1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <trace/events/writeback.h> 38 39 /* 40 * Sleep at most 200ms at a time in balance_dirty_pages(). 41 */ 42 #define MAX_PAUSE max(HZ/5, 1) 43 44 /* 45 * Try to keep balance_dirty_pages() call intervals higher than this many pages 46 * by raising pause time to max_pause when falls below it. 47 */ 48 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 49 50 /* 51 * Estimate write bandwidth at 200ms intervals. 52 */ 53 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 54 55 #define RATELIMIT_CALC_SHIFT 10 56 57 /* 58 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 59 * will look to see if it needs to force writeback or throttling. 60 */ 61 static long ratelimit_pages = 32; 62 63 /* The following parameters are exported via /proc/sys/vm */ 64 65 /* 66 * Start background writeback (via writeback threads) at this percentage 67 */ 68 int dirty_background_ratio = 10; 69 70 /* 71 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 72 * dirty_background_ratio * the amount of dirtyable memory 73 */ 74 unsigned long dirty_background_bytes; 75 76 /* 77 * free highmem will not be subtracted from the total free memory 78 * for calculating free ratios if vm_highmem_is_dirtyable is true 79 */ 80 int vm_highmem_is_dirtyable; 81 82 /* 83 * The generator of dirty data starts writeback at this percentage 84 */ 85 int vm_dirty_ratio = 20; 86 87 /* 88 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 89 * vm_dirty_ratio * the amount of dirtyable memory 90 */ 91 unsigned long vm_dirty_bytes; 92 93 /* 94 * The interval between `kupdate'-style writebacks 95 */ 96 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 97 98 /* 99 * The longest time for which data is allowed to remain dirty 100 */ 101 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 102 103 /* 104 * Flag that makes the machine dump writes/reads and block dirtyings. 105 */ 106 int block_dump; 107 108 /* 109 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 110 * a full sync is triggered after this time elapses without any disk activity. 111 */ 112 int laptop_mode; 113 114 EXPORT_SYMBOL(laptop_mode); 115 116 /* End of sysctl-exported parameters */ 117 118 unsigned long global_dirty_limit; 119 120 /* 121 * Scale the writeback cache size proportional to the relative writeout speeds. 122 * 123 * We do this by keeping a floating proportion between BDIs, based on page 124 * writeback completions [end_page_writeback()]. Those devices that write out 125 * pages fastest will get the larger share, while the slower will get a smaller 126 * share. 127 * 128 * We use page writeout completions because we are interested in getting rid of 129 * dirty pages. Having them written out is the primary goal. 130 * 131 * We introduce a concept of time, a period over which we measure these events, 132 * because demand can/will vary over time. The length of this period itself is 133 * measured in page writeback completions. 134 * 135 */ 136 static struct prop_descriptor vm_completions; 137 138 /* 139 * Work out the current dirty-memory clamping and background writeout 140 * thresholds. 141 * 142 * The main aim here is to lower them aggressively if there is a lot of mapped 143 * memory around. To avoid stressing page reclaim with lots of unreclaimable 144 * pages. It is better to clamp down on writers than to start swapping, and 145 * performing lots of scanning. 146 * 147 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 148 * 149 * We don't permit the clamping level to fall below 5% - that is getting rather 150 * excessive. 151 * 152 * We make sure that the background writeout level is below the adjusted 153 * clamping level. 154 */ 155 156 /* 157 * In a memory zone, there is a certain amount of pages we consider 158 * available for the page cache, which is essentially the number of 159 * free and reclaimable pages, minus some zone reserves to protect 160 * lowmem and the ability to uphold the zone's watermarks without 161 * requiring writeback. 162 * 163 * This number of dirtyable pages is the base value of which the 164 * user-configurable dirty ratio is the effictive number of pages that 165 * are allowed to be actually dirtied. Per individual zone, or 166 * globally by using the sum of dirtyable pages over all zones. 167 * 168 * Because the user is allowed to specify the dirty limit globally as 169 * absolute number of bytes, calculating the per-zone dirty limit can 170 * require translating the configured limit into a percentage of 171 * global dirtyable memory first. 172 */ 173 174 static unsigned long highmem_dirtyable_memory(unsigned long total) 175 { 176 #ifdef CONFIG_HIGHMEM 177 int node; 178 unsigned long x = 0; 179 180 for_each_node_state(node, N_HIGH_MEMORY) { 181 struct zone *z = 182 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 183 184 x += zone_page_state(z, NR_FREE_PAGES) + 185 zone_reclaimable_pages(z) - z->dirty_balance_reserve; 186 } 187 /* 188 * Make sure that the number of highmem pages is never larger 189 * than the number of the total dirtyable memory. This can only 190 * occur in very strange VM situations but we want to make sure 191 * that this does not occur. 192 */ 193 return min(x, total); 194 #else 195 return 0; 196 #endif 197 } 198 199 /** 200 * global_dirtyable_memory - number of globally dirtyable pages 201 * 202 * Returns the global number of pages potentially available for dirty 203 * page cache. This is the base value for the global dirty limits. 204 */ 205 unsigned long global_dirtyable_memory(void) 206 { 207 unsigned long x; 208 209 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() - 210 dirty_balance_reserve; 211 212 if (!vm_highmem_is_dirtyable) 213 x -= highmem_dirtyable_memory(x); 214 215 return x + 1; /* Ensure that we never return 0 */ 216 } 217 218 /* 219 * global_dirty_limits - background-writeback and dirty-throttling thresholds 220 * 221 * Calculate the dirty thresholds based on sysctl parameters 222 * - vm.dirty_background_ratio or vm.dirty_background_bytes 223 * - vm.dirty_ratio or vm.dirty_bytes 224 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 225 * real-time tasks. 226 */ 227 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 228 { 229 unsigned long background; 230 unsigned long dirty; 231 unsigned long uninitialized_var(available_memory); 232 struct task_struct *tsk; 233 234 if (!vm_dirty_bytes || !dirty_background_bytes) 235 available_memory = global_dirtyable_memory(); 236 237 if (vm_dirty_bytes) 238 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 239 else 240 dirty = (vm_dirty_ratio * available_memory) / 100; 241 242 if (dirty_background_bytes) 243 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 244 else 245 background = (dirty_background_ratio * available_memory) / 100; 246 247 if (background >= dirty) 248 background = dirty / 2; 249 tsk = current; 250 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 251 background += background / 4; 252 dirty += dirty / 4; 253 } 254 *pbackground = background; 255 *pdirty = dirty; 256 trace_global_dirty_state(background, dirty); 257 } 258 259 /** 260 * zone_dirtyable_memory - number of dirtyable pages in a zone 261 * @zone: the zone 262 * 263 * Returns the zone's number of pages potentially available for dirty 264 * page cache. This is the base value for the per-zone dirty limits. 265 */ 266 static unsigned long zone_dirtyable_memory(struct zone *zone) 267 { 268 /* 269 * The effective global number of dirtyable pages may exclude 270 * highmem as a big-picture measure to keep the ratio between 271 * dirty memory and lowmem reasonable. 272 * 273 * But this function is purely about the individual zone and a 274 * highmem zone can hold its share of dirty pages, so we don't 275 * care about vm_highmem_is_dirtyable here. 276 */ 277 return zone_page_state(zone, NR_FREE_PAGES) + 278 zone_reclaimable_pages(zone) - 279 zone->dirty_balance_reserve; 280 } 281 282 /** 283 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 284 * @zone: the zone 285 * 286 * Returns the maximum number of dirty pages allowed in a zone, based 287 * on the zone's dirtyable memory. 288 */ 289 static unsigned long zone_dirty_limit(struct zone *zone) 290 { 291 unsigned long zone_memory = zone_dirtyable_memory(zone); 292 struct task_struct *tsk = current; 293 unsigned long dirty; 294 295 if (vm_dirty_bytes) 296 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 297 zone_memory / global_dirtyable_memory(); 298 else 299 dirty = vm_dirty_ratio * zone_memory / 100; 300 301 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 302 dirty += dirty / 4; 303 304 return dirty; 305 } 306 307 /** 308 * zone_dirty_ok - tells whether a zone is within its dirty limits 309 * @zone: the zone to check 310 * 311 * Returns %true when the dirty pages in @zone are within the zone's 312 * dirty limit, %false if the limit is exceeded. 313 */ 314 bool zone_dirty_ok(struct zone *zone) 315 { 316 unsigned long limit = zone_dirty_limit(zone); 317 318 return zone_page_state(zone, NR_FILE_DIRTY) + 319 zone_page_state(zone, NR_UNSTABLE_NFS) + 320 zone_page_state(zone, NR_WRITEBACK) <= limit; 321 } 322 323 /* 324 * couple the period to the dirty_ratio: 325 * 326 * period/2 ~ roundup_pow_of_two(dirty limit) 327 */ 328 static int calc_period_shift(void) 329 { 330 unsigned long dirty_total; 331 332 if (vm_dirty_bytes) 333 dirty_total = vm_dirty_bytes / PAGE_SIZE; 334 else 335 dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) / 336 100; 337 return 2 + ilog2(dirty_total - 1); 338 } 339 340 /* 341 * update the period when the dirty threshold changes. 342 */ 343 static void update_completion_period(void) 344 { 345 int shift = calc_period_shift(); 346 prop_change_shift(&vm_completions, shift); 347 348 writeback_set_ratelimit(); 349 } 350 351 int dirty_background_ratio_handler(struct ctl_table *table, int write, 352 void __user *buffer, size_t *lenp, 353 loff_t *ppos) 354 { 355 int ret; 356 357 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 358 if (ret == 0 && write) 359 dirty_background_bytes = 0; 360 return ret; 361 } 362 363 int dirty_background_bytes_handler(struct ctl_table *table, int write, 364 void __user *buffer, size_t *lenp, 365 loff_t *ppos) 366 { 367 int ret; 368 369 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 370 if (ret == 0 && write) 371 dirty_background_ratio = 0; 372 return ret; 373 } 374 375 int dirty_ratio_handler(struct ctl_table *table, int write, 376 void __user *buffer, size_t *lenp, 377 loff_t *ppos) 378 { 379 int old_ratio = vm_dirty_ratio; 380 int ret; 381 382 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 383 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 384 update_completion_period(); 385 vm_dirty_bytes = 0; 386 } 387 return ret; 388 } 389 390 int dirty_bytes_handler(struct ctl_table *table, int write, 391 void __user *buffer, size_t *lenp, 392 loff_t *ppos) 393 { 394 unsigned long old_bytes = vm_dirty_bytes; 395 int ret; 396 397 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 398 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 399 update_completion_period(); 400 vm_dirty_ratio = 0; 401 } 402 return ret; 403 } 404 405 /* 406 * Increment the BDI's writeout completion count and the global writeout 407 * completion count. Called from test_clear_page_writeback(). 408 */ 409 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 410 { 411 __inc_bdi_stat(bdi, BDI_WRITTEN); 412 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 413 bdi->max_prop_frac); 414 } 415 416 void bdi_writeout_inc(struct backing_dev_info *bdi) 417 { 418 unsigned long flags; 419 420 local_irq_save(flags); 421 __bdi_writeout_inc(bdi); 422 local_irq_restore(flags); 423 } 424 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 425 426 /* 427 * Obtain an accurate fraction of the BDI's portion. 428 */ 429 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 430 long *numerator, long *denominator) 431 { 432 prop_fraction_percpu(&vm_completions, &bdi->completions, 433 numerator, denominator); 434 } 435 436 /* 437 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 438 * registered backing devices, which, for obvious reasons, can not 439 * exceed 100%. 440 */ 441 static unsigned int bdi_min_ratio; 442 443 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 444 { 445 int ret = 0; 446 447 spin_lock_bh(&bdi_lock); 448 if (min_ratio > bdi->max_ratio) { 449 ret = -EINVAL; 450 } else { 451 min_ratio -= bdi->min_ratio; 452 if (bdi_min_ratio + min_ratio < 100) { 453 bdi_min_ratio += min_ratio; 454 bdi->min_ratio += min_ratio; 455 } else { 456 ret = -EINVAL; 457 } 458 } 459 spin_unlock_bh(&bdi_lock); 460 461 return ret; 462 } 463 464 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 465 { 466 int ret = 0; 467 468 if (max_ratio > 100) 469 return -EINVAL; 470 471 spin_lock_bh(&bdi_lock); 472 if (bdi->min_ratio > max_ratio) { 473 ret = -EINVAL; 474 } else { 475 bdi->max_ratio = max_ratio; 476 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 477 } 478 spin_unlock_bh(&bdi_lock); 479 480 return ret; 481 } 482 EXPORT_SYMBOL(bdi_set_max_ratio); 483 484 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 485 unsigned long bg_thresh) 486 { 487 return (thresh + bg_thresh) / 2; 488 } 489 490 static unsigned long hard_dirty_limit(unsigned long thresh) 491 { 492 return max(thresh, global_dirty_limit); 493 } 494 495 /** 496 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 497 * @bdi: the backing_dev_info to query 498 * @dirty: global dirty limit in pages 499 * 500 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 501 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 502 * 503 * Note that balance_dirty_pages() will only seriously take it as a hard limit 504 * when sleeping max_pause per page is not enough to keep the dirty pages under 505 * control. For example, when the device is completely stalled due to some error 506 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 507 * In the other normal situations, it acts more gently by throttling the tasks 508 * more (rather than completely block them) when the bdi dirty pages go high. 509 * 510 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 511 * - starving fast devices 512 * - piling up dirty pages (that will take long time to sync) on slow devices 513 * 514 * The bdi's share of dirty limit will be adapting to its throughput and 515 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 516 */ 517 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 518 { 519 u64 bdi_dirty; 520 long numerator, denominator; 521 522 /* 523 * Calculate this BDI's share of the dirty ratio. 524 */ 525 bdi_writeout_fraction(bdi, &numerator, &denominator); 526 527 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 528 bdi_dirty *= numerator; 529 do_div(bdi_dirty, denominator); 530 531 bdi_dirty += (dirty * bdi->min_ratio) / 100; 532 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 533 bdi_dirty = dirty * bdi->max_ratio / 100; 534 535 return bdi_dirty; 536 } 537 538 /* 539 * Dirty position control. 540 * 541 * (o) global/bdi setpoints 542 * 543 * We want the dirty pages be balanced around the global/bdi setpoints. 544 * When the number of dirty pages is higher/lower than the setpoint, the 545 * dirty position control ratio (and hence task dirty ratelimit) will be 546 * decreased/increased to bring the dirty pages back to the setpoint. 547 * 548 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 549 * 550 * if (dirty < setpoint) scale up pos_ratio 551 * if (dirty > setpoint) scale down pos_ratio 552 * 553 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio 554 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio 555 * 556 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 557 * 558 * (o) global control line 559 * 560 * ^ pos_ratio 561 * | 562 * | |<===== global dirty control scope ======>| 563 * 2.0 .............* 564 * | .* 565 * | . * 566 * | . * 567 * | . * 568 * | . * 569 * | . * 570 * 1.0 ................................* 571 * | . . * 572 * | . . * 573 * | . . * 574 * | . . * 575 * | . . * 576 * 0 +------------.------------------.----------------------*-------------> 577 * freerun^ setpoint^ limit^ dirty pages 578 * 579 * (o) bdi control line 580 * 581 * ^ pos_ratio 582 * | 583 * | * 584 * | * 585 * | * 586 * | * 587 * | * |<=========== span ============>| 588 * 1.0 .......................* 589 * | . * 590 * | . * 591 * | . * 592 * | . * 593 * | . * 594 * | . * 595 * | . * 596 * | . * 597 * | . * 598 * | . * 599 * | . * 600 * 1/4 ...............................................* * * * * * * * * * * * 601 * | . . 602 * | . . 603 * | . . 604 * 0 +----------------------.-------------------------------.-------------> 605 * bdi_setpoint^ x_intercept^ 606 * 607 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can 608 * be smoothly throttled down to normal if it starts high in situations like 609 * - start writing to a slow SD card and a fast disk at the same time. The SD 610 * card's bdi_dirty may rush to many times higher than bdi_setpoint. 611 * - the bdi dirty thresh drops quickly due to change of JBOD workload 612 */ 613 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, 614 unsigned long thresh, 615 unsigned long bg_thresh, 616 unsigned long dirty, 617 unsigned long bdi_thresh, 618 unsigned long bdi_dirty) 619 { 620 unsigned long write_bw = bdi->avg_write_bandwidth; 621 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 622 unsigned long limit = hard_dirty_limit(thresh); 623 unsigned long x_intercept; 624 unsigned long setpoint; /* dirty pages' target balance point */ 625 unsigned long bdi_setpoint; 626 unsigned long span; 627 long long pos_ratio; /* for scaling up/down the rate limit */ 628 long x; 629 630 if (unlikely(dirty >= limit)) 631 return 0; 632 633 /* 634 * global setpoint 635 * 636 * setpoint - dirty 3 637 * f(dirty) := 1.0 + (----------------) 638 * limit - setpoint 639 * 640 * it's a 3rd order polynomial that subjects to 641 * 642 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 643 * (2) f(setpoint) = 1.0 => the balance point 644 * (3) f(limit) = 0 => the hard limit 645 * (4) df/dx <= 0 => negative feedback control 646 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 647 * => fast response on large errors; small oscillation near setpoint 648 */ 649 setpoint = (freerun + limit) / 2; 650 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT, 651 limit - setpoint + 1); 652 pos_ratio = x; 653 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 654 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 655 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 656 657 /* 658 * We have computed basic pos_ratio above based on global situation. If 659 * the bdi is over/under its share of dirty pages, we want to scale 660 * pos_ratio further down/up. That is done by the following mechanism. 661 */ 662 663 /* 664 * bdi setpoint 665 * 666 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) 667 * 668 * x_intercept - bdi_dirty 669 * := -------------------------- 670 * x_intercept - bdi_setpoint 671 * 672 * The main bdi control line is a linear function that subjects to 673 * 674 * (1) f(bdi_setpoint) = 1.0 675 * (2) k = - 1 / (8 * write_bw) (in single bdi case) 676 * or equally: x_intercept = bdi_setpoint + 8 * write_bw 677 * 678 * For single bdi case, the dirty pages are observed to fluctuate 679 * regularly within range 680 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] 681 * for various filesystems, where (2) can yield in a reasonable 12.5% 682 * fluctuation range for pos_ratio. 683 * 684 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its 685 * own size, so move the slope over accordingly and choose a slope that 686 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. 687 */ 688 if (unlikely(bdi_thresh > thresh)) 689 bdi_thresh = thresh; 690 /* 691 * It's very possible that bdi_thresh is close to 0 not because the 692 * device is slow, but that it has remained inactive for long time. 693 * Honour such devices a reasonable good (hopefully IO efficient) 694 * threshold, so that the occasional writes won't be blocked and active 695 * writes can rampup the threshold quickly. 696 */ 697 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); 698 /* 699 * scale global setpoint to bdi's: 700 * bdi_setpoint = setpoint * bdi_thresh / thresh 701 */ 702 x = div_u64((u64)bdi_thresh << 16, thresh + 1); 703 bdi_setpoint = setpoint * (u64)x >> 16; 704 /* 705 * Use span=(8*write_bw) in single bdi case as indicated by 706 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. 707 * 708 * bdi_thresh thresh - bdi_thresh 709 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh 710 * thresh thresh 711 */ 712 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; 713 x_intercept = bdi_setpoint + span; 714 715 if (bdi_dirty < x_intercept - span / 4) { 716 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty), 717 x_intercept - bdi_setpoint + 1); 718 } else 719 pos_ratio /= 4; 720 721 /* 722 * bdi reserve area, safeguard against dirty pool underrun and disk idle 723 * It may push the desired control point of global dirty pages higher 724 * than setpoint. 725 */ 726 x_intercept = bdi_thresh / 2; 727 if (bdi_dirty < x_intercept) { 728 if (bdi_dirty > x_intercept / 8) 729 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); 730 else 731 pos_ratio *= 8; 732 } 733 734 return pos_ratio; 735 } 736 737 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 738 unsigned long elapsed, 739 unsigned long written) 740 { 741 const unsigned long period = roundup_pow_of_two(3 * HZ); 742 unsigned long avg = bdi->avg_write_bandwidth; 743 unsigned long old = bdi->write_bandwidth; 744 u64 bw; 745 746 /* 747 * bw = written * HZ / elapsed 748 * 749 * bw * elapsed + write_bandwidth * (period - elapsed) 750 * write_bandwidth = --------------------------------------------------- 751 * period 752 */ 753 bw = written - bdi->written_stamp; 754 bw *= HZ; 755 if (unlikely(elapsed > period)) { 756 do_div(bw, elapsed); 757 avg = bw; 758 goto out; 759 } 760 bw += (u64)bdi->write_bandwidth * (period - elapsed); 761 bw >>= ilog2(period); 762 763 /* 764 * one more level of smoothing, for filtering out sudden spikes 765 */ 766 if (avg > old && old >= (unsigned long)bw) 767 avg -= (avg - old) >> 3; 768 769 if (avg < old && old <= (unsigned long)bw) 770 avg += (old - avg) >> 3; 771 772 out: 773 bdi->write_bandwidth = bw; 774 bdi->avg_write_bandwidth = avg; 775 } 776 777 /* 778 * The global dirtyable memory and dirty threshold could be suddenly knocked 779 * down by a large amount (eg. on the startup of KVM in a swapless system). 780 * This may throw the system into deep dirty exceeded state and throttle 781 * heavy/light dirtiers alike. To retain good responsiveness, maintain 782 * global_dirty_limit for tracking slowly down to the knocked down dirty 783 * threshold. 784 */ 785 static void update_dirty_limit(unsigned long thresh, unsigned long dirty) 786 { 787 unsigned long limit = global_dirty_limit; 788 789 /* 790 * Follow up in one step. 791 */ 792 if (limit < thresh) { 793 limit = thresh; 794 goto update; 795 } 796 797 /* 798 * Follow down slowly. Use the higher one as the target, because thresh 799 * may drop below dirty. This is exactly the reason to introduce 800 * global_dirty_limit which is guaranteed to lie above the dirty pages. 801 */ 802 thresh = max(thresh, dirty); 803 if (limit > thresh) { 804 limit -= (limit - thresh) >> 5; 805 goto update; 806 } 807 return; 808 update: 809 global_dirty_limit = limit; 810 } 811 812 static void global_update_bandwidth(unsigned long thresh, 813 unsigned long dirty, 814 unsigned long now) 815 { 816 static DEFINE_SPINLOCK(dirty_lock); 817 static unsigned long update_time; 818 819 /* 820 * check locklessly first to optimize away locking for the most time 821 */ 822 if (time_before(now, update_time + BANDWIDTH_INTERVAL)) 823 return; 824 825 spin_lock(&dirty_lock); 826 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { 827 update_dirty_limit(thresh, dirty); 828 update_time = now; 829 } 830 spin_unlock(&dirty_lock); 831 } 832 833 /* 834 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. 835 * 836 * Normal bdi tasks will be curbed at or below it in long term. 837 * Obviously it should be around (write_bw / N) when there are N dd tasks. 838 */ 839 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, 840 unsigned long thresh, 841 unsigned long bg_thresh, 842 unsigned long dirty, 843 unsigned long bdi_thresh, 844 unsigned long bdi_dirty, 845 unsigned long dirtied, 846 unsigned long elapsed) 847 { 848 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 849 unsigned long limit = hard_dirty_limit(thresh); 850 unsigned long setpoint = (freerun + limit) / 2; 851 unsigned long write_bw = bdi->avg_write_bandwidth; 852 unsigned long dirty_ratelimit = bdi->dirty_ratelimit; 853 unsigned long dirty_rate; 854 unsigned long task_ratelimit; 855 unsigned long balanced_dirty_ratelimit; 856 unsigned long pos_ratio; 857 unsigned long step; 858 unsigned long x; 859 860 /* 861 * The dirty rate will match the writeout rate in long term, except 862 * when dirty pages are truncated by userspace or re-dirtied by FS. 863 */ 864 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; 865 866 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, 867 bdi_thresh, bdi_dirty); 868 /* 869 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 870 */ 871 task_ratelimit = (u64)dirty_ratelimit * 872 pos_ratio >> RATELIMIT_CALC_SHIFT; 873 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 874 875 /* 876 * A linear estimation of the "balanced" throttle rate. The theory is, 877 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's 878 * dirty_rate will be measured to be (N * task_ratelimit). So the below 879 * formula will yield the balanced rate limit (write_bw / N). 880 * 881 * Note that the expanded form is not a pure rate feedback: 882 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 883 * but also takes pos_ratio into account: 884 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 885 * 886 * (1) is not realistic because pos_ratio also takes part in balancing 887 * the dirty rate. Consider the state 888 * pos_ratio = 0.5 (3) 889 * rate = 2 * (write_bw / N) (4) 890 * If (1) is used, it will stuck in that state! Because each dd will 891 * be throttled at 892 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 893 * yielding 894 * dirty_rate = N * task_ratelimit = write_bw (6) 895 * put (6) into (1) we get 896 * rate_(i+1) = rate_(i) (7) 897 * 898 * So we end up using (2) to always keep 899 * rate_(i+1) ~= (write_bw / N) (8) 900 * regardless of the value of pos_ratio. As long as (8) is satisfied, 901 * pos_ratio is able to drive itself to 1.0, which is not only where 902 * the dirty count meet the setpoint, but also where the slope of 903 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 904 */ 905 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 906 dirty_rate | 1); 907 /* 908 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 909 */ 910 if (unlikely(balanced_dirty_ratelimit > write_bw)) 911 balanced_dirty_ratelimit = write_bw; 912 913 /* 914 * We could safely do this and return immediately: 915 * 916 * bdi->dirty_ratelimit = balanced_dirty_ratelimit; 917 * 918 * However to get a more stable dirty_ratelimit, the below elaborated 919 * code makes use of task_ratelimit to filter out sigular points and 920 * limit the step size. 921 * 922 * The below code essentially only uses the relative value of 923 * 924 * task_ratelimit - dirty_ratelimit 925 * = (pos_ratio - 1) * dirty_ratelimit 926 * 927 * which reflects the direction and size of dirty position error. 928 */ 929 930 /* 931 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 932 * task_ratelimit is on the same side of dirty_ratelimit, too. 933 * For example, when 934 * - dirty_ratelimit > balanced_dirty_ratelimit 935 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 936 * lowering dirty_ratelimit will help meet both the position and rate 937 * control targets. Otherwise, don't update dirty_ratelimit if it will 938 * only help meet the rate target. After all, what the users ultimately 939 * feel and care are stable dirty rate and small position error. 940 * 941 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 942 * and filter out the sigular points of balanced_dirty_ratelimit. Which 943 * keeps jumping around randomly and can even leap far away at times 944 * due to the small 200ms estimation period of dirty_rate (we want to 945 * keep that period small to reduce time lags). 946 */ 947 step = 0; 948 if (dirty < setpoint) { 949 x = min(bdi->balanced_dirty_ratelimit, 950 min(balanced_dirty_ratelimit, task_ratelimit)); 951 if (dirty_ratelimit < x) 952 step = x - dirty_ratelimit; 953 } else { 954 x = max(bdi->balanced_dirty_ratelimit, 955 max(balanced_dirty_ratelimit, task_ratelimit)); 956 if (dirty_ratelimit > x) 957 step = dirty_ratelimit - x; 958 } 959 960 /* 961 * Don't pursue 100% rate matching. It's impossible since the balanced 962 * rate itself is constantly fluctuating. So decrease the track speed 963 * when it gets close to the target. Helps eliminate pointless tremors. 964 */ 965 step >>= dirty_ratelimit / (2 * step + 1); 966 /* 967 * Limit the tracking speed to avoid overshooting. 968 */ 969 step = (step + 7) / 8; 970 971 if (dirty_ratelimit < balanced_dirty_ratelimit) 972 dirty_ratelimit += step; 973 else 974 dirty_ratelimit -= step; 975 976 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); 977 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 978 979 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); 980 } 981 982 void __bdi_update_bandwidth(struct backing_dev_info *bdi, 983 unsigned long thresh, 984 unsigned long bg_thresh, 985 unsigned long dirty, 986 unsigned long bdi_thresh, 987 unsigned long bdi_dirty, 988 unsigned long start_time) 989 { 990 unsigned long now = jiffies; 991 unsigned long elapsed = now - bdi->bw_time_stamp; 992 unsigned long dirtied; 993 unsigned long written; 994 995 /* 996 * rate-limit, only update once every 200ms. 997 */ 998 if (elapsed < BANDWIDTH_INTERVAL) 999 return; 1000 1001 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); 1002 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); 1003 1004 /* 1005 * Skip quiet periods when disk bandwidth is under-utilized. 1006 * (at least 1s idle time between two flusher runs) 1007 */ 1008 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) 1009 goto snapshot; 1010 1011 if (thresh) { 1012 global_update_bandwidth(thresh, dirty, now); 1013 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, 1014 bdi_thresh, bdi_dirty, 1015 dirtied, elapsed); 1016 } 1017 bdi_update_write_bandwidth(bdi, elapsed, written); 1018 1019 snapshot: 1020 bdi->dirtied_stamp = dirtied; 1021 bdi->written_stamp = written; 1022 bdi->bw_time_stamp = now; 1023 } 1024 1025 static void bdi_update_bandwidth(struct backing_dev_info *bdi, 1026 unsigned long thresh, 1027 unsigned long bg_thresh, 1028 unsigned long dirty, 1029 unsigned long bdi_thresh, 1030 unsigned long bdi_dirty, 1031 unsigned long start_time) 1032 { 1033 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) 1034 return; 1035 spin_lock(&bdi->wb.list_lock); 1036 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, 1037 bdi_thresh, bdi_dirty, start_time); 1038 spin_unlock(&bdi->wb.list_lock); 1039 } 1040 1041 /* 1042 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr() 1043 * will look to see if it needs to start dirty throttling. 1044 * 1045 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1046 * global_page_state() too often. So scale it near-sqrt to the safety margin 1047 * (the number of pages we may dirty without exceeding the dirty limits). 1048 */ 1049 static unsigned long dirty_poll_interval(unsigned long dirty, 1050 unsigned long thresh) 1051 { 1052 if (thresh > dirty) 1053 return 1UL << (ilog2(thresh - dirty) >> 1); 1054 1055 return 1; 1056 } 1057 1058 static long bdi_max_pause(struct backing_dev_info *bdi, 1059 unsigned long bdi_dirty) 1060 { 1061 long bw = bdi->avg_write_bandwidth; 1062 long t; 1063 1064 /* 1065 * Limit pause time for small memory systems. If sleeping for too long 1066 * time, a small pool of dirty/writeback pages may go empty and disk go 1067 * idle. 1068 * 1069 * 8 serves as the safety ratio. 1070 */ 1071 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1072 t++; 1073 1074 return min_t(long, t, MAX_PAUSE); 1075 } 1076 1077 static long bdi_min_pause(struct backing_dev_info *bdi, 1078 long max_pause, 1079 unsigned long task_ratelimit, 1080 unsigned long dirty_ratelimit, 1081 int *nr_dirtied_pause) 1082 { 1083 long hi = ilog2(bdi->avg_write_bandwidth); 1084 long lo = ilog2(bdi->dirty_ratelimit); 1085 long t; /* target pause */ 1086 long pause; /* estimated next pause */ 1087 int pages; /* target nr_dirtied_pause */ 1088 1089 /* target for 10ms pause on 1-dd case */ 1090 t = max(1, HZ / 100); 1091 1092 /* 1093 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1094 * overheads. 1095 * 1096 * (N * 10ms) on 2^N concurrent tasks. 1097 */ 1098 if (hi > lo) 1099 t += (hi - lo) * (10 * HZ) / 1024; 1100 1101 /* 1102 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1103 * on the much more stable dirty_ratelimit. However the next pause time 1104 * will be computed based on task_ratelimit and the two rate limits may 1105 * depart considerably at some time. Especially if task_ratelimit goes 1106 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1107 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1108 * result task_ratelimit won't be executed faithfully, which could 1109 * eventually bring down dirty_ratelimit. 1110 * 1111 * We apply two rules to fix it up: 1112 * 1) try to estimate the next pause time and if necessary, use a lower 1113 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1114 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1115 * 2) limit the target pause time to max_pause/2, so that the normal 1116 * small fluctuations of task_ratelimit won't trigger rule (1) and 1117 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1118 */ 1119 t = min(t, 1 + max_pause / 2); 1120 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1121 1122 /* 1123 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1124 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1125 * When the 16 consecutive reads are often interrupted by some dirty 1126 * throttling pause during the async writes, cfq will go into idles 1127 * (deadline is fine). So push nr_dirtied_pause as high as possible 1128 * until reaches DIRTY_POLL_THRESH=32 pages. 1129 */ 1130 if (pages < DIRTY_POLL_THRESH) { 1131 t = max_pause; 1132 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1133 if (pages > DIRTY_POLL_THRESH) { 1134 pages = DIRTY_POLL_THRESH; 1135 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1136 } 1137 } 1138 1139 pause = HZ * pages / (task_ratelimit + 1); 1140 if (pause > max_pause) { 1141 t = max_pause; 1142 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1143 } 1144 1145 *nr_dirtied_pause = pages; 1146 /* 1147 * The minimal pause time will normally be half the target pause time. 1148 */ 1149 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1150 } 1151 1152 /* 1153 * balance_dirty_pages() must be called by processes which are generating dirty 1154 * data. It looks at the number of dirty pages in the machine and will force 1155 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1156 * If we're over `background_thresh' then the writeback threads are woken to 1157 * perform some writeout. 1158 */ 1159 static void balance_dirty_pages(struct address_space *mapping, 1160 unsigned long pages_dirtied) 1161 { 1162 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1163 unsigned long bdi_reclaimable; 1164 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 1165 unsigned long bdi_dirty; 1166 unsigned long freerun; 1167 unsigned long background_thresh; 1168 unsigned long dirty_thresh; 1169 unsigned long bdi_thresh; 1170 long period; 1171 long pause; 1172 long max_pause; 1173 long min_pause; 1174 int nr_dirtied_pause; 1175 bool dirty_exceeded = false; 1176 unsigned long task_ratelimit; 1177 unsigned long dirty_ratelimit; 1178 unsigned long pos_ratio; 1179 struct backing_dev_info *bdi = mapping->backing_dev_info; 1180 unsigned long start_time = jiffies; 1181 1182 for (;;) { 1183 unsigned long now = jiffies; 1184 1185 /* 1186 * Unstable writes are a feature of certain networked 1187 * filesystems (i.e. NFS) in which data may have been 1188 * written to the server's write cache, but has not yet 1189 * been flushed to permanent storage. 1190 */ 1191 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1192 global_page_state(NR_UNSTABLE_NFS); 1193 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1194 1195 global_dirty_limits(&background_thresh, &dirty_thresh); 1196 1197 /* 1198 * Throttle it only when the background writeback cannot 1199 * catch-up. This avoids (excessively) small writeouts 1200 * when the bdi limits are ramping up. 1201 */ 1202 freerun = dirty_freerun_ceiling(dirty_thresh, 1203 background_thresh); 1204 if (nr_dirty <= freerun) { 1205 current->dirty_paused_when = now; 1206 current->nr_dirtied = 0; 1207 current->nr_dirtied_pause = 1208 dirty_poll_interval(nr_dirty, dirty_thresh); 1209 break; 1210 } 1211 1212 if (unlikely(!writeback_in_progress(bdi))) 1213 bdi_start_background_writeback(bdi); 1214 1215 /* 1216 * bdi_thresh is not treated as some limiting factor as 1217 * dirty_thresh, due to reasons 1218 * - in JBOD setup, bdi_thresh can fluctuate a lot 1219 * - in a system with HDD and USB key, the USB key may somehow 1220 * go into state (bdi_dirty >> bdi_thresh) either because 1221 * bdi_dirty starts high, or because bdi_thresh drops low. 1222 * In this case we don't want to hard throttle the USB key 1223 * dirtiers for 100 seconds until bdi_dirty drops under 1224 * bdi_thresh. Instead the auxiliary bdi control line in 1225 * bdi_position_ratio() will let the dirtier task progress 1226 * at some rate <= (write_bw / 2) for bringing down bdi_dirty. 1227 */ 1228 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 1229 1230 /* 1231 * In order to avoid the stacked BDI deadlock we need 1232 * to ensure we accurately count the 'dirty' pages when 1233 * the threshold is low. 1234 * 1235 * Otherwise it would be possible to get thresh+n pages 1236 * reported dirty, even though there are thresh-m pages 1237 * actually dirty; with m+n sitting in the percpu 1238 * deltas. 1239 */ 1240 if (bdi_thresh < 2 * bdi_stat_error(bdi)) { 1241 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 1242 bdi_dirty = bdi_reclaimable + 1243 bdi_stat_sum(bdi, BDI_WRITEBACK); 1244 } else { 1245 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 1246 bdi_dirty = bdi_reclaimable + 1247 bdi_stat(bdi, BDI_WRITEBACK); 1248 } 1249 1250 dirty_exceeded = (bdi_dirty > bdi_thresh) && 1251 (nr_dirty > dirty_thresh); 1252 if (dirty_exceeded && !bdi->dirty_exceeded) 1253 bdi->dirty_exceeded = 1; 1254 1255 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, 1256 nr_dirty, bdi_thresh, bdi_dirty, 1257 start_time); 1258 1259 dirty_ratelimit = bdi->dirty_ratelimit; 1260 pos_ratio = bdi_position_ratio(bdi, dirty_thresh, 1261 background_thresh, nr_dirty, 1262 bdi_thresh, bdi_dirty); 1263 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> 1264 RATELIMIT_CALC_SHIFT; 1265 max_pause = bdi_max_pause(bdi, bdi_dirty); 1266 min_pause = bdi_min_pause(bdi, max_pause, 1267 task_ratelimit, dirty_ratelimit, 1268 &nr_dirtied_pause); 1269 1270 if (unlikely(task_ratelimit == 0)) { 1271 period = max_pause; 1272 pause = max_pause; 1273 goto pause; 1274 } 1275 period = HZ * pages_dirtied / task_ratelimit; 1276 pause = period; 1277 if (current->dirty_paused_when) 1278 pause -= now - current->dirty_paused_when; 1279 /* 1280 * For less than 1s think time (ext3/4 may block the dirtier 1281 * for up to 800ms from time to time on 1-HDD; so does xfs, 1282 * however at much less frequency), try to compensate it in 1283 * future periods by updating the virtual time; otherwise just 1284 * do a reset, as it may be a light dirtier. 1285 */ 1286 if (pause < min_pause) { 1287 trace_balance_dirty_pages(bdi, 1288 dirty_thresh, 1289 background_thresh, 1290 nr_dirty, 1291 bdi_thresh, 1292 bdi_dirty, 1293 dirty_ratelimit, 1294 task_ratelimit, 1295 pages_dirtied, 1296 period, 1297 min(pause, 0L), 1298 start_time); 1299 if (pause < -HZ) { 1300 current->dirty_paused_when = now; 1301 current->nr_dirtied = 0; 1302 } else if (period) { 1303 current->dirty_paused_when += period; 1304 current->nr_dirtied = 0; 1305 } else if (current->nr_dirtied_pause <= pages_dirtied) 1306 current->nr_dirtied_pause += pages_dirtied; 1307 break; 1308 } 1309 if (unlikely(pause > max_pause)) { 1310 /* for occasional dropped task_ratelimit */ 1311 now += min(pause - max_pause, max_pause); 1312 pause = max_pause; 1313 } 1314 1315 pause: 1316 trace_balance_dirty_pages(bdi, 1317 dirty_thresh, 1318 background_thresh, 1319 nr_dirty, 1320 bdi_thresh, 1321 bdi_dirty, 1322 dirty_ratelimit, 1323 task_ratelimit, 1324 pages_dirtied, 1325 period, 1326 pause, 1327 start_time); 1328 __set_current_state(TASK_KILLABLE); 1329 io_schedule_timeout(pause); 1330 1331 current->dirty_paused_when = now + pause; 1332 current->nr_dirtied = 0; 1333 current->nr_dirtied_pause = nr_dirtied_pause; 1334 1335 /* 1336 * This is typically equal to (nr_dirty < dirty_thresh) and can 1337 * also keep "1000+ dd on a slow USB stick" under control. 1338 */ 1339 if (task_ratelimit) 1340 break; 1341 1342 /* 1343 * In the case of an unresponding NFS server and the NFS dirty 1344 * pages exceeds dirty_thresh, give the other good bdi's a pipe 1345 * to go through, so that tasks on them still remain responsive. 1346 * 1347 * In theory 1 page is enough to keep the comsumer-producer 1348 * pipe going: the flusher cleans 1 page => the task dirties 1 1349 * more page. However bdi_dirty has accounting errors. So use 1350 * the larger and more IO friendly bdi_stat_error. 1351 */ 1352 if (bdi_dirty <= bdi_stat_error(bdi)) 1353 break; 1354 1355 if (fatal_signal_pending(current)) 1356 break; 1357 } 1358 1359 if (!dirty_exceeded && bdi->dirty_exceeded) 1360 bdi->dirty_exceeded = 0; 1361 1362 if (writeback_in_progress(bdi)) 1363 return; 1364 1365 /* 1366 * In laptop mode, we wait until hitting the higher threshold before 1367 * starting background writeout, and then write out all the way down 1368 * to the lower threshold. So slow writers cause minimal disk activity. 1369 * 1370 * In normal mode, we start background writeout at the lower 1371 * background_thresh, to keep the amount of dirty memory low. 1372 */ 1373 if (laptop_mode) 1374 return; 1375 1376 if (nr_reclaimable > background_thresh) 1377 bdi_start_background_writeback(bdi); 1378 } 1379 1380 void set_page_dirty_balance(struct page *page, int page_mkwrite) 1381 { 1382 if (set_page_dirty(page) || page_mkwrite) { 1383 struct address_space *mapping = page_mapping(page); 1384 1385 if (mapping) 1386 balance_dirty_pages_ratelimited(mapping); 1387 } 1388 } 1389 1390 static DEFINE_PER_CPU(int, bdp_ratelimits); 1391 1392 /* 1393 * Normal tasks are throttled by 1394 * loop { 1395 * dirty tsk->nr_dirtied_pause pages; 1396 * take a snap in balance_dirty_pages(); 1397 * } 1398 * However there is a worst case. If every task exit immediately when dirtied 1399 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1400 * called to throttle the page dirties. The solution is to save the not yet 1401 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1402 * randomly into the running tasks. This works well for the above worst case, 1403 * as the new task will pick up and accumulate the old task's leaked dirty 1404 * count and eventually get throttled. 1405 */ 1406 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1407 1408 /** 1409 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 1410 * @mapping: address_space which was dirtied 1411 * @nr_pages_dirtied: number of pages which the caller has just dirtied 1412 * 1413 * Processes which are dirtying memory should call in here once for each page 1414 * which was newly dirtied. The function will periodically check the system's 1415 * dirty state and will initiate writeback if needed. 1416 * 1417 * On really big machines, get_writeback_state is expensive, so try to avoid 1418 * calling it too often (ratelimiting). But once we're over the dirty memory 1419 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1420 * from overshooting the limit by (ratelimit_pages) each. 1421 */ 1422 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 1423 unsigned long nr_pages_dirtied) 1424 { 1425 struct backing_dev_info *bdi = mapping->backing_dev_info; 1426 int ratelimit; 1427 int *p; 1428 1429 if (!bdi_cap_account_dirty(bdi)) 1430 return; 1431 1432 ratelimit = current->nr_dirtied_pause; 1433 if (bdi->dirty_exceeded) 1434 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1435 1436 preempt_disable(); 1437 /* 1438 * This prevents one CPU to accumulate too many dirtied pages without 1439 * calling into balance_dirty_pages(), which can happen when there are 1440 * 1000+ tasks, all of them start dirtying pages at exactly the same 1441 * time, hence all honoured too large initial task->nr_dirtied_pause. 1442 */ 1443 p = &__get_cpu_var(bdp_ratelimits); 1444 if (unlikely(current->nr_dirtied >= ratelimit)) 1445 *p = 0; 1446 else if (unlikely(*p >= ratelimit_pages)) { 1447 *p = 0; 1448 ratelimit = 0; 1449 } 1450 /* 1451 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1452 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1453 * the dirty throttling and livelock other long-run dirtiers. 1454 */ 1455 p = &__get_cpu_var(dirty_throttle_leaks); 1456 if (*p > 0 && current->nr_dirtied < ratelimit) { 1457 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1458 *p -= nr_pages_dirtied; 1459 current->nr_dirtied += nr_pages_dirtied; 1460 } 1461 preempt_enable(); 1462 1463 if (unlikely(current->nr_dirtied >= ratelimit)) 1464 balance_dirty_pages(mapping, current->nr_dirtied); 1465 } 1466 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 1467 1468 void throttle_vm_writeout(gfp_t gfp_mask) 1469 { 1470 unsigned long background_thresh; 1471 unsigned long dirty_thresh; 1472 1473 for ( ; ; ) { 1474 global_dirty_limits(&background_thresh, &dirty_thresh); 1475 1476 /* 1477 * Boost the allowable dirty threshold a bit for page 1478 * allocators so they don't get DoS'ed by heavy writers 1479 */ 1480 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1481 1482 if (global_page_state(NR_UNSTABLE_NFS) + 1483 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1484 break; 1485 congestion_wait(BLK_RW_ASYNC, HZ/10); 1486 1487 /* 1488 * The caller might hold locks which can prevent IO completion 1489 * or progress in the filesystem. So we cannot just sit here 1490 * waiting for IO to complete. 1491 */ 1492 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1493 break; 1494 } 1495 } 1496 1497 /* 1498 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1499 */ 1500 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 1501 void __user *buffer, size_t *length, loff_t *ppos) 1502 { 1503 proc_dointvec(table, write, buffer, length, ppos); 1504 bdi_arm_supers_timer(); 1505 return 0; 1506 } 1507 1508 #ifdef CONFIG_BLOCK 1509 void laptop_mode_timer_fn(unsigned long data) 1510 { 1511 struct request_queue *q = (struct request_queue *)data; 1512 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1513 global_page_state(NR_UNSTABLE_NFS); 1514 1515 /* 1516 * We want to write everything out, not just down to the dirty 1517 * threshold 1518 */ 1519 if (bdi_has_dirty_io(&q->backing_dev_info)) 1520 bdi_start_writeback(&q->backing_dev_info, nr_pages, 1521 WB_REASON_LAPTOP_TIMER); 1522 } 1523 1524 /* 1525 * We've spun up the disk and we're in laptop mode: schedule writeback 1526 * of all dirty data a few seconds from now. If the flush is already scheduled 1527 * then push it back - the user is still using the disk. 1528 */ 1529 void laptop_io_completion(struct backing_dev_info *info) 1530 { 1531 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 1532 } 1533 1534 /* 1535 * We're in laptop mode and we've just synced. The sync's writes will have 1536 * caused another writeback to be scheduled by laptop_io_completion. 1537 * Nothing needs to be written back anymore, so we unschedule the writeback. 1538 */ 1539 void laptop_sync_completion(void) 1540 { 1541 struct backing_dev_info *bdi; 1542 1543 rcu_read_lock(); 1544 1545 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 1546 del_timer(&bdi->laptop_mode_wb_timer); 1547 1548 rcu_read_unlock(); 1549 } 1550 #endif 1551 1552 /* 1553 * If ratelimit_pages is too high then we can get into dirty-data overload 1554 * if a large number of processes all perform writes at the same time. 1555 * If it is too low then SMP machines will call the (expensive) 1556 * get_writeback_state too often. 1557 * 1558 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 1559 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 1560 * thresholds. 1561 */ 1562 1563 void writeback_set_ratelimit(void) 1564 { 1565 unsigned long background_thresh; 1566 unsigned long dirty_thresh; 1567 global_dirty_limits(&background_thresh, &dirty_thresh); 1568 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 1569 if (ratelimit_pages < 16) 1570 ratelimit_pages = 16; 1571 } 1572 1573 static int __cpuinit 1574 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 1575 { 1576 writeback_set_ratelimit(); 1577 return NOTIFY_DONE; 1578 } 1579 1580 static struct notifier_block __cpuinitdata ratelimit_nb = { 1581 .notifier_call = ratelimit_handler, 1582 .next = NULL, 1583 }; 1584 1585 /* 1586 * Called early on to tune the page writeback dirty limits. 1587 * 1588 * We used to scale dirty pages according to how total memory 1589 * related to pages that could be allocated for buffers (by 1590 * comparing nr_free_buffer_pages() to vm_total_pages. 1591 * 1592 * However, that was when we used "dirty_ratio" to scale with 1593 * all memory, and we don't do that any more. "dirty_ratio" 1594 * is now applied to total non-HIGHPAGE memory (by subtracting 1595 * totalhigh_pages from vm_total_pages), and as such we can't 1596 * get into the old insane situation any more where we had 1597 * large amounts of dirty pages compared to a small amount of 1598 * non-HIGHMEM memory. 1599 * 1600 * But we might still want to scale the dirty_ratio by how 1601 * much memory the box has.. 1602 */ 1603 void __init page_writeback_init(void) 1604 { 1605 int shift; 1606 1607 writeback_set_ratelimit(); 1608 register_cpu_notifier(&ratelimit_nb); 1609 1610 shift = calc_period_shift(); 1611 prop_descriptor_init(&vm_completions, shift); 1612 } 1613 1614 /** 1615 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 1616 * @mapping: address space structure to write 1617 * @start: starting page index 1618 * @end: ending page index (inclusive) 1619 * 1620 * This function scans the page range from @start to @end (inclusive) and tags 1621 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 1622 * that write_cache_pages (or whoever calls this function) will then use 1623 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 1624 * used to avoid livelocking of writeback by a process steadily creating new 1625 * dirty pages in the file (thus it is important for this function to be quick 1626 * so that it can tag pages faster than a dirtying process can create them). 1627 */ 1628 /* 1629 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 1630 */ 1631 void tag_pages_for_writeback(struct address_space *mapping, 1632 pgoff_t start, pgoff_t end) 1633 { 1634 #define WRITEBACK_TAG_BATCH 4096 1635 unsigned long tagged; 1636 1637 do { 1638 spin_lock_irq(&mapping->tree_lock); 1639 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 1640 &start, end, WRITEBACK_TAG_BATCH, 1641 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 1642 spin_unlock_irq(&mapping->tree_lock); 1643 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 1644 cond_resched(); 1645 /* We check 'start' to handle wrapping when end == ~0UL */ 1646 } while (tagged >= WRITEBACK_TAG_BATCH && start); 1647 } 1648 EXPORT_SYMBOL(tag_pages_for_writeback); 1649 1650 /** 1651 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 1652 * @mapping: address space structure to write 1653 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1654 * @writepage: function called for each page 1655 * @data: data passed to writepage function 1656 * 1657 * If a page is already under I/O, write_cache_pages() skips it, even 1658 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1659 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1660 * and msync() need to guarantee that all the data which was dirty at the time 1661 * the call was made get new I/O started against them. If wbc->sync_mode is 1662 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1663 * existing IO to complete. 1664 * 1665 * To avoid livelocks (when other process dirties new pages), we first tag 1666 * pages which should be written back with TOWRITE tag and only then start 1667 * writing them. For data-integrity sync we have to be careful so that we do 1668 * not miss some pages (e.g., because some other process has cleared TOWRITE 1669 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 1670 * by the process clearing the DIRTY tag (and submitting the page for IO). 1671 */ 1672 int write_cache_pages(struct address_space *mapping, 1673 struct writeback_control *wbc, writepage_t writepage, 1674 void *data) 1675 { 1676 int ret = 0; 1677 int done = 0; 1678 struct pagevec pvec; 1679 int nr_pages; 1680 pgoff_t uninitialized_var(writeback_index); 1681 pgoff_t index; 1682 pgoff_t end; /* Inclusive */ 1683 pgoff_t done_index; 1684 int cycled; 1685 int range_whole = 0; 1686 int tag; 1687 1688 pagevec_init(&pvec, 0); 1689 if (wbc->range_cyclic) { 1690 writeback_index = mapping->writeback_index; /* prev offset */ 1691 index = writeback_index; 1692 if (index == 0) 1693 cycled = 1; 1694 else 1695 cycled = 0; 1696 end = -1; 1697 } else { 1698 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1699 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1700 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1701 range_whole = 1; 1702 cycled = 1; /* ignore range_cyclic tests */ 1703 } 1704 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1705 tag = PAGECACHE_TAG_TOWRITE; 1706 else 1707 tag = PAGECACHE_TAG_DIRTY; 1708 retry: 1709 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1710 tag_pages_for_writeback(mapping, index, end); 1711 done_index = index; 1712 while (!done && (index <= end)) { 1713 int i; 1714 1715 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1716 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1717 if (nr_pages == 0) 1718 break; 1719 1720 for (i = 0; i < nr_pages; i++) { 1721 struct page *page = pvec.pages[i]; 1722 1723 /* 1724 * At this point, the page may be truncated or 1725 * invalidated (changing page->mapping to NULL), or 1726 * even swizzled back from swapper_space to tmpfs file 1727 * mapping. However, page->index will not change 1728 * because we have a reference on the page. 1729 */ 1730 if (page->index > end) { 1731 /* 1732 * can't be range_cyclic (1st pass) because 1733 * end == -1 in that case. 1734 */ 1735 done = 1; 1736 break; 1737 } 1738 1739 done_index = page->index; 1740 1741 lock_page(page); 1742 1743 /* 1744 * Page truncated or invalidated. We can freely skip it 1745 * then, even for data integrity operations: the page 1746 * has disappeared concurrently, so there could be no 1747 * real expectation of this data interity operation 1748 * even if there is now a new, dirty page at the same 1749 * pagecache address. 1750 */ 1751 if (unlikely(page->mapping != mapping)) { 1752 continue_unlock: 1753 unlock_page(page); 1754 continue; 1755 } 1756 1757 if (!PageDirty(page)) { 1758 /* someone wrote it for us */ 1759 goto continue_unlock; 1760 } 1761 1762 if (PageWriteback(page)) { 1763 if (wbc->sync_mode != WB_SYNC_NONE) 1764 wait_on_page_writeback(page); 1765 else 1766 goto continue_unlock; 1767 } 1768 1769 BUG_ON(PageWriteback(page)); 1770 if (!clear_page_dirty_for_io(page)) 1771 goto continue_unlock; 1772 1773 trace_wbc_writepage(wbc, mapping->backing_dev_info); 1774 ret = (*writepage)(page, wbc, data); 1775 if (unlikely(ret)) { 1776 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1777 unlock_page(page); 1778 ret = 0; 1779 } else { 1780 /* 1781 * done_index is set past this page, 1782 * so media errors will not choke 1783 * background writeout for the entire 1784 * file. This has consequences for 1785 * range_cyclic semantics (ie. it may 1786 * not be suitable for data integrity 1787 * writeout). 1788 */ 1789 done_index = page->index + 1; 1790 done = 1; 1791 break; 1792 } 1793 } 1794 1795 /* 1796 * We stop writing back only if we are not doing 1797 * integrity sync. In case of integrity sync we have to 1798 * keep going until we have written all the pages 1799 * we tagged for writeback prior to entering this loop. 1800 */ 1801 if (--wbc->nr_to_write <= 0 && 1802 wbc->sync_mode == WB_SYNC_NONE) { 1803 done = 1; 1804 break; 1805 } 1806 } 1807 pagevec_release(&pvec); 1808 cond_resched(); 1809 } 1810 if (!cycled && !done) { 1811 /* 1812 * range_cyclic: 1813 * We hit the last page and there is more work to be done: wrap 1814 * back to the start of the file 1815 */ 1816 cycled = 1; 1817 index = 0; 1818 end = writeback_index - 1; 1819 goto retry; 1820 } 1821 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1822 mapping->writeback_index = done_index; 1823 1824 return ret; 1825 } 1826 EXPORT_SYMBOL(write_cache_pages); 1827 1828 /* 1829 * Function used by generic_writepages to call the real writepage 1830 * function and set the mapping flags on error 1831 */ 1832 static int __writepage(struct page *page, struct writeback_control *wbc, 1833 void *data) 1834 { 1835 struct address_space *mapping = data; 1836 int ret = mapping->a_ops->writepage(page, wbc); 1837 mapping_set_error(mapping, ret); 1838 return ret; 1839 } 1840 1841 /** 1842 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1843 * @mapping: address space structure to write 1844 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1845 * 1846 * This is a library function, which implements the writepages() 1847 * address_space_operation. 1848 */ 1849 int generic_writepages(struct address_space *mapping, 1850 struct writeback_control *wbc) 1851 { 1852 struct blk_plug plug; 1853 int ret; 1854 1855 /* deal with chardevs and other special file */ 1856 if (!mapping->a_ops->writepage) 1857 return 0; 1858 1859 blk_start_plug(&plug); 1860 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 1861 blk_finish_plug(&plug); 1862 return ret; 1863 } 1864 1865 EXPORT_SYMBOL(generic_writepages); 1866 1867 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1868 { 1869 int ret; 1870 1871 if (wbc->nr_to_write <= 0) 1872 return 0; 1873 if (mapping->a_ops->writepages) 1874 ret = mapping->a_ops->writepages(mapping, wbc); 1875 else 1876 ret = generic_writepages(mapping, wbc); 1877 return ret; 1878 } 1879 1880 /** 1881 * write_one_page - write out a single page and optionally wait on I/O 1882 * @page: the page to write 1883 * @wait: if true, wait on writeout 1884 * 1885 * The page must be locked by the caller and will be unlocked upon return. 1886 * 1887 * write_one_page() returns a negative error code if I/O failed. 1888 */ 1889 int write_one_page(struct page *page, int wait) 1890 { 1891 struct address_space *mapping = page->mapping; 1892 int ret = 0; 1893 struct writeback_control wbc = { 1894 .sync_mode = WB_SYNC_ALL, 1895 .nr_to_write = 1, 1896 }; 1897 1898 BUG_ON(!PageLocked(page)); 1899 1900 if (wait) 1901 wait_on_page_writeback(page); 1902 1903 if (clear_page_dirty_for_io(page)) { 1904 page_cache_get(page); 1905 ret = mapping->a_ops->writepage(page, &wbc); 1906 if (ret == 0 && wait) { 1907 wait_on_page_writeback(page); 1908 if (PageError(page)) 1909 ret = -EIO; 1910 } 1911 page_cache_release(page); 1912 } else { 1913 unlock_page(page); 1914 } 1915 return ret; 1916 } 1917 EXPORT_SYMBOL(write_one_page); 1918 1919 /* 1920 * For address_spaces which do not use buffers nor write back. 1921 */ 1922 int __set_page_dirty_no_writeback(struct page *page) 1923 { 1924 if (!PageDirty(page)) 1925 return !TestSetPageDirty(page); 1926 return 0; 1927 } 1928 1929 /* 1930 * Helper function for set_page_dirty family. 1931 * NOTE: This relies on being atomic wrt interrupts. 1932 */ 1933 void account_page_dirtied(struct page *page, struct address_space *mapping) 1934 { 1935 if (mapping_cap_account_dirty(mapping)) { 1936 __inc_zone_page_state(page, NR_FILE_DIRTY); 1937 __inc_zone_page_state(page, NR_DIRTIED); 1938 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1939 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 1940 task_io_account_write(PAGE_CACHE_SIZE); 1941 current->nr_dirtied++; 1942 this_cpu_inc(bdp_ratelimits); 1943 } 1944 } 1945 EXPORT_SYMBOL(account_page_dirtied); 1946 1947 /* 1948 * Helper function for set_page_writeback family. 1949 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 1950 * wrt interrupts. 1951 */ 1952 void account_page_writeback(struct page *page) 1953 { 1954 inc_zone_page_state(page, NR_WRITEBACK); 1955 } 1956 EXPORT_SYMBOL(account_page_writeback); 1957 1958 /* 1959 * For address_spaces which do not use buffers. Just tag the page as dirty in 1960 * its radix tree. 1961 * 1962 * This is also used when a single buffer is being dirtied: we want to set the 1963 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1964 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1965 * 1966 * Most callers have locked the page, which pins the address_space in memory. 1967 * But zap_pte_range() does not lock the page, however in that case the 1968 * mapping is pinned by the vma's ->vm_file reference. 1969 * 1970 * We take care to handle the case where the page was truncated from the 1971 * mapping by re-checking page_mapping() inside tree_lock. 1972 */ 1973 int __set_page_dirty_nobuffers(struct page *page) 1974 { 1975 if (!TestSetPageDirty(page)) { 1976 struct address_space *mapping = page_mapping(page); 1977 struct address_space *mapping2; 1978 1979 if (!mapping) 1980 return 1; 1981 1982 spin_lock_irq(&mapping->tree_lock); 1983 mapping2 = page_mapping(page); 1984 if (mapping2) { /* Race with truncate? */ 1985 BUG_ON(mapping2 != mapping); 1986 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1987 account_page_dirtied(page, mapping); 1988 radix_tree_tag_set(&mapping->page_tree, 1989 page_index(page), PAGECACHE_TAG_DIRTY); 1990 } 1991 spin_unlock_irq(&mapping->tree_lock); 1992 if (mapping->host) { 1993 /* !PageAnon && !swapper_space */ 1994 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1995 } 1996 return 1; 1997 } 1998 return 0; 1999 } 2000 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2001 2002 /* 2003 * Call this whenever redirtying a page, to de-account the dirty counters 2004 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2005 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2006 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2007 * control. 2008 */ 2009 void account_page_redirty(struct page *page) 2010 { 2011 struct address_space *mapping = page->mapping; 2012 if (mapping && mapping_cap_account_dirty(mapping)) { 2013 current->nr_dirtied--; 2014 dec_zone_page_state(page, NR_DIRTIED); 2015 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 2016 } 2017 } 2018 EXPORT_SYMBOL(account_page_redirty); 2019 2020 /* 2021 * When a writepage implementation decides that it doesn't want to write this 2022 * page for some reason, it should redirty the locked page via 2023 * redirty_page_for_writepage() and it should then unlock the page and return 0 2024 */ 2025 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2026 { 2027 wbc->pages_skipped++; 2028 account_page_redirty(page); 2029 return __set_page_dirty_nobuffers(page); 2030 } 2031 EXPORT_SYMBOL(redirty_page_for_writepage); 2032 2033 /* 2034 * Dirty a page. 2035 * 2036 * For pages with a mapping this should be done under the page lock 2037 * for the benefit of asynchronous memory errors who prefer a consistent 2038 * dirty state. This rule can be broken in some special cases, 2039 * but should be better not to. 2040 * 2041 * If the mapping doesn't provide a set_page_dirty a_op, then 2042 * just fall through and assume that it wants buffer_heads. 2043 */ 2044 int set_page_dirty(struct page *page) 2045 { 2046 struct address_space *mapping = page_mapping(page); 2047 2048 if (likely(mapping)) { 2049 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2050 /* 2051 * readahead/lru_deactivate_page could remain 2052 * PG_readahead/PG_reclaim due to race with end_page_writeback 2053 * About readahead, if the page is written, the flags would be 2054 * reset. So no problem. 2055 * About lru_deactivate_page, if the page is redirty, the flag 2056 * will be reset. So no problem. but if the page is used by readahead 2057 * it will confuse readahead and make it restart the size rampup 2058 * process. But it's a trivial problem. 2059 */ 2060 ClearPageReclaim(page); 2061 #ifdef CONFIG_BLOCK 2062 if (!spd) 2063 spd = __set_page_dirty_buffers; 2064 #endif 2065 return (*spd)(page); 2066 } 2067 if (!PageDirty(page)) { 2068 if (!TestSetPageDirty(page)) 2069 return 1; 2070 } 2071 return 0; 2072 } 2073 EXPORT_SYMBOL(set_page_dirty); 2074 2075 /* 2076 * set_page_dirty() is racy if the caller has no reference against 2077 * page->mapping->host, and if the page is unlocked. This is because another 2078 * CPU could truncate the page off the mapping and then free the mapping. 2079 * 2080 * Usually, the page _is_ locked, or the caller is a user-space process which 2081 * holds a reference on the inode by having an open file. 2082 * 2083 * In other cases, the page should be locked before running set_page_dirty(). 2084 */ 2085 int set_page_dirty_lock(struct page *page) 2086 { 2087 int ret; 2088 2089 lock_page(page); 2090 ret = set_page_dirty(page); 2091 unlock_page(page); 2092 return ret; 2093 } 2094 EXPORT_SYMBOL(set_page_dirty_lock); 2095 2096 /* 2097 * Clear a page's dirty flag, while caring for dirty memory accounting. 2098 * Returns true if the page was previously dirty. 2099 * 2100 * This is for preparing to put the page under writeout. We leave the page 2101 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2102 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2103 * implementation will run either set_page_writeback() or set_page_dirty(), 2104 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2105 * back into sync. 2106 * 2107 * This incoherency between the page's dirty flag and radix-tree tag is 2108 * unfortunate, but it only exists while the page is locked. 2109 */ 2110 int clear_page_dirty_for_io(struct page *page) 2111 { 2112 struct address_space *mapping = page_mapping(page); 2113 2114 BUG_ON(!PageLocked(page)); 2115 2116 if (mapping && mapping_cap_account_dirty(mapping)) { 2117 /* 2118 * Yes, Virginia, this is indeed insane. 2119 * 2120 * We use this sequence to make sure that 2121 * (a) we account for dirty stats properly 2122 * (b) we tell the low-level filesystem to 2123 * mark the whole page dirty if it was 2124 * dirty in a pagetable. Only to then 2125 * (c) clean the page again and return 1 to 2126 * cause the writeback. 2127 * 2128 * This way we avoid all nasty races with the 2129 * dirty bit in multiple places and clearing 2130 * them concurrently from different threads. 2131 * 2132 * Note! Normally the "set_page_dirty(page)" 2133 * has no effect on the actual dirty bit - since 2134 * that will already usually be set. But we 2135 * need the side effects, and it can help us 2136 * avoid races. 2137 * 2138 * We basically use the page "master dirty bit" 2139 * as a serialization point for all the different 2140 * threads doing their things. 2141 */ 2142 if (page_mkclean(page)) 2143 set_page_dirty(page); 2144 /* 2145 * We carefully synchronise fault handlers against 2146 * installing a dirty pte and marking the page dirty 2147 * at this point. We do this by having them hold the 2148 * page lock at some point after installing their 2149 * pte, but before marking the page dirty. 2150 * Pages are always locked coming in here, so we get 2151 * the desired exclusion. See mm/memory.c:do_wp_page() 2152 * for more comments. 2153 */ 2154 if (TestClearPageDirty(page)) { 2155 dec_zone_page_state(page, NR_FILE_DIRTY); 2156 dec_bdi_stat(mapping->backing_dev_info, 2157 BDI_RECLAIMABLE); 2158 return 1; 2159 } 2160 return 0; 2161 } 2162 return TestClearPageDirty(page); 2163 } 2164 EXPORT_SYMBOL(clear_page_dirty_for_io); 2165 2166 int test_clear_page_writeback(struct page *page) 2167 { 2168 struct address_space *mapping = page_mapping(page); 2169 int ret; 2170 2171 if (mapping) { 2172 struct backing_dev_info *bdi = mapping->backing_dev_info; 2173 unsigned long flags; 2174 2175 spin_lock_irqsave(&mapping->tree_lock, flags); 2176 ret = TestClearPageWriteback(page); 2177 if (ret) { 2178 radix_tree_tag_clear(&mapping->page_tree, 2179 page_index(page), 2180 PAGECACHE_TAG_WRITEBACK); 2181 if (bdi_cap_account_writeback(bdi)) { 2182 __dec_bdi_stat(bdi, BDI_WRITEBACK); 2183 __bdi_writeout_inc(bdi); 2184 } 2185 } 2186 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2187 } else { 2188 ret = TestClearPageWriteback(page); 2189 } 2190 if (ret) { 2191 dec_zone_page_state(page, NR_WRITEBACK); 2192 inc_zone_page_state(page, NR_WRITTEN); 2193 } 2194 return ret; 2195 } 2196 2197 int test_set_page_writeback(struct page *page) 2198 { 2199 struct address_space *mapping = page_mapping(page); 2200 int ret; 2201 2202 if (mapping) { 2203 struct backing_dev_info *bdi = mapping->backing_dev_info; 2204 unsigned long flags; 2205 2206 spin_lock_irqsave(&mapping->tree_lock, flags); 2207 ret = TestSetPageWriteback(page); 2208 if (!ret) { 2209 radix_tree_tag_set(&mapping->page_tree, 2210 page_index(page), 2211 PAGECACHE_TAG_WRITEBACK); 2212 if (bdi_cap_account_writeback(bdi)) 2213 __inc_bdi_stat(bdi, BDI_WRITEBACK); 2214 } 2215 if (!PageDirty(page)) 2216 radix_tree_tag_clear(&mapping->page_tree, 2217 page_index(page), 2218 PAGECACHE_TAG_DIRTY); 2219 radix_tree_tag_clear(&mapping->page_tree, 2220 page_index(page), 2221 PAGECACHE_TAG_TOWRITE); 2222 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2223 } else { 2224 ret = TestSetPageWriteback(page); 2225 } 2226 if (!ret) 2227 account_page_writeback(page); 2228 return ret; 2229 2230 } 2231 EXPORT_SYMBOL(test_set_page_writeback); 2232 2233 /* 2234 * Return true if any of the pages in the mapping are marked with the 2235 * passed tag. 2236 */ 2237 int mapping_tagged(struct address_space *mapping, int tag) 2238 { 2239 return radix_tree_tagged(&mapping->page_tree, tag); 2240 } 2241 EXPORT_SYMBOL(mapping_tagged); 2242