1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/hugetlb.h> 24 #include <linux/profile.h> 25 #include <linux/export.h> 26 #include <linux/mount.h> 27 #include <linux/mempolicy.h> 28 #include <linux/rmap.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/perf_event.h> 31 #include <linux/audit.h> 32 #include <linux/khugepaged.h> 33 #include <linux/uprobes.h> 34 35 #include <asm/uaccess.h> 36 #include <asm/cacheflush.h> 37 #include <asm/tlb.h> 38 #include <asm/mmu_context.h> 39 40 #include "internal.h" 41 42 #ifndef arch_mmap_check 43 #define arch_mmap_check(addr, len, flags) (0) 44 #endif 45 46 #ifndef arch_rebalance_pgtables 47 #define arch_rebalance_pgtables(addr, len) (addr) 48 #endif 49 50 static void unmap_region(struct mm_struct *mm, 51 struct vm_area_struct *vma, struct vm_area_struct *prev, 52 unsigned long start, unsigned long end); 53 54 /* 55 * WARNING: the debugging will use recursive algorithms so never enable this 56 * unless you know what you are doing. 57 */ 58 #undef DEBUG_MM_RB 59 60 /* description of effects of mapping type and prot in current implementation. 61 * this is due to the limited x86 page protection hardware. The expected 62 * behavior is in parens: 63 * 64 * map_type prot 65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 67 * w: (no) no w: (no) no w: (yes) yes w: (no) no 68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 69 * 70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 71 * w: (no) no w: (no) no w: (copy) copy w: (no) no 72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 73 * 74 */ 75 pgprot_t protection_map[16] = { 76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 78 }; 79 80 pgprot_t vm_get_page_prot(unsigned long vm_flags) 81 { 82 return __pgprot(pgprot_val(protection_map[vm_flags & 83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 84 pgprot_val(arch_vm_get_page_prot(vm_flags))); 85 } 86 EXPORT_SYMBOL(vm_get_page_prot); 87 88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 91 /* 92 * Make sure vm_committed_as in one cacheline and not cacheline shared with 93 * other variables. It can be updated by several CPUs frequently. 94 */ 95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 96 97 /* 98 * Check that a process has enough memory to allocate a new virtual 99 * mapping. 0 means there is enough memory for the allocation to 100 * succeed and -ENOMEM implies there is not. 101 * 102 * We currently support three overcommit policies, which are set via the 103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 104 * 105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 106 * Additional code 2002 Jul 20 by Robert Love. 107 * 108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 109 * 110 * Note this is a helper function intended to be used by LSMs which 111 * wish to use this logic. 112 */ 113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 114 { 115 unsigned long free, allowed; 116 117 vm_acct_memory(pages); 118 119 /* 120 * Sometimes we want to use more memory than we have 121 */ 122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 123 return 0; 124 125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 126 free = global_page_state(NR_FREE_PAGES); 127 free += global_page_state(NR_FILE_PAGES); 128 129 /* 130 * shmem pages shouldn't be counted as free in this 131 * case, they can't be purged, only swapped out, and 132 * that won't affect the overall amount of available 133 * memory in the system. 134 */ 135 free -= global_page_state(NR_SHMEM); 136 137 free += nr_swap_pages; 138 139 /* 140 * Any slabs which are created with the 141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 142 * which are reclaimable, under pressure. The dentry 143 * cache and most inode caches should fall into this 144 */ 145 free += global_page_state(NR_SLAB_RECLAIMABLE); 146 147 /* 148 * Leave reserved pages. The pages are not for anonymous pages. 149 */ 150 if (free <= totalreserve_pages) 151 goto error; 152 else 153 free -= totalreserve_pages; 154 155 /* 156 * Leave the last 3% for root 157 */ 158 if (!cap_sys_admin) 159 free -= free / 32; 160 161 if (free > pages) 162 return 0; 163 164 goto error; 165 } 166 167 allowed = (totalram_pages - hugetlb_total_pages()) 168 * sysctl_overcommit_ratio / 100; 169 /* 170 * Leave the last 3% for root 171 */ 172 if (!cap_sys_admin) 173 allowed -= allowed / 32; 174 allowed += total_swap_pages; 175 176 /* Don't let a single process grow too big: 177 leave 3% of the size of this process for other processes */ 178 if (mm) 179 allowed -= mm->total_vm / 32; 180 181 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 182 return 0; 183 error: 184 vm_unacct_memory(pages); 185 186 return -ENOMEM; 187 } 188 189 /* 190 * Requires inode->i_mapping->i_mmap_mutex 191 */ 192 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 193 struct file *file, struct address_space *mapping) 194 { 195 if (vma->vm_flags & VM_DENYWRITE) 196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 197 if (vma->vm_flags & VM_SHARED) 198 mapping->i_mmap_writable--; 199 200 flush_dcache_mmap_lock(mapping); 201 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 202 list_del_init(&vma->shared.vm_set.list); 203 else 204 vma_prio_tree_remove(vma, &mapping->i_mmap); 205 flush_dcache_mmap_unlock(mapping); 206 } 207 208 /* 209 * Unlink a file-based vm structure from its prio_tree, to hide 210 * vma from rmap and vmtruncate before freeing its page tables. 211 */ 212 void unlink_file_vma(struct vm_area_struct *vma) 213 { 214 struct file *file = vma->vm_file; 215 216 if (file) { 217 struct address_space *mapping = file->f_mapping; 218 mutex_lock(&mapping->i_mmap_mutex); 219 __remove_shared_vm_struct(vma, file, mapping); 220 mutex_unlock(&mapping->i_mmap_mutex); 221 } 222 } 223 224 /* 225 * Close a vm structure and free it, returning the next. 226 */ 227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 228 { 229 struct vm_area_struct *next = vma->vm_next; 230 231 might_sleep(); 232 if (vma->vm_ops && vma->vm_ops->close) 233 vma->vm_ops->close(vma); 234 if (vma->vm_file) { 235 fput(vma->vm_file); 236 if (vma->vm_flags & VM_EXECUTABLE) 237 removed_exe_file_vma(vma->vm_mm); 238 } 239 mpol_put(vma_policy(vma)); 240 kmem_cache_free(vm_area_cachep, vma); 241 return next; 242 } 243 244 static unsigned long do_brk(unsigned long addr, unsigned long len); 245 246 SYSCALL_DEFINE1(brk, unsigned long, brk) 247 { 248 unsigned long rlim, retval; 249 unsigned long newbrk, oldbrk; 250 struct mm_struct *mm = current->mm; 251 unsigned long min_brk; 252 253 down_write(&mm->mmap_sem); 254 255 #ifdef CONFIG_COMPAT_BRK 256 /* 257 * CONFIG_COMPAT_BRK can still be overridden by setting 258 * randomize_va_space to 2, which will still cause mm->start_brk 259 * to be arbitrarily shifted 260 */ 261 if (current->brk_randomized) 262 min_brk = mm->start_brk; 263 else 264 min_brk = mm->end_data; 265 #else 266 min_brk = mm->start_brk; 267 #endif 268 if (brk < min_brk) 269 goto out; 270 271 /* 272 * Check against rlimit here. If this check is done later after the test 273 * of oldbrk with newbrk then it can escape the test and let the data 274 * segment grow beyond its set limit the in case where the limit is 275 * not page aligned -Ram Gupta 276 */ 277 rlim = rlimit(RLIMIT_DATA); 278 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 279 (mm->end_data - mm->start_data) > rlim) 280 goto out; 281 282 newbrk = PAGE_ALIGN(brk); 283 oldbrk = PAGE_ALIGN(mm->brk); 284 if (oldbrk == newbrk) 285 goto set_brk; 286 287 /* Always allow shrinking brk. */ 288 if (brk <= mm->brk) { 289 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 290 goto set_brk; 291 goto out; 292 } 293 294 /* Check against existing mmap mappings. */ 295 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 296 goto out; 297 298 /* Ok, looks good - let it rip. */ 299 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 300 goto out; 301 set_brk: 302 mm->brk = brk; 303 out: 304 retval = mm->brk; 305 up_write(&mm->mmap_sem); 306 return retval; 307 } 308 309 #ifdef DEBUG_MM_RB 310 static int browse_rb(struct rb_root *root) 311 { 312 int i = 0, j; 313 struct rb_node *nd, *pn = NULL; 314 unsigned long prev = 0, pend = 0; 315 316 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 317 struct vm_area_struct *vma; 318 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 319 if (vma->vm_start < prev) 320 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 321 if (vma->vm_start < pend) 322 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 323 if (vma->vm_start > vma->vm_end) 324 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 325 i++; 326 pn = nd; 327 prev = vma->vm_start; 328 pend = vma->vm_end; 329 } 330 j = 0; 331 for (nd = pn; nd; nd = rb_prev(nd)) { 332 j++; 333 } 334 if (i != j) 335 printk("backwards %d, forwards %d\n", j, i), i = 0; 336 return i; 337 } 338 339 void validate_mm(struct mm_struct *mm) 340 { 341 int bug = 0; 342 int i = 0; 343 struct vm_area_struct *tmp = mm->mmap; 344 while (tmp) { 345 tmp = tmp->vm_next; 346 i++; 347 } 348 if (i != mm->map_count) 349 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 350 i = browse_rb(&mm->mm_rb); 351 if (i != mm->map_count) 352 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 353 BUG_ON(bug); 354 } 355 #else 356 #define validate_mm(mm) do { } while (0) 357 #endif 358 359 static struct vm_area_struct * 360 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 361 struct vm_area_struct **pprev, struct rb_node ***rb_link, 362 struct rb_node ** rb_parent) 363 { 364 struct vm_area_struct * vma; 365 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 366 367 __rb_link = &mm->mm_rb.rb_node; 368 rb_prev = __rb_parent = NULL; 369 vma = NULL; 370 371 while (*__rb_link) { 372 struct vm_area_struct *vma_tmp; 373 374 __rb_parent = *__rb_link; 375 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 376 377 if (vma_tmp->vm_end > addr) { 378 vma = vma_tmp; 379 if (vma_tmp->vm_start <= addr) 380 break; 381 __rb_link = &__rb_parent->rb_left; 382 } else { 383 rb_prev = __rb_parent; 384 __rb_link = &__rb_parent->rb_right; 385 } 386 } 387 388 *pprev = NULL; 389 if (rb_prev) 390 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 391 *rb_link = __rb_link; 392 *rb_parent = __rb_parent; 393 return vma; 394 } 395 396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 397 struct rb_node **rb_link, struct rb_node *rb_parent) 398 { 399 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 400 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 401 } 402 403 static void __vma_link_file(struct vm_area_struct *vma) 404 { 405 struct file *file; 406 407 file = vma->vm_file; 408 if (file) { 409 struct address_space *mapping = file->f_mapping; 410 411 if (vma->vm_flags & VM_DENYWRITE) 412 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 413 if (vma->vm_flags & VM_SHARED) 414 mapping->i_mmap_writable++; 415 416 flush_dcache_mmap_lock(mapping); 417 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 418 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 419 else 420 vma_prio_tree_insert(vma, &mapping->i_mmap); 421 flush_dcache_mmap_unlock(mapping); 422 } 423 } 424 425 static void 426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 427 struct vm_area_struct *prev, struct rb_node **rb_link, 428 struct rb_node *rb_parent) 429 { 430 __vma_link_list(mm, vma, prev, rb_parent); 431 __vma_link_rb(mm, vma, rb_link, rb_parent); 432 } 433 434 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 435 struct vm_area_struct *prev, struct rb_node **rb_link, 436 struct rb_node *rb_parent) 437 { 438 struct address_space *mapping = NULL; 439 440 if (vma->vm_file) 441 mapping = vma->vm_file->f_mapping; 442 443 if (mapping) 444 mutex_lock(&mapping->i_mmap_mutex); 445 446 __vma_link(mm, vma, prev, rb_link, rb_parent); 447 __vma_link_file(vma); 448 449 if (mapping) 450 mutex_unlock(&mapping->i_mmap_mutex); 451 452 mm->map_count++; 453 validate_mm(mm); 454 } 455 456 /* 457 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 458 * mm's list and rbtree. It has already been inserted into the prio_tree. 459 */ 460 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 461 { 462 struct vm_area_struct *__vma, *prev; 463 struct rb_node **rb_link, *rb_parent; 464 465 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 466 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 467 __vma_link(mm, vma, prev, rb_link, rb_parent); 468 mm->map_count++; 469 } 470 471 static inline void 472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 473 struct vm_area_struct *prev) 474 { 475 struct vm_area_struct *next = vma->vm_next; 476 477 prev->vm_next = next; 478 if (next) 479 next->vm_prev = prev; 480 rb_erase(&vma->vm_rb, &mm->mm_rb); 481 if (mm->mmap_cache == vma) 482 mm->mmap_cache = prev; 483 } 484 485 /* 486 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 487 * is already present in an i_mmap tree without adjusting the tree. 488 * The following helper function should be used when such adjustments 489 * are necessary. The "insert" vma (if any) is to be inserted 490 * before we drop the necessary locks. 491 */ 492 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 493 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 494 { 495 struct mm_struct *mm = vma->vm_mm; 496 struct vm_area_struct *next = vma->vm_next; 497 struct vm_area_struct *importer = NULL; 498 struct address_space *mapping = NULL; 499 struct prio_tree_root *root = NULL; 500 struct anon_vma *anon_vma = NULL; 501 struct file *file = vma->vm_file; 502 long adjust_next = 0; 503 int remove_next = 0; 504 505 if (next && !insert) { 506 struct vm_area_struct *exporter = NULL; 507 508 if (end >= next->vm_end) { 509 /* 510 * vma expands, overlapping all the next, and 511 * perhaps the one after too (mprotect case 6). 512 */ 513 again: remove_next = 1 + (end > next->vm_end); 514 end = next->vm_end; 515 exporter = next; 516 importer = vma; 517 } else if (end > next->vm_start) { 518 /* 519 * vma expands, overlapping part of the next: 520 * mprotect case 5 shifting the boundary up. 521 */ 522 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 523 exporter = next; 524 importer = vma; 525 } else if (end < vma->vm_end) { 526 /* 527 * vma shrinks, and !insert tells it's not 528 * split_vma inserting another: so it must be 529 * mprotect case 4 shifting the boundary down. 530 */ 531 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 532 exporter = vma; 533 importer = next; 534 } 535 536 /* 537 * Easily overlooked: when mprotect shifts the boundary, 538 * make sure the expanding vma has anon_vma set if the 539 * shrinking vma had, to cover any anon pages imported. 540 */ 541 if (exporter && exporter->anon_vma && !importer->anon_vma) { 542 if (anon_vma_clone(importer, exporter)) 543 return -ENOMEM; 544 importer->anon_vma = exporter->anon_vma; 545 } 546 } 547 548 if (file) { 549 mapping = file->f_mapping; 550 if (!(vma->vm_flags & VM_NONLINEAR)) { 551 root = &mapping->i_mmap; 552 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 553 554 if (adjust_next) 555 uprobe_munmap(next, next->vm_start, 556 next->vm_end); 557 } 558 559 mutex_lock(&mapping->i_mmap_mutex); 560 if (insert) { 561 /* 562 * Put into prio_tree now, so instantiated pages 563 * are visible to arm/parisc __flush_dcache_page 564 * throughout; but we cannot insert into address 565 * space until vma start or end is updated. 566 */ 567 __vma_link_file(insert); 568 } 569 } 570 571 vma_adjust_trans_huge(vma, start, end, adjust_next); 572 573 /* 574 * When changing only vma->vm_end, we don't really need anon_vma 575 * lock. This is a fairly rare case by itself, but the anon_vma 576 * lock may be shared between many sibling processes. Skipping 577 * the lock for brk adjustments makes a difference sometimes. 578 */ 579 if (vma->anon_vma && (importer || start != vma->vm_start)) { 580 anon_vma = vma->anon_vma; 581 anon_vma_lock(anon_vma); 582 } 583 584 if (root) { 585 flush_dcache_mmap_lock(mapping); 586 vma_prio_tree_remove(vma, root); 587 if (adjust_next) 588 vma_prio_tree_remove(next, root); 589 } 590 591 vma->vm_start = start; 592 vma->vm_end = end; 593 vma->vm_pgoff = pgoff; 594 if (adjust_next) { 595 next->vm_start += adjust_next << PAGE_SHIFT; 596 next->vm_pgoff += adjust_next; 597 } 598 599 if (root) { 600 if (adjust_next) 601 vma_prio_tree_insert(next, root); 602 vma_prio_tree_insert(vma, root); 603 flush_dcache_mmap_unlock(mapping); 604 } 605 606 if (remove_next) { 607 /* 608 * vma_merge has merged next into vma, and needs 609 * us to remove next before dropping the locks. 610 */ 611 __vma_unlink(mm, next, vma); 612 if (file) 613 __remove_shared_vm_struct(next, file, mapping); 614 } else if (insert) { 615 /* 616 * split_vma has split insert from vma, and needs 617 * us to insert it before dropping the locks 618 * (it may either follow vma or precede it). 619 */ 620 __insert_vm_struct(mm, insert); 621 } 622 623 if (anon_vma) 624 anon_vma_unlock(anon_vma); 625 if (mapping) 626 mutex_unlock(&mapping->i_mmap_mutex); 627 628 if (root) { 629 uprobe_mmap(vma); 630 631 if (adjust_next) 632 uprobe_mmap(next); 633 } 634 635 if (remove_next) { 636 if (file) { 637 uprobe_munmap(next, next->vm_start, next->vm_end); 638 fput(file); 639 if (next->vm_flags & VM_EXECUTABLE) 640 removed_exe_file_vma(mm); 641 } 642 if (next->anon_vma) 643 anon_vma_merge(vma, next); 644 mm->map_count--; 645 mpol_put(vma_policy(next)); 646 kmem_cache_free(vm_area_cachep, next); 647 /* 648 * In mprotect's case 6 (see comments on vma_merge), 649 * we must remove another next too. It would clutter 650 * up the code too much to do both in one go. 651 */ 652 if (remove_next == 2) { 653 next = vma->vm_next; 654 goto again; 655 } 656 } 657 if (insert && file) 658 uprobe_mmap(insert); 659 660 validate_mm(mm); 661 662 return 0; 663 } 664 665 /* 666 * If the vma has a ->close operation then the driver probably needs to release 667 * per-vma resources, so we don't attempt to merge those. 668 */ 669 static inline int is_mergeable_vma(struct vm_area_struct *vma, 670 struct file *file, unsigned long vm_flags) 671 { 672 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 673 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 674 return 0; 675 if (vma->vm_file != file) 676 return 0; 677 if (vma->vm_ops && vma->vm_ops->close) 678 return 0; 679 return 1; 680 } 681 682 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 683 struct anon_vma *anon_vma2, 684 struct vm_area_struct *vma) 685 { 686 /* 687 * The list_is_singular() test is to avoid merging VMA cloned from 688 * parents. This can improve scalability caused by anon_vma lock. 689 */ 690 if ((!anon_vma1 || !anon_vma2) && (!vma || 691 list_is_singular(&vma->anon_vma_chain))) 692 return 1; 693 return anon_vma1 == anon_vma2; 694 } 695 696 /* 697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 698 * in front of (at a lower virtual address and file offset than) the vma. 699 * 700 * We cannot merge two vmas if they have differently assigned (non-NULL) 701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 702 * 703 * We don't check here for the merged mmap wrapping around the end of pagecache 704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 705 * wrap, nor mmaps which cover the final page at index -1UL. 706 */ 707 static int 708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 710 { 711 if (is_mergeable_vma(vma, file, vm_flags) && 712 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 713 if (vma->vm_pgoff == vm_pgoff) 714 return 1; 715 } 716 return 0; 717 } 718 719 /* 720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 721 * beyond (at a higher virtual address and file offset than) the vma. 722 * 723 * We cannot merge two vmas if they have differently assigned (non-NULL) 724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 725 */ 726 static int 727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 728 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 729 { 730 if (is_mergeable_vma(vma, file, vm_flags) && 731 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 732 pgoff_t vm_pglen; 733 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 734 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 735 return 1; 736 } 737 return 0; 738 } 739 740 /* 741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 742 * whether that can be merged with its predecessor or its successor. 743 * Or both (it neatly fills a hole). 744 * 745 * In most cases - when called for mmap, brk or mremap - [addr,end) is 746 * certain not to be mapped by the time vma_merge is called; but when 747 * called for mprotect, it is certain to be already mapped (either at 748 * an offset within prev, or at the start of next), and the flags of 749 * this area are about to be changed to vm_flags - and the no-change 750 * case has already been eliminated. 751 * 752 * The following mprotect cases have to be considered, where AAAA is 753 * the area passed down from mprotect_fixup, never extending beyond one 754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 755 * 756 * AAAA AAAA AAAA AAAA 757 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 758 * cannot merge might become might become might become 759 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 760 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 761 * mremap move: PPPPNNNNNNNN 8 762 * AAAA 763 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 764 * might become case 1 below case 2 below case 3 below 765 * 766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 768 */ 769 struct vm_area_struct *vma_merge(struct mm_struct *mm, 770 struct vm_area_struct *prev, unsigned long addr, 771 unsigned long end, unsigned long vm_flags, 772 struct anon_vma *anon_vma, struct file *file, 773 pgoff_t pgoff, struct mempolicy *policy) 774 { 775 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 776 struct vm_area_struct *area, *next; 777 int err; 778 779 /* 780 * We later require that vma->vm_flags == vm_flags, 781 * so this tests vma->vm_flags & VM_SPECIAL, too. 782 */ 783 if (vm_flags & VM_SPECIAL) 784 return NULL; 785 786 if (prev) 787 next = prev->vm_next; 788 else 789 next = mm->mmap; 790 area = next; 791 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 792 next = next->vm_next; 793 794 /* 795 * Can it merge with the predecessor? 796 */ 797 if (prev && prev->vm_end == addr && 798 mpol_equal(vma_policy(prev), policy) && 799 can_vma_merge_after(prev, vm_flags, 800 anon_vma, file, pgoff)) { 801 /* 802 * OK, it can. Can we now merge in the successor as well? 803 */ 804 if (next && end == next->vm_start && 805 mpol_equal(policy, vma_policy(next)) && 806 can_vma_merge_before(next, vm_flags, 807 anon_vma, file, pgoff+pglen) && 808 is_mergeable_anon_vma(prev->anon_vma, 809 next->anon_vma, NULL)) { 810 /* cases 1, 6 */ 811 err = vma_adjust(prev, prev->vm_start, 812 next->vm_end, prev->vm_pgoff, NULL); 813 } else /* cases 2, 5, 7 */ 814 err = vma_adjust(prev, prev->vm_start, 815 end, prev->vm_pgoff, NULL); 816 if (err) 817 return NULL; 818 khugepaged_enter_vma_merge(prev); 819 return prev; 820 } 821 822 /* 823 * Can this new request be merged in front of next? 824 */ 825 if (next && end == next->vm_start && 826 mpol_equal(policy, vma_policy(next)) && 827 can_vma_merge_before(next, vm_flags, 828 anon_vma, file, pgoff+pglen)) { 829 if (prev && addr < prev->vm_end) /* case 4 */ 830 err = vma_adjust(prev, prev->vm_start, 831 addr, prev->vm_pgoff, NULL); 832 else /* cases 3, 8 */ 833 err = vma_adjust(area, addr, next->vm_end, 834 next->vm_pgoff - pglen, NULL); 835 if (err) 836 return NULL; 837 khugepaged_enter_vma_merge(area); 838 return area; 839 } 840 841 return NULL; 842 } 843 844 /* 845 * Rough compatbility check to quickly see if it's even worth looking 846 * at sharing an anon_vma. 847 * 848 * They need to have the same vm_file, and the flags can only differ 849 * in things that mprotect may change. 850 * 851 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 852 * we can merge the two vma's. For example, we refuse to merge a vma if 853 * there is a vm_ops->close() function, because that indicates that the 854 * driver is doing some kind of reference counting. But that doesn't 855 * really matter for the anon_vma sharing case. 856 */ 857 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 858 { 859 return a->vm_end == b->vm_start && 860 mpol_equal(vma_policy(a), vma_policy(b)) && 861 a->vm_file == b->vm_file && 862 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && 863 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 864 } 865 866 /* 867 * Do some basic sanity checking to see if we can re-use the anon_vma 868 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 869 * the same as 'old', the other will be the new one that is trying 870 * to share the anon_vma. 871 * 872 * NOTE! This runs with mm_sem held for reading, so it is possible that 873 * the anon_vma of 'old' is concurrently in the process of being set up 874 * by another page fault trying to merge _that_. But that's ok: if it 875 * is being set up, that automatically means that it will be a singleton 876 * acceptable for merging, so we can do all of this optimistically. But 877 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 878 * 879 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 880 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 881 * is to return an anon_vma that is "complex" due to having gone through 882 * a fork). 883 * 884 * We also make sure that the two vma's are compatible (adjacent, 885 * and with the same memory policies). That's all stable, even with just 886 * a read lock on the mm_sem. 887 */ 888 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 889 { 890 if (anon_vma_compatible(a, b)) { 891 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 892 893 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 894 return anon_vma; 895 } 896 return NULL; 897 } 898 899 /* 900 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 901 * neighbouring vmas for a suitable anon_vma, before it goes off 902 * to allocate a new anon_vma. It checks because a repetitive 903 * sequence of mprotects and faults may otherwise lead to distinct 904 * anon_vmas being allocated, preventing vma merge in subsequent 905 * mprotect. 906 */ 907 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 908 { 909 struct anon_vma *anon_vma; 910 struct vm_area_struct *near; 911 912 near = vma->vm_next; 913 if (!near) 914 goto try_prev; 915 916 anon_vma = reusable_anon_vma(near, vma, near); 917 if (anon_vma) 918 return anon_vma; 919 try_prev: 920 near = vma->vm_prev; 921 if (!near) 922 goto none; 923 924 anon_vma = reusable_anon_vma(near, near, vma); 925 if (anon_vma) 926 return anon_vma; 927 none: 928 /* 929 * There's no absolute need to look only at touching neighbours: 930 * we could search further afield for "compatible" anon_vmas. 931 * But it would probably just be a waste of time searching, 932 * or lead to too many vmas hanging off the same anon_vma. 933 * We're trying to allow mprotect remerging later on, 934 * not trying to minimize memory used for anon_vmas. 935 */ 936 return NULL; 937 } 938 939 #ifdef CONFIG_PROC_FS 940 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 941 struct file *file, long pages) 942 { 943 const unsigned long stack_flags 944 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 945 946 mm->total_vm += pages; 947 948 if (file) { 949 mm->shared_vm += pages; 950 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 951 mm->exec_vm += pages; 952 } else if (flags & stack_flags) 953 mm->stack_vm += pages; 954 if (flags & (VM_RESERVED|VM_IO)) 955 mm->reserved_vm += pages; 956 } 957 #endif /* CONFIG_PROC_FS */ 958 959 /* 960 * If a hint addr is less than mmap_min_addr change hint to be as 961 * low as possible but still greater than mmap_min_addr 962 */ 963 static inline unsigned long round_hint_to_min(unsigned long hint) 964 { 965 hint &= PAGE_MASK; 966 if (((void *)hint != NULL) && 967 (hint < mmap_min_addr)) 968 return PAGE_ALIGN(mmap_min_addr); 969 return hint; 970 } 971 972 /* 973 * The caller must hold down_write(¤t->mm->mmap_sem). 974 */ 975 976 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 977 unsigned long len, unsigned long prot, 978 unsigned long flags, unsigned long pgoff) 979 { 980 struct mm_struct * mm = current->mm; 981 struct inode *inode; 982 vm_flags_t vm_flags; 983 984 /* 985 * Does the application expect PROT_READ to imply PROT_EXEC? 986 * 987 * (the exception is when the underlying filesystem is noexec 988 * mounted, in which case we dont add PROT_EXEC.) 989 */ 990 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 991 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 992 prot |= PROT_EXEC; 993 994 if (!len) 995 return -EINVAL; 996 997 if (!(flags & MAP_FIXED)) 998 addr = round_hint_to_min(addr); 999 1000 /* Careful about overflows.. */ 1001 len = PAGE_ALIGN(len); 1002 if (!len) 1003 return -ENOMEM; 1004 1005 /* offset overflow? */ 1006 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1007 return -EOVERFLOW; 1008 1009 /* Too many mappings? */ 1010 if (mm->map_count > sysctl_max_map_count) 1011 return -ENOMEM; 1012 1013 /* Obtain the address to map to. we verify (or select) it and ensure 1014 * that it represents a valid section of the address space. 1015 */ 1016 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1017 if (addr & ~PAGE_MASK) 1018 return addr; 1019 1020 /* Do simple checking here so the lower-level routines won't have 1021 * to. we assume access permissions have been handled by the open 1022 * of the memory object, so we don't do any here. 1023 */ 1024 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1025 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1026 1027 if (flags & MAP_LOCKED) 1028 if (!can_do_mlock()) 1029 return -EPERM; 1030 1031 /* mlock MCL_FUTURE? */ 1032 if (vm_flags & VM_LOCKED) { 1033 unsigned long locked, lock_limit; 1034 locked = len >> PAGE_SHIFT; 1035 locked += mm->locked_vm; 1036 lock_limit = rlimit(RLIMIT_MEMLOCK); 1037 lock_limit >>= PAGE_SHIFT; 1038 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1039 return -EAGAIN; 1040 } 1041 1042 inode = file ? file->f_path.dentry->d_inode : NULL; 1043 1044 if (file) { 1045 switch (flags & MAP_TYPE) { 1046 case MAP_SHARED: 1047 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1048 return -EACCES; 1049 1050 /* 1051 * Make sure we don't allow writing to an append-only 1052 * file.. 1053 */ 1054 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1055 return -EACCES; 1056 1057 /* 1058 * Make sure there are no mandatory locks on the file. 1059 */ 1060 if (locks_verify_locked(inode)) 1061 return -EAGAIN; 1062 1063 vm_flags |= VM_SHARED | VM_MAYSHARE; 1064 if (!(file->f_mode & FMODE_WRITE)) 1065 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1066 1067 /* fall through */ 1068 case MAP_PRIVATE: 1069 if (!(file->f_mode & FMODE_READ)) 1070 return -EACCES; 1071 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1072 if (vm_flags & VM_EXEC) 1073 return -EPERM; 1074 vm_flags &= ~VM_MAYEXEC; 1075 } 1076 1077 if (!file->f_op || !file->f_op->mmap) 1078 return -ENODEV; 1079 break; 1080 1081 default: 1082 return -EINVAL; 1083 } 1084 } else { 1085 switch (flags & MAP_TYPE) { 1086 case MAP_SHARED: 1087 /* 1088 * Ignore pgoff. 1089 */ 1090 pgoff = 0; 1091 vm_flags |= VM_SHARED | VM_MAYSHARE; 1092 break; 1093 case MAP_PRIVATE: 1094 /* 1095 * Set pgoff according to addr for anon_vma. 1096 */ 1097 pgoff = addr >> PAGE_SHIFT; 1098 break; 1099 default: 1100 return -EINVAL; 1101 } 1102 } 1103 1104 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1105 } 1106 1107 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1108 unsigned long, prot, unsigned long, flags, 1109 unsigned long, fd, unsigned long, pgoff) 1110 { 1111 struct file *file = NULL; 1112 unsigned long retval = -EBADF; 1113 1114 if (!(flags & MAP_ANONYMOUS)) { 1115 audit_mmap_fd(fd, flags); 1116 if (unlikely(flags & MAP_HUGETLB)) 1117 return -EINVAL; 1118 file = fget(fd); 1119 if (!file) 1120 goto out; 1121 } else if (flags & MAP_HUGETLB) { 1122 struct user_struct *user = NULL; 1123 /* 1124 * VM_NORESERVE is used because the reservations will be 1125 * taken when vm_ops->mmap() is called 1126 * A dummy user value is used because we are not locking 1127 * memory so no accounting is necessary 1128 */ 1129 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len, 1130 VM_NORESERVE, &user, 1131 HUGETLB_ANONHUGE_INODE); 1132 if (IS_ERR(file)) 1133 return PTR_ERR(file); 1134 } 1135 1136 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1137 1138 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1139 if (file) 1140 fput(file); 1141 out: 1142 return retval; 1143 } 1144 1145 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1146 struct mmap_arg_struct { 1147 unsigned long addr; 1148 unsigned long len; 1149 unsigned long prot; 1150 unsigned long flags; 1151 unsigned long fd; 1152 unsigned long offset; 1153 }; 1154 1155 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1156 { 1157 struct mmap_arg_struct a; 1158 1159 if (copy_from_user(&a, arg, sizeof(a))) 1160 return -EFAULT; 1161 if (a.offset & ~PAGE_MASK) 1162 return -EINVAL; 1163 1164 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1165 a.offset >> PAGE_SHIFT); 1166 } 1167 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1168 1169 /* 1170 * Some shared mappigns will want the pages marked read-only 1171 * to track write events. If so, we'll downgrade vm_page_prot 1172 * to the private version (using protection_map[] without the 1173 * VM_SHARED bit). 1174 */ 1175 int vma_wants_writenotify(struct vm_area_struct *vma) 1176 { 1177 vm_flags_t vm_flags = vma->vm_flags; 1178 1179 /* If it was private or non-writable, the write bit is already clear */ 1180 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1181 return 0; 1182 1183 /* The backer wishes to know when pages are first written to? */ 1184 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1185 return 1; 1186 1187 /* The open routine did something to the protections already? */ 1188 if (pgprot_val(vma->vm_page_prot) != 1189 pgprot_val(vm_get_page_prot(vm_flags))) 1190 return 0; 1191 1192 /* Specialty mapping? */ 1193 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1194 return 0; 1195 1196 /* Can the mapping track the dirty pages? */ 1197 return vma->vm_file && vma->vm_file->f_mapping && 1198 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1199 } 1200 1201 /* 1202 * We account for memory if it's a private writeable mapping, 1203 * not hugepages and VM_NORESERVE wasn't set. 1204 */ 1205 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1206 { 1207 /* 1208 * hugetlb has its own accounting separate from the core VM 1209 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1210 */ 1211 if (file && is_file_hugepages(file)) 1212 return 0; 1213 1214 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1215 } 1216 1217 unsigned long mmap_region(struct file *file, unsigned long addr, 1218 unsigned long len, unsigned long flags, 1219 vm_flags_t vm_flags, unsigned long pgoff) 1220 { 1221 struct mm_struct *mm = current->mm; 1222 struct vm_area_struct *vma, *prev; 1223 int correct_wcount = 0; 1224 int error; 1225 struct rb_node **rb_link, *rb_parent; 1226 unsigned long charged = 0; 1227 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1228 1229 /* Clear old maps */ 1230 error = -ENOMEM; 1231 munmap_back: 1232 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1233 if (vma && vma->vm_start < addr + len) { 1234 if (do_munmap(mm, addr, len)) 1235 return -ENOMEM; 1236 goto munmap_back; 1237 } 1238 1239 /* Check against address space limit. */ 1240 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1241 return -ENOMEM; 1242 1243 /* 1244 * Set 'VM_NORESERVE' if we should not account for the 1245 * memory use of this mapping. 1246 */ 1247 if ((flags & MAP_NORESERVE)) { 1248 /* We honor MAP_NORESERVE if allowed to overcommit */ 1249 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1250 vm_flags |= VM_NORESERVE; 1251 1252 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1253 if (file && is_file_hugepages(file)) 1254 vm_flags |= VM_NORESERVE; 1255 } 1256 1257 /* 1258 * Private writable mapping: check memory availability 1259 */ 1260 if (accountable_mapping(file, vm_flags)) { 1261 charged = len >> PAGE_SHIFT; 1262 if (security_vm_enough_memory_mm(mm, charged)) 1263 return -ENOMEM; 1264 vm_flags |= VM_ACCOUNT; 1265 } 1266 1267 /* 1268 * Can we just expand an old mapping? 1269 */ 1270 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1271 if (vma) 1272 goto out; 1273 1274 /* 1275 * Determine the object being mapped and call the appropriate 1276 * specific mapper. the address has already been validated, but 1277 * not unmapped, but the maps are removed from the list. 1278 */ 1279 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1280 if (!vma) { 1281 error = -ENOMEM; 1282 goto unacct_error; 1283 } 1284 1285 vma->vm_mm = mm; 1286 vma->vm_start = addr; 1287 vma->vm_end = addr + len; 1288 vma->vm_flags = vm_flags; 1289 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1290 vma->vm_pgoff = pgoff; 1291 INIT_LIST_HEAD(&vma->anon_vma_chain); 1292 1293 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ 1294 1295 if (file) { 1296 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1297 goto free_vma; 1298 if (vm_flags & VM_DENYWRITE) { 1299 error = deny_write_access(file); 1300 if (error) 1301 goto free_vma; 1302 correct_wcount = 1; 1303 } 1304 vma->vm_file = file; 1305 get_file(file); 1306 error = file->f_op->mmap(file, vma); 1307 if (error) 1308 goto unmap_and_free_vma; 1309 if (vm_flags & VM_EXECUTABLE) 1310 added_exe_file_vma(mm); 1311 1312 /* Can addr have changed?? 1313 * 1314 * Answer: Yes, several device drivers can do it in their 1315 * f_op->mmap method. -DaveM 1316 */ 1317 addr = vma->vm_start; 1318 pgoff = vma->vm_pgoff; 1319 vm_flags = vma->vm_flags; 1320 } else if (vm_flags & VM_SHARED) { 1321 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) 1322 goto free_vma; 1323 error = shmem_zero_setup(vma); 1324 if (error) 1325 goto free_vma; 1326 } 1327 1328 if (vma_wants_writenotify(vma)) { 1329 pgprot_t pprot = vma->vm_page_prot; 1330 1331 /* Can vma->vm_page_prot have changed?? 1332 * 1333 * Answer: Yes, drivers may have changed it in their 1334 * f_op->mmap method. 1335 * 1336 * Ensures that vmas marked as uncached stay that way. 1337 */ 1338 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1339 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) 1340 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1341 } 1342 1343 vma_link(mm, vma, prev, rb_link, rb_parent); 1344 file = vma->vm_file; 1345 1346 /* Once vma denies write, undo our temporary denial count */ 1347 if (correct_wcount) 1348 atomic_inc(&inode->i_writecount); 1349 out: 1350 perf_event_mmap(vma); 1351 1352 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1353 if (vm_flags & VM_LOCKED) { 1354 if (!mlock_vma_pages_range(vma, addr, addr + len)) 1355 mm->locked_vm += (len >> PAGE_SHIFT); 1356 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1357 make_pages_present(addr, addr + len); 1358 1359 if (file) 1360 uprobe_mmap(vma); 1361 1362 return addr; 1363 1364 unmap_and_free_vma: 1365 if (correct_wcount) 1366 atomic_inc(&inode->i_writecount); 1367 vma->vm_file = NULL; 1368 fput(file); 1369 1370 /* Undo any partial mapping done by a device driver. */ 1371 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1372 charged = 0; 1373 free_vma: 1374 kmem_cache_free(vm_area_cachep, vma); 1375 unacct_error: 1376 if (charged) 1377 vm_unacct_memory(charged); 1378 return error; 1379 } 1380 1381 /* Get an address range which is currently unmapped. 1382 * For shmat() with addr=0. 1383 * 1384 * Ugly calling convention alert: 1385 * Return value with the low bits set means error value, 1386 * ie 1387 * if (ret & ~PAGE_MASK) 1388 * error = ret; 1389 * 1390 * This function "knows" that -ENOMEM has the bits set. 1391 */ 1392 #ifndef HAVE_ARCH_UNMAPPED_AREA 1393 unsigned long 1394 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1395 unsigned long len, unsigned long pgoff, unsigned long flags) 1396 { 1397 struct mm_struct *mm = current->mm; 1398 struct vm_area_struct *vma; 1399 unsigned long start_addr; 1400 1401 if (len > TASK_SIZE) 1402 return -ENOMEM; 1403 1404 if (flags & MAP_FIXED) 1405 return addr; 1406 1407 if (addr) { 1408 addr = PAGE_ALIGN(addr); 1409 vma = find_vma(mm, addr); 1410 if (TASK_SIZE - len >= addr && 1411 (!vma || addr + len <= vma->vm_start)) 1412 return addr; 1413 } 1414 if (len > mm->cached_hole_size) { 1415 start_addr = addr = mm->free_area_cache; 1416 } else { 1417 start_addr = addr = TASK_UNMAPPED_BASE; 1418 mm->cached_hole_size = 0; 1419 } 1420 1421 full_search: 1422 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1423 /* At this point: (!vma || addr < vma->vm_end). */ 1424 if (TASK_SIZE - len < addr) { 1425 /* 1426 * Start a new search - just in case we missed 1427 * some holes. 1428 */ 1429 if (start_addr != TASK_UNMAPPED_BASE) { 1430 addr = TASK_UNMAPPED_BASE; 1431 start_addr = addr; 1432 mm->cached_hole_size = 0; 1433 goto full_search; 1434 } 1435 return -ENOMEM; 1436 } 1437 if (!vma || addr + len <= vma->vm_start) { 1438 /* 1439 * Remember the place where we stopped the search: 1440 */ 1441 mm->free_area_cache = addr + len; 1442 return addr; 1443 } 1444 if (addr + mm->cached_hole_size < vma->vm_start) 1445 mm->cached_hole_size = vma->vm_start - addr; 1446 addr = vma->vm_end; 1447 } 1448 } 1449 #endif 1450 1451 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1452 { 1453 /* 1454 * Is this a new hole at the lowest possible address? 1455 */ 1456 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) 1457 mm->free_area_cache = addr; 1458 } 1459 1460 /* 1461 * This mmap-allocator allocates new areas top-down from below the 1462 * stack's low limit (the base): 1463 */ 1464 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1465 unsigned long 1466 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1467 const unsigned long len, const unsigned long pgoff, 1468 const unsigned long flags) 1469 { 1470 struct vm_area_struct *vma; 1471 struct mm_struct *mm = current->mm; 1472 unsigned long addr = addr0, start_addr; 1473 1474 /* requested length too big for entire address space */ 1475 if (len > TASK_SIZE) 1476 return -ENOMEM; 1477 1478 if (flags & MAP_FIXED) 1479 return addr; 1480 1481 /* requesting a specific address */ 1482 if (addr) { 1483 addr = PAGE_ALIGN(addr); 1484 vma = find_vma(mm, addr); 1485 if (TASK_SIZE - len >= addr && 1486 (!vma || addr + len <= vma->vm_start)) 1487 return addr; 1488 } 1489 1490 /* check if free_area_cache is useful for us */ 1491 if (len <= mm->cached_hole_size) { 1492 mm->cached_hole_size = 0; 1493 mm->free_area_cache = mm->mmap_base; 1494 } 1495 1496 try_again: 1497 /* either no address requested or can't fit in requested address hole */ 1498 start_addr = addr = mm->free_area_cache; 1499 1500 if (addr < len) 1501 goto fail; 1502 1503 addr -= len; 1504 do { 1505 /* 1506 * Lookup failure means no vma is above this address, 1507 * else if new region fits below vma->vm_start, 1508 * return with success: 1509 */ 1510 vma = find_vma(mm, addr); 1511 if (!vma || addr+len <= vma->vm_start) 1512 /* remember the address as a hint for next time */ 1513 return (mm->free_area_cache = addr); 1514 1515 /* remember the largest hole we saw so far */ 1516 if (addr + mm->cached_hole_size < vma->vm_start) 1517 mm->cached_hole_size = vma->vm_start - addr; 1518 1519 /* try just below the current vma->vm_start */ 1520 addr = vma->vm_start-len; 1521 } while (len < vma->vm_start); 1522 1523 fail: 1524 /* 1525 * if hint left us with no space for the requested 1526 * mapping then try again: 1527 * 1528 * Note: this is different with the case of bottomup 1529 * which does the fully line-search, but we use find_vma 1530 * here that causes some holes skipped. 1531 */ 1532 if (start_addr != mm->mmap_base) { 1533 mm->free_area_cache = mm->mmap_base; 1534 mm->cached_hole_size = 0; 1535 goto try_again; 1536 } 1537 1538 /* 1539 * A failed mmap() very likely causes application failure, 1540 * so fall back to the bottom-up function here. This scenario 1541 * can happen with large stack limits and large mmap() 1542 * allocations. 1543 */ 1544 mm->cached_hole_size = ~0UL; 1545 mm->free_area_cache = TASK_UNMAPPED_BASE; 1546 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1547 /* 1548 * Restore the topdown base: 1549 */ 1550 mm->free_area_cache = mm->mmap_base; 1551 mm->cached_hole_size = ~0UL; 1552 1553 return addr; 1554 } 1555 #endif 1556 1557 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1558 { 1559 /* 1560 * Is this a new hole at the highest possible address? 1561 */ 1562 if (addr > mm->free_area_cache) 1563 mm->free_area_cache = addr; 1564 1565 /* dont allow allocations above current base */ 1566 if (mm->free_area_cache > mm->mmap_base) 1567 mm->free_area_cache = mm->mmap_base; 1568 } 1569 1570 unsigned long 1571 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1572 unsigned long pgoff, unsigned long flags) 1573 { 1574 unsigned long (*get_area)(struct file *, unsigned long, 1575 unsigned long, unsigned long, unsigned long); 1576 1577 unsigned long error = arch_mmap_check(addr, len, flags); 1578 if (error) 1579 return error; 1580 1581 /* Careful about overflows.. */ 1582 if (len > TASK_SIZE) 1583 return -ENOMEM; 1584 1585 get_area = current->mm->get_unmapped_area; 1586 if (file && file->f_op && file->f_op->get_unmapped_area) 1587 get_area = file->f_op->get_unmapped_area; 1588 addr = get_area(file, addr, len, pgoff, flags); 1589 if (IS_ERR_VALUE(addr)) 1590 return addr; 1591 1592 if (addr > TASK_SIZE - len) 1593 return -ENOMEM; 1594 if (addr & ~PAGE_MASK) 1595 return -EINVAL; 1596 1597 addr = arch_rebalance_pgtables(addr, len); 1598 error = security_mmap_addr(addr); 1599 return error ? error : addr; 1600 } 1601 1602 EXPORT_SYMBOL(get_unmapped_area); 1603 1604 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1605 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1606 { 1607 struct vm_area_struct *vma = NULL; 1608 1609 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */ 1610 return NULL; 1611 1612 /* Check the cache first. */ 1613 /* (Cache hit rate is typically around 35%.) */ 1614 vma = mm->mmap_cache; 1615 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1616 struct rb_node *rb_node; 1617 1618 rb_node = mm->mm_rb.rb_node; 1619 vma = NULL; 1620 1621 while (rb_node) { 1622 struct vm_area_struct *vma_tmp; 1623 1624 vma_tmp = rb_entry(rb_node, 1625 struct vm_area_struct, vm_rb); 1626 1627 if (vma_tmp->vm_end > addr) { 1628 vma = vma_tmp; 1629 if (vma_tmp->vm_start <= addr) 1630 break; 1631 rb_node = rb_node->rb_left; 1632 } else 1633 rb_node = rb_node->rb_right; 1634 } 1635 if (vma) 1636 mm->mmap_cache = vma; 1637 } 1638 return vma; 1639 } 1640 1641 EXPORT_SYMBOL(find_vma); 1642 1643 /* 1644 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1645 */ 1646 struct vm_area_struct * 1647 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1648 struct vm_area_struct **pprev) 1649 { 1650 struct vm_area_struct *vma; 1651 1652 vma = find_vma(mm, addr); 1653 if (vma) { 1654 *pprev = vma->vm_prev; 1655 } else { 1656 struct rb_node *rb_node = mm->mm_rb.rb_node; 1657 *pprev = NULL; 1658 while (rb_node) { 1659 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1660 rb_node = rb_node->rb_right; 1661 } 1662 } 1663 return vma; 1664 } 1665 1666 /* 1667 * Verify that the stack growth is acceptable and 1668 * update accounting. This is shared with both the 1669 * grow-up and grow-down cases. 1670 */ 1671 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1672 { 1673 struct mm_struct *mm = vma->vm_mm; 1674 struct rlimit *rlim = current->signal->rlim; 1675 unsigned long new_start; 1676 1677 /* address space limit tests */ 1678 if (!may_expand_vm(mm, grow)) 1679 return -ENOMEM; 1680 1681 /* Stack limit test */ 1682 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 1683 return -ENOMEM; 1684 1685 /* mlock limit tests */ 1686 if (vma->vm_flags & VM_LOCKED) { 1687 unsigned long locked; 1688 unsigned long limit; 1689 locked = mm->locked_vm + grow; 1690 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 1691 limit >>= PAGE_SHIFT; 1692 if (locked > limit && !capable(CAP_IPC_LOCK)) 1693 return -ENOMEM; 1694 } 1695 1696 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1697 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1698 vma->vm_end - size; 1699 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1700 return -EFAULT; 1701 1702 /* 1703 * Overcommit.. This must be the final test, as it will 1704 * update security statistics. 1705 */ 1706 if (security_vm_enough_memory_mm(mm, grow)) 1707 return -ENOMEM; 1708 1709 /* Ok, everything looks good - let it rip */ 1710 if (vma->vm_flags & VM_LOCKED) 1711 mm->locked_vm += grow; 1712 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1713 return 0; 1714 } 1715 1716 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1717 /* 1718 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1719 * vma is the last one with address > vma->vm_end. Have to extend vma. 1720 */ 1721 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1722 { 1723 int error; 1724 1725 if (!(vma->vm_flags & VM_GROWSUP)) 1726 return -EFAULT; 1727 1728 /* 1729 * We must make sure the anon_vma is allocated 1730 * so that the anon_vma locking is not a noop. 1731 */ 1732 if (unlikely(anon_vma_prepare(vma))) 1733 return -ENOMEM; 1734 vma_lock_anon_vma(vma); 1735 1736 /* 1737 * vma->vm_start/vm_end cannot change under us because the caller 1738 * is required to hold the mmap_sem in read mode. We need the 1739 * anon_vma lock to serialize against concurrent expand_stacks. 1740 * Also guard against wrapping around to address 0. 1741 */ 1742 if (address < PAGE_ALIGN(address+4)) 1743 address = PAGE_ALIGN(address+4); 1744 else { 1745 vma_unlock_anon_vma(vma); 1746 return -ENOMEM; 1747 } 1748 error = 0; 1749 1750 /* Somebody else might have raced and expanded it already */ 1751 if (address > vma->vm_end) { 1752 unsigned long size, grow; 1753 1754 size = address - vma->vm_start; 1755 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1756 1757 error = -ENOMEM; 1758 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1759 error = acct_stack_growth(vma, size, grow); 1760 if (!error) { 1761 vma->vm_end = address; 1762 perf_event_mmap(vma); 1763 } 1764 } 1765 } 1766 vma_unlock_anon_vma(vma); 1767 khugepaged_enter_vma_merge(vma); 1768 return error; 1769 } 1770 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1771 1772 /* 1773 * vma is the first one with address < vma->vm_start. Have to extend vma. 1774 */ 1775 int expand_downwards(struct vm_area_struct *vma, 1776 unsigned long address) 1777 { 1778 int error; 1779 1780 /* 1781 * We must make sure the anon_vma is allocated 1782 * so that the anon_vma locking is not a noop. 1783 */ 1784 if (unlikely(anon_vma_prepare(vma))) 1785 return -ENOMEM; 1786 1787 address &= PAGE_MASK; 1788 error = security_mmap_addr(address); 1789 if (error) 1790 return error; 1791 1792 vma_lock_anon_vma(vma); 1793 1794 /* 1795 * vma->vm_start/vm_end cannot change under us because the caller 1796 * is required to hold the mmap_sem in read mode. We need the 1797 * anon_vma lock to serialize against concurrent expand_stacks. 1798 */ 1799 1800 /* Somebody else might have raced and expanded it already */ 1801 if (address < vma->vm_start) { 1802 unsigned long size, grow; 1803 1804 size = vma->vm_end - address; 1805 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1806 1807 error = -ENOMEM; 1808 if (grow <= vma->vm_pgoff) { 1809 error = acct_stack_growth(vma, size, grow); 1810 if (!error) { 1811 vma->vm_start = address; 1812 vma->vm_pgoff -= grow; 1813 perf_event_mmap(vma); 1814 } 1815 } 1816 } 1817 vma_unlock_anon_vma(vma); 1818 khugepaged_enter_vma_merge(vma); 1819 return error; 1820 } 1821 1822 #ifdef CONFIG_STACK_GROWSUP 1823 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1824 { 1825 return expand_upwards(vma, address); 1826 } 1827 1828 struct vm_area_struct * 1829 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1830 { 1831 struct vm_area_struct *vma, *prev; 1832 1833 addr &= PAGE_MASK; 1834 vma = find_vma_prev(mm, addr, &prev); 1835 if (vma && (vma->vm_start <= addr)) 1836 return vma; 1837 if (!prev || expand_stack(prev, addr)) 1838 return NULL; 1839 if (prev->vm_flags & VM_LOCKED) { 1840 mlock_vma_pages_range(prev, addr, prev->vm_end); 1841 } 1842 return prev; 1843 } 1844 #else 1845 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1846 { 1847 return expand_downwards(vma, address); 1848 } 1849 1850 struct vm_area_struct * 1851 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1852 { 1853 struct vm_area_struct * vma; 1854 unsigned long start; 1855 1856 addr &= PAGE_MASK; 1857 vma = find_vma(mm,addr); 1858 if (!vma) 1859 return NULL; 1860 if (vma->vm_start <= addr) 1861 return vma; 1862 if (!(vma->vm_flags & VM_GROWSDOWN)) 1863 return NULL; 1864 start = vma->vm_start; 1865 if (expand_stack(vma, addr)) 1866 return NULL; 1867 if (vma->vm_flags & VM_LOCKED) { 1868 mlock_vma_pages_range(vma, addr, start); 1869 } 1870 return vma; 1871 } 1872 #endif 1873 1874 /* 1875 * Ok - we have the memory areas we should free on the vma list, 1876 * so release them, and do the vma updates. 1877 * 1878 * Called with the mm semaphore held. 1879 */ 1880 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1881 { 1882 unsigned long nr_accounted = 0; 1883 1884 /* Update high watermark before we lower total_vm */ 1885 update_hiwater_vm(mm); 1886 do { 1887 long nrpages = vma_pages(vma); 1888 1889 if (vma->vm_flags & VM_ACCOUNT) 1890 nr_accounted += nrpages; 1891 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1892 vma = remove_vma(vma); 1893 } while (vma); 1894 vm_unacct_memory(nr_accounted); 1895 validate_mm(mm); 1896 } 1897 1898 /* 1899 * Get rid of page table information in the indicated region. 1900 * 1901 * Called with the mm semaphore held. 1902 */ 1903 static void unmap_region(struct mm_struct *mm, 1904 struct vm_area_struct *vma, struct vm_area_struct *prev, 1905 unsigned long start, unsigned long end) 1906 { 1907 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1908 struct mmu_gather tlb; 1909 1910 lru_add_drain(); 1911 tlb_gather_mmu(&tlb, mm, 0); 1912 update_hiwater_rss(mm); 1913 unmap_vmas(&tlb, vma, start, end); 1914 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 1915 next ? next->vm_start : 0); 1916 tlb_finish_mmu(&tlb, start, end); 1917 } 1918 1919 /* 1920 * Create a list of vma's touched by the unmap, removing them from the mm's 1921 * vma list as we go.. 1922 */ 1923 static void 1924 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1925 struct vm_area_struct *prev, unsigned long end) 1926 { 1927 struct vm_area_struct **insertion_point; 1928 struct vm_area_struct *tail_vma = NULL; 1929 unsigned long addr; 1930 1931 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1932 vma->vm_prev = NULL; 1933 do { 1934 rb_erase(&vma->vm_rb, &mm->mm_rb); 1935 mm->map_count--; 1936 tail_vma = vma; 1937 vma = vma->vm_next; 1938 } while (vma && vma->vm_start < end); 1939 *insertion_point = vma; 1940 if (vma) 1941 vma->vm_prev = prev; 1942 tail_vma->vm_next = NULL; 1943 if (mm->unmap_area == arch_unmap_area) 1944 addr = prev ? prev->vm_end : mm->mmap_base; 1945 else 1946 addr = vma ? vma->vm_start : mm->mmap_base; 1947 mm->unmap_area(mm, addr); 1948 mm->mmap_cache = NULL; /* Kill the cache. */ 1949 } 1950 1951 /* 1952 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 1953 * munmap path where it doesn't make sense to fail. 1954 */ 1955 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1956 unsigned long addr, int new_below) 1957 { 1958 struct mempolicy *pol; 1959 struct vm_area_struct *new; 1960 int err = -ENOMEM; 1961 1962 if (is_vm_hugetlb_page(vma) && (addr & 1963 ~(huge_page_mask(hstate_vma(vma))))) 1964 return -EINVAL; 1965 1966 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1967 if (!new) 1968 goto out_err; 1969 1970 /* most fields are the same, copy all, and then fixup */ 1971 *new = *vma; 1972 1973 INIT_LIST_HEAD(&new->anon_vma_chain); 1974 1975 if (new_below) 1976 new->vm_end = addr; 1977 else { 1978 new->vm_start = addr; 1979 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1980 } 1981 1982 pol = mpol_dup(vma_policy(vma)); 1983 if (IS_ERR(pol)) { 1984 err = PTR_ERR(pol); 1985 goto out_free_vma; 1986 } 1987 vma_set_policy(new, pol); 1988 1989 if (anon_vma_clone(new, vma)) 1990 goto out_free_mpol; 1991 1992 if (new->vm_file) { 1993 get_file(new->vm_file); 1994 if (vma->vm_flags & VM_EXECUTABLE) 1995 added_exe_file_vma(mm); 1996 } 1997 1998 if (new->vm_ops && new->vm_ops->open) 1999 new->vm_ops->open(new); 2000 2001 if (new_below) 2002 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2003 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2004 else 2005 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2006 2007 /* Success. */ 2008 if (!err) 2009 return 0; 2010 2011 /* Clean everything up if vma_adjust failed. */ 2012 if (new->vm_ops && new->vm_ops->close) 2013 new->vm_ops->close(new); 2014 if (new->vm_file) { 2015 if (vma->vm_flags & VM_EXECUTABLE) 2016 removed_exe_file_vma(mm); 2017 fput(new->vm_file); 2018 } 2019 unlink_anon_vmas(new); 2020 out_free_mpol: 2021 mpol_put(pol); 2022 out_free_vma: 2023 kmem_cache_free(vm_area_cachep, new); 2024 out_err: 2025 return err; 2026 } 2027 2028 /* 2029 * Split a vma into two pieces at address 'addr', a new vma is allocated 2030 * either for the first part or the tail. 2031 */ 2032 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2033 unsigned long addr, int new_below) 2034 { 2035 if (mm->map_count >= sysctl_max_map_count) 2036 return -ENOMEM; 2037 2038 return __split_vma(mm, vma, addr, new_below); 2039 } 2040 2041 /* Munmap is split into 2 main parts -- this part which finds 2042 * what needs doing, and the areas themselves, which do the 2043 * work. This now handles partial unmappings. 2044 * Jeremy Fitzhardinge <jeremy@goop.org> 2045 */ 2046 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2047 { 2048 unsigned long end; 2049 struct vm_area_struct *vma, *prev, *last; 2050 2051 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2052 return -EINVAL; 2053 2054 if ((len = PAGE_ALIGN(len)) == 0) 2055 return -EINVAL; 2056 2057 /* Find the first overlapping VMA */ 2058 vma = find_vma(mm, start); 2059 if (!vma) 2060 return 0; 2061 prev = vma->vm_prev; 2062 /* we have start < vma->vm_end */ 2063 2064 /* if it doesn't overlap, we have nothing.. */ 2065 end = start + len; 2066 if (vma->vm_start >= end) 2067 return 0; 2068 2069 /* 2070 * If we need to split any vma, do it now to save pain later. 2071 * 2072 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2073 * unmapped vm_area_struct will remain in use: so lower split_vma 2074 * places tmp vma above, and higher split_vma places tmp vma below. 2075 */ 2076 if (start > vma->vm_start) { 2077 int error; 2078 2079 /* 2080 * Make sure that map_count on return from munmap() will 2081 * not exceed its limit; but let map_count go just above 2082 * its limit temporarily, to help free resources as expected. 2083 */ 2084 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2085 return -ENOMEM; 2086 2087 error = __split_vma(mm, vma, start, 0); 2088 if (error) 2089 return error; 2090 prev = vma; 2091 } 2092 2093 /* Does it split the last one? */ 2094 last = find_vma(mm, end); 2095 if (last && end > last->vm_start) { 2096 int error = __split_vma(mm, last, end, 1); 2097 if (error) 2098 return error; 2099 } 2100 vma = prev? prev->vm_next: mm->mmap; 2101 2102 /* 2103 * unlock any mlock()ed ranges before detaching vmas 2104 */ 2105 if (mm->locked_vm) { 2106 struct vm_area_struct *tmp = vma; 2107 while (tmp && tmp->vm_start < end) { 2108 if (tmp->vm_flags & VM_LOCKED) { 2109 mm->locked_vm -= vma_pages(tmp); 2110 munlock_vma_pages_all(tmp); 2111 } 2112 tmp = tmp->vm_next; 2113 } 2114 } 2115 2116 /* 2117 * Remove the vma's, and unmap the actual pages 2118 */ 2119 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2120 unmap_region(mm, vma, prev, start, end); 2121 2122 /* Fix up all other VM information */ 2123 remove_vma_list(mm, vma); 2124 2125 return 0; 2126 } 2127 2128 int vm_munmap(unsigned long start, size_t len) 2129 { 2130 int ret; 2131 struct mm_struct *mm = current->mm; 2132 2133 down_write(&mm->mmap_sem); 2134 ret = do_munmap(mm, start, len); 2135 up_write(&mm->mmap_sem); 2136 return ret; 2137 } 2138 EXPORT_SYMBOL(vm_munmap); 2139 2140 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2141 { 2142 profile_munmap(addr); 2143 return vm_munmap(addr, len); 2144 } 2145 2146 static inline void verify_mm_writelocked(struct mm_struct *mm) 2147 { 2148 #ifdef CONFIG_DEBUG_VM 2149 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2150 WARN_ON(1); 2151 up_read(&mm->mmap_sem); 2152 } 2153 #endif 2154 } 2155 2156 /* 2157 * this is really a simplified "do_mmap". it only handles 2158 * anonymous maps. eventually we may be able to do some 2159 * brk-specific accounting here. 2160 */ 2161 static unsigned long do_brk(unsigned long addr, unsigned long len) 2162 { 2163 struct mm_struct * mm = current->mm; 2164 struct vm_area_struct * vma, * prev; 2165 unsigned long flags; 2166 struct rb_node ** rb_link, * rb_parent; 2167 pgoff_t pgoff = addr >> PAGE_SHIFT; 2168 int error; 2169 2170 len = PAGE_ALIGN(len); 2171 if (!len) 2172 return addr; 2173 2174 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2175 2176 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2177 if (error & ~PAGE_MASK) 2178 return error; 2179 2180 /* 2181 * mlock MCL_FUTURE? 2182 */ 2183 if (mm->def_flags & VM_LOCKED) { 2184 unsigned long locked, lock_limit; 2185 locked = len >> PAGE_SHIFT; 2186 locked += mm->locked_vm; 2187 lock_limit = rlimit(RLIMIT_MEMLOCK); 2188 lock_limit >>= PAGE_SHIFT; 2189 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2190 return -EAGAIN; 2191 } 2192 2193 /* 2194 * mm->mmap_sem is required to protect against another thread 2195 * changing the mappings in case we sleep. 2196 */ 2197 verify_mm_writelocked(mm); 2198 2199 /* 2200 * Clear old maps. this also does some error checking for us 2201 */ 2202 munmap_back: 2203 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2204 if (vma && vma->vm_start < addr + len) { 2205 if (do_munmap(mm, addr, len)) 2206 return -ENOMEM; 2207 goto munmap_back; 2208 } 2209 2210 /* Check against address space limits *after* clearing old maps... */ 2211 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2212 return -ENOMEM; 2213 2214 if (mm->map_count > sysctl_max_map_count) 2215 return -ENOMEM; 2216 2217 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2218 return -ENOMEM; 2219 2220 /* Can we just expand an old private anonymous mapping? */ 2221 vma = vma_merge(mm, prev, addr, addr + len, flags, 2222 NULL, NULL, pgoff, NULL); 2223 if (vma) 2224 goto out; 2225 2226 /* 2227 * create a vma struct for an anonymous mapping 2228 */ 2229 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2230 if (!vma) { 2231 vm_unacct_memory(len >> PAGE_SHIFT); 2232 return -ENOMEM; 2233 } 2234 2235 INIT_LIST_HEAD(&vma->anon_vma_chain); 2236 vma->vm_mm = mm; 2237 vma->vm_start = addr; 2238 vma->vm_end = addr + len; 2239 vma->vm_pgoff = pgoff; 2240 vma->vm_flags = flags; 2241 vma->vm_page_prot = vm_get_page_prot(flags); 2242 vma_link(mm, vma, prev, rb_link, rb_parent); 2243 out: 2244 perf_event_mmap(vma); 2245 mm->total_vm += len >> PAGE_SHIFT; 2246 if (flags & VM_LOCKED) { 2247 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2248 mm->locked_vm += (len >> PAGE_SHIFT); 2249 } 2250 return addr; 2251 } 2252 2253 unsigned long vm_brk(unsigned long addr, unsigned long len) 2254 { 2255 struct mm_struct *mm = current->mm; 2256 unsigned long ret; 2257 2258 down_write(&mm->mmap_sem); 2259 ret = do_brk(addr, len); 2260 up_write(&mm->mmap_sem); 2261 return ret; 2262 } 2263 EXPORT_SYMBOL(vm_brk); 2264 2265 /* Release all mmaps. */ 2266 void exit_mmap(struct mm_struct *mm) 2267 { 2268 struct mmu_gather tlb; 2269 struct vm_area_struct *vma; 2270 unsigned long nr_accounted = 0; 2271 2272 /* mm's last user has gone, and its about to be pulled down */ 2273 mmu_notifier_release(mm); 2274 2275 if (mm->locked_vm) { 2276 vma = mm->mmap; 2277 while (vma) { 2278 if (vma->vm_flags & VM_LOCKED) 2279 munlock_vma_pages_all(vma); 2280 vma = vma->vm_next; 2281 } 2282 } 2283 2284 arch_exit_mmap(mm); 2285 2286 vma = mm->mmap; 2287 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2288 return; 2289 2290 lru_add_drain(); 2291 flush_cache_mm(mm); 2292 tlb_gather_mmu(&tlb, mm, 1); 2293 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2294 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2295 unmap_vmas(&tlb, vma, 0, -1); 2296 2297 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); 2298 tlb_finish_mmu(&tlb, 0, -1); 2299 2300 /* 2301 * Walk the list again, actually closing and freeing it, 2302 * with preemption enabled, without holding any MM locks. 2303 */ 2304 while (vma) { 2305 if (vma->vm_flags & VM_ACCOUNT) 2306 nr_accounted += vma_pages(vma); 2307 vma = remove_vma(vma); 2308 } 2309 vm_unacct_memory(nr_accounted); 2310 2311 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2312 } 2313 2314 /* Insert vm structure into process list sorted by address 2315 * and into the inode's i_mmap tree. If vm_file is non-NULL 2316 * then i_mmap_mutex is taken here. 2317 */ 2318 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2319 { 2320 struct vm_area_struct * __vma, * prev; 2321 struct rb_node ** rb_link, * rb_parent; 2322 2323 /* 2324 * The vm_pgoff of a purely anonymous vma should be irrelevant 2325 * until its first write fault, when page's anon_vma and index 2326 * are set. But now set the vm_pgoff it will almost certainly 2327 * end up with (unless mremap moves it elsewhere before that 2328 * first wfault), so /proc/pid/maps tells a consistent story. 2329 * 2330 * By setting it to reflect the virtual start address of the 2331 * vma, merges and splits can happen in a seamless way, just 2332 * using the existing file pgoff checks and manipulations. 2333 * Similarly in do_mmap_pgoff and in do_brk. 2334 */ 2335 if (!vma->vm_file) { 2336 BUG_ON(vma->anon_vma); 2337 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2338 } 2339 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2340 if (__vma && __vma->vm_start < vma->vm_end) 2341 return -ENOMEM; 2342 if ((vma->vm_flags & VM_ACCOUNT) && 2343 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2344 return -ENOMEM; 2345 2346 vma_link(mm, vma, prev, rb_link, rb_parent); 2347 return 0; 2348 } 2349 2350 /* 2351 * Copy the vma structure to a new location in the same mm, 2352 * prior to moving page table entries, to effect an mremap move. 2353 */ 2354 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2355 unsigned long addr, unsigned long len, pgoff_t pgoff) 2356 { 2357 struct vm_area_struct *vma = *vmap; 2358 unsigned long vma_start = vma->vm_start; 2359 struct mm_struct *mm = vma->vm_mm; 2360 struct vm_area_struct *new_vma, *prev; 2361 struct rb_node **rb_link, *rb_parent; 2362 struct mempolicy *pol; 2363 bool faulted_in_anon_vma = true; 2364 2365 /* 2366 * If anonymous vma has not yet been faulted, update new pgoff 2367 * to match new location, to increase its chance of merging. 2368 */ 2369 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2370 pgoff = addr >> PAGE_SHIFT; 2371 faulted_in_anon_vma = false; 2372 } 2373 2374 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2375 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2376 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2377 if (new_vma) { 2378 /* 2379 * Source vma may have been merged into new_vma 2380 */ 2381 if (unlikely(vma_start >= new_vma->vm_start && 2382 vma_start < new_vma->vm_end)) { 2383 /* 2384 * The only way we can get a vma_merge with 2385 * self during an mremap is if the vma hasn't 2386 * been faulted in yet and we were allowed to 2387 * reset the dst vma->vm_pgoff to the 2388 * destination address of the mremap to allow 2389 * the merge to happen. mremap must change the 2390 * vm_pgoff linearity between src and dst vmas 2391 * (in turn preventing a vma_merge) to be 2392 * safe. It is only safe to keep the vm_pgoff 2393 * linear if there are no pages mapped yet. 2394 */ 2395 VM_BUG_ON(faulted_in_anon_vma); 2396 *vmap = new_vma; 2397 } else 2398 anon_vma_moveto_tail(new_vma); 2399 } else { 2400 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2401 if (new_vma) { 2402 *new_vma = *vma; 2403 pol = mpol_dup(vma_policy(vma)); 2404 if (IS_ERR(pol)) 2405 goto out_free_vma; 2406 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2407 if (anon_vma_clone(new_vma, vma)) 2408 goto out_free_mempol; 2409 vma_set_policy(new_vma, pol); 2410 new_vma->vm_start = addr; 2411 new_vma->vm_end = addr + len; 2412 new_vma->vm_pgoff = pgoff; 2413 if (new_vma->vm_file) { 2414 get_file(new_vma->vm_file); 2415 2416 if (vma->vm_flags & VM_EXECUTABLE) 2417 added_exe_file_vma(mm); 2418 } 2419 if (new_vma->vm_ops && new_vma->vm_ops->open) 2420 new_vma->vm_ops->open(new_vma); 2421 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2422 } 2423 } 2424 return new_vma; 2425 2426 out_free_mempol: 2427 mpol_put(pol); 2428 out_free_vma: 2429 kmem_cache_free(vm_area_cachep, new_vma); 2430 return NULL; 2431 } 2432 2433 /* 2434 * Return true if the calling process may expand its vm space by the passed 2435 * number of pages 2436 */ 2437 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2438 { 2439 unsigned long cur = mm->total_vm; /* pages */ 2440 unsigned long lim; 2441 2442 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2443 2444 if (cur + npages > lim) 2445 return 0; 2446 return 1; 2447 } 2448 2449 2450 static int special_mapping_fault(struct vm_area_struct *vma, 2451 struct vm_fault *vmf) 2452 { 2453 pgoff_t pgoff; 2454 struct page **pages; 2455 2456 /* 2457 * special mappings have no vm_file, and in that case, the mm 2458 * uses vm_pgoff internally. So we have to subtract it from here. 2459 * We are allowed to do this because we are the mm; do not copy 2460 * this code into drivers! 2461 */ 2462 pgoff = vmf->pgoff - vma->vm_pgoff; 2463 2464 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2465 pgoff--; 2466 2467 if (*pages) { 2468 struct page *page = *pages; 2469 get_page(page); 2470 vmf->page = page; 2471 return 0; 2472 } 2473 2474 return VM_FAULT_SIGBUS; 2475 } 2476 2477 /* 2478 * Having a close hook prevents vma merging regardless of flags. 2479 */ 2480 static void special_mapping_close(struct vm_area_struct *vma) 2481 { 2482 } 2483 2484 static const struct vm_operations_struct special_mapping_vmops = { 2485 .close = special_mapping_close, 2486 .fault = special_mapping_fault, 2487 }; 2488 2489 /* 2490 * Called with mm->mmap_sem held for writing. 2491 * Insert a new vma covering the given region, with the given flags. 2492 * Its pages are supplied by the given array of struct page *. 2493 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2494 * The region past the last page supplied will always produce SIGBUS. 2495 * The array pointer and the pages it points to are assumed to stay alive 2496 * for as long as this mapping might exist. 2497 */ 2498 int install_special_mapping(struct mm_struct *mm, 2499 unsigned long addr, unsigned long len, 2500 unsigned long vm_flags, struct page **pages) 2501 { 2502 int ret; 2503 struct vm_area_struct *vma; 2504 2505 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2506 if (unlikely(vma == NULL)) 2507 return -ENOMEM; 2508 2509 INIT_LIST_HEAD(&vma->anon_vma_chain); 2510 vma->vm_mm = mm; 2511 vma->vm_start = addr; 2512 vma->vm_end = addr + len; 2513 2514 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2515 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2516 2517 vma->vm_ops = &special_mapping_vmops; 2518 vma->vm_private_data = pages; 2519 2520 ret = insert_vm_struct(mm, vma); 2521 if (ret) 2522 goto out; 2523 2524 mm->total_vm += len >> PAGE_SHIFT; 2525 2526 perf_event_mmap(vma); 2527 2528 return 0; 2529 2530 out: 2531 kmem_cache_free(vm_area_cachep, vma); 2532 return ret; 2533 } 2534 2535 static DEFINE_MUTEX(mm_all_locks_mutex); 2536 2537 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2538 { 2539 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2540 /* 2541 * The LSB of head.next can't change from under us 2542 * because we hold the mm_all_locks_mutex. 2543 */ 2544 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); 2545 /* 2546 * We can safely modify head.next after taking the 2547 * anon_vma->root->mutex. If some other vma in this mm shares 2548 * the same anon_vma we won't take it again. 2549 * 2550 * No need of atomic instructions here, head.next 2551 * can't change from under us thanks to the 2552 * anon_vma->root->mutex. 2553 */ 2554 if (__test_and_set_bit(0, (unsigned long *) 2555 &anon_vma->root->head.next)) 2556 BUG(); 2557 } 2558 } 2559 2560 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2561 { 2562 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2563 /* 2564 * AS_MM_ALL_LOCKS can't change from under us because 2565 * we hold the mm_all_locks_mutex. 2566 * 2567 * Operations on ->flags have to be atomic because 2568 * even if AS_MM_ALL_LOCKS is stable thanks to the 2569 * mm_all_locks_mutex, there may be other cpus 2570 * changing other bitflags in parallel to us. 2571 */ 2572 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2573 BUG(); 2574 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); 2575 } 2576 } 2577 2578 /* 2579 * This operation locks against the VM for all pte/vma/mm related 2580 * operations that could ever happen on a certain mm. This includes 2581 * vmtruncate, try_to_unmap, and all page faults. 2582 * 2583 * The caller must take the mmap_sem in write mode before calling 2584 * mm_take_all_locks(). The caller isn't allowed to release the 2585 * mmap_sem until mm_drop_all_locks() returns. 2586 * 2587 * mmap_sem in write mode is required in order to block all operations 2588 * that could modify pagetables and free pages without need of 2589 * altering the vma layout (for example populate_range() with 2590 * nonlinear vmas). It's also needed in write mode to avoid new 2591 * anon_vmas to be associated with existing vmas. 2592 * 2593 * A single task can't take more than one mm_take_all_locks() in a row 2594 * or it would deadlock. 2595 * 2596 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2597 * mapping->flags avoid to take the same lock twice, if more than one 2598 * vma in this mm is backed by the same anon_vma or address_space. 2599 * 2600 * We can take all the locks in random order because the VM code 2601 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never 2602 * takes more than one of them in a row. Secondly we're protected 2603 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2604 * 2605 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2606 * that may have to take thousand of locks. 2607 * 2608 * mm_take_all_locks() can fail if it's interrupted by signals. 2609 */ 2610 int mm_take_all_locks(struct mm_struct *mm) 2611 { 2612 struct vm_area_struct *vma; 2613 struct anon_vma_chain *avc; 2614 2615 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2616 2617 mutex_lock(&mm_all_locks_mutex); 2618 2619 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2620 if (signal_pending(current)) 2621 goto out_unlock; 2622 if (vma->vm_file && vma->vm_file->f_mapping) 2623 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2624 } 2625 2626 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2627 if (signal_pending(current)) 2628 goto out_unlock; 2629 if (vma->anon_vma) 2630 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2631 vm_lock_anon_vma(mm, avc->anon_vma); 2632 } 2633 2634 return 0; 2635 2636 out_unlock: 2637 mm_drop_all_locks(mm); 2638 return -EINTR; 2639 } 2640 2641 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2642 { 2643 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { 2644 /* 2645 * The LSB of head.next can't change to 0 from under 2646 * us because we hold the mm_all_locks_mutex. 2647 * 2648 * We must however clear the bitflag before unlocking 2649 * the vma so the users using the anon_vma->head will 2650 * never see our bitflag. 2651 * 2652 * No need of atomic instructions here, head.next 2653 * can't change from under us until we release the 2654 * anon_vma->root->mutex. 2655 */ 2656 if (!__test_and_clear_bit(0, (unsigned long *) 2657 &anon_vma->root->head.next)) 2658 BUG(); 2659 anon_vma_unlock(anon_vma); 2660 } 2661 } 2662 2663 static void vm_unlock_mapping(struct address_space *mapping) 2664 { 2665 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2666 /* 2667 * AS_MM_ALL_LOCKS can't change to 0 from under us 2668 * because we hold the mm_all_locks_mutex. 2669 */ 2670 mutex_unlock(&mapping->i_mmap_mutex); 2671 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2672 &mapping->flags)) 2673 BUG(); 2674 } 2675 } 2676 2677 /* 2678 * The mmap_sem cannot be released by the caller until 2679 * mm_drop_all_locks() returns. 2680 */ 2681 void mm_drop_all_locks(struct mm_struct *mm) 2682 { 2683 struct vm_area_struct *vma; 2684 struct anon_vma_chain *avc; 2685 2686 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2687 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2688 2689 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2690 if (vma->anon_vma) 2691 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2692 vm_unlock_anon_vma(avc->anon_vma); 2693 if (vma->vm_file && vma->vm_file->f_mapping) 2694 vm_unlock_mapping(vma->vm_file->f_mapping); 2695 } 2696 2697 mutex_unlock(&mm_all_locks_mutex); 2698 } 2699 2700 /* 2701 * initialise the VMA slab 2702 */ 2703 void __init mmap_init(void) 2704 { 2705 int ret; 2706 2707 ret = percpu_counter_init(&vm_committed_as, 0); 2708 VM_BUG_ON(ret); 2709 } 2710