xref: /linux/mm/page_alloc.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44 
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48 
49 /*
50  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51  * initializer cleaner
52  */
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
61 
62 static void __free_pages_ok(struct page *page, unsigned int order);
63 
64 /*
65  * results with 256, 32 in the lowmem_reserve sysctl:
66  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67  *	1G machine -> (16M dma, 784M normal, 224M high)
68  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71  *
72  * TBD: should special case ZONE_DMA32 machines here - in those we normally
73  * don't need any ZONE_NORMAL reservation
74  */
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 	 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 	 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
83 	 32,
84 #endif
85 	 32,
86 };
87 
88 EXPORT_SYMBOL(totalram_pages);
89 
90 static char * const zone_names[MAX_NR_ZONES] = {
91 #ifdef CONFIG_ZONE_DMA
92 	 "DMA",
93 #endif
94 #ifdef CONFIG_ZONE_DMA32
95 	 "DMA32",
96 #endif
97 	 "Normal",
98 #ifdef CONFIG_HIGHMEM
99 	 "HighMem",
100 #endif
101 	 "Movable",
102 };
103 
104 int min_free_kbytes = 1024;
105 
106 unsigned long __meminitdata nr_kernel_pages;
107 unsigned long __meminitdata nr_all_pages;
108 static unsigned long __meminitdata dma_reserve;
109 
110 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
111   /*
112    * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
113    * ranges of memory (RAM) that may be registered with add_active_range().
114    * Ranges passed to add_active_range() will be merged if possible
115    * so the number of times add_active_range() can be called is
116    * related to the number of nodes and the number of holes
117    */
118   #ifdef CONFIG_MAX_ACTIVE_REGIONS
119     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
120     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
121   #else
122     #if MAX_NUMNODES >= 32
123       /* If there can be many nodes, allow up to 50 holes per node */
124       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
125     #else
126       /* By default, allow up to 256 distinct regions */
127       #define MAX_ACTIVE_REGIONS 256
128     #endif
129   #endif
130 
131   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
132   static int __meminitdata nr_nodemap_entries;
133   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
134   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
135 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
136   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
137   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
138 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
139   unsigned long __initdata required_kernelcore;
140   unsigned long __initdata required_movablecore;
141   unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
142 
143   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
144   int movable_zone;
145   EXPORT_SYMBOL(movable_zone);
146 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
147 
148 #if MAX_NUMNODES > 1
149 int nr_node_ids __read_mostly = MAX_NUMNODES;
150 EXPORT_SYMBOL(nr_node_ids);
151 #endif
152 
153 #ifdef CONFIG_DEBUG_VM
154 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
155 {
156 	int ret = 0;
157 	unsigned seq;
158 	unsigned long pfn = page_to_pfn(page);
159 
160 	do {
161 		seq = zone_span_seqbegin(zone);
162 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
163 			ret = 1;
164 		else if (pfn < zone->zone_start_pfn)
165 			ret = 1;
166 	} while (zone_span_seqretry(zone, seq));
167 
168 	return ret;
169 }
170 
171 static int page_is_consistent(struct zone *zone, struct page *page)
172 {
173 	if (!pfn_valid_within(page_to_pfn(page)))
174 		return 0;
175 	if (zone != page_zone(page))
176 		return 0;
177 
178 	return 1;
179 }
180 /*
181  * Temporary debugging check for pages not lying within a given zone.
182  */
183 static int bad_range(struct zone *zone, struct page *page)
184 {
185 	if (page_outside_zone_boundaries(zone, page))
186 		return 1;
187 	if (!page_is_consistent(zone, page))
188 		return 1;
189 
190 	return 0;
191 }
192 #else
193 static inline int bad_range(struct zone *zone, struct page *page)
194 {
195 	return 0;
196 }
197 #endif
198 
199 static void bad_page(struct page *page)
200 {
201 	printk(KERN_EMERG "Bad page state in process '%s'\n"
202 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
203 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
204 		KERN_EMERG "Backtrace:\n",
205 		current->comm, page, (int)(2*sizeof(unsigned long)),
206 		(unsigned long)page->flags, page->mapping,
207 		page_mapcount(page), page_count(page));
208 	dump_stack();
209 	page->flags &= ~(1 << PG_lru	|
210 			1 << PG_private |
211 			1 << PG_locked	|
212 			1 << PG_active	|
213 			1 << PG_dirty	|
214 			1 << PG_reclaim |
215 			1 << PG_slab    |
216 			1 << PG_swapcache |
217 			1 << PG_writeback |
218 			1 << PG_buddy );
219 	set_page_count(page, 0);
220 	reset_page_mapcount(page);
221 	page->mapping = NULL;
222 	add_taint(TAINT_BAD_PAGE);
223 }
224 
225 /*
226  * Higher-order pages are called "compound pages".  They are structured thusly:
227  *
228  * The first PAGE_SIZE page is called the "head page".
229  *
230  * The remaining PAGE_SIZE pages are called "tail pages".
231  *
232  * All pages have PG_compound set.  All pages have their ->private pointing at
233  * the head page (even the head page has this).
234  *
235  * The first tail page's ->lru.next holds the address of the compound page's
236  * put_page() function.  Its ->lru.prev holds the order of allocation.
237  * This usage means that zero-order pages may not be compound.
238  */
239 
240 static void free_compound_page(struct page *page)
241 {
242 	__free_pages_ok(page, compound_order(page));
243 }
244 
245 static void prep_compound_page(struct page *page, unsigned long order)
246 {
247 	int i;
248 	int nr_pages = 1 << order;
249 
250 	set_compound_page_dtor(page, free_compound_page);
251 	set_compound_order(page, order);
252 	__SetPageHead(page);
253 	for (i = 1; i < nr_pages; i++) {
254 		struct page *p = page + i;
255 
256 		__SetPageTail(p);
257 		p->first_page = page;
258 	}
259 }
260 
261 static void destroy_compound_page(struct page *page, unsigned long order)
262 {
263 	int i;
264 	int nr_pages = 1 << order;
265 
266 	if (unlikely(compound_order(page) != order))
267 		bad_page(page);
268 
269 	if (unlikely(!PageHead(page)))
270 			bad_page(page);
271 	__ClearPageHead(page);
272 	for (i = 1; i < nr_pages; i++) {
273 		struct page *p = page + i;
274 
275 		if (unlikely(!PageTail(p) |
276 				(p->first_page != page)))
277 			bad_page(page);
278 		__ClearPageTail(p);
279 	}
280 }
281 
282 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
283 {
284 	int i;
285 
286 	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
287 	/*
288 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
289 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
290 	 */
291 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
292 	for (i = 0; i < (1 << order); i++)
293 		clear_highpage(page + i);
294 }
295 
296 /*
297  * function for dealing with page's order in buddy system.
298  * zone->lock is already acquired when we use these.
299  * So, we don't need atomic page->flags operations here.
300  */
301 static inline unsigned long page_order(struct page *page)
302 {
303 	return page_private(page);
304 }
305 
306 static inline void set_page_order(struct page *page, int order)
307 {
308 	set_page_private(page, order);
309 	__SetPageBuddy(page);
310 }
311 
312 static inline void rmv_page_order(struct page *page)
313 {
314 	__ClearPageBuddy(page);
315 	set_page_private(page, 0);
316 }
317 
318 /*
319  * Locate the struct page for both the matching buddy in our
320  * pair (buddy1) and the combined O(n+1) page they form (page).
321  *
322  * 1) Any buddy B1 will have an order O twin B2 which satisfies
323  * the following equation:
324  *     B2 = B1 ^ (1 << O)
325  * For example, if the starting buddy (buddy2) is #8 its order
326  * 1 buddy is #10:
327  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
328  *
329  * 2) Any buddy B will have an order O+1 parent P which
330  * satisfies the following equation:
331  *     P = B & ~(1 << O)
332  *
333  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
334  */
335 static inline struct page *
336 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
337 {
338 	unsigned long buddy_idx = page_idx ^ (1 << order);
339 
340 	return page + (buddy_idx - page_idx);
341 }
342 
343 static inline unsigned long
344 __find_combined_index(unsigned long page_idx, unsigned int order)
345 {
346 	return (page_idx & ~(1 << order));
347 }
348 
349 /*
350  * This function checks whether a page is free && is the buddy
351  * we can do coalesce a page and its buddy if
352  * (a) the buddy is not in a hole &&
353  * (b) the buddy is in the buddy system &&
354  * (c) a page and its buddy have the same order &&
355  * (d) a page and its buddy are in the same zone.
356  *
357  * For recording whether a page is in the buddy system, we use PG_buddy.
358  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
359  *
360  * For recording page's order, we use page_private(page).
361  */
362 static inline int page_is_buddy(struct page *page, struct page *buddy,
363 								int order)
364 {
365 	if (!pfn_valid_within(page_to_pfn(buddy)))
366 		return 0;
367 
368 	if (page_zone_id(page) != page_zone_id(buddy))
369 		return 0;
370 
371 	if (PageBuddy(buddy) && page_order(buddy) == order) {
372 		BUG_ON(page_count(buddy) != 0);
373 		return 1;
374 	}
375 	return 0;
376 }
377 
378 /*
379  * Freeing function for a buddy system allocator.
380  *
381  * The concept of a buddy system is to maintain direct-mapped table
382  * (containing bit values) for memory blocks of various "orders".
383  * The bottom level table contains the map for the smallest allocatable
384  * units of memory (here, pages), and each level above it describes
385  * pairs of units from the levels below, hence, "buddies".
386  * At a high level, all that happens here is marking the table entry
387  * at the bottom level available, and propagating the changes upward
388  * as necessary, plus some accounting needed to play nicely with other
389  * parts of the VM system.
390  * At each level, we keep a list of pages, which are heads of continuous
391  * free pages of length of (1 << order) and marked with PG_buddy. Page's
392  * order is recorded in page_private(page) field.
393  * So when we are allocating or freeing one, we can derive the state of the
394  * other.  That is, if we allocate a small block, and both were
395  * free, the remainder of the region must be split into blocks.
396  * If a block is freed, and its buddy is also free, then this
397  * triggers coalescing into a block of larger size.
398  *
399  * -- wli
400  */
401 
402 static inline void __free_one_page(struct page *page,
403 		struct zone *zone, unsigned int order)
404 {
405 	unsigned long page_idx;
406 	int order_size = 1 << order;
407 
408 	if (unlikely(PageCompound(page)))
409 		destroy_compound_page(page, order);
410 
411 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
412 
413 	VM_BUG_ON(page_idx & (order_size - 1));
414 	VM_BUG_ON(bad_range(zone, page));
415 
416 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
417 	while (order < MAX_ORDER-1) {
418 		unsigned long combined_idx;
419 		struct free_area *area;
420 		struct page *buddy;
421 
422 		buddy = __page_find_buddy(page, page_idx, order);
423 		if (!page_is_buddy(page, buddy, order))
424 			break;		/* Move the buddy up one level. */
425 
426 		list_del(&buddy->lru);
427 		area = zone->free_area + order;
428 		area->nr_free--;
429 		rmv_page_order(buddy);
430 		combined_idx = __find_combined_index(page_idx, order);
431 		page = page + (combined_idx - page_idx);
432 		page_idx = combined_idx;
433 		order++;
434 	}
435 	set_page_order(page, order);
436 	list_add(&page->lru, &zone->free_area[order].free_list);
437 	zone->free_area[order].nr_free++;
438 }
439 
440 static inline int free_pages_check(struct page *page)
441 {
442 	if (unlikely(page_mapcount(page) |
443 		(page->mapping != NULL)  |
444 		(page_count(page) != 0)  |
445 		(page->flags & (
446 			1 << PG_lru	|
447 			1 << PG_private |
448 			1 << PG_locked	|
449 			1 << PG_active	|
450 			1 << PG_slab	|
451 			1 << PG_swapcache |
452 			1 << PG_writeback |
453 			1 << PG_reserved |
454 			1 << PG_buddy ))))
455 		bad_page(page);
456 	if (PageDirty(page))
457 		__ClearPageDirty(page);
458 	/*
459 	 * For now, we report if PG_reserved was found set, but do not
460 	 * clear it, and do not free the page.  But we shall soon need
461 	 * to do more, for when the ZERO_PAGE count wraps negative.
462 	 */
463 	return PageReserved(page);
464 }
465 
466 /*
467  * Frees a list of pages.
468  * Assumes all pages on list are in same zone, and of same order.
469  * count is the number of pages to free.
470  *
471  * If the zone was previously in an "all pages pinned" state then look to
472  * see if this freeing clears that state.
473  *
474  * And clear the zone's pages_scanned counter, to hold off the "all pages are
475  * pinned" detection logic.
476  */
477 static void free_pages_bulk(struct zone *zone, int count,
478 					struct list_head *list, int order)
479 {
480 	spin_lock(&zone->lock);
481 	zone->all_unreclaimable = 0;
482 	zone->pages_scanned = 0;
483 	while (count--) {
484 		struct page *page;
485 
486 		VM_BUG_ON(list_empty(list));
487 		page = list_entry(list->prev, struct page, lru);
488 		/* have to delete it as __free_one_page list manipulates */
489 		list_del(&page->lru);
490 		__free_one_page(page, zone, order);
491 	}
492 	spin_unlock(&zone->lock);
493 }
494 
495 static void free_one_page(struct zone *zone, struct page *page, int order)
496 {
497 	spin_lock(&zone->lock);
498 	zone->all_unreclaimable = 0;
499 	zone->pages_scanned = 0;
500 	__free_one_page(page, zone, order);
501 	spin_unlock(&zone->lock);
502 }
503 
504 static void __free_pages_ok(struct page *page, unsigned int order)
505 {
506 	unsigned long flags;
507 	int i;
508 	int reserved = 0;
509 
510 	for (i = 0 ; i < (1 << order) ; ++i)
511 		reserved += free_pages_check(page + i);
512 	if (reserved)
513 		return;
514 
515 	if (!PageHighMem(page))
516 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
517 	arch_free_page(page, order);
518 	kernel_map_pages(page, 1 << order, 0);
519 
520 	local_irq_save(flags);
521 	__count_vm_events(PGFREE, 1 << order);
522 	free_one_page(page_zone(page), page, order);
523 	local_irq_restore(flags);
524 }
525 
526 /*
527  * permit the bootmem allocator to evade page validation on high-order frees
528  */
529 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
530 {
531 	if (order == 0) {
532 		__ClearPageReserved(page);
533 		set_page_count(page, 0);
534 		set_page_refcounted(page);
535 		__free_page(page);
536 	} else {
537 		int loop;
538 
539 		prefetchw(page);
540 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
541 			struct page *p = &page[loop];
542 
543 			if (loop + 1 < BITS_PER_LONG)
544 				prefetchw(p + 1);
545 			__ClearPageReserved(p);
546 			set_page_count(p, 0);
547 		}
548 
549 		set_page_refcounted(page);
550 		__free_pages(page, order);
551 	}
552 }
553 
554 
555 /*
556  * The order of subdivision here is critical for the IO subsystem.
557  * Please do not alter this order without good reasons and regression
558  * testing. Specifically, as large blocks of memory are subdivided,
559  * the order in which smaller blocks are delivered depends on the order
560  * they're subdivided in this function. This is the primary factor
561  * influencing the order in which pages are delivered to the IO
562  * subsystem according to empirical testing, and this is also justified
563  * by considering the behavior of a buddy system containing a single
564  * large block of memory acted on by a series of small allocations.
565  * This behavior is a critical factor in sglist merging's success.
566  *
567  * -- wli
568  */
569 static inline void expand(struct zone *zone, struct page *page,
570  	int low, int high, struct free_area *area)
571 {
572 	unsigned long size = 1 << high;
573 
574 	while (high > low) {
575 		area--;
576 		high--;
577 		size >>= 1;
578 		VM_BUG_ON(bad_range(zone, &page[size]));
579 		list_add(&page[size].lru, &area->free_list);
580 		area->nr_free++;
581 		set_page_order(&page[size], high);
582 	}
583 }
584 
585 /*
586  * This page is about to be returned from the page allocator
587  */
588 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
589 {
590 	if (unlikely(page_mapcount(page) |
591 		(page->mapping != NULL)  |
592 		(page_count(page) != 0)  |
593 		(page->flags & (
594 			1 << PG_lru	|
595 			1 << PG_private	|
596 			1 << PG_locked	|
597 			1 << PG_active	|
598 			1 << PG_dirty	|
599 			1 << PG_slab    |
600 			1 << PG_swapcache |
601 			1 << PG_writeback |
602 			1 << PG_reserved |
603 			1 << PG_buddy ))))
604 		bad_page(page);
605 
606 	/*
607 	 * For now, we report if PG_reserved was found set, but do not
608 	 * clear it, and do not allocate the page: as a safety net.
609 	 */
610 	if (PageReserved(page))
611 		return 1;
612 
613 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
614 			1 << PG_referenced | 1 << PG_arch_1 |
615 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
616 	set_page_private(page, 0);
617 	set_page_refcounted(page);
618 
619 	arch_alloc_page(page, order);
620 	kernel_map_pages(page, 1 << order, 1);
621 
622 	if (gfp_flags & __GFP_ZERO)
623 		prep_zero_page(page, order, gfp_flags);
624 
625 	if (order && (gfp_flags & __GFP_COMP))
626 		prep_compound_page(page, order);
627 
628 	return 0;
629 }
630 
631 /*
632  * Do the hard work of removing an element from the buddy allocator.
633  * Call me with the zone->lock already held.
634  */
635 static struct page *__rmqueue(struct zone *zone, unsigned int order)
636 {
637 	struct free_area * area;
638 	unsigned int current_order;
639 	struct page *page;
640 
641 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
642 		area = zone->free_area + current_order;
643 		if (list_empty(&area->free_list))
644 			continue;
645 
646 		page = list_entry(area->free_list.next, struct page, lru);
647 		list_del(&page->lru);
648 		rmv_page_order(page);
649 		area->nr_free--;
650 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
651 		expand(zone, page, order, current_order, area);
652 		return page;
653 	}
654 
655 	return NULL;
656 }
657 
658 /*
659  * Obtain a specified number of elements from the buddy allocator, all under
660  * a single hold of the lock, for efficiency.  Add them to the supplied list.
661  * Returns the number of new pages which were placed at *list.
662  */
663 static int rmqueue_bulk(struct zone *zone, unsigned int order,
664 			unsigned long count, struct list_head *list)
665 {
666 	int i;
667 
668 	spin_lock(&zone->lock);
669 	for (i = 0; i < count; ++i) {
670 		struct page *page = __rmqueue(zone, order);
671 		if (unlikely(page == NULL))
672 			break;
673 		list_add_tail(&page->lru, list);
674 	}
675 	spin_unlock(&zone->lock);
676 	return i;
677 }
678 
679 #ifdef CONFIG_NUMA
680 /*
681  * Called from the vmstat counter updater to drain pagesets of this
682  * currently executing processor on remote nodes after they have
683  * expired.
684  *
685  * Note that this function must be called with the thread pinned to
686  * a single processor.
687  */
688 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
689 {
690 	unsigned long flags;
691 	int to_drain;
692 
693 	local_irq_save(flags);
694 	if (pcp->count >= pcp->batch)
695 		to_drain = pcp->batch;
696 	else
697 		to_drain = pcp->count;
698 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
699 	pcp->count -= to_drain;
700 	local_irq_restore(flags);
701 }
702 #endif
703 
704 static void __drain_pages(unsigned int cpu)
705 {
706 	unsigned long flags;
707 	struct zone *zone;
708 	int i;
709 
710 	for_each_zone(zone) {
711 		struct per_cpu_pageset *pset;
712 
713 		if (!populated_zone(zone))
714 			continue;
715 
716 		pset = zone_pcp(zone, cpu);
717 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
718 			struct per_cpu_pages *pcp;
719 
720 			pcp = &pset->pcp[i];
721 			local_irq_save(flags);
722 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
723 			pcp->count = 0;
724 			local_irq_restore(flags);
725 		}
726 	}
727 }
728 
729 #ifdef CONFIG_HIBERNATION
730 
731 void mark_free_pages(struct zone *zone)
732 {
733 	unsigned long pfn, max_zone_pfn;
734 	unsigned long flags;
735 	int order;
736 	struct list_head *curr;
737 
738 	if (!zone->spanned_pages)
739 		return;
740 
741 	spin_lock_irqsave(&zone->lock, flags);
742 
743 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
744 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
745 		if (pfn_valid(pfn)) {
746 			struct page *page = pfn_to_page(pfn);
747 
748 			if (!swsusp_page_is_forbidden(page))
749 				swsusp_unset_page_free(page);
750 		}
751 
752 	for (order = MAX_ORDER - 1; order >= 0; --order)
753 		list_for_each(curr, &zone->free_area[order].free_list) {
754 			unsigned long i;
755 
756 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
757 			for (i = 0; i < (1UL << order); i++)
758 				swsusp_set_page_free(pfn_to_page(pfn + i));
759 		}
760 
761 	spin_unlock_irqrestore(&zone->lock, flags);
762 }
763 
764 /*
765  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
766  */
767 void drain_local_pages(void)
768 {
769 	unsigned long flags;
770 
771 	local_irq_save(flags);
772 	__drain_pages(smp_processor_id());
773 	local_irq_restore(flags);
774 }
775 #endif /* CONFIG_HIBERNATION */
776 
777 /*
778  * Free a 0-order page
779  */
780 static void fastcall free_hot_cold_page(struct page *page, int cold)
781 {
782 	struct zone *zone = page_zone(page);
783 	struct per_cpu_pages *pcp;
784 	unsigned long flags;
785 
786 	if (PageAnon(page))
787 		page->mapping = NULL;
788 	if (free_pages_check(page))
789 		return;
790 
791 	if (!PageHighMem(page))
792 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
793 	arch_free_page(page, 0);
794 	kernel_map_pages(page, 1, 0);
795 
796 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
797 	local_irq_save(flags);
798 	__count_vm_event(PGFREE);
799 	list_add(&page->lru, &pcp->list);
800 	pcp->count++;
801 	if (pcp->count >= pcp->high) {
802 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
803 		pcp->count -= pcp->batch;
804 	}
805 	local_irq_restore(flags);
806 	put_cpu();
807 }
808 
809 void fastcall free_hot_page(struct page *page)
810 {
811 	free_hot_cold_page(page, 0);
812 }
813 
814 void fastcall free_cold_page(struct page *page)
815 {
816 	free_hot_cold_page(page, 1);
817 }
818 
819 /*
820  * split_page takes a non-compound higher-order page, and splits it into
821  * n (1<<order) sub-pages: page[0..n]
822  * Each sub-page must be freed individually.
823  *
824  * Note: this is probably too low level an operation for use in drivers.
825  * Please consult with lkml before using this in your driver.
826  */
827 void split_page(struct page *page, unsigned int order)
828 {
829 	int i;
830 
831 	VM_BUG_ON(PageCompound(page));
832 	VM_BUG_ON(!page_count(page));
833 	for (i = 1; i < (1 << order); i++)
834 		set_page_refcounted(page + i);
835 }
836 
837 /*
838  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
839  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
840  * or two.
841  */
842 static struct page *buffered_rmqueue(struct zonelist *zonelist,
843 			struct zone *zone, int order, gfp_t gfp_flags)
844 {
845 	unsigned long flags;
846 	struct page *page;
847 	int cold = !!(gfp_flags & __GFP_COLD);
848 	int cpu;
849 
850 again:
851 	cpu  = get_cpu();
852 	if (likely(order == 0)) {
853 		struct per_cpu_pages *pcp;
854 
855 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
856 		local_irq_save(flags);
857 		if (!pcp->count) {
858 			pcp->count = rmqueue_bulk(zone, 0,
859 						pcp->batch, &pcp->list);
860 			if (unlikely(!pcp->count))
861 				goto failed;
862 		}
863 		page = list_entry(pcp->list.next, struct page, lru);
864 		list_del(&page->lru);
865 		pcp->count--;
866 	} else {
867 		spin_lock_irqsave(&zone->lock, flags);
868 		page = __rmqueue(zone, order);
869 		spin_unlock(&zone->lock);
870 		if (!page)
871 			goto failed;
872 	}
873 
874 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
875 	zone_statistics(zonelist, zone);
876 	local_irq_restore(flags);
877 	put_cpu();
878 
879 	VM_BUG_ON(bad_range(zone, page));
880 	if (prep_new_page(page, order, gfp_flags))
881 		goto again;
882 	return page;
883 
884 failed:
885 	local_irq_restore(flags);
886 	put_cpu();
887 	return NULL;
888 }
889 
890 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
891 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
892 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
893 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
894 #define ALLOC_HARDER		0x10 /* try to alloc harder */
895 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
896 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
897 
898 #ifdef CONFIG_FAIL_PAGE_ALLOC
899 
900 static struct fail_page_alloc_attr {
901 	struct fault_attr attr;
902 
903 	u32 ignore_gfp_highmem;
904 	u32 ignore_gfp_wait;
905 	u32 min_order;
906 
907 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
908 
909 	struct dentry *ignore_gfp_highmem_file;
910 	struct dentry *ignore_gfp_wait_file;
911 	struct dentry *min_order_file;
912 
913 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
914 
915 } fail_page_alloc = {
916 	.attr = FAULT_ATTR_INITIALIZER,
917 	.ignore_gfp_wait = 1,
918 	.ignore_gfp_highmem = 1,
919 	.min_order = 1,
920 };
921 
922 static int __init setup_fail_page_alloc(char *str)
923 {
924 	return setup_fault_attr(&fail_page_alloc.attr, str);
925 }
926 __setup("fail_page_alloc=", setup_fail_page_alloc);
927 
928 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
929 {
930 	if (order < fail_page_alloc.min_order)
931 		return 0;
932 	if (gfp_mask & __GFP_NOFAIL)
933 		return 0;
934 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
935 		return 0;
936 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
937 		return 0;
938 
939 	return should_fail(&fail_page_alloc.attr, 1 << order);
940 }
941 
942 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
943 
944 static int __init fail_page_alloc_debugfs(void)
945 {
946 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
947 	struct dentry *dir;
948 	int err;
949 
950 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
951 				       "fail_page_alloc");
952 	if (err)
953 		return err;
954 	dir = fail_page_alloc.attr.dentries.dir;
955 
956 	fail_page_alloc.ignore_gfp_wait_file =
957 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
958 				      &fail_page_alloc.ignore_gfp_wait);
959 
960 	fail_page_alloc.ignore_gfp_highmem_file =
961 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
962 				      &fail_page_alloc.ignore_gfp_highmem);
963 	fail_page_alloc.min_order_file =
964 		debugfs_create_u32("min-order", mode, dir,
965 				   &fail_page_alloc.min_order);
966 
967 	if (!fail_page_alloc.ignore_gfp_wait_file ||
968             !fail_page_alloc.ignore_gfp_highmem_file ||
969             !fail_page_alloc.min_order_file) {
970 		err = -ENOMEM;
971 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
972 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
973 		debugfs_remove(fail_page_alloc.min_order_file);
974 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
975 	}
976 
977 	return err;
978 }
979 
980 late_initcall(fail_page_alloc_debugfs);
981 
982 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
983 
984 #else /* CONFIG_FAIL_PAGE_ALLOC */
985 
986 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
987 {
988 	return 0;
989 }
990 
991 #endif /* CONFIG_FAIL_PAGE_ALLOC */
992 
993 /*
994  * Return 1 if free pages are above 'mark'. This takes into account the order
995  * of the allocation.
996  */
997 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
998 		      int classzone_idx, int alloc_flags)
999 {
1000 	/* free_pages my go negative - that's OK */
1001 	long min = mark;
1002 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1003 	int o;
1004 
1005 	if (alloc_flags & ALLOC_HIGH)
1006 		min -= min / 2;
1007 	if (alloc_flags & ALLOC_HARDER)
1008 		min -= min / 4;
1009 
1010 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1011 		return 0;
1012 	for (o = 0; o < order; o++) {
1013 		/* At the next order, this order's pages become unavailable */
1014 		free_pages -= z->free_area[o].nr_free << o;
1015 
1016 		/* Require fewer higher order pages to be free */
1017 		min >>= 1;
1018 
1019 		if (free_pages <= min)
1020 			return 0;
1021 	}
1022 	return 1;
1023 }
1024 
1025 #ifdef CONFIG_NUMA
1026 /*
1027  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1028  * skip over zones that are not allowed by the cpuset, or that have
1029  * been recently (in last second) found to be nearly full.  See further
1030  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1031  * that have to skip over alot of full or unallowed zones.
1032  *
1033  * If the zonelist cache is present in the passed in zonelist, then
1034  * returns a pointer to the allowed node mask (either the current
1035  * tasks mems_allowed, or node_online_map.)
1036  *
1037  * If the zonelist cache is not available for this zonelist, does
1038  * nothing and returns NULL.
1039  *
1040  * If the fullzones BITMAP in the zonelist cache is stale (more than
1041  * a second since last zap'd) then we zap it out (clear its bits.)
1042  *
1043  * We hold off even calling zlc_setup, until after we've checked the
1044  * first zone in the zonelist, on the theory that most allocations will
1045  * be satisfied from that first zone, so best to examine that zone as
1046  * quickly as we can.
1047  */
1048 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1049 {
1050 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1051 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1052 
1053 	zlc = zonelist->zlcache_ptr;
1054 	if (!zlc)
1055 		return NULL;
1056 
1057 	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1058 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1059 		zlc->last_full_zap = jiffies;
1060 	}
1061 
1062 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1063 					&cpuset_current_mems_allowed :
1064 					&node_online_map;
1065 	return allowednodes;
1066 }
1067 
1068 /*
1069  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1070  * if it is worth looking at further for free memory:
1071  *  1) Check that the zone isn't thought to be full (doesn't have its
1072  *     bit set in the zonelist_cache fullzones BITMAP).
1073  *  2) Check that the zones node (obtained from the zonelist_cache
1074  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1075  * Return true (non-zero) if zone is worth looking at further, or
1076  * else return false (zero) if it is not.
1077  *
1078  * This check -ignores- the distinction between various watermarks,
1079  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1080  * found to be full for any variation of these watermarks, it will
1081  * be considered full for up to one second by all requests, unless
1082  * we are so low on memory on all allowed nodes that we are forced
1083  * into the second scan of the zonelist.
1084  *
1085  * In the second scan we ignore this zonelist cache and exactly
1086  * apply the watermarks to all zones, even it is slower to do so.
1087  * We are low on memory in the second scan, and should leave no stone
1088  * unturned looking for a free page.
1089  */
1090 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1091 						nodemask_t *allowednodes)
1092 {
1093 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1094 	int i;				/* index of *z in zonelist zones */
1095 	int n;				/* node that zone *z is on */
1096 
1097 	zlc = zonelist->zlcache_ptr;
1098 	if (!zlc)
1099 		return 1;
1100 
1101 	i = z - zonelist->zones;
1102 	n = zlc->z_to_n[i];
1103 
1104 	/* This zone is worth trying if it is allowed but not full */
1105 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1106 }
1107 
1108 /*
1109  * Given 'z' scanning a zonelist, set the corresponding bit in
1110  * zlc->fullzones, so that subsequent attempts to allocate a page
1111  * from that zone don't waste time re-examining it.
1112  */
1113 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1114 {
1115 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1116 	int i;				/* index of *z in zonelist zones */
1117 
1118 	zlc = zonelist->zlcache_ptr;
1119 	if (!zlc)
1120 		return;
1121 
1122 	i = z - zonelist->zones;
1123 
1124 	set_bit(i, zlc->fullzones);
1125 }
1126 
1127 #else	/* CONFIG_NUMA */
1128 
1129 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1130 {
1131 	return NULL;
1132 }
1133 
1134 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1135 				nodemask_t *allowednodes)
1136 {
1137 	return 1;
1138 }
1139 
1140 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1141 {
1142 }
1143 #endif	/* CONFIG_NUMA */
1144 
1145 /*
1146  * get_page_from_freelist goes through the zonelist trying to allocate
1147  * a page.
1148  */
1149 static struct page *
1150 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1151 		struct zonelist *zonelist, int alloc_flags)
1152 {
1153 	struct zone **z;
1154 	struct page *page = NULL;
1155 	int classzone_idx = zone_idx(zonelist->zones[0]);
1156 	struct zone *zone;
1157 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1158 	int zlc_active = 0;		/* set if using zonelist_cache */
1159 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1160 	enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1161 
1162 zonelist_scan:
1163 	/*
1164 	 * Scan zonelist, looking for a zone with enough free.
1165 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1166 	 */
1167 	z = zonelist->zones;
1168 
1169 	do {
1170 		/*
1171 		 * In NUMA, this could be a policy zonelist which contains
1172 		 * zones that may not be allowed by the current gfp_mask.
1173 		 * Check the zone is allowed by the current flags
1174 		 */
1175 		if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1176 			if (highest_zoneidx == -1)
1177 				highest_zoneidx = gfp_zone(gfp_mask);
1178 			if (zone_idx(*z) > highest_zoneidx)
1179 				continue;
1180 		}
1181 
1182 		if (NUMA_BUILD && zlc_active &&
1183 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1184 				continue;
1185 		zone = *z;
1186 		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1187 			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1188 				break;
1189 		if ((alloc_flags & ALLOC_CPUSET) &&
1190 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1191 				goto try_next_zone;
1192 
1193 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1194 			unsigned long mark;
1195 			if (alloc_flags & ALLOC_WMARK_MIN)
1196 				mark = zone->pages_min;
1197 			else if (alloc_flags & ALLOC_WMARK_LOW)
1198 				mark = zone->pages_low;
1199 			else
1200 				mark = zone->pages_high;
1201 			if (!zone_watermark_ok(zone, order, mark,
1202 				    classzone_idx, alloc_flags)) {
1203 				if (!zone_reclaim_mode ||
1204 				    !zone_reclaim(zone, gfp_mask, order))
1205 					goto this_zone_full;
1206 			}
1207 		}
1208 
1209 		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1210 		if (page)
1211 			break;
1212 this_zone_full:
1213 		if (NUMA_BUILD)
1214 			zlc_mark_zone_full(zonelist, z);
1215 try_next_zone:
1216 		if (NUMA_BUILD && !did_zlc_setup) {
1217 			/* we do zlc_setup after the first zone is tried */
1218 			allowednodes = zlc_setup(zonelist, alloc_flags);
1219 			zlc_active = 1;
1220 			did_zlc_setup = 1;
1221 		}
1222 	} while (*(++z) != NULL);
1223 
1224 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1225 		/* Disable zlc cache for second zonelist scan */
1226 		zlc_active = 0;
1227 		goto zonelist_scan;
1228 	}
1229 	return page;
1230 }
1231 
1232 /*
1233  * This is the 'heart' of the zoned buddy allocator.
1234  */
1235 struct page * fastcall
1236 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1237 		struct zonelist *zonelist)
1238 {
1239 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1240 	struct zone **z;
1241 	struct page *page;
1242 	struct reclaim_state reclaim_state;
1243 	struct task_struct *p = current;
1244 	int do_retry;
1245 	int alloc_flags;
1246 	int did_some_progress;
1247 
1248 	might_sleep_if(wait);
1249 
1250 	if (should_fail_alloc_page(gfp_mask, order))
1251 		return NULL;
1252 
1253 restart:
1254 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1255 
1256 	if (unlikely(*z == NULL)) {
1257 		/* Should this ever happen?? */
1258 		return NULL;
1259 	}
1260 
1261 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1262 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1263 	if (page)
1264 		goto got_pg;
1265 
1266 	/*
1267 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1268 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1269 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1270 	 * using a larger set of nodes after it has established that the
1271 	 * allowed per node queues are empty and that nodes are
1272 	 * over allocated.
1273 	 */
1274 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1275 		goto nopage;
1276 
1277 	for (z = zonelist->zones; *z; z++)
1278 		wakeup_kswapd(*z, order);
1279 
1280 	/*
1281 	 * OK, we're below the kswapd watermark and have kicked background
1282 	 * reclaim. Now things get more complex, so set up alloc_flags according
1283 	 * to how we want to proceed.
1284 	 *
1285 	 * The caller may dip into page reserves a bit more if the caller
1286 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1287 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1288 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1289 	 */
1290 	alloc_flags = ALLOC_WMARK_MIN;
1291 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1292 		alloc_flags |= ALLOC_HARDER;
1293 	if (gfp_mask & __GFP_HIGH)
1294 		alloc_flags |= ALLOC_HIGH;
1295 	if (wait)
1296 		alloc_flags |= ALLOC_CPUSET;
1297 
1298 	/*
1299 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1300 	 * coming from realtime tasks go deeper into reserves.
1301 	 *
1302 	 * This is the last chance, in general, before the goto nopage.
1303 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1304 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1305 	 */
1306 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1307 	if (page)
1308 		goto got_pg;
1309 
1310 	/* This allocation should allow future memory freeing. */
1311 
1312 rebalance:
1313 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1314 			&& !in_interrupt()) {
1315 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1316 nofail_alloc:
1317 			/* go through the zonelist yet again, ignoring mins */
1318 			page = get_page_from_freelist(gfp_mask, order,
1319 				zonelist, ALLOC_NO_WATERMARKS);
1320 			if (page)
1321 				goto got_pg;
1322 			if (gfp_mask & __GFP_NOFAIL) {
1323 				congestion_wait(WRITE, HZ/50);
1324 				goto nofail_alloc;
1325 			}
1326 		}
1327 		goto nopage;
1328 	}
1329 
1330 	/* Atomic allocations - we can't balance anything */
1331 	if (!wait)
1332 		goto nopage;
1333 
1334 	cond_resched();
1335 
1336 	/* We now go into synchronous reclaim */
1337 	cpuset_memory_pressure_bump();
1338 	p->flags |= PF_MEMALLOC;
1339 	reclaim_state.reclaimed_slab = 0;
1340 	p->reclaim_state = &reclaim_state;
1341 
1342 	did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1343 
1344 	p->reclaim_state = NULL;
1345 	p->flags &= ~PF_MEMALLOC;
1346 
1347 	cond_resched();
1348 
1349 	if (likely(did_some_progress)) {
1350 		page = get_page_from_freelist(gfp_mask, order,
1351 						zonelist, alloc_flags);
1352 		if (page)
1353 			goto got_pg;
1354 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1355 		/*
1356 		 * Go through the zonelist yet one more time, keep
1357 		 * very high watermark here, this is only to catch
1358 		 * a parallel oom killing, we must fail if we're still
1359 		 * under heavy pressure.
1360 		 */
1361 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1362 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1363 		if (page)
1364 			goto got_pg;
1365 
1366 		/* The OOM killer will not help higher order allocs so fail */
1367 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1368 			goto nopage;
1369 
1370 		out_of_memory(zonelist, gfp_mask, order);
1371 		goto restart;
1372 	}
1373 
1374 	/*
1375 	 * Don't let big-order allocations loop unless the caller explicitly
1376 	 * requests that.  Wait for some write requests to complete then retry.
1377 	 *
1378 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1379 	 * <= 3, but that may not be true in other implementations.
1380 	 */
1381 	do_retry = 0;
1382 	if (!(gfp_mask & __GFP_NORETRY)) {
1383 		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1384 						(gfp_mask & __GFP_REPEAT))
1385 			do_retry = 1;
1386 		if (gfp_mask & __GFP_NOFAIL)
1387 			do_retry = 1;
1388 	}
1389 	if (do_retry) {
1390 		congestion_wait(WRITE, HZ/50);
1391 		goto rebalance;
1392 	}
1393 
1394 nopage:
1395 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1396 		printk(KERN_WARNING "%s: page allocation failure."
1397 			" order:%d, mode:0x%x\n",
1398 			p->comm, order, gfp_mask);
1399 		dump_stack();
1400 		show_mem();
1401 	}
1402 got_pg:
1403 	return page;
1404 }
1405 
1406 EXPORT_SYMBOL(__alloc_pages);
1407 
1408 /*
1409  * Common helper functions.
1410  */
1411 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1412 {
1413 	struct page * page;
1414 	page = alloc_pages(gfp_mask, order);
1415 	if (!page)
1416 		return 0;
1417 	return (unsigned long) page_address(page);
1418 }
1419 
1420 EXPORT_SYMBOL(__get_free_pages);
1421 
1422 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1423 {
1424 	struct page * page;
1425 
1426 	/*
1427 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1428 	 * a highmem page
1429 	 */
1430 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1431 
1432 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1433 	if (page)
1434 		return (unsigned long) page_address(page);
1435 	return 0;
1436 }
1437 
1438 EXPORT_SYMBOL(get_zeroed_page);
1439 
1440 void __pagevec_free(struct pagevec *pvec)
1441 {
1442 	int i = pagevec_count(pvec);
1443 
1444 	while (--i >= 0)
1445 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1446 }
1447 
1448 fastcall void __free_pages(struct page *page, unsigned int order)
1449 {
1450 	if (put_page_testzero(page)) {
1451 		if (order == 0)
1452 			free_hot_page(page);
1453 		else
1454 			__free_pages_ok(page, order);
1455 	}
1456 }
1457 
1458 EXPORT_SYMBOL(__free_pages);
1459 
1460 fastcall void free_pages(unsigned long addr, unsigned int order)
1461 {
1462 	if (addr != 0) {
1463 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1464 		__free_pages(virt_to_page((void *)addr), order);
1465 	}
1466 }
1467 
1468 EXPORT_SYMBOL(free_pages);
1469 
1470 static unsigned int nr_free_zone_pages(int offset)
1471 {
1472 	/* Just pick one node, since fallback list is circular */
1473 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1474 	unsigned int sum = 0;
1475 
1476 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1477 	struct zone **zonep = zonelist->zones;
1478 	struct zone *zone;
1479 
1480 	for (zone = *zonep++; zone; zone = *zonep++) {
1481 		unsigned long size = zone->present_pages;
1482 		unsigned long high = zone->pages_high;
1483 		if (size > high)
1484 			sum += size - high;
1485 	}
1486 
1487 	return sum;
1488 }
1489 
1490 /*
1491  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1492  */
1493 unsigned int nr_free_buffer_pages(void)
1494 {
1495 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1496 }
1497 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1498 
1499 /*
1500  * Amount of free RAM allocatable within all zones
1501  */
1502 unsigned int nr_free_pagecache_pages(void)
1503 {
1504 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1505 }
1506 
1507 static inline void show_node(struct zone *zone)
1508 {
1509 	if (NUMA_BUILD)
1510 		printk("Node %d ", zone_to_nid(zone));
1511 }
1512 
1513 void si_meminfo(struct sysinfo *val)
1514 {
1515 	val->totalram = totalram_pages;
1516 	val->sharedram = 0;
1517 	val->freeram = global_page_state(NR_FREE_PAGES);
1518 	val->bufferram = nr_blockdev_pages();
1519 	val->totalhigh = totalhigh_pages;
1520 	val->freehigh = nr_free_highpages();
1521 	val->mem_unit = PAGE_SIZE;
1522 }
1523 
1524 EXPORT_SYMBOL(si_meminfo);
1525 
1526 #ifdef CONFIG_NUMA
1527 void si_meminfo_node(struct sysinfo *val, int nid)
1528 {
1529 	pg_data_t *pgdat = NODE_DATA(nid);
1530 
1531 	val->totalram = pgdat->node_present_pages;
1532 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1533 #ifdef CONFIG_HIGHMEM
1534 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1535 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1536 			NR_FREE_PAGES);
1537 #else
1538 	val->totalhigh = 0;
1539 	val->freehigh = 0;
1540 #endif
1541 	val->mem_unit = PAGE_SIZE;
1542 }
1543 #endif
1544 
1545 #define K(x) ((x) << (PAGE_SHIFT-10))
1546 
1547 /*
1548  * Show free area list (used inside shift_scroll-lock stuff)
1549  * We also calculate the percentage fragmentation. We do this by counting the
1550  * memory on each free list with the exception of the first item on the list.
1551  */
1552 void show_free_areas(void)
1553 {
1554 	int cpu;
1555 	struct zone *zone;
1556 
1557 	for_each_zone(zone) {
1558 		if (!populated_zone(zone))
1559 			continue;
1560 
1561 		show_node(zone);
1562 		printk("%s per-cpu:\n", zone->name);
1563 
1564 		for_each_online_cpu(cpu) {
1565 			struct per_cpu_pageset *pageset;
1566 
1567 			pageset = zone_pcp(zone, cpu);
1568 
1569 			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1570 			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1571 			       cpu, pageset->pcp[0].high,
1572 			       pageset->pcp[0].batch, pageset->pcp[0].count,
1573 			       pageset->pcp[1].high, pageset->pcp[1].batch,
1574 			       pageset->pcp[1].count);
1575 		}
1576 	}
1577 
1578 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1579 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1580 		global_page_state(NR_ACTIVE),
1581 		global_page_state(NR_INACTIVE),
1582 		global_page_state(NR_FILE_DIRTY),
1583 		global_page_state(NR_WRITEBACK),
1584 		global_page_state(NR_UNSTABLE_NFS),
1585 		global_page_state(NR_FREE_PAGES),
1586 		global_page_state(NR_SLAB_RECLAIMABLE) +
1587 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1588 		global_page_state(NR_FILE_MAPPED),
1589 		global_page_state(NR_PAGETABLE),
1590 		global_page_state(NR_BOUNCE));
1591 
1592 	for_each_zone(zone) {
1593 		int i;
1594 
1595 		if (!populated_zone(zone))
1596 			continue;
1597 
1598 		show_node(zone);
1599 		printk("%s"
1600 			" free:%lukB"
1601 			" min:%lukB"
1602 			" low:%lukB"
1603 			" high:%lukB"
1604 			" active:%lukB"
1605 			" inactive:%lukB"
1606 			" present:%lukB"
1607 			" pages_scanned:%lu"
1608 			" all_unreclaimable? %s"
1609 			"\n",
1610 			zone->name,
1611 			K(zone_page_state(zone, NR_FREE_PAGES)),
1612 			K(zone->pages_min),
1613 			K(zone->pages_low),
1614 			K(zone->pages_high),
1615 			K(zone_page_state(zone, NR_ACTIVE)),
1616 			K(zone_page_state(zone, NR_INACTIVE)),
1617 			K(zone->present_pages),
1618 			zone->pages_scanned,
1619 			(zone->all_unreclaimable ? "yes" : "no")
1620 			);
1621 		printk("lowmem_reserve[]:");
1622 		for (i = 0; i < MAX_NR_ZONES; i++)
1623 			printk(" %lu", zone->lowmem_reserve[i]);
1624 		printk("\n");
1625 	}
1626 
1627 	for_each_zone(zone) {
1628  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1629 
1630 		if (!populated_zone(zone))
1631 			continue;
1632 
1633 		show_node(zone);
1634 		printk("%s: ", zone->name);
1635 
1636 		spin_lock_irqsave(&zone->lock, flags);
1637 		for (order = 0; order < MAX_ORDER; order++) {
1638 			nr[order] = zone->free_area[order].nr_free;
1639 			total += nr[order] << order;
1640 		}
1641 		spin_unlock_irqrestore(&zone->lock, flags);
1642 		for (order = 0; order < MAX_ORDER; order++)
1643 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1644 		printk("= %lukB\n", K(total));
1645 	}
1646 
1647 	show_swap_cache_info();
1648 }
1649 
1650 /*
1651  * Builds allocation fallback zone lists.
1652  *
1653  * Add all populated zones of a node to the zonelist.
1654  */
1655 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1656 				int nr_zones, enum zone_type zone_type)
1657 {
1658 	struct zone *zone;
1659 
1660 	BUG_ON(zone_type >= MAX_NR_ZONES);
1661 	zone_type++;
1662 
1663 	do {
1664 		zone_type--;
1665 		zone = pgdat->node_zones + zone_type;
1666 		if (populated_zone(zone)) {
1667 			zonelist->zones[nr_zones++] = zone;
1668 			check_highest_zone(zone_type);
1669 		}
1670 
1671 	} while (zone_type);
1672 	return nr_zones;
1673 }
1674 
1675 
1676 /*
1677  *  zonelist_order:
1678  *  0 = automatic detection of better ordering.
1679  *  1 = order by ([node] distance, -zonetype)
1680  *  2 = order by (-zonetype, [node] distance)
1681  *
1682  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1683  *  the same zonelist. So only NUMA can configure this param.
1684  */
1685 #define ZONELIST_ORDER_DEFAULT  0
1686 #define ZONELIST_ORDER_NODE     1
1687 #define ZONELIST_ORDER_ZONE     2
1688 
1689 /* zonelist order in the kernel.
1690  * set_zonelist_order() will set this to NODE or ZONE.
1691  */
1692 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1693 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1694 
1695 
1696 #ifdef CONFIG_NUMA
1697 /* The value user specified ....changed by config */
1698 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1699 /* string for sysctl */
1700 #define NUMA_ZONELIST_ORDER_LEN	16
1701 char numa_zonelist_order[16] = "default";
1702 
1703 /*
1704  * interface for configure zonelist ordering.
1705  * command line option "numa_zonelist_order"
1706  *	= "[dD]efault	- default, automatic configuration.
1707  *	= "[nN]ode 	- order by node locality, then by zone within node
1708  *	= "[zZ]one      - order by zone, then by locality within zone
1709  */
1710 
1711 static int __parse_numa_zonelist_order(char *s)
1712 {
1713 	if (*s == 'd' || *s == 'D') {
1714 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1715 	} else if (*s == 'n' || *s == 'N') {
1716 		user_zonelist_order = ZONELIST_ORDER_NODE;
1717 	} else if (*s == 'z' || *s == 'Z') {
1718 		user_zonelist_order = ZONELIST_ORDER_ZONE;
1719 	} else {
1720 		printk(KERN_WARNING
1721 			"Ignoring invalid numa_zonelist_order value:  "
1722 			"%s\n", s);
1723 		return -EINVAL;
1724 	}
1725 	return 0;
1726 }
1727 
1728 static __init int setup_numa_zonelist_order(char *s)
1729 {
1730 	if (s)
1731 		return __parse_numa_zonelist_order(s);
1732 	return 0;
1733 }
1734 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1735 
1736 /*
1737  * sysctl handler for numa_zonelist_order
1738  */
1739 int numa_zonelist_order_handler(ctl_table *table, int write,
1740 		struct file *file, void __user *buffer, size_t *length,
1741 		loff_t *ppos)
1742 {
1743 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1744 	int ret;
1745 
1746 	if (write)
1747 		strncpy(saved_string, (char*)table->data,
1748 			NUMA_ZONELIST_ORDER_LEN);
1749 	ret = proc_dostring(table, write, file, buffer, length, ppos);
1750 	if (ret)
1751 		return ret;
1752 	if (write) {
1753 		int oldval = user_zonelist_order;
1754 		if (__parse_numa_zonelist_order((char*)table->data)) {
1755 			/*
1756 			 * bogus value.  restore saved string
1757 			 */
1758 			strncpy((char*)table->data, saved_string,
1759 				NUMA_ZONELIST_ORDER_LEN);
1760 			user_zonelist_order = oldval;
1761 		} else if (oldval != user_zonelist_order)
1762 			build_all_zonelists();
1763 	}
1764 	return 0;
1765 }
1766 
1767 
1768 #define MAX_NODE_LOAD (num_online_nodes())
1769 static int node_load[MAX_NUMNODES];
1770 
1771 /**
1772  * find_next_best_node - find the next node that should appear in a given node's fallback list
1773  * @node: node whose fallback list we're appending
1774  * @used_node_mask: nodemask_t of already used nodes
1775  *
1776  * We use a number of factors to determine which is the next node that should
1777  * appear on a given node's fallback list.  The node should not have appeared
1778  * already in @node's fallback list, and it should be the next closest node
1779  * according to the distance array (which contains arbitrary distance values
1780  * from each node to each node in the system), and should also prefer nodes
1781  * with no CPUs, since presumably they'll have very little allocation pressure
1782  * on them otherwise.
1783  * It returns -1 if no node is found.
1784  */
1785 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1786 {
1787 	int n, val;
1788 	int min_val = INT_MAX;
1789 	int best_node = -1;
1790 
1791 	/* Use the local node if we haven't already */
1792 	if (!node_isset(node, *used_node_mask)) {
1793 		node_set(node, *used_node_mask);
1794 		return node;
1795 	}
1796 
1797 	for_each_online_node(n) {
1798 		cpumask_t tmp;
1799 
1800 		/* Don't want a node to appear more than once */
1801 		if (node_isset(n, *used_node_mask))
1802 			continue;
1803 
1804 		/* Use the distance array to find the distance */
1805 		val = node_distance(node, n);
1806 
1807 		/* Penalize nodes under us ("prefer the next node") */
1808 		val += (n < node);
1809 
1810 		/* Give preference to headless and unused nodes */
1811 		tmp = node_to_cpumask(n);
1812 		if (!cpus_empty(tmp))
1813 			val += PENALTY_FOR_NODE_WITH_CPUS;
1814 
1815 		/* Slight preference for less loaded node */
1816 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1817 		val += node_load[n];
1818 
1819 		if (val < min_val) {
1820 			min_val = val;
1821 			best_node = n;
1822 		}
1823 	}
1824 
1825 	if (best_node >= 0)
1826 		node_set(best_node, *used_node_mask);
1827 
1828 	return best_node;
1829 }
1830 
1831 
1832 /*
1833  * Build zonelists ordered by node and zones within node.
1834  * This results in maximum locality--normal zone overflows into local
1835  * DMA zone, if any--but risks exhausting DMA zone.
1836  */
1837 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1838 {
1839 	enum zone_type i;
1840 	int j;
1841 	struct zonelist *zonelist;
1842 
1843 	for (i = 0; i < MAX_NR_ZONES; i++) {
1844 		zonelist = pgdat->node_zonelists + i;
1845 		for (j = 0; zonelist->zones[j] != NULL; j++)
1846 			;
1847  		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1848 		zonelist->zones[j] = NULL;
1849 	}
1850 }
1851 
1852 /*
1853  * Build zonelists ordered by zone and nodes within zones.
1854  * This results in conserving DMA zone[s] until all Normal memory is
1855  * exhausted, but results in overflowing to remote node while memory
1856  * may still exist in local DMA zone.
1857  */
1858 static int node_order[MAX_NUMNODES];
1859 
1860 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1861 {
1862 	enum zone_type i;
1863 	int pos, j, node;
1864 	int zone_type;		/* needs to be signed */
1865 	struct zone *z;
1866 	struct zonelist *zonelist;
1867 
1868 	for (i = 0; i < MAX_NR_ZONES; i++) {
1869 		zonelist = pgdat->node_zonelists + i;
1870 		pos = 0;
1871 		for (zone_type = i; zone_type >= 0; zone_type--) {
1872 			for (j = 0; j < nr_nodes; j++) {
1873 				node = node_order[j];
1874 				z = &NODE_DATA(node)->node_zones[zone_type];
1875 				if (populated_zone(z)) {
1876 					zonelist->zones[pos++] = z;
1877 					check_highest_zone(zone_type);
1878 				}
1879 			}
1880 		}
1881 		zonelist->zones[pos] = NULL;
1882 	}
1883 }
1884 
1885 static int default_zonelist_order(void)
1886 {
1887 	int nid, zone_type;
1888 	unsigned long low_kmem_size,total_size;
1889 	struct zone *z;
1890 	int average_size;
1891 	/*
1892          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1893 	 * If they are really small and used heavily, the system can fall
1894 	 * into OOM very easily.
1895 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1896 	 */
1897 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1898 	low_kmem_size = 0;
1899 	total_size = 0;
1900 	for_each_online_node(nid) {
1901 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1902 			z = &NODE_DATA(nid)->node_zones[zone_type];
1903 			if (populated_zone(z)) {
1904 				if (zone_type < ZONE_NORMAL)
1905 					low_kmem_size += z->present_pages;
1906 				total_size += z->present_pages;
1907 			}
1908 		}
1909 	}
1910 	if (!low_kmem_size ||  /* there are no DMA area. */
1911 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1912 		return ZONELIST_ORDER_NODE;
1913 	/*
1914 	 * look into each node's config.
1915   	 * If there is a node whose DMA/DMA32 memory is very big area on
1916  	 * local memory, NODE_ORDER may be suitable.
1917          */
1918 	average_size = total_size / (num_online_nodes() + 1);
1919 	for_each_online_node(nid) {
1920 		low_kmem_size = 0;
1921 		total_size = 0;
1922 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1923 			z = &NODE_DATA(nid)->node_zones[zone_type];
1924 			if (populated_zone(z)) {
1925 				if (zone_type < ZONE_NORMAL)
1926 					low_kmem_size += z->present_pages;
1927 				total_size += z->present_pages;
1928 			}
1929 		}
1930 		if (low_kmem_size &&
1931 		    total_size > average_size && /* ignore small node */
1932 		    low_kmem_size > total_size * 70/100)
1933 			return ZONELIST_ORDER_NODE;
1934 	}
1935 	return ZONELIST_ORDER_ZONE;
1936 }
1937 
1938 static void set_zonelist_order(void)
1939 {
1940 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1941 		current_zonelist_order = default_zonelist_order();
1942 	else
1943 		current_zonelist_order = user_zonelist_order;
1944 }
1945 
1946 static void build_zonelists(pg_data_t *pgdat)
1947 {
1948 	int j, node, load;
1949 	enum zone_type i;
1950 	nodemask_t used_mask;
1951 	int local_node, prev_node;
1952 	struct zonelist *zonelist;
1953 	int order = current_zonelist_order;
1954 
1955 	/* initialize zonelists */
1956 	for (i = 0; i < MAX_NR_ZONES; i++) {
1957 		zonelist = pgdat->node_zonelists + i;
1958 		zonelist->zones[0] = NULL;
1959 	}
1960 
1961 	/* NUMA-aware ordering of nodes */
1962 	local_node = pgdat->node_id;
1963 	load = num_online_nodes();
1964 	prev_node = local_node;
1965 	nodes_clear(used_mask);
1966 
1967 	memset(node_load, 0, sizeof(node_load));
1968 	memset(node_order, 0, sizeof(node_order));
1969 	j = 0;
1970 
1971 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1972 		int distance = node_distance(local_node, node);
1973 
1974 		/*
1975 		 * If another node is sufficiently far away then it is better
1976 		 * to reclaim pages in a zone before going off node.
1977 		 */
1978 		if (distance > RECLAIM_DISTANCE)
1979 			zone_reclaim_mode = 1;
1980 
1981 		/*
1982 		 * We don't want to pressure a particular node.
1983 		 * So adding penalty to the first node in same
1984 		 * distance group to make it round-robin.
1985 		 */
1986 		if (distance != node_distance(local_node, prev_node))
1987 			node_load[node] = load;
1988 
1989 		prev_node = node;
1990 		load--;
1991 		if (order == ZONELIST_ORDER_NODE)
1992 			build_zonelists_in_node_order(pgdat, node);
1993 		else
1994 			node_order[j++] = node;	/* remember order */
1995 	}
1996 
1997 	if (order == ZONELIST_ORDER_ZONE) {
1998 		/* calculate node order -- i.e., DMA last! */
1999 		build_zonelists_in_zone_order(pgdat, j);
2000 	}
2001 }
2002 
2003 /* Construct the zonelist performance cache - see further mmzone.h */
2004 static void build_zonelist_cache(pg_data_t *pgdat)
2005 {
2006 	int i;
2007 
2008 	for (i = 0; i < MAX_NR_ZONES; i++) {
2009 		struct zonelist *zonelist;
2010 		struct zonelist_cache *zlc;
2011 		struct zone **z;
2012 
2013 		zonelist = pgdat->node_zonelists + i;
2014 		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2015 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2016 		for (z = zonelist->zones; *z; z++)
2017 			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2018 	}
2019 }
2020 
2021 
2022 #else	/* CONFIG_NUMA */
2023 
2024 static void set_zonelist_order(void)
2025 {
2026 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2027 }
2028 
2029 static void build_zonelists(pg_data_t *pgdat)
2030 {
2031 	int node, local_node;
2032 	enum zone_type i,j;
2033 
2034 	local_node = pgdat->node_id;
2035 	for (i = 0; i < MAX_NR_ZONES; i++) {
2036 		struct zonelist *zonelist;
2037 
2038 		zonelist = pgdat->node_zonelists + i;
2039 
2040  		j = build_zonelists_node(pgdat, zonelist, 0, i);
2041  		/*
2042  		 * Now we build the zonelist so that it contains the zones
2043  		 * of all the other nodes.
2044  		 * We don't want to pressure a particular node, so when
2045  		 * building the zones for node N, we make sure that the
2046  		 * zones coming right after the local ones are those from
2047  		 * node N+1 (modulo N)
2048  		 */
2049 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2050 			if (!node_online(node))
2051 				continue;
2052 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2053 		}
2054 		for (node = 0; node < local_node; node++) {
2055 			if (!node_online(node))
2056 				continue;
2057 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2058 		}
2059 
2060 		zonelist->zones[j] = NULL;
2061 	}
2062 }
2063 
2064 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2065 static void build_zonelist_cache(pg_data_t *pgdat)
2066 {
2067 	int i;
2068 
2069 	for (i = 0; i < MAX_NR_ZONES; i++)
2070 		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2071 }
2072 
2073 #endif	/* CONFIG_NUMA */
2074 
2075 /* return values int ....just for stop_machine_run() */
2076 static int __build_all_zonelists(void *dummy)
2077 {
2078 	int nid;
2079 
2080 	for_each_online_node(nid) {
2081 		build_zonelists(NODE_DATA(nid));
2082 		build_zonelist_cache(NODE_DATA(nid));
2083 	}
2084 	return 0;
2085 }
2086 
2087 void build_all_zonelists(void)
2088 {
2089 	set_zonelist_order();
2090 
2091 	if (system_state == SYSTEM_BOOTING) {
2092 		__build_all_zonelists(NULL);
2093 		cpuset_init_current_mems_allowed();
2094 	} else {
2095 		/* we have to stop all cpus to guaranntee there is no user
2096 		   of zonelist */
2097 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2098 		/* cpuset refresh routine should be here */
2099 	}
2100 	vm_total_pages = nr_free_pagecache_pages();
2101 	printk("Built %i zonelists in %s order.  Total pages: %ld\n",
2102 			num_online_nodes(),
2103 			zonelist_order_name[current_zonelist_order],
2104 			vm_total_pages);
2105 #ifdef CONFIG_NUMA
2106 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2107 #endif
2108 }
2109 
2110 /*
2111  * Helper functions to size the waitqueue hash table.
2112  * Essentially these want to choose hash table sizes sufficiently
2113  * large so that collisions trying to wait on pages are rare.
2114  * But in fact, the number of active page waitqueues on typical
2115  * systems is ridiculously low, less than 200. So this is even
2116  * conservative, even though it seems large.
2117  *
2118  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2119  * waitqueues, i.e. the size of the waitq table given the number of pages.
2120  */
2121 #define PAGES_PER_WAITQUEUE	256
2122 
2123 #ifndef CONFIG_MEMORY_HOTPLUG
2124 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2125 {
2126 	unsigned long size = 1;
2127 
2128 	pages /= PAGES_PER_WAITQUEUE;
2129 
2130 	while (size < pages)
2131 		size <<= 1;
2132 
2133 	/*
2134 	 * Once we have dozens or even hundreds of threads sleeping
2135 	 * on IO we've got bigger problems than wait queue collision.
2136 	 * Limit the size of the wait table to a reasonable size.
2137 	 */
2138 	size = min(size, 4096UL);
2139 
2140 	return max(size, 4UL);
2141 }
2142 #else
2143 /*
2144  * A zone's size might be changed by hot-add, so it is not possible to determine
2145  * a suitable size for its wait_table.  So we use the maximum size now.
2146  *
2147  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2148  *
2149  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2150  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2151  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2152  *
2153  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2154  * or more by the traditional way. (See above).  It equals:
2155  *
2156  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2157  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2158  *    powerpc (64K page size)             : =  (32G +16M)byte.
2159  */
2160 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2161 {
2162 	return 4096UL;
2163 }
2164 #endif
2165 
2166 /*
2167  * This is an integer logarithm so that shifts can be used later
2168  * to extract the more random high bits from the multiplicative
2169  * hash function before the remainder is taken.
2170  */
2171 static inline unsigned long wait_table_bits(unsigned long size)
2172 {
2173 	return ffz(~size);
2174 }
2175 
2176 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2177 
2178 /*
2179  * Initially all pages are reserved - free ones are freed
2180  * up by free_all_bootmem() once the early boot process is
2181  * done. Non-atomic initialization, single-pass.
2182  */
2183 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2184 		unsigned long start_pfn, enum memmap_context context)
2185 {
2186 	struct page *page;
2187 	unsigned long end_pfn = start_pfn + size;
2188 	unsigned long pfn;
2189 
2190 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2191 		/*
2192 		 * There can be holes in boot-time mem_map[]s
2193 		 * handed to this function.  They do not
2194 		 * exist on hotplugged memory.
2195 		 */
2196 		if (context == MEMMAP_EARLY) {
2197 			if (!early_pfn_valid(pfn))
2198 				continue;
2199 			if (!early_pfn_in_nid(pfn, nid))
2200 				continue;
2201 		}
2202 		page = pfn_to_page(pfn);
2203 		set_page_links(page, zone, nid, pfn);
2204 		init_page_count(page);
2205 		reset_page_mapcount(page);
2206 		SetPageReserved(page);
2207 		INIT_LIST_HEAD(&page->lru);
2208 #ifdef WANT_PAGE_VIRTUAL
2209 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2210 		if (!is_highmem_idx(zone))
2211 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2212 #endif
2213 	}
2214 }
2215 
2216 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2217 				struct zone *zone, unsigned long size)
2218 {
2219 	int order;
2220 	for (order = 0; order < MAX_ORDER ; order++) {
2221 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
2222 		zone->free_area[order].nr_free = 0;
2223 	}
2224 }
2225 
2226 #ifndef __HAVE_ARCH_MEMMAP_INIT
2227 #define memmap_init(size, nid, zone, start_pfn) \
2228 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2229 #endif
2230 
2231 static int __devinit zone_batchsize(struct zone *zone)
2232 {
2233 	int batch;
2234 
2235 	/*
2236 	 * The per-cpu-pages pools are set to around 1000th of the
2237 	 * size of the zone.  But no more than 1/2 of a meg.
2238 	 *
2239 	 * OK, so we don't know how big the cache is.  So guess.
2240 	 */
2241 	batch = zone->present_pages / 1024;
2242 	if (batch * PAGE_SIZE > 512 * 1024)
2243 		batch = (512 * 1024) / PAGE_SIZE;
2244 	batch /= 4;		/* We effectively *= 4 below */
2245 	if (batch < 1)
2246 		batch = 1;
2247 
2248 	/*
2249 	 * Clamp the batch to a 2^n - 1 value. Having a power
2250 	 * of 2 value was found to be more likely to have
2251 	 * suboptimal cache aliasing properties in some cases.
2252 	 *
2253 	 * For example if 2 tasks are alternately allocating
2254 	 * batches of pages, one task can end up with a lot
2255 	 * of pages of one half of the possible page colors
2256 	 * and the other with pages of the other colors.
2257 	 */
2258 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2259 
2260 	return batch;
2261 }
2262 
2263 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2264 {
2265 	struct per_cpu_pages *pcp;
2266 
2267 	memset(p, 0, sizeof(*p));
2268 
2269 	pcp = &p->pcp[0];		/* hot */
2270 	pcp->count = 0;
2271 	pcp->high = 6 * batch;
2272 	pcp->batch = max(1UL, 1 * batch);
2273 	INIT_LIST_HEAD(&pcp->list);
2274 
2275 	pcp = &p->pcp[1];		/* cold*/
2276 	pcp->count = 0;
2277 	pcp->high = 2 * batch;
2278 	pcp->batch = max(1UL, batch/2);
2279 	INIT_LIST_HEAD(&pcp->list);
2280 }
2281 
2282 /*
2283  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2284  * to the value high for the pageset p.
2285  */
2286 
2287 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2288 				unsigned long high)
2289 {
2290 	struct per_cpu_pages *pcp;
2291 
2292 	pcp = &p->pcp[0]; /* hot list */
2293 	pcp->high = high;
2294 	pcp->batch = max(1UL, high/4);
2295 	if ((high/4) > (PAGE_SHIFT * 8))
2296 		pcp->batch = PAGE_SHIFT * 8;
2297 }
2298 
2299 
2300 #ifdef CONFIG_NUMA
2301 /*
2302  * Boot pageset table. One per cpu which is going to be used for all
2303  * zones and all nodes. The parameters will be set in such a way
2304  * that an item put on a list will immediately be handed over to
2305  * the buddy list. This is safe since pageset manipulation is done
2306  * with interrupts disabled.
2307  *
2308  * Some NUMA counter updates may also be caught by the boot pagesets.
2309  *
2310  * The boot_pagesets must be kept even after bootup is complete for
2311  * unused processors and/or zones. They do play a role for bootstrapping
2312  * hotplugged processors.
2313  *
2314  * zoneinfo_show() and maybe other functions do
2315  * not check if the processor is online before following the pageset pointer.
2316  * Other parts of the kernel may not check if the zone is available.
2317  */
2318 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2319 
2320 /*
2321  * Dynamically allocate memory for the
2322  * per cpu pageset array in struct zone.
2323  */
2324 static int __cpuinit process_zones(int cpu)
2325 {
2326 	struct zone *zone, *dzone;
2327 
2328 	for_each_zone(zone) {
2329 
2330 		if (!populated_zone(zone))
2331 			continue;
2332 
2333 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2334 					 GFP_KERNEL, cpu_to_node(cpu));
2335 		if (!zone_pcp(zone, cpu))
2336 			goto bad;
2337 
2338 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2339 
2340 		if (percpu_pagelist_fraction)
2341 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2342 			 	(zone->present_pages / percpu_pagelist_fraction));
2343 	}
2344 
2345 	return 0;
2346 bad:
2347 	for_each_zone(dzone) {
2348 		if (!populated_zone(dzone))
2349 			continue;
2350 		if (dzone == zone)
2351 			break;
2352 		kfree(zone_pcp(dzone, cpu));
2353 		zone_pcp(dzone, cpu) = NULL;
2354 	}
2355 	return -ENOMEM;
2356 }
2357 
2358 static inline void free_zone_pagesets(int cpu)
2359 {
2360 	struct zone *zone;
2361 
2362 	for_each_zone(zone) {
2363 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2364 
2365 		/* Free per_cpu_pageset if it is slab allocated */
2366 		if (pset != &boot_pageset[cpu])
2367 			kfree(pset);
2368 		zone_pcp(zone, cpu) = NULL;
2369 	}
2370 }
2371 
2372 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2373 		unsigned long action,
2374 		void *hcpu)
2375 {
2376 	int cpu = (long)hcpu;
2377 	int ret = NOTIFY_OK;
2378 
2379 	switch (action) {
2380 	case CPU_UP_PREPARE:
2381 	case CPU_UP_PREPARE_FROZEN:
2382 		if (process_zones(cpu))
2383 			ret = NOTIFY_BAD;
2384 		break;
2385 	case CPU_UP_CANCELED:
2386 	case CPU_UP_CANCELED_FROZEN:
2387 	case CPU_DEAD:
2388 	case CPU_DEAD_FROZEN:
2389 		free_zone_pagesets(cpu);
2390 		break;
2391 	default:
2392 		break;
2393 	}
2394 	return ret;
2395 }
2396 
2397 static struct notifier_block __cpuinitdata pageset_notifier =
2398 	{ &pageset_cpuup_callback, NULL, 0 };
2399 
2400 void __init setup_per_cpu_pageset(void)
2401 {
2402 	int err;
2403 
2404 	/* Initialize per_cpu_pageset for cpu 0.
2405 	 * A cpuup callback will do this for every cpu
2406 	 * as it comes online
2407 	 */
2408 	err = process_zones(smp_processor_id());
2409 	BUG_ON(err);
2410 	register_cpu_notifier(&pageset_notifier);
2411 }
2412 
2413 #endif
2414 
2415 static noinline __init_refok
2416 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2417 {
2418 	int i;
2419 	struct pglist_data *pgdat = zone->zone_pgdat;
2420 	size_t alloc_size;
2421 
2422 	/*
2423 	 * The per-page waitqueue mechanism uses hashed waitqueues
2424 	 * per zone.
2425 	 */
2426 	zone->wait_table_hash_nr_entries =
2427 		 wait_table_hash_nr_entries(zone_size_pages);
2428 	zone->wait_table_bits =
2429 		wait_table_bits(zone->wait_table_hash_nr_entries);
2430 	alloc_size = zone->wait_table_hash_nr_entries
2431 					* sizeof(wait_queue_head_t);
2432 
2433  	if (system_state == SYSTEM_BOOTING) {
2434 		zone->wait_table = (wait_queue_head_t *)
2435 			alloc_bootmem_node(pgdat, alloc_size);
2436 	} else {
2437 		/*
2438 		 * This case means that a zone whose size was 0 gets new memory
2439 		 * via memory hot-add.
2440 		 * But it may be the case that a new node was hot-added.  In
2441 		 * this case vmalloc() will not be able to use this new node's
2442 		 * memory - this wait_table must be initialized to use this new
2443 		 * node itself as well.
2444 		 * To use this new node's memory, further consideration will be
2445 		 * necessary.
2446 		 */
2447 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2448 	}
2449 	if (!zone->wait_table)
2450 		return -ENOMEM;
2451 
2452 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2453 		init_waitqueue_head(zone->wait_table + i);
2454 
2455 	return 0;
2456 }
2457 
2458 static __meminit void zone_pcp_init(struct zone *zone)
2459 {
2460 	int cpu;
2461 	unsigned long batch = zone_batchsize(zone);
2462 
2463 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2464 #ifdef CONFIG_NUMA
2465 		/* Early boot. Slab allocator not functional yet */
2466 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2467 		setup_pageset(&boot_pageset[cpu],0);
2468 #else
2469 		setup_pageset(zone_pcp(zone,cpu), batch);
2470 #endif
2471 	}
2472 	if (zone->present_pages)
2473 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2474 			zone->name, zone->present_pages, batch);
2475 }
2476 
2477 __meminit int init_currently_empty_zone(struct zone *zone,
2478 					unsigned long zone_start_pfn,
2479 					unsigned long size,
2480 					enum memmap_context context)
2481 {
2482 	struct pglist_data *pgdat = zone->zone_pgdat;
2483 	int ret;
2484 	ret = zone_wait_table_init(zone, size);
2485 	if (ret)
2486 		return ret;
2487 	pgdat->nr_zones = zone_idx(zone) + 1;
2488 
2489 	zone->zone_start_pfn = zone_start_pfn;
2490 
2491 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2492 
2493 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2494 
2495 	return 0;
2496 }
2497 
2498 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2499 /*
2500  * Basic iterator support. Return the first range of PFNs for a node
2501  * Note: nid == MAX_NUMNODES returns first region regardless of node
2502  */
2503 static int __meminit first_active_region_index_in_nid(int nid)
2504 {
2505 	int i;
2506 
2507 	for (i = 0; i < nr_nodemap_entries; i++)
2508 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2509 			return i;
2510 
2511 	return -1;
2512 }
2513 
2514 /*
2515  * Basic iterator support. Return the next active range of PFNs for a node
2516  * Note: nid == MAX_NUMNODES returns next region regardles of node
2517  */
2518 static int __meminit next_active_region_index_in_nid(int index, int nid)
2519 {
2520 	for (index = index + 1; index < nr_nodemap_entries; index++)
2521 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2522 			return index;
2523 
2524 	return -1;
2525 }
2526 
2527 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2528 /*
2529  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2530  * Architectures may implement their own version but if add_active_range()
2531  * was used and there are no special requirements, this is a convenient
2532  * alternative
2533  */
2534 int __meminit early_pfn_to_nid(unsigned long pfn)
2535 {
2536 	int i;
2537 
2538 	for (i = 0; i < nr_nodemap_entries; i++) {
2539 		unsigned long start_pfn = early_node_map[i].start_pfn;
2540 		unsigned long end_pfn = early_node_map[i].end_pfn;
2541 
2542 		if (start_pfn <= pfn && pfn < end_pfn)
2543 			return early_node_map[i].nid;
2544 	}
2545 
2546 	return 0;
2547 }
2548 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2549 
2550 /* Basic iterator support to walk early_node_map[] */
2551 #define for_each_active_range_index_in_nid(i, nid) \
2552 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2553 				i = next_active_region_index_in_nid(i, nid))
2554 
2555 /**
2556  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2557  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2558  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2559  *
2560  * If an architecture guarantees that all ranges registered with
2561  * add_active_ranges() contain no holes and may be freed, this
2562  * this function may be used instead of calling free_bootmem() manually.
2563  */
2564 void __init free_bootmem_with_active_regions(int nid,
2565 						unsigned long max_low_pfn)
2566 {
2567 	int i;
2568 
2569 	for_each_active_range_index_in_nid(i, nid) {
2570 		unsigned long size_pages = 0;
2571 		unsigned long end_pfn = early_node_map[i].end_pfn;
2572 
2573 		if (early_node_map[i].start_pfn >= max_low_pfn)
2574 			continue;
2575 
2576 		if (end_pfn > max_low_pfn)
2577 			end_pfn = max_low_pfn;
2578 
2579 		size_pages = end_pfn - early_node_map[i].start_pfn;
2580 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2581 				PFN_PHYS(early_node_map[i].start_pfn),
2582 				size_pages << PAGE_SHIFT);
2583 	}
2584 }
2585 
2586 /**
2587  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2588  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2589  *
2590  * If an architecture guarantees that all ranges registered with
2591  * add_active_ranges() contain no holes and may be freed, this
2592  * function may be used instead of calling memory_present() manually.
2593  */
2594 void __init sparse_memory_present_with_active_regions(int nid)
2595 {
2596 	int i;
2597 
2598 	for_each_active_range_index_in_nid(i, nid)
2599 		memory_present(early_node_map[i].nid,
2600 				early_node_map[i].start_pfn,
2601 				early_node_map[i].end_pfn);
2602 }
2603 
2604 /**
2605  * push_node_boundaries - Push node boundaries to at least the requested boundary
2606  * @nid: The nid of the node to push the boundary for
2607  * @start_pfn: The start pfn of the node
2608  * @end_pfn: The end pfn of the node
2609  *
2610  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2611  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2612  * be hotplugged even though no physical memory exists. This function allows
2613  * an arch to push out the node boundaries so mem_map is allocated that can
2614  * be used later.
2615  */
2616 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2617 void __init push_node_boundaries(unsigned int nid,
2618 		unsigned long start_pfn, unsigned long end_pfn)
2619 {
2620 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2621 			nid, start_pfn, end_pfn);
2622 
2623 	/* Initialise the boundary for this node if necessary */
2624 	if (node_boundary_end_pfn[nid] == 0)
2625 		node_boundary_start_pfn[nid] = -1UL;
2626 
2627 	/* Update the boundaries */
2628 	if (node_boundary_start_pfn[nid] > start_pfn)
2629 		node_boundary_start_pfn[nid] = start_pfn;
2630 	if (node_boundary_end_pfn[nid] < end_pfn)
2631 		node_boundary_end_pfn[nid] = end_pfn;
2632 }
2633 
2634 /* If necessary, push the node boundary out for reserve hotadd */
2635 static void __meminit account_node_boundary(unsigned int nid,
2636 		unsigned long *start_pfn, unsigned long *end_pfn)
2637 {
2638 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2639 			nid, *start_pfn, *end_pfn);
2640 
2641 	/* Return if boundary information has not been provided */
2642 	if (node_boundary_end_pfn[nid] == 0)
2643 		return;
2644 
2645 	/* Check the boundaries and update if necessary */
2646 	if (node_boundary_start_pfn[nid] < *start_pfn)
2647 		*start_pfn = node_boundary_start_pfn[nid];
2648 	if (node_boundary_end_pfn[nid] > *end_pfn)
2649 		*end_pfn = node_boundary_end_pfn[nid];
2650 }
2651 #else
2652 void __init push_node_boundaries(unsigned int nid,
2653 		unsigned long start_pfn, unsigned long end_pfn) {}
2654 
2655 static void __meminit account_node_boundary(unsigned int nid,
2656 		unsigned long *start_pfn, unsigned long *end_pfn) {}
2657 #endif
2658 
2659 
2660 /**
2661  * get_pfn_range_for_nid - Return the start and end page frames for a node
2662  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2663  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2664  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2665  *
2666  * It returns the start and end page frame of a node based on information
2667  * provided by an arch calling add_active_range(). If called for a node
2668  * with no available memory, a warning is printed and the start and end
2669  * PFNs will be 0.
2670  */
2671 void __meminit get_pfn_range_for_nid(unsigned int nid,
2672 			unsigned long *start_pfn, unsigned long *end_pfn)
2673 {
2674 	int i;
2675 	*start_pfn = -1UL;
2676 	*end_pfn = 0;
2677 
2678 	for_each_active_range_index_in_nid(i, nid) {
2679 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2680 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2681 	}
2682 
2683 	if (*start_pfn == -1UL) {
2684 		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2685 		*start_pfn = 0;
2686 	}
2687 
2688 	/* Push the node boundaries out if requested */
2689 	account_node_boundary(nid, start_pfn, end_pfn);
2690 }
2691 
2692 /*
2693  * This finds a zone that can be used for ZONE_MOVABLE pages. The
2694  * assumption is made that zones within a node are ordered in monotonic
2695  * increasing memory addresses so that the "highest" populated zone is used
2696  */
2697 void __init find_usable_zone_for_movable(void)
2698 {
2699 	int zone_index;
2700 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2701 		if (zone_index == ZONE_MOVABLE)
2702 			continue;
2703 
2704 		if (arch_zone_highest_possible_pfn[zone_index] >
2705 				arch_zone_lowest_possible_pfn[zone_index])
2706 			break;
2707 	}
2708 
2709 	VM_BUG_ON(zone_index == -1);
2710 	movable_zone = zone_index;
2711 }
2712 
2713 /*
2714  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2715  * because it is sized independant of architecture. Unlike the other zones,
2716  * the starting point for ZONE_MOVABLE is not fixed. It may be different
2717  * in each node depending on the size of each node and how evenly kernelcore
2718  * is distributed. This helper function adjusts the zone ranges
2719  * provided by the architecture for a given node by using the end of the
2720  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2721  * zones within a node are in order of monotonic increases memory addresses
2722  */
2723 void __meminit adjust_zone_range_for_zone_movable(int nid,
2724 					unsigned long zone_type,
2725 					unsigned long node_start_pfn,
2726 					unsigned long node_end_pfn,
2727 					unsigned long *zone_start_pfn,
2728 					unsigned long *zone_end_pfn)
2729 {
2730 	/* Only adjust if ZONE_MOVABLE is on this node */
2731 	if (zone_movable_pfn[nid]) {
2732 		/* Size ZONE_MOVABLE */
2733 		if (zone_type == ZONE_MOVABLE) {
2734 			*zone_start_pfn = zone_movable_pfn[nid];
2735 			*zone_end_pfn = min(node_end_pfn,
2736 				arch_zone_highest_possible_pfn[movable_zone]);
2737 
2738 		/* Adjust for ZONE_MOVABLE starting within this range */
2739 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2740 				*zone_end_pfn > zone_movable_pfn[nid]) {
2741 			*zone_end_pfn = zone_movable_pfn[nid];
2742 
2743 		/* Check if this whole range is within ZONE_MOVABLE */
2744 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
2745 			*zone_start_pfn = *zone_end_pfn;
2746 	}
2747 }
2748 
2749 /*
2750  * Return the number of pages a zone spans in a node, including holes
2751  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2752  */
2753 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2754 					unsigned long zone_type,
2755 					unsigned long *ignored)
2756 {
2757 	unsigned long node_start_pfn, node_end_pfn;
2758 	unsigned long zone_start_pfn, zone_end_pfn;
2759 
2760 	/* Get the start and end of the node and zone */
2761 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2762 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2763 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2764 	adjust_zone_range_for_zone_movable(nid, zone_type,
2765 				node_start_pfn, node_end_pfn,
2766 				&zone_start_pfn, &zone_end_pfn);
2767 
2768 	/* Check that this node has pages within the zone's required range */
2769 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2770 		return 0;
2771 
2772 	/* Move the zone boundaries inside the node if necessary */
2773 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2774 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2775 
2776 	/* Return the spanned pages */
2777 	return zone_end_pfn - zone_start_pfn;
2778 }
2779 
2780 /*
2781  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2782  * then all holes in the requested range will be accounted for.
2783  */
2784 unsigned long __meminit __absent_pages_in_range(int nid,
2785 				unsigned long range_start_pfn,
2786 				unsigned long range_end_pfn)
2787 {
2788 	int i = 0;
2789 	unsigned long prev_end_pfn = 0, hole_pages = 0;
2790 	unsigned long start_pfn;
2791 
2792 	/* Find the end_pfn of the first active range of pfns in the node */
2793 	i = first_active_region_index_in_nid(nid);
2794 	if (i == -1)
2795 		return 0;
2796 
2797 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2798 
2799 	/* Account for ranges before physical memory on this node */
2800 	if (early_node_map[i].start_pfn > range_start_pfn)
2801 		hole_pages = prev_end_pfn - range_start_pfn;
2802 
2803 	/* Find all holes for the zone within the node */
2804 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2805 
2806 		/* No need to continue if prev_end_pfn is outside the zone */
2807 		if (prev_end_pfn >= range_end_pfn)
2808 			break;
2809 
2810 		/* Make sure the end of the zone is not within the hole */
2811 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2812 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2813 
2814 		/* Update the hole size cound and move on */
2815 		if (start_pfn > range_start_pfn) {
2816 			BUG_ON(prev_end_pfn > start_pfn);
2817 			hole_pages += start_pfn - prev_end_pfn;
2818 		}
2819 		prev_end_pfn = early_node_map[i].end_pfn;
2820 	}
2821 
2822 	/* Account for ranges past physical memory on this node */
2823 	if (range_end_pfn > prev_end_pfn)
2824 		hole_pages += range_end_pfn -
2825 				max(range_start_pfn, prev_end_pfn);
2826 
2827 	return hole_pages;
2828 }
2829 
2830 /**
2831  * absent_pages_in_range - Return number of page frames in holes within a range
2832  * @start_pfn: The start PFN to start searching for holes
2833  * @end_pfn: The end PFN to stop searching for holes
2834  *
2835  * It returns the number of pages frames in memory holes within a range.
2836  */
2837 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2838 							unsigned long end_pfn)
2839 {
2840 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2841 }
2842 
2843 /* Return the number of page frames in holes in a zone on a node */
2844 static unsigned long __meminit zone_absent_pages_in_node(int nid,
2845 					unsigned long zone_type,
2846 					unsigned long *ignored)
2847 {
2848 	unsigned long node_start_pfn, node_end_pfn;
2849 	unsigned long zone_start_pfn, zone_end_pfn;
2850 
2851 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2852 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2853 							node_start_pfn);
2854 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2855 							node_end_pfn);
2856 
2857 	adjust_zone_range_for_zone_movable(nid, zone_type,
2858 			node_start_pfn, node_end_pfn,
2859 			&zone_start_pfn, &zone_end_pfn);
2860 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2861 }
2862 
2863 #else
2864 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2865 					unsigned long zone_type,
2866 					unsigned long *zones_size)
2867 {
2868 	return zones_size[zone_type];
2869 }
2870 
2871 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2872 						unsigned long zone_type,
2873 						unsigned long *zholes_size)
2874 {
2875 	if (!zholes_size)
2876 		return 0;
2877 
2878 	return zholes_size[zone_type];
2879 }
2880 
2881 #endif
2882 
2883 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2884 		unsigned long *zones_size, unsigned long *zholes_size)
2885 {
2886 	unsigned long realtotalpages, totalpages = 0;
2887 	enum zone_type i;
2888 
2889 	for (i = 0; i < MAX_NR_ZONES; i++)
2890 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2891 								zones_size);
2892 	pgdat->node_spanned_pages = totalpages;
2893 
2894 	realtotalpages = totalpages;
2895 	for (i = 0; i < MAX_NR_ZONES; i++)
2896 		realtotalpages -=
2897 			zone_absent_pages_in_node(pgdat->node_id, i,
2898 								zholes_size);
2899 	pgdat->node_present_pages = realtotalpages;
2900 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2901 							realtotalpages);
2902 }
2903 
2904 /*
2905  * Set up the zone data structures:
2906  *   - mark all pages reserved
2907  *   - mark all memory queues empty
2908  *   - clear the memory bitmaps
2909  */
2910 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2911 		unsigned long *zones_size, unsigned long *zholes_size)
2912 {
2913 	enum zone_type j;
2914 	int nid = pgdat->node_id;
2915 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2916 	int ret;
2917 
2918 	pgdat_resize_init(pgdat);
2919 	pgdat->nr_zones = 0;
2920 	init_waitqueue_head(&pgdat->kswapd_wait);
2921 	pgdat->kswapd_max_order = 0;
2922 
2923 	for (j = 0; j < MAX_NR_ZONES; j++) {
2924 		struct zone *zone = pgdat->node_zones + j;
2925 		unsigned long size, realsize, memmap_pages;
2926 
2927 		size = zone_spanned_pages_in_node(nid, j, zones_size);
2928 		realsize = size - zone_absent_pages_in_node(nid, j,
2929 								zholes_size);
2930 
2931 		/*
2932 		 * Adjust realsize so that it accounts for how much memory
2933 		 * is used by this zone for memmap. This affects the watermark
2934 		 * and per-cpu initialisations
2935 		 */
2936 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2937 		if (realsize >= memmap_pages) {
2938 			realsize -= memmap_pages;
2939 			printk(KERN_DEBUG
2940 				"  %s zone: %lu pages used for memmap\n",
2941 				zone_names[j], memmap_pages);
2942 		} else
2943 			printk(KERN_WARNING
2944 				"  %s zone: %lu pages exceeds realsize %lu\n",
2945 				zone_names[j], memmap_pages, realsize);
2946 
2947 		/* Account for reserved pages */
2948 		if (j == 0 && realsize > dma_reserve) {
2949 			realsize -= dma_reserve;
2950 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
2951 					zone_names[0], dma_reserve);
2952 		}
2953 
2954 		if (!is_highmem_idx(j))
2955 			nr_kernel_pages += realsize;
2956 		nr_all_pages += realsize;
2957 
2958 		zone->spanned_pages = size;
2959 		zone->present_pages = realsize;
2960 #ifdef CONFIG_NUMA
2961 		zone->node = nid;
2962 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2963 						/ 100;
2964 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2965 #endif
2966 		zone->name = zone_names[j];
2967 		spin_lock_init(&zone->lock);
2968 		spin_lock_init(&zone->lru_lock);
2969 		zone_seqlock_init(zone);
2970 		zone->zone_pgdat = pgdat;
2971 
2972 		zone->prev_priority = DEF_PRIORITY;
2973 
2974 		zone_pcp_init(zone);
2975 		INIT_LIST_HEAD(&zone->active_list);
2976 		INIT_LIST_HEAD(&zone->inactive_list);
2977 		zone->nr_scan_active = 0;
2978 		zone->nr_scan_inactive = 0;
2979 		zap_zone_vm_stats(zone);
2980 		atomic_set(&zone->reclaim_in_progress, 0);
2981 		if (!size)
2982 			continue;
2983 
2984 		ret = init_currently_empty_zone(zone, zone_start_pfn,
2985 						size, MEMMAP_EARLY);
2986 		BUG_ON(ret);
2987 		zone_start_pfn += size;
2988 	}
2989 }
2990 
2991 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2992 {
2993 	/* Skip empty nodes */
2994 	if (!pgdat->node_spanned_pages)
2995 		return;
2996 
2997 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2998 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2999 	if (!pgdat->node_mem_map) {
3000 		unsigned long size, start, end;
3001 		struct page *map;
3002 
3003 		/*
3004 		 * The zone's endpoints aren't required to be MAX_ORDER
3005 		 * aligned but the node_mem_map endpoints must be in order
3006 		 * for the buddy allocator to function correctly.
3007 		 */
3008 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3009 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3010 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3011 		size =  (end - start) * sizeof(struct page);
3012 		map = alloc_remap(pgdat->node_id, size);
3013 		if (!map)
3014 			map = alloc_bootmem_node(pgdat, size);
3015 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3016 	}
3017 #ifndef CONFIG_NEED_MULTIPLE_NODES
3018 	/*
3019 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3020 	 */
3021 	if (pgdat == NODE_DATA(0)) {
3022 		mem_map = NODE_DATA(0)->node_mem_map;
3023 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3024 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3025 			mem_map -= pgdat->node_start_pfn;
3026 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3027 	}
3028 #endif
3029 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3030 }
3031 
3032 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3033 		unsigned long *zones_size, unsigned long node_start_pfn,
3034 		unsigned long *zholes_size)
3035 {
3036 	pgdat->node_id = nid;
3037 	pgdat->node_start_pfn = node_start_pfn;
3038 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3039 
3040 	alloc_node_mem_map(pgdat);
3041 
3042 	free_area_init_core(pgdat, zones_size, zholes_size);
3043 }
3044 
3045 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3046 
3047 #if MAX_NUMNODES > 1
3048 /*
3049  * Figure out the number of possible node ids.
3050  */
3051 static void __init setup_nr_node_ids(void)
3052 {
3053 	unsigned int node;
3054 	unsigned int highest = 0;
3055 
3056 	for_each_node_mask(node, node_possible_map)
3057 		highest = node;
3058 	nr_node_ids = highest + 1;
3059 }
3060 #else
3061 static inline void setup_nr_node_ids(void)
3062 {
3063 }
3064 #endif
3065 
3066 /**
3067  * add_active_range - Register a range of PFNs backed by physical memory
3068  * @nid: The node ID the range resides on
3069  * @start_pfn: The start PFN of the available physical memory
3070  * @end_pfn: The end PFN of the available physical memory
3071  *
3072  * These ranges are stored in an early_node_map[] and later used by
3073  * free_area_init_nodes() to calculate zone sizes and holes. If the
3074  * range spans a memory hole, it is up to the architecture to ensure
3075  * the memory is not freed by the bootmem allocator. If possible
3076  * the range being registered will be merged with existing ranges.
3077  */
3078 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3079 						unsigned long end_pfn)
3080 {
3081 	int i;
3082 
3083 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3084 			  "%d entries of %d used\n",
3085 			  nid, start_pfn, end_pfn,
3086 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3087 
3088 	/* Merge with existing active regions if possible */
3089 	for (i = 0; i < nr_nodemap_entries; i++) {
3090 		if (early_node_map[i].nid != nid)
3091 			continue;
3092 
3093 		/* Skip if an existing region covers this new one */
3094 		if (start_pfn >= early_node_map[i].start_pfn &&
3095 				end_pfn <= early_node_map[i].end_pfn)
3096 			return;
3097 
3098 		/* Merge forward if suitable */
3099 		if (start_pfn <= early_node_map[i].end_pfn &&
3100 				end_pfn > early_node_map[i].end_pfn) {
3101 			early_node_map[i].end_pfn = end_pfn;
3102 			return;
3103 		}
3104 
3105 		/* Merge backward if suitable */
3106 		if (start_pfn < early_node_map[i].end_pfn &&
3107 				end_pfn >= early_node_map[i].start_pfn) {
3108 			early_node_map[i].start_pfn = start_pfn;
3109 			return;
3110 		}
3111 	}
3112 
3113 	/* Check that early_node_map is large enough */
3114 	if (i >= MAX_ACTIVE_REGIONS) {
3115 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3116 							MAX_ACTIVE_REGIONS);
3117 		return;
3118 	}
3119 
3120 	early_node_map[i].nid = nid;
3121 	early_node_map[i].start_pfn = start_pfn;
3122 	early_node_map[i].end_pfn = end_pfn;
3123 	nr_nodemap_entries = i + 1;
3124 }
3125 
3126 /**
3127  * shrink_active_range - Shrink an existing registered range of PFNs
3128  * @nid: The node id the range is on that should be shrunk
3129  * @old_end_pfn: The old end PFN of the range
3130  * @new_end_pfn: The new PFN of the range
3131  *
3132  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3133  * The map is kept at the end physical page range that has already been
3134  * registered with add_active_range(). This function allows an arch to shrink
3135  * an existing registered range.
3136  */
3137 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3138 						unsigned long new_end_pfn)
3139 {
3140 	int i;
3141 
3142 	/* Find the old active region end and shrink */
3143 	for_each_active_range_index_in_nid(i, nid)
3144 		if (early_node_map[i].end_pfn == old_end_pfn) {
3145 			early_node_map[i].end_pfn = new_end_pfn;
3146 			break;
3147 		}
3148 }
3149 
3150 /**
3151  * remove_all_active_ranges - Remove all currently registered regions
3152  *
3153  * During discovery, it may be found that a table like SRAT is invalid
3154  * and an alternative discovery method must be used. This function removes
3155  * all currently registered regions.
3156  */
3157 void __init remove_all_active_ranges(void)
3158 {
3159 	memset(early_node_map, 0, sizeof(early_node_map));
3160 	nr_nodemap_entries = 0;
3161 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3162 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3163 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3164 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3165 }
3166 
3167 /* Compare two active node_active_regions */
3168 static int __init cmp_node_active_region(const void *a, const void *b)
3169 {
3170 	struct node_active_region *arange = (struct node_active_region *)a;
3171 	struct node_active_region *brange = (struct node_active_region *)b;
3172 
3173 	/* Done this way to avoid overflows */
3174 	if (arange->start_pfn > brange->start_pfn)
3175 		return 1;
3176 	if (arange->start_pfn < brange->start_pfn)
3177 		return -1;
3178 
3179 	return 0;
3180 }
3181 
3182 /* sort the node_map by start_pfn */
3183 static void __init sort_node_map(void)
3184 {
3185 	sort(early_node_map, (size_t)nr_nodemap_entries,
3186 			sizeof(struct node_active_region),
3187 			cmp_node_active_region, NULL);
3188 }
3189 
3190 /* Find the lowest pfn for a node */
3191 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3192 {
3193 	int i;
3194 	unsigned long min_pfn = ULONG_MAX;
3195 
3196 	/* Assuming a sorted map, the first range found has the starting pfn */
3197 	for_each_active_range_index_in_nid(i, nid)
3198 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3199 
3200 	if (min_pfn == ULONG_MAX) {
3201 		printk(KERN_WARNING
3202 			"Could not find start_pfn for node %lu\n", nid);
3203 		return 0;
3204 	}
3205 
3206 	return min_pfn;
3207 }
3208 
3209 /**
3210  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3211  *
3212  * It returns the minimum PFN based on information provided via
3213  * add_active_range().
3214  */
3215 unsigned long __init find_min_pfn_with_active_regions(void)
3216 {
3217 	return find_min_pfn_for_node(MAX_NUMNODES);
3218 }
3219 
3220 /**
3221  * find_max_pfn_with_active_regions - Find the maximum PFN registered
3222  *
3223  * It returns the maximum PFN based on information provided via
3224  * add_active_range().
3225  */
3226 unsigned long __init find_max_pfn_with_active_regions(void)
3227 {
3228 	int i;
3229 	unsigned long max_pfn = 0;
3230 
3231 	for (i = 0; i < nr_nodemap_entries; i++)
3232 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3233 
3234 	return max_pfn;
3235 }
3236 
3237 unsigned long __init early_calculate_totalpages(void)
3238 {
3239 	int i;
3240 	unsigned long totalpages = 0;
3241 
3242 	for (i = 0; i < nr_nodemap_entries; i++)
3243 		totalpages += early_node_map[i].end_pfn -
3244 						early_node_map[i].start_pfn;
3245 
3246 	return totalpages;
3247 }
3248 
3249 /*
3250  * Find the PFN the Movable zone begins in each node. Kernel memory
3251  * is spread evenly between nodes as long as the nodes have enough
3252  * memory. When they don't, some nodes will have more kernelcore than
3253  * others
3254  */
3255 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3256 {
3257 	int i, nid;
3258 	unsigned long usable_startpfn;
3259 	unsigned long kernelcore_node, kernelcore_remaining;
3260 	int usable_nodes = num_online_nodes();
3261 
3262 	/*
3263 	 * If movablecore was specified, calculate what size of
3264 	 * kernelcore that corresponds so that memory usable for
3265 	 * any allocation type is evenly spread. If both kernelcore
3266 	 * and movablecore are specified, then the value of kernelcore
3267 	 * will be used for required_kernelcore if it's greater than
3268 	 * what movablecore would have allowed.
3269 	 */
3270 	if (required_movablecore) {
3271 		unsigned long totalpages = early_calculate_totalpages();
3272 		unsigned long corepages;
3273 
3274 		/*
3275 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3276 		 * was requested by the user
3277 		 */
3278 		required_movablecore =
3279 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3280 		corepages = totalpages - required_movablecore;
3281 
3282 		required_kernelcore = max(required_kernelcore, corepages);
3283 	}
3284 
3285 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3286 	if (!required_kernelcore)
3287 		return;
3288 
3289 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3290 	find_usable_zone_for_movable();
3291 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3292 
3293 restart:
3294 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3295 	kernelcore_node = required_kernelcore / usable_nodes;
3296 	for_each_online_node(nid) {
3297 		/*
3298 		 * Recalculate kernelcore_node if the division per node
3299 		 * now exceeds what is necessary to satisfy the requested
3300 		 * amount of memory for the kernel
3301 		 */
3302 		if (required_kernelcore < kernelcore_node)
3303 			kernelcore_node = required_kernelcore / usable_nodes;
3304 
3305 		/*
3306 		 * As the map is walked, we track how much memory is usable
3307 		 * by the kernel using kernelcore_remaining. When it is
3308 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3309 		 */
3310 		kernelcore_remaining = kernelcore_node;
3311 
3312 		/* Go through each range of PFNs within this node */
3313 		for_each_active_range_index_in_nid(i, nid) {
3314 			unsigned long start_pfn, end_pfn;
3315 			unsigned long size_pages;
3316 
3317 			start_pfn = max(early_node_map[i].start_pfn,
3318 						zone_movable_pfn[nid]);
3319 			end_pfn = early_node_map[i].end_pfn;
3320 			if (start_pfn >= end_pfn)
3321 				continue;
3322 
3323 			/* Account for what is only usable for kernelcore */
3324 			if (start_pfn < usable_startpfn) {
3325 				unsigned long kernel_pages;
3326 				kernel_pages = min(end_pfn, usable_startpfn)
3327 								- start_pfn;
3328 
3329 				kernelcore_remaining -= min(kernel_pages,
3330 							kernelcore_remaining);
3331 				required_kernelcore -= min(kernel_pages,
3332 							required_kernelcore);
3333 
3334 				/* Continue if range is now fully accounted */
3335 				if (end_pfn <= usable_startpfn) {
3336 
3337 					/*
3338 					 * Push zone_movable_pfn to the end so
3339 					 * that if we have to rebalance
3340 					 * kernelcore across nodes, we will
3341 					 * not double account here
3342 					 */
3343 					zone_movable_pfn[nid] = end_pfn;
3344 					continue;
3345 				}
3346 				start_pfn = usable_startpfn;
3347 			}
3348 
3349 			/*
3350 			 * The usable PFN range for ZONE_MOVABLE is from
3351 			 * start_pfn->end_pfn. Calculate size_pages as the
3352 			 * number of pages used as kernelcore
3353 			 */
3354 			size_pages = end_pfn - start_pfn;
3355 			if (size_pages > kernelcore_remaining)
3356 				size_pages = kernelcore_remaining;
3357 			zone_movable_pfn[nid] = start_pfn + size_pages;
3358 
3359 			/*
3360 			 * Some kernelcore has been met, update counts and
3361 			 * break if the kernelcore for this node has been
3362 			 * satisified
3363 			 */
3364 			required_kernelcore -= min(required_kernelcore,
3365 								size_pages);
3366 			kernelcore_remaining -= size_pages;
3367 			if (!kernelcore_remaining)
3368 				break;
3369 		}
3370 	}
3371 
3372 	/*
3373 	 * If there is still required_kernelcore, we do another pass with one
3374 	 * less node in the count. This will push zone_movable_pfn[nid] further
3375 	 * along on the nodes that still have memory until kernelcore is
3376 	 * satisified
3377 	 */
3378 	usable_nodes--;
3379 	if (usable_nodes && required_kernelcore > usable_nodes)
3380 		goto restart;
3381 
3382 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3383 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3384 		zone_movable_pfn[nid] =
3385 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3386 }
3387 
3388 /**
3389  * free_area_init_nodes - Initialise all pg_data_t and zone data
3390  * @max_zone_pfn: an array of max PFNs for each zone
3391  *
3392  * This will call free_area_init_node() for each active node in the system.
3393  * Using the page ranges provided by add_active_range(), the size of each
3394  * zone in each node and their holes is calculated. If the maximum PFN
3395  * between two adjacent zones match, it is assumed that the zone is empty.
3396  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3397  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3398  * starts where the previous one ended. For example, ZONE_DMA32 starts
3399  * at arch_max_dma_pfn.
3400  */
3401 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3402 {
3403 	unsigned long nid;
3404 	enum zone_type i;
3405 
3406 	/* Sort early_node_map as initialisation assumes it is sorted */
3407 	sort_node_map();
3408 
3409 	/* Record where the zone boundaries are */
3410 	memset(arch_zone_lowest_possible_pfn, 0,
3411 				sizeof(arch_zone_lowest_possible_pfn));
3412 	memset(arch_zone_highest_possible_pfn, 0,
3413 				sizeof(arch_zone_highest_possible_pfn));
3414 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3415 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3416 	for (i = 1; i < MAX_NR_ZONES; i++) {
3417 		if (i == ZONE_MOVABLE)
3418 			continue;
3419 		arch_zone_lowest_possible_pfn[i] =
3420 			arch_zone_highest_possible_pfn[i-1];
3421 		arch_zone_highest_possible_pfn[i] =
3422 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3423 	}
3424 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3425 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3426 
3427 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3428 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3429 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3430 
3431 	/* Print out the zone ranges */
3432 	printk("Zone PFN ranges:\n");
3433 	for (i = 0; i < MAX_NR_ZONES; i++) {
3434 		if (i == ZONE_MOVABLE)
3435 			continue;
3436 		printk("  %-8s %8lu -> %8lu\n",
3437 				zone_names[i],
3438 				arch_zone_lowest_possible_pfn[i],
3439 				arch_zone_highest_possible_pfn[i]);
3440 	}
3441 
3442 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3443 	printk("Movable zone start PFN for each node\n");
3444 	for (i = 0; i < MAX_NUMNODES; i++) {
3445 		if (zone_movable_pfn[i])
3446 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3447 	}
3448 
3449 	/* Print out the early_node_map[] */
3450 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3451 	for (i = 0; i < nr_nodemap_entries; i++)
3452 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3453 						early_node_map[i].start_pfn,
3454 						early_node_map[i].end_pfn);
3455 
3456 	/* Initialise every node */
3457 	setup_nr_node_ids();
3458 	for_each_online_node(nid) {
3459 		pg_data_t *pgdat = NODE_DATA(nid);
3460 		free_area_init_node(nid, pgdat, NULL,
3461 				find_min_pfn_for_node(nid), NULL);
3462 	}
3463 }
3464 
3465 static int __init cmdline_parse_core(char *p, unsigned long *core)
3466 {
3467 	unsigned long long coremem;
3468 	if (!p)
3469 		return -EINVAL;
3470 
3471 	coremem = memparse(p, &p);
3472 	*core = coremem >> PAGE_SHIFT;
3473 
3474 	/* Paranoid check that UL is enough for the coremem value */
3475 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3476 
3477 	return 0;
3478 }
3479 
3480 /*
3481  * kernelcore=size sets the amount of memory for use for allocations that
3482  * cannot be reclaimed or migrated.
3483  */
3484 static int __init cmdline_parse_kernelcore(char *p)
3485 {
3486 	return cmdline_parse_core(p, &required_kernelcore);
3487 }
3488 
3489 /*
3490  * movablecore=size sets the amount of memory for use for allocations that
3491  * can be reclaimed or migrated.
3492  */
3493 static int __init cmdline_parse_movablecore(char *p)
3494 {
3495 	return cmdline_parse_core(p, &required_movablecore);
3496 }
3497 
3498 early_param("kernelcore", cmdline_parse_kernelcore);
3499 early_param("movablecore", cmdline_parse_movablecore);
3500 
3501 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3502 
3503 /**
3504  * set_dma_reserve - set the specified number of pages reserved in the first zone
3505  * @new_dma_reserve: The number of pages to mark reserved
3506  *
3507  * The per-cpu batchsize and zone watermarks are determined by present_pages.
3508  * In the DMA zone, a significant percentage may be consumed by kernel image
3509  * and other unfreeable allocations which can skew the watermarks badly. This
3510  * function may optionally be used to account for unfreeable pages in the
3511  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3512  * smaller per-cpu batchsize.
3513  */
3514 void __init set_dma_reserve(unsigned long new_dma_reserve)
3515 {
3516 	dma_reserve = new_dma_reserve;
3517 }
3518 
3519 #ifndef CONFIG_NEED_MULTIPLE_NODES
3520 static bootmem_data_t contig_bootmem_data;
3521 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3522 
3523 EXPORT_SYMBOL(contig_page_data);
3524 #endif
3525 
3526 void __init free_area_init(unsigned long *zones_size)
3527 {
3528 	free_area_init_node(0, NODE_DATA(0), zones_size,
3529 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3530 }
3531 
3532 static int page_alloc_cpu_notify(struct notifier_block *self,
3533 				 unsigned long action, void *hcpu)
3534 {
3535 	int cpu = (unsigned long)hcpu;
3536 
3537 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3538 		local_irq_disable();
3539 		__drain_pages(cpu);
3540 		vm_events_fold_cpu(cpu);
3541 		local_irq_enable();
3542 		refresh_cpu_vm_stats(cpu);
3543 	}
3544 	return NOTIFY_OK;
3545 }
3546 
3547 void __init page_alloc_init(void)
3548 {
3549 	hotcpu_notifier(page_alloc_cpu_notify, 0);
3550 }
3551 
3552 /*
3553  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3554  *	or min_free_kbytes changes.
3555  */
3556 static void calculate_totalreserve_pages(void)
3557 {
3558 	struct pglist_data *pgdat;
3559 	unsigned long reserve_pages = 0;
3560 	enum zone_type i, j;
3561 
3562 	for_each_online_pgdat(pgdat) {
3563 		for (i = 0; i < MAX_NR_ZONES; i++) {
3564 			struct zone *zone = pgdat->node_zones + i;
3565 			unsigned long max = 0;
3566 
3567 			/* Find valid and maximum lowmem_reserve in the zone */
3568 			for (j = i; j < MAX_NR_ZONES; j++) {
3569 				if (zone->lowmem_reserve[j] > max)
3570 					max = zone->lowmem_reserve[j];
3571 			}
3572 
3573 			/* we treat pages_high as reserved pages. */
3574 			max += zone->pages_high;
3575 
3576 			if (max > zone->present_pages)
3577 				max = zone->present_pages;
3578 			reserve_pages += max;
3579 		}
3580 	}
3581 	totalreserve_pages = reserve_pages;
3582 }
3583 
3584 /*
3585  * setup_per_zone_lowmem_reserve - called whenever
3586  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3587  *	has a correct pages reserved value, so an adequate number of
3588  *	pages are left in the zone after a successful __alloc_pages().
3589  */
3590 static void setup_per_zone_lowmem_reserve(void)
3591 {
3592 	struct pglist_data *pgdat;
3593 	enum zone_type j, idx;
3594 
3595 	for_each_online_pgdat(pgdat) {
3596 		for (j = 0; j < MAX_NR_ZONES; j++) {
3597 			struct zone *zone = pgdat->node_zones + j;
3598 			unsigned long present_pages = zone->present_pages;
3599 
3600 			zone->lowmem_reserve[j] = 0;
3601 
3602 			idx = j;
3603 			while (idx) {
3604 				struct zone *lower_zone;
3605 
3606 				idx--;
3607 
3608 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3609 					sysctl_lowmem_reserve_ratio[idx] = 1;
3610 
3611 				lower_zone = pgdat->node_zones + idx;
3612 				lower_zone->lowmem_reserve[j] = present_pages /
3613 					sysctl_lowmem_reserve_ratio[idx];
3614 				present_pages += lower_zone->present_pages;
3615 			}
3616 		}
3617 	}
3618 
3619 	/* update totalreserve_pages */
3620 	calculate_totalreserve_pages();
3621 }
3622 
3623 /**
3624  * setup_per_zone_pages_min - called when min_free_kbytes changes.
3625  *
3626  * Ensures that the pages_{min,low,high} values for each zone are set correctly
3627  * with respect to min_free_kbytes.
3628  */
3629 void setup_per_zone_pages_min(void)
3630 {
3631 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3632 	unsigned long lowmem_pages = 0;
3633 	struct zone *zone;
3634 	unsigned long flags;
3635 
3636 	/* Calculate total number of !ZONE_HIGHMEM pages */
3637 	for_each_zone(zone) {
3638 		if (!is_highmem(zone))
3639 			lowmem_pages += zone->present_pages;
3640 	}
3641 
3642 	for_each_zone(zone) {
3643 		u64 tmp;
3644 
3645 		spin_lock_irqsave(&zone->lru_lock, flags);
3646 		tmp = (u64)pages_min * zone->present_pages;
3647 		do_div(tmp, lowmem_pages);
3648 		if (is_highmem(zone)) {
3649 			/*
3650 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3651 			 * need highmem pages, so cap pages_min to a small
3652 			 * value here.
3653 			 *
3654 			 * The (pages_high-pages_low) and (pages_low-pages_min)
3655 			 * deltas controls asynch page reclaim, and so should
3656 			 * not be capped for highmem.
3657 			 */
3658 			int min_pages;
3659 
3660 			min_pages = zone->present_pages / 1024;
3661 			if (min_pages < SWAP_CLUSTER_MAX)
3662 				min_pages = SWAP_CLUSTER_MAX;
3663 			if (min_pages > 128)
3664 				min_pages = 128;
3665 			zone->pages_min = min_pages;
3666 		} else {
3667 			/*
3668 			 * If it's a lowmem zone, reserve a number of pages
3669 			 * proportionate to the zone's size.
3670 			 */
3671 			zone->pages_min = tmp;
3672 		}
3673 
3674 		zone->pages_low   = zone->pages_min + (tmp >> 2);
3675 		zone->pages_high  = zone->pages_min + (tmp >> 1);
3676 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3677 	}
3678 
3679 	/* update totalreserve_pages */
3680 	calculate_totalreserve_pages();
3681 }
3682 
3683 /*
3684  * Initialise min_free_kbytes.
3685  *
3686  * For small machines we want it small (128k min).  For large machines
3687  * we want it large (64MB max).  But it is not linear, because network
3688  * bandwidth does not increase linearly with machine size.  We use
3689  *
3690  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3691  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3692  *
3693  * which yields
3694  *
3695  * 16MB:	512k
3696  * 32MB:	724k
3697  * 64MB:	1024k
3698  * 128MB:	1448k
3699  * 256MB:	2048k
3700  * 512MB:	2896k
3701  * 1024MB:	4096k
3702  * 2048MB:	5792k
3703  * 4096MB:	8192k
3704  * 8192MB:	11584k
3705  * 16384MB:	16384k
3706  */
3707 static int __init init_per_zone_pages_min(void)
3708 {
3709 	unsigned long lowmem_kbytes;
3710 
3711 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3712 
3713 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3714 	if (min_free_kbytes < 128)
3715 		min_free_kbytes = 128;
3716 	if (min_free_kbytes > 65536)
3717 		min_free_kbytes = 65536;
3718 	setup_per_zone_pages_min();
3719 	setup_per_zone_lowmem_reserve();
3720 	return 0;
3721 }
3722 module_init(init_per_zone_pages_min)
3723 
3724 /*
3725  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3726  *	that we can call two helper functions whenever min_free_kbytes
3727  *	changes.
3728  */
3729 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3730 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3731 {
3732 	proc_dointvec(table, write, file, buffer, length, ppos);
3733 	if (write)
3734 		setup_per_zone_pages_min();
3735 	return 0;
3736 }
3737 
3738 #ifdef CONFIG_NUMA
3739 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3740 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3741 {
3742 	struct zone *zone;
3743 	int rc;
3744 
3745 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3746 	if (rc)
3747 		return rc;
3748 
3749 	for_each_zone(zone)
3750 		zone->min_unmapped_pages = (zone->present_pages *
3751 				sysctl_min_unmapped_ratio) / 100;
3752 	return 0;
3753 }
3754 
3755 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3756 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3757 {
3758 	struct zone *zone;
3759 	int rc;
3760 
3761 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3762 	if (rc)
3763 		return rc;
3764 
3765 	for_each_zone(zone)
3766 		zone->min_slab_pages = (zone->present_pages *
3767 				sysctl_min_slab_ratio) / 100;
3768 	return 0;
3769 }
3770 #endif
3771 
3772 /*
3773  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3774  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3775  *	whenever sysctl_lowmem_reserve_ratio changes.
3776  *
3777  * The reserve ratio obviously has absolutely no relation with the
3778  * pages_min watermarks. The lowmem reserve ratio can only make sense
3779  * if in function of the boot time zone sizes.
3780  */
3781 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3782 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3783 {
3784 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3785 	setup_per_zone_lowmem_reserve();
3786 	return 0;
3787 }
3788 
3789 /*
3790  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3791  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3792  * can have before it gets flushed back to buddy allocator.
3793  */
3794 
3795 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3796 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3797 {
3798 	struct zone *zone;
3799 	unsigned int cpu;
3800 	int ret;
3801 
3802 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3803 	if (!write || (ret == -EINVAL))
3804 		return ret;
3805 	for_each_zone(zone) {
3806 		for_each_online_cpu(cpu) {
3807 			unsigned long  high;
3808 			high = zone->present_pages / percpu_pagelist_fraction;
3809 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3810 		}
3811 	}
3812 	return 0;
3813 }
3814 
3815 int hashdist = HASHDIST_DEFAULT;
3816 
3817 #ifdef CONFIG_NUMA
3818 static int __init set_hashdist(char *str)
3819 {
3820 	if (!str)
3821 		return 0;
3822 	hashdist = simple_strtoul(str, &str, 0);
3823 	return 1;
3824 }
3825 __setup("hashdist=", set_hashdist);
3826 #endif
3827 
3828 /*
3829  * allocate a large system hash table from bootmem
3830  * - it is assumed that the hash table must contain an exact power-of-2
3831  *   quantity of entries
3832  * - limit is the number of hash buckets, not the total allocation size
3833  */
3834 void *__init alloc_large_system_hash(const char *tablename,
3835 				     unsigned long bucketsize,
3836 				     unsigned long numentries,
3837 				     int scale,
3838 				     int flags,
3839 				     unsigned int *_hash_shift,
3840 				     unsigned int *_hash_mask,
3841 				     unsigned long limit)
3842 {
3843 	unsigned long long max = limit;
3844 	unsigned long log2qty, size;
3845 	void *table = NULL;
3846 
3847 	/* allow the kernel cmdline to have a say */
3848 	if (!numentries) {
3849 		/* round applicable memory size up to nearest megabyte */
3850 		numentries = nr_kernel_pages;
3851 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3852 		numentries >>= 20 - PAGE_SHIFT;
3853 		numentries <<= 20 - PAGE_SHIFT;
3854 
3855 		/* limit to 1 bucket per 2^scale bytes of low memory */
3856 		if (scale > PAGE_SHIFT)
3857 			numentries >>= (scale - PAGE_SHIFT);
3858 		else
3859 			numentries <<= (PAGE_SHIFT - scale);
3860 
3861 		/* Make sure we've got at least a 0-order allocation.. */
3862 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3863 			numentries = PAGE_SIZE / bucketsize;
3864 	}
3865 	numentries = roundup_pow_of_two(numentries);
3866 
3867 	/* limit allocation size to 1/16 total memory by default */
3868 	if (max == 0) {
3869 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3870 		do_div(max, bucketsize);
3871 	}
3872 
3873 	if (numentries > max)
3874 		numentries = max;
3875 
3876 	log2qty = ilog2(numentries);
3877 
3878 	do {
3879 		size = bucketsize << log2qty;
3880 		if (flags & HASH_EARLY)
3881 			table = alloc_bootmem(size);
3882 		else if (hashdist)
3883 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3884 		else {
3885 			unsigned long order;
3886 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3887 				;
3888 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3889 			/*
3890 			 * If bucketsize is not a power-of-two, we may free
3891 			 * some pages at the end of hash table.
3892 			 */
3893 			if (table) {
3894 				unsigned long alloc_end = (unsigned long)table +
3895 						(PAGE_SIZE << order);
3896 				unsigned long used = (unsigned long)table +
3897 						PAGE_ALIGN(size);
3898 				split_page(virt_to_page(table), order);
3899 				while (used < alloc_end) {
3900 					free_page(used);
3901 					used += PAGE_SIZE;
3902 				}
3903 			}
3904 		}
3905 	} while (!table && size > PAGE_SIZE && --log2qty);
3906 
3907 	if (!table)
3908 		panic("Failed to allocate %s hash table\n", tablename);
3909 
3910 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3911 	       tablename,
3912 	       (1U << log2qty),
3913 	       ilog2(size) - PAGE_SHIFT,
3914 	       size);
3915 
3916 	if (_hash_shift)
3917 		*_hash_shift = log2qty;
3918 	if (_hash_mask)
3919 		*_hash_mask = (1 << log2qty) - 1;
3920 
3921 	return table;
3922 }
3923 
3924 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3925 struct page *pfn_to_page(unsigned long pfn)
3926 {
3927 	return __pfn_to_page(pfn);
3928 }
3929 unsigned long page_to_pfn(struct page *page)
3930 {
3931 	return __page_to_pfn(page);
3932 }
3933 EXPORT_SYMBOL(pfn_to_page);
3934 EXPORT_SYMBOL(page_to_pfn);
3935 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3936 
3937 
3938