xref: /linux/mm/oom_kill.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/mm.h>
19 #include <linux/sched.h>
20 #include <linux/swap.h>
21 #include <linux/timex.h>
22 #include <linux/jiffies.h>
23 #include <linux/cpuset.h>
24 
25 int sysctl_panic_on_oom;
26 /* #define DEBUG */
27 
28 /**
29  * badness - calculate a numeric value for how bad this task has been
30  * @p: task struct of which task we should calculate
31  * @uptime: current uptime in seconds
32  *
33  * The formula used is relatively simple and documented inline in the
34  * function. The main rationale is that we want to select a good task
35  * to kill when we run out of memory.
36  *
37  * Good in this context means that:
38  * 1) we lose the minimum amount of work done
39  * 2) we recover a large amount of memory
40  * 3) we don't kill anything innocent of eating tons of memory
41  * 4) we want to kill the minimum amount of processes (one)
42  * 5) we try to kill the process the user expects us to kill, this
43  *    algorithm has been meticulously tuned to meet the principle
44  *    of least surprise ... (be careful when you change it)
45  */
46 
47 unsigned long badness(struct task_struct *p, unsigned long uptime)
48 {
49 	unsigned long points, cpu_time, run_time, s;
50 	struct mm_struct *mm;
51 	struct task_struct *child;
52 
53 	task_lock(p);
54 	mm = p->mm;
55 	if (!mm) {
56 		task_unlock(p);
57 		return 0;
58 	}
59 
60 	/*
61 	 * The memory size of the process is the basis for the badness.
62 	 */
63 	points = mm->total_vm;
64 
65 	/*
66 	 * After this unlock we can no longer dereference local variable `mm'
67 	 */
68 	task_unlock(p);
69 
70 	/*
71 	 * Processes which fork a lot of child processes are likely
72 	 * a good choice. We add half the vmsize of the children if they
73 	 * have an own mm. This prevents forking servers to flood the
74 	 * machine with an endless amount of children. In case a single
75 	 * child is eating the vast majority of memory, adding only half
76 	 * to the parents will make the child our kill candidate of choice.
77 	 */
78 	list_for_each_entry(child, &p->children, sibling) {
79 		task_lock(child);
80 		if (child->mm != mm && child->mm)
81 			points += child->mm->total_vm/2 + 1;
82 		task_unlock(child);
83 	}
84 
85 	/*
86 	 * CPU time is in tens of seconds and run time is in thousands
87          * of seconds. There is no particular reason for this other than
88          * that it turned out to work very well in practice.
89 	 */
90 	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
91 		>> (SHIFT_HZ + 3);
92 
93 	if (uptime >= p->start_time.tv_sec)
94 		run_time = (uptime - p->start_time.tv_sec) >> 10;
95 	else
96 		run_time = 0;
97 
98 	s = int_sqrt(cpu_time);
99 	if (s)
100 		points /= s;
101 	s = int_sqrt(int_sqrt(run_time));
102 	if (s)
103 		points /= s;
104 
105 	/*
106 	 * Niced processes are most likely less important, so double
107 	 * their badness points.
108 	 */
109 	if (task_nice(p) > 0)
110 		points *= 2;
111 
112 	/*
113 	 * Superuser processes are usually more important, so we make it
114 	 * less likely that we kill those.
115 	 */
116 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
117 				p->uid == 0 || p->euid == 0)
118 		points /= 4;
119 
120 	/*
121 	 * We don't want to kill a process with direct hardware access.
122 	 * Not only could that mess up the hardware, but usually users
123 	 * tend to only have this flag set on applications they think
124 	 * of as important.
125 	 */
126 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
127 		points /= 4;
128 
129 	/*
130 	 * Adjust the score by oomkilladj.
131 	 */
132 	if (p->oomkilladj) {
133 		if (p->oomkilladj > 0)
134 			points <<= p->oomkilladj;
135 		else
136 			points >>= -(p->oomkilladj);
137 	}
138 
139 #ifdef DEBUG
140 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
141 	p->pid, p->comm, points);
142 #endif
143 	return points;
144 }
145 
146 /*
147  * Types of limitations to the nodes from which allocations may occur
148  */
149 #define CONSTRAINT_NONE 1
150 #define CONSTRAINT_MEMORY_POLICY 2
151 #define CONSTRAINT_CPUSET 3
152 
153 /*
154  * Determine the type of allocation constraint.
155  */
156 static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
157 {
158 #ifdef CONFIG_NUMA
159 	struct zone **z;
160 	nodemask_t nodes = node_online_map;
161 
162 	for (z = zonelist->zones; *z; z++)
163 		if (cpuset_zone_allowed(*z, gfp_mask))
164 			node_clear((*z)->zone_pgdat->node_id,
165 					nodes);
166 		else
167 			return CONSTRAINT_CPUSET;
168 
169 	if (!nodes_empty(nodes))
170 		return CONSTRAINT_MEMORY_POLICY;
171 #endif
172 
173 	return CONSTRAINT_NONE;
174 }
175 
176 /*
177  * Simple selection loop. We chose the process with the highest
178  * number of 'points'. We expect the caller will lock the tasklist.
179  *
180  * (not docbooked, we don't want this one cluttering up the manual)
181  */
182 static struct task_struct *select_bad_process(unsigned long *ppoints)
183 {
184 	struct task_struct *g, *p;
185 	struct task_struct *chosen = NULL;
186 	struct timespec uptime;
187 	*ppoints = 0;
188 
189 	do_posix_clock_monotonic_gettime(&uptime);
190 	do_each_thread(g, p) {
191 		unsigned long points;
192 		int releasing;
193 
194 		/* skip the init task with pid == 1 */
195 		if (p->pid == 1)
196 			continue;
197 		if (p->oomkilladj == OOM_DISABLE)
198 			continue;
199 		/* If p's nodes don't overlap ours, it won't help to kill p. */
200 		if (!cpuset_excl_nodes_overlap(p))
201 			continue;
202 
203 		/*
204 		 * This is in the process of releasing memory so wait for it
205 		 * to finish before killing some other task by mistake.
206 		 */
207 		releasing = test_tsk_thread_flag(p, TIF_MEMDIE) ||
208 						p->flags & PF_EXITING;
209 		if (releasing && !(p->flags & PF_DEAD))
210 			return ERR_PTR(-1UL);
211 		if (p->flags & PF_SWAPOFF)
212 			return p;
213 
214 		points = badness(p, uptime.tv_sec);
215 		if (points > *ppoints || !chosen) {
216 			chosen = p;
217 			*ppoints = points;
218 		}
219 	} while_each_thread(g, p);
220 	return chosen;
221 }
222 
223 /**
224  * We must be careful though to never send SIGKILL a process with
225  * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
226  * we select a process with CAP_SYS_RAW_IO set).
227  */
228 static void __oom_kill_task(task_t *p, const char *message)
229 {
230 	if (p->pid == 1) {
231 		WARN_ON(1);
232 		printk(KERN_WARNING "tried to kill init!\n");
233 		return;
234 	}
235 
236 	task_lock(p);
237 	if (!p->mm || p->mm == &init_mm) {
238 		WARN_ON(1);
239 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
240 		task_unlock(p);
241 		return;
242 	}
243 	task_unlock(p);
244 	printk(KERN_ERR "%s: Killed process %d (%s).\n",
245 				message, p->pid, p->comm);
246 
247 	/*
248 	 * We give our sacrificial lamb high priority and access to
249 	 * all the memory it needs. That way it should be able to
250 	 * exit() and clear out its resources quickly...
251 	 */
252 	p->time_slice = HZ;
253 	set_tsk_thread_flag(p, TIF_MEMDIE);
254 
255 	force_sig(SIGKILL, p);
256 }
257 
258 static int oom_kill_task(task_t *p, const char *message)
259 {
260 	struct mm_struct *mm;
261 	task_t * g, * q;
262 
263 	mm = p->mm;
264 
265 	/* WARNING: mm may not be dereferenced since we did not obtain its
266 	 * value from get_task_mm(p).  This is OK since all we need to do is
267 	 * compare mm to q->mm below.
268 	 *
269 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
270 	 * change to NULL at any time since we do not hold task_lock(p).
271 	 * However, this is of no concern to us.
272 	 */
273 
274 	if (mm == NULL || mm == &init_mm)
275 		return 1;
276 
277 	__oom_kill_task(p, message);
278 	/*
279 	 * kill all processes that share the ->mm (i.e. all threads),
280 	 * but are in a different thread group
281 	 */
282 	do_each_thread(g, q)
283 		if (q->mm == mm && q->tgid != p->tgid)
284 			__oom_kill_task(q, message);
285 	while_each_thread(g, q);
286 
287 	return 0;
288 }
289 
290 static int oom_kill_process(struct task_struct *p, unsigned long points,
291 		const char *message)
292 {
293 	struct task_struct *c;
294 	struct list_head *tsk;
295 
296 	printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li and "
297 		"children.\n", p->pid, p->comm, points);
298 	/* Try to kill a child first */
299 	list_for_each(tsk, &p->children) {
300 		c = list_entry(tsk, struct task_struct, sibling);
301 		if (c->mm == p->mm)
302 			continue;
303 		if (!oom_kill_task(c, message))
304 			return 0;
305 	}
306 	return oom_kill_task(p, message);
307 }
308 
309 /**
310  * out_of_memory - kill the "best" process when we run out of memory
311  *
312  * If we run out of memory, we have the choice between either
313  * killing a random task (bad), letting the system crash (worse)
314  * OR try to be smart about which process to kill. Note that we
315  * don't have to be perfect here, we just have to be good.
316  */
317 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
318 {
319 	task_t *p;
320 	unsigned long points = 0;
321 
322 	if (printk_ratelimit()) {
323 		printk("oom-killer: gfp_mask=0x%x, order=%d\n",
324 			gfp_mask, order);
325 		dump_stack();
326 		show_mem();
327 	}
328 
329 	cpuset_lock();
330 	read_lock(&tasklist_lock);
331 
332 	/*
333 	 * Check if there were limitations on the allocation (only relevant for
334 	 * NUMA) that may require different handling.
335 	 */
336 	switch (constrained_alloc(zonelist, gfp_mask)) {
337 	case CONSTRAINT_MEMORY_POLICY:
338 		oom_kill_process(current, points,
339 				"No available memory (MPOL_BIND)");
340 		break;
341 
342 	case CONSTRAINT_CPUSET:
343 		oom_kill_process(current, points,
344 				"No available memory in cpuset");
345 		break;
346 
347 	case CONSTRAINT_NONE:
348 		if (sysctl_panic_on_oom)
349 			panic("out of memory. panic_on_oom is selected\n");
350 retry:
351 		/*
352 		 * Rambo mode: Shoot down a process and hope it solves whatever
353 		 * issues we may have.
354 		 */
355 		p = select_bad_process(&points);
356 
357 		if (PTR_ERR(p) == -1UL)
358 			goto out;
359 
360 		/* Found nothing?!?! Either we hang forever, or we panic. */
361 		if (!p) {
362 			read_unlock(&tasklist_lock);
363 			cpuset_unlock();
364 			panic("Out of memory and no killable processes...\n");
365 		}
366 
367 		if (oom_kill_process(p, points, "Out of memory"))
368 			goto retry;
369 
370 		break;
371 	}
372 
373 out:
374 	read_unlock(&tasklist_lock);
375 	cpuset_unlock();
376 
377 	/*
378 	 * Give "p" a good chance of killing itself before we
379 	 * retry to allocate memory unless "p" is current
380 	 */
381 	if (!test_thread_flag(TIF_MEMDIE))
382 		schedule_timeout_uninterruptible(1);
383 }
384