xref: /linux/mm/oom_kill.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/oom.h>
41 
42 int sysctl_panic_on_oom;
43 int sysctl_oom_kill_allocating_task;
44 int sysctl_oom_dump_tasks = 1;
45 
46 DEFINE_MUTEX(oom_lock);
47 
48 #ifdef CONFIG_NUMA
49 /**
50  * has_intersects_mems_allowed() - check task eligiblity for kill
51  * @start: task struct of which task to consider
52  * @mask: nodemask passed to page allocator for mempolicy ooms
53  *
54  * Task eligibility is determined by whether or not a candidate task, @tsk,
55  * shares the same mempolicy nodes as current if it is bound by such a policy
56  * and whether or not it has the same set of allowed cpuset nodes.
57  */
58 static bool has_intersects_mems_allowed(struct task_struct *start,
59 					const nodemask_t *mask)
60 {
61 	struct task_struct *tsk;
62 	bool ret = false;
63 
64 	rcu_read_lock();
65 	for_each_thread(start, tsk) {
66 		if (mask) {
67 			/*
68 			 * If this is a mempolicy constrained oom, tsk's
69 			 * cpuset is irrelevant.  Only return true if its
70 			 * mempolicy intersects current, otherwise it may be
71 			 * needlessly killed.
72 			 */
73 			ret = mempolicy_nodemask_intersects(tsk, mask);
74 		} else {
75 			/*
76 			 * This is not a mempolicy constrained oom, so only
77 			 * check the mems of tsk's cpuset.
78 			 */
79 			ret = cpuset_mems_allowed_intersects(current, tsk);
80 		}
81 		if (ret)
82 			break;
83 	}
84 	rcu_read_unlock();
85 
86 	return ret;
87 }
88 #else
89 static bool has_intersects_mems_allowed(struct task_struct *tsk,
90 					const nodemask_t *mask)
91 {
92 	return true;
93 }
94 #endif /* CONFIG_NUMA */
95 
96 /*
97  * The process p may have detached its own ->mm while exiting or through
98  * use_mm(), but one or more of its subthreads may still have a valid
99  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
100  * task_lock() held.
101  */
102 struct task_struct *find_lock_task_mm(struct task_struct *p)
103 {
104 	struct task_struct *t;
105 
106 	rcu_read_lock();
107 
108 	for_each_thread(p, t) {
109 		task_lock(t);
110 		if (likely(t->mm))
111 			goto found;
112 		task_unlock(t);
113 	}
114 	t = NULL;
115 found:
116 	rcu_read_unlock();
117 
118 	return t;
119 }
120 
121 /*
122  * order == -1 means the oom kill is required by sysrq, otherwise only
123  * for display purposes.
124  */
125 static inline bool is_sysrq_oom(struct oom_control *oc)
126 {
127 	return oc->order == -1;
128 }
129 
130 /* return true if the task is not adequate as candidate victim task. */
131 static bool oom_unkillable_task(struct task_struct *p,
132 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
133 {
134 	if (is_global_init(p))
135 		return true;
136 	if (p->flags & PF_KTHREAD)
137 		return true;
138 
139 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
140 	if (memcg && !task_in_mem_cgroup(p, memcg))
141 		return true;
142 
143 	/* p may not have freeable memory in nodemask */
144 	if (!has_intersects_mems_allowed(p, nodemask))
145 		return true;
146 
147 	return false;
148 }
149 
150 /**
151  * oom_badness - heuristic function to determine which candidate task to kill
152  * @p: task struct of which task we should calculate
153  * @totalpages: total present RAM allowed for page allocation
154  *
155  * The heuristic for determining which task to kill is made to be as simple and
156  * predictable as possible.  The goal is to return the highest value for the
157  * task consuming the most memory to avoid subsequent oom failures.
158  */
159 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
160 			  const nodemask_t *nodemask, unsigned long totalpages)
161 {
162 	long points;
163 	long adj;
164 
165 	if (oom_unkillable_task(p, memcg, nodemask))
166 		return 0;
167 
168 	p = find_lock_task_mm(p);
169 	if (!p)
170 		return 0;
171 
172 	adj = (long)p->signal->oom_score_adj;
173 	if (adj == OOM_SCORE_ADJ_MIN) {
174 		task_unlock(p);
175 		return 0;
176 	}
177 
178 	/*
179 	 * The baseline for the badness score is the proportion of RAM that each
180 	 * task's rss, pagetable and swap space use.
181 	 */
182 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
183 		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
184 	task_unlock(p);
185 
186 	/*
187 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
188 	 * implementation used by LSMs.
189 	 */
190 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
191 		points -= (points * 3) / 100;
192 
193 	/* Normalize to oom_score_adj units */
194 	adj *= totalpages / 1000;
195 	points += adj;
196 
197 	/*
198 	 * Never return 0 for an eligible task regardless of the root bonus and
199 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
200 	 */
201 	return points > 0 ? points : 1;
202 }
203 
204 /*
205  * Determine the type of allocation constraint.
206  */
207 #ifdef CONFIG_NUMA
208 static enum oom_constraint constrained_alloc(struct oom_control *oc,
209 					     unsigned long *totalpages)
210 {
211 	struct zone *zone;
212 	struct zoneref *z;
213 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
214 	bool cpuset_limited = false;
215 	int nid;
216 
217 	/* Default to all available memory */
218 	*totalpages = totalram_pages + total_swap_pages;
219 
220 	if (!oc->zonelist)
221 		return CONSTRAINT_NONE;
222 	/*
223 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
224 	 * to kill current.We have to random task kill in this case.
225 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
226 	 */
227 	if (oc->gfp_mask & __GFP_THISNODE)
228 		return CONSTRAINT_NONE;
229 
230 	/*
231 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
232 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
233 	 * is enforced in get_page_from_freelist().
234 	 */
235 	if (oc->nodemask &&
236 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
237 		*totalpages = total_swap_pages;
238 		for_each_node_mask(nid, *oc->nodemask)
239 			*totalpages += node_spanned_pages(nid);
240 		return CONSTRAINT_MEMORY_POLICY;
241 	}
242 
243 	/* Check this allocation failure is caused by cpuset's wall function */
244 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
245 			high_zoneidx, oc->nodemask)
246 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
247 			cpuset_limited = true;
248 
249 	if (cpuset_limited) {
250 		*totalpages = total_swap_pages;
251 		for_each_node_mask(nid, cpuset_current_mems_allowed)
252 			*totalpages += node_spanned_pages(nid);
253 		return CONSTRAINT_CPUSET;
254 	}
255 	return CONSTRAINT_NONE;
256 }
257 #else
258 static enum oom_constraint constrained_alloc(struct oom_control *oc,
259 					     unsigned long *totalpages)
260 {
261 	*totalpages = totalram_pages + total_swap_pages;
262 	return CONSTRAINT_NONE;
263 }
264 #endif
265 
266 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
267 			struct task_struct *task, unsigned long totalpages)
268 {
269 	if (oom_unkillable_task(task, NULL, oc->nodemask))
270 		return OOM_SCAN_CONTINUE;
271 
272 	/*
273 	 * This task already has access to memory reserves and is being killed.
274 	 * Don't allow any other task to have access to the reserves.
275 	 */
276 	if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
277 		if (!is_sysrq_oom(oc))
278 			return OOM_SCAN_ABORT;
279 	}
280 	if (!task->mm)
281 		return OOM_SCAN_CONTINUE;
282 
283 	/*
284 	 * If task is allocating a lot of memory and has been marked to be
285 	 * killed first if it triggers an oom, then select it.
286 	 */
287 	if (oom_task_origin(task))
288 		return OOM_SCAN_SELECT;
289 
290 	if (task_will_free_mem(task) && !is_sysrq_oom(oc))
291 		return OOM_SCAN_ABORT;
292 
293 	return OOM_SCAN_OK;
294 }
295 
296 /*
297  * Simple selection loop. We chose the process with the highest
298  * number of 'points'.  Returns -1 on scan abort.
299  */
300 static struct task_struct *select_bad_process(struct oom_control *oc,
301 		unsigned int *ppoints, unsigned long totalpages)
302 {
303 	struct task_struct *g, *p;
304 	struct task_struct *chosen = NULL;
305 	unsigned long chosen_points = 0;
306 
307 	rcu_read_lock();
308 	for_each_process_thread(g, p) {
309 		unsigned int points;
310 
311 		switch (oom_scan_process_thread(oc, p, totalpages)) {
312 		case OOM_SCAN_SELECT:
313 			chosen = p;
314 			chosen_points = ULONG_MAX;
315 			/* fall through */
316 		case OOM_SCAN_CONTINUE:
317 			continue;
318 		case OOM_SCAN_ABORT:
319 			rcu_read_unlock();
320 			return (struct task_struct *)(-1UL);
321 		case OOM_SCAN_OK:
322 			break;
323 		};
324 		points = oom_badness(p, NULL, oc->nodemask, totalpages);
325 		if (!points || points < chosen_points)
326 			continue;
327 		/* Prefer thread group leaders for display purposes */
328 		if (points == chosen_points && thread_group_leader(chosen))
329 			continue;
330 
331 		chosen = p;
332 		chosen_points = points;
333 	}
334 	if (chosen)
335 		get_task_struct(chosen);
336 	rcu_read_unlock();
337 
338 	*ppoints = chosen_points * 1000 / totalpages;
339 	return chosen;
340 }
341 
342 /**
343  * dump_tasks - dump current memory state of all system tasks
344  * @memcg: current's memory controller, if constrained
345  * @nodemask: nodemask passed to page allocator for mempolicy ooms
346  *
347  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
348  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
349  * are not shown.
350  * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
351  * swapents, oom_score_adj value, and name.
352  */
353 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
354 {
355 	struct task_struct *p;
356 	struct task_struct *task;
357 
358 	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
359 	rcu_read_lock();
360 	for_each_process(p) {
361 		if (oom_unkillable_task(p, memcg, nodemask))
362 			continue;
363 
364 		task = find_lock_task_mm(p);
365 		if (!task) {
366 			/*
367 			 * This is a kthread or all of p's threads have already
368 			 * detached their mm's.  There's no need to report
369 			 * them; they can't be oom killed anyway.
370 			 */
371 			continue;
372 		}
373 
374 		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
375 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
376 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
377 			atomic_long_read(&task->mm->nr_ptes),
378 			mm_nr_pmds(task->mm),
379 			get_mm_counter(task->mm, MM_SWAPENTS),
380 			task->signal->oom_score_adj, task->comm);
381 		task_unlock(task);
382 	}
383 	rcu_read_unlock();
384 }
385 
386 static void dump_header(struct oom_control *oc, struct task_struct *p,
387 			struct mem_cgroup *memcg)
388 {
389 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, "
390 			"oom_score_adj=%hd\n",
391 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
392 		current->signal->oom_score_adj);
393 
394 	cpuset_print_current_mems_allowed();
395 	dump_stack();
396 	if (memcg)
397 		mem_cgroup_print_oom_info(memcg, p);
398 	else
399 		show_mem(SHOW_MEM_FILTER_NODES);
400 	if (sysctl_oom_dump_tasks)
401 		dump_tasks(memcg, oc->nodemask);
402 }
403 
404 /*
405  * Number of OOM victims in flight
406  */
407 static atomic_t oom_victims = ATOMIC_INIT(0);
408 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
409 
410 bool oom_killer_disabled __read_mostly;
411 
412 /**
413  * mark_oom_victim - mark the given task as OOM victim
414  * @tsk: task to mark
415  *
416  * Has to be called with oom_lock held and never after
417  * oom has been disabled already.
418  */
419 void mark_oom_victim(struct task_struct *tsk)
420 {
421 	WARN_ON(oom_killer_disabled);
422 	/* OOM killer might race with memcg OOM */
423 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
424 		return;
425 	/*
426 	 * Make sure that the task is woken up from uninterruptible sleep
427 	 * if it is frozen because OOM killer wouldn't be able to free
428 	 * any memory and livelock. freezing_slow_path will tell the freezer
429 	 * that TIF_MEMDIE tasks should be ignored.
430 	 */
431 	__thaw_task(tsk);
432 	atomic_inc(&oom_victims);
433 }
434 
435 /**
436  * exit_oom_victim - note the exit of an OOM victim
437  */
438 void exit_oom_victim(void)
439 {
440 	clear_thread_flag(TIF_MEMDIE);
441 
442 	if (!atomic_dec_return(&oom_victims))
443 		wake_up_all(&oom_victims_wait);
444 }
445 
446 /**
447  * oom_killer_disable - disable OOM killer
448  *
449  * Forces all page allocations to fail rather than trigger OOM killer.
450  * Will block and wait until all OOM victims are killed.
451  *
452  * The function cannot be called when there are runnable user tasks because
453  * the userspace would see unexpected allocation failures as a result. Any
454  * new usage of this function should be consulted with MM people.
455  *
456  * Returns true if successful and false if the OOM killer cannot be
457  * disabled.
458  */
459 bool oom_killer_disable(void)
460 {
461 	/*
462 	 * Make sure to not race with an ongoing OOM killer
463 	 * and that the current is not the victim.
464 	 */
465 	mutex_lock(&oom_lock);
466 	if (test_thread_flag(TIF_MEMDIE)) {
467 		mutex_unlock(&oom_lock);
468 		return false;
469 	}
470 
471 	oom_killer_disabled = true;
472 	mutex_unlock(&oom_lock);
473 
474 	wait_event(oom_victims_wait, !atomic_read(&oom_victims));
475 
476 	return true;
477 }
478 
479 /**
480  * oom_killer_enable - enable OOM killer
481  */
482 void oom_killer_enable(void)
483 {
484 	oom_killer_disabled = false;
485 }
486 
487 /*
488  * task->mm can be NULL if the task is the exited group leader.  So to
489  * determine whether the task is using a particular mm, we examine all the
490  * task's threads: if one of those is using this mm then this task was also
491  * using it.
492  */
493 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
494 {
495 	struct task_struct *t;
496 
497 	for_each_thread(p, t) {
498 		struct mm_struct *t_mm = READ_ONCE(t->mm);
499 		if (t_mm)
500 			return t_mm == mm;
501 	}
502 	return false;
503 }
504 
505 #define K(x) ((x) << (PAGE_SHIFT-10))
506 /*
507  * Must be called while holding a reference to p, which will be released upon
508  * returning.
509  */
510 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
511 		      unsigned int points, unsigned long totalpages,
512 		      struct mem_cgroup *memcg, const char *message)
513 {
514 	struct task_struct *victim = p;
515 	struct task_struct *child;
516 	struct task_struct *t;
517 	struct mm_struct *mm;
518 	unsigned int victim_points = 0;
519 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
520 					      DEFAULT_RATELIMIT_BURST);
521 
522 	/*
523 	 * If the task is already exiting, don't alarm the sysadmin or kill
524 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
525 	 */
526 	task_lock(p);
527 	if (p->mm && task_will_free_mem(p)) {
528 		mark_oom_victim(p);
529 		task_unlock(p);
530 		put_task_struct(p);
531 		return;
532 	}
533 	task_unlock(p);
534 
535 	if (__ratelimit(&oom_rs))
536 		dump_header(oc, p, memcg);
537 
538 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
539 		message, task_pid_nr(p), p->comm, points);
540 
541 	/*
542 	 * If any of p's children has a different mm and is eligible for kill,
543 	 * the one with the highest oom_badness() score is sacrificed for its
544 	 * parent.  This attempts to lose the minimal amount of work done while
545 	 * still freeing memory.
546 	 */
547 	read_lock(&tasklist_lock);
548 	for_each_thread(p, t) {
549 		list_for_each_entry(child, &t->children, sibling) {
550 			unsigned int child_points;
551 
552 			if (process_shares_mm(child, p->mm))
553 				continue;
554 			/*
555 			 * oom_badness() returns 0 if the thread is unkillable
556 			 */
557 			child_points = oom_badness(child, memcg, oc->nodemask,
558 								totalpages);
559 			if (child_points > victim_points) {
560 				put_task_struct(victim);
561 				victim = child;
562 				victim_points = child_points;
563 				get_task_struct(victim);
564 			}
565 		}
566 	}
567 	read_unlock(&tasklist_lock);
568 
569 	p = find_lock_task_mm(victim);
570 	if (!p) {
571 		put_task_struct(victim);
572 		return;
573 	} else if (victim != p) {
574 		get_task_struct(p);
575 		put_task_struct(victim);
576 		victim = p;
577 	}
578 
579 	/* Get a reference to safely compare mm after task_unlock(victim) */
580 	mm = victim->mm;
581 	atomic_inc(&mm->mm_count);
582 	/*
583 	 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
584 	 * the OOM victim from depleting the memory reserves from the user
585 	 * space under its control.
586 	 */
587 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
588 	mark_oom_victim(victim);
589 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
590 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
591 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
592 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
593 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
594 	task_unlock(victim);
595 
596 	/*
597 	 * Kill all user processes sharing victim->mm in other thread groups, if
598 	 * any.  They don't get access to memory reserves, though, to avoid
599 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
600 	 * oom killed thread cannot exit because it requires the semaphore and
601 	 * its contended by another thread trying to allocate memory itself.
602 	 * That thread will now get access to memory reserves since it has a
603 	 * pending fatal signal.
604 	 */
605 	rcu_read_lock();
606 	for_each_process(p) {
607 		if (!process_shares_mm(p, mm))
608 			continue;
609 		if (same_thread_group(p, victim))
610 			continue;
611 		if (unlikely(p->flags & PF_KTHREAD))
612 			continue;
613 		if (is_global_init(p))
614 			continue;
615 		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
616 			continue;
617 
618 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
619 	}
620 	rcu_read_unlock();
621 
622 	mmdrop(mm);
623 	put_task_struct(victim);
624 }
625 #undef K
626 
627 /*
628  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
629  */
630 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
631 			struct mem_cgroup *memcg)
632 {
633 	if (likely(!sysctl_panic_on_oom))
634 		return;
635 	if (sysctl_panic_on_oom != 2) {
636 		/*
637 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
638 		 * does not panic for cpuset, mempolicy, or memcg allocation
639 		 * failures.
640 		 */
641 		if (constraint != CONSTRAINT_NONE)
642 			return;
643 	}
644 	/* Do not panic for oom kills triggered by sysrq */
645 	if (is_sysrq_oom(oc))
646 		return;
647 	dump_header(oc, NULL, memcg);
648 	panic("Out of memory: %s panic_on_oom is enabled\n",
649 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
650 }
651 
652 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
653 
654 int register_oom_notifier(struct notifier_block *nb)
655 {
656 	return blocking_notifier_chain_register(&oom_notify_list, nb);
657 }
658 EXPORT_SYMBOL_GPL(register_oom_notifier);
659 
660 int unregister_oom_notifier(struct notifier_block *nb)
661 {
662 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
663 }
664 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
665 
666 /**
667  * out_of_memory - kill the "best" process when we run out of memory
668  * @oc: pointer to struct oom_control
669  *
670  * If we run out of memory, we have the choice between either
671  * killing a random task (bad), letting the system crash (worse)
672  * OR try to be smart about which process to kill. Note that we
673  * don't have to be perfect here, we just have to be good.
674  */
675 bool out_of_memory(struct oom_control *oc)
676 {
677 	struct task_struct *p;
678 	unsigned long totalpages;
679 	unsigned long freed = 0;
680 	unsigned int uninitialized_var(points);
681 	enum oom_constraint constraint = CONSTRAINT_NONE;
682 
683 	if (oom_killer_disabled)
684 		return false;
685 
686 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
687 	if (freed > 0)
688 		/* Got some memory back in the last second. */
689 		return true;
690 
691 	/*
692 	 * If current has a pending SIGKILL or is exiting, then automatically
693 	 * select it.  The goal is to allow it to allocate so that it may
694 	 * quickly exit and free its memory.
695 	 *
696 	 * But don't select if current has already released its mm and cleared
697 	 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
698 	 */
699 	if (current->mm &&
700 	    (fatal_signal_pending(current) || task_will_free_mem(current))) {
701 		mark_oom_victim(current);
702 		return true;
703 	}
704 
705 	/*
706 	 * Check if there were limitations on the allocation (only relevant for
707 	 * NUMA) that may require different handling.
708 	 */
709 	constraint = constrained_alloc(oc, &totalpages);
710 	if (constraint != CONSTRAINT_MEMORY_POLICY)
711 		oc->nodemask = NULL;
712 	check_panic_on_oom(oc, constraint, NULL);
713 
714 	if (sysctl_oom_kill_allocating_task && current->mm &&
715 	    !oom_unkillable_task(current, NULL, oc->nodemask) &&
716 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
717 		get_task_struct(current);
718 		oom_kill_process(oc, current, 0, totalpages, NULL,
719 				 "Out of memory (oom_kill_allocating_task)");
720 		return true;
721 	}
722 
723 	p = select_bad_process(oc, &points, totalpages);
724 	/* Found nothing?!?! Either we hang forever, or we panic. */
725 	if (!p && !is_sysrq_oom(oc)) {
726 		dump_header(oc, NULL, NULL);
727 		panic("Out of memory and no killable processes...\n");
728 	}
729 	if (p && p != (void *)-1UL) {
730 		oom_kill_process(oc, p, points, totalpages, NULL,
731 				 "Out of memory");
732 		/*
733 		 * Give the killed process a good chance to exit before trying
734 		 * to allocate memory again.
735 		 */
736 		schedule_timeout_killable(1);
737 	}
738 	return true;
739 }
740 
741 /*
742  * The pagefault handler calls here because it is out of memory, so kill a
743  * memory-hogging task.  If any populated zone has ZONE_OOM_LOCKED set, a
744  * parallel oom killing is already in progress so do nothing.
745  */
746 void pagefault_out_of_memory(void)
747 {
748 	struct oom_control oc = {
749 		.zonelist = NULL,
750 		.nodemask = NULL,
751 		.gfp_mask = 0,
752 		.order = 0,
753 	};
754 
755 	if (mem_cgroup_oom_synchronize(true))
756 		return;
757 
758 	if (!mutex_trylock(&oom_lock))
759 		return;
760 
761 	if (!out_of_memory(&oc)) {
762 		/*
763 		 * There shouldn't be any user tasks runnable while the
764 		 * OOM killer is disabled, so the current task has to
765 		 * be a racing OOM victim for which oom_killer_disable()
766 		 * is waiting for.
767 		 */
768 		WARN_ON(test_thread_flag(TIF_MEMDIE));
769 	}
770 
771 	mutex_unlock(&oom_lock);
772 }
773