGRATE_HIGHATOMIC) {
2105 				/*
2106 				 * It should never happen but changes to
2107 				 * locking could inadvertently allow a per-cpu
2108 				 * drain to add pages to MIGRATE_HIGHATOMIC
2109 				 * while unreserving so be safe and watch for
2110 				 * underflows.
2111 				 */
2112 				zone->nr_reserved_highatomic -= min(
2113 						pageblock_nr_pages,
2114 						zone->nr_reserved_highatomic);
2115 			}
2116 
2117 			/*
2118 			 * Convert to ac->migratetype and avoid the normal
2119 			 * pageblock stealing heuristics. Minimally, the caller
2120 			 * is doing the work and needs the pages. More
2121 			 * importantly, if the block was always converted to
2122 			 * MIGRATE_UNMOVABLE or another type then the number
2123 			 * of pageblocks that cannot be completely freed
2124 			 * may increase.
2125 			 */
2126 			set_pageblock_migratetype(page, ac->migratetype);
2127 			ret = move_freepages_block(zone, page, ac->migratetype);
2128 			if (ret) {
2129 				spin_unlock_irqrestore(&zone->lock, flags);
2130 				return ret;
2131 			}
2132 		}
2133 		spin_unlock_irqrestore(&zone->lock, flags);
2134 	}
2135 
2136 	return false;
2137 }
2138 
2139 /* Remove an element from the buddy allocator from the fallback list */
2140 static inline struct page *
2141 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2142 {
2143 	struct free_area *area;
2144 	unsigned int current_order;
2145 	struct page *page;
2146 	int fallback_mt;
2147 	bool can_steal;
2148 
2149 	/* Find the largest possible block of pages in the other list */
2150 	for (current_order = MAX_ORDER-1;
2151 				current_order >= order && current_order <= MAX_ORDER-1;
2152 				--current_order) {
2153 		area = &(zone->free_area[current_order]);
2154 		fallback_mt = find_suitable_fallback(area, current_order,
2155 				start_migratetype, false, &can_steal);
2156 		if (fallback_mt == -1)
2157 			continue;
2158 
2159 		page = list_first_entry(&area->free_list[fallback_mt],
2160 						struct page, lru);
2161 		if (can_steal &&
2162 			get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2163 			steal_suitable_fallback(zone, page, start_migratetype);
2164 
2165 		/* Remove the page from the freelists */
2166 		area->nr_free--;
2167 		list_del(&page->lru);
2168 		rmv_page_order(page);
2169 
2170 		expand(zone, page, order, current_order, area,
2171 					start_migratetype);
2172 		/*
2173 		 * The pcppage_migratetype may differ from pageblock's
2174 		 * migratetype depending on the decisions in
2175 		 * find_suitable_fallback(). This is OK as long as it does not
2176 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 		 * fallback only via special __rmqueue_cma_fallback() function
2178 		 */
2179 		set_pcppage_migratetype(page, start_migratetype);
2180 
2181 		trace_mm_page_alloc_extfrag(page, order, current_order,
2182 			start_migratetype, fallback_mt);
2183 
2184 		return page;
2185 	}
2186 
2187 	return NULL;
2188 }
2189 
2190 /*
2191  * Do the hard work of removing an element from the buddy allocator.
2192  * Call me with the zone->lock already held.
2193  */
2194 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2195 				int migratetype)
2196 {
2197 	struct page *page;
2198 
2199 	page = __rmqueue_smallest(zone, order, migratetype);
2200 	if (unlikely(!page)) {
2201 		if (migratetype == MIGRATE_MOVABLE)
2202 			page = __rmqueue_cma_fallback(zone, order);
2203 
2204 		if (!page)
2205 			page = __rmqueue_fallback(zone, order, migratetype);
2206 	}
2207 
2208 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2209 	return page;
2210 }
2211 
2212 /*
2213  * Obtain a specified number of elements from the buddy allocator, all under
2214  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2215  * Returns the number of new pages which were placed at *list.
2216  */
2217 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2218 			unsigned long count, struct list_head *list,
2219 			int migratetype, bool cold)
2220 {
2221 	int i, alloced = 0;
2222 
2223 	spin_lock(&zone->lock);
2224 	for (i = 0; i < count; ++i) {
2225 		struct page *page = __rmqueue(zone, order, migratetype);
2226 		if (unlikely(page == NULL))
2227 			break;
2228 
2229 		if (unlikely(check_pcp_refill(page)))
2230 			continue;
2231 
2232 		/*
2233 		 * Split buddy pages returned by expand() are received here
2234 		 * in physical page order. The page is added to the callers and
2235 		 * list and the list head then moves forward. From the callers
2236 		 * perspective, the linked list is ordered by page number in
2237 		 * some conditions. This is useful for IO devices that can
2238 		 * merge IO requests if the physical pages are ordered
2239 		 * properly.
2240 		 */
2241 		if (likely(!cold))
2242 			list_add(&page->lru, list);
2243 		else
2244 			list_add_tail(&page->lru, list);
2245 		list = &page->lru;
2246 		alloced++;
2247 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2248 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2249 					      -(1 << order));
2250 	}
2251 
2252 	/*
2253 	 * i pages were removed from the buddy list even if some leak due
2254 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 	 * on i. Do not confuse with 'alloced' which is the number of
2256 	 * pages added to the pcp list.
2257 	 */
2258 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2259 	spin_unlock(&zone->lock);
2260 	return alloced;
2261 }
2262 
2263 #ifdef CONFIG_NUMA
2264 /*
2265  * Called from the vmstat counter updater to drain pagesets of this
2266  * currently executing processor on remote nodes after they have
2267  * expired.
2268  *
2269  * Note that this function must be called with the thread pinned to
2270  * a single processor.
2271  */
2272 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2273 {
2274 	unsigned long flags;
2275 	int to_drain, batch;
2276 
2277 	local_irq_save(flags);
2278 	batch = READ_ONCE(pcp->batch);
2279 	to_drain = min(pcp->count, batch);
2280 	if (to_drain > 0) {
2281 		free_pcppages_bulk(zone, to_drain, pcp);
2282 		pcp->count -= to_drain;
2283 	}
2284 	local_irq_restore(flags);
2285 }
2286 #endif
2287 
2288 /*
2289  * Drain pcplists of the indicated processor and zone.
2290  *
2291  * The processor must either be the current processor and the
2292  * thread pinned to the current processor or a processor that
2293  * is not online.
2294  */
2295 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2296 {
2297 	unsigned long flags;
2298 	struct per_cpu_pageset *pset;
2299 	struct per_cpu_pages *pcp;
2300 
2301 	local_irq_save(flags);
2302 	pset = per_cpu_ptr(zone->pageset, cpu);
2303 
2304 	pcp = &pset->pcp;
2305 	if (pcp->count) {
2306 		free_pcppages_bulk(zone, pcp->count, pcp);
2307 		pcp->count = 0;
2308 	}
2309 	local_irq_restore(flags);
2310 }
2311 
2312 /*
2313  * Drain pcplists of all zones on the indicated processor.
2314  *
2315  * The processor must either be the current processor and the
2316  * thread pinned to the current processor or a processor that
2317  * is not online.
2318  */
2319 static void drain_pages(unsigned int cpu)
2320 {
2321 	struct zone *zone;
2322 
2323 	for_each_populated_zone(zone) {
2324 		drain_pages_zone(cpu, zone);
2325 	}
2326 }
2327 
2328 /*
2329  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2330  *
2331  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332  * the single zone's pages.
2333  */
2334 void drain_local_pages(struct zone *zone)
2335 {
2336 	int cpu = smp_processor_id();
2337 
2338 	if (zone)
2339 		drain_pages_zone(cpu, zone);
2340 	else
2341 		drain_pages(cpu);
2342 }
2343 
2344 /*
2345  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2346  *
2347  * When zone parameter is non-NULL, spill just the single zone's pages.
2348  *
2349  * Note that this code is protected against sending an IPI to an offline
2350  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2351  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2352  * nothing keeps CPUs from showing up after we populated the cpumask and
2353  * before the call to on_each_cpu_mask().
2354  */
2355 void drain_all_pages(struct zone *zone)
2356 {
2357 	int cpu;
2358 
2359 	/*
2360 	 * Allocate in the BSS so we wont require allocation in
2361 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2362 	 */
2363 	static cpumask_t cpus_with_pcps;
2364 
2365 	/*
2366 	 * We don't care about racing with CPU hotplug event
2367 	 * as offline notification will cause the notified
2368 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2369 	 * disables preemption as part of its processing
2370 	 */
2371 	for_each_online_cpu(cpu) {
2372 		struct per_cpu_pageset *pcp;
2373 		struct zone *z;
2374 		bool has_pcps = false;
2375 
2376 		if (zone) {
2377 			pcp = per_cpu_ptr(zone->pageset, cpu);
2378 			if (pcp->pcp.count)
2379 				has_pcps = true;
2380 		} else {
2381 			for_each_populated_zone(z) {
2382 				pcp = per_cpu_ptr(z->pageset, cpu);
2383 				if (pcp->pcp.count) {
2384 					has_pcps = true;
2385 					break;
2386 				}
2387 			}
2388 		}
2389 
2390 		if (has_pcps)
2391 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2392 		else
2393 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2394 	}
2395 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2396 								zone, 1);
2397 }
2398 
2399 #ifdef CONFIG_HIBERNATION
2400 
2401 void mark_free_pages(struct zone *zone)
2402 {
2403 	unsigned long pfn, max_zone_pfn;
2404 	unsigned long flags;
2405 	unsigned int order, t;
2406 	struct page *page;
2407 
2408 	if (zone_is_empty(zone))
2409 		return;
2410 
2411 	spin_lock_irqsave(&zone->lock, flags);
2412 
2413 	max_zone_pfn = zone_end_pfn(zone);
2414 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2415 		if (pfn_valid(pfn)) {
2416 			page = pfn_to_page(pfn);
2417 
2418 			if (page_zone(page) != zone)
2419 				continue;
2420 
2421 			if (!swsusp_page_is_forbidden(page))
2422 				swsusp_unset_page_free(page);
2423 		}
2424 
2425 	for_each_migratetype_order(order, t) {
2426 		list_for_each_entry(page,
2427 				&zone->free_area[order].free_list[t], lru) {
2428 			unsigned long i;
2429 
2430 			pfn = page_to_pfn(page);
2431 			for (i = 0; i < (1UL << order); i++)
2432 				swsusp_set_page_free(pfn_to_page(pfn + i));
2433 		}
2434 	}
2435 	spin_unlock_irqrestore(&zone->lock, flags);
2436 }
2437 #endif /* CONFIG_PM */
2438 
2439 /*
2440  * Free a 0-order page
2441  * cold == true ? free a cold page : free a hot page
2442  */
2443 void free_hot_cold_page(struct page *page, bool cold)
2444 {
2445 	struct zone *zone = page_zone(page);
2446 	struct per_cpu_pages *pcp;
2447 	unsigned long flags;
2448 	unsigned long pfn = page_to_pfn(page);
2449 	int migratetype;
2450 
2451 	if (!free_pcp_prepare(page))
2452 		return;
2453 
2454 	migratetype = get_pfnblock_migratetype(page, pfn);
2455 	set_pcppage_migratetype(page, migratetype);
2456 	local_irq_save(flags);
2457 	__count_vm_event(PGFREE);
2458 
2459 	/*
2460 	 * We only track unmovable, reclaimable and movable on pcp lists.
2461 	 * Free ISOLATE pages back to the allocator because they are being
2462 	 * offlined but treat RESERVE as movable pages so we can get those
2463 	 * areas back if necessary. Otherwise, we may have to free
2464 	 * excessively into the page allocator
2465 	 */
2466 	if (migratetype >= MIGRATE_PCPTYPES) {
2467 		if (unlikely(is_migrate_isolate(migratetype))) {
2468 			free_one_page(zone, page, pfn, 0, migratetype);
2469 			goto out;
2470 		}
2471 		migratetype = MIGRATE_MOVABLE;
2472 	}
2473 
2474 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2475 	if (!cold)
2476 		list_add(&page->lru, &pcp->lists[migratetype]);
2477 	else
2478 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2479 	pcp->count++;
2480 	if (pcp->count >= pcp->high) {
2481 		unsigned long batch = READ_ONCE(pcp->batch);
2482 		free_pcppages_bulk(zone, batch, pcp);
2483 		pcp->count -= batch;
2484 	}
2485 
2486 out:
2487 	local_irq_restore(flags);
2488 }
2489 
2490 /*
2491  * Free a list of 0-order pages
2492  */
2493 void free_hot_cold_page_list(struct list_head *list, bool cold)
2494 {
2495 	struct page *page, *next;
2496 
2497 	list_for_each_entry_safe(page, next, list, lru) {
2498 		trace_mm_page_free_batched(page, cold);
2499 		free_hot_cold_page(page, cold);
2500 	}
2501 }
2502 
2503 /*
2504  * split_page takes a non-compound higher-order page, and splits it into
2505  * n (1<<order) sub-pages: page[0..n]
2506  * Each sub-page must be freed individually.
2507  *
2508  * Note: this is probably too low level an operation for use in drivers.
2509  * Please consult with lkml before using this in your driver.
2510  */
2511 void split_page(struct page *page, unsigned int order)
2512 {
2513 	int i;
2514 
2515 	VM_BUG_ON_PAGE(PageCompound(page), page);
2516 	VM_BUG_ON_PAGE(!page_count(page), page);
2517 
2518 #ifdef CONFIG_KMEMCHECK
2519 	/*
2520 	 * Split shadow pages too, because free(page[0]) would
2521 	 * otherwise free the whole shadow.
2522 	 */
2523 	if (kmemcheck_page_is_tracked(page))
2524 		split_page(virt_to_page(page[0].shadow), order);
2525 #endif
2526 
2527 	for (i = 1; i < (1 << order); i++)
2528 		set_page_refcounted(page + i);
2529 	split_page_owner(page, order);
2530 }
2531 EXPORT_SYMBOL_GPL(split_page);
2532 
2533 int __isolate_free_page(struct page *page, unsigned int order)
2534 {
2535 	unsigned long watermark;
2536 	struct zone *zone;
2537 	int mt;
2538 
2539 	BUG_ON(!PageBuddy(page));
2540 
2541 	zone = page_zone(page);
2542 	mt = get_pageblock_migratetype(page);
2543 
2544 	if (!is_migrate_isolate(mt)) {
2545 		/*
2546 		 * Obey watermarks as if the page was being allocated. We can
2547 		 * emulate a high-order watermark check with a raised order-0
2548 		 * watermark, because we already know our high-order page
2549 		 * exists.
2550 		 */
2551 		watermark = min_wmark_pages(zone) + (1UL << order);
2552 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2553 			return 0;
2554 
2555 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2556 	}
2557 
2558 	/* Remove page from free list */
2559 	list_del(&page->lru);
2560 	zone->free_area[order].nr_free--;
2561 	rmv_page_order(page);
2562 
2563 	/*
2564 	 * Set the pageblock if the isolated page is at least half of a
2565 	 * pageblock
2566 	 */
2567 	if (order >= pageblock_order - 1) {
2568 		struct page *endpage = page + (1 << order) - 1;
2569 		for (; page < endpage; page += pageblock_nr_pages) {
2570 			int mt = get_pageblock_migratetype(page);
2571 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2572 				&& mt != MIGRATE_HIGHATOMIC)
2573 				set_pageblock_migratetype(page,
2574 							  MIGRATE_MOVABLE);
2575 		}
2576 	}
2577 
2578 
2579 	return 1UL << order;
2580 }
2581 
2582 /*
2583  * Update NUMA hit/miss statistics
2584  *
2585  * Must be called with interrupts disabled.
2586  *
2587  * When __GFP_OTHER_NODE is set assume the node of the preferred
2588  * zone is the local node. This is useful for daemons who allocate
2589  * memory on behalf of other processes.
2590  */
2591 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2592 								gfp_t flags)
2593 {
2594 #ifdef CONFIG_NUMA
2595 	int local_nid = numa_node_id();
2596 	enum zone_stat_item local_stat = NUMA_LOCAL;
2597 
2598 	if (unlikely(flags & __GFP_OTHER_NODE)) {
2599 		local_stat = NUMA_OTHER;
2600 		local_nid = preferred_zone->node;
2601 	}
2602 
2603 	if (z->node == local_nid) {
2604 		__inc_zone_state(z, NUMA_HIT);
2605 		__inc_zone_state(z, local_stat);
2606 	} else {
2607 		__inc_zone_state(z, NUMA_MISS);
2608 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2609 	}
2610 #endif
2611 }
2612 
2613 /*
2614  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2615  */
2616 static inline
2617 struct page *buffered_rmqueue(struct zone *preferred_zone,
2618 			struct zone *zone, unsigned int order,
2619 			gfp_t gfp_flags, unsigned int alloc_flags,
2620 			int migratetype)
2621 {
2622 	unsigned long flags;
2623 	struct page *page;
2624 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2625 
2626 	if (likely(order == 0)) {
2627 		struct per_cpu_pages *pcp;
2628 		struct list_head *list;
2629 
2630 		local_irq_save(flags);
2631 		do {
2632 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2633 			list = &pcp->lists[migratetype];
2634 			if (list_empty(list)) {
2635 				pcp->count += rmqueue_bulk(zone, 0,
2636 						pcp->batch, list,
2637 						migratetype, cold);
2638 				if (unlikely(list_empty(list)))
2639 					goto failed;
2640 			}
2641 
2642 			if (cold)
2643 				page = list_last_entry(list, struct page, lru);
2644 			else
2645 				page = list_first_entry(list, struct page, lru);
2646 
2647 			list_del(&page->lru);
2648 			pcp->count--;
2649 
2650 		} while (check_new_pcp(page));
2651 	} else {
2652 		/*
2653 		 * We most definitely don't want callers attempting to
2654 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2655 		 */
2656 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2657 		spin_lock_irqsave(&zone->lock, flags);
2658 
2659 		do {
2660 			page = NULL;
2661 			if (alloc_flags & ALLOC_HARDER) {
2662 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2663 				if (page)
2664 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2665 			}
2666 			if (!page)
2667 				page = __rmqueue(zone, order, migratetype);
2668 		} while (page && check_new_pages(page, order));
2669 		spin_unlock(&zone->lock);
2670 		if (!page)
2671 			goto failed;
2672 		__mod_zone_freepage_state(zone, -(1 << order),
2673 					  get_pcppage_migratetype(page));
2674 	}
2675 
2676 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2677 	zone_statistics(preferred_zone, zone, gfp_flags);
2678 	local_irq_restore(flags);
2679 
2680 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2681 	return page;
2682 
2683 failed:
2684 	local_irq_restore(flags);
2685 	return NULL;
2686 }
2687 
2688 #ifdef CONFIG_FAIL_PAGE_ALLOC
2689 
2690 static struct {
2691 	struct fault_attr attr;
2692 
2693 	bool ignore_gfp_highmem;
2694 	bool ignore_gfp_reclaim;
2695 	u32 min_order;
2696 } fail_page_alloc = {
2697 	.attr = FAULT_ATTR_INITIALIZER,
2698 	.ignore_gfp_reclaim = true,
2699 	.ignore_gfp_highmem = true,
2700 	.min_order = 1,
2701 };
2702 
2703 static int __init setup_fail_page_alloc(char *str)
2704 {
2705 	return setup_fault_attr(&fail_page_alloc.attr, str);
2706 }
2707 __setup("fail_page_alloc=", setup_fail_page_alloc);
2708 
2709 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2710 {
2711 	if (order < fail_page_alloc.min_order)
2712 		return false;
2713 	if (gfp_mask & __GFP_NOFAIL)
2714 		return false;
2715 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2716 		return false;
2717 	if (fail_page_alloc.ignore_gfp_reclaim &&
2718 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2719 		return false;
2720 
2721 	return should_fail(&fail_page_alloc.attr, 1 << order);
2722 }
2723 
2724 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2725 
2726 static int __init fail_page_alloc_debugfs(void)
2727 {
2728 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2729 	struct dentry *dir;
2730 
2731 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2732 					&fail_page_alloc.attr);
2733 	if (IS_ERR(dir))
2734 		return PTR_ERR(dir);
2735 
2736 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2737 				&fail_page_alloc.ignore_gfp_reclaim))
2738 		goto fail;
2739 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2740 				&fail_page_alloc.ignore_gfp_highmem))
2741 		goto fail;
2742 	if (!debugfs_create_u32("min-order", mode, dir,
2743 				&fail_page_alloc.min_order))
2744 		goto fail;
2745 
2746 	return 0;
2747 fail:
2748 	debugfs_remove_recursive(dir);
2749 
2750 	return -ENOMEM;
2751 }
2752 
2753 late_initcall(fail_page_alloc_debugfs);
2754 
2755 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2756 
2757 #else /* CONFIG_FAIL_PAGE_ALLOC */
2758 
2759 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2760 {
2761 	return false;
2762 }
2763 
2764 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2765 
2766 /*
2767  * Return true if free base pages are above 'mark'. For high-order checks it
2768  * will return true of the order-0 watermark is reached and there is at least
2769  * one free page of a suitable size. Checking now avoids taking the zone lock
2770  * to check in the allocation paths if no pages are free.
2771  */
2772 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2773 			 int classzone_idx, unsigned int alloc_flags,
2774 			 long free_pages)
2775 {
2776 	long min = mark;
2777 	int o;
2778 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2779 
2780 	/* free_pages may go negative - that's OK */
2781 	free_pages -= (1 << order) - 1;
2782 
2783 	if (alloc_flags & ALLOC_HIGH)
2784 		min -= min / 2;
2785 
2786 	/*
2787 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2788 	 * the high-atomic reserves. This will over-estimate the size of the
2789 	 * atomic reserve but it avoids a search.
2790 	 */
2791 	if (likely(!alloc_harder))
2792 		free_pages -= z->nr_reserved_highatomic;
2793 	else
2794 		min -= min / 4;
2795 
2796 #ifdef CONFIG_CMA
2797 	/* If allocation can't use CMA areas don't use free CMA pages */
2798 	if (!(alloc_flags & ALLOC_CMA))
2799 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2800 #endif
2801 
2802 	/*
2803 	 * Check watermarks for an order-0 allocation request. If these
2804 	 * are not met, then a high-order request also cannot go ahead
2805 	 * even if a suitable page happened to be free.
2806 	 */
2807 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2808 		return false;
2809 
2810 	/* If this is an order-0 request then the watermark is fine */
2811 	if (!order)
2812 		return true;
2813 
2814 	/* For a high-order request, check at least one suitable page is free */
2815 	for (o = order; o < MAX_ORDER; o++) {
2816 		struct free_area *area = &z->free_area[o];
2817 		int mt;
2818 
2819 		if (!area->nr_free)
2820 			continue;
2821 
2822 		if (alloc_harder)
2823 			return true;
2824 
2825 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2826 			if (!list_empty(&area->free_list[mt]))
2827 				return true;
2828 		}
2829 
2830 #ifdef CONFIG_CMA
2831 		if ((alloc_flags & ALLOC_CMA) &&
2832 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2833 			return true;
2834 		}
2835 #endif
2836 	}
2837 	return false;
2838 }
2839 
2840 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2841 		      int classzone_idx, unsigned int alloc_flags)
2842 {
2843 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2844 					zone_page_state(z, NR_FREE_PAGES));
2845 }
2846 
2847 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2848 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2849 {
2850 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2851 	long cma_pages = 0;
2852 
2853 #ifdef CONFIG_CMA
2854 	/* If allocation can't use CMA areas don't use free CMA pages */
2855 	if (!(alloc_flags & ALLOC_CMA))
2856 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2857 #endif
2858 
2859 	/*
2860 	 * Fast check for order-0 only. If this fails then the reserves
2861 	 * need to be calculated. There is a corner case where the check
2862 	 * passes but only the high-order atomic reserve are free. If
2863 	 * the caller is !atomic then it'll uselessly search the free
2864 	 * list. That corner case is then slower but it is harmless.
2865 	 */
2866 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2867 		return true;
2868 
2869 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2870 					free_pages);
2871 }
2872 
2873 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2874 			unsigned long mark, int classzone_idx)
2875 {
2876 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2877 
2878 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2879 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2880 
2881 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2882 								free_pages);
2883 }
2884 
2885 #ifdef CONFIG_NUMA
2886 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2887 {
2888 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2889 				RECLAIM_DISTANCE;
2890 }
2891 #else	/* CONFIG_NUMA */
2892 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2893 {
2894 	return true;
2895 }
2896 #endif	/* CONFIG_NUMA */
2897 
2898 /*
2899  * get_page_from_freelist goes through the zonelist trying to allocate
2900  * a page.
2901  */
2902 static struct page *
2903 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2904 						const struct alloc_context *ac)
2905 {
2906 	struct zoneref *z = ac->preferred_zoneref;
2907 	struct zone *zone;
2908 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2909 
2910 	/*
2911 	 * Scan zonelist, looking for a zone with enough free.
2912 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2913 	 */
2914 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2915 								ac->nodemask) {
2916 		struct page *page;
2917 		unsigned long mark;
2918 
2919 		if (cpusets_enabled() &&
2920 			(alloc_flags & ALLOC_CPUSET) &&
2921 			!__cpuset_zone_allowed(zone, gfp_mask))
2922 				continue;
2923 		/*
2924 		 * When allocating a page cache page for writing, we
2925 		 * want to get it from a node that is within its dirty
2926 		 * limit, such that no single node holds more than its
2927 		 * proportional share of globally allowed dirty pages.
2928 		 * The dirty limits take into account the node's
2929 		 * lowmem reserves and high watermark so that kswapd
2930 		 * should be able to balance it without having to
2931 		 * write pages from its LRU list.
2932 		 *
2933 		 * XXX: For now, allow allocations to potentially
2934 		 * exceed the per-node dirty limit in the slowpath
2935 		 * (spread_dirty_pages unset) before going into reclaim,
2936 		 * which is important when on a NUMA setup the allowed
2937 		 * nodes are together not big enough to reach the
2938 		 * global limit.  The proper fix for these situations
2939 		 * will require awareness of nodes in the
2940 		 * dirty-throttling and the flusher threads.
2941 		 */
2942 		if (ac->spread_dirty_pages) {
2943 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
2944 				continue;
2945 
2946 			if (!node_dirty_ok(zone->zone_pgdat)) {
2947 				last_pgdat_dirty_limit = zone->zone_pgdat;
2948 				continue;
2949 			}
2950 		}
2951 
2952 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2953 		if (!zone_watermark_fast(zone, order, mark,
2954 				       ac_classzone_idx(ac), alloc_flags)) {
2955 			int ret;
2956 
2957 			/* Checked here to keep the fast path fast */
2958 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2959 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2960 				goto try_this_zone;
2961 
2962 			if (node_reclaim_mode == 0 ||
2963 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2964 				continue;
2965 
2966 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2967 			switch (ret) {
2968 			case NODE_RECLAIM_NOSCAN:
2969 				/* did not scan */
2970 				continue;
2971 			case NODE_RECLAIM_FULL:
2972 				/* scanned but unreclaimable */
2973 				continue;
2974 			default:
2975 				/* did we reclaim enough */
2976 				if (zone_watermark_ok(zone, order, mark,
2977 						ac_classzone_idx(ac), alloc_flags))
2978 					goto try_this_zone;
2979 
2980 				continue;
2981 			}
2982 		}
2983 
2984 try_this_zone:
2985 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2986 				gfp_mask, alloc_flags, ac->migratetype);
2987 		if (page) {
2988 			prep_new_page(page, order, gfp_mask, alloc_flags);
2989 
2990 			/*
2991 			 * If this is a high-order atomic allocation then check
2992 			 * if the pageblock should be reserved for the future
2993 			 */
2994 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2995 				reserve_highatomic_pageblock(page, zone, order);
2996 
2997 			return page;
2998 		}
2999 	}
3000 
3001 	return NULL;
3002 }
3003 
3004 /*
3005  * Large machines with many possible nodes should not always dump per-node
3006  * meminfo in irq context.
3007  */
3008 static inline bool should_suppress_show_mem(void)
3009 {
3010 	bool ret = false;
3011 
3012 #if NODES_SHIFT > 8
3013 	ret = in_interrupt();
3014 #endif
3015 	return ret;
3016 }
3017 
3018 static DEFINE_RATELIMIT_STATE(nopage_rs,
3019 		DEFAULT_RATELIMIT_INTERVAL,
3020 		DEFAULT_RATELIMIT_BURST);
3021 
3022 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3023 {
3024 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3025 	struct va_format vaf;
3026 	va_list args;
3027 
3028 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3029 	    debug_guardpage_minorder() > 0)
3030 		return;
3031 
3032 	/*
3033 	 * This documents exceptions given to allocations in certain
3034 	 * contexts that are allowed to allocate outside current's set
3035 	 * of allowed nodes.
3036 	 */
3037 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3038 		if (test_thread_flag(TIF_MEMDIE) ||
3039 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3040 			filter &= ~SHOW_MEM_FILTER_NODES;
3041 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3042 		filter &= ~SHOW_MEM_FILTER_NODES;
3043 
3044 	pr_warn("%s: ", current->comm);
3045 
3046 	va_start(args, fmt);
3047 	vaf.fmt = fmt;
3048 	vaf.va = &args;
3049 	pr_cont("%pV", &vaf);
3050 	va_end(args);
3051 
3052 	pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3053 
3054 	dump_stack();
3055 	if (!should_suppress_show_mem())
3056 		show_mem(filter);
3057 }
3058 
3059 static inline struct page *
3060 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3061 	const struct alloc_context *ac, unsigned long *did_some_progress)
3062 {
3063 	struct oom_control oc = {
3064 		.zonelist = ac->zonelist,
3065 		.nodemask = ac->nodemask,
3066 		.memcg = NULL,
3067 		.gfp_mask = gfp_mask,
3068 		.order = order,
3069 	};
3070 	struct page *page;
3071 
3072 	*did_some_progress = 0;
3073 
3074 	/*
3075 	 * Acquire the oom lock.  If that fails, somebody else is
3076 	 * making progress for us.
3077 	 */
3078 	if (!mutex_trylock(&oom_lock)) {
3079 		*did_some_progress = 1;
3080 		schedule_timeout_uninterruptible(1);
3081 		return NULL;
3082 	}
3083 
3084 	/*
3085 	 * Go through the zonelist yet one more time, keep very high watermark
3086 	 * here, this is only to catch a parallel oom killing, we must fail if
3087 	 * we're still under heavy pressure.
3088 	 */
3089 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3090 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3091 	if (page)
3092 		goto out;
3093 
3094 	if (!(gfp_mask & __GFP_NOFAIL)) {
3095 		/* Coredumps can quickly deplete all memory reserves */
3096 		if (current->flags & PF_DUMPCORE)
3097 			goto out;
3098 		/* The OOM killer will not help higher order allocs */
3099 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3100 			goto out;
3101 		/* The OOM killer does not needlessly kill tasks for lowmem */
3102 		if (ac->high_zoneidx < ZONE_NORMAL)
3103 			goto out;
3104 		if (pm_suspended_storage())
3105 			goto out;
3106 		/*
3107 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3108 		 * other request to make a forward progress.
3109 		 * We are in an unfortunate situation where out_of_memory cannot
3110 		 * do much for this context but let's try it to at least get
3111 		 * access to memory reserved if the current task is killed (see
3112 		 * out_of_memory). Once filesystems are ready to handle allocation
3113 		 * failures more gracefully we should just bail out here.
3114 		 */
3115 
3116 		/* The OOM killer may not free memory on a specific node */
3117 		if (gfp_mask & __GFP_THISNODE)
3118 			goto out;
3119 	}
3120 	/* Exhausted what can be done so it's blamo time */
3121 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3122 		*did_some_progress = 1;
3123 
3124 		if (gfp_mask & __GFP_NOFAIL) {
3125 			page = get_page_from_freelist(gfp_mask, order,
3126 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3127 			/*
3128 			 * fallback to ignore cpuset restriction if our nodes
3129 			 * are depleted
3130 			 */
3131 			if (!page)
3132 				page = get_page_from_freelist(gfp_mask, order,
3133 					ALLOC_NO_WATERMARKS, ac);
3134 		}
3135 	}
3136 out:
3137 	mutex_unlock(&oom_lock);
3138 	return page;
3139 }
3140 
3141 /*
3142  * Maximum number of compaction retries wit a progress before OOM
3143  * killer is consider as the only way to move forward.
3144  */
3145 #define MAX_COMPACT_RETRIES 16
3146 
3147 #ifdef CONFIG_COMPACTION
3148 /* Try memory compaction for high-order allocations before reclaim */
3149 static struct page *
3150 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3151 		unsigned int alloc_flags, const struct alloc_context *ac,
3152 		enum compact_priority prio, enum compact_result *compact_result)
3153 {
3154 	struct page *page;
3155 
3156 	if (!order)
3157 		return NULL;
3158 
3159 	current->flags |= PF_MEMALLOC;
3160 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3161 									prio);
3162 	current->flags &= ~PF_MEMALLOC;
3163 
3164 	if (*compact_result <= COMPACT_INACTIVE)
3165 		return NULL;
3166 
3167 	/*
3168 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3169 	 * count a compaction stall
3170 	 */
3171 	count_vm_event(COMPACTSTALL);
3172 
3173 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3174 
3175 	if (page) {
3176 		struct zone *zone = page_zone(page);
3177 
3178 		zone->compact_blockskip_flush = false;
3179 		compaction_defer_reset(zone, order, true);
3180 		count_vm_event(COMPACTSUCCESS);
3181 		return page;
3182 	}
3183 
3184 	/*
3185 	 * It's bad if compaction run occurs and fails. The most likely reason
3186 	 * is that pages exist, but not enough to satisfy watermarks.
3187 	 */
3188 	count_vm_event(COMPACTFAIL);
3189 
3190 	cond_resched();
3191 
3192 	return NULL;
3193 }
3194 
3195 static inline bool
3196 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3197 		     enum compact_result compact_result,
3198 		     enum compact_priority *compact_priority,
3199 		     int *compaction_retries)
3200 {
3201 	int max_retries = MAX_COMPACT_RETRIES;
3202 	int min_priority;
3203 
3204 	if (!order)
3205 		return false;
3206 
3207 	if (compaction_made_progress(compact_result))
3208 		(*compaction_retries)++;
3209 
3210 	/*
3211 	 * compaction considers all the zone as desperately out of memory
3212 	 * so it doesn't really make much sense to retry except when the
3213 	 * failure could be caused by insufficient priority
3214 	 */
3215 	if (compaction_failed(compact_result))
3216 		goto check_priority;
3217 
3218 	/*
3219 	 * make sure the compaction wasn't deferred or didn't bail out early
3220 	 * due to locks contention before we declare that we should give up.
3221 	 * But do not retry if the given zonelist is not suitable for
3222 	 * compaction.
3223 	 */
3224 	if (compaction_withdrawn(compact_result))
3225 		return compaction_zonelist_suitable(ac, order, alloc_flags);
3226 
3227 	/*
3228 	 * !costly requests are much more important than __GFP_REPEAT
3229 	 * costly ones because they are de facto nofail and invoke OOM
3230 	 * killer to move on while costly can fail and users are ready
3231 	 * to cope with that. 1/4 retries is rather arbitrary but we
3232 	 * would need much more detailed feedback from compaction to
3233 	 * make a better decision.
3234 	 */
3235 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3236 		max_retries /= 4;
3237 	if (*compaction_retries <= max_retries)
3238 		return true;
3239 
3240 	/*
3241 	 * Make sure there are attempts at the highest priority if we exhausted
3242 	 * all retries or failed at the lower priorities.
3243 	 */
3244 check_priority:
3245 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3246 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3247 	if (*compact_priority > min_priority) {
3248 		(*compact_priority)--;
3249 		*compaction_retries = 0;
3250 		return true;
3251 	}
3252 	return false;
3253 }
3254 #else
3255 static inline struct page *
3256 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3257 		unsigned int alloc_flags, const struct alloc_context *ac,
3258 		enum compact_priority prio, enum compact_result *compact_result)
3259 {
3260 	*compact_result = COMPACT_SKIPPED;
3261 	return NULL;
3262 }
3263 
3264 static inline bool
3265 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3266 		     enum compact_result compact_result,
3267 		     enum compact_priority *compact_priority,
3268 		     int *compaction_retries)
3269 {
3270 	struct zone *zone;
3271 	struct zoneref *z;
3272 
3273 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3274 		return false;
3275 
3276 	/*
3277 	 * There are setups with compaction disabled which would prefer to loop
3278 	 * inside the allocator rather than hit the oom killer prematurely.
3279 	 * Let's give them a good hope and keep retrying while the order-0
3280 	 * watermarks are OK.
3281 	 */
3282 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3283 					ac->nodemask) {
3284 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3285 					ac_classzone_idx(ac), alloc_flags))
3286 			return true;
3287 	}
3288 	return false;
3289 }
3290 #endif /* CONFIG_COMPACTION */
3291 
3292 /* Perform direct synchronous page reclaim */
3293 static int
3294 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3295 					const struct alloc_context *ac)
3296 {
3297 	struct reclaim_state reclaim_state;
3298 	int progress;
3299 
3300 	cond_resched();
3301 
3302 	/* We now go into synchronous reclaim */
3303 	cpuset_memory_pressure_bump();
3304 	current->flags |= PF_MEMALLOC;
3305 	lockdep_set_current_reclaim_state(gfp_mask);
3306 	reclaim_state.reclaimed_slab = 0;
3307 	current->reclaim_state = &reclaim_state;
3308 
3309 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3310 								ac->nodemask);
3311 
3312 	current->reclaim_state = NULL;
3313 	lockdep_clear_current_reclaim_state();
3314 	current->flags &= ~PF_MEMALLOC;
3315 
3316 	cond_resched();
3317 
3318 	return progress;
3319 }
3320 
3321 /* The really slow allocator path where we enter direct reclaim */
3322 static inline struct page *
3323 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3324 		unsigned int alloc_flags, const struct alloc_context *ac,
3325 		unsigned long *did_some_progress)
3326 {
3327 	struct page *page = NULL;
3328 	bool drained = false;
3329 
3330 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3331 	if (unlikely(!(*did_some_progress)))
3332 		return NULL;
3333 
3334 retry:
3335 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3336 
3337 	/*
3338 	 * If an allocation failed after direct reclaim, it could be because
3339 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3340 	 * Shrink them them and try again
3341 	 */
3342 	if (!page && !drained) {
3343 		unreserve_highatomic_pageblock(ac, false);
3344 		drain_all_pages(NULL);
3345 		drained = true;
3346 		goto retry;
3347 	}
3348 
3349 	return page;
3350 }
3351 
3352 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3353 {
3354 	struct zoneref *z;
3355 	struct zone *zone;
3356 	pg_data_t *last_pgdat = NULL;
3357 
3358 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3359 					ac->high_zoneidx, ac->nodemask) {
3360 		if (last_pgdat != zone->zone_pgdat)
3361 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3362 		last_pgdat = zone->zone_pgdat;
3363 	}
3364 }
3365 
3366 static inline unsigned int
3367 gfp_to_alloc_flags(gfp_t gfp_mask)
3368 {
3369 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3370 
3371 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3372 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3373 
3374 	/*
3375 	 * The caller may dip into page reserves a bit more if the caller
3376 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3377 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3378 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3379 	 */
3380 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3381 
3382 	if (gfp_mask & __GFP_ATOMIC) {
3383 		/*
3384 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3385 		 * if it can't schedule.
3386 		 */
3387 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3388 			alloc_flags |= ALLOC_HARDER;
3389 		/*
3390 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3391 		 * comment for __cpuset_node_allowed().
3392 		 */
3393 		alloc_flags &= ~ALLOC_CPUSET;
3394 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3395 		alloc_flags |= ALLOC_HARDER;
3396 
3397 #ifdef CONFIG_CMA
3398 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3399 		alloc_flags |= ALLOC_CMA;
3400 #endif
3401 	return alloc_flags;
3402 }
3403 
3404 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3405 {
3406 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3407 		return false;
3408 
3409 	if (gfp_mask & __GFP_MEMALLOC)
3410 		return true;
3411 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3412 		return true;
3413 	if (!in_interrupt() &&
3414 			((current->flags & PF_MEMALLOC) ||
3415 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3416 		return true;
3417 
3418 	return false;
3419 }
3420 
3421 /*
3422  * Maximum number of reclaim retries without any progress before OOM killer
3423  * is consider as the only way to move forward.
3424  */
3425 #define MAX_RECLAIM_RETRIES 16
3426 
3427 /*
3428  * Checks whether it makes sense to retry the reclaim to make a forward progress
3429  * for the given allocation request.
3430  * The reclaim feedback represented by did_some_progress (any progress during
3431  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3432  * any progress in a row) is considered as well as the reclaimable pages on the
3433  * applicable zone list (with a backoff mechanism which is a function of
3434  * no_progress_loops).
3435  *
3436  * Returns true if a retry is viable or false to enter the oom path.
3437  */
3438 static inline bool
3439 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3440 		     struct alloc_context *ac, int alloc_flags,
3441 		     bool did_some_progress, int *no_progress_loops)
3442 {
3443 	struct zone *zone;
3444 	struct zoneref *z;
3445 
3446 	/*
3447 	 * Costly allocations might have made a progress but this doesn't mean
3448 	 * their order will become available due to high fragmentation so
3449 	 * always increment the no progress counter for them
3450 	 */
3451 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3452 		*no_progress_loops = 0;
3453 	else
3454 		(*no_progress_loops)++;
3455 
3456 	/*
3457 	 * Make sure we converge to OOM if we cannot make any progress
3458 	 * several times in the row.
3459 	 */
3460 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3461 		/* Before OOM, exhaust highatomic_reserve */
3462 		return unreserve_highatomic_pageblock(ac, true);
3463 	}
3464 
3465 	/*
3466 	 * Keep reclaiming pages while there is a chance this will lead
3467 	 * somewhere.  If none of the target zones can satisfy our allocation
3468 	 * request even if all reclaimable pages are considered then we are
3469 	 * screwed and have to go OOM.
3470 	 */
3471 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3472 					ac->nodemask) {
3473 		unsigned long available;
3474 		unsigned long reclaimable;
3475 
3476 		available = reclaimable = zone_reclaimable_pages(zone);
3477 		available -= DIV_ROUND_UP((*no_progress_loops) * available,
3478 					  MAX_RECLAIM_RETRIES);
3479 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3480 
3481 		/*
3482 		 * Would the allocation succeed if we reclaimed the whole
3483 		 * available?
3484 		 */
3485 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3486 				ac_classzone_idx(ac), alloc_flags, available)) {
3487 			/*
3488 			 * If we didn't make any progress and have a lot of
3489 			 * dirty + writeback pages then we should wait for
3490 			 * an IO to complete to slow down the reclaim and
3491 			 * prevent from pre mature OOM
3492 			 */
3493 			if (!did_some_progress) {
3494 				unsigned long write_pending;
3495 
3496 				write_pending = zone_page_state_snapshot(zone,
3497 							NR_ZONE_WRITE_PENDING);
3498 
3499 				if (2 * write_pending > reclaimable) {
3500 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3501 					return true;
3502 				}
3503 			}
3504 
3505 			/*
3506 			 * Memory allocation/reclaim might be called from a WQ
3507 			 * context and the current implementation of the WQ
3508 			 * concurrency control doesn't recognize that
3509 			 * a particular WQ is congested if the worker thread is
3510 			 * looping without ever sleeping. Therefore we have to
3511 			 * do a short sleep here rather than calling
3512 			 * cond_resched().
3513 			 */
3514 			if (current->flags & PF_WQ_WORKER)
3515 				schedule_timeout_uninterruptible(1);
3516 			else
3517 				cond_resched();
3518 
3519 			return true;
3520 		}
3521 	}
3522 
3523 	return false;
3524 }
3525 
3526 static inline struct page *
3527 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3528 						struct alloc_context *ac)
3529 {
3530 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3531 	struct page *page = NULL;
3532 	unsigned int alloc_flags;
3533 	unsigned long did_some_progress;
3534 	enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3535 	enum compact_result compact_result;
3536 	int compaction_retries = 0;
3537 	int no_progress_loops = 0;
3538 	unsigned long alloc_start = jiffies;
3539 	unsigned int stall_timeout = 10 * HZ;
3540 
3541 	/*
3542 	 * In the slowpath, we sanity check order to avoid ever trying to
3543 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3544 	 * be using allocators in order of preference for an area that is
3545 	 * too large.
3546 	 */
3547 	if (order >= MAX_ORDER) {
3548 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3549 		return NULL;
3550 	}
3551 
3552 	/*
3553 	 * We also sanity check to catch abuse of atomic reserves being used by
3554 	 * callers that are not in atomic context.
3555 	 */
3556 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3557 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3558 		gfp_mask &= ~__GFP_ATOMIC;
3559 
3560 	/*
3561 	 * The fast path uses conservative alloc_flags to succeed only until
3562 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3563 	 * alloc_flags precisely. So we do that now.
3564 	 */
3565 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3566 
3567 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3568 		wake_all_kswapds(order, ac);
3569 
3570 	/*
3571 	 * The adjusted alloc_flags might result in immediate success, so try
3572 	 * that first
3573 	 */
3574 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3575 	if (page)
3576 		goto got_pg;
3577 
3578 	/*
3579 	 * For costly allocations, try direct compaction first, as it's likely
3580 	 * that we have enough base pages and don't need to reclaim. Don't try
3581 	 * that for allocations that are allowed to ignore watermarks, as the
3582 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3583 	 */
3584 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3585 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3586 		page = __alloc_pages_direct_compact(gfp_mask, order,
3587 						alloc_flags, ac,
3588 						INIT_COMPACT_PRIORITY,
3589 						&compact_result);
3590 		if (page)
3591 			goto got_pg;
3592 
3593 		/*
3594 		 * Checks for costly allocations with __GFP_NORETRY, which
3595 		 * includes THP page fault allocations
3596 		 */
3597 		if (gfp_mask & __GFP_NORETRY) {
3598 			/*
3599 			 * If compaction is deferred for high-order allocations,
3600 			 * it is because sync compaction recently failed. If
3601 			 * this is the case and the caller requested a THP
3602 			 * allocation, we do not want to heavily disrupt the
3603 			 * system, so we fail the allocation instead of entering
3604 			 * direct reclaim.
3605 			 */
3606 			if (compact_result == COMPACT_DEFERRED)
3607 				goto nopage;
3608 
3609 			/*
3610 			 * Looks like reclaim/compaction is worth trying, but
3611 			 * sync compaction could be very expensive, so keep
3612 			 * using async compaction.
3613 			 */
3614 			compact_priority = INIT_COMPACT_PRIORITY;
3615 		}
3616 	}
3617 
3618 retry:
3619 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3620 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3621 		wake_all_kswapds(order, ac);
3622 
3623 	if (gfp_pfmemalloc_allowed(gfp_mask))
3624 		alloc_flags = ALLOC_NO_WATERMARKS;
3625 
3626 	/*
3627 	 * Reset the zonelist iterators if memory policies can be ignored.
3628 	 * These allocations are high priority and system rather than user
3629 	 * orientated.
3630 	 */
3631 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3632 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3633 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3634 					ac->high_zoneidx, ac->nodemask);
3635 	}
3636 
3637 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3638 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3639 	if (page)
3640 		goto got_pg;
3641 
3642 	/* Caller is not willing to reclaim, we can't balance anything */
3643 	if (!can_direct_reclaim) {
3644 		/*
3645 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3646 		 * of any new users that actually allow this type of allocation
3647 		 * to fail.
3648 		 */
3649 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3650 		goto nopage;
3651 	}
3652 
3653 	/* Avoid recursion of direct reclaim */
3654 	if (current->flags & PF_MEMALLOC) {
3655 		/*
3656 		 * __GFP_NOFAIL request from this context is rather bizarre
3657 		 * because we cannot reclaim anything and only can loop waiting
3658 		 * for somebody to do a work for us.
3659 		 */
3660 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3661 			cond_resched();
3662 			goto retry;
3663 		}
3664 		goto nopage;
3665 	}
3666 
3667 	/* Avoid allocations with no watermarks from looping endlessly */
3668 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3669 		goto nopage;
3670 
3671 
3672 	/* Try direct reclaim and then allocating */
3673 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3674 							&did_some_progress);
3675 	if (page)
3676 		goto got_pg;
3677 
3678 	/* Try direct compaction and then allocating */
3679 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3680 					compact_priority, &compact_result);
3681 	if (page)
3682 		goto got_pg;
3683 
3684 	/* Do not loop if specifically requested */
3685 	if (gfp_mask & __GFP_NORETRY)
3686 		goto nopage;
3687 
3688 	/*
3689 	 * Do not retry costly high order allocations unless they are
3690 	 * __GFP_REPEAT
3691 	 */
3692 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3693 		goto nopage;
3694 
3695 	/* Make sure we know about allocations which stall for too long */
3696 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3697 		warn_alloc(gfp_mask,
3698 			"page allocation stalls for %ums, order:%u",
3699 			jiffies_to_msecs(jiffies-alloc_start), order);
3700 		stall_timeout += 10 * HZ;
3701 	}
3702 
3703 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3704 				 did_some_progress > 0, &no_progress_loops))
3705 		goto retry;
3706 
3707 	/*
3708 	 * It doesn't make any sense to retry for the compaction if the order-0
3709 	 * reclaim is not able to make any progress because the current
3710 	 * implementation of the compaction depends on the sufficient amount
3711 	 * of free memory (see __compaction_suitable)
3712 	 */
3713 	if (did_some_progress > 0 &&
3714 			should_compact_retry(ac, order, alloc_flags,
3715 				compact_result, &compact_priority,
3716 				&compaction_retries))
3717 		goto retry;
3718 
3719 	/* Reclaim has failed us, start killing things */
3720 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3721 	if (page)
3722 		goto got_pg;
3723 
3724 	/* Retry as long as the OOM killer is making progress */
3725 	if (did_some_progress) {
3726 		no_progress_loops = 0;
3727 		goto retry;
3728 	}
3729 
3730 nopage:
3731 	warn_alloc(gfp_mask,
3732 			"page allocation failure: order:%u", order);
3733 got_pg:
3734 	return page;
3735 }
3736 
3737 /*
3738  * This is the 'heart' of the zoned buddy allocator.
3739  */
3740 struct page *
3741 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3742 			struct zonelist *zonelist, nodemask_t *nodemask)
3743 {
3744 	struct page *page;
3745 	unsigned int cpuset_mems_cookie;
3746 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3747 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3748 	struct alloc_context ac = {
3749 		.high_zoneidx = gfp_zone(gfp_mask),
3750 		.zonelist = zonelist,
3751 		.nodemask = nodemask,
3752 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3753 	};
3754 
3755 	if (cpusets_enabled()) {
3756 		alloc_mask |= __GFP_HARDWALL;
3757 		alloc_flags |= ALLOC_CPUSET;
3758 		if (!ac.nodemask)
3759 			ac.nodemask = &cpuset_current_mems_allowed;
3760 	}
3761 
3762 	gfp_mask &= gfp_allowed_mask;
3763 
3764 	lockdep_trace_alloc(gfp_mask);
3765 
3766 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3767 
3768 	if (should_fail_alloc_page(gfp_mask, order))
3769 		return NULL;
3770 
3771 	/*
3772 	 * Check the zones suitable for the gfp_mask contain at least one
3773 	 * valid zone. It's possible to have an empty zonelist as a result
3774 	 * of __GFP_THISNODE and a memoryless node
3775 	 */
3776 	if (unlikely(!zonelist->_zonerefs->zone))
3777 		return NULL;
3778 
3779 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3780 		alloc_flags |= ALLOC_CMA;
3781 
3782 retry_cpuset:
3783 	cpuset_mems_cookie = read_mems_allowed_begin();
3784 
3785 	/* Dirty zone balancing only done in the fast path */
3786 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3787 
3788 	/*
3789 	 * The preferred zone is used for statistics but crucially it is
3790 	 * also used as the starting point for the zonelist iterator. It
3791 	 * may get reset for allocations that ignore memory policies.
3792 	 */
3793 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3794 					ac.high_zoneidx, ac.nodemask);
3795 	if (!ac.preferred_zoneref) {
3796 		page = NULL;
3797 		goto no_zone;
3798 	}
3799 
3800 	/* First allocation attempt */
3801 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3802 	if (likely(page))
3803 		goto out;
3804 
3805 	/*
3806 	 * Runtime PM, block IO and its error handling path can deadlock
3807 	 * because I/O on the device might not complete.
3808 	 */
3809 	alloc_mask = memalloc_noio_flags(gfp_mask);
3810 	ac.spread_dirty_pages = false;
3811 
3812 	/*
3813 	 * Restore the original nodemask if it was potentially replaced with
3814 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3815 	 */
3816 	if (cpusets_enabled())
3817 		ac.nodemask = nodemask;
3818 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3819 
3820 no_zone:
3821 	/*
3822 	 * When updating a task's mems_allowed, it is possible to race with
3823 	 * parallel threads in such a way that an allocation can fail while
3824 	 * the mask is being updated. If a page allocation is about to fail,
3825 	 * check if the cpuset changed during allocation and if so, retry.
3826 	 */
3827 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3828 		alloc_mask = gfp_mask;
3829 		goto retry_cpuset;
3830 	}
3831 
3832 out:
3833 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3834 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3835 		__free_pages(page, order);
3836 		page = NULL;
3837 	}
3838 
3839 	if (kmemcheck_enabled && page)
3840 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3841 
3842 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3843 
3844 	return page;
3845 }
3846 EXPORT_SYMBOL(__alloc_pages_nodemask);
3847 
3848 /*
3849  * Common helper functions.
3850  */
3851 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3852 {
3853 	struct page *page;
3854 
3855 	/*
3856 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3857 	 * a highmem page
3858 	 */
3859 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3860 
3861 	page = alloc_pages(gfp_mask, order);
3862 	if (!page)
3863 		return 0;
3864 	return (unsigned long) page_address(page);
3865 }
3866 EXPORT_SYMBOL(__get_free_pages);
3867 
3868 unsigned long get_zeroed_page(gfp_t gfp_mask)
3869 {
3870 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3871 }
3872 EXPORT_SYMBOL(get_zeroed_page);
3873 
3874 void __free_pages(struct page *page, unsigned int order)
3875 {
3876 	if (put_page_testzero(page)) {
3877 		if (order == 0)
3878 			free_hot_cold_page(page, false);
3879 		else
3880 			__free_pages_ok(page, order);
3881 	}
3882 }
3883 
3884 EXPORT_SYMBOL(__free_pages);
3885 
3886 void free_pages(unsigned long addr, unsigned int order)
3887 {
3888 	if (addr != 0) {
3889 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3890 		__free_pages(virt_to_page((void *)addr), order);
3891 	}
3892 }
3893 
3894 EXPORT_SYMBOL(free_pages);
3895 
3896 /*
3897  * Page Fragment:
3898  *  An arbitrary-length arbitrary-offset area of memory which resides
3899  *  within a 0 or higher order page.  Multiple fragments within that page
3900  *  are individually refcounted, in the page's reference counter.
3901  *
3902  * The page_frag functions below provide a simple allocation framework for
3903  * page fragments.  This is used by the network stack and network device
3904  * drivers to provide a backing region of memory for use as either an
3905  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3906  */
3907 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3908 				       gfp_t gfp_mask)
3909 {
3910 	struct page *page = NULL;
3911 	gfp_t gfp = gfp_mask;
3912 
3913 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3914 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3915 		    __GFP_NOMEMALLOC;
3916 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3917 				PAGE_FRAG_CACHE_MAX_ORDER);
3918 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3919 #endif
3920 	if (unlikely(!page))
3921 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3922 
3923 	nc->va = page ? page_address(page) : NULL;
3924 
3925 	return page;
3926 }
3927 
3928 void *__alloc_page_frag(struct page_frag_cache *nc,
3929 			unsigned int fragsz, gfp_t gfp_mask)
3930 {
3931 	unsigned int size = PAGE_SIZE;
3932 	struct page *page;
3933 	int offset;
3934 
3935 	if (unlikely(!nc->va)) {
3936 refill:
3937 		page = __page_frag_refill(nc, gfp_mask);
3938 		if (!page)
3939 			return NULL;
3940 
3941 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3942 		/* if size can vary use size else just use PAGE_SIZE */
3943 		size = nc->size;
3944 #endif
3945 		/* Even if we own the page, we do not use atomic_set().
3946 		 * This would break get_page_unless_zero() users.
3947 		 */
3948 		page_ref_add(page, size - 1);
3949 
3950 		/* reset page count bias and offset to start of new frag */
3951 		nc->pfmemalloc = page_is_pfmemalloc(page);
3952 		nc->pagecnt_bias = size;
3953 		nc->offset = size;
3954 	}
3955 
3956 	offset = nc->offset - fragsz;
3957 	if (unlikely(offset < 0)) {
3958 		page = virt_to_page(nc->va);
3959 
3960 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3961 			goto refill;
3962 
3963 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3964 		/* if size can vary use size else just use PAGE_SIZE */
3965 		size = nc->size;
3966 #endif
3967 		/* OK, page count is 0, we can safely set it */
3968 		set_page_count(page, size);
3969 
3970 		/* reset page count bias and offset to start of new frag */
3971 		nc->pagecnt_bias = size;
3972 		offset = size - fragsz;
3973 	}
3974 
3975 	nc->pagecnt_bias--;
3976 	nc->offset = offset;
3977 
3978 	return nc->va + offset;
3979 }
3980 EXPORT_SYMBOL(__alloc_page_frag);
3981 
3982 /*
3983  * Frees a page fragment allocated out of either a compound or order 0 page.
3984  */
3985 void __free_page_frag(void *addr)
3986 {
3987 	struct page *page = virt_to_head_page(addr);
3988 
3989 	if (unlikely(put_page_testzero(page)))
3990 		__free_pages_ok(page, compound_order(page));
3991 }
3992 EXPORT_SYMBOL(__free_page_frag);
3993 
3994 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3995 		size_t size)
3996 {
3997 	if (addr) {
3998 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3999 		unsigned long used = addr + PAGE_ALIGN(size);
4000 
4001 		split_page(virt_to_page((void *)addr), order);
4002 		while (used < alloc_end) {
4003 			free_page(used);
4004 			used += PAGE_SIZE;
4005 		}
4006 	}
4007 	return (void *)addr;
4008 }
4009 
4010 /**
4011  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4012  * @size: the number of bytes to allocate
4013  * @gfp_mask: GFP flags for the allocation
4014  *
4015  * This function is similar to alloc_pages(), except that it allocates the
4016  * minimum number of pages to satisfy the request.  alloc_pages() can only
4017  * allocate memory in power-of-two pages.
4018  *
4019  * This function is also limited by MAX_ORDER.
4020  *
4021  * Memory allocated by this function must be released by free_pages_exact().
4022  */
4023 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4024 {
4025 	unsigned int order = get_order(size);
4026 	unsigned long addr;
4027 
4028 	addr = __get_free_pages(gfp_mask, order);
4029 	return make_alloc_exact(addr, order, size);
4030 }
4031 EXPORT_SYMBOL(alloc_pages_exact);
4032 
4033 /**
4034  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4035  *			   pages on a node.
4036  * @nid: the preferred node ID where memory should be allocated
4037  * @size: the number of bytes to allocate
4038  * @gfp_mask: GFP flags for the allocation
4039  *
4040  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4041  * back.
4042  */
4043 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4044 {
4045 	unsigned int order = get_order(size);
4046 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4047 	if (!p)
4048 		return NULL;
4049 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4050 }
4051 
4052 /**
4053  * free_pages_exact - release memory allocated via alloc_pages_exact()
4054  * @virt: the value returned by alloc_pages_exact.
4055  * @size: size of allocation, same value as passed to alloc_pages_exact().
4056  *
4057  * Release the memory allocated by a previous call to alloc_pages_exact.
4058  */
4059 void free_pages_exact(void *virt, size_t size)
4060 {
4061 	unsigned long addr = (unsigned long)virt;
4062 	unsigned long end = addr + PAGE_ALIGN(size);
4063 
4064 	while (addr < end) {
4065 		free_page(addr);
4066 		addr += PAGE_SIZE;
4067 	}
4068 }
4069 EXPORT_SYMBOL(free_pages_exact);
4070 
4071 /**
4072  * nr_free_zone_pages - count number of pages beyond high watermark
4073  * @offset: The zone index of the highest zone
4074  *
4075  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4076  * high watermark within all zones at or below a given zone index.  For each
4077  * zone, the number of pages is calculated as:
4078  *     managed_pages - high_pages
4079  */
4080 static unsigned long nr_free_zone_pages(int offset)
4081 {
4082 	struct zoneref *z;
4083 	struct zone *zone;
4084 
4085 	/* Just pick one node, since fallback list is circular */
4086 	unsigned long sum = 0;
4087 
4088 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4089 
4090 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4091 		unsigned long size = zone->managed_pages;
4092 		unsigned long high = high_wmark_pages(zone);
4093 		if (size > high)
4094 			sum += size - high;
4095 	}
4096 
4097 	return sum;
4098 }
4099 
4100 /**
4101  * nr_free_buffer_pages - count number of pages beyond high watermark
4102  *
4103  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4104  * watermark within ZONE_DMA and ZONE_NORMAL.
4105  */
4106 unsigned long nr_free_buffer_pages(void)
4107 {
4108 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4109 }
4110 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4111 
4112 /**
4113  * nr_free_pagecache_pages - count number of pages beyond high watermark
4114  *
4115  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4116  * high watermark within all zones.
4117  */
4118 unsigned long nr_free_pagecache_pages(void)
4119 {
4120 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4121 }
4122 
4123 static inline void show_node(struct zone *zone)
4124 {
4125 	if (IS_ENABLED(CONFIG_NUMA))
4126 		printk("Node %d ", zone_to_nid(zone));
4127 }
4128 
4129 long si_mem_available(void)
4130 {
4131 	long available;
4132 	unsigned long pagecache;
4133 	unsigned long wmark_low = 0;
4134 	unsigned long pages[NR_LRU_LISTS];
4135 	struct zone *zone;
4136 	int lru;
4137 
4138 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4139 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4140 
4141 	for_each_zone(zone)
4142 		wmark_low += zone->watermark[WMARK_LOW];
4143 
4144 	/*
4145 	 * Estimate the amount of memory available for userspace allocations,
4146 	 * without causing swapping.
4147 	 */
4148 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4149 
4150 	/*
4151 	 * Not all the page cache can be freed, otherwise the system will
4152 	 * start swapping. Assume at least half of the page cache, or the
4153 	 * low watermark worth of cache, needs to stay.
4154 	 */
4155 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4156 	pagecache -= min(pagecache / 2, wmark_low);
4157 	available += pagecache;
4158 
4159 	/*
4160 	 * Part of the reclaimable slab consists of items that are in use,
4161 	 * and cannot be freed. Cap this estimate at the low watermark.
4162 	 */
4163 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4164 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4165 
4166 	if (available < 0)
4167 		available = 0;
4168 	return available;
4169 }
4170 EXPORT_SYMBOL_GPL(si_mem_available);
4171 
4172 void si_meminfo(struct sysinfo *val)
4173 {
4174 	val->totalram = totalram_pages;
4175 	val->sharedram = global_node_page_state(NR_SHMEM);
4176 	val->freeram = global_page_state(NR_FREE_PAGES);
4177 	val->bufferram = nr_blockdev_pages();
4178 	val->totalhigh = totalhigh_pages;
4179 	val->freehigh = nr_free_highpages();
4180 	val->mem_unit = PAGE_SIZE;
4181 }
4182 
4183 EXPORT_SYMBOL(si_meminfo);
4184 
4185 #ifdef CONFIG_NUMA
4186 void si_meminfo_node(struct sysinfo *val, int nid)
4187 {
4188 	int zone_type;		/* needs to be signed */
4189 	unsigned long managed_pages = 0;
4190 	unsigned long managed_highpages = 0;
4191 	unsigned long free_highpages = 0;
4192 	pg_data_t *pgdat = NODE_DATA(nid);
4193 
4194 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4195 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4196 	val->totalram = managed_pages;
4197 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4198 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4199 #ifdef CONFIG_HIGHMEM
4200 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4201 		struct zone *zone = &pgdat->node_zones[zone_type];
4202 
4203 		if (is_highmem(zone)) {
4204 			managed_highpages += zone->managed_pages;
4205 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4206 		}
4207 	}
4208 	val->totalhigh = managed_highpages;
4209 	val->freehigh = free_highpages;
4210 #else
4211 	val->totalhigh = managed_highpages;
4212 	val->freehigh = free_highpages;
4213 #endif
4214 	val->mem_unit = PAGE_SIZE;
4215 }
4216 #endif
4217 
4218 /*
4219  * Determine whether the node should be displayed or not, depending on whether
4220  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4221  */
4222 bool skip_free_areas_node(unsigned int flags, int nid)
4223 {
4224 	bool ret = false;
4225 	unsigned int cpuset_mems_cookie;
4226 
4227 	if (!(flags & SHOW_MEM_FILTER_NODES))
4228 		goto out;
4229 
4230 	do {
4231 		cpuset_mems_cookie = read_mems_allowed_begin();
4232 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4233 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4234 out:
4235 	return ret;
4236 }
4237 
4238 #define K(x) ((x) << (PAGE_SHIFT-10))
4239 
4240 static void show_migration_types(unsigned char type)
4241 {
4242 	static const char types[MIGRATE_TYPES] = {
4243 		[MIGRATE_UNMOVABLE]	= 'U',
4244 		[MIGRATE_MOVABLE]	= 'M',
4245 		[MIGRATE_RECLAIMABLE]	= 'E',
4246 		[MIGRATE_HIGHATOMIC]	= 'H',
4247 #ifdef CONFIG_CMA
4248 		[MIGRATE_CMA]		= 'C',
4249 #endif
4250 #ifdef CONFIG_MEMORY_ISOLATION
4251 		[MIGRATE_ISOLATE]	= 'I',
4252 #endif
4253 	};
4254 	char tmp[MIGRATE_TYPES + 1];
4255 	char *p = tmp;
4256 	int i;
4257 
4258 	for (i = 0; i < MIGRATE_TYPES; i++) {
4259 		if (type & (1 << i))
4260 			*p++ = types[i];
4261 	}
4262 
4263 	*p = '\0';
4264 	printk(KERN_CONT "(%s) ", tmp);
4265 }
4266 
4267 /*
4268  * Show free area list (used inside shift_scroll-lock stuff)
4269  * We also calculate the percentage fragmentation. We do this by counting the
4270  * memory on each free list with the exception of the first item on the list.
4271  *
4272  * Bits in @filter:
4273  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4274  *   cpuset.
4275  */
4276 void show_free_areas(unsigned int filter)
4277 {
4278 	unsigned long free_pcp = 0;
4279 	int cpu;
4280 	struct zone *zone;
4281 	pg_data_t *pgdat;
4282 
4283 	for_each_populated_zone(zone) {
4284 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4285 			continue;
4286 
4287 		for_each_online_cpu(cpu)
4288 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4289 	}
4290 
4291 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4292 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4293 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4294 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4295 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4296 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4297 		global_node_page_state(NR_ACTIVE_ANON),
4298 		global_node_page_state(NR_INACTIVE_ANON),
4299 		global_node_page_state(NR_ISOLATED_ANON),
4300 		global_node_page_state(NR_ACTIVE_FILE),
4301 		global_node_page_state(NR_INACTIVE_FILE),
4302 		global_node_page_state(NR_ISOLATED_FILE),
4303 		global_node_page_state(NR_UNEVICTABLE),
4304 		global_node_page_state(NR_FILE_DIRTY),
4305 		global_node_page_state(NR_WRITEBACK),
4306 		global_node_page_state(NR_UNSTABLE_NFS),
4307 		global_page_state(NR_SLAB_RECLAIMABLE),
4308 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4309 		global_node_page_state(NR_FILE_MAPPED),
4310 		global_node_page_state(NR_SHMEM),
4311 		global_page_state(NR_PAGETABLE),
4312 		global_page_state(NR_BOUNCE),
4313 		global_page_state(NR_FREE_PAGES),
4314 		free_pcp,
4315 		global_page_state(NR_FREE_CMA_PAGES));
4316 
4317 	for_each_online_pgdat(pgdat) {
4318 		printk("Node %d"
4319 			" active_anon:%lukB"
4320 			" inactive_anon:%lukB"
4321 			" active_file:%lukB"
4322 			" inactive_file:%lukB"
4323 			" unevictable:%lukB"
4324 			" isolated(anon):%lukB"
4325 			" isolated(file):%lukB"
4326 			" mapped:%lukB"
4327 			" dirty:%lukB"
4328 			" writeback:%lukB"
4329 			" shmem:%lukB"
4330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4331 			" shmem_thp: %lukB"
4332 			" shmem_pmdmapped: %lukB"
4333 			" anon_thp: %lukB"
4334 #endif
4335 			" writeback_tmp:%lukB"
4336 			" unstable:%lukB"
4337 			" pages_scanned:%lu"
4338 			" all_unreclaimable? %s"
4339 			"\n",
4340 			pgdat->node_id,
4341 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4342 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4343 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4344 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4345 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4346 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4347 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4348 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4349 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4350 			K(node_page_state(pgdat, NR_WRITEBACK)),
4351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4352 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4353 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4354 					* HPAGE_PMD_NR),
4355 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4356 #endif
4357 			K(node_page_state(pgdat, NR_SHMEM)),
4358 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4359 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4360 			node_page_state(pgdat, NR_PAGES_SCANNED),
4361 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4362 	}
4363 
4364 	for_each_populated_zone(zone) {
4365 		int i;
4366 
4367 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4368 			continue;
4369 
4370 		free_pcp = 0;
4371 		for_each_online_cpu(cpu)
4372 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4373 
4374 		show_node(zone);
4375 		printk(KERN_CONT
4376 			"%s"
4377 			" free:%lukB"
4378 			" min:%lukB"
4379 			" low:%lukB"
4380 			" high:%lukB"
4381 			" active_anon:%lukB"
4382 			" inactive_anon:%lukB"
4383 			" active_file:%lukB"
4384 			" inactive_file:%lukB"
4385 			" unevictable:%lukB"
4386 			" writepending:%lukB"
4387 			" present:%lukB"
4388 			" managed:%lukB"
4389 			" mlocked:%lukB"
4390 			" slab_reclaimable:%lukB"
4391 			" slab_unreclaimable:%lukB"
4392 			" kernel_stack:%lukB"
4393 			" pagetables:%lukB"
4394 			" bounce:%lukB"
4395 			" free_pcp:%lukB"
4396 			" local_pcp:%ukB"
4397 			" free_cma:%lukB"
4398 			"\n",
4399 			zone->name,
4400 			K(zone_page_state(zone, NR_FREE_PAGES)),
4401 			K(min_wmark_pages(zone)),
4402 			K(low_wmark_pages(zone)),
4403 			K(high_wmark_pages(zone)),
4404 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4405 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4406 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4407 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4408 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4409 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4410 			K(zone->present_pages),
4411 			K(zone->managed_pages),
4412 			K(zone_page_state(zone, NR_MLOCK)),
4413 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4414 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4415 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4416 			K(zone_page_state(zone, NR_PAGETABLE)),
4417 			K(zone_page_state(zone, NR_BOUNCE)),
4418 			K(free_pcp),
4419 			K(this_cpu_read(zone->pageset->pcp.count)),
4420 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4421 		printk("lowmem_reserve[]:");
4422 		for (i = 0; i < MAX_NR_ZONES; i++)
4423 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4424 		printk(KERN_CONT "\n");
4425 	}
4426 
4427 	for_each_populated_zone(zone) {
4428 		unsigned int order;
4429 		unsigned long nr[MAX_ORDER], flags, total = 0;
4430 		unsigned char types[MAX_ORDER];
4431 
4432 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4433 			continue;
4434 		show_node(zone);
4435 		printk(KERN_CONT "%s: ", zone->name);
4436 
4437 		spin_lock_irqsave(&zone->lock, flags);
4438 		for (order = 0; order < MAX_ORDER; order++) {
4439 			struct free_area *area = &zone->free_area[order];
4440 			int type;
4441 
4442 			nr[order] = area->nr_free;
4443 			total += nr[order] << order;
4444 
4445 			types[order] = 0;
4446 			for (type = 0; type < MIGRATE_TYPES; type++) {
4447 				if (!list_empty(&area->free_list[type]))
4448 					types[order] |= 1 << type;
4449 			}
4450 		}
4451 		spin_unlock_irqrestore(&zone->lock, flags);
4452 		for (order = 0; order < MAX_ORDER; order++) {
4453 			printk(KERN_CONT "%lu*%lukB ",
4454 			       nr[order], K(1UL) << order);
4455 			if (nr[order])
4456 				show_migration_types(types[order]);
4457 		}
4458 		printk(KERN_CONT "= %lukB\n", K(total));
4459 	}
4460 
4461 	hugetlb_show_meminfo();
4462 
4463 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4464 
4465 	show_swap_cache_info();
4466 }
4467 
4468 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4469 {
4470 	zoneref->zone = zone;
4471 	zoneref->zone_idx = zone_idx(zone);
4472 }
4473 
4474 /*
4475  * Builds allocation fallback zone lists.
4476  *
4477  * Add all populated zones of a node to the zonelist.
4478  */
4479 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4480 				int nr_zones)
4481 {
4482 	struct zone *zone;
4483 	enum zone_type zone_type = MAX_NR_ZONES;
4484 
4485 	do {
4486 		zone_type--;
4487 		zone = pgdat->node_zones + zone_type;
4488 		if (managed_zone(zone)) {
4489 			zoneref_set_zone(zone,
4490 				&zonelist->_zonerefs[nr_zones++]);
4491 			check_highest_zone(zone_type);
4492 		}
4493 	} while (zone_type);
4494 
4495 	return nr_zones;
4496 }
4497 
4498 
4499 /*
4500  *  zonelist_order:
4501  *  0 = automatic detection of better ordering.
4502  *  1 = order by ([node] distance, -zonetype)
4503  *  2 = order by (-zonetype, [node] distance)
4504  *
4505  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4506  *  the same zonelist. So only NUMA can configure this param.
4507  */
4508 #define ZONELIST_ORDER_DEFAULT  0
4509 #define ZONELIST_ORDER_NODE     1
4510 #define ZONELIST_ORDER_ZONE     2
4511 
4512 /* zonelist order in the kernel.
4513  * set_zonelist_order() will set this to NODE or ZONE.
4514  */
4515 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4516 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4517 
4518 
4519 #ifdef CONFIG_NUMA
4520 /* The value user specified ....changed by config */
4521 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4522 /* string for sysctl */
4523 #define NUMA_ZONELIST_ORDER_LEN	16
4524 char numa_zonelist_order[16] = "default";
4525 
4526 /*
4527  * interface for configure zonelist ordering.
4528  * command line option "numa_zonelist_order"
4529  *	= "[dD]efault	- default, automatic configuration.
4530  *	= "[nN]ode 	- order by node locality, then by zone within node
4531  *	= "[zZ]one      - order by zone, then by locality within zone
4532  */
4533 
4534 static int __parse_numa_zonelist_order(char *s)
4535 {
4536 	if (*s == 'd' || *s == 'D') {
4537 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4538 	} else if (*s == 'n' || *s == 'N') {
4539 		user_zonelist_order = ZONELIST_ORDER_NODE;
4540 	} else if (*s == 'z' || *s == 'Z') {
4541 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4542 	} else {
4543 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4544 		return -EINVAL;
4545 	}
4546 	return 0;
4547 }
4548 
4549 static __init int setup_numa_zonelist_order(char *s)
4550 {
4551 	int ret;
4552 
4553 	if (!s)
4554 		return 0;
4555 
4556 	ret = __parse_numa_zonelist_order(s);
4557 	if (ret == 0)
4558 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4559 
4560 	return ret;
4561 }
4562 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4563 
4564 /*
4565  * sysctl handler for numa_zonelist_order
4566  */
4567 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4568 		void __user *buffer, size_t *length,
4569 		loff_t *ppos)
4570 {
4571 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4572 	int ret;
4573 	static DEFINE_MUTEX(zl_order_mutex);
4574 
4575 	mutex_lock(&zl_order_mutex);
4576 	if (write) {
4577 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4578 			ret = -EINVAL;
4579 			goto out;
4580 		}
4581 		strcpy(saved_string, (char *)table->data);
4582 	}
4583 	ret = proc_dostring(table, write, buffer, length, ppos);
4584 	if (ret)
4585 		goto out;
4586 	if (write) {
4587 		int oldval = user_zonelist_order;
4588 
4589 		ret = __parse_numa_zonelist_order((char *)table->data);
4590 		if (ret) {
4591 			/*
4592 			 * bogus value.  restore saved string
4593 			 */
4594 			strncpy((char *)table->data, saved_string,
4595 				NUMA_ZONELIST_ORDER_LEN);
4596 			user_zonelist_order = oldval;
4597 		} else if (oldval != user_zonelist_order) {
4598 			mutex_lock(&zonelists_mutex);
4599 			build_all_zonelists(NULL, NULL);
4600 			mutex_unlock(&zonelists_mutex);
4601 		}
4602 	}
4603 out:
4604 	mutex_unlock(&zl_order_mutex);
4605 	return ret;
4606 }
4607 
4608 
4609 #define MAX_NODE_LOAD (nr_online_nodes)
4610 static int node_load[MAX_NUMNODES];
4611 
4612 /**
4613  * find_next_best_node - find the next node that should appear in a given node's fallback list
4614  * @node: node whose fallback list we're appending
4615  * @used_node_mask: nodemask_t of already used nodes
4616  *
4617  * We use a number of factors to determine which is the next node that should
4618  * appear on a given node's fallback list.  The node should not have appeared
4619  * already in @node's fallback list, and it should be the next closest node
4620  * according to the distance array (which contains arbitrary distance values
4621  * from each node to each node in the system), and should also prefer nodes
4622  * with no CPUs, since presumably they'll have very little allocation pressure
4623  * on them otherwise.
4624  * It returns -1 if no node is found.
4625  */
4626 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4627 {
4628 	int n, val;
4629 	int min_val = INT_MAX;
4630 	int best_node = NUMA_NO_NODE;
4631 	const struct cpumask *tmp = cpumask_of_node(0);
4632 
4633 	/* Use the local node if we haven't already */
4634 	if (!node_isset(node, *used_node_mask)) {
4635 		node_set(node, *used_node_mask);
4636 		return node;
4637 	}
4638 
4639 	for_each_node_state(n, N_MEMORY) {
4640 
4641 		/* Don't want a node to appear more than once */
4642 		if (node_isset(n, *used_node_mask))
4643 			continue;
4644 
4645 		/* Use the distance array to find the distance */
4646 		val = node_distance(node, n);
4647 
4648 		/* Penalize nodes under us ("prefer the next node") */
4649 		val += (n < node);
4650 
4651 		/* Give preference to headless and unused nodes */
4652 		tmp = cpumask_of_node(n);
4653 		if (!cpumask_empty(tmp))
4654 			val += PENALTY_FOR_NODE_WITH_CPUS;
4655 
4656 		/* Slight preference for less loaded node */
4657 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4658 		val += node_load[n];
4659 
4660 		if (val < min_val) {
4661 			min_val = val;
4662 			best_node = n;
4663 		}
4664 	}
4665 
4666 	if (best_node >= 0)
4667 		node_set(best_node, *used_node_mask);
4668 
4669 	return best_node;
4670 }
4671 
4672 
4673 /*
4674  * Build zonelists ordered by node and zones within node.
4675  * This results in maximum locality--normal zone overflows into local
4676  * DMA zone, if any--but risks exhausting DMA zone.
4677  */
4678 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4679 {
4680 	int j;
4681 	struct zonelist *zonelist;
4682 
4683 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4684 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4685 		;
4686 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4687 	zonelist->_zonerefs[j].zone = NULL;
4688 	zonelist->_zonerefs[j].zone_idx = 0;
4689 }
4690 
4691 /*
4692  * Build gfp_thisnode zonelists
4693  */
4694 static void build_thisnode_zonelists(pg_data_t *pgdat)
4695 {
4696 	int j;
4697 	struct zonelist *zonelist;
4698 
4699 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4700 	j = build_zonelists_node(pgdat, zonelist, 0);
4701 	zonelist->_zonerefs[j].zone = NULL;
4702 	zonelist->_zonerefs[j].zone_idx = 0;
4703 }
4704 
4705 /*
4706  * Build zonelists ordered by zone and nodes within zones.
4707  * This results in conserving DMA zone[s] until all Normal memory is
4708  * exhausted, but results in overflowing to remote node while memory
4709  * may still exist in local DMA zone.
4710  */
4711 static int node_order[MAX_NUMNODES];
4712 
4713 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4714 {
4715 	int pos, j, node;
4716 	int zone_type;		/* needs to be signed */
4717 	struct zone *z;
4718 	struct zonelist *zonelist;
4719 
4720 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4721 	pos = 0;
4722 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4723 		for (j = 0; j < nr_nodes; j++) {
4724 			node = node_order[j];
4725 			z = &NODE_DATA(node)->node_zones[zone_type];
4726 			if (managed_zone(z)) {
4727 				zoneref_set_zone(z,
4728 					&zonelist->_zonerefs[pos++]);
4729 				check_highest_zone(zone_type);
4730 			}
4731 		}
4732 	}
4733 	zonelist->_zonerefs[pos].zone = NULL;
4734 	zonelist->_zonerefs[pos].zone_idx = 0;
4735 }
4736 
4737 #if defined(CONFIG_64BIT)
4738 /*
4739  * Devices that require DMA32/DMA are relatively rare and do not justify a
4740  * penalty to every machine in case the specialised case applies. Default
4741  * to Node-ordering on 64-bit NUMA machines
4742  */
4743 static int default_zonelist_order(void)
4744 {
4745 	return ZONELIST_ORDER_NODE;
4746 }
4747 #else
4748 /*
4749  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4750  * by the kernel. If processes running on node 0 deplete the low memory zone
4751  * then reclaim will occur more frequency increasing stalls and potentially
4752  * be easier to OOM if a large percentage of the zone is under writeback or
4753  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4754  * Hence, default to zone ordering on 32-bit.
4755  */
4756 static int default_zonelist_order(void)
4757 {
4758 	return ZONELIST_ORDER_ZONE;
4759 }
4760 #endif /* CONFIG_64BIT */
4761 
4762 static void set_zonelist_order(void)
4763 {
4764 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4765 		current_zonelist_order = default_zonelist_order();
4766 	else
4767 		current_zonelist_order = user_zonelist_order;
4768 }
4769 
4770 static void build_zonelists(pg_data_t *pgdat)
4771 {
4772 	int i, node, load;
4773 	nodemask_t used_mask;
4774 	int local_node, prev_node;
4775 	struct zonelist *zonelist;
4776 	unsigned int order = current_zonelist_order;
4777 
4778 	/* initialize zonelists */
4779 	for (i = 0; i < MAX_ZONELISTS; i++) {
4780 		zonelist = pgdat->node_zonelists + i;
4781 		zonelist->_zonerefs[0].zone = NULL;
4782 		zonelist->_zonerefs[0].zone_idx = 0;
4783 	}
4784 
4785 	/* NUMA-aware ordering of nodes */
4786 	local_node = pgdat->node_id;
4787 	load = nr_online_nodes;
4788 	prev_node = local_node;
4789 	nodes_clear(used_mask);
4790 
4791 	memset(node_order, 0, sizeof(node_order));
4792 	i = 0;
4793 
4794 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4795 		/*
4796 		 * We don't want to pressure a particular node.
4797 		 * So adding penalty to the first node in same
4798 		 * distance group to make it round-robin.
4799 		 */
4800 		if (node_distance(local_node, node) !=
4801 		    node_distance(local_node, prev_node))
4802 			node_load[node] = load;
4803 
4804 		prev_node = node;
4805 		load--;
4806 		if (order == ZONELIST_ORDER_NODE)
4807 			build_zonelists_in_node_order(pgdat, node);
4808 		else
4809 			node_order[i++] = node;	/* remember order */
4810 	}
4811 
4812 	if (order == ZONELIST_ORDER_ZONE) {
4813 		/* calculate node order -- i.e., DMA last! */
4814 		build_zonelists_in_zone_order(pgdat, i);
4815 	}
4816 
4817 	build_thisnode_zonelists(pgdat);
4818 }
4819 
4820 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4821 /*
4822  * Return node id of node used for "local" allocations.
4823  * I.e., first node id of first zone in arg node's generic zonelist.
4824  * Used for initializing percpu 'numa_mem', which is used primarily
4825  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4826  */
4827 int local_memory_node(int node)
4828 {
4829 	struct zoneref *z;
4830 
4831 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4832 				   gfp_zone(GFP_KERNEL),
4833 				   NULL);
4834 	return z->zone->node;
4835 }
4836 #endif
4837 
4838 static void setup_min_unmapped_ratio(void);
4839 static void setup_min_slab_ratio(void);
4840 #else	/* CONFIG_NUMA */
4841 
4842 static void set_zonelist_order(void)
4843 {
4844 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4845 }
4846 
4847 static void build_zonelists(pg_data_t *pgdat)
4848 {
4849 	int node, local_node;
4850 	enum zone_type j;
4851 	struct zonelist *zonelist;
4852 
4853 	local_node = pgdat->node_id;
4854 
4855 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4856 	j = build_zonelists_node(pgdat, zonelist, 0);
4857 
4858 	/*
4859 	 * Now we build the zonelist so that it contains the zones
4860 	 * of all the other nodes.
4861 	 * We don't want to pressure a particular node, so when
4862 	 * building the zones for node N, we make sure that the
4863 	 * zones coming right after the local ones are those from
4864 	 * node N+1 (modulo N)
4865 	 */
4866 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4867 		if (!node_online(node))
4868 			continue;
4869 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4870 	}
4871 	for (node = 0; node < local_node; node++) {
4872 		if (!node_online(node))
4873 			continue;
4874 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4875 	}
4876 
4877 	zonelist->_zonerefs[j].zone = NULL;
4878 	zonelist->_zonerefs[j].zone_idx = 0;
4879 }
4880 
4881 #endif	/* CONFIG_NUMA */
4882 
4883 /*
4884  * Boot pageset table. One per cpu which is going to be used for all
4885  * zones and all nodes. The parameters will be set in such a way
4886  * that an item put on a list will immediately be handed over to
4887  * the buddy list. This is safe since pageset manipulation is done
4888  * with interrupts disabled.
4889  *
4890  * The boot_pagesets must be kept even after bootup is complete for
4891  * unused processors and/or zones. They do play a role for bootstrapping
4892  * hotplugged processors.
4893  *
4894  * zoneinfo_show() and maybe other functions do
4895  * not check if the processor is online before following the pageset pointer.
4896  * Other parts of the kernel may not check if the zone is available.
4897  */
4898 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4899 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4900 static void setup_zone_pageset(struct zone *zone);
4901 
4902 /*
4903  * Global mutex to protect against size modification of zonelists
4904  * as well as to serialize pageset setup for the new populated zone.
4905  */
4906 DEFINE_MUTEX(zonelists_mutex);
4907 
4908 /* return values int ....just for stop_machine() */
4909 static int __build_all_zonelists(void *data)
4910 {
4911 	int nid;
4912 	int cpu;
4913 	pg_data_t *self = data;
4914 
4915 #ifdef CONFIG_NUMA
4916 	memset(node_load, 0, sizeof(node_load));
4917 #endif
4918 
4919 	if (self && !node_online(self->node_id)) {
4920 		build_zonelists(self);
4921 	}
4922 
4923 	for_each_online_node(nid) {
4924 		pg_data_t *pgdat = NODE_DATA(nid);
4925 
4926 		build_zonelists(pgdat);
4927 	}
4928 
4929 	/*
4930 	 * Initialize the boot_pagesets that are going to be used
4931 	 * for bootstrapping processors. The real pagesets for
4932 	 * each zone will be allocated later when the per cpu
4933 	 * allocator is available.
4934 	 *
4935 	 * boot_pagesets are used also for bootstrapping offline
4936 	 * cpus if the system is already booted because the pagesets
4937 	 * are needed to initialize allocators on a specific cpu too.
4938 	 * F.e. the percpu allocator needs the page allocator which
4939 	 * needs the percpu allocator in order to allocate its pagesets
4940 	 * (a chicken-egg dilemma).
4941 	 */
4942 	for_each_possible_cpu(cpu) {
4943 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4944 
4945 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4946 		/*
4947 		 * We now know the "local memory node" for each node--
4948 		 * i.e., the node of the first zone in the generic zonelist.
4949 		 * Set up numa_mem percpu variable for on-line cpus.  During
4950 		 * boot, only the boot cpu should be on-line;  we'll init the
4951 		 * secondary cpus' numa_mem as they come on-line.  During
4952 		 * node/memory hotplug, we'll fixup all on-line cpus.
4953 		 */
4954 		if (cpu_online(cpu))
4955 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4956 #endif
4957 	}
4958 
4959 	return 0;
4960 }
4961 
4962 static noinline void __init
4963 build_all_zonelists_init(void)
4964 {
4965 	__build_all_zonelists(NULL);
4966 	mminit_verify_zonelist();
4967 	cpuset_init_current_mems_allowed();
4968 }
4969 
4970 /*
4971  * Called with zonelists_mutex held always
4972  * unless system_state == SYSTEM_BOOTING.
4973  *
4974  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4975  * [we're only called with non-NULL zone through __meminit paths] and
4976  * (2) call of __init annotated helper build_all_zonelists_init
4977  * [protected by SYSTEM_BOOTING].
4978  */
4979 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4980 {
4981 	set_zonelist_order();
4982 
4983 	if (system_state == SYSTEM_BOOTING) {
4984 		build_all_zonelists_init();
4985 	} else {
4986 #ifdef CONFIG_MEMORY_HOTPLUG
4987 		if (zone)
4988 			setup_zone_pageset(zone);
4989 #endif
4990 		/* we have to stop all cpus to guarantee there is no user
4991 		   of zonelist */
4992 		stop_machine(__build_all_zonelists, pgdat, NULL);
4993 		/* cpuset refresh routine should be here */
4994 	}
4995 	vm_total_pages = nr_free_pagecache_pages();
4996 	/*
4997 	 * Disable grouping by mobility if the number of pages in the
4998 	 * system is too low to allow the mechanism to work. It would be
4999 	 * more accurate, but expensive to check per-zone. This check is
5000 	 * made on memory-hotadd so a system can start with mobility
5001 	 * disabled and enable it later
5002 	 */
5003 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5004 		page_group_by_mobility_disabled = 1;
5005 	else
5006 		page_group_by_mobility_disabled = 0;
5007 
5008 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5009 		nr_online_nodes,
5010 		zonelist_order_name[current_zonelist_order],
5011 		page_group_by_mobility_disabled ? "off" : "on",
5012 		vm_total_pages);
5013 #ifdef CONFIG_NUMA
5014 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5015 #endif
5016 }
5017 
5018 /*
5019  * Initially all pages are reserved - free ones are freed
5020  * up by free_all_bootmem() once the early boot process is
5021  * done. Non-atomic initialization, single-pass.
5022  */
5023 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5024 		unsigned long start_pfn, enum memmap_context context)
5025 {
5026 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5027 	unsigned long end_pfn = start_pfn + size;
5028 	pg_data_t *pgdat = NODE_DATA(nid);
5029 	unsigned long pfn;
5030 	unsigned long nr_initialised = 0;
5031 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5032 	struct memblock_region *r = NULL, *tmp;
5033 #endif
5034 
5035 	if (highest_memmap_pfn < end_pfn - 1)
5036 		highest_memmap_pfn = end_pfn - 1;
5037 
5038 	/*
5039 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5040 	 * memory
5041 	 */
5042 	if (altmap && start_pfn == altmap->base_pfn)
5043 		start_pfn += altmap->reserve;
5044 
5045 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5046 		/*
5047 		 * There can be holes in boot-time mem_map[]s handed to this
5048 		 * function.  They do not exist on hotplugged memory.
5049 		 */
5050 		if (context != MEMMAP_EARLY)
5051 			goto not_early;
5052 
5053 		if (!early_pfn_valid(pfn))
5054 			continue;
5055 		if (!early_pfn_in_nid(pfn, nid))
5056 			continue;
5057 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5058 			break;
5059 
5060 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5061 		/*
5062 		 * Check given memblock attribute by firmware which can affect
5063 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5064 		 * mirrored, it's an overlapped memmap init. skip it.
5065 		 */
5066 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5067 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5068 				for_each_memblock(memory, tmp)
5069 					if (pfn < memblock_region_memory_end_pfn(tmp))
5070 						break;
5071 				r = tmp;
5072 			}
5073 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5074 			    memblock_is_mirror(r)) {
5075 				/* already initialized as NORMAL */
5076 				pfn = memblock_region_memory_end_pfn(r);
5077 				continue;
5078 			}
5079 		}
5080 #endif
5081 
5082 not_early:
5083 		/*
5084 		 * Mark the block movable so that blocks are reserved for
5085 		 * movable at startup. This will force kernel allocations
5086 		 * to reserve their blocks rather than leaking throughout
5087 		 * the address space during boot when many long-lived
5088 		 * kernel allocations are made.
5089 		 *
5090 		 * bitmap is created for zone's valid pfn range. but memmap
5091 		 * can be created for invalid pages (for alignment)
5092 		 * check here not to call set_pageblock_migratetype() against
5093 		 * pfn out of zone.
5094 		 */
5095 		if (!(pfn & (pageblock_nr_pages - 1))) {
5096 			struct page *page = pfn_to_page(pfn);
5097 
5098 			__init_single_page(page, pfn, zone, nid);
5099 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5100 		} else {
5101 			__init_single_pfn(pfn, zone, nid);
5102 		}
5103 	}
5104 }
5105 
5106 static void __meminit zone_init_free_lists(struct zone *zone)
5107 {
5108 	unsigned int order, t;
5109 	for_each_migratetype_order(order, t) {
5110 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5111 		zone->free_area[order].nr_free = 0;
5112 	}
5113 }
5114 
5115 #ifndef __HAVE_ARCH_MEMMAP_INIT
5116 #define memmap_init(size, nid, zone, start_pfn) \
5117 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5118 #endif
5119 
5120 static int zone_batchsize(struct zone *zone)
5121 {
5122 #ifdef CONFIG_MMU
5123 	int batch;
5124 
5125 	/*
5126 	 * The per-cpu-pages pools are set to around 1000th of the
5127 	 * size of the zone.  But no more than 1/2 of a meg.
5128 	 *
5129 	 * OK, so we don't know how big the cache is.  So guess.
5130 	 */
5131 	batch = zone->managed_pages / 1024;
5132 	if (batch * PAGE_SIZE > 512 * 1024)
5133 		batch = (512 * 1024) / PAGE_SIZE;
5134 	batch /= 4;		/* We effectively *= 4 below */
5135 	if (batch < 1)
5136 		batch = 1;
5137 
5138 	/*
5139 	 * Clamp the batch to a 2^n - 1 value. Having a power
5140 	 * of 2 value was found to be more likely to have
5141 	 * suboptimal cache aliasing properties in some cases.
5142 	 *
5143 	 * For example if 2 tasks are alternately allocating
5144 	 * batches of pages, one task can end up with a lot
5145 	 * of pages of one half of the possible page colors
5146 	 * and the other with pages of the other colors.
5147 	 */
5148 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5149 
5150 	return batch;
5151 
5152 #else
5153 	/* The deferral and batching of frees should be suppressed under NOMMU
5154 	 * conditions.
5155 	 *
5156 	 * The problem is that NOMMU needs to be able to allocate large chunks
5157 	 * of contiguous memory as there's no hardware page translation to
5158 	 * assemble apparent contiguous memory from discontiguous pages.
5159 	 *
5160 	 * Queueing large contiguous runs of pages for batching, however,
5161 	 * causes the pages to actually be freed in smaller chunks.  As there
5162 	 * can be a significant delay between the individual batches being
5163 	 * recycled, this leads to the once large chunks of space being
5164 	 * fragmented and becoming unavailable for high-order allocations.
5165 	 */
5166 	return 0;
5167 #endif
5168 }
5169 
5170 /*
5171  * pcp->high and pcp->batch values are related and dependent on one another:
5172  * ->batch must never be higher then ->high.
5173  * The following function updates them in a safe manner without read side
5174  * locking.
5175  *
5176  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5177  * those fields changing asynchronously (acording the the above rule).
5178  *
5179  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5180  * outside of boot time (or some other assurance that no concurrent updaters
5181  * exist).
5182  */
5183 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5184 		unsigned long batch)
5185 {
5186        /* start with a fail safe value for batch */
5187 	pcp->batch = 1;
5188 	smp_wmb();
5189 
5190        /* Update high, then batch, in order */
5191 	pcp->high = high;
5192 	smp_wmb();
5193 
5194 	pcp->batch = batch;
5195 }
5196 
5197 /* a companion to pageset_set_high() */
5198 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5199 {
5200 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5201 }
5202 
5203 static void pageset_init(struct per_cpu_pageset *p)
5204 {
5205 	struct per_cpu_pages *pcp;
5206 	int migratetype;
5207 
5208 	memset(p, 0, sizeof(*p));
5209 
5210 	pcp = &p->pcp;
5211 	pcp->count = 0;
5212 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5213 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5214 }
5215 
5216 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5217 {
5218 	pageset_init(p);
5219 	pageset_set_batch(p, batch);
5220 }
5221 
5222 /*
5223  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5224  * to the value high for the pageset p.
5225  */
5226 static void pageset_set_high(struct per_cpu_pageset *p,
5227 				unsigned long high)
5228 {
5229 	unsigned long batch = max(1UL, high / 4);
5230 	if ((high / 4) > (PAGE_SHIFT * 8))
5231 		batch = PAGE_SHIFT * 8;
5232 
5233 	pageset_update(&p->pcp, high, batch);
5234 }
5235 
5236 static void pageset_set_high_and_batch(struct zone *zone,
5237 				       struct per_cpu_pageset *pcp)
5238 {
5239 	if (percpu_pagelist_fraction)
5240 		pageset_set_high(pcp,
5241 			(zone->managed_pages /
5242 				percpu_pagelist_fraction));
5243 	else
5244 		pageset_set_batch(pcp, zone_batchsize(zone));
5245 }
5246 
5247 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5248 {
5249 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5250 
5251 	pageset_init(pcp);
5252 	pageset_set_high_and_batch(zone, pcp);
5253 }
5254 
5255 static void __meminit setup_zone_pageset(struct zone *zone)
5256 {
5257 	int cpu;
5258 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5259 	for_each_possible_cpu(cpu)
5260 		zone_pageset_init(zone, cpu);
5261 }
5262 
5263 /*
5264  * Allocate per cpu pagesets and initialize them.
5265  * Before this call only boot pagesets were available.
5266  */
5267 void __init setup_per_cpu_pageset(void)
5268 {
5269 	struct pglist_data *pgdat;
5270 	struct zone *zone;
5271 
5272 	for_each_populated_zone(zone)
5273 		setup_zone_pageset(zone);
5274 
5275 	for_each_online_pgdat(pgdat)
5276 		pgdat->per_cpu_nodestats =
5277 			alloc_percpu(struct per_cpu_nodestat);
5278 }
5279 
5280 static __meminit void zone_pcp_init(struct zone *zone)
5281 {
5282 	/*
5283 	 * per cpu subsystem is not up at this point. The following code
5284 	 * relies on the ability of the linker to provide the
5285 	 * offset of a (static) per cpu variable into the per cpu area.
5286 	 */
5287 	zone->pageset = &boot_pageset;
5288 
5289 	if (populated_zone(zone))
5290 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5291 			zone->name, zone->present_pages,
5292 					 zone_batchsize(zone));
5293 }
5294 
5295 int __meminit init_currently_empty_zone(struct zone *zone,
5296 					unsigned long zone_start_pfn,
5297 					unsigned long size)
5298 {
5299 	struct pglist_data *pgdat = zone->zone_pgdat;
5300 
5301 	pgdat->nr_zones = zone_idx(zone) + 1;
5302 
5303 	zone->zone_start_pfn = zone_start_pfn;
5304 
5305 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5306 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5307 			pgdat->node_id,
5308 			(unsigned long)zone_idx(zone),
5309 			zone_start_pfn, (zone_start_pfn + size));
5310 
5311 	zone_init_free_lists(zone);
5312 	zone->initialized = 1;
5313 
5314 	return 0;
5315 }
5316 
5317 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5318 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5319 
5320 /*
5321  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5322  */
5323 int __meminit __early_pfn_to_nid(unsigned long pfn,
5324 					struct mminit_pfnnid_cache *state)
5325 {
5326 	unsigned long start_pfn, end_pfn;
5327 	int nid;
5328 
5329 	if (state->last_start <= pfn && pfn < state->last_end)
5330 		return state->last_nid;
5331 
5332 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5333 	if (nid != -1) {
5334 		state->last_start = start_pfn;
5335 		state->last_end = end_pfn;
5336 		state->last_nid = nid;
5337 	}
5338 
5339 	return nid;
5340 }
5341 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5342 
5343 /**
5344  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5345  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5346  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5347  *
5348  * If an architecture guarantees that all ranges registered contain no holes
5349  * and may be freed, this this function may be used instead of calling
5350  * memblock_free_early_nid() manually.
5351  */
5352 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5353 {
5354 	unsigned long start_pfn, end_pfn;
5355 	int i, this_nid;
5356 
5357 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5358 		start_pfn = min(start_pfn, max_low_pfn);
5359 		end_pfn = min(end_pfn, max_low_pfn);
5360 
5361 		if (start_pfn < end_pfn)
5362 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5363 					(end_pfn - start_pfn) << PAGE_SHIFT,
5364 					this_nid);
5365 	}
5366 }
5367 
5368 /**
5369  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5370  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5371  *
5372  * If an architecture guarantees that all ranges registered contain no holes and may
5373  * be freed, this function may be used instead of calling memory_present() manually.
5374  */
5375 void __init sparse_memory_present_with_active_regions(int nid)
5376 {
5377 	unsigned long start_pfn, end_pfn;
5378 	int i, this_nid;
5379 
5380 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5381 		memory_present(this_nid, start_pfn, end_pfn);
5382 }
5383 
5384 /**
5385  * get_pfn_range_for_nid - Return the start and end page frames for a node
5386  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5387  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5388  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5389  *
5390  * It returns the start and end page frame of a node based on information
5391  * provided by memblock_set_node(). If called for a node
5392  * with no available memory, a warning is printed and the start and end
5393  * PFNs will be 0.
5394  */
5395 void __meminit get_pfn_range_for_nid(unsigned int nid,
5396 			unsigned long *start_pfn, unsigned long *end_pfn)
5397 {
5398 	unsigned long this_start_pfn, this_end_pfn;
5399 	int i;
5400 
5401 	*start_pfn = -1UL;
5402 	*end_pfn = 0;
5403 
5404 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5405 		*start_pfn = min(*start_pfn, this_start_pfn);
5406 		*end_pfn = max(*end_pfn, this_end_pfn);
5407 	}
5408 
5409 	if (*start_pfn == -1UL)
5410 		*start_pfn = 0;
5411 }
5412 
5413 /*
5414  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5415  * assumption is made that zones within a node are ordered in monotonic
5416  * increasing memory addresses so that the "highest" populated zone is used
5417  */
5418 static void __init find_usable_zone_for_movable(void)
5419 {
5420 	int zone_index;
5421 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5422 		if (zone_index == ZONE_MOVABLE)
5423 			continue;
5424 
5425 		if (arch_zone_highest_possible_pfn[zone_index] >
5426 				arch_zone_lowest_possible_pfn[zone_index])
5427 			break;
5428 	}
5429 
5430 	VM_BUG_ON(zone_index == -1);
5431 	movable_zone = zone_index;
5432 }
5433 
5434 /*
5435  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5436  * because it is sized independent of architecture. Unlike the other zones,
5437  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5438  * in each node depending on the size of each node and how evenly kernelcore
5439  * is distributed. This helper function adjusts the zone ranges
5440  * provided by the architecture for a given node by using the end of the
5441  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5442  * zones within a node are in order of monotonic increases memory addresses
5443  */
5444 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5445 					unsigned long zone_type,
5446 					unsigned long node_start_pfn,
5447 					unsigned long node_end_pfn,
5448 					unsigned long *zone_start_pfn,
5449 					unsigned long *zone_end_pfn)
5450 {
5451 	/* Only adjust if ZONE_MOVABLE is on this node */
5452 	if (zone_movable_pfn[nid]) {
5453 		/* Size ZONE_MOVABLE */
5454 		if (zone_type == ZONE_MOVABLE) {
5455 			*zone_start_pfn = zone_movable_pfn[nid];
5456 			*zone_end_pfn = min(node_end_pfn,
5457 				arch_zone_highest_possible_pfn[movable_zone]);
5458 
5459 		/* Adjust for ZONE_MOVABLE starting within this range */
5460 		} else if (!mirrored_kernelcore &&
5461 			*zone_start_pfn < zone_movable_pfn[nid] &&
5462 			*zone_end_pfn > zone_movable_pfn[nid]) {
5463 			*zone_end_pfn = zone_movable_pfn[nid];
5464 
5465 		/* Check if this whole range is within ZONE_MOVABLE */
5466 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5467 			*zone_start_pfn = *zone_end_pfn;
5468 	}
5469 }
5470 
5471 /*
5472  * Return the number of pages a zone spans in a node, including holes
5473  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5474  */
5475 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5476 					unsigned long zone_type,
5477 					unsigned long node_start_pfn,
5478 					unsigned long node_end_pfn,
5479 					unsigned long *zone_start_pfn,
5480 					unsigned long *zone_end_pfn,
5481 					unsigned long *ignored)
5482 {
5483 	/* When hotadd a new node from cpu_up(), the node should be empty */
5484 	if (!node_start_pfn && !node_end_pfn)
5485 		return 0;
5486 
5487 	/* Get the start and end of the zone */
5488 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5489 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5490 	adjust_zone_range_for_zone_movable(nid, zone_type,
5491 				node_start_pfn, node_end_pfn,
5492 				zone_start_pfn, zone_end_pfn);
5493 
5494 	/* Check that this node has pages within the zone's required range */
5495 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5496 		return 0;
5497 
5498 	/* Move the zone boundaries inside the node if necessary */
5499 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5500 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5501 
5502 	/* Return the spanned pages */
5503 	return *zone_end_pfn - *zone_start_pfn;
5504 }
5505 
5506 /*
5507  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5508  * then all holes in the requested range will be accounted for.
5509  */
5510 unsigned long __meminit __absent_pages_in_range(int nid,
5511 				unsigned long range_start_pfn,
5512 				unsigned long range_end_pfn)
5513 {
5514 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5515 	unsigned long start_pfn, end_pfn;
5516 	int i;
5517 
5518 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5519 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5520 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5521 		nr_absent -= end_pfn - start_pfn;
5522 	}
5523 	return nr_absent;
5524 }
5525 
5526 /**
5527  * absent_pages_in_range - Return number of page frames in holes within a range
5528  * @start_pfn: The start PFN to start searching for holes
5529  * @end_pfn: The end PFN to stop searching for holes
5530  *
5531  * It returns the number of pages frames in memory holes within a range.
5532  */
5533 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5534 							unsigned long end_pfn)
5535 {
5536 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5537 }
5538 
5539 /* Return the number of page frames in holes in a zone on a node */
5540 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5541 					unsigned long zone_type,
5542 					unsigned long node_start_pfn,
5543 					unsigned long node_end_pfn,
5544 					unsigned long *ignored)
5545 {
5546 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5547 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5548 	unsigned long zone_start_pfn, zone_end_pfn;
5549 	unsigned long nr_absent;
5550 
5551 	/* When hotadd a new node from cpu_up(), the node should be empty */
5552 	if (!node_start_pfn && !node_end_pfn)
5553 		return 0;
5554 
5555 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5556 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5557 
5558 	adjust_zone_range_for_zone_movable(nid, zone_type,
5559 			node_start_pfn, node_end_pfn,
5560 			&zone_start_pfn, &zone_end_pfn);
5561 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5562 
5563 	/*
5564 	 * ZONE_MOVABLE handling.
5565 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5566 	 * and vice versa.
5567 	 */
5568 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5569 		unsigned long start_pfn, end_pfn;
5570 		struct memblock_region *r;
5571 
5572 		for_each_memblock(memory, r) {
5573 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5574 					  zone_start_pfn, zone_end_pfn);
5575 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5576 					zone_start_pfn, zone_end_pfn);
5577 
5578 			if (zone_type == ZONE_MOVABLE &&
5579 			    memblock_is_mirror(r))
5580 				nr_absent += end_pfn - start_pfn;
5581 
5582 			if (zone_type == ZONE_NORMAL &&
5583 			    !memblock_is_mirror(r))
5584 				nr_absent += end_pfn - start_pfn;
5585 		}
5586 	}
5587 
5588 	return nr_absent;
5589 }
5590 
5591 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5592 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5593 					unsigned long zone_type,
5594 					unsigned long node_start_pfn,
5595 					unsigned long node_end_pfn,
5596 					unsigned long *zone_start_pfn,
5597 					unsigned long *zone_end_pfn,
5598 					unsigned long *zones_size)
5599 {
5600 	unsigned int zone;
5601 
5602 	*zone_start_pfn = node_start_pfn;
5603 	for (zone = 0; zone < zone_type; zone++)
5604 		*zone_start_pfn += zones_size[zone];
5605 
5606 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5607 
5608 	return zones_size[zone_type];
5609 }
5610 
5611 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5612 						unsigned long zone_type,
5613 						unsigned long node_start_pfn,
5614 						unsigned long node_end_pfn,
5615 						unsigned long *zholes_size)
5616 {
5617 	if (!zholes_size)
5618 		return 0;
5619 
5620 	return zholes_size[zone_type];
5621 }
5622 
5623 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5624 
5625 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5626 						unsigned long node_start_pfn,
5627 						unsigned long node_end_pfn,
5628 						unsigned long *zones_size,
5629 						unsigned long *zholes_size)
5630 {
5631 	unsigned long realtotalpages = 0, totalpages = 0;
5632 	enum zone_type i;
5633 
5634 	for (i = 0; i < MAX_NR_ZONES; i++) {
5635 		struct zone *zone = pgdat->node_zones + i;
5636 		unsigned long zone_start_pfn, zone_end_pfn;
5637 		unsigned long size, real_size;
5638 
5639 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5640 						  node_start_pfn,
5641 						  node_end_pfn,
5642 						  &zone_start_pfn,
5643 						  &zone_end_pfn,
5644 						  zones_size);
5645 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5646 						  node_start_pfn, node_end_pfn,
5647 						  zholes_size);
5648 		if (size)
5649 			zone->zone_start_pfn = zone_start_pfn;
5650 		else
5651 			zone->zone_start_pfn = 0;
5652 		zone->spanned_pages = size;
5653 		zone->present_pages = real_size;
5654 
5655 		totalpages += size;
5656 		realtotalpages += real_size;
5657 	}
5658 
5659 	pgdat->node_spanned_pages = totalpages;
5660 	pgdat->node_present_pages = realtotalpages;
5661 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5662 							realtotalpages);
5663 }
5664 
5665 #ifndef CONFIG_SPARSEMEM
5666 /*
5667  * Calculate the size of the zone->blockflags rounded to an unsigned long
5668  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5669  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5670  * round what is now in bits to nearest long in bits, then return it in
5671  * bytes.
5672  */
5673 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5674 {
5675 	unsigned long usemapsize;
5676 
5677 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5678 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5679 	usemapsize = usemapsize >> pageblock_order;
5680 	usemapsize *= NR_PAGEBLOCK_BITS;
5681 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5682 
5683 	return usemapsize / 8;
5684 }
5685 
5686 static void __init setup_usemap(struct pglist_data *pgdat,
5687 				struct zone *zone,
5688 				unsigned long zone_start_pfn,
5689 				unsigned long zonesize)
5690 {
5691 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5692 	zone->pageblock_flags = NULL;
5693 	if (usemapsize)
5694 		zone->pageblock_flags =
5695 			memblock_virt_alloc_node_nopanic(usemapsize,
5696 							 pgdat->node_id);
5697 }
5698 #else
5699 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5700 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5701 #endif /* CONFIG_SPARSEMEM */
5702 
5703 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5704 
5705 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5706 void __paginginit set_pageblock_order(void)
5707 {
5708 	unsigned int order;
5709 
5710 	/* Check that pageblock_nr_pages has not already been setup */
5711 	if (pageblock_order)
5712 		return;
5713 
5714 	if (HPAGE_SHIFT > PAGE_SHIFT)
5715 		order = HUGETLB_PAGE_ORDER;
5716 	else
5717 		order = MAX_ORDER - 1;
5718 
5719 	/*
5720 	 * Assume the largest contiguous order of interest is a huge page.
5721 	 * This value may be variable depending on boot parameters on IA64 and
5722 	 * powerpc.
5723 	 */
5724 	pageblock_order = order;
5725 }
5726 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5727 
5728 /*
5729  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5730  * is unused as pageblock_order is set at compile-time. See
5731  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5732  * the kernel config
5733  */
5734 void __paginginit set_pageblock_order(void)
5735 {
5736 }
5737 
5738 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5739 
5740 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5741 						   unsigned long present_pages)
5742 {
5743 	unsigned long pages = spanned_pages;
5744 
5745 	/*
5746 	 * Provide a more accurate estimation if there are holes within
5747 	 * the zone and SPARSEMEM is in use. If there are holes within the
5748 	 * zone, each populated memory region may cost us one or two extra
5749 	 * memmap pages due to alignment because memmap pages for each
5750 	 * populated regions may not naturally algined on page boundary.
5751 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5752 	 */
5753 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5754 	    IS_ENABLED(CONFIG_SPARSEMEM))
5755 		pages = present_pages;
5756 
5757 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5758 }
5759 
5760 /*
5761  * Set up the zone data structures:
5762  *   - mark all pages reserved
5763  *   - mark all memory queues empty
5764  *   - clear the memory bitmaps
5765  *
5766  * NOTE: pgdat should get zeroed by caller.
5767  */
5768 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5769 {
5770 	enum zone_type j;
5771 	int nid = pgdat->node_id;
5772 	int ret;
5773 
5774 	pgdat_resize_init(pgdat);
5775 #ifdef CONFIG_NUMA_BALANCING
5776 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5777 	pgdat->numabalancing_migrate_nr_pages = 0;
5778 	pgdat->numabalancing_migrate_next_window = jiffies;
5779 #endif
5780 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781 	spin_lock_init(&pgdat->split_queue_lock);
5782 	INIT_LIST_HEAD(&pgdat->split_queue);
5783 	pgdat->split_queue_len = 0;
5784 #endif
5785 	init_waitqueue_head(&pgdat->kswapd_wait);
5786 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5787 #ifdef CONFIG_COMPACTION
5788 	init_waitqueue_head(&pgdat->kcompactd_wait);
5789 #endif
5790 	pgdat_page_ext_init(pgdat);
5791 	spin_lock_init(&pgdat->lru_lock);
5792 	lruvec_init(node_lruvec(pgdat));
5793 
5794 	for (j = 0; j < MAX_NR_ZONES; j++) {
5795 		struct zone *zone = pgdat->node_zones + j;
5796 		unsigned long size, realsize, freesize, memmap_pages;
5797 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5798 
5799 		size = zone->spanned_pages;
5800 		realsize = freesize = zone->present_pages;
5801 
5802 		/*
5803 		 * Adjust freesize so that it accounts for how much memory
5804 		 * is used by this zone for memmap. This affects the watermark
5805 		 * and per-cpu initialisations
5806 		 */
5807 		memmap_pages = calc_memmap_size(size, realsize);
5808 		if (!is_highmem_idx(j)) {
5809 			if (freesize >= memmap_pages) {
5810 				freesize -= memmap_pages;
5811 				if (memmap_pages)
5812 					printk(KERN_DEBUG
5813 					       "  %s zone: %lu pages used for memmap\n",
5814 					       zone_names[j], memmap_pages);
5815 			} else
5816 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5817 					zone_names[j], memmap_pages, freesize);
5818 		}
5819 
5820 		/* Account for reserved pages */
5821 		if (j == 0 && freesize > dma_reserve) {
5822 			freesize -= dma_reserve;
5823 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5824 					zone_names[0], dma_reserve);
5825 		}
5826 
5827 		if (!is_highmem_idx(j))
5828 			nr_kernel_pages += freesize;
5829 		/* Charge for highmem memmap if there are enough kernel pages */
5830 		else if (nr_kernel_pages > memmap_pages * 2)
5831 			nr_kernel_pages -= memmap_pages;
5832 		nr_all_pages += freesize;
5833 
5834 		/*
5835 		 * Set an approximate value for lowmem here, it will be adjusted
5836 		 * when the bootmem allocator frees pages into the buddy system.
5837 		 * And all highmem pages will be managed by the buddy system.
5838 		 */
5839 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5840 #ifdef CONFIG_NUMA
5841 		zone->node = nid;
5842 #endif
5843 		zone->name = zone_names[j];
5844 		zone->zone_pgdat = pgdat;
5845 		spin_lock_init(&zone->lock);
5846 		zone_seqlock_init(zone);
5847 		zone_pcp_init(zone);
5848 
5849 		if (!size)
5850 			continue;
5851 
5852 		set_pageblock_order();
5853 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5854 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5855 		BUG_ON(ret);
5856 		memmap_init(size, nid, j, zone_start_pfn);
5857 	}
5858 }
5859 
5860 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5861 {
5862 	unsigned long __maybe_unused start = 0;
5863 	unsigned long __maybe_unused offset = 0;
5864 
5865 	/* Skip empty nodes */
5866 	if (!pgdat->node_spanned_pages)
5867 		return;
5868 
5869 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5870 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5871 	offset = pgdat->node_start_pfn - start;
5872 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5873 	if (!pgdat->node_mem_map) {
5874 		unsigned long size, end;
5875 		struct page *map;
5876 
5877 		/*
5878 		 * The zone's endpoints aren't required to be MAX_ORDER
5879 		 * aligned but the node_mem_map endpoints must be in order
5880 		 * for the buddy allocator to function correctly.
5881 		 */
5882 		end = pgdat_end_pfn(pgdat);
5883 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5884 		size =  (end - start) * sizeof(struct page);
5885 		map = alloc_remap(pgdat->node_id, size);
5886 		if (!map)
5887 			map = memblock_virt_alloc_node_nopanic(size,
5888 							       pgdat->node_id);
5889 		pgdat->node_mem_map = map + offset;
5890 	}
5891 #ifndef CONFIG_NEED_MULTIPLE_NODES
5892 	/*
5893 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5894 	 */
5895 	if (pgdat == NODE_DATA(0)) {
5896 		mem_map = NODE_DATA(0)->node_mem_map;
5897 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5898 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5899 			mem_map -= offset;
5900 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5901 	}
5902 #endif
5903 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5904 }
5905 
5906 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5907 		unsigned long node_start_pfn, unsigned long *zholes_size)
5908 {
5909 	pg_data_t *pgdat = NODE_DATA(nid);
5910 	unsigned long start_pfn = 0;
5911 	unsigned long end_pfn = 0;
5912 
5913 	/* pg_data_t should be reset to zero when it's allocated */
5914 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5915 
5916 	reset_deferred_meminit(pgdat);
5917 	pgdat->node_id = nid;
5918 	pgdat->node_start_pfn = node_start_pfn;
5919 	pgdat->per_cpu_nodestats = NULL;
5920 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5921 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5922 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5923 		(u64)start_pfn << PAGE_SHIFT,
5924 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5925 #else
5926 	start_pfn = node_start_pfn;
5927 #endif
5928 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5929 				  zones_size, zholes_size);
5930 
5931 	alloc_node_mem_map(pgdat);
5932 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5933 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5934 		nid, (unsigned long)pgdat,
5935 		(unsigned long)pgdat->node_mem_map);
5936 #endif
5937 
5938 	free_area_init_core(pgdat);
5939 }
5940 
5941 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5942 
5943 #if MAX_NUMNODES > 1
5944 /*
5945  * Figure out the number of possible node ids.
5946  */
5947 void __init setup_nr_node_ids(void)
5948 {
5949 	unsigned int highest;
5950 
5951 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5952 	nr_node_ids = highest + 1;
5953 }
5954 #endif
5955 
5956 /**
5957  * node_map_pfn_alignment - determine the maximum internode alignment
5958  *
5959  * This function should be called after node map is populated and sorted.
5960  * It calculates the maximum power of two alignment which can distinguish
5961  * all the nodes.
5962  *
5963  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5964  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5965  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5966  * shifted, 1GiB is enough and this function will indicate so.
5967  *
5968  * This is used to test whether pfn -> nid mapping of the chosen memory
5969  * model has fine enough granularity to avoid incorrect mapping for the
5970  * populated node map.
5971  *
5972  * Returns the determined alignment in pfn's.  0 if there is no alignment
5973  * requirement (single node).
5974  */
5975 unsigned long __init node_map_pfn_alignment(void)
5976 {
5977 	unsigned long accl_mask = 0, last_end = 0;
5978 	unsigned long start, end, mask;
5979 	int last_nid = -1;
5980 	int i, nid;
5981 
5982 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5983 		if (!start || last_nid < 0 || last_nid == nid) {
5984 			last_nid = nid;
5985 			last_end = end;
5986 			continue;
5987 		}
5988 
5989 		/*
5990 		 * Start with a mask granular enough to pin-point to the
5991 		 * start pfn and tick off bits one-by-one until it becomes
5992 		 * too coarse to separate the current node from the last.
5993 		 */
5994 		mask = ~((1 << __ffs(start)) - 1);
5995 		while (mask && last_end <= (start & (mask << 1)))
5996 			mask <<= 1;
5997 
5998 		/* accumulate all internode masks */
5999 		accl_mask |= mask;
6000 	}
6001 
6002 	/* convert mask to number of pages */
6003 	return ~accl_mask + 1;
6004 }
6005 
6006 /* Find the lowest pfn for a node */
6007 static unsigned long __init find_min_pfn_for_node(int nid)
6008 {
6009 	unsigned long min_pfn = ULONG_MAX;
6010 	unsigned long start_pfn;
6011 	int i;
6012 
6013 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6014 		min_pfn = min(min_pfn, start_pfn);
6015 
6016 	if (min_pfn == ULONG_MAX) {
6017 		pr_warn("Could not find start_pfn for node %d\n", nid);
6018 		return 0;
6019 	}
6020 
6021 	return min_pfn;
6022 }
6023 
6024 /**
6025  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6026  *
6027  * It returns the minimum PFN based on information provided via
6028  * memblock_set_node().
6029  */
6030 unsigned long __init find_min_pfn_with_active_regions(void)
6031 {
6032 	return find_min_pfn_for_node(MAX_NUMNODES);
6033 }
6034 
6035 /*
6036  * early_calculate_totalpages()
6037  * Sum pages in active regions for movable zone.
6038  * Populate N_MEMORY for calculating usable_nodes.
6039  */
6040 static unsigned long __init early_calculate_totalpages(void)
6041 {
6042 	unsigned long totalpages = 0;
6043 	unsigned long start_pfn, end_pfn;
6044 	int i, nid;
6045 
6046 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6047 		unsigned long pages = end_pfn - start_pfn;
6048 
6049 		totalpages += pages;
6050 		if (pages)
6051 			node_set_state(nid, N_MEMORY);
6052 	}
6053 	return totalpages;
6054 }
6055 
6056 /*
6057  * Find the PFN the Movable zone begins in each node. Kernel memory
6058  * is spread evenly between nodes as long as the nodes have enough
6059  * memory. When they don't, some nodes will have more kernelcore than
6060  * others
6061  */
6062 static void __init find_zone_movable_pfns_for_nodes(void)
6063 {
6064 	int i, nid;
6065 	unsigned long usable_startpfn;
6066 	unsigned long kernelcore_node, kernelcore_remaining;
6067 	/* save the state before borrow the nodemask */
6068 	nodemask_t saved_node_state = node_states[N_MEMORY];
6069 	unsigned long totalpages = early_calculate_totalpages();
6070 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6071 	struct memblock_region *r;
6072 
6073 	/* Need to find movable_zone earlier when movable_node is specified. */
6074 	find_usable_zone_for_movable();
6075 
6076 	/*
6077 	 * If movable_node is specified, ignore kernelcore and movablecore
6078 	 * options.
6079 	 */
6080 	if (movable_node_is_enabled()) {
6081 		for_each_memblock(memory, r) {
6082 			if (!memblock_is_hotpluggable(r))
6083 				continue;
6084 
6085 			nid = r->nid;
6086 
6087 			usable_startpfn = PFN_DOWN(r->base);
6088 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6089 				min(usable_startpfn, zone_movable_pfn[nid]) :
6090 				usable_startpfn;
6091 		}
6092 
6093 		goto out2;
6094 	}
6095 
6096 	/*
6097 	 * If kernelcore=mirror is specified, ignore movablecore option
6098 	 */
6099 	if (mirrored_kernelcore) {
6100 		bool mem_below_4gb_not_mirrored = false;
6101 
6102 		for_each_memblock(memory, r) {
6103 			if (memblock_is_mirror(r))
6104 				continue;
6105 
6106 			nid = r->nid;
6107 
6108 			usable_startpfn = memblock_region_memory_base_pfn(r);
6109 
6110 			if (usable_startpfn < 0x100000) {
6111 				mem_below_4gb_not_mirrored = true;
6112 				continue;
6113 			}
6114 
6115 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6116 				min(usable_startpfn, zone_movable_pfn[nid]) :
6117 				usable_startpfn;
6118 		}
6119 
6120 		if (mem_below_4gb_not_mirrored)
6121 			pr_warn("This configuration results in unmirrored kernel memory.");
6122 
6123 		goto out2;
6124 	}
6125 
6126 	/*
6127 	 * If movablecore=nn[KMG] was specified, calculate what size of
6128 	 * kernelcore that corresponds so that memory usable for
6129 	 * any allocation type is evenly spread. If both kernelcore
6130 	 * and movablecore are specified, then the value of kernelcore
6131 	 * will be used for required_kernelcore if it's greater than
6132 	 * what movablecore would have allowed.
6133 	 */
6134 	if (required_movablecore) {
6135 		unsigned long corepages;
6136 
6137 		/*
6138 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6139 		 * was requested by the user
6140 		 */
6141 		required_movablecore =
6142 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6143 		required_movablecore = min(totalpages, required_movablecore);
6144 		corepages = totalpages - required_movablecore;
6145 
6146 		required_kernelcore = max(required_kernelcore, corepages);
6147 	}
6148 
6149 	/*
6150 	 * If kernelcore was not specified or kernelcore size is larger
6151 	 * than totalpages, there is no ZONE_MOVABLE.
6152 	 */
6153 	if (!required_kernelcore || required_kernelcore >= totalpages)
6154 		goto out;
6155 
6156 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6157 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6158 
6159 restart:
6160 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6161 	kernelcore_node = required_kernelcore / usable_nodes;
6162 	for_each_node_state(nid, N_MEMORY) {
6163 		unsigned long start_pfn, end_pfn;
6164 
6165 		/*
6166 		 * Recalculate kernelcore_node if the division per node
6167 		 * now exceeds what is necessary to satisfy the requested
6168 		 * amount of memory for the kernel
6169 		 */
6170 		if (required_kernelcore < kernelcore_node)
6171 			kernelcore_node = required_kernelcore / usable_nodes;
6172 
6173 		/*
6174 		 * As the map is walked, we track how much memory is usable
6175 		 * by the kernel using kernelcore_remaining. When it is
6176 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6177 		 */
6178 		kernelcore_remaining = kernelcore_node;
6179 
6180 		/* Go through each range of PFNs within this node */
6181 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6182 			unsigned long size_pages;
6183 
6184 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6185 			if (start_pfn >= end_pfn)
6186 				continue;
6187 
6188 			/* Account for what is only usable for kernelcore */
6189 			if (start_pfn < usable_startpfn) {
6190 				unsigned long kernel_pages;
6191 				kernel_pages = min(end_pfn, usable_startpfn)
6192 								- start_pfn;
6193 
6194 				kernelcore_remaining -= min(kernel_pages,
6195 							kernelcore_remaining);
6196 				required_kernelcore -= min(kernel_pages,
6197 							required_kernelcore);
6198 
6199 				/* Continue if range is now fully accounted */
6200 				if (end_pfn <= usable_startpfn) {
6201 
6202 					/*
6203 					 * Push zone_movable_pfn to the end so
6204 					 * that if we have to rebalance
6205 					 * kernelcore across nodes, we will
6206 					 * not double account here
6207 					 */
6208 					zone_movable_pfn[nid] = end_pfn;
6209 					continue;
6210 				}
6211 				start_pfn = usable_startpfn;
6212 			}
6213 
6214 			/*
6215 			 * The usable PFN range for ZONE_MOVABLE is from
6216 			 * start_pfn->end_pfn. Calculate size_pages as the
6217 			 * number of pages used as kernelcore
6218 			 */
6219 			size_pages = end_pfn - start_pfn;
6220 			if (size_pages > kernelcore_remaining)
6221 				size_pages = kernelcore_remaining;
6222 			zone_movable_pfn[nid] = start_pfn + size_pages;
6223 
6224 			/*
6225 			 * Some kernelcore has been met, update counts and
6226 			 * break if the kernelcore for this node has been
6227 			 * satisfied
6228 			 */
6229 			required_kernelcore -= min(required_kernelcore,
6230 								size_pages);
6231 			kernelcore_remaining -= size_pages;
6232 			if (!kernelcore_remaining)
6233 				break;
6234 		}
6235 	}
6236 
6237 	/*
6238 	 * If there is still required_kernelcore, we do another pass with one
6239 	 * less node in the count. This will push zone_movable_pfn[nid] further
6240 	 * along on the nodes that still have memory until kernelcore is
6241 	 * satisfied
6242 	 */
6243 	usable_nodes--;
6244 	if (usable_nodes && required_kernelcore > usable_nodes)
6245 		goto restart;
6246 
6247 out2:
6248 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6249 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6250 		zone_movable_pfn[nid] =
6251 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6252 
6253 out:
6254 	/* restore the node_state */
6255 	node_states[N_MEMORY] = saved_node_state;
6256 }
6257 
6258 /* Any regular or high memory on that node ? */
6259 static void check_for_memory(pg_data_t *pgdat, int nid)
6260 {
6261 	enum zone_type zone_type;
6262 
6263 	if (N_MEMORY == N_NORMAL_MEMORY)
6264 		return;
6265 
6266 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6267 		struct zone *zone = &pgdat->node_zones[zone_type];
6268 		if (populated_zone(zone)) {
6269 			node_set_state(nid, N_HIGH_MEMORY);
6270 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6271 			    zone_type <= ZONE_NORMAL)
6272 				node_set_state(nid, N_NORMAL_MEMORY);
6273 			break;
6274 		}
6275 	}
6276 }
6277 
6278 /**
6279  * free_area_init_nodes - Initialise all pg_data_t and zone data
6280  * @max_zone_pfn: an array of max PFNs for each zone
6281  *
6282  * This will call free_area_init_node() for each active node in the system.
6283  * Using the page ranges provided by memblock_set_node(), the size of each
6284  * zone in each node and their holes is calculated. If the maximum PFN
6285  * between two adjacent zones match, it is assumed that the zone is empty.
6286  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6287  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6288  * starts where the previous one ended. For example, ZONE_DMA32 starts
6289  * at arch_max_dma_pfn.
6290  */
6291 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6292 {
6293 	unsigned long start_pfn, end_pfn;
6294 	int i, nid;
6295 
6296 	/* Record where the zone boundaries are */
6297 	memset(arch_zone_lowest_possible_pfn, 0,
6298 				sizeof(arch_zone_lowest_possible_pfn));
6299 	memset(arch_zone_highest_possible_pfn, 0,
6300 				sizeof(arch_zone_highest_possible_pfn));
6301 
6302 	start_pfn = find_min_pfn_with_active_regions();
6303 
6304 	for (i = 0; i < MAX_NR_ZONES; i++) {
6305 		if (i == ZONE_MOVABLE)
6306 			continue;
6307 
6308 		end_pfn = max(max_zone_pfn[i], start_pfn);
6309 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6310 		arch_zone_highest_possible_pfn[i] = end_pfn;
6311 
6312 		start_pfn = end_pfn;
6313 	}
6314 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6315 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6316 
6317 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6318 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6319 	find_zone_movable_pfns_for_nodes();
6320 
6321 	/* Print out the zone ranges */
6322 	pr_info("Zone ranges:\n");
6323 	for (i = 0; i < MAX_NR_ZONES; i++) {
6324 		if (i == ZONE_MOVABLE)
6325 			continue;
6326 		pr_info("  %-8s ", zone_names[i]);
6327 		if (arch_zone_lowest_possible_pfn[i] ==
6328 				arch_zone_highest_possible_pfn[i])
6329 			pr_cont("empty\n");
6330 		else
6331 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6332 				(u64)arch_zone_lowest_possible_pfn[i]
6333 					<< PAGE_SHIFT,
6334 				((u64)arch_zone_highest_possible_pfn[i]
6335 					<< PAGE_SHIFT) - 1);
6336 	}
6337 
6338 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6339 	pr_info("Movable zone start for each node\n");
6340 	for (i = 0; i < MAX_NUMNODES; i++) {
6341 		if (zone_movable_pfn[i])
6342 			pr_info("  Node %d: %#018Lx\n", i,
6343 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6344 	}
6345 
6346 	/* Print out the early node map */
6347 	pr_info("Early memory node ranges\n");
6348 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6349 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6350 			(u64)start_pfn << PAGE_SHIFT,
6351 			((u64)end_pfn << PAGE_SHIFT) - 1);
6352 
6353 	/* Initialise every node */
6354 	mminit_verify_pageflags_layout();
6355 	setup_nr_node_ids();
6356 	for_each_online_node(nid) {
6357 		pg_data_t *pgdat = NODE_DATA(nid);
6358 		free_area_init_node(nid, NULL,
6359 				find_min_pfn_for_node(nid), NULL);
6360 
6361 		/* Any memory on that node */
6362 		if (pgdat->node_present_pages)
6363 			node_set_state(nid, N_MEMORY);
6364 		check_for_memory(pgdat, nid);
6365 	}
6366 }
6367 
6368 static int __init cmdline_parse_core(char *p, unsigned long *core)
6369 {
6370 	unsigned long long coremem;
6371 	if (!p)
6372 		return -EINVAL;
6373 
6374 	coremem = memparse(p, &p);
6375 	*core = coremem >> PAGE_SHIFT;
6376 
6377 	/* Paranoid check that UL is enough for the coremem value */
6378 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6379 
6380 	return 0;
6381 }
6382 
6383 /*
6384  * kernelcore=size sets the amount of memory for use for allocations that
6385  * cannot be reclaimed or migrated.
6386  */
6387 static int __init cmdline_parse_kernelcore(char *p)
6388 {
6389 	/* parse kernelcore=mirror */
6390 	if (parse_option_str(p, "mirror")) {
6391 		mirrored_kernelcore = true;
6392 		return 0;
6393 	}
6394 
6395 	return cmdline_parse_core(p, &required_kernelcore);
6396 }
6397 
6398 /*
6399  * movablecore=size sets the amount of memory for use for allocations that
6400  * can be reclaimed or migrated.
6401  */
6402 static int __init cmdline_parse_movablecore(char *p)
6403 {
6404 	return cmdline_parse_core(p, &required_movablecore);
6405 }
6406 
6407 early_param("kernelcore", cmdline_parse_kernelcore);
6408 early_param("movablecore", cmdline_parse_movablecore);
6409 
6410 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6411 
6412 void adjust_managed_page_count(struct page *page, long count)
6413 {
6414 	spin_lock(&managed_page_count_lock);
6415 	page_zone(page)->managed_pages += count;
6416 	totalram_pages += count;
6417 #ifdef CONFIG_HIGHMEM
6418 	if (PageHighMem(page))
6419 		totalhigh_pages += count;
6420 #endif
6421 	spin_unlock(&managed_page_count_lock);
6422 }
6423 EXPORT_SYMBOL(adjust_managed_page_count);
6424 
6425 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6426 {
6427 	void *pos;
6428 	unsigned long pages = 0;
6429 
6430 	start = (void *)PAGE_ALIGN((unsigned long)start);
6431 	end = (void *)((unsigned long)end & PAGE_MASK);
6432 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6433 		if ((unsigned int)poison <= 0xFF)
6434 			memset(pos, poison, PAGE_SIZE);
6435 		free_reserved_page(virt_to_page(pos));
6436 	}
6437 
6438 	if (pages && s)
6439 		pr_info("Freeing %s memory: %ldK\n",
6440 			s, pages << (PAGE_SHIFT - 10));
6441 
6442 	return pages;
6443 }
6444 EXPORT_SYMBOL(free_reserved_area);
6445 
6446 #ifdef	CONFIG_HIGHMEM
6447 void free_highmem_page(struct page *page)
6448 {
6449 	__free_reserved_page(page);
6450 	totalram_pages++;
6451 	page_zone(page)->managed_pages++;
6452 	totalhigh_pages++;
6453 }
6454 #endif
6455 
6456 
6457 void __init mem_init_print_info(const char *str)
6458 {
6459 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6460 	unsigned long init_code_size, init_data_size;
6461 
6462 	physpages = get_num_physpages();
6463 	codesize = _etext - _stext;
6464 	datasize = _edata - _sdata;
6465 	rosize = __end_rodata - __start_rodata;
6466 	bss_size = __bss_stop - __bss_start;
6467 	init_data_size = __init_end - __init_begin;
6468 	init_code_size = _einittext - _sinittext;
6469 
6470 	/*
6471 	 * Detect special cases and adjust section sizes accordingly:
6472 	 * 1) .init.* may be embedded into .data sections
6473 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6474 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6475 	 * 3) .rodata.* may be embedded into .text or .data sections.
6476 	 */
6477 #define adj_init_size(start, end, size, pos, adj) \
6478 	do { \
6479 		if (start <= pos && pos < end && size > adj) \
6480 			size -= adj; \
6481 	} while (0)
6482 
6483 	adj_init_size(__init_begin, __init_end, init_data_size,
6484 		     _sinittext, init_code_size);
6485 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6486 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6487 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6488 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6489 
6490 #undef	adj_init_size
6491 
6492 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6493 #ifdef	CONFIG_HIGHMEM
6494 		", %luK highmem"
6495 #endif
6496 		"%s%s)\n",
6497 		nr_free_pages() << (PAGE_SHIFT - 10),
6498 		physpages << (PAGE_SHIFT - 10),
6499 		codesize >> 10, datasize >> 10, rosize >> 10,
6500 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6501 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6502 		totalcma_pages << (PAGE_SHIFT - 10),
6503 #ifdef	CONFIG_HIGHMEM
6504 		totalhigh_pages << (PAGE_SHIFT - 10),
6505 #endif
6506 		str ? ", " : "", str ? str : "");
6507 }
6508 
6509 /**
6510  * set_dma_reserve - set the specified number of pages reserved in the first zone
6511  * @new_dma_reserve: The number of pages to mark reserved
6512  *
6513  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6514  * In the DMA zone, a significant percentage may be consumed by kernel image
6515  * and other unfreeable allocations which can skew the watermarks badly. This
6516  * function may optionally be used to account for unfreeable pages in the
6517  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6518  * smaller per-cpu batchsize.
6519  */
6520 void __init set_dma_reserve(unsigned long new_dma_reserve)
6521 {
6522 	dma_reserve = new_dma_reserve;
6523 }
6524 
6525 void __init free_area_init(unsigned long *zones_size)
6526 {
6527 	free_area_init_node(0, zones_size,
6528 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6529 }
6530 
6531 static int page_alloc_cpu_dead(unsigned int cpu)
6532 {
6533 
6534 	lru_add_drain_cpu(cpu);
6535 	drain_pages(cpu);
6536 
6537 	/*
6538 	 * Spill the event counters of the dead processor
6539 	 * into the current processors event counters.
6540 	 * This artificially elevates the count of the current
6541 	 * processor.
6542 	 */
6543 	vm_events_fold_cpu(cpu);
6544 
6545 	/*
6546 	 * Zero the differential counters of the dead processor
6547 	 * so that the vm statistics are consistent.
6548 	 *
6549 	 * This is only okay since the processor is dead and cannot
6550 	 * race with what we are doing.
6551 	 */
6552 	cpu_vm_stats_fold(cpu);
6553 	return 0;
6554 }
6555 
6556 void __init page_alloc_init(void)
6557 {
6558 	int ret;
6559 
6560 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6561 					"mm/page_alloc:dead", NULL,
6562 					page_alloc_cpu_dead);
6563 	WARN_ON(ret < 0);
6564 }
6565 
6566 /*
6567  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6568  *	or min_free_kbytes changes.
6569  */
6570 static void calculate_totalreserve_pages(void)
6571 {
6572 	struct pglist_data *pgdat;
6573 	unsigned long reserve_pages = 0;
6574 	enum zone_type i, j;
6575 
6576 	for_each_online_pgdat(pgdat) {
6577 
6578 		pgdat->totalreserve_pages = 0;
6579 
6580 		for (i = 0; i < MAX_NR_ZONES; i++) {
6581 			struct zone *zone = pgdat->node_zones + i;
6582 			long max = 0;
6583 
6584 			/* Find valid and maximum lowmem_reserve in the zone */
6585 			for (j = i; j < MAX_NR_ZONES; j++) {
6586 				if (zone->lowmem_reserve[j] > max)
6587 					max = zone->lowmem_reserve[j];
6588 			}
6589 
6590 			/* we treat the high watermark as reserved pages. */
6591 			max += high_wmark_pages(zone);
6592 
6593 			if (max > zone->managed_pages)
6594 				max = zone->managed_pages;
6595 
6596 			pgdat->totalreserve_pages += max;
6597 
6598 			reserve_pages += max;
6599 		}
6600 	}
6601 	totalreserve_pages = reserve_pages;
6602 }
6603 
6604 /*
6605  * setup_per_zone_lowmem_reserve - called whenever
6606  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6607  *	has a correct pages reserved value, so an adequate number of
6608  *	pages are left in the zone after a successful __alloc_pages().
6609  */
6610 static void setup_per_zone_lowmem_reserve(void)
6611 {
6612 	struct pglist_data *pgdat;
6613 	enum zone_type j, idx;
6614 
6615 	for_each_online_pgdat(pgdat) {
6616 		for (j = 0; j < MAX_NR_ZONES; j++) {
6617 			struct zone *zone = pgdat->node_zones + j;
6618 			unsigned long managed_pages = zone->managed_pages;
6619 
6620 			zone->lowmem_reserve[j] = 0;
6621 
6622 			idx = j;
6623 			while (idx) {
6624 				struct zone *lower_zone;
6625 
6626 				idx--;
6627 
6628 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6629 					sysctl_lowmem_reserve_ratio[idx] = 1;
6630 
6631 				lower_zone = pgdat->node_zones + idx;
6632 				lower_zone->lowmem_reserve[j] = managed_pages /
6633 					sysctl_lowmem_reserve_ratio[idx];
6634 				managed_pages += lower_zone->managed_pages;
6635 			}
6636 		}
6637 	}
6638 
6639 	/* update totalreserve_pages */
6640 	calculate_totalreserve_pages();
6641 }
6642 
6643 static void __setup_per_zone_wmarks(void)
6644 {
6645 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6646 	unsigned long lowmem_pages = 0;
6647 	struct zone *zone;
6648 	unsigned long flags;
6649 
6650 	/* Calculate total number of !ZONE_HIGHMEM pages */
6651 	for_each_zone(zone) {
6652 		if (!is_highmem(zone))
6653 			lowmem_pages += zone->managed_pages;
6654 	}
6655 
6656 	for_each_zone(zone) {
6657 		u64 tmp;
6658 
6659 		spin_lock_irqsave(&zone->lock, flags);
6660 		tmp = (u64)pages_min * zone->managed_pages;
6661 		do_div(tmp, lowmem_pages);
6662 		if (is_highmem(zone)) {
6663 			/*
6664 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6665 			 * need highmem pages, so cap pages_min to a small
6666 			 * value here.
6667 			 *
6668 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6669 			 * deltas control asynch page reclaim, and so should
6670 			 * not be capped for highmem.
6671 			 */
6672 			unsigned long min_pages;
6673 
6674 			min_pages = zone->managed_pages / 1024;
6675 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6676 			zone->watermark[WMARK_MIN] = min_pages;
6677 		} else {
6678 			/*
6679 			 * If it's a lowmem zone, reserve a number of pages
6680 			 * proportionate to the zone's size.
6681 			 */
6682 			zone->watermark[WMARK_MIN] = tmp;
6683 		}
6684 
6685 		/*
6686 		 * Set the kswapd watermarks distance according to the
6687 		 * scale factor in proportion to available memory, but
6688 		 * ensure a minimum size on small systems.
6689 		 */
6690 		tmp = max_t(u64, tmp >> 2,
6691 			    mult_frac(zone->managed_pages,
6692 				      watermark_scale_factor, 10000));
6693 
6694 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6695 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6696 
6697 		spin_unlock_irqrestore(&zone->lock, flags);
6698 	}
6699 
6700 	/* update totalreserve_pages */
6701 	calculate_totalreserve_pages();
6702 }
6703 
6704 /**
6705  * setup_per_zone_wmarks - called when min_free_kbytes changes
6706  * or when memory is hot-{added|removed}
6707  *
6708  * Ensures that the watermark[min,low,high] values for each zone are set
6709  * correctly with respect to min_free_kbytes.
6710  */
6711 void setup_per_zone_wmarks(void)
6712 {
6713 	mutex_lock(&zonelists_mutex);
6714 	__setup_per_zone_wmarks();
6715 	mutex_unlock(&zonelists_mutex);
6716 }
6717 
6718 /*
6719  * Initialise min_free_kbytes.
6720  *
6721  * For small machines we want it small (128k min).  For large machines
6722  * we want it large (64MB max).  But it is not linear, because network
6723  * bandwidth does not increase linearly with machine size.  We use
6724  *
6725  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6726  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6727  *
6728  * which yields
6729  *
6730  * 16MB:	512k
6731  * 32MB:	724k
6732  * 64MB:	1024k
6733  * 128MB:	1448k
6734  * 256MB:	2048k
6735  * 512MB:	2896k
6736  * 1024MB:	4096k
6737  * 2048MB:	5792k
6738  * 4096MB:	8192k
6739  * 8192MB:	11584k
6740  * 16384MB:	16384k
6741  */
6742 int __meminit init_per_zone_wmark_min(void)
6743 {
6744 	unsigned long lowmem_kbytes;
6745 	int new_min_free_kbytes;
6746 
6747 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6748 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6749 
6750 	if (new_min_free_kbytes > user_min_free_kbytes) {
6751 		min_free_kbytes = new_min_free_kbytes;
6752 		if (min_free_kbytes < 128)
6753 			min_free_kbytes = 128;
6754 		if (min_free_kbytes > 65536)
6755 			min_free_kbytes = 65536;
6756 	} else {
6757 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6758 				new_min_free_kbytes, user_min_free_kbytes);
6759 	}
6760 	setup_per_zone_wmarks();
6761 	refresh_zone_stat_thresholds();
6762 	setup_per_zone_lowmem_reserve();
6763 
6764 #ifdef CONFIG_NUMA
6765 	setup_min_unmapped_ratio();
6766 	setup_min_slab_ratio();
6767 #endif
6768 
6769 	return 0;
6770 }
6771 core_initcall(init_per_zone_wmark_min)
6772 
6773 /*
6774  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6775  *	that we can call two helper functions whenever min_free_kbytes
6776  *	changes.
6777  */
6778 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6779 	void __user *buffer, size_t *length, loff_t *ppos)
6780 {
6781 	int rc;
6782 
6783 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6784 	if (rc)
6785 		return rc;
6786 
6787 	if (write) {
6788 		user_min_free_kbytes = min_free_kbytes;
6789 		setup_per_zone_wmarks();
6790 	}
6791 	return 0;
6792 }
6793 
6794 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6795 	void __user *buffer, size_t *length, loff_t *ppos)
6796 {
6797 	int rc;
6798 
6799 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6800 	if (rc)
6801 		return rc;
6802 
6803 	if (write)
6804 		setup_per_zone_wmarks();
6805 
6806 	return 0;
6807 }
6808 
6809 #ifdef CONFIG_NUMA
6810 static void setup_min_unmapped_ratio(void)
6811 {
6812 	pg_data_t *pgdat;
6813 	struct zone *zone;
6814 
6815 	for_each_online_pgdat(pgdat)
6816 		pgdat->min_unmapped_pages = 0;
6817 
6818 	for_each_zone(zone)
6819 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6820 				sysctl_min_unmapped_ratio) / 100;
6821 }
6822 
6823 
6824 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6825 	void __user *buffer, size_t *length, loff_t *ppos)
6826 {
6827 	int rc;
6828 
6829 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6830 	if (rc)
6831 		return rc;
6832 
6833 	setup_min_unmapped_ratio();
6834 
6835 	return 0;
6836 }
6837 
6838 static void setup_min_slab_ratio(void)
6839 {
6840 	pg_data_t *pgdat;
6841 	struct zone *zone;
6842 
6843 	for_each_online_pgdat(pgdat)
6844 		pgdat->min_slab_pages = 0;
6845 
6846 	for_each_zone(zone)
6847 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6848 				sysctl_min_slab_ratio) / 100;
6849 }
6850 
6851 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6852 	void __user *buffer, size_t *length, loff_t *ppos)
6853 {
6854 	int rc;
6855 
6856 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6857 	if (rc)
6858 		return rc;
6859 
6860 	setup_min_slab_ratio();
6861 
6862 	return 0;
6863 }
6864 #endif
6865 
6866 /*
6867  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6868  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6869  *	whenever sysctl_lowmem_reserve_ratio changes.
6870  *
6871  * The reserve ratio obviously has absolutely no relation with the
6872  * minimum watermarks. The lowmem reserve ratio can only make sense
6873  * if in function of the boot time zone sizes.
6874  */
6875 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6876 	void __user *buffer, size_t *length, loff_t *ppos)
6877 {
6878 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6879 	setup_per_zone_lowmem_reserve();
6880 	return 0;
6881 }
6882 
6883 /*
6884  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6885  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6886  * pagelist can have before it gets flushed back to buddy allocator.
6887  */
6888 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6889 	void __user *buffer, size_t *length, loff_t *ppos)
6890 {
6891 	struct zone *zone;
6892 	int old_percpu_pagelist_fraction;
6893 	int ret;
6894 
6895 	mutex_lock(&pcp_batch_high_lock);
6896 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6897 
6898 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6899 	if (!write || ret < 0)
6900 		goto out;
6901 
6902 	/* Sanity checking to avoid pcp imbalance */
6903 	if (percpu_pagelist_fraction &&
6904 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6905 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6906 		ret = -EINVAL;
6907 		goto out;
6908 	}
6909 
6910 	/* No change? */
6911 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6912 		goto out;
6913 
6914 	for_each_populated_zone(zone) {
6915 		unsigned int cpu;
6916 
6917 		for_each_possible_cpu(cpu)
6918 			pageset_set_high_and_batch(zone,
6919 					per_cpu_ptr(zone->pageset, cpu));
6920 	}
6921 out:
6922 	mutex_unlock(&pcp_batch_high_lock);
6923 	return ret;
6924 }
6925 
6926 #ifdef CONFIG_NUMA
6927 int hashdist = HASHDIST_DEFAULT;
6928 
6929 static int __init set_hashdist(char *str)
6930 {
6931 	if (!str)
6932 		return 0;
6933 	hashdist = simple_strtoul(str, &str, 0);
6934 	return 1;
6935 }
6936 __setup("hashdist=", set_hashdist);
6937 #endif
6938 
6939 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6940 /*
6941  * Returns the number of pages that arch has reserved but
6942  * is not known to alloc_large_system_hash().
6943  */
6944 static unsigned long __init arch_reserved_kernel_pages(void)
6945 {
6946 	return 0;
6947 }
6948 #endif
6949 
6950 /*
6951  * allocate a large system hash table from bootmem
6952  * - it is assumed that the hash table must contain an exact power-of-2
6953  *   quantity of entries
6954  * - limit is the number of hash buckets, not the total allocation size
6955  */
6956 void *__init alloc_large_system_hash(const char *tablename,
6957 				     unsigned long bucketsize,
6958 				     unsigned long numentries,
6959 				     int scale,
6960 				     int flags,
6961 				     unsigned int *_hash_shift,
6962 				     unsigned int *_hash_mask,
6963 				     unsigned long low_limit,
6964 				     unsigned long high_limit)
6965 {
6966 	unsigned long long max = high_limit;
6967 	unsigned long log2qty, size;
6968 	void *table = NULL;
6969 
6970 	/* allow the kernel cmdline to have a say */
6971 	if (!numentries) {
6972 		/* round applicable memory size up to nearest megabyte */
6973 		numentries = nr_kernel_pages;
6974 		numentries -= arch_reserved_kernel_pages();
6975 
6976 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6977 		if (PAGE_SHIFT < 20)
6978 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6979 
6980 		/* limit to 1 bucket per 2^scale bytes of low memory */
6981 		if (scale > PAGE_SHIFT)
6982 			numentries >>= (scale - PAGE_SHIFT);
6983 		else
6984 			numentries <<= (PAGE_SHIFT - scale);
6985 
6986 		/* Make sure we've got at least a 0-order allocation.. */
6987 		if (unlikely(flags & HASH_SMALL)) {
6988 			/* Makes no sense without HASH_EARLY */
6989 			WARN_ON(!(flags & HASH_EARLY));
6990 			if (!(numentries >> *_hash_shift)) {
6991 				numentries = 1UL << *_hash_shift;
6992 				BUG_ON(!numentries);
6993 			}
6994 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6995 			numentries = PAGE_SIZE / bucketsize;
6996 	}
6997 	numentries = roundup_pow_of_two(numentries);
6998 
6999 	/* limit allocation size to 1/16 total memory by default */
7000 	if (max == 0) {
7001 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7002 		do_div(max, bucketsize);
7003 	}
7004 	max = min(max, 0x80000000ULL);
7005 
7006 	if (numentries < low_limit)
7007 		numentries = low_limit;
7008 	if (numentries > max)
7009 		numentries = max;
7010 
7011 	log2qty = ilog2(numentries);
7012 
7013 	do {
7014 		size = bucketsize << log2qty;
7015 		if (flags & HASH_EARLY)
7016 			table = memblock_virt_alloc_nopanic(size, 0);
7017 		else if (hashdist)
7018 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7019 		else {
7020 			/*
7021 			 * If bucketsize is not a power-of-two, we may free
7022 			 * some pages at the end of hash table which
7023 			 * alloc_pages_exact() automatically does
7024 			 */
7025 			if (get_order(size) < MAX_ORDER) {
7026 				table = alloc_pages_exact(size, GFP_ATOMIC);
7027 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7028 			}
7029 		}
7030 	} while (!table && size > PAGE_SIZE && --log2qty);
7031 
7032 	if (!table)
7033 		panic("Failed to allocate %s hash table\n", tablename);
7034 
7035 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7036 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7037 
7038 	if (_hash_shift)
7039 		*_hash_shift = log2qty;
7040 	if (_hash_mask)
7041 		*_hash_mask = (1 << log2qty) - 1;
7042 
7043 	return table;
7044 }
7045 
7046 /*
7047  * This function checks whether pageblock includes unmovable pages or not.
7048  * If @count is not zero, it is okay to include less @count unmovable pages
7049  *
7050  * PageLRU check without isolation or lru_lock could race so that
7051  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7052  * expect this function should be exact.
7053  */
7054 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7055 			 bool skip_hwpoisoned_pages)
7056 {
7057 	unsigned long pfn, iter, found;
7058 	int mt;
7059 
7060 	/*
7061 	 * For avoiding noise data, lru_add_drain_all() should be called
7062 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7063 	 */
7064 	if (zone_idx(zone) == ZONE_MOVABLE)
7065 		return false;
7066 	mt = get_pageblock_migratetype(page);
7067 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7068 		return false;
7069 
7070 	pfn = page_to_pfn(page);
7071 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7072 		unsigned long check = pfn + iter;
7073 
7074 		if (!pfn_valid_within(check))
7075 			continue;
7076 
7077 		page = pfn_to_page(check);
7078 
7079 		/*
7080 		 * Hugepages are not in LRU lists, but they're movable.
7081 		 * We need not scan over tail pages bacause we don't
7082 		 * handle each tail page individually in migration.
7083 		 */
7084 		if (PageHuge(page)) {
7085 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7086 			continue;
7087 		}
7088 
7089 		/*
7090 		 * We can't use page_count without pin a page
7091 		 * because another CPU can free compound page.
7092 		 * This check already skips compound tails of THP
7093 		 * because their page->_refcount is zero at all time.
7094 		 */
7095 		if (!page_ref_count(page)) {
7096 			if (PageBuddy(page))
7097 				iter += (1 << page_order(page)) - 1;
7098 			continue;
7099 		}
7100 
7101 		/*
7102 		 * The HWPoisoned page may be not in buddy system, and
7103 		 * page_count() is not 0.
7104 		 */
7105 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7106 			continue;
7107 
7108 		if (!PageLRU(page))
7109 			found++;
7110 		/*
7111 		 * If there are RECLAIMABLE pages, we need to check
7112 		 * it.  But now, memory offline itself doesn't call
7113 		 * shrink_node_slabs() and it still to be fixed.
7114 		 */
7115 		/*
7116 		 * If the page is not RAM, page_count()should be 0.
7117 		 * we don't need more check. This is an _used_ not-movable page.
7118 		 *
7119 		 * The problematic thing here is PG_reserved pages. PG_reserved
7120 		 * is set to both of a memory hole page and a _used_ kernel
7121 		 * page at boot.
7122 		 */
7123 		if (found > count)
7124 			return true;
7125 	}
7126 	return false;
7127 }
7128 
7129 bool is_pageblock_removable_nolock(struct page *page)
7130 {
7131 	struct zone *zone;
7132 	unsigned long pfn;
7133 
7134 	/*
7135 	 * We have to be careful here because we are iterating over memory
7136 	 * sections which are not zone aware so we might end up outside of
7137 	 * the zone but still within the section.
7138 	 * We have to take care about the node as well. If the node is offline
7139 	 * its NODE_DATA will be NULL - see page_zone.
7140 	 */
7141 	if (!node_online(page_to_nid(page)))
7142 		return false;
7143 
7144 	zone = page_zone(page);
7145 	pfn = page_to_pfn(page);
7146 	if (!zone_spans_pfn(zone, pfn))
7147 		return false;
7148 
7149 	return !has_unmovable_pages(zone, page, 0, true);
7150 }
7151 
7152 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7153 
7154 static unsigned long pfn_max_align_down(unsigned long pfn)
7155 {
7156 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7157 			     pageblock_nr_pages) - 1);
7158 }
7159 
7160 static unsigned long pfn_max_align_up(unsigned long pfn)
7161 {
7162 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7163 				pageblock_nr_pages));
7164 }
7165 
7166 /* [start, end) must belong to a single zone. */
7167 static int __alloc_contig_migrate_range(struct compact_control *cc,
7168 					unsigned long start, unsigned long end)
7169 {
7170 	/* This function is based on compact_zone() from compaction.c. */
7171 	unsigned long nr_reclaimed;
7172 	unsigned long pfn = start;
7173 	unsigned int tries = 0;
7174 	int ret = 0;
7175 
7176 	migrate_prep();
7177 
7178 	while (pfn < end || !list_empty(&cc->migratepages)) {
7179 		if (fatal_signal_pending(current)) {
7180 			ret = -EINTR;
7181 			break;
7182 		}
7183 
7184 		if (list_empty(&cc->migratepages)) {
7185 			cc->nr_migratepages = 0;
7186 			pfn = isolate_migratepages_range(cc, pfn, end);
7187 			if (!pfn) {
7188 				ret = -EINTR;
7189 				break;
7190 			}
7191 			tries = 0;
7192 		} else if (++tries == 5) {
7193 			ret = ret < 0 ? ret : -EBUSY;
7194 			break;
7195 		}
7196 
7197 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7198 							&cc->migratepages);
7199 		cc->nr_migratepages -= nr_reclaimed;
7200 
7201 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7202 				    NULL, 0, cc->mode, MR_CMA);
7203 	}
7204 	if (ret < 0) {
7205 		putback_movable_pages(&cc->migratepages);
7206 		return ret;
7207 	}
7208 	return 0;
7209 }
7210 
7211 /**
7212  * alloc_contig_range() -- tries to allocate given range of pages
7213  * @start:	start PFN to allocate
7214  * @end:	one-past-the-last PFN to allocate
7215  * @migratetype:	migratetype of the underlaying pageblocks (either
7216  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7217  *			in range must have the same migratetype and it must
7218  *			be either of the two.
7219  *
7220  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7221  * aligned, however it's the caller's responsibility to guarantee that
7222  * we are the only thread that changes migrate type of pageblocks the
7223  * pages fall in.
7224  *
7225  * The PFN range must belong to a single zone.
7226  *
7227  * Returns zero on success or negative error code.  On success all
7228  * pages which PFN is in [start, end) are allocated for the caller and
7229  * need to be freed with free_contig_range().
7230  */
7231 int alloc_contig_range(unsigned long start, unsigned long end,
7232 		       unsigned migratetype)
7233 {
7234 	unsigned long outer_start, outer_end;
7235 	unsigned int order;
7236 	int ret = 0;
7237 
7238 	struct compact_control cc = {
7239 		.nr_migratepages = 0,
7240 		.order = -1,
7241 		.zone = page_zone(pfn_to_page(start)),
7242 		.mode = MIGRATE_SYNC,
7243 		.ignore_skip_hint = true,
7244 	};
7245 	INIT_LIST_HEAD(&cc.migratepages);
7246 
7247 	/*
7248 	 * What we do here is we mark all pageblocks in range as
7249 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7250 	 * have different sizes, and due to the way page allocator
7251 	 * work, we align the range to biggest of the two pages so
7252 	 * that page allocator won't try to merge buddies from
7253 	 * different pageblocks and change MIGRATE_ISOLATE to some
7254 	 * other migration type.
7255 	 *
7256 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7257 	 * migrate the pages from an unaligned range (ie. pages that
7258 	 * we are interested in).  This will put all the pages in
7259 	 * range back to page allocator as MIGRATE_ISOLATE.
7260 	 *
7261 	 * When this is done, we take the pages in range from page
7262 	 * allocator removing them from the buddy system.  This way
7263 	 * page allocator will never consider using them.
7264 	 *
7265 	 * This lets us mark the pageblocks back as
7266 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7267 	 * aligned range but not in the unaligned, original range are
7268 	 * put back to page allocator so that buddy can use them.
7269 	 */
7270 
7271 	ret = start_isolate_page_range(pfn_max_align_down(start),
7272 				       pfn_max_align_up(end), migratetype,
7273 				       false);
7274 	if (ret)
7275 		return ret;
7276 
7277 	/*
7278 	 * In case of -EBUSY, we'd like to know which page causes problem.
7279 	 * So, just fall through. We will check it in test_pages_isolated().
7280 	 */
7281 	ret = __alloc_contig_migrate_range(&cc, start, end);
7282 	if (ret && ret != -EBUSY)
7283 		goto done;
7284 
7285 	/*
7286 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7287 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7288 	 * more, all pages in [start, end) are free in page allocator.
7289 	 * What we are going to do is to allocate all pages from
7290 	 * [start, end) (that is remove them from page allocator).
7291 	 *
7292 	 * The only problem is that pages at the beginning and at the
7293 	 * end of interesting range may be not aligned with pages that
7294 	 * page allocator holds, ie. they can be part of higher order
7295 	 * pages.  Because of this, we reserve the bigger range and
7296 	 * once this is done free the pages we are not interested in.
7297 	 *
7298 	 * We don't have to hold zone->lock here because the pages are
7299 	 * isolated thus they won't get removed from buddy.
7300 	 */
7301 
7302 	lru_add_drain_all();
7303 	drain_all_pages(cc.zone);
7304 
7305 	order = 0;
7306 	outer_start = start;
7307 	while (!PageBuddy(pfn_to_page(outer_start))) {
7308 		if (++order >= MAX_ORDER) {
7309 			outer_start = start;
7310 			break;
7311 		}
7312 		outer_start &= ~0UL << order;
7313 	}
7314 
7315 	if (outer_start != start) {
7316 		order = page_order(pfn_to_page(outer_start));
7317 
7318 		/*
7319 		 * outer_start page could be small order buddy page and
7320 		 * it doesn't include start page. Adjust outer_start
7321 		 * in this case to report failed page properly
7322 		 * on tracepoint in test_pages_isolated()
7323 		 */
7324 		if (outer_start + (1UL << order) <= start)
7325 			outer_start = start;
7326 	}
7327 
7328 	/* Make sure the range is really isolated. */
7329 	if (test_pages_isolated(outer_start, end, false)) {
7330 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7331 			__func__, outer_start, end);
7332 		ret = -EBUSY;
7333 		goto done;
7334 	}
7335 
7336 	/* Grab isolated pages from freelists. */
7337 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7338 	if (!outer_end) {
7339 		ret = -EBUSY;
7340 		goto done;
7341 	}
7342 
7343 	/* Free head and tail (if any) */
7344 	if (start != outer_start)
7345 		free_contig_range(outer_start, start - outer_start);
7346 	if (end != outer_end)
7347 		free_contig_range(end, outer_end - end);
7348 
7349 done:
7350 	undo_isolate_page_range(pfn_max_align_down(start),
7351 				pfn_max_align_up(end), migratetype);
7352 	return ret;
7353 }
7354 
7355 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7356 {
7357 	unsigned int count = 0;
7358 
7359 	for (; nr_pages--; pfn++) {
7360 		struct page *page = pfn_to_page(pfn);
7361 
7362 		count += page_count(page) != 1;
7363 		__free_page(page);
7364 	}
7365 	WARN(count != 0, "%d pages are still in use!\n", count);
7366 }
7367 #endif
7368 
7369 #ifdef CONFIG_MEMORY_HOTPLUG
7370 /*
7371  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7372  * page high values need to be recalulated.
7373  */
7374 void __meminit zone_pcp_update(struct zone *zone)
7375 {
7376 	unsigned cpu;
7377 	mutex_lock(&pcp_batch_high_lock);
7378 	for_each_possible_cpu(cpu)
7379 		pageset_set_high_and_batch(zone,
7380 				per_cpu_ptr(zone->pageset, cpu));
7381 	mutex_unlock(&pcp_batch_high_lock);
7382 }
7383 #endif
7384 
7385 void zone_pcp_reset(struct zone *zone)
7386 {
7387 	unsigned long flags;
7388 	int cpu;
7389 	struct per_cpu_pageset *pset;
7390 
7391 	/* avoid races with drain_pages()  */
7392 	local_irq_save(flags);
7393 	if (zone->pageset != &boot_pageset) {
7394 		for_each_online_cpu(cpu) {
7395 			pset = per_cpu_ptr(zone->pageset, cpu);
7396 			drain_zonestat(zone, pset);
7397 		}
7398 		free_percpu(zone->pageset);
7399 		zone->pageset = &boot_pageset;
7400 	}
7401 	local_irq_restore(flags);
7402 }
7403 
7404 #ifdef CONFIG_MEMORY_HOTREMOVE
7405 /*
7406  * All pages in the range must be in a single zone and isolated
7407  * before calling this.
7408  */
7409 void
7410 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7411 {
7412 	struct page *page;
7413 	struct zone *zone;
7414 	unsigned int order, i;
7415 	unsigned long pfn;
7416 	unsigned long flags;
7417 	/* find the first valid pfn */
7418 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7419 		if (pfn_valid(pfn))
7420 			break;
7421 	if (pfn == end_pfn)
7422 		return;
7423 	zone = page_zone(pfn_to_page(pfn));
7424 	spin_lock_irqsave(&zone->lock, flags);
7425 	pfn = start_pfn;
7426 	while (pfn < end_pfn) {
7427 		if (!pfn_valid(pfn)) {
7428 			pfn++;
7429 			continue;
7430 		}
7431 		page = pfn_to_page(pfn);
7432 		/*
7433 		 * The HWPoisoned page may be not in buddy system, and
7434 		 * page_count() is not 0.
7435 		 */
7436 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7437 			pfn++;
7438 			SetPageReserved(page);
7439 			continue;
7440 		}
7441 
7442 		BUG_ON(page_count(page));
7443 		BUG_ON(!PageBuddy(page));
7444 		order = page_order(page);
7445 #ifdef CONFIG_DEBUG_VM
7446 		pr_info("remove from free list %lx %d %lx\n",
7447 			pfn, 1 << order, end_pfn);
7448 #endif
7449 		list_del(&page->lru);
7450 		rmv_page_order(page);
7451 		zone->free_area[order].nr_free--;
7452 		for (i = 0; i < (1 << order); i++)
7453 			SetPageReserved((page+i));
7454 		pfn += (1 << order);
7455 	}
7456 	spin_unlock_irqrestore(&zone->lock, flags);
7457 }
7458 #endif
7459 
7460 bool is_free_buddy_page(struct page *page)
7461 {
7462 	struct zone *zone = page_zone(page);
7463 	unsigned long pfn = page_to_pfn(page);
7464 	unsigned long flags;
7465 	unsigned int order;
7466 
7467 	spin_lock_irqsave(&zone->lock, flags);
7468 	for (order = 0; order < MAX_ORDER; order++) {
7469 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7470 
7471 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7472 			break;
7473 	}
7474 	spin_unlock_irqrestore(&zone->lock, flags);
7475 
7476 	return order < MAX_ORDER;
7477 }
7478