1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/bootmem.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/suspend.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/slab.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mempolicy.h> 39 #include <linux/stop_machine.h> 40 #include <linux/sort.h> 41 #include <linux/pfn.h> 42 #include <linux/backing-dev.h> 43 #include <linux/fault-inject.h> 44 45 #include <asm/tlbflush.h> 46 #include <asm/div64.h> 47 #include "internal.h" 48 49 /* 50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 51 * initializer cleaner 52 */ 53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 54 EXPORT_SYMBOL(node_online_map); 55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 56 EXPORT_SYMBOL(node_possible_map); 57 unsigned long totalram_pages __read_mostly; 58 unsigned long totalreserve_pages __read_mostly; 59 long nr_swap_pages; 60 int percpu_pagelist_fraction; 61 62 static void __free_pages_ok(struct page *page, unsigned int order); 63 64 /* 65 * results with 256, 32 in the lowmem_reserve sysctl: 66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 67 * 1G machine -> (16M dma, 784M normal, 224M high) 68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 71 * 72 * TBD: should special case ZONE_DMA32 machines here - in those we normally 73 * don't need any ZONE_NORMAL reservation 74 */ 75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 76 #ifdef CONFIG_ZONE_DMA 77 256, 78 #endif 79 #ifdef CONFIG_ZONE_DMA32 80 256, 81 #endif 82 #ifdef CONFIG_HIGHMEM 83 32, 84 #endif 85 32, 86 }; 87 88 EXPORT_SYMBOL(totalram_pages); 89 90 static char * const zone_names[MAX_NR_ZONES] = { 91 #ifdef CONFIG_ZONE_DMA 92 "DMA", 93 #endif 94 #ifdef CONFIG_ZONE_DMA32 95 "DMA32", 96 #endif 97 "Normal", 98 #ifdef CONFIG_HIGHMEM 99 "HighMem", 100 #endif 101 "Movable", 102 }; 103 104 int min_free_kbytes = 1024; 105 106 unsigned long __meminitdata nr_kernel_pages; 107 unsigned long __meminitdata nr_all_pages; 108 static unsigned long __meminitdata dma_reserve; 109 110 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 111 /* 112 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct 113 * ranges of memory (RAM) that may be registered with add_active_range(). 114 * Ranges passed to add_active_range() will be merged if possible 115 * so the number of times add_active_range() can be called is 116 * related to the number of nodes and the number of holes 117 */ 118 #ifdef CONFIG_MAX_ACTIVE_REGIONS 119 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 120 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 121 #else 122 #if MAX_NUMNODES >= 32 123 /* If there can be many nodes, allow up to 50 holes per node */ 124 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 125 #else 126 /* By default, allow up to 256 distinct regions */ 127 #define MAX_ACTIVE_REGIONS 256 128 #endif 129 #endif 130 131 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 132 static int __meminitdata nr_nodemap_entries; 133 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 134 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 135 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 136 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; 137 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; 138 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 139 unsigned long __initdata required_kernelcore; 140 unsigned long __initdata required_movablecore; 141 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 142 143 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 144 int movable_zone; 145 EXPORT_SYMBOL(movable_zone); 146 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 147 148 #if MAX_NUMNODES > 1 149 int nr_node_ids __read_mostly = MAX_NUMNODES; 150 EXPORT_SYMBOL(nr_node_ids); 151 #endif 152 153 #ifdef CONFIG_DEBUG_VM 154 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 155 { 156 int ret = 0; 157 unsigned seq; 158 unsigned long pfn = page_to_pfn(page); 159 160 do { 161 seq = zone_span_seqbegin(zone); 162 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 163 ret = 1; 164 else if (pfn < zone->zone_start_pfn) 165 ret = 1; 166 } while (zone_span_seqretry(zone, seq)); 167 168 return ret; 169 } 170 171 static int page_is_consistent(struct zone *zone, struct page *page) 172 { 173 if (!pfn_valid_within(page_to_pfn(page))) 174 return 0; 175 if (zone != page_zone(page)) 176 return 0; 177 178 return 1; 179 } 180 /* 181 * Temporary debugging check for pages not lying within a given zone. 182 */ 183 static int bad_range(struct zone *zone, struct page *page) 184 { 185 if (page_outside_zone_boundaries(zone, page)) 186 return 1; 187 if (!page_is_consistent(zone, page)) 188 return 1; 189 190 return 0; 191 } 192 #else 193 static inline int bad_range(struct zone *zone, struct page *page) 194 { 195 return 0; 196 } 197 #endif 198 199 static void bad_page(struct page *page) 200 { 201 printk(KERN_EMERG "Bad page state in process '%s'\n" 202 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 203 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 204 KERN_EMERG "Backtrace:\n", 205 current->comm, page, (int)(2*sizeof(unsigned long)), 206 (unsigned long)page->flags, page->mapping, 207 page_mapcount(page), page_count(page)); 208 dump_stack(); 209 page->flags &= ~(1 << PG_lru | 210 1 << PG_private | 211 1 << PG_locked | 212 1 << PG_active | 213 1 << PG_dirty | 214 1 << PG_reclaim | 215 1 << PG_slab | 216 1 << PG_swapcache | 217 1 << PG_writeback | 218 1 << PG_buddy ); 219 set_page_count(page, 0); 220 reset_page_mapcount(page); 221 page->mapping = NULL; 222 add_taint(TAINT_BAD_PAGE); 223 } 224 225 /* 226 * Higher-order pages are called "compound pages". They are structured thusly: 227 * 228 * The first PAGE_SIZE page is called the "head page". 229 * 230 * The remaining PAGE_SIZE pages are called "tail pages". 231 * 232 * All pages have PG_compound set. All pages have their ->private pointing at 233 * the head page (even the head page has this). 234 * 235 * The first tail page's ->lru.next holds the address of the compound page's 236 * put_page() function. Its ->lru.prev holds the order of allocation. 237 * This usage means that zero-order pages may not be compound. 238 */ 239 240 static void free_compound_page(struct page *page) 241 { 242 __free_pages_ok(page, compound_order(page)); 243 } 244 245 static void prep_compound_page(struct page *page, unsigned long order) 246 { 247 int i; 248 int nr_pages = 1 << order; 249 250 set_compound_page_dtor(page, free_compound_page); 251 set_compound_order(page, order); 252 __SetPageHead(page); 253 for (i = 1; i < nr_pages; i++) { 254 struct page *p = page + i; 255 256 __SetPageTail(p); 257 p->first_page = page; 258 } 259 } 260 261 static void destroy_compound_page(struct page *page, unsigned long order) 262 { 263 int i; 264 int nr_pages = 1 << order; 265 266 if (unlikely(compound_order(page) != order)) 267 bad_page(page); 268 269 if (unlikely(!PageHead(page))) 270 bad_page(page); 271 __ClearPageHead(page); 272 for (i = 1; i < nr_pages; i++) { 273 struct page *p = page + i; 274 275 if (unlikely(!PageTail(p) | 276 (p->first_page != page))) 277 bad_page(page); 278 __ClearPageTail(p); 279 } 280 } 281 282 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 283 { 284 int i; 285 286 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 287 /* 288 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 289 * and __GFP_HIGHMEM from hard or soft interrupt context. 290 */ 291 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 292 for (i = 0; i < (1 << order); i++) 293 clear_highpage(page + i); 294 } 295 296 /* 297 * function for dealing with page's order in buddy system. 298 * zone->lock is already acquired when we use these. 299 * So, we don't need atomic page->flags operations here. 300 */ 301 static inline unsigned long page_order(struct page *page) 302 { 303 return page_private(page); 304 } 305 306 static inline void set_page_order(struct page *page, int order) 307 { 308 set_page_private(page, order); 309 __SetPageBuddy(page); 310 } 311 312 static inline void rmv_page_order(struct page *page) 313 { 314 __ClearPageBuddy(page); 315 set_page_private(page, 0); 316 } 317 318 /* 319 * Locate the struct page for both the matching buddy in our 320 * pair (buddy1) and the combined O(n+1) page they form (page). 321 * 322 * 1) Any buddy B1 will have an order O twin B2 which satisfies 323 * the following equation: 324 * B2 = B1 ^ (1 << O) 325 * For example, if the starting buddy (buddy2) is #8 its order 326 * 1 buddy is #10: 327 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 328 * 329 * 2) Any buddy B will have an order O+1 parent P which 330 * satisfies the following equation: 331 * P = B & ~(1 << O) 332 * 333 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 334 */ 335 static inline struct page * 336 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 337 { 338 unsigned long buddy_idx = page_idx ^ (1 << order); 339 340 return page + (buddy_idx - page_idx); 341 } 342 343 static inline unsigned long 344 __find_combined_index(unsigned long page_idx, unsigned int order) 345 { 346 return (page_idx & ~(1 << order)); 347 } 348 349 /* 350 * This function checks whether a page is free && is the buddy 351 * we can do coalesce a page and its buddy if 352 * (a) the buddy is not in a hole && 353 * (b) the buddy is in the buddy system && 354 * (c) a page and its buddy have the same order && 355 * (d) a page and its buddy are in the same zone. 356 * 357 * For recording whether a page is in the buddy system, we use PG_buddy. 358 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 359 * 360 * For recording page's order, we use page_private(page). 361 */ 362 static inline int page_is_buddy(struct page *page, struct page *buddy, 363 int order) 364 { 365 if (!pfn_valid_within(page_to_pfn(buddy))) 366 return 0; 367 368 if (page_zone_id(page) != page_zone_id(buddy)) 369 return 0; 370 371 if (PageBuddy(buddy) && page_order(buddy) == order) { 372 BUG_ON(page_count(buddy) != 0); 373 return 1; 374 } 375 return 0; 376 } 377 378 /* 379 * Freeing function for a buddy system allocator. 380 * 381 * The concept of a buddy system is to maintain direct-mapped table 382 * (containing bit values) for memory blocks of various "orders". 383 * The bottom level table contains the map for the smallest allocatable 384 * units of memory (here, pages), and each level above it describes 385 * pairs of units from the levels below, hence, "buddies". 386 * At a high level, all that happens here is marking the table entry 387 * at the bottom level available, and propagating the changes upward 388 * as necessary, plus some accounting needed to play nicely with other 389 * parts of the VM system. 390 * At each level, we keep a list of pages, which are heads of continuous 391 * free pages of length of (1 << order) and marked with PG_buddy. Page's 392 * order is recorded in page_private(page) field. 393 * So when we are allocating or freeing one, we can derive the state of the 394 * other. That is, if we allocate a small block, and both were 395 * free, the remainder of the region must be split into blocks. 396 * If a block is freed, and its buddy is also free, then this 397 * triggers coalescing into a block of larger size. 398 * 399 * -- wli 400 */ 401 402 static inline void __free_one_page(struct page *page, 403 struct zone *zone, unsigned int order) 404 { 405 unsigned long page_idx; 406 int order_size = 1 << order; 407 408 if (unlikely(PageCompound(page))) 409 destroy_compound_page(page, order); 410 411 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 412 413 VM_BUG_ON(page_idx & (order_size - 1)); 414 VM_BUG_ON(bad_range(zone, page)); 415 416 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 417 while (order < MAX_ORDER-1) { 418 unsigned long combined_idx; 419 struct free_area *area; 420 struct page *buddy; 421 422 buddy = __page_find_buddy(page, page_idx, order); 423 if (!page_is_buddy(page, buddy, order)) 424 break; /* Move the buddy up one level. */ 425 426 list_del(&buddy->lru); 427 area = zone->free_area + order; 428 area->nr_free--; 429 rmv_page_order(buddy); 430 combined_idx = __find_combined_index(page_idx, order); 431 page = page + (combined_idx - page_idx); 432 page_idx = combined_idx; 433 order++; 434 } 435 set_page_order(page, order); 436 list_add(&page->lru, &zone->free_area[order].free_list); 437 zone->free_area[order].nr_free++; 438 } 439 440 static inline int free_pages_check(struct page *page) 441 { 442 if (unlikely(page_mapcount(page) | 443 (page->mapping != NULL) | 444 (page_count(page) != 0) | 445 (page->flags & ( 446 1 << PG_lru | 447 1 << PG_private | 448 1 << PG_locked | 449 1 << PG_active | 450 1 << PG_slab | 451 1 << PG_swapcache | 452 1 << PG_writeback | 453 1 << PG_reserved | 454 1 << PG_buddy )))) 455 bad_page(page); 456 if (PageDirty(page)) 457 __ClearPageDirty(page); 458 /* 459 * For now, we report if PG_reserved was found set, but do not 460 * clear it, and do not free the page. But we shall soon need 461 * to do more, for when the ZERO_PAGE count wraps negative. 462 */ 463 return PageReserved(page); 464 } 465 466 /* 467 * Frees a list of pages. 468 * Assumes all pages on list are in same zone, and of same order. 469 * count is the number of pages to free. 470 * 471 * If the zone was previously in an "all pages pinned" state then look to 472 * see if this freeing clears that state. 473 * 474 * And clear the zone's pages_scanned counter, to hold off the "all pages are 475 * pinned" detection logic. 476 */ 477 static void free_pages_bulk(struct zone *zone, int count, 478 struct list_head *list, int order) 479 { 480 spin_lock(&zone->lock); 481 zone->all_unreclaimable = 0; 482 zone->pages_scanned = 0; 483 while (count--) { 484 struct page *page; 485 486 VM_BUG_ON(list_empty(list)); 487 page = list_entry(list->prev, struct page, lru); 488 /* have to delete it as __free_one_page list manipulates */ 489 list_del(&page->lru); 490 __free_one_page(page, zone, order); 491 } 492 spin_unlock(&zone->lock); 493 } 494 495 static void free_one_page(struct zone *zone, struct page *page, int order) 496 { 497 spin_lock(&zone->lock); 498 zone->all_unreclaimable = 0; 499 zone->pages_scanned = 0; 500 __free_one_page(page, zone, order); 501 spin_unlock(&zone->lock); 502 } 503 504 static void __free_pages_ok(struct page *page, unsigned int order) 505 { 506 unsigned long flags; 507 int i; 508 int reserved = 0; 509 510 for (i = 0 ; i < (1 << order) ; ++i) 511 reserved += free_pages_check(page + i); 512 if (reserved) 513 return; 514 515 if (!PageHighMem(page)) 516 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 517 arch_free_page(page, order); 518 kernel_map_pages(page, 1 << order, 0); 519 520 local_irq_save(flags); 521 __count_vm_events(PGFREE, 1 << order); 522 free_one_page(page_zone(page), page, order); 523 local_irq_restore(flags); 524 } 525 526 /* 527 * permit the bootmem allocator to evade page validation on high-order frees 528 */ 529 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 530 { 531 if (order == 0) { 532 __ClearPageReserved(page); 533 set_page_count(page, 0); 534 set_page_refcounted(page); 535 __free_page(page); 536 } else { 537 int loop; 538 539 prefetchw(page); 540 for (loop = 0; loop < BITS_PER_LONG; loop++) { 541 struct page *p = &page[loop]; 542 543 if (loop + 1 < BITS_PER_LONG) 544 prefetchw(p + 1); 545 __ClearPageReserved(p); 546 set_page_count(p, 0); 547 } 548 549 set_page_refcounted(page); 550 __free_pages(page, order); 551 } 552 } 553 554 555 /* 556 * The order of subdivision here is critical for the IO subsystem. 557 * Please do not alter this order without good reasons and regression 558 * testing. Specifically, as large blocks of memory are subdivided, 559 * the order in which smaller blocks are delivered depends on the order 560 * they're subdivided in this function. This is the primary factor 561 * influencing the order in which pages are delivered to the IO 562 * subsystem according to empirical testing, and this is also justified 563 * by considering the behavior of a buddy system containing a single 564 * large block of memory acted on by a series of small allocations. 565 * This behavior is a critical factor in sglist merging's success. 566 * 567 * -- wli 568 */ 569 static inline void expand(struct zone *zone, struct page *page, 570 int low, int high, struct free_area *area) 571 { 572 unsigned long size = 1 << high; 573 574 while (high > low) { 575 area--; 576 high--; 577 size >>= 1; 578 VM_BUG_ON(bad_range(zone, &page[size])); 579 list_add(&page[size].lru, &area->free_list); 580 area->nr_free++; 581 set_page_order(&page[size], high); 582 } 583 } 584 585 /* 586 * This page is about to be returned from the page allocator 587 */ 588 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 589 { 590 if (unlikely(page_mapcount(page) | 591 (page->mapping != NULL) | 592 (page_count(page) != 0) | 593 (page->flags & ( 594 1 << PG_lru | 595 1 << PG_private | 596 1 << PG_locked | 597 1 << PG_active | 598 1 << PG_dirty | 599 1 << PG_slab | 600 1 << PG_swapcache | 601 1 << PG_writeback | 602 1 << PG_reserved | 603 1 << PG_buddy )))) 604 bad_page(page); 605 606 /* 607 * For now, we report if PG_reserved was found set, but do not 608 * clear it, and do not allocate the page: as a safety net. 609 */ 610 if (PageReserved(page)) 611 return 1; 612 613 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead | 614 1 << PG_referenced | 1 << PG_arch_1 | 615 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk); 616 set_page_private(page, 0); 617 set_page_refcounted(page); 618 619 arch_alloc_page(page, order); 620 kernel_map_pages(page, 1 << order, 1); 621 622 if (gfp_flags & __GFP_ZERO) 623 prep_zero_page(page, order, gfp_flags); 624 625 if (order && (gfp_flags & __GFP_COMP)) 626 prep_compound_page(page, order); 627 628 return 0; 629 } 630 631 /* 632 * Do the hard work of removing an element from the buddy allocator. 633 * Call me with the zone->lock already held. 634 */ 635 static struct page *__rmqueue(struct zone *zone, unsigned int order) 636 { 637 struct free_area * area; 638 unsigned int current_order; 639 struct page *page; 640 641 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 642 area = zone->free_area + current_order; 643 if (list_empty(&area->free_list)) 644 continue; 645 646 page = list_entry(area->free_list.next, struct page, lru); 647 list_del(&page->lru); 648 rmv_page_order(page); 649 area->nr_free--; 650 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 651 expand(zone, page, order, current_order, area); 652 return page; 653 } 654 655 return NULL; 656 } 657 658 /* 659 * Obtain a specified number of elements from the buddy allocator, all under 660 * a single hold of the lock, for efficiency. Add them to the supplied list. 661 * Returns the number of new pages which were placed at *list. 662 */ 663 static int rmqueue_bulk(struct zone *zone, unsigned int order, 664 unsigned long count, struct list_head *list) 665 { 666 int i; 667 668 spin_lock(&zone->lock); 669 for (i = 0; i < count; ++i) { 670 struct page *page = __rmqueue(zone, order); 671 if (unlikely(page == NULL)) 672 break; 673 list_add_tail(&page->lru, list); 674 } 675 spin_unlock(&zone->lock); 676 return i; 677 } 678 679 #ifdef CONFIG_NUMA 680 /* 681 * Called from the vmstat counter updater to drain pagesets of this 682 * currently executing processor on remote nodes after they have 683 * expired. 684 * 685 * Note that this function must be called with the thread pinned to 686 * a single processor. 687 */ 688 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 689 { 690 unsigned long flags; 691 int to_drain; 692 693 local_irq_save(flags); 694 if (pcp->count >= pcp->batch) 695 to_drain = pcp->batch; 696 else 697 to_drain = pcp->count; 698 free_pages_bulk(zone, to_drain, &pcp->list, 0); 699 pcp->count -= to_drain; 700 local_irq_restore(flags); 701 } 702 #endif 703 704 static void __drain_pages(unsigned int cpu) 705 { 706 unsigned long flags; 707 struct zone *zone; 708 int i; 709 710 for_each_zone(zone) { 711 struct per_cpu_pageset *pset; 712 713 if (!populated_zone(zone)) 714 continue; 715 716 pset = zone_pcp(zone, cpu); 717 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 718 struct per_cpu_pages *pcp; 719 720 pcp = &pset->pcp[i]; 721 local_irq_save(flags); 722 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 723 pcp->count = 0; 724 local_irq_restore(flags); 725 } 726 } 727 } 728 729 #ifdef CONFIG_HIBERNATION 730 731 void mark_free_pages(struct zone *zone) 732 { 733 unsigned long pfn, max_zone_pfn; 734 unsigned long flags; 735 int order; 736 struct list_head *curr; 737 738 if (!zone->spanned_pages) 739 return; 740 741 spin_lock_irqsave(&zone->lock, flags); 742 743 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 744 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 745 if (pfn_valid(pfn)) { 746 struct page *page = pfn_to_page(pfn); 747 748 if (!swsusp_page_is_forbidden(page)) 749 swsusp_unset_page_free(page); 750 } 751 752 for (order = MAX_ORDER - 1; order >= 0; --order) 753 list_for_each(curr, &zone->free_area[order].free_list) { 754 unsigned long i; 755 756 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 757 for (i = 0; i < (1UL << order); i++) 758 swsusp_set_page_free(pfn_to_page(pfn + i)); 759 } 760 761 spin_unlock_irqrestore(&zone->lock, flags); 762 } 763 764 /* 765 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 766 */ 767 void drain_local_pages(void) 768 { 769 unsigned long flags; 770 771 local_irq_save(flags); 772 __drain_pages(smp_processor_id()); 773 local_irq_restore(flags); 774 } 775 #endif /* CONFIG_HIBERNATION */ 776 777 /* 778 * Free a 0-order page 779 */ 780 static void fastcall free_hot_cold_page(struct page *page, int cold) 781 { 782 struct zone *zone = page_zone(page); 783 struct per_cpu_pages *pcp; 784 unsigned long flags; 785 786 if (PageAnon(page)) 787 page->mapping = NULL; 788 if (free_pages_check(page)) 789 return; 790 791 if (!PageHighMem(page)) 792 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 793 arch_free_page(page, 0); 794 kernel_map_pages(page, 1, 0); 795 796 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 797 local_irq_save(flags); 798 __count_vm_event(PGFREE); 799 list_add(&page->lru, &pcp->list); 800 pcp->count++; 801 if (pcp->count >= pcp->high) { 802 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 803 pcp->count -= pcp->batch; 804 } 805 local_irq_restore(flags); 806 put_cpu(); 807 } 808 809 void fastcall free_hot_page(struct page *page) 810 { 811 free_hot_cold_page(page, 0); 812 } 813 814 void fastcall free_cold_page(struct page *page) 815 { 816 free_hot_cold_page(page, 1); 817 } 818 819 /* 820 * split_page takes a non-compound higher-order page, and splits it into 821 * n (1<<order) sub-pages: page[0..n] 822 * Each sub-page must be freed individually. 823 * 824 * Note: this is probably too low level an operation for use in drivers. 825 * Please consult with lkml before using this in your driver. 826 */ 827 void split_page(struct page *page, unsigned int order) 828 { 829 int i; 830 831 VM_BUG_ON(PageCompound(page)); 832 VM_BUG_ON(!page_count(page)); 833 for (i = 1; i < (1 << order); i++) 834 set_page_refcounted(page + i); 835 } 836 837 /* 838 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 839 * we cheat by calling it from here, in the order > 0 path. Saves a branch 840 * or two. 841 */ 842 static struct page *buffered_rmqueue(struct zonelist *zonelist, 843 struct zone *zone, int order, gfp_t gfp_flags) 844 { 845 unsigned long flags; 846 struct page *page; 847 int cold = !!(gfp_flags & __GFP_COLD); 848 int cpu; 849 850 again: 851 cpu = get_cpu(); 852 if (likely(order == 0)) { 853 struct per_cpu_pages *pcp; 854 855 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 856 local_irq_save(flags); 857 if (!pcp->count) { 858 pcp->count = rmqueue_bulk(zone, 0, 859 pcp->batch, &pcp->list); 860 if (unlikely(!pcp->count)) 861 goto failed; 862 } 863 page = list_entry(pcp->list.next, struct page, lru); 864 list_del(&page->lru); 865 pcp->count--; 866 } else { 867 spin_lock_irqsave(&zone->lock, flags); 868 page = __rmqueue(zone, order); 869 spin_unlock(&zone->lock); 870 if (!page) 871 goto failed; 872 } 873 874 __count_zone_vm_events(PGALLOC, zone, 1 << order); 875 zone_statistics(zonelist, zone); 876 local_irq_restore(flags); 877 put_cpu(); 878 879 VM_BUG_ON(bad_range(zone, page)); 880 if (prep_new_page(page, order, gfp_flags)) 881 goto again; 882 return page; 883 884 failed: 885 local_irq_restore(flags); 886 put_cpu(); 887 return NULL; 888 } 889 890 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 891 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 892 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 893 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 894 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 895 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 896 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 897 898 #ifdef CONFIG_FAIL_PAGE_ALLOC 899 900 static struct fail_page_alloc_attr { 901 struct fault_attr attr; 902 903 u32 ignore_gfp_highmem; 904 u32 ignore_gfp_wait; 905 u32 min_order; 906 907 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 908 909 struct dentry *ignore_gfp_highmem_file; 910 struct dentry *ignore_gfp_wait_file; 911 struct dentry *min_order_file; 912 913 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 914 915 } fail_page_alloc = { 916 .attr = FAULT_ATTR_INITIALIZER, 917 .ignore_gfp_wait = 1, 918 .ignore_gfp_highmem = 1, 919 .min_order = 1, 920 }; 921 922 static int __init setup_fail_page_alloc(char *str) 923 { 924 return setup_fault_attr(&fail_page_alloc.attr, str); 925 } 926 __setup("fail_page_alloc=", setup_fail_page_alloc); 927 928 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 929 { 930 if (order < fail_page_alloc.min_order) 931 return 0; 932 if (gfp_mask & __GFP_NOFAIL) 933 return 0; 934 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 935 return 0; 936 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 937 return 0; 938 939 return should_fail(&fail_page_alloc.attr, 1 << order); 940 } 941 942 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 943 944 static int __init fail_page_alloc_debugfs(void) 945 { 946 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 947 struct dentry *dir; 948 int err; 949 950 err = init_fault_attr_dentries(&fail_page_alloc.attr, 951 "fail_page_alloc"); 952 if (err) 953 return err; 954 dir = fail_page_alloc.attr.dentries.dir; 955 956 fail_page_alloc.ignore_gfp_wait_file = 957 debugfs_create_bool("ignore-gfp-wait", mode, dir, 958 &fail_page_alloc.ignore_gfp_wait); 959 960 fail_page_alloc.ignore_gfp_highmem_file = 961 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 962 &fail_page_alloc.ignore_gfp_highmem); 963 fail_page_alloc.min_order_file = 964 debugfs_create_u32("min-order", mode, dir, 965 &fail_page_alloc.min_order); 966 967 if (!fail_page_alloc.ignore_gfp_wait_file || 968 !fail_page_alloc.ignore_gfp_highmem_file || 969 !fail_page_alloc.min_order_file) { 970 err = -ENOMEM; 971 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 972 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 973 debugfs_remove(fail_page_alloc.min_order_file); 974 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 975 } 976 977 return err; 978 } 979 980 late_initcall(fail_page_alloc_debugfs); 981 982 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 983 984 #else /* CONFIG_FAIL_PAGE_ALLOC */ 985 986 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 987 { 988 return 0; 989 } 990 991 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 992 993 /* 994 * Return 1 if free pages are above 'mark'. This takes into account the order 995 * of the allocation. 996 */ 997 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 998 int classzone_idx, int alloc_flags) 999 { 1000 /* free_pages my go negative - that's OK */ 1001 long min = mark; 1002 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1003 int o; 1004 1005 if (alloc_flags & ALLOC_HIGH) 1006 min -= min / 2; 1007 if (alloc_flags & ALLOC_HARDER) 1008 min -= min / 4; 1009 1010 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1011 return 0; 1012 for (o = 0; o < order; o++) { 1013 /* At the next order, this order's pages become unavailable */ 1014 free_pages -= z->free_area[o].nr_free << o; 1015 1016 /* Require fewer higher order pages to be free */ 1017 min >>= 1; 1018 1019 if (free_pages <= min) 1020 return 0; 1021 } 1022 return 1; 1023 } 1024 1025 #ifdef CONFIG_NUMA 1026 /* 1027 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1028 * skip over zones that are not allowed by the cpuset, or that have 1029 * been recently (in last second) found to be nearly full. See further 1030 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1031 * that have to skip over alot of full or unallowed zones. 1032 * 1033 * If the zonelist cache is present in the passed in zonelist, then 1034 * returns a pointer to the allowed node mask (either the current 1035 * tasks mems_allowed, or node_online_map.) 1036 * 1037 * If the zonelist cache is not available for this zonelist, does 1038 * nothing and returns NULL. 1039 * 1040 * If the fullzones BITMAP in the zonelist cache is stale (more than 1041 * a second since last zap'd) then we zap it out (clear its bits.) 1042 * 1043 * We hold off even calling zlc_setup, until after we've checked the 1044 * first zone in the zonelist, on the theory that most allocations will 1045 * be satisfied from that first zone, so best to examine that zone as 1046 * quickly as we can. 1047 */ 1048 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1049 { 1050 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1051 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1052 1053 zlc = zonelist->zlcache_ptr; 1054 if (!zlc) 1055 return NULL; 1056 1057 if (jiffies - zlc->last_full_zap > 1 * HZ) { 1058 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1059 zlc->last_full_zap = jiffies; 1060 } 1061 1062 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1063 &cpuset_current_mems_allowed : 1064 &node_online_map; 1065 return allowednodes; 1066 } 1067 1068 /* 1069 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1070 * if it is worth looking at further for free memory: 1071 * 1) Check that the zone isn't thought to be full (doesn't have its 1072 * bit set in the zonelist_cache fullzones BITMAP). 1073 * 2) Check that the zones node (obtained from the zonelist_cache 1074 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1075 * Return true (non-zero) if zone is worth looking at further, or 1076 * else return false (zero) if it is not. 1077 * 1078 * This check -ignores- the distinction between various watermarks, 1079 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1080 * found to be full for any variation of these watermarks, it will 1081 * be considered full for up to one second by all requests, unless 1082 * we are so low on memory on all allowed nodes that we are forced 1083 * into the second scan of the zonelist. 1084 * 1085 * In the second scan we ignore this zonelist cache and exactly 1086 * apply the watermarks to all zones, even it is slower to do so. 1087 * We are low on memory in the second scan, and should leave no stone 1088 * unturned looking for a free page. 1089 */ 1090 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1091 nodemask_t *allowednodes) 1092 { 1093 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1094 int i; /* index of *z in zonelist zones */ 1095 int n; /* node that zone *z is on */ 1096 1097 zlc = zonelist->zlcache_ptr; 1098 if (!zlc) 1099 return 1; 1100 1101 i = z - zonelist->zones; 1102 n = zlc->z_to_n[i]; 1103 1104 /* This zone is worth trying if it is allowed but not full */ 1105 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1106 } 1107 1108 /* 1109 * Given 'z' scanning a zonelist, set the corresponding bit in 1110 * zlc->fullzones, so that subsequent attempts to allocate a page 1111 * from that zone don't waste time re-examining it. 1112 */ 1113 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1114 { 1115 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1116 int i; /* index of *z in zonelist zones */ 1117 1118 zlc = zonelist->zlcache_ptr; 1119 if (!zlc) 1120 return; 1121 1122 i = z - zonelist->zones; 1123 1124 set_bit(i, zlc->fullzones); 1125 } 1126 1127 #else /* CONFIG_NUMA */ 1128 1129 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1130 { 1131 return NULL; 1132 } 1133 1134 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1135 nodemask_t *allowednodes) 1136 { 1137 return 1; 1138 } 1139 1140 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1141 { 1142 } 1143 #endif /* CONFIG_NUMA */ 1144 1145 /* 1146 * get_page_from_freelist goes through the zonelist trying to allocate 1147 * a page. 1148 */ 1149 static struct page * 1150 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 1151 struct zonelist *zonelist, int alloc_flags) 1152 { 1153 struct zone **z; 1154 struct page *page = NULL; 1155 int classzone_idx = zone_idx(zonelist->zones[0]); 1156 struct zone *zone; 1157 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1158 int zlc_active = 0; /* set if using zonelist_cache */ 1159 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1160 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */ 1161 1162 zonelist_scan: 1163 /* 1164 * Scan zonelist, looking for a zone with enough free. 1165 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1166 */ 1167 z = zonelist->zones; 1168 1169 do { 1170 /* 1171 * In NUMA, this could be a policy zonelist which contains 1172 * zones that may not be allowed by the current gfp_mask. 1173 * Check the zone is allowed by the current flags 1174 */ 1175 if (unlikely(alloc_should_filter_zonelist(zonelist))) { 1176 if (highest_zoneidx == -1) 1177 highest_zoneidx = gfp_zone(gfp_mask); 1178 if (zone_idx(*z) > highest_zoneidx) 1179 continue; 1180 } 1181 1182 if (NUMA_BUILD && zlc_active && 1183 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1184 continue; 1185 zone = *z; 1186 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) && 1187 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat)) 1188 break; 1189 if ((alloc_flags & ALLOC_CPUSET) && 1190 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1191 goto try_next_zone; 1192 1193 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1194 unsigned long mark; 1195 if (alloc_flags & ALLOC_WMARK_MIN) 1196 mark = zone->pages_min; 1197 else if (alloc_flags & ALLOC_WMARK_LOW) 1198 mark = zone->pages_low; 1199 else 1200 mark = zone->pages_high; 1201 if (!zone_watermark_ok(zone, order, mark, 1202 classzone_idx, alloc_flags)) { 1203 if (!zone_reclaim_mode || 1204 !zone_reclaim(zone, gfp_mask, order)) 1205 goto this_zone_full; 1206 } 1207 } 1208 1209 page = buffered_rmqueue(zonelist, zone, order, gfp_mask); 1210 if (page) 1211 break; 1212 this_zone_full: 1213 if (NUMA_BUILD) 1214 zlc_mark_zone_full(zonelist, z); 1215 try_next_zone: 1216 if (NUMA_BUILD && !did_zlc_setup) { 1217 /* we do zlc_setup after the first zone is tried */ 1218 allowednodes = zlc_setup(zonelist, alloc_flags); 1219 zlc_active = 1; 1220 did_zlc_setup = 1; 1221 } 1222 } while (*(++z) != NULL); 1223 1224 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1225 /* Disable zlc cache for second zonelist scan */ 1226 zlc_active = 0; 1227 goto zonelist_scan; 1228 } 1229 return page; 1230 } 1231 1232 /* 1233 * This is the 'heart' of the zoned buddy allocator. 1234 */ 1235 struct page * fastcall 1236 __alloc_pages(gfp_t gfp_mask, unsigned int order, 1237 struct zonelist *zonelist) 1238 { 1239 const gfp_t wait = gfp_mask & __GFP_WAIT; 1240 struct zone **z; 1241 struct page *page; 1242 struct reclaim_state reclaim_state; 1243 struct task_struct *p = current; 1244 int do_retry; 1245 int alloc_flags; 1246 int did_some_progress; 1247 1248 might_sleep_if(wait); 1249 1250 if (should_fail_alloc_page(gfp_mask, order)) 1251 return NULL; 1252 1253 restart: 1254 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 1255 1256 if (unlikely(*z == NULL)) { 1257 /* Should this ever happen?? */ 1258 return NULL; 1259 } 1260 1261 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1262 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1263 if (page) 1264 goto got_pg; 1265 1266 /* 1267 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1268 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1269 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1270 * using a larger set of nodes after it has established that the 1271 * allowed per node queues are empty and that nodes are 1272 * over allocated. 1273 */ 1274 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1275 goto nopage; 1276 1277 for (z = zonelist->zones; *z; z++) 1278 wakeup_kswapd(*z, order); 1279 1280 /* 1281 * OK, we're below the kswapd watermark and have kicked background 1282 * reclaim. Now things get more complex, so set up alloc_flags according 1283 * to how we want to proceed. 1284 * 1285 * The caller may dip into page reserves a bit more if the caller 1286 * cannot run direct reclaim, or if the caller has realtime scheduling 1287 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1288 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1289 */ 1290 alloc_flags = ALLOC_WMARK_MIN; 1291 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1292 alloc_flags |= ALLOC_HARDER; 1293 if (gfp_mask & __GFP_HIGH) 1294 alloc_flags |= ALLOC_HIGH; 1295 if (wait) 1296 alloc_flags |= ALLOC_CPUSET; 1297 1298 /* 1299 * Go through the zonelist again. Let __GFP_HIGH and allocations 1300 * coming from realtime tasks go deeper into reserves. 1301 * 1302 * This is the last chance, in general, before the goto nopage. 1303 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1304 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1305 */ 1306 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 1307 if (page) 1308 goto got_pg; 1309 1310 /* This allocation should allow future memory freeing. */ 1311 1312 rebalance: 1313 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1314 && !in_interrupt()) { 1315 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1316 nofail_alloc: 1317 /* go through the zonelist yet again, ignoring mins */ 1318 page = get_page_from_freelist(gfp_mask, order, 1319 zonelist, ALLOC_NO_WATERMARKS); 1320 if (page) 1321 goto got_pg; 1322 if (gfp_mask & __GFP_NOFAIL) { 1323 congestion_wait(WRITE, HZ/50); 1324 goto nofail_alloc; 1325 } 1326 } 1327 goto nopage; 1328 } 1329 1330 /* Atomic allocations - we can't balance anything */ 1331 if (!wait) 1332 goto nopage; 1333 1334 cond_resched(); 1335 1336 /* We now go into synchronous reclaim */ 1337 cpuset_memory_pressure_bump(); 1338 p->flags |= PF_MEMALLOC; 1339 reclaim_state.reclaimed_slab = 0; 1340 p->reclaim_state = &reclaim_state; 1341 1342 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask); 1343 1344 p->reclaim_state = NULL; 1345 p->flags &= ~PF_MEMALLOC; 1346 1347 cond_resched(); 1348 1349 if (likely(did_some_progress)) { 1350 page = get_page_from_freelist(gfp_mask, order, 1351 zonelist, alloc_flags); 1352 if (page) 1353 goto got_pg; 1354 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1355 /* 1356 * Go through the zonelist yet one more time, keep 1357 * very high watermark here, this is only to catch 1358 * a parallel oom killing, we must fail if we're still 1359 * under heavy pressure. 1360 */ 1361 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1362 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1363 if (page) 1364 goto got_pg; 1365 1366 /* The OOM killer will not help higher order allocs so fail */ 1367 if (order > PAGE_ALLOC_COSTLY_ORDER) 1368 goto nopage; 1369 1370 out_of_memory(zonelist, gfp_mask, order); 1371 goto restart; 1372 } 1373 1374 /* 1375 * Don't let big-order allocations loop unless the caller explicitly 1376 * requests that. Wait for some write requests to complete then retry. 1377 * 1378 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1379 * <= 3, but that may not be true in other implementations. 1380 */ 1381 do_retry = 0; 1382 if (!(gfp_mask & __GFP_NORETRY)) { 1383 if ((order <= PAGE_ALLOC_COSTLY_ORDER) || 1384 (gfp_mask & __GFP_REPEAT)) 1385 do_retry = 1; 1386 if (gfp_mask & __GFP_NOFAIL) 1387 do_retry = 1; 1388 } 1389 if (do_retry) { 1390 congestion_wait(WRITE, HZ/50); 1391 goto rebalance; 1392 } 1393 1394 nopage: 1395 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1396 printk(KERN_WARNING "%s: page allocation failure." 1397 " order:%d, mode:0x%x\n", 1398 p->comm, order, gfp_mask); 1399 dump_stack(); 1400 show_mem(); 1401 } 1402 got_pg: 1403 return page; 1404 } 1405 1406 EXPORT_SYMBOL(__alloc_pages); 1407 1408 /* 1409 * Common helper functions. 1410 */ 1411 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1412 { 1413 struct page * page; 1414 page = alloc_pages(gfp_mask, order); 1415 if (!page) 1416 return 0; 1417 return (unsigned long) page_address(page); 1418 } 1419 1420 EXPORT_SYMBOL(__get_free_pages); 1421 1422 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1423 { 1424 struct page * page; 1425 1426 /* 1427 * get_zeroed_page() returns a 32-bit address, which cannot represent 1428 * a highmem page 1429 */ 1430 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1431 1432 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1433 if (page) 1434 return (unsigned long) page_address(page); 1435 return 0; 1436 } 1437 1438 EXPORT_SYMBOL(get_zeroed_page); 1439 1440 void __pagevec_free(struct pagevec *pvec) 1441 { 1442 int i = pagevec_count(pvec); 1443 1444 while (--i >= 0) 1445 free_hot_cold_page(pvec->pages[i], pvec->cold); 1446 } 1447 1448 fastcall void __free_pages(struct page *page, unsigned int order) 1449 { 1450 if (put_page_testzero(page)) { 1451 if (order == 0) 1452 free_hot_page(page); 1453 else 1454 __free_pages_ok(page, order); 1455 } 1456 } 1457 1458 EXPORT_SYMBOL(__free_pages); 1459 1460 fastcall void free_pages(unsigned long addr, unsigned int order) 1461 { 1462 if (addr != 0) { 1463 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1464 __free_pages(virt_to_page((void *)addr), order); 1465 } 1466 } 1467 1468 EXPORT_SYMBOL(free_pages); 1469 1470 static unsigned int nr_free_zone_pages(int offset) 1471 { 1472 /* Just pick one node, since fallback list is circular */ 1473 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1474 unsigned int sum = 0; 1475 1476 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1477 struct zone **zonep = zonelist->zones; 1478 struct zone *zone; 1479 1480 for (zone = *zonep++; zone; zone = *zonep++) { 1481 unsigned long size = zone->present_pages; 1482 unsigned long high = zone->pages_high; 1483 if (size > high) 1484 sum += size - high; 1485 } 1486 1487 return sum; 1488 } 1489 1490 /* 1491 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1492 */ 1493 unsigned int nr_free_buffer_pages(void) 1494 { 1495 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1496 } 1497 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1498 1499 /* 1500 * Amount of free RAM allocatable within all zones 1501 */ 1502 unsigned int nr_free_pagecache_pages(void) 1503 { 1504 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1505 } 1506 1507 static inline void show_node(struct zone *zone) 1508 { 1509 if (NUMA_BUILD) 1510 printk("Node %d ", zone_to_nid(zone)); 1511 } 1512 1513 void si_meminfo(struct sysinfo *val) 1514 { 1515 val->totalram = totalram_pages; 1516 val->sharedram = 0; 1517 val->freeram = global_page_state(NR_FREE_PAGES); 1518 val->bufferram = nr_blockdev_pages(); 1519 val->totalhigh = totalhigh_pages; 1520 val->freehigh = nr_free_highpages(); 1521 val->mem_unit = PAGE_SIZE; 1522 } 1523 1524 EXPORT_SYMBOL(si_meminfo); 1525 1526 #ifdef CONFIG_NUMA 1527 void si_meminfo_node(struct sysinfo *val, int nid) 1528 { 1529 pg_data_t *pgdat = NODE_DATA(nid); 1530 1531 val->totalram = pgdat->node_present_pages; 1532 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1533 #ifdef CONFIG_HIGHMEM 1534 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1535 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1536 NR_FREE_PAGES); 1537 #else 1538 val->totalhigh = 0; 1539 val->freehigh = 0; 1540 #endif 1541 val->mem_unit = PAGE_SIZE; 1542 } 1543 #endif 1544 1545 #define K(x) ((x) << (PAGE_SHIFT-10)) 1546 1547 /* 1548 * Show free area list (used inside shift_scroll-lock stuff) 1549 * We also calculate the percentage fragmentation. We do this by counting the 1550 * memory on each free list with the exception of the first item on the list. 1551 */ 1552 void show_free_areas(void) 1553 { 1554 int cpu; 1555 struct zone *zone; 1556 1557 for_each_zone(zone) { 1558 if (!populated_zone(zone)) 1559 continue; 1560 1561 show_node(zone); 1562 printk("%s per-cpu:\n", zone->name); 1563 1564 for_each_online_cpu(cpu) { 1565 struct per_cpu_pageset *pageset; 1566 1567 pageset = zone_pcp(zone, cpu); 1568 1569 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d " 1570 "Cold: hi:%5d, btch:%4d usd:%4d\n", 1571 cpu, pageset->pcp[0].high, 1572 pageset->pcp[0].batch, pageset->pcp[0].count, 1573 pageset->pcp[1].high, pageset->pcp[1].batch, 1574 pageset->pcp[1].count); 1575 } 1576 } 1577 1578 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n" 1579 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1580 global_page_state(NR_ACTIVE), 1581 global_page_state(NR_INACTIVE), 1582 global_page_state(NR_FILE_DIRTY), 1583 global_page_state(NR_WRITEBACK), 1584 global_page_state(NR_UNSTABLE_NFS), 1585 global_page_state(NR_FREE_PAGES), 1586 global_page_state(NR_SLAB_RECLAIMABLE) + 1587 global_page_state(NR_SLAB_UNRECLAIMABLE), 1588 global_page_state(NR_FILE_MAPPED), 1589 global_page_state(NR_PAGETABLE), 1590 global_page_state(NR_BOUNCE)); 1591 1592 for_each_zone(zone) { 1593 int i; 1594 1595 if (!populated_zone(zone)) 1596 continue; 1597 1598 show_node(zone); 1599 printk("%s" 1600 " free:%lukB" 1601 " min:%lukB" 1602 " low:%lukB" 1603 " high:%lukB" 1604 " active:%lukB" 1605 " inactive:%lukB" 1606 " present:%lukB" 1607 " pages_scanned:%lu" 1608 " all_unreclaimable? %s" 1609 "\n", 1610 zone->name, 1611 K(zone_page_state(zone, NR_FREE_PAGES)), 1612 K(zone->pages_min), 1613 K(zone->pages_low), 1614 K(zone->pages_high), 1615 K(zone_page_state(zone, NR_ACTIVE)), 1616 K(zone_page_state(zone, NR_INACTIVE)), 1617 K(zone->present_pages), 1618 zone->pages_scanned, 1619 (zone->all_unreclaimable ? "yes" : "no") 1620 ); 1621 printk("lowmem_reserve[]:"); 1622 for (i = 0; i < MAX_NR_ZONES; i++) 1623 printk(" %lu", zone->lowmem_reserve[i]); 1624 printk("\n"); 1625 } 1626 1627 for_each_zone(zone) { 1628 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1629 1630 if (!populated_zone(zone)) 1631 continue; 1632 1633 show_node(zone); 1634 printk("%s: ", zone->name); 1635 1636 spin_lock_irqsave(&zone->lock, flags); 1637 for (order = 0; order < MAX_ORDER; order++) { 1638 nr[order] = zone->free_area[order].nr_free; 1639 total += nr[order] << order; 1640 } 1641 spin_unlock_irqrestore(&zone->lock, flags); 1642 for (order = 0; order < MAX_ORDER; order++) 1643 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1644 printk("= %lukB\n", K(total)); 1645 } 1646 1647 show_swap_cache_info(); 1648 } 1649 1650 /* 1651 * Builds allocation fallback zone lists. 1652 * 1653 * Add all populated zones of a node to the zonelist. 1654 */ 1655 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 1656 int nr_zones, enum zone_type zone_type) 1657 { 1658 struct zone *zone; 1659 1660 BUG_ON(zone_type >= MAX_NR_ZONES); 1661 zone_type++; 1662 1663 do { 1664 zone_type--; 1665 zone = pgdat->node_zones + zone_type; 1666 if (populated_zone(zone)) { 1667 zonelist->zones[nr_zones++] = zone; 1668 check_highest_zone(zone_type); 1669 } 1670 1671 } while (zone_type); 1672 return nr_zones; 1673 } 1674 1675 1676 /* 1677 * zonelist_order: 1678 * 0 = automatic detection of better ordering. 1679 * 1 = order by ([node] distance, -zonetype) 1680 * 2 = order by (-zonetype, [node] distance) 1681 * 1682 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 1683 * the same zonelist. So only NUMA can configure this param. 1684 */ 1685 #define ZONELIST_ORDER_DEFAULT 0 1686 #define ZONELIST_ORDER_NODE 1 1687 #define ZONELIST_ORDER_ZONE 2 1688 1689 /* zonelist order in the kernel. 1690 * set_zonelist_order() will set this to NODE or ZONE. 1691 */ 1692 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 1693 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 1694 1695 1696 #ifdef CONFIG_NUMA 1697 /* The value user specified ....changed by config */ 1698 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 1699 /* string for sysctl */ 1700 #define NUMA_ZONELIST_ORDER_LEN 16 1701 char numa_zonelist_order[16] = "default"; 1702 1703 /* 1704 * interface for configure zonelist ordering. 1705 * command line option "numa_zonelist_order" 1706 * = "[dD]efault - default, automatic configuration. 1707 * = "[nN]ode - order by node locality, then by zone within node 1708 * = "[zZ]one - order by zone, then by locality within zone 1709 */ 1710 1711 static int __parse_numa_zonelist_order(char *s) 1712 { 1713 if (*s == 'd' || *s == 'D') { 1714 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 1715 } else if (*s == 'n' || *s == 'N') { 1716 user_zonelist_order = ZONELIST_ORDER_NODE; 1717 } else if (*s == 'z' || *s == 'Z') { 1718 user_zonelist_order = ZONELIST_ORDER_ZONE; 1719 } else { 1720 printk(KERN_WARNING 1721 "Ignoring invalid numa_zonelist_order value: " 1722 "%s\n", s); 1723 return -EINVAL; 1724 } 1725 return 0; 1726 } 1727 1728 static __init int setup_numa_zonelist_order(char *s) 1729 { 1730 if (s) 1731 return __parse_numa_zonelist_order(s); 1732 return 0; 1733 } 1734 early_param("numa_zonelist_order", setup_numa_zonelist_order); 1735 1736 /* 1737 * sysctl handler for numa_zonelist_order 1738 */ 1739 int numa_zonelist_order_handler(ctl_table *table, int write, 1740 struct file *file, void __user *buffer, size_t *length, 1741 loff_t *ppos) 1742 { 1743 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 1744 int ret; 1745 1746 if (write) 1747 strncpy(saved_string, (char*)table->data, 1748 NUMA_ZONELIST_ORDER_LEN); 1749 ret = proc_dostring(table, write, file, buffer, length, ppos); 1750 if (ret) 1751 return ret; 1752 if (write) { 1753 int oldval = user_zonelist_order; 1754 if (__parse_numa_zonelist_order((char*)table->data)) { 1755 /* 1756 * bogus value. restore saved string 1757 */ 1758 strncpy((char*)table->data, saved_string, 1759 NUMA_ZONELIST_ORDER_LEN); 1760 user_zonelist_order = oldval; 1761 } else if (oldval != user_zonelist_order) 1762 build_all_zonelists(); 1763 } 1764 return 0; 1765 } 1766 1767 1768 #define MAX_NODE_LOAD (num_online_nodes()) 1769 static int node_load[MAX_NUMNODES]; 1770 1771 /** 1772 * find_next_best_node - find the next node that should appear in a given node's fallback list 1773 * @node: node whose fallback list we're appending 1774 * @used_node_mask: nodemask_t of already used nodes 1775 * 1776 * We use a number of factors to determine which is the next node that should 1777 * appear on a given node's fallback list. The node should not have appeared 1778 * already in @node's fallback list, and it should be the next closest node 1779 * according to the distance array (which contains arbitrary distance values 1780 * from each node to each node in the system), and should also prefer nodes 1781 * with no CPUs, since presumably they'll have very little allocation pressure 1782 * on them otherwise. 1783 * It returns -1 if no node is found. 1784 */ 1785 static int find_next_best_node(int node, nodemask_t *used_node_mask) 1786 { 1787 int n, val; 1788 int min_val = INT_MAX; 1789 int best_node = -1; 1790 1791 /* Use the local node if we haven't already */ 1792 if (!node_isset(node, *used_node_mask)) { 1793 node_set(node, *used_node_mask); 1794 return node; 1795 } 1796 1797 for_each_online_node(n) { 1798 cpumask_t tmp; 1799 1800 /* Don't want a node to appear more than once */ 1801 if (node_isset(n, *used_node_mask)) 1802 continue; 1803 1804 /* Use the distance array to find the distance */ 1805 val = node_distance(node, n); 1806 1807 /* Penalize nodes under us ("prefer the next node") */ 1808 val += (n < node); 1809 1810 /* Give preference to headless and unused nodes */ 1811 tmp = node_to_cpumask(n); 1812 if (!cpus_empty(tmp)) 1813 val += PENALTY_FOR_NODE_WITH_CPUS; 1814 1815 /* Slight preference for less loaded node */ 1816 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1817 val += node_load[n]; 1818 1819 if (val < min_val) { 1820 min_val = val; 1821 best_node = n; 1822 } 1823 } 1824 1825 if (best_node >= 0) 1826 node_set(best_node, *used_node_mask); 1827 1828 return best_node; 1829 } 1830 1831 1832 /* 1833 * Build zonelists ordered by node and zones within node. 1834 * This results in maximum locality--normal zone overflows into local 1835 * DMA zone, if any--but risks exhausting DMA zone. 1836 */ 1837 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 1838 { 1839 enum zone_type i; 1840 int j; 1841 struct zonelist *zonelist; 1842 1843 for (i = 0; i < MAX_NR_ZONES; i++) { 1844 zonelist = pgdat->node_zonelists + i; 1845 for (j = 0; zonelist->zones[j] != NULL; j++) 1846 ; 1847 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1848 zonelist->zones[j] = NULL; 1849 } 1850 } 1851 1852 /* 1853 * Build zonelists ordered by zone and nodes within zones. 1854 * This results in conserving DMA zone[s] until all Normal memory is 1855 * exhausted, but results in overflowing to remote node while memory 1856 * may still exist in local DMA zone. 1857 */ 1858 static int node_order[MAX_NUMNODES]; 1859 1860 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 1861 { 1862 enum zone_type i; 1863 int pos, j, node; 1864 int zone_type; /* needs to be signed */ 1865 struct zone *z; 1866 struct zonelist *zonelist; 1867 1868 for (i = 0; i < MAX_NR_ZONES; i++) { 1869 zonelist = pgdat->node_zonelists + i; 1870 pos = 0; 1871 for (zone_type = i; zone_type >= 0; zone_type--) { 1872 for (j = 0; j < nr_nodes; j++) { 1873 node = node_order[j]; 1874 z = &NODE_DATA(node)->node_zones[zone_type]; 1875 if (populated_zone(z)) { 1876 zonelist->zones[pos++] = z; 1877 check_highest_zone(zone_type); 1878 } 1879 } 1880 } 1881 zonelist->zones[pos] = NULL; 1882 } 1883 } 1884 1885 static int default_zonelist_order(void) 1886 { 1887 int nid, zone_type; 1888 unsigned long low_kmem_size,total_size; 1889 struct zone *z; 1890 int average_size; 1891 /* 1892 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 1893 * If they are really small and used heavily, the system can fall 1894 * into OOM very easily. 1895 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 1896 */ 1897 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 1898 low_kmem_size = 0; 1899 total_size = 0; 1900 for_each_online_node(nid) { 1901 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 1902 z = &NODE_DATA(nid)->node_zones[zone_type]; 1903 if (populated_zone(z)) { 1904 if (zone_type < ZONE_NORMAL) 1905 low_kmem_size += z->present_pages; 1906 total_size += z->present_pages; 1907 } 1908 } 1909 } 1910 if (!low_kmem_size || /* there are no DMA area. */ 1911 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 1912 return ZONELIST_ORDER_NODE; 1913 /* 1914 * look into each node's config. 1915 * If there is a node whose DMA/DMA32 memory is very big area on 1916 * local memory, NODE_ORDER may be suitable. 1917 */ 1918 average_size = total_size / (num_online_nodes() + 1); 1919 for_each_online_node(nid) { 1920 low_kmem_size = 0; 1921 total_size = 0; 1922 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 1923 z = &NODE_DATA(nid)->node_zones[zone_type]; 1924 if (populated_zone(z)) { 1925 if (zone_type < ZONE_NORMAL) 1926 low_kmem_size += z->present_pages; 1927 total_size += z->present_pages; 1928 } 1929 } 1930 if (low_kmem_size && 1931 total_size > average_size && /* ignore small node */ 1932 low_kmem_size > total_size * 70/100) 1933 return ZONELIST_ORDER_NODE; 1934 } 1935 return ZONELIST_ORDER_ZONE; 1936 } 1937 1938 static void set_zonelist_order(void) 1939 { 1940 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 1941 current_zonelist_order = default_zonelist_order(); 1942 else 1943 current_zonelist_order = user_zonelist_order; 1944 } 1945 1946 static void build_zonelists(pg_data_t *pgdat) 1947 { 1948 int j, node, load; 1949 enum zone_type i; 1950 nodemask_t used_mask; 1951 int local_node, prev_node; 1952 struct zonelist *zonelist; 1953 int order = current_zonelist_order; 1954 1955 /* initialize zonelists */ 1956 for (i = 0; i < MAX_NR_ZONES; i++) { 1957 zonelist = pgdat->node_zonelists + i; 1958 zonelist->zones[0] = NULL; 1959 } 1960 1961 /* NUMA-aware ordering of nodes */ 1962 local_node = pgdat->node_id; 1963 load = num_online_nodes(); 1964 prev_node = local_node; 1965 nodes_clear(used_mask); 1966 1967 memset(node_load, 0, sizeof(node_load)); 1968 memset(node_order, 0, sizeof(node_order)); 1969 j = 0; 1970 1971 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1972 int distance = node_distance(local_node, node); 1973 1974 /* 1975 * If another node is sufficiently far away then it is better 1976 * to reclaim pages in a zone before going off node. 1977 */ 1978 if (distance > RECLAIM_DISTANCE) 1979 zone_reclaim_mode = 1; 1980 1981 /* 1982 * We don't want to pressure a particular node. 1983 * So adding penalty to the first node in same 1984 * distance group to make it round-robin. 1985 */ 1986 if (distance != node_distance(local_node, prev_node)) 1987 node_load[node] = load; 1988 1989 prev_node = node; 1990 load--; 1991 if (order == ZONELIST_ORDER_NODE) 1992 build_zonelists_in_node_order(pgdat, node); 1993 else 1994 node_order[j++] = node; /* remember order */ 1995 } 1996 1997 if (order == ZONELIST_ORDER_ZONE) { 1998 /* calculate node order -- i.e., DMA last! */ 1999 build_zonelists_in_zone_order(pgdat, j); 2000 } 2001 } 2002 2003 /* Construct the zonelist performance cache - see further mmzone.h */ 2004 static void build_zonelist_cache(pg_data_t *pgdat) 2005 { 2006 int i; 2007 2008 for (i = 0; i < MAX_NR_ZONES; i++) { 2009 struct zonelist *zonelist; 2010 struct zonelist_cache *zlc; 2011 struct zone **z; 2012 2013 zonelist = pgdat->node_zonelists + i; 2014 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2015 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2016 for (z = zonelist->zones; *z; z++) 2017 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z); 2018 } 2019 } 2020 2021 2022 #else /* CONFIG_NUMA */ 2023 2024 static void set_zonelist_order(void) 2025 { 2026 current_zonelist_order = ZONELIST_ORDER_ZONE; 2027 } 2028 2029 static void build_zonelists(pg_data_t *pgdat) 2030 { 2031 int node, local_node; 2032 enum zone_type i,j; 2033 2034 local_node = pgdat->node_id; 2035 for (i = 0; i < MAX_NR_ZONES; i++) { 2036 struct zonelist *zonelist; 2037 2038 zonelist = pgdat->node_zonelists + i; 2039 2040 j = build_zonelists_node(pgdat, zonelist, 0, i); 2041 /* 2042 * Now we build the zonelist so that it contains the zones 2043 * of all the other nodes. 2044 * We don't want to pressure a particular node, so when 2045 * building the zones for node N, we make sure that the 2046 * zones coming right after the local ones are those from 2047 * node N+1 (modulo N) 2048 */ 2049 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2050 if (!node_online(node)) 2051 continue; 2052 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 2053 } 2054 for (node = 0; node < local_node; node++) { 2055 if (!node_online(node)) 2056 continue; 2057 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 2058 } 2059 2060 zonelist->zones[j] = NULL; 2061 } 2062 } 2063 2064 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2065 static void build_zonelist_cache(pg_data_t *pgdat) 2066 { 2067 int i; 2068 2069 for (i = 0; i < MAX_NR_ZONES; i++) 2070 pgdat->node_zonelists[i].zlcache_ptr = NULL; 2071 } 2072 2073 #endif /* CONFIG_NUMA */ 2074 2075 /* return values int ....just for stop_machine_run() */ 2076 static int __build_all_zonelists(void *dummy) 2077 { 2078 int nid; 2079 2080 for_each_online_node(nid) { 2081 build_zonelists(NODE_DATA(nid)); 2082 build_zonelist_cache(NODE_DATA(nid)); 2083 } 2084 return 0; 2085 } 2086 2087 void build_all_zonelists(void) 2088 { 2089 set_zonelist_order(); 2090 2091 if (system_state == SYSTEM_BOOTING) { 2092 __build_all_zonelists(NULL); 2093 cpuset_init_current_mems_allowed(); 2094 } else { 2095 /* we have to stop all cpus to guaranntee there is no user 2096 of zonelist */ 2097 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 2098 /* cpuset refresh routine should be here */ 2099 } 2100 vm_total_pages = nr_free_pagecache_pages(); 2101 printk("Built %i zonelists in %s order. Total pages: %ld\n", 2102 num_online_nodes(), 2103 zonelist_order_name[current_zonelist_order], 2104 vm_total_pages); 2105 #ifdef CONFIG_NUMA 2106 printk("Policy zone: %s\n", zone_names[policy_zone]); 2107 #endif 2108 } 2109 2110 /* 2111 * Helper functions to size the waitqueue hash table. 2112 * Essentially these want to choose hash table sizes sufficiently 2113 * large so that collisions trying to wait on pages are rare. 2114 * But in fact, the number of active page waitqueues on typical 2115 * systems is ridiculously low, less than 200. So this is even 2116 * conservative, even though it seems large. 2117 * 2118 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2119 * waitqueues, i.e. the size of the waitq table given the number of pages. 2120 */ 2121 #define PAGES_PER_WAITQUEUE 256 2122 2123 #ifndef CONFIG_MEMORY_HOTPLUG 2124 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2125 { 2126 unsigned long size = 1; 2127 2128 pages /= PAGES_PER_WAITQUEUE; 2129 2130 while (size < pages) 2131 size <<= 1; 2132 2133 /* 2134 * Once we have dozens or even hundreds of threads sleeping 2135 * on IO we've got bigger problems than wait queue collision. 2136 * Limit the size of the wait table to a reasonable size. 2137 */ 2138 size = min(size, 4096UL); 2139 2140 return max(size, 4UL); 2141 } 2142 #else 2143 /* 2144 * A zone's size might be changed by hot-add, so it is not possible to determine 2145 * a suitable size for its wait_table. So we use the maximum size now. 2146 * 2147 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2148 * 2149 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2150 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2151 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2152 * 2153 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2154 * or more by the traditional way. (See above). It equals: 2155 * 2156 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2157 * ia64(16K page size) : = ( 8G + 4M)byte. 2158 * powerpc (64K page size) : = (32G +16M)byte. 2159 */ 2160 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2161 { 2162 return 4096UL; 2163 } 2164 #endif 2165 2166 /* 2167 * This is an integer logarithm so that shifts can be used later 2168 * to extract the more random high bits from the multiplicative 2169 * hash function before the remainder is taken. 2170 */ 2171 static inline unsigned long wait_table_bits(unsigned long size) 2172 { 2173 return ffz(~size); 2174 } 2175 2176 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2177 2178 /* 2179 * Initially all pages are reserved - free ones are freed 2180 * up by free_all_bootmem() once the early boot process is 2181 * done. Non-atomic initialization, single-pass. 2182 */ 2183 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2184 unsigned long start_pfn, enum memmap_context context) 2185 { 2186 struct page *page; 2187 unsigned long end_pfn = start_pfn + size; 2188 unsigned long pfn; 2189 2190 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2191 /* 2192 * There can be holes in boot-time mem_map[]s 2193 * handed to this function. They do not 2194 * exist on hotplugged memory. 2195 */ 2196 if (context == MEMMAP_EARLY) { 2197 if (!early_pfn_valid(pfn)) 2198 continue; 2199 if (!early_pfn_in_nid(pfn, nid)) 2200 continue; 2201 } 2202 page = pfn_to_page(pfn); 2203 set_page_links(page, zone, nid, pfn); 2204 init_page_count(page); 2205 reset_page_mapcount(page); 2206 SetPageReserved(page); 2207 INIT_LIST_HEAD(&page->lru); 2208 #ifdef WANT_PAGE_VIRTUAL 2209 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2210 if (!is_highmem_idx(zone)) 2211 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2212 #endif 2213 } 2214 } 2215 2216 static void __meminit zone_init_free_lists(struct pglist_data *pgdat, 2217 struct zone *zone, unsigned long size) 2218 { 2219 int order; 2220 for (order = 0; order < MAX_ORDER ; order++) { 2221 INIT_LIST_HEAD(&zone->free_area[order].free_list); 2222 zone->free_area[order].nr_free = 0; 2223 } 2224 } 2225 2226 #ifndef __HAVE_ARCH_MEMMAP_INIT 2227 #define memmap_init(size, nid, zone, start_pfn) \ 2228 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2229 #endif 2230 2231 static int __devinit zone_batchsize(struct zone *zone) 2232 { 2233 int batch; 2234 2235 /* 2236 * The per-cpu-pages pools are set to around 1000th of the 2237 * size of the zone. But no more than 1/2 of a meg. 2238 * 2239 * OK, so we don't know how big the cache is. So guess. 2240 */ 2241 batch = zone->present_pages / 1024; 2242 if (batch * PAGE_SIZE > 512 * 1024) 2243 batch = (512 * 1024) / PAGE_SIZE; 2244 batch /= 4; /* We effectively *= 4 below */ 2245 if (batch < 1) 2246 batch = 1; 2247 2248 /* 2249 * Clamp the batch to a 2^n - 1 value. Having a power 2250 * of 2 value was found to be more likely to have 2251 * suboptimal cache aliasing properties in some cases. 2252 * 2253 * For example if 2 tasks are alternately allocating 2254 * batches of pages, one task can end up with a lot 2255 * of pages of one half of the possible page colors 2256 * and the other with pages of the other colors. 2257 */ 2258 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2259 2260 return batch; 2261 } 2262 2263 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2264 { 2265 struct per_cpu_pages *pcp; 2266 2267 memset(p, 0, sizeof(*p)); 2268 2269 pcp = &p->pcp[0]; /* hot */ 2270 pcp->count = 0; 2271 pcp->high = 6 * batch; 2272 pcp->batch = max(1UL, 1 * batch); 2273 INIT_LIST_HEAD(&pcp->list); 2274 2275 pcp = &p->pcp[1]; /* cold*/ 2276 pcp->count = 0; 2277 pcp->high = 2 * batch; 2278 pcp->batch = max(1UL, batch/2); 2279 INIT_LIST_HEAD(&pcp->list); 2280 } 2281 2282 /* 2283 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2284 * to the value high for the pageset p. 2285 */ 2286 2287 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2288 unsigned long high) 2289 { 2290 struct per_cpu_pages *pcp; 2291 2292 pcp = &p->pcp[0]; /* hot list */ 2293 pcp->high = high; 2294 pcp->batch = max(1UL, high/4); 2295 if ((high/4) > (PAGE_SHIFT * 8)) 2296 pcp->batch = PAGE_SHIFT * 8; 2297 } 2298 2299 2300 #ifdef CONFIG_NUMA 2301 /* 2302 * Boot pageset table. One per cpu which is going to be used for all 2303 * zones and all nodes. The parameters will be set in such a way 2304 * that an item put on a list will immediately be handed over to 2305 * the buddy list. This is safe since pageset manipulation is done 2306 * with interrupts disabled. 2307 * 2308 * Some NUMA counter updates may also be caught by the boot pagesets. 2309 * 2310 * The boot_pagesets must be kept even after bootup is complete for 2311 * unused processors and/or zones. They do play a role for bootstrapping 2312 * hotplugged processors. 2313 * 2314 * zoneinfo_show() and maybe other functions do 2315 * not check if the processor is online before following the pageset pointer. 2316 * Other parts of the kernel may not check if the zone is available. 2317 */ 2318 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2319 2320 /* 2321 * Dynamically allocate memory for the 2322 * per cpu pageset array in struct zone. 2323 */ 2324 static int __cpuinit process_zones(int cpu) 2325 { 2326 struct zone *zone, *dzone; 2327 2328 for_each_zone(zone) { 2329 2330 if (!populated_zone(zone)) 2331 continue; 2332 2333 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2334 GFP_KERNEL, cpu_to_node(cpu)); 2335 if (!zone_pcp(zone, cpu)) 2336 goto bad; 2337 2338 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2339 2340 if (percpu_pagelist_fraction) 2341 setup_pagelist_highmark(zone_pcp(zone, cpu), 2342 (zone->present_pages / percpu_pagelist_fraction)); 2343 } 2344 2345 return 0; 2346 bad: 2347 for_each_zone(dzone) { 2348 if (!populated_zone(dzone)) 2349 continue; 2350 if (dzone == zone) 2351 break; 2352 kfree(zone_pcp(dzone, cpu)); 2353 zone_pcp(dzone, cpu) = NULL; 2354 } 2355 return -ENOMEM; 2356 } 2357 2358 static inline void free_zone_pagesets(int cpu) 2359 { 2360 struct zone *zone; 2361 2362 for_each_zone(zone) { 2363 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2364 2365 /* Free per_cpu_pageset if it is slab allocated */ 2366 if (pset != &boot_pageset[cpu]) 2367 kfree(pset); 2368 zone_pcp(zone, cpu) = NULL; 2369 } 2370 } 2371 2372 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2373 unsigned long action, 2374 void *hcpu) 2375 { 2376 int cpu = (long)hcpu; 2377 int ret = NOTIFY_OK; 2378 2379 switch (action) { 2380 case CPU_UP_PREPARE: 2381 case CPU_UP_PREPARE_FROZEN: 2382 if (process_zones(cpu)) 2383 ret = NOTIFY_BAD; 2384 break; 2385 case CPU_UP_CANCELED: 2386 case CPU_UP_CANCELED_FROZEN: 2387 case CPU_DEAD: 2388 case CPU_DEAD_FROZEN: 2389 free_zone_pagesets(cpu); 2390 break; 2391 default: 2392 break; 2393 } 2394 return ret; 2395 } 2396 2397 static struct notifier_block __cpuinitdata pageset_notifier = 2398 { &pageset_cpuup_callback, NULL, 0 }; 2399 2400 void __init setup_per_cpu_pageset(void) 2401 { 2402 int err; 2403 2404 /* Initialize per_cpu_pageset for cpu 0. 2405 * A cpuup callback will do this for every cpu 2406 * as it comes online 2407 */ 2408 err = process_zones(smp_processor_id()); 2409 BUG_ON(err); 2410 register_cpu_notifier(&pageset_notifier); 2411 } 2412 2413 #endif 2414 2415 static noinline __init_refok 2416 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2417 { 2418 int i; 2419 struct pglist_data *pgdat = zone->zone_pgdat; 2420 size_t alloc_size; 2421 2422 /* 2423 * The per-page waitqueue mechanism uses hashed waitqueues 2424 * per zone. 2425 */ 2426 zone->wait_table_hash_nr_entries = 2427 wait_table_hash_nr_entries(zone_size_pages); 2428 zone->wait_table_bits = 2429 wait_table_bits(zone->wait_table_hash_nr_entries); 2430 alloc_size = zone->wait_table_hash_nr_entries 2431 * sizeof(wait_queue_head_t); 2432 2433 if (system_state == SYSTEM_BOOTING) { 2434 zone->wait_table = (wait_queue_head_t *) 2435 alloc_bootmem_node(pgdat, alloc_size); 2436 } else { 2437 /* 2438 * This case means that a zone whose size was 0 gets new memory 2439 * via memory hot-add. 2440 * But it may be the case that a new node was hot-added. In 2441 * this case vmalloc() will not be able to use this new node's 2442 * memory - this wait_table must be initialized to use this new 2443 * node itself as well. 2444 * To use this new node's memory, further consideration will be 2445 * necessary. 2446 */ 2447 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); 2448 } 2449 if (!zone->wait_table) 2450 return -ENOMEM; 2451 2452 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2453 init_waitqueue_head(zone->wait_table + i); 2454 2455 return 0; 2456 } 2457 2458 static __meminit void zone_pcp_init(struct zone *zone) 2459 { 2460 int cpu; 2461 unsigned long batch = zone_batchsize(zone); 2462 2463 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2464 #ifdef CONFIG_NUMA 2465 /* Early boot. Slab allocator not functional yet */ 2466 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2467 setup_pageset(&boot_pageset[cpu],0); 2468 #else 2469 setup_pageset(zone_pcp(zone,cpu), batch); 2470 #endif 2471 } 2472 if (zone->present_pages) 2473 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2474 zone->name, zone->present_pages, batch); 2475 } 2476 2477 __meminit int init_currently_empty_zone(struct zone *zone, 2478 unsigned long zone_start_pfn, 2479 unsigned long size, 2480 enum memmap_context context) 2481 { 2482 struct pglist_data *pgdat = zone->zone_pgdat; 2483 int ret; 2484 ret = zone_wait_table_init(zone, size); 2485 if (ret) 2486 return ret; 2487 pgdat->nr_zones = zone_idx(zone) + 1; 2488 2489 zone->zone_start_pfn = zone_start_pfn; 2490 2491 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2492 2493 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2494 2495 return 0; 2496 } 2497 2498 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2499 /* 2500 * Basic iterator support. Return the first range of PFNs for a node 2501 * Note: nid == MAX_NUMNODES returns first region regardless of node 2502 */ 2503 static int __meminit first_active_region_index_in_nid(int nid) 2504 { 2505 int i; 2506 2507 for (i = 0; i < nr_nodemap_entries; i++) 2508 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2509 return i; 2510 2511 return -1; 2512 } 2513 2514 /* 2515 * Basic iterator support. Return the next active range of PFNs for a node 2516 * Note: nid == MAX_NUMNODES returns next region regardles of node 2517 */ 2518 static int __meminit next_active_region_index_in_nid(int index, int nid) 2519 { 2520 for (index = index + 1; index < nr_nodemap_entries; index++) 2521 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2522 return index; 2523 2524 return -1; 2525 } 2526 2527 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2528 /* 2529 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2530 * Architectures may implement their own version but if add_active_range() 2531 * was used and there are no special requirements, this is a convenient 2532 * alternative 2533 */ 2534 int __meminit early_pfn_to_nid(unsigned long pfn) 2535 { 2536 int i; 2537 2538 for (i = 0; i < nr_nodemap_entries; i++) { 2539 unsigned long start_pfn = early_node_map[i].start_pfn; 2540 unsigned long end_pfn = early_node_map[i].end_pfn; 2541 2542 if (start_pfn <= pfn && pfn < end_pfn) 2543 return early_node_map[i].nid; 2544 } 2545 2546 return 0; 2547 } 2548 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2549 2550 /* Basic iterator support to walk early_node_map[] */ 2551 #define for_each_active_range_index_in_nid(i, nid) \ 2552 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2553 i = next_active_region_index_in_nid(i, nid)) 2554 2555 /** 2556 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2557 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2558 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2559 * 2560 * If an architecture guarantees that all ranges registered with 2561 * add_active_ranges() contain no holes and may be freed, this 2562 * this function may be used instead of calling free_bootmem() manually. 2563 */ 2564 void __init free_bootmem_with_active_regions(int nid, 2565 unsigned long max_low_pfn) 2566 { 2567 int i; 2568 2569 for_each_active_range_index_in_nid(i, nid) { 2570 unsigned long size_pages = 0; 2571 unsigned long end_pfn = early_node_map[i].end_pfn; 2572 2573 if (early_node_map[i].start_pfn >= max_low_pfn) 2574 continue; 2575 2576 if (end_pfn > max_low_pfn) 2577 end_pfn = max_low_pfn; 2578 2579 size_pages = end_pfn - early_node_map[i].start_pfn; 2580 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 2581 PFN_PHYS(early_node_map[i].start_pfn), 2582 size_pages << PAGE_SHIFT); 2583 } 2584 } 2585 2586 /** 2587 * sparse_memory_present_with_active_regions - Call memory_present for each active range 2588 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 2589 * 2590 * If an architecture guarantees that all ranges registered with 2591 * add_active_ranges() contain no holes and may be freed, this 2592 * function may be used instead of calling memory_present() manually. 2593 */ 2594 void __init sparse_memory_present_with_active_regions(int nid) 2595 { 2596 int i; 2597 2598 for_each_active_range_index_in_nid(i, nid) 2599 memory_present(early_node_map[i].nid, 2600 early_node_map[i].start_pfn, 2601 early_node_map[i].end_pfn); 2602 } 2603 2604 /** 2605 * push_node_boundaries - Push node boundaries to at least the requested boundary 2606 * @nid: The nid of the node to push the boundary for 2607 * @start_pfn: The start pfn of the node 2608 * @end_pfn: The end pfn of the node 2609 * 2610 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 2611 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 2612 * be hotplugged even though no physical memory exists. This function allows 2613 * an arch to push out the node boundaries so mem_map is allocated that can 2614 * be used later. 2615 */ 2616 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2617 void __init push_node_boundaries(unsigned int nid, 2618 unsigned long start_pfn, unsigned long end_pfn) 2619 { 2620 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", 2621 nid, start_pfn, end_pfn); 2622 2623 /* Initialise the boundary for this node if necessary */ 2624 if (node_boundary_end_pfn[nid] == 0) 2625 node_boundary_start_pfn[nid] = -1UL; 2626 2627 /* Update the boundaries */ 2628 if (node_boundary_start_pfn[nid] > start_pfn) 2629 node_boundary_start_pfn[nid] = start_pfn; 2630 if (node_boundary_end_pfn[nid] < end_pfn) 2631 node_boundary_end_pfn[nid] = end_pfn; 2632 } 2633 2634 /* If necessary, push the node boundary out for reserve hotadd */ 2635 static void __meminit account_node_boundary(unsigned int nid, 2636 unsigned long *start_pfn, unsigned long *end_pfn) 2637 { 2638 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", 2639 nid, *start_pfn, *end_pfn); 2640 2641 /* Return if boundary information has not been provided */ 2642 if (node_boundary_end_pfn[nid] == 0) 2643 return; 2644 2645 /* Check the boundaries and update if necessary */ 2646 if (node_boundary_start_pfn[nid] < *start_pfn) 2647 *start_pfn = node_boundary_start_pfn[nid]; 2648 if (node_boundary_end_pfn[nid] > *end_pfn) 2649 *end_pfn = node_boundary_end_pfn[nid]; 2650 } 2651 #else 2652 void __init push_node_boundaries(unsigned int nid, 2653 unsigned long start_pfn, unsigned long end_pfn) {} 2654 2655 static void __meminit account_node_boundary(unsigned int nid, 2656 unsigned long *start_pfn, unsigned long *end_pfn) {} 2657 #endif 2658 2659 2660 /** 2661 * get_pfn_range_for_nid - Return the start and end page frames for a node 2662 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 2663 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 2664 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 2665 * 2666 * It returns the start and end page frame of a node based on information 2667 * provided by an arch calling add_active_range(). If called for a node 2668 * with no available memory, a warning is printed and the start and end 2669 * PFNs will be 0. 2670 */ 2671 void __meminit get_pfn_range_for_nid(unsigned int nid, 2672 unsigned long *start_pfn, unsigned long *end_pfn) 2673 { 2674 int i; 2675 *start_pfn = -1UL; 2676 *end_pfn = 0; 2677 2678 for_each_active_range_index_in_nid(i, nid) { 2679 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 2680 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 2681 } 2682 2683 if (*start_pfn == -1UL) { 2684 printk(KERN_WARNING "Node %u active with no memory\n", nid); 2685 *start_pfn = 0; 2686 } 2687 2688 /* Push the node boundaries out if requested */ 2689 account_node_boundary(nid, start_pfn, end_pfn); 2690 } 2691 2692 /* 2693 * This finds a zone that can be used for ZONE_MOVABLE pages. The 2694 * assumption is made that zones within a node are ordered in monotonic 2695 * increasing memory addresses so that the "highest" populated zone is used 2696 */ 2697 void __init find_usable_zone_for_movable(void) 2698 { 2699 int zone_index; 2700 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 2701 if (zone_index == ZONE_MOVABLE) 2702 continue; 2703 2704 if (arch_zone_highest_possible_pfn[zone_index] > 2705 arch_zone_lowest_possible_pfn[zone_index]) 2706 break; 2707 } 2708 2709 VM_BUG_ON(zone_index == -1); 2710 movable_zone = zone_index; 2711 } 2712 2713 /* 2714 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 2715 * because it is sized independant of architecture. Unlike the other zones, 2716 * the starting point for ZONE_MOVABLE is not fixed. It may be different 2717 * in each node depending on the size of each node and how evenly kernelcore 2718 * is distributed. This helper function adjusts the zone ranges 2719 * provided by the architecture for a given node by using the end of the 2720 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 2721 * zones within a node are in order of monotonic increases memory addresses 2722 */ 2723 void __meminit adjust_zone_range_for_zone_movable(int nid, 2724 unsigned long zone_type, 2725 unsigned long node_start_pfn, 2726 unsigned long node_end_pfn, 2727 unsigned long *zone_start_pfn, 2728 unsigned long *zone_end_pfn) 2729 { 2730 /* Only adjust if ZONE_MOVABLE is on this node */ 2731 if (zone_movable_pfn[nid]) { 2732 /* Size ZONE_MOVABLE */ 2733 if (zone_type == ZONE_MOVABLE) { 2734 *zone_start_pfn = zone_movable_pfn[nid]; 2735 *zone_end_pfn = min(node_end_pfn, 2736 arch_zone_highest_possible_pfn[movable_zone]); 2737 2738 /* Adjust for ZONE_MOVABLE starting within this range */ 2739 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 2740 *zone_end_pfn > zone_movable_pfn[nid]) { 2741 *zone_end_pfn = zone_movable_pfn[nid]; 2742 2743 /* Check if this whole range is within ZONE_MOVABLE */ 2744 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 2745 *zone_start_pfn = *zone_end_pfn; 2746 } 2747 } 2748 2749 /* 2750 * Return the number of pages a zone spans in a node, including holes 2751 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 2752 */ 2753 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 2754 unsigned long zone_type, 2755 unsigned long *ignored) 2756 { 2757 unsigned long node_start_pfn, node_end_pfn; 2758 unsigned long zone_start_pfn, zone_end_pfn; 2759 2760 /* Get the start and end of the node and zone */ 2761 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 2762 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 2763 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 2764 adjust_zone_range_for_zone_movable(nid, zone_type, 2765 node_start_pfn, node_end_pfn, 2766 &zone_start_pfn, &zone_end_pfn); 2767 2768 /* Check that this node has pages within the zone's required range */ 2769 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 2770 return 0; 2771 2772 /* Move the zone boundaries inside the node if necessary */ 2773 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 2774 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 2775 2776 /* Return the spanned pages */ 2777 return zone_end_pfn - zone_start_pfn; 2778 } 2779 2780 /* 2781 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 2782 * then all holes in the requested range will be accounted for. 2783 */ 2784 unsigned long __meminit __absent_pages_in_range(int nid, 2785 unsigned long range_start_pfn, 2786 unsigned long range_end_pfn) 2787 { 2788 int i = 0; 2789 unsigned long prev_end_pfn = 0, hole_pages = 0; 2790 unsigned long start_pfn; 2791 2792 /* Find the end_pfn of the first active range of pfns in the node */ 2793 i = first_active_region_index_in_nid(nid); 2794 if (i == -1) 2795 return 0; 2796 2797 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 2798 2799 /* Account for ranges before physical memory on this node */ 2800 if (early_node_map[i].start_pfn > range_start_pfn) 2801 hole_pages = prev_end_pfn - range_start_pfn; 2802 2803 /* Find all holes for the zone within the node */ 2804 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 2805 2806 /* No need to continue if prev_end_pfn is outside the zone */ 2807 if (prev_end_pfn >= range_end_pfn) 2808 break; 2809 2810 /* Make sure the end of the zone is not within the hole */ 2811 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 2812 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 2813 2814 /* Update the hole size cound and move on */ 2815 if (start_pfn > range_start_pfn) { 2816 BUG_ON(prev_end_pfn > start_pfn); 2817 hole_pages += start_pfn - prev_end_pfn; 2818 } 2819 prev_end_pfn = early_node_map[i].end_pfn; 2820 } 2821 2822 /* Account for ranges past physical memory on this node */ 2823 if (range_end_pfn > prev_end_pfn) 2824 hole_pages += range_end_pfn - 2825 max(range_start_pfn, prev_end_pfn); 2826 2827 return hole_pages; 2828 } 2829 2830 /** 2831 * absent_pages_in_range - Return number of page frames in holes within a range 2832 * @start_pfn: The start PFN to start searching for holes 2833 * @end_pfn: The end PFN to stop searching for holes 2834 * 2835 * It returns the number of pages frames in memory holes within a range. 2836 */ 2837 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 2838 unsigned long end_pfn) 2839 { 2840 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 2841 } 2842 2843 /* Return the number of page frames in holes in a zone on a node */ 2844 static unsigned long __meminit zone_absent_pages_in_node(int nid, 2845 unsigned long zone_type, 2846 unsigned long *ignored) 2847 { 2848 unsigned long node_start_pfn, node_end_pfn; 2849 unsigned long zone_start_pfn, zone_end_pfn; 2850 2851 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 2852 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 2853 node_start_pfn); 2854 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 2855 node_end_pfn); 2856 2857 adjust_zone_range_for_zone_movable(nid, zone_type, 2858 node_start_pfn, node_end_pfn, 2859 &zone_start_pfn, &zone_end_pfn); 2860 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 2861 } 2862 2863 #else 2864 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 2865 unsigned long zone_type, 2866 unsigned long *zones_size) 2867 { 2868 return zones_size[zone_type]; 2869 } 2870 2871 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 2872 unsigned long zone_type, 2873 unsigned long *zholes_size) 2874 { 2875 if (!zholes_size) 2876 return 0; 2877 2878 return zholes_size[zone_type]; 2879 } 2880 2881 #endif 2882 2883 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 2884 unsigned long *zones_size, unsigned long *zholes_size) 2885 { 2886 unsigned long realtotalpages, totalpages = 0; 2887 enum zone_type i; 2888 2889 for (i = 0; i < MAX_NR_ZONES; i++) 2890 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 2891 zones_size); 2892 pgdat->node_spanned_pages = totalpages; 2893 2894 realtotalpages = totalpages; 2895 for (i = 0; i < MAX_NR_ZONES; i++) 2896 realtotalpages -= 2897 zone_absent_pages_in_node(pgdat->node_id, i, 2898 zholes_size); 2899 pgdat->node_present_pages = realtotalpages; 2900 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 2901 realtotalpages); 2902 } 2903 2904 /* 2905 * Set up the zone data structures: 2906 * - mark all pages reserved 2907 * - mark all memory queues empty 2908 * - clear the memory bitmaps 2909 */ 2910 static void __meminit free_area_init_core(struct pglist_data *pgdat, 2911 unsigned long *zones_size, unsigned long *zholes_size) 2912 { 2913 enum zone_type j; 2914 int nid = pgdat->node_id; 2915 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2916 int ret; 2917 2918 pgdat_resize_init(pgdat); 2919 pgdat->nr_zones = 0; 2920 init_waitqueue_head(&pgdat->kswapd_wait); 2921 pgdat->kswapd_max_order = 0; 2922 2923 for (j = 0; j < MAX_NR_ZONES; j++) { 2924 struct zone *zone = pgdat->node_zones + j; 2925 unsigned long size, realsize, memmap_pages; 2926 2927 size = zone_spanned_pages_in_node(nid, j, zones_size); 2928 realsize = size - zone_absent_pages_in_node(nid, j, 2929 zholes_size); 2930 2931 /* 2932 * Adjust realsize so that it accounts for how much memory 2933 * is used by this zone for memmap. This affects the watermark 2934 * and per-cpu initialisations 2935 */ 2936 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT; 2937 if (realsize >= memmap_pages) { 2938 realsize -= memmap_pages; 2939 printk(KERN_DEBUG 2940 " %s zone: %lu pages used for memmap\n", 2941 zone_names[j], memmap_pages); 2942 } else 2943 printk(KERN_WARNING 2944 " %s zone: %lu pages exceeds realsize %lu\n", 2945 zone_names[j], memmap_pages, realsize); 2946 2947 /* Account for reserved pages */ 2948 if (j == 0 && realsize > dma_reserve) { 2949 realsize -= dma_reserve; 2950 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 2951 zone_names[0], dma_reserve); 2952 } 2953 2954 if (!is_highmem_idx(j)) 2955 nr_kernel_pages += realsize; 2956 nr_all_pages += realsize; 2957 2958 zone->spanned_pages = size; 2959 zone->present_pages = realsize; 2960 #ifdef CONFIG_NUMA 2961 zone->node = nid; 2962 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 2963 / 100; 2964 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 2965 #endif 2966 zone->name = zone_names[j]; 2967 spin_lock_init(&zone->lock); 2968 spin_lock_init(&zone->lru_lock); 2969 zone_seqlock_init(zone); 2970 zone->zone_pgdat = pgdat; 2971 2972 zone->prev_priority = DEF_PRIORITY; 2973 2974 zone_pcp_init(zone); 2975 INIT_LIST_HEAD(&zone->active_list); 2976 INIT_LIST_HEAD(&zone->inactive_list); 2977 zone->nr_scan_active = 0; 2978 zone->nr_scan_inactive = 0; 2979 zap_zone_vm_stats(zone); 2980 atomic_set(&zone->reclaim_in_progress, 0); 2981 if (!size) 2982 continue; 2983 2984 ret = init_currently_empty_zone(zone, zone_start_pfn, 2985 size, MEMMAP_EARLY); 2986 BUG_ON(ret); 2987 zone_start_pfn += size; 2988 } 2989 } 2990 2991 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 2992 { 2993 /* Skip empty nodes */ 2994 if (!pgdat->node_spanned_pages) 2995 return; 2996 2997 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2998 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2999 if (!pgdat->node_mem_map) { 3000 unsigned long size, start, end; 3001 struct page *map; 3002 3003 /* 3004 * The zone's endpoints aren't required to be MAX_ORDER 3005 * aligned but the node_mem_map endpoints must be in order 3006 * for the buddy allocator to function correctly. 3007 */ 3008 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3009 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3010 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3011 size = (end - start) * sizeof(struct page); 3012 map = alloc_remap(pgdat->node_id, size); 3013 if (!map) 3014 map = alloc_bootmem_node(pgdat, size); 3015 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3016 } 3017 #ifndef CONFIG_NEED_MULTIPLE_NODES 3018 /* 3019 * With no DISCONTIG, the global mem_map is just set as node 0's 3020 */ 3021 if (pgdat == NODE_DATA(0)) { 3022 mem_map = NODE_DATA(0)->node_mem_map; 3023 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3024 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3025 mem_map -= pgdat->node_start_pfn; 3026 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3027 } 3028 #endif 3029 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3030 } 3031 3032 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, 3033 unsigned long *zones_size, unsigned long node_start_pfn, 3034 unsigned long *zholes_size) 3035 { 3036 pgdat->node_id = nid; 3037 pgdat->node_start_pfn = node_start_pfn; 3038 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3039 3040 alloc_node_mem_map(pgdat); 3041 3042 free_area_init_core(pgdat, zones_size, zholes_size); 3043 } 3044 3045 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3046 3047 #if MAX_NUMNODES > 1 3048 /* 3049 * Figure out the number of possible node ids. 3050 */ 3051 static void __init setup_nr_node_ids(void) 3052 { 3053 unsigned int node; 3054 unsigned int highest = 0; 3055 3056 for_each_node_mask(node, node_possible_map) 3057 highest = node; 3058 nr_node_ids = highest + 1; 3059 } 3060 #else 3061 static inline void setup_nr_node_ids(void) 3062 { 3063 } 3064 #endif 3065 3066 /** 3067 * add_active_range - Register a range of PFNs backed by physical memory 3068 * @nid: The node ID the range resides on 3069 * @start_pfn: The start PFN of the available physical memory 3070 * @end_pfn: The end PFN of the available physical memory 3071 * 3072 * These ranges are stored in an early_node_map[] and later used by 3073 * free_area_init_nodes() to calculate zone sizes and holes. If the 3074 * range spans a memory hole, it is up to the architecture to ensure 3075 * the memory is not freed by the bootmem allocator. If possible 3076 * the range being registered will be merged with existing ranges. 3077 */ 3078 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3079 unsigned long end_pfn) 3080 { 3081 int i; 3082 3083 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " 3084 "%d entries of %d used\n", 3085 nid, start_pfn, end_pfn, 3086 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3087 3088 /* Merge with existing active regions if possible */ 3089 for (i = 0; i < nr_nodemap_entries; i++) { 3090 if (early_node_map[i].nid != nid) 3091 continue; 3092 3093 /* Skip if an existing region covers this new one */ 3094 if (start_pfn >= early_node_map[i].start_pfn && 3095 end_pfn <= early_node_map[i].end_pfn) 3096 return; 3097 3098 /* Merge forward if suitable */ 3099 if (start_pfn <= early_node_map[i].end_pfn && 3100 end_pfn > early_node_map[i].end_pfn) { 3101 early_node_map[i].end_pfn = end_pfn; 3102 return; 3103 } 3104 3105 /* Merge backward if suitable */ 3106 if (start_pfn < early_node_map[i].end_pfn && 3107 end_pfn >= early_node_map[i].start_pfn) { 3108 early_node_map[i].start_pfn = start_pfn; 3109 return; 3110 } 3111 } 3112 3113 /* Check that early_node_map is large enough */ 3114 if (i >= MAX_ACTIVE_REGIONS) { 3115 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3116 MAX_ACTIVE_REGIONS); 3117 return; 3118 } 3119 3120 early_node_map[i].nid = nid; 3121 early_node_map[i].start_pfn = start_pfn; 3122 early_node_map[i].end_pfn = end_pfn; 3123 nr_nodemap_entries = i + 1; 3124 } 3125 3126 /** 3127 * shrink_active_range - Shrink an existing registered range of PFNs 3128 * @nid: The node id the range is on that should be shrunk 3129 * @old_end_pfn: The old end PFN of the range 3130 * @new_end_pfn: The new PFN of the range 3131 * 3132 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3133 * The map is kept at the end physical page range that has already been 3134 * registered with add_active_range(). This function allows an arch to shrink 3135 * an existing registered range. 3136 */ 3137 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 3138 unsigned long new_end_pfn) 3139 { 3140 int i; 3141 3142 /* Find the old active region end and shrink */ 3143 for_each_active_range_index_in_nid(i, nid) 3144 if (early_node_map[i].end_pfn == old_end_pfn) { 3145 early_node_map[i].end_pfn = new_end_pfn; 3146 break; 3147 } 3148 } 3149 3150 /** 3151 * remove_all_active_ranges - Remove all currently registered regions 3152 * 3153 * During discovery, it may be found that a table like SRAT is invalid 3154 * and an alternative discovery method must be used. This function removes 3155 * all currently registered regions. 3156 */ 3157 void __init remove_all_active_ranges(void) 3158 { 3159 memset(early_node_map, 0, sizeof(early_node_map)); 3160 nr_nodemap_entries = 0; 3161 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3162 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 3163 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 3164 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 3165 } 3166 3167 /* Compare two active node_active_regions */ 3168 static int __init cmp_node_active_region(const void *a, const void *b) 3169 { 3170 struct node_active_region *arange = (struct node_active_region *)a; 3171 struct node_active_region *brange = (struct node_active_region *)b; 3172 3173 /* Done this way to avoid overflows */ 3174 if (arange->start_pfn > brange->start_pfn) 3175 return 1; 3176 if (arange->start_pfn < brange->start_pfn) 3177 return -1; 3178 3179 return 0; 3180 } 3181 3182 /* sort the node_map by start_pfn */ 3183 static void __init sort_node_map(void) 3184 { 3185 sort(early_node_map, (size_t)nr_nodemap_entries, 3186 sizeof(struct node_active_region), 3187 cmp_node_active_region, NULL); 3188 } 3189 3190 /* Find the lowest pfn for a node */ 3191 unsigned long __init find_min_pfn_for_node(unsigned long nid) 3192 { 3193 int i; 3194 unsigned long min_pfn = ULONG_MAX; 3195 3196 /* Assuming a sorted map, the first range found has the starting pfn */ 3197 for_each_active_range_index_in_nid(i, nid) 3198 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3199 3200 if (min_pfn == ULONG_MAX) { 3201 printk(KERN_WARNING 3202 "Could not find start_pfn for node %lu\n", nid); 3203 return 0; 3204 } 3205 3206 return min_pfn; 3207 } 3208 3209 /** 3210 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3211 * 3212 * It returns the minimum PFN based on information provided via 3213 * add_active_range(). 3214 */ 3215 unsigned long __init find_min_pfn_with_active_regions(void) 3216 { 3217 return find_min_pfn_for_node(MAX_NUMNODES); 3218 } 3219 3220 /** 3221 * find_max_pfn_with_active_regions - Find the maximum PFN registered 3222 * 3223 * It returns the maximum PFN based on information provided via 3224 * add_active_range(). 3225 */ 3226 unsigned long __init find_max_pfn_with_active_regions(void) 3227 { 3228 int i; 3229 unsigned long max_pfn = 0; 3230 3231 for (i = 0; i < nr_nodemap_entries; i++) 3232 max_pfn = max(max_pfn, early_node_map[i].end_pfn); 3233 3234 return max_pfn; 3235 } 3236 3237 unsigned long __init early_calculate_totalpages(void) 3238 { 3239 int i; 3240 unsigned long totalpages = 0; 3241 3242 for (i = 0; i < nr_nodemap_entries; i++) 3243 totalpages += early_node_map[i].end_pfn - 3244 early_node_map[i].start_pfn; 3245 3246 return totalpages; 3247 } 3248 3249 /* 3250 * Find the PFN the Movable zone begins in each node. Kernel memory 3251 * is spread evenly between nodes as long as the nodes have enough 3252 * memory. When they don't, some nodes will have more kernelcore than 3253 * others 3254 */ 3255 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3256 { 3257 int i, nid; 3258 unsigned long usable_startpfn; 3259 unsigned long kernelcore_node, kernelcore_remaining; 3260 int usable_nodes = num_online_nodes(); 3261 3262 /* 3263 * If movablecore was specified, calculate what size of 3264 * kernelcore that corresponds so that memory usable for 3265 * any allocation type is evenly spread. If both kernelcore 3266 * and movablecore are specified, then the value of kernelcore 3267 * will be used for required_kernelcore if it's greater than 3268 * what movablecore would have allowed. 3269 */ 3270 if (required_movablecore) { 3271 unsigned long totalpages = early_calculate_totalpages(); 3272 unsigned long corepages; 3273 3274 /* 3275 * Round-up so that ZONE_MOVABLE is at least as large as what 3276 * was requested by the user 3277 */ 3278 required_movablecore = 3279 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3280 corepages = totalpages - required_movablecore; 3281 3282 required_kernelcore = max(required_kernelcore, corepages); 3283 } 3284 3285 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3286 if (!required_kernelcore) 3287 return; 3288 3289 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3290 find_usable_zone_for_movable(); 3291 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3292 3293 restart: 3294 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3295 kernelcore_node = required_kernelcore / usable_nodes; 3296 for_each_online_node(nid) { 3297 /* 3298 * Recalculate kernelcore_node if the division per node 3299 * now exceeds what is necessary to satisfy the requested 3300 * amount of memory for the kernel 3301 */ 3302 if (required_kernelcore < kernelcore_node) 3303 kernelcore_node = required_kernelcore / usable_nodes; 3304 3305 /* 3306 * As the map is walked, we track how much memory is usable 3307 * by the kernel using kernelcore_remaining. When it is 3308 * 0, the rest of the node is usable by ZONE_MOVABLE 3309 */ 3310 kernelcore_remaining = kernelcore_node; 3311 3312 /* Go through each range of PFNs within this node */ 3313 for_each_active_range_index_in_nid(i, nid) { 3314 unsigned long start_pfn, end_pfn; 3315 unsigned long size_pages; 3316 3317 start_pfn = max(early_node_map[i].start_pfn, 3318 zone_movable_pfn[nid]); 3319 end_pfn = early_node_map[i].end_pfn; 3320 if (start_pfn >= end_pfn) 3321 continue; 3322 3323 /* Account for what is only usable for kernelcore */ 3324 if (start_pfn < usable_startpfn) { 3325 unsigned long kernel_pages; 3326 kernel_pages = min(end_pfn, usable_startpfn) 3327 - start_pfn; 3328 3329 kernelcore_remaining -= min(kernel_pages, 3330 kernelcore_remaining); 3331 required_kernelcore -= min(kernel_pages, 3332 required_kernelcore); 3333 3334 /* Continue if range is now fully accounted */ 3335 if (end_pfn <= usable_startpfn) { 3336 3337 /* 3338 * Push zone_movable_pfn to the end so 3339 * that if we have to rebalance 3340 * kernelcore across nodes, we will 3341 * not double account here 3342 */ 3343 zone_movable_pfn[nid] = end_pfn; 3344 continue; 3345 } 3346 start_pfn = usable_startpfn; 3347 } 3348 3349 /* 3350 * The usable PFN range for ZONE_MOVABLE is from 3351 * start_pfn->end_pfn. Calculate size_pages as the 3352 * number of pages used as kernelcore 3353 */ 3354 size_pages = end_pfn - start_pfn; 3355 if (size_pages > kernelcore_remaining) 3356 size_pages = kernelcore_remaining; 3357 zone_movable_pfn[nid] = start_pfn + size_pages; 3358 3359 /* 3360 * Some kernelcore has been met, update counts and 3361 * break if the kernelcore for this node has been 3362 * satisified 3363 */ 3364 required_kernelcore -= min(required_kernelcore, 3365 size_pages); 3366 kernelcore_remaining -= size_pages; 3367 if (!kernelcore_remaining) 3368 break; 3369 } 3370 } 3371 3372 /* 3373 * If there is still required_kernelcore, we do another pass with one 3374 * less node in the count. This will push zone_movable_pfn[nid] further 3375 * along on the nodes that still have memory until kernelcore is 3376 * satisified 3377 */ 3378 usable_nodes--; 3379 if (usable_nodes && required_kernelcore > usable_nodes) 3380 goto restart; 3381 3382 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 3383 for (nid = 0; nid < MAX_NUMNODES; nid++) 3384 zone_movable_pfn[nid] = 3385 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 3386 } 3387 3388 /** 3389 * free_area_init_nodes - Initialise all pg_data_t and zone data 3390 * @max_zone_pfn: an array of max PFNs for each zone 3391 * 3392 * This will call free_area_init_node() for each active node in the system. 3393 * Using the page ranges provided by add_active_range(), the size of each 3394 * zone in each node and their holes is calculated. If the maximum PFN 3395 * between two adjacent zones match, it is assumed that the zone is empty. 3396 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 3397 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 3398 * starts where the previous one ended. For example, ZONE_DMA32 starts 3399 * at arch_max_dma_pfn. 3400 */ 3401 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 3402 { 3403 unsigned long nid; 3404 enum zone_type i; 3405 3406 /* Sort early_node_map as initialisation assumes it is sorted */ 3407 sort_node_map(); 3408 3409 /* Record where the zone boundaries are */ 3410 memset(arch_zone_lowest_possible_pfn, 0, 3411 sizeof(arch_zone_lowest_possible_pfn)); 3412 memset(arch_zone_highest_possible_pfn, 0, 3413 sizeof(arch_zone_highest_possible_pfn)); 3414 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 3415 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 3416 for (i = 1; i < MAX_NR_ZONES; i++) { 3417 if (i == ZONE_MOVABLE) 3418 continue; 3419 arch_zone_lowest_possible_pfn[i] = 3420 arch_zone_highest_possible_pfn[i-1]; 3421 arch_zone_highest_possible_pfn[i] = 3422 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 3423 } 3424 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 3425 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 3426 3427 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 3428 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 3429 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 3430 3431 /* Print out the zone ranges */ 3432 printk("Zone PFN ranges:\n"); 3433 for (i = 0; i < MAX_NR_ZONES; i++) { 3434 if (i == ZONE_MOVABLE) 3435 continue; 3436 printk(" %-8s %8lu -> %8lu\n", 3437 zone_names[i], 3438 arch_zone_lowest_possible_pfn[i], 3439 arch_zone_highest_possible_pfn[i]); 3440 } 3441 3442 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 3443 printk("Movable zone start PFN for each node\n"); 3444 for (i = 0; i < MAX_NUMNODES; i++) { 3445 if (zone_movable_pfn[i]) 3446 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 3447 } 3448 3449 /* Print out the early_node_map[] */ 3450 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 3451 for (i = 0; i < nr_nodemap_entries; i++) 3452 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, 3453 early_node_map[i].start_pfn, 3454 early_node_map[i].end_pfn); 3455 3456 /* Initialise every node */ 3457 setup_nr_node_ids(); 3458 for_each_online_node(nid) { 3459 pg_data_t *pgdat = NODE_DATA(nid); 3460 free_area_init_node(nid, pgdat, NULL, 3461 find_min_pfn_for_node(nid), NULL); 3462 } 3463 } 3464 3465 static int __init cmdline_parse_core(char *p, unsigned long *core) 3466 { 3467 unsigned long long coremem; 3468 if (!p) 3469 return -EINVAL; 3470 3471 coremem = memparse(p, &p); 3472 *core = coremem >> PAGE_SHIFT; 3473 3474 /* Paranoid check that UL is enough for the coremem value */ 3475 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 3476 3477 return 0; 3478 } 3479 3480 /* 3481 * kernelcore=size sets the amount of memory for use for allocations that 3482 * cannot be reclaimed or migrated. 3483 */ 3484 static int __init cmdline_parse_kernelcore(char *p) 3485 { 3486 return cmdline_parse_core(p, &required_kernelcore); 3487 } 3488 3489 /* 3490 * movablecore=size sets the amount of memory for use for allocations that 3491 * can be reclaimed or migrated. 3492 */ 3493 static int __init cmdline_parse_movablecore(char *p) 3494 { 3495 return cmdline_parse_core(p, &required_movablecore); 3496 } 3497 3498 early_param("kernelcore", cmdline_parse_kernelcore); 3499 early_param("movablecore", cmdline_parse_movablecore); 3500 3501 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3502 3503 /** 3504 * set_dma_reserve - set the specified number of pages reserved in the first zone 3505 * @new_dma_reserve: The number of pages to mark reserved 3506 * 3507 * The per-cpu batchsize and zone watermarks are determined by present_pages. 3508 * In the DMA zone, a significant percentage may be consumed by kernel image 3509 * and other unfreeable allocations which can skew the watermarks badly. This 3510 * function may optionally be used to account for unfreeable pages in the 3511 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 3512 * smaller per-cpu batchsize. 3513 */ 3514 void __init set_dma_reserve(unsigned long new_dma_reserve) 3515 { 3516 dma_reserve = new_dma_reserve; 3517 } 3518 3519 #ifndef CONFIG_NEED_MULTIPLE_NODES 3520 static bootmem_data_t contig_bootmem_data; 3521 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 3522 3523 EXPORT_SYMBOL(contig_page_data); 3524 #endif 3525 3526 void __init free_area_init(unsigned long *zones_size) 3527 { 3528 free_area_init_node(0, NODE_DATA(0), zones_size, 3529 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 3530 } 3531 3532 static int page_alloc_cpu_notify(struct notifier_block *self, 3533 unsigned long action, void *hcpu) 3534 { 3535 int cpu = (unsigned long)hcpu; 3536 3537 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 3538 local_irq_disable(); 3539 __drain_pages(cpu); 3540 vm_events_fold_cpu(cpu); 3541 local_irq_enable(); 3542 refresh_cpu_vm_stats(cpu); 3543 } 3544 return NOTIFY_OK; 3545 } 3546 3547 void __init page_alloc_init(void) 3548 { 3549 hotcpu_notifier(page_alloc_cpu_notify, 0); 3550 } 3551 3552 /* 3553 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 3554 * or min_free_kbytes changes. 3555 */ 3556 static void calculate_totalreserve_pages(void) 3557 { 3558 struct pglist_data *pgdat; 3559 unsigned long reserve_pages = 0; 3560 enum zone_type i, j; 3561 3562 for_each_online_pgdat(pgdat) { 3563 for (i = 0; i < MAX_NR_ZONES; i++) { 3564 struct zone *zone = pgdat->node_zones + i; 3565 unsigned long max = 0; 3566 3567 /* Find valid and maximum lowmem_reserve in the zone */ 3568 for (j = i; j < MAX_NR_ZONES; j++) { 3569 if (zone->lowmem_reserve[j] > max) 3570 max = zone->lowmem_reserve[j]; 3571 } 3572 3573 /* we treat pages_high as reserved pages. */ 3574 max += zone->pages_high; 3575 3576 if (max > zone->present_pages) 3577 max = zone->present_pages; 3578 reserve_pages += max; 3579 } 3580 } 3581 totalreserve_pages = reserve_pages; 3582 } 3583 3584 /* 3585 * setup_per_zone_lowmem_reserve - called whenever 3586 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 3587 * has a correct pages reserved value, so an adequate number of 3588 * pages are left in the zone after a successful __alloc_pages(). 3589 */ 3590 static void setup_per_zone_lowmem_reserve(void) 3591 { 3592 struct pglist_data *pgdat; 3593 enum zone_type j, idx; 3594 3595 for_each_online_pgdat(pgdat) { 3596 for (j = 0; j < MAX_NR_ZONES; j++) { 3597 struct zone *zone = pgdat->node_zones + j; 3598 unsigned long present_pages = zone->present_pages; 3599 3600 zone->lowmem_reserve[j] = 0; 3601 3602 idx = j; 3603 while (idx) { 3604 struct zone *lower_zone; 3605 3606 idx--; 3607 3608 if (sysctl_lowmem_reserve_ratio[idx] < 1) 3609 sysctl_lowmem_reserve_ratio[idx] = 1; 3610 3611 lower_zone = pgdat->node_zones + idx; 3612 lower_zone->lowmem_reserve[j] = present_pages / 3613 sysctl_lowmem_reserve_ratio[idx]; 3614 present_pages += lower_zone->present_pages; 3615 } 3616 } 3617 } 3618 3619 /* update totalreserve_pages */ 3620 calculate_totalreserve_pages(); 3621 } 3622 3623 /** 3624 * setup_per_zone_pages_min - called when min_free_kbytes changes. 3625 * 3626 * Ensures that the pages_{min,low,high} values for each zone are set correctly 3627 * with respect to min_free_kbytes. 3628 */ 3629 void setup_per_zone_pages_min(void) 3630 { 3631 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 3632 unsigned long lowmem_pages = 0; 3633 struct zone *zone; 3634 unsigned long flags; 3635 3636 /* Calculate total number of !ZONE_HIGHMEM pages */ 3637 for_each_zone(zone) { 3638 if (!is_highmem(zone)) 3639 lowmem_pages += zone->present_pages; 3640 } 3641 3642 for_each_zone(zone) { 3643 u64 tmp; 3644 3645 spin_lock_irqsave(&zone->lru_lock, flags); 3646 tmp = (u64)pages_min * zone->present_pages; 3647 do_div(tmp, lowmem_pages); 3648 if (is_highmem(zone)) { 3649 /* 3650 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 3651 * need highmem pages, so cap pages_min to a small 3652 * value here. 3653 * 3654 * The (pages_high-pages_low) and (pages_low-pages_min) 3655 * deltas controls asynch page reclaim, and so should 3656 * not be capped for highmem. 3657 */ 3658 int min_pages; 3659 3660 min_pages = zone->present_pages / 1024; 3661 if (min_pages < SWAP_CLUSTER_MAX) 3662 min_pages = SWAP_CLUSTER_MAX; 3663 if (min_pages > 128) 3664 min_pages = 128; 3665 zone->pages_min = min_pages; 3666 } else { 3667 /* 3668 * If it's a lowmem zone, reserve a number of pages 3669 * proportionate to the zone's size. 3670 */ 3671 zone->pages_min = tmp; 3672 } 3673 3674 zone->pages_low = zone->pages_min + (tmp >> 2); 3675 zone->pages_high = zone->pages_min + (tmp >> 1); 3676 spin_unlock_irqrestore(&zone->lru_lock, flags); 3677 } 3678 3679 /* update totalreserve_pages */ 3680 calculate_totalreserve_pages(); 3681 } 3682 3683 /* 3684 * Initialise min_free_kbytes. 3685 * 3686 * For small machines we want it small (128k min). For large machines 3687 * we want it large (64MB max). But it is not linear, because network 3688 * bandwidth does not increase linearly with machine size. We use 3689 * 3690 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 3691 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 3692 * 3693 * which yields 3694 * 3695 * 16MB: 512k 3696 * 32MB: 724k 3697 * 64MB: 1024k 3698 * 128MB: 1448k 3699 * 256MB: 2048k 3700 * 512MB: 2896k 3701 * 1024MB: 4096k 3702 * 2048MB: 5792k 3703 * 4096MB: 8192k 3704 * 8192MB: 11584k 3705 * 16384MB: 16384k 3706 */ 3707 static int __init init_per_zone_pages_min(void) 3708 { 3709 unsigned long lowmem_kbytes; 3710 3711 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 3712 3713 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 3714 if (min_free_kbytes < 128) 3715 min_free_kbytes = 128; 3716 if (min_free_kbytes > 65536) 3717 min_free_kbytes = 65536; 3718 setup_per_zone_pages_min(); 3719 setup_per_zone_lowmem_reserve(); 3720 return 0; 3721 } 3722 module_init(init_per_zone_pages_min) 3723 3724 /* 3725 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 3726 * that we can call two helper functions whenever min_free_kbytes 3727 * changes. 3728 */ 3729 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 3730 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3731 { 3732 proc_dointvec(table, write, file, buffer, length, ppos); 3733 if (write) 3734 setup_per_zone_pages_min(); 3735 return 0; 3736 } 3737 3738 #ifdef CONFIG_NUMA 3739 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 3740 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3741 { 3742 struct zone *zone; 3743 int rc; 3744 3745 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3746 if (rc) 3747 return rc; 3748 3749 for_each_zone(zone) 3750 zone->min_unmapped_pages = (zone->present_pages * 3751 sysctl_min_unmapped_ratio) / 100; 3752 return 0; 3753 } 3754 3755 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 3756 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3757 { 3758 struct zone *zone; 3759 int rc; 3760 3761 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3762 if (rc) 3763 return rc; 3764 3765 for_each_zone(zone) 3766 zone->min_slab_pages = (zone->present_pages * 3767 sysctl_min_slab_ratio) / 100; 3768 return 0; 3769 } 3770 #endif 3771 3772 /* 3773 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 3774 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 3775 * whenever sysctl_lowmem_reserve_ratio changes. 3776 * 3777 * The reserve ratio obviously has absolutely no relation with the 3778 * pages_min watermarks. The lowmem reserve ratio can only make sense 3779 * if in function of the boot time zone sizes. 3780 */ 3781 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 3782 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3783 { 3784 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3785 setup_per_zone_lowmem_reserve(); 3786 return 0; 3787 } 3788 3789 /* 3790 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 3791 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 3792 * can have before it gets flushed back to buddy allocator. 3793 */ 3794 3795 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 3796 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3797 { 3798 struct zone *zone; 3799 unsigned int cpu; 3800 int ret; 3801 3802 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3803 if (!write || (ret == -EINVAL)) 3804 return ret; 3805 for_each_zone(zone) { 3806 for_each_online_cpu(cpu) { 3807 unsigned long high; 3808 high = zone->present_pages / percpu_pagelist_fraction; 3809 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 3810 } 3811 } 3812 return 0; 3813 } 3814 3815 int hashdist = HASHDIST_DEFAULT; 3816 3817 #ifdef CONFIG_NUMA 3818 static int __init set_hashdist(char *str) 3819 { 3820 if (!str) 3821 return 0; 3822 hashdist = simple_strtoul(str, &str, 0); 3823 return 1; 3824 } 3825 __setup("hashdist=", set_hashdist); 3826 #endif 3827 3828 /* 3829 * allocate a large system hash table from bootmem 3830 * - it is assumed that the hash table must contain an exact power-of-2 3831 * quantity of entries 3832 * - limit is the number of hash buckets, not the total allocation size 3833 */ 3834 void *__init alloc_large_system_hash(const char *tablename, 3835 unsigned long bucketsize, 3836 unsigned long numentries, 3837 int scale, 3838 int flags, 3839 unsigned int *_hash_shift, 3840 unsigned int *_hash_mask, 3841 unsigned long limit) 3842 { 3843 unsigned long long max = limit; 3844 unsigned long log2qty, size; 3845 void *table = NULL; 3846 3847 /* allow the kernel cmdline to have a say */ 3848 if (!numentries) { 3849 /* round applicable memory size up to nearest megabyte */ 3850 numentries = nr_kernel_pages; 3851 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 3852 numentries >>= 20 - PAGE_SHIFT; 3853 numentries <<= 20 - PAGE_SHIFT; 3854 3855 /* limit to 1 bucket per 2^scale bytes of low memory */ 3856 if (scale > PAGE_SHIFT) 3857 numentries >>= (scale - PAGE_SHIFT); 3858 else 3859 numentries <<= (PAGE_SHIFT - scale); 3860 3861 /* Make sure we've got at least a 0-order allocation.. */ 3862 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 3863 numentries = PAGE_SIZE / bucketsize; 3864 } 3865 numentries = roundup_pow_of_two(numentries); 3866 3867 /* limit allocation size to 1/16 total memory by default */ 3868 if (max == 0) { 3869 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 3870 do_div(max, bucketsize); 3871 } 3872 3873 if (numentries > max) 3874 numentries = max; 3875 3876 log2qty = ilog2(numentries); 3877 3878 do { 3879 size = bucketsize << log2qty; 3880 if (flags & HASH_EARLY) 3881 table = alloc_bootmem(size); 3882 else if (hashdist) 3883 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 3884 else { 3885 unsigned long order; 3886 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 3887 ; 3888 table = (void*) __get_free_pages(GFP_ATOMIC, order); 3889 /* 3890 * If bucketsize is not a power-of-two, we may free 3891 * some pages at the end of hash table. 3892 */ 3893 if (table) { 3894 unsigned long alloc_end = (unsigned long)table + 3895 (PAGE_SIZE << order); 3896 unsigned long used = (unsigned long)table + 3897 PAGE_ALIGN(size); 3898 split_page(virt_to_page(table), order); 3899 while (used < alloc_end) { 3900 free_page(used); 3901 used += PAGE_SIZE; 3902 } 3903 } 3904 } 3905 } while (!table && size > PAGE_SIZE && --log2qty); 3906 3907 if (!table) 3908 panic("Failed to allocate %s hash table\n", tablename); 3909 3910 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 3911 tablename, 3912 (1U << log2qty), 3913 ilog2(size) - PAGE_SHIFT, 3914 size); 3915 3916 if (_hash_shift) 3917 *_hash_shift = log2qty; 3918 if (_hash_mask) 3919 *_hash_mask = (1 << log2qty) - 1; 3920 3921 return table; 3922 } 3923 3924 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 3925 struct page *pfn_to_page(unsigned long pfn) 3926 { 3927 return __pfn_to_page(pfn); 3928 } 3929 unsigned long page_to_pfn(struct page *page) 3930 { 3931 return __page_to_pfn(page); 3932 } 3933 EXPORT_SYMBOL(pfn_to_page); 3934 EXPORT_SYMBOL(page_to_pfn); 3935 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 3936 3937 3938