1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/profile.h> 30 #include <linux/export.h> 31 #include <linux/mount.h> 32 #include <linux/mempolicy.h> 33 #include <linux/rmap.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/mmdebug.h> 36 #include <linux/perf_event.h> 37 #include <linux/audit.h> 38 #include <linux/khugepaged.h> 39 #include <linux/uprobes.h> 40 #include <linux/rbtree_augmented.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/moduleparam.h> 46 #include <linux/pkeys.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/cacheflush.h> 50 #include <asm/tlb.h> 51 #include <asm/mmu_context.h> 52 53 #include "internal.h" 54 55 #ifndef arch_mmap_check 56 #define arch_mmap_check(addr, len, flags) (0) 57 #endif 58 59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; 61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; 62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; 63 #endif 64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 68 #endif 69 70 static bool ignore_rlimit_data; 71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 72 73 static void unmap_region(struct mm_struct *mm, 74 struct vm_area_struct *vma, struct vm_area_struct *prev, 75 unsigned long start, unsigned long end); 76 77 /* description of effects of mapping type and prot in current implementation. 78 * this is due to the limited x86 page protection hardware. The expected 79 * behavior is in parens: 80 * 81 * map_type prot 82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 84 * w: (no) no w: (no) no w: (yes) yes w: (no) no 85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 86 * 87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 88 * w: (no) no w: (no) no w: (copy) copy w: (no) no 89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 90 * 91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 92 * MAP_PRIVATE: 93 * r: (no) no 94 * w: (no) no 95 * x: (yes) yes 96 */ 97 pgprot_t protection_map[16] = { 98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 100 }; 101 102 pgprot_t vm_get_page_prot(unsigned long vm_flags) 103 { 104 return __pgprot(pgprot_val(protection_map[vm_flags & 105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 106 pgprot_val(arch_vm_get_page_prot(vm_flags))); 107 } 108 EXPORT_SYMBOL(vm_get_page_prot); 109 110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 111 { 112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 113 } 114 115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 116 void vma_set_page_prot(struct vm_area_struct *vma) 117 { 118 unsigned long vm_flags = vma->vm_flags; 119 120 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 121 if (vma_wants_writenotify(vma)) { 122 vm_flags &= ~VM_SHARED; 123 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 124 vm_flags); 125 } 126 } 127 128 /* 129 * Requires inode->i_mapping->i_mmap_rwsem 130 */ 131 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 132 struct file *file, struct address_space *mapping) 133 { 134 if (vma->vm_flags & VM_DENYWRITE) 135 atomic_inc(&file_inode(file)->i_writecount); 136 if (vma->vm_flags & VM_SHARED) 137 mapping_unmap_writable(mapping); 138 139 flush_dcache_mmap_lock(mapping); 140 vma_interval_tree_remove(vma, &mapping->i_mmap); 141 flush_dcache_mmap_unlock(mapping); 142 } 143 144 /* 145 * Unlink a file-based vm structure from its interval tree, to hide 146 * vma from rmap and vmtruncate before freeing its page tables. 147 */ 148 void unlink_file_vma(struct vm_area_struct *vma) 149 { 150 struct file *file = vma->vm_file; 151 152 if (file) { 153 struct address_space *mapping = file->f_mapping; 154 i_mmap_lock_write(mapping); 155 __remove_shared_vm_struct(vma, file, mapping); 156 i_mmap_unlock_write(mapping); 157 } 158 } 159 160 /* 161 * Close a vm structure and free it, returning the next. 162 */ 163 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 164 { 165 struct vm_area_struct *next = vma->vm_next; 166 167 might_sleep(); 168 if (vma->vm_ops && vma->vm_ops->close) 169 vma->vm_ops->close(vma); 170 if (vma->vm_file) 171 fput(vma->vm_file); 172 mpol_put(vma_policy(vma)); 173 kmem_cache_free(vm_area_cachep, vma); 174 return next; 175 } 176 177 static int do_brk(unsigned long addr, unsigned long len); 178 179 SYSCALL_DEFINE1(brk, unsigned long, brk) 180 { 181 unsigned long retval; 182 unsigned long newbrk, oldbrk; 183 struct mm_struct *mm = current->mm; 184 unsigned long min_brk; 185 bool populate; 186 187 if (down_write_killable(&mm->mmap_sem)) 188 return -EINTR; 189 190 #ifdef CONFIG_COMPAT_BRK 191 /* 192 * CONFIG_COMPAT_BRK can still be overridden by setting 193 * randomize_va_space to 2, which will still cause mm->start_brk 194 * to be arbitrarily shifted 195 */ 196 if (current->brk_randomized) 197 min_brk = mm->start_brk; 198 else 199 min_brk = mm->end_data; 200 #else 201 min_brk = mm->start_brk; 202 #endif 203 if (brk < min_brk) 204 goto out; 205 206 /* 207 * Check against rlimit here. If this check is done later after the test 208 * of oldbrk with newbrk then it can escape the test and let the data 209 * segment grow beyond its set limit the in case where the limit is 210 * not page aligned -Ram Gupta 211 */ 212 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 213 mm->end_data, mm->start_data)) 214 goto out; 215 216 newbrk = PAGE_ALIGN(brk); 217 oldbrk = PAGE_ALIGN(mm->brk); 218 if (oldbrk == newbrk) 219 goto set_brk; 220 221 /* Always allow shrinking brk. */ 222 if (brk <= mm->brk) { 223 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 224 goto set_brk; 225 goto out; 226 } 227 228 /* Check against existing mmap mappings. */ 229 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 230 goto out; 231 232 /* Ok, looks good - let it rip. */ 233 if (do_brk(oldbrk, newbrk-oldbrk) < 0) 234 goto out; 235 236 set_brk: 237 mm->brk = brk; 238 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 239 up_write(&mm->mmap_sem); 240 if (populate) 241 mm_populate(oldbrk, newbrk - oldbrk); 242 return brk; 243 244 out: 245 retval = mm->brk; 246 up_write(&mm->mmap_sem); 247 return retval; 248 } 249 250 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 251 { 252 unsigned long max, subtree_gap; 253 max = vma->vm_start; 254 if (vma->vm_prev) 255 max -= vma->vm_prev->vm_end; 256 if (vma->vm_rb.rb_left) { 257 subtree_gap = rb_entry(vma->vm_rb.rb_left, 258 struct vm_area_struct, vm_rb)->rb_subtree_gap; 259 if (subtree_gap > max) 260 max = subtree_gap; 261 } 262 if (vma->vm_rb.rb_right) { 263 subtree_gap = rb_entry(vma->vm_rb.rb_right, 264 struct vm_area_struct, vm_rb)->rb_subtree_gap; 265 if (subtree_gap > max) 266 max = subtree_gap; 267 } 268 return max; 269 } 270 271 #ifdef CONFIG_DEBUG_VM_RB 272 static int browse_rb(struct mm_struct *mm) 273 { 274 struct rb_root *root = &mm->mm_rb; 275 int i = 0, j, bug = 0; 276 struct rb_node *nd, *pn = NULL; 277 unsigned long prev = 0, pend = 0; 278 279 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 280 struct vm_area_struct *vma; 281 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 282 if (vma->vm_start < prev) { 283 pr_emerg("vm_start %lx < prev %lx\n", 284 vma->vm_start, prev); 285 bug = 1; 286 } 287 if (vma->vm_start < pend) { 288 pr_emerg("vm_start %lx < pend %lx\n", 289 vma->vm_start, pend); 290 bug = 1; 291 } 292 if (vma->vm_start > vma->vm_end) { 293 pr_emerg("vm_start %lx > vm_end %lx\n", 294 vma->vm_start, vma->vm_end); 295 bug = 1; 296 } 297 spin_lock(&mm->page_table_lock); 298 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 299 pr_emerg("free gap %lx, correct %lx\n", 300 vma->rb_subtree_gap, 301 vma_compute_subtree_gap(vma)); 302 bug = 1; 303 } 304 spin_unlock(&mm->page_table_lock); 305 i++; 306 pn = nd; 307 prev = vma->vm_start; 308 pend = vma->vm_end; 309 } 310 j = 0; 311 for (nd = pn; nd; nd = rb_prev(nd)) 312 j++; 313 if (i != j) { 314 pr_emerg("backwards %d, forwards %d\n", j, i); 315 bug = 1; 316 } 317 return bug ? -1 : i; 318 } 319 320 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 321 { 322 struct rb_node *nd; 323 324 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 325 struct vm_area_struct *vma; 326 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 327 VM_BUG_ON_VMA(vma != ignore && 328 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 329 vma); 330 } 331 } 332 333 static void validate_mm(struct mm_struct *mm) 334 { 335 int bug = 0; 336 int i = 0; 337 unsigned long highest_address = 0; 338 struct vm_area_struct *vma = mm->mmap; 339 340 while (vma) { 341 struct anon_vma *anon_vma = vma->anon_vma; 342 struct anon_vma_chain *avc; 343 344 if (anon_vma) { 345 anon_vma_lock_read(anon_vma); 346 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 347 anon_vma_interval_tree_verify(avc); 348 anon_vma_unlock_read(anon_vma); 349 } 350 351 highest_address = vma->vm_end; 352 vma = vma->vm_next; 353 i++; 354 } 355 if (i != mm->map_count) { 356 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 357 bug = 1; 358 } 359 if (highest_address != mm->highest_vm_end) { 360 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 361 mm->highest_vm_end, highest_address); 362 bug = 1; 363 } 364 i = browse_rb(mm); 365 if (i != mm->map_count) { 366 if (i != -1) 367 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 368 bug = 1; 369 } 370 VM_BUG_ON_MM(bug, mm); 371 } 372 #else 373 #define validate_mm_rb(root, ignore) do { } while (0) 374 #define validate_mm(mm) do { } while (0) 375 #endif 376 377 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 378 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 379 380 /* 381 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 382 * vma->vm_prev->vm_end values changed, without modifying the vma's position 383 * in the rbtree. 384 */ 385 static void vma_gap_update(struct vm_area_struct *vma) 386 { 387 /* 388 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 389 * function that does exacltly what we want. 390 */ 391 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 392 } 393 394 static inline void vma_rb_insert(struct vm_area_struct *vma, 395 struct rb_root *root) 396 { 397 /* All rb_subtree_gap values must be consistent prior to insertion */ 398 validate_mm_rb(root, NULL); 399 400 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 401 } 402 403 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 404 { 405 /* 406 * All rb_subtree_gap values must be consistent prior to erase, 407 * with the possible exception of the vma being erased. 408 */ 409 validate_mm_rb(root, vma); 410 411 /* 412 * Note rb_erase_augmented is a fairly large inline function, 413 * so make sure we instantiate it only once with our desired 414 * augmented rbtree callbacks. 415 */ 416 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 417 } 418 419 /* 420 * vma has some anon_vma assigned, and is already inserted on that 421 * anon_vma's interval trees. 422 * 423 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 424 * vma must be removed from the anon_vma's interval trees using 425 * anon_vma_interval_tree_pre_update_vma(). 426 * 427 * After the update, the vma will be reinserted using 428 * anon_vma_interval_tree_post_update_vma(). 429 * 430 * The entire update must be protected by exclusive mmap_sem and by 431 * the root anon_vma's mutex. 432 */ 433 static inline void 434 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 435 { 436 struct anon_vma_chain *avc; 437 438 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 439 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 440 } 441 442 static inline void 443 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 444 { 445 struct anon_vma_chain *avc; 446 447 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 448 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 449 } 450 451 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 452 unsigned long end, struct vm_area_struct **pprev, 453 struct rb_node ***rb_link, struct rb_node **rb_parent) 454 { 455 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 456 457 __rb_link = &mm->mm_rb.rb_node; 458 rb_prev = __rb_parent = NULL; 459 460 while (*__rb_link) { 461 struct vm_area_struct *vma_tmp; 462 463 __rb_parent = *__rb_link; 464 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 465 466 if (vma_tmp->vm_end > addr) { 467 /* Fail if an existing vma overlaps the area */ 468 if (vma_tmp->vm_start < end) 469 return -ENOMEM; 470 __rb_link = &__rb_parent->rb_left; 471 } else { 472 rb_prev = __rb_parent; 473 __rb_link = &__rb_parent->rb_right; 474 } 475 } 476 477 *pprev = NULL; 478 if (rb_prev) 479 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 480 *rb_link = __rb_link; 481 *rb_parent = __rb_parent; 482 return 0; 483 } 484 485 static unsigned long count_vma_pages_range(struct mm_struct *mm, 486 unsigned long addr, unsigned long end) 487 { 488 unsigned long nr_pages = 0; 489 struct vm_area_struct *vma; 490 491 /* Find first overlaping mapping */ 492 vma = find_vma_intersection(mm, addr, end); 493 if (!vma) 494 return 0; 495 496 nr_pages = (min(end, vma->vm_end) - 497 max(addr, vma->vm_start)) >> PAGE_SHIFT; 498 499 /* Iterate over the rest of the overlaps */ 500 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 501 unsigned long overlap_len; 502 503 if (vma->vm_start > end) 504 break; 505 506 overlap_len = min(end, vma->vm_end) - vma->vm_start; 507 nr_pages += overlap_len >> PAGE_SHIFT; 508 } 509 510 return nr_pages; 511 } 512 513 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 514 struct rb_node **rb_link, struct rb_node *rb_parent) 515 { 516 /* Update tracking information for the gap following the new vma. */ 517 if (vma->vm_next) 518 vma_gap_update(vma->vm_next); 519 else 520 mm->highest_vm_end = vma->vm_end; 521 522 /* 523 * vma->vm_prev wasn't known when we followed the rbtree to find the 524 * correct insertion point for that vma. As a result, we could not 525 * update the vma vm_rb parents rb_subtree_gap values on the way down. 526 * So, we first insert the vma with a zero rb_subtree_gap value 527 * (to be consistent with what we did on the way down), and then 528 * immediately update the gap to the correct value. Finally we 529 * rebalance the rbtree after all augmented values have been set. 530 */ 531 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 532 vma->rb_subtree_gap = 0; 533 vma_gap_update(vma); 534 vma_rb_insert(vma, &mm->mm_rb); 535 } 536 537 static void __vma_link_file(struct vm_area_struct *vma) 538 { 539 struct file *file; 540 541 file = vma->vm_file; 542 if (file) { 543 struct address_space *mapping = file->f_mapping; 544 545 if (vma->vm_flags & VM_DENYWRITE) 546 atomic_dec(&file_inode(file)->i_writecount); 547 if (vma->vm_flags & VM_SHARED) 548 atomic_inc(&mapping->i_mmap_writable); 549 550 flush_dcache_mmap_lock(mapping); 551 vma_interval_tree_insert(vma, &mapping->i_mmap); 552 flush_dcache_mmap_unlock(mapping); 553 } 554 } 555 556 static void 557 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 558 struct vm_area_struct *prev, struct rb_node **rb_link, 559 struct rb_node *rb_parent) 560 { 561 __vma_link_list(mm, vma, prev, rb_parent); 562 __vma_link_rb(mm, vma, rb_link, rb_parent); 563 } 564 565 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 566 struct vm_area_struct *prev, struct rb_node **rb_link, 567 struct rb_node *rb_parent) 568 { 569 struct address_space *mapping = NULL; 570 571 if (vma->vm_file) { 572 mapping = vma->vm_file->f_mapping; 573 i_mmap_lock_write(mapping); 574 } 575 576 __vma_link(mm, vma, prev, rb_link, rb_parent); 577 __vma_link_file(vma); 578 579 if (mapping) 580 i_mmap_unlock_write(mapping); 581 582 mm->map_count++; 583 validate_mm(mm); 584 } 585 586 /* 587 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 588 * mm's list and rbtree. It has already been inserted into the interval tree. 589 */ 590 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 591 { 592 struct vm_area_struct *prev; 593 struct rb_node **rb_link, *rb_parent; 594 595 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 596 &prev, &rb_link, &rb_parent)) 597 BUG(); 598 __vma_link(mm, vma, prev, rb_link, rb_parent); 599 mm->map_count++; 600 } 601 602 static inline void 603 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 604 struct vm_area_struct *prev) 605 { 606 struct vm_area_struct *next; 607 608 vma_rb_erase(vma, &mm->mm_rb); 609 prev->vm_next = next = vma->vm_next; 610 if (next) 611 next->vm_prev = prev; 612 613 /* Kill the cache */ 614 vmacache_invalidate(mm); 615 } 616 617 /* 618 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 619 * is already present in an i_mmap tree without adjusting the tree. 620 * The following helper function should be used when such adjustments 621 * are necessary. The "insert" vma (if any) is to be inserted 622 * before we drop the necessary locks. 623 */ 624 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 625 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 626 { 627 struct mm_struct *mm = vma->vm_mm; 628 struct vm_area_struct *next = vma->vm_next; 629 struct address_space *mapping = NULL; 630 struct rb_root *root = NULL; 631 struct anon_vma *anon_vma = NULL; 632 struct file *file = vma->vm_file; 633 bool start_changed = false, end_changed = false; 634 long adjust_next = 0; 635 int remove_next = 0; 636 637 if (next && !insert) { 638 struct vm_area_struct *exporter = NULL, *importer = NULL; 639 640 if (end >= next->vm_end) { 641 /* 642 * vma expands, overlapping all the next, and 643 * perhaps the one after too (mprotect case 6). 644 */ 645 remove_next = 1 + (end > next->vm_end); 646 end = next->vm_end; 647 exporter = next; 648 importer = vma; 649 650 /* 651 * If next doesn't have anon_vma, import from vma after 652 * next, if the vma overlaps with it. 653 */ 654 if (remove_next == 2 && next && !next->anon_vma) 655 exporter = next->vm_next; 656 657 } else if (end > next->vm_start) { 658 /* 659 * vma expands, overlapping part of the next: 660 * mprotect case 5 shifting the boundary up. 661 */ 662 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 663 exporter = next; 664 importer = vma; 665 } else if (end < vma->vm_end) { 666 /* 667 * vma shrinks, and !insert tells it's not 668 * split_vma inserting another: so it must be 669 * mprotect case 4 shifting the boundary down. 670 */ 671 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 672 exporter = vma; 673 importer = next; 674 } 675 676 /* 677 * Easily overlooked: when mprotect shifts the boundary, 678 * make sure the expanding vma has anon_vma set if the 679 * shrinking vma had, to cover any anon pages imported. 680 */ 681 if (exporter && exporter->anon_vma && !importer->anon_vma) { 682 int error; 683 684 importer->anon_vma = exporter->anon_vma; 685 error = anon_vma_clone(importer, exporter); 686 if (error) 687 return error; 688 } 689 } 690 again: 691 vma_adjust_trans_huge(vma, start, end, adjust_next); 692 693 if (file) { 694 mapping = file->f_mapping; 695 root = &mapping->i_mmap; 696 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 697 698 if (adjust_next) 699 uprobe_munmap(next, next->vm_start, next->vm_end); 700 701 i_mmap_lock_write(mapping); 702 if (insert) { 703 /* 704 * Put into interval tree now, so instantiated pages 705 * are visible to arm/parisc __flush_dcache_page 706 * throughout; but we cannot insert into address 707 * space until vma start or end is updated. 708 */ 709 __vma_link_file(insert); 710 } 711 } 712 713 anon_vma = vma->anon_vma; 714 if (!anon_vma && adjust_next) 715 anon_vma = next->anon_vma; 716 if (anon_vma) { 717 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 718 anon_vma != next->anon_vma, next); 719 anon_vma_lock_write(anon_vma); 720 anon_vma_interval_tree_pre_update_vma(vma); 721 if (adjust_next) 722 anon_vma_interval_tree_pre_update_vma(next); 723 } 724 725 if (root) { 726 flush_dcache_mmap_lock(mapping); 727 vma_interval_tree_remove(vma, root); 728 if (adjust_next) 729 vma_interval_tree_remove(next, root); 730 } 731 732 if (start != vma->vm_start) { 733 vma->vm_start = start; 734 start_changed = true; 735 } 736 if (end != vma->vm_end) { 737 vma->vm_end = end; 738 end_changed = true; 739 } 740 vma->vm_pgoff = pgoff; 741 if (adjust_next) { 742 next->vm_start += adjust_next << PAGE_SHIFT; 743 next->vm_pgoff += adjust_next; 744 } 745 746 if (root) { 747 if (adjust_next) 748 vma_interval_tree_insert(next, root); 749 vma_interval_tree_insert(vma, root); 750 flush_dcache_mmap_unlock(mapping); 751 } 752 753 if (remove_next) { 754 /* 755 * vma_merge has merged next into vma, and needs 756 * us to remove next before dropping the locks. 757 */ 758 __vma_unlink(mm, next, vma); 759 if (file) 760 __remove_shared_vm_struct(next, file, mapping); 761 } else if (insert) { 762 /* 763 * split_vma has split insert from vma, and needs 764 * us to insert it before dropping the locks 765 * (it may either follow vma or precede it). 766 */ 767 __insert_vm_struct(mm, insert); 768 } else { 769 if (start_changed) 770 vma_gap_update(vma); 771 if (end_changed) { 772 if (!next) 773 mm->highest_vm_end = end; 774 else if (!adjust_next) 775 vma_gap_update(next); 776 } 777 } 778 779 if (anon_vma) { 780 anon_vma_interval_tree_post_update_vma(vma); 781 if (adjust_next) 782 anon_vma_interval_tree_post_update_vma(next); 783 anon_vma_unlock_write(anon_vma); 784 } 785 if (mapping) 786 i_mmap_unlock_write(mapping); 787 788 if (root) { 789 uprobe_mmap(vma); 790 791 if (adjust_next) 792 uprobe_mmap(next); 793 } 794 795 if (remove_next) { 796 if (file) { 797 uprobe_munmap(next, next->vm_start, next->vm_end); 798 fput(file); 799 } 800 if (next->anon_vma) 801 anon_vma_merge(vma, next); 802 mm->map_count--; 803 mpol_put(vma_policy(next)); 804 kmem_cache_free(vm_area_cachep, next); 805 /* 806 * In mprotect's case 6 (see comments on vma_merge), 807 * we must remove another next too. It would clutter 808 * up the code too much to do both in one go. 809 */ 810 next = vma->vm_next; 811 if (remove_next == 2) { 812 remove_next = 1; 813 end = next->vm_end; 814 goto again; 815 } 816 else if (next) 817 vma_gap_update(next); 818 else 819 mm->highest_vm_end = end; 820 } 821 if (insert && file) 822 uprobe_mmap(insert); 823 824 validate_mm(mm); 825 826 return 0; 827 } 828 829 /* 830 * If the vma has a ->close operation then the driver probably needs to release 831 * per-vma resources, so we don't attempt to merge those. 832 */ 833 static inline int is_mergeable_vma(struct vm_area_struct *vma, 834 struct file *file, unsigned long vm_flags, 835 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 836 { 837 /* 838 * VM_SOFTDIRTY should not prevent from VMA merging, if we 839 * match the flags but dirty bit -- the caller should mark 840 * merged VMA as dirty. If dirty bit won't be excluded from 841 * comparison, we increase pressue on the memory system forcing 842 * the kernel to generate new VMAs when old one could be 843 * extended instead. 844 */ 845 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 846 return 0; 847 if (vma->vm_file != file) 848 return 0; 849 if (vma->vm_ops && vma->vm_ops->close) 850 return 0; 851 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 852 return 0; 853 return 1; 854 } 855 856 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 857 struct anon_vma *anon_vma2, 858 struct vm_area_struct *vma) 859 { 860 /* 861 * The list_is_singular() test is to avoid merging VMA cloned from 862 * parents. This can improve scalability caused by anon_vma lock. 863 */ 864 if ((!anon_vma1 || !anon_vma2) && (!vma || 865 list_is_singular(&vma->anon_vma_chain))) 866 return 1; 867 return anon_vma1 == anon_vma2; 868 } 869 870 /* 871 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 872 * in front of (at a lower virtual address and file offset than) the vma. 873 * 874 * We cannot merge two vmas if they have differently assigned (non-NULL) 875 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 876 * 877 * We don't check here for the merged mmap wrapping around the end of pagecache 878 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 879 * wrap, nor mmaps which cover the final page at index -1UL. 880 */ 881 static int 882 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 883 struct anon_vma *anon_vma, struct file *file, 884 pgoff_t vm_pgoff, 885 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 886 { 887 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 888 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 889 if (vma->vm_pgoff == vm_pgoff) 890 return 1; 891 } 892 return 0; 893 } 894 895 /* 896 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 897 * beyond (at a higher virtual address and file offset than) the vma. 898 * 899 * We cannot merge two vmas if they have differently assigned (non-NULL) 900 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 901 */ 902 static int 903 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 904 struct anon_vma *anon_vma, struct file *file, 905 pgoff_t vm_pgoff, 906 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 907 { 908 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && 909 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 910 pgoff_t vm_pglen; 911 vm_pglen = vma_pages(vma); 912 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 913 return 1; 914 } 915 return 0; 916 } 917 918 /* 919 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 920 * whether that can be merged with its predecessor or its successor. 921 * Or both (it neatly fills a hole). 922 * 923 * In most cases - when called for mmap, brk or mremap - [addr,end) is 924 * certain not to be mapped by the time vma_merge is called; but when 925 * called for mprotect, it is certain to be already mapped (either at 926 * an offset within prev, or at the start of next), and the flags of 927 * this area are about to be changed to vm_flags - and the no-change 928 * case has already been eliminated. 929 * 930 * The following mprotect cases have to be considered, where AAAA is 931 * the area passed down from mprotect_fixup, never extending beyond one 932 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 933 * 934 * AAAA AAAA AAAA AAAA 935 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 936 * cannot merge might become might become might become 937 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 938 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 939 * mremap move: PPPPNNNNNNNN 8 940 * AAAA 941 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 942 * might become case 1 below case 2 below case 3 below 943 * 944 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 945 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 946 */ 947 struct vm_area_struct *vma_merge(struct mm_struct *mm, 948 struct vm_area_struct *prev, unsigned long addr, 949 unsigned long end, unsigned long vm_flags, 950 struct anon_vma *anon_vma, struct file *file, 951 pgoff_t pgoff, struct mempolicy *policy, 952 struct vm_userfaultfd_ctx vm_userfaultfd_ctx) 953 { 954 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 955 struct vm_area_struct *area, *next; 956 int err; 957 958 /* 959 * We later require that vma->vm_flags == vm_flags, 960 * so this tests vma->vm_flags & VM_SPECIAL, too. 961 */ 962 if (vm_flags & VM_SPECIAL) 963 return NULL; 964 965 if (prev) 966 next = prev->vm_next; 967 else 968 next = mm->mmap; 969 area = next; 970 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 971 next = next->vm_next; 972 973 /* 974 * Can it merge with the predecessor? 975 */ 976 if (prev && prev->vm_end == addr && 977 mpol_equal(vma_policy(prev), policy) && 978 can_vma_merge_after(prev, vm_flags, 979 anon_vma, file, pgoff, 980 vm_userfaultfd_ctx)) { 981 /* 982 * OK, it can. Can we now merge in the successor as well? 983 */ 984 if (next && end == next->vm_start && 985 mpol_equal(policy, vma_policy(next)) && 986 can_vma_merge_before(next, vm_flags, 987 anon_vma, file, 988 pgoff+pglen, 989 vm_userfaultfd_ctx) && 990 is_mergeable_anon_vma(prev->anon_vma, 991 next->anon_vma, NULL)) { 992 /* cases 1, 6 */ 993 err = vma_adjust(prev, prev->vm_start, 994 next->vm_end, prev->vm_pgoff, NULL); 995 } else /* cases 2, 5, 7 */ 996 err = vma_adjust(prev, prev->vm_start, 997 end, prev->vm_pgoff, NULL); 998 if (err) 999 return NULL; 1000 khugepaged_enter_vma_merge(prev, vm_flags); 1001 return prev; 1002 } 1003 1004 /* 1005 * Can this new request be merged in front of next? 1006 */ 1007 if (next && end == next->vm_start && 1008 mpol_equal(policy, vma_policy(next)) && 1009 can_vma_merge_before(next, vm_flags, 1010 anon_vma, file, pgoff+pglen, 1011 vm_userfaultfd_ctx)) { 1012 if (prev && addr < prev->vm_end) /* case 4 */ 1013 err = vma_adjust(prev, prev->vm_start, 1014 addr, prev->vm_pgoff, NULL); 1015 else /* cases 3, 8 */ 1016 err = vma_adjust(area, addr, next->vm_end, 1017 next->vm_pgoff - pglen, NULL); 1018 if (err) 1019 return NULL; 1020 khugepaged_enter_vma_merge(area, vm_flags); 1021 return area; 1022 } 1023 1024 return NULL; 1025 } 1026 1027 /* 1028 * Rough compatbility check to quickly see if it's even worth looking 1029 * at sharing an anon_vma. 1030 * 1031 * They need to have the same vm_file, and the flags can only differ 1032 * in things that mprotect may change. 1033 * 1034 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1035 * we can merge the two vma's. For example, we refuse to merge a vma if 1036 * there is a vm_ops->close() function, because that indicates that the 1037 * driver is doing some kind of reference counting. But that doesn't 1038 * really matter for the anon_vma sharing case. 1039 */ 1040 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1041 { 1042 return a->vm_end == b->vm_start && 1043 mpol_equal(vma_policy(a), vma_policy(b)) && 1044 a->vm_file == b->vm_file && 1045 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1046 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1047 } 1048 1049 /* 1050 * Do some basic sanity checking to see if we can re-use the anon_vma 1051 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1052 * the same as 'old', the other will be the new one that is trying 1053 * to share the anon_vma. 1054 * 1055 * NOTE! This runs with mm_sem held for reading, so it is possible that 1056 * the anon_vma of 'old' is concurrently in the process of being set up 1057 * by another page fault trying to merge _that_. But that's ok: if it 1058 * is being set up, that automatically means that it will be a singleton 1059 * acceptable for merging, so we can do all of this optimistically. But 1060 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1061 * 1062 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1063 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1064 * is to return an anon_vma that is "complex" due to having gone through 1065 * a fork). 1066 * 1067 * We also make sure that the two vma's are compatible (adjacent, 1068 * and with the same memory policies). That's all stable, even with just 1069 * a read lock on the mm_sem. 1070 */ 1071 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1072 { 1073 if (anon_vma_compatible(a, b)) { 1074 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1075 1076 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1077 return anon_vma; 1078 } 1079 return NULL; 1080 } 1081 1082 /* 1083 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1084 * neighbouring vmas for a suitable anon_vma, before it goes off 1085 * to allocate a new anon_vma. It checks because a repetitive 1086 * sequence of mprotects and faults may otherwise lead to distinct 1087 * anon_vmas being allocated, preventing vma merge in subsequent 1088 * mprotect. 1089 */ 1090 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1091 { 1092 struct anon_vma *anon_vma; 1093 struct vm_area_struct *near; 1094 1095 near = vma->vm_next; 1096 if (!near) 1097 goto try_prev; 1098 1099 anon_vma = reusable_anon_vma(near, vma, near); 1100 if (anon_vma) 1101 return anon_vma; 1102 try_prev: 1103 near = vma->vm_prev; 1104 if (!near) 1105 goto none; 1106 1107 anon_vma = reusable_anon_vma(near, near, vma); 1108 if (anon_vma) 1109 return anon_vma; 1110 none: 1111 /* 1112 * There's no absolute need to look only at touching neighbours: 1113 * we could search further afield for "compatible" anon_vmas. 1114 * But it would probably just be a waste of time searching, 1115 * or lead to too many vmas hanging off the same anon_vma. 1116 * We're trying to allow mprotect remerging later on, 1117 * not trying to minimize memory used for anon_vmas. 1118 */ 1119 return NULL; 1120 } 1121 1122 /* 1123 * If a hint addr is less than mmap_min_addr change hint to be as 1124 * low as possible but still greater than mmap_min_addr 1125 */ 1126 static inline unsigned long round_hint_to_min(unsigned long hint) 1127 { 1128 hint &= PAGE_MASK; 1129 if (((void *)hint != NULL) && 1130 (hint < mmap_min_addr)) 1131 return PAGE_ALIGN(mmap_min_addr); 1132 return hint; 1133 } 1134 1135 static inline int mlock_future_check(struct mm_struct *mm, 1136 unsigned long flags, 1137 unsigned long len) 1138 { 1139 unsigned long locked, lock_limit; 1140 1141 /* mlock MCL_FUTURE? */ 1142 if (flags & VM_LOCKED) { 1143 locked = len >> PAGE_SHIFT; 1144 locked += mm->locked_vm; 1145 lock_limit = rlimit(RLIMIT_MEMLOCK); 1146 lock_limit >>= PAGE_SHIFT; 1147 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1148 return -EAGAIN; 1149 } 1150 return 0; 1151 } 1152 1153 /* 1154 * The caller must hold down_write(¤t->mm->mmap_sem). 1155 */ 1156 unsigned long do_mmap(struct file *file, unsigned long addr, 1157 unsigned long len, unsigned long prot, 1158 unsigned long flags, vm_flags_t vm_flags, 1159 unsigned long pgoff, unsigned long *populate) 1160 { 1161 struct mm_struct *mm = current->mm; 1162 int pkey = 0; 1163 1164 *populate = 0; 1165 1166 if (!len) 1167 return -EINVAL; 1168 1169 /* 1170 * Does the application expect PROT_READ to imply PROT_EXEC? 1171 * 1172 * (the exception is when the underlying filesystem is noexec 1173 * mounted, in which case we dont add PROT_EXEC.) 1174 */ 1175 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1176 if (!(file && path_noexec(&file->f_path))) 1177 prot |= PROT_EXEC; 1178 1179 if (!(flags & MAP_FIXED)) 1180 addr = round_hint_to_min(addr); 1181 1182 /* Careful about overflows.. */ 1183 len = PAGE_ALIGN(len); 1184 if (!len) 1185 return -ENOMEM; 1186 1187 /* offset overflow? */ 1188 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1189 return -EOVERFLOW; 1190 1191 /* Too many mappings? */ 1192 if (mm->map_count > sysctl_max_map_count) 1193 return -ENOMEM; 1194 1195 /* Obtain the address to map to. we verify (or select) it and ensure 1196 * that it represents a valid section of the address space. 1197 */ 1198 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1199 if (offset_in_page(addr)) 1200 return addr; 1201 1202 if (prot == PROT_EXEC) { 1203 pkey = execute_only_pkey(mm); 1204 if (pkey < 0) 1205 pkey = 0; 1206 } 1207 1208 /* Do simple checking here so the lower-level routines won't have 1209 * to. we assume access permissions have been handled by the open 1210 * of the memory object, so we don't do any here. 1211 */ 1212 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | 1213 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1214 1215 if (flags & MAP_LOCKED) 1216 if (!can_do_mlock()) 1217 return -EPERM; 1218 1219 if (mlock_future_check(mm, vm_flags, len)) 1220 return -EAGAIN; 1221 1222 if (file) { 1223 struct inode *inode = file_inode(file); 1224 1225 switch (flags & MAP_TYPE) { 1226 case MAP_SHARED: 1227 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1228 return -EACCES; 1229 1230 /* 1231 * Make sure we don't allow writing to an append-only 1232 * file.. 1233 */ 1234 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1235 return -EACCES; 1236 1237 /* 1238 * Make sure there are no mandatory locks on the file. 1239 */ 1240 if (locks_verify_locked(file)) 1241 return -EAGAIN; 1242 1243 vm_flags |= VM_SHARED | VM_MAYSHARE; 1244 if (!(file->f_mode & FMODE_WRITE)) 1245 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1246 1247 /* fall through */ 1248 case MAP_PRIVATE: 1249 if (!(file->f_mode & FMODE_READ)) 1250 return -EACCES; 1251 if (path_noexec(&file->f_path)) { 1252 if (vm_flags & VM_EXEC) 1253 return -EPERM; 1254 vm_flags &= ~VM_MAYEXEC; 1255 } 1256 1257 if (!file->f_op->mmap) 1258 return -ENODEV; 1259 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1260 return -EINVAL; 1261 break; 1262 1263 default: 1264 return -EINVAL; 1265 } 1266 } else { 1267 switch (flags & MAP_TYPE) { 1268 case MAP_SHARED: 1269 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1270 return -EINVAL; 1271 /* 1272 * Ignore pgoff. 1273 */ 1274 pgoff = 0; 1275 vm_flags |= VM_SHARED | VM_MAYSHARE; 1276 break; 1277 case MAP_PRIVATE: 1278 /* 1279 * Set pgoff according to addr for anon_vma. 1280 */ 1281 pgoff = addr >> PAGE_SHIFT; 1282 break; 1283 default: 1284 return -EINVAL; 1285 } 1286 } 1287 1288 /* 1289 * Set 'VM_NORESERVE' if we should not account for the 1290 * memory use of this mapping. 1291 */ 1292 if (flags & MAP_NORESERVE) { 1293 /* We honor MAP_NORESERVE if allowed to overcommit */ 1294 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1295 vm_flags |= VM_NORESERVE; 1296 1297 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1298 if (file && is_file_hugepages(file)) 1299 vm_flags |= VM_NORESERVE; 1300 } 1301 1302 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1303 if (!IS_ERR_VALUE(addr) && 1304 ((vm_flags & VM_LOCKED) || 1305 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1306 *populate = len; 1307 return addr; 1308 } 1309 1310 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1311 unsigned long, prot, unsigned long, flags, 1312 unsigned long, fd, unsigned long, pgoff) 1313 { 1314 struct file *file = NULL; 1315 unsigned long retval; 1316 1317 if (!(flags & MAP_ANONYMOUS)) { 1318 audit_mmap_fd(fd, flags); 1319 file = fget(fd); 1320 if (!file) 1321 return -EBADF; 1322 if (is_file_hugepages(file)) 1323 len = ALIGN(len, huge_page_size(hstate_file(file))); 1324 retval = -EINVAL; 1325 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1326 goto out_fput; 1327 } else if (flags & MAP_HUGETLB) { 1328 struct user_struct *user = NULL; 1329 struct hstate *hs; 1330 1331 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1332 if (!hs) 1333 return -EINVAL; 1334 1335 len = ALIGN(len, huge_page_size(hs)); 1336 /* 1337 * VM_NORESERVE is used because the reservations will be 1338 * taken when vm_ops->mmap() is called 1339 * A dummy user value is used because we are not locking 1340 * memory so no accounting is necessary 1341 */ 1342 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1343 VM_NORESERVE, 1344 &user, HUGETLB_ANONHUGE_INODE, 1345 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1346 if (IS_ERR(file)) 1347 return PTR_ERR(file); 1348 } 1349 1350 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1351 1352 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1353 out_fput: 1354 if (file) 1355 fput(file); 1356 return retval; 1357 } 1358 1359 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1360 struct mmap_arg_struct { 1361 unsigned long addr; 1362 unsigned long len; 1363 unsigned long prot; 1364 unsigned long flags; 1365 unsigned long fd; 1366 unsigned long offset; 1367 }; 1368 1369 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1370 { 1371 struct mmap_arg_struct a; 1372 1373 if (copy_from_user(&a, arg, sizeof(a))) 1374 return -EFAULT; 1375 if (offset_in_page(a.offset)) 1376 return -EINVAL; 1377 1378 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1379 a.offset >> PAGE_SHIFT); 1380 } 1381 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1382 1383 /* 1384 * Some shared mappigns will want the pages marked read-only 1385 * to track write events. If so, we'll downgrade vm_page_prot 1386 * to the private version (using protection_map[] without the 1387 * VM_SHARED bit). 1388 */ 1389 int vma_wants_writenotify(struct vm_area_struct *vma) 1390 { 1391 vm_flags_t vm_flags = vma->vm_flags; 1392 const struct vm_operations_struct *vm_ops = vma->vm_ops; 1393 1394 /* If it was private or non-writable, the write bit is already clear */ 1395 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1396 return 0; 1397 1398 /* The backer wishes to know when pages are first written to? */ 1399 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) 1400 return 1; 1401 1402 /* The open routine did something to the protections that pgprot_modify 1403 * won't preserve? */ 1404 if (pgprot_val(vma->vm_page_prot) != 1405 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1406 return 0; 1407 1408 /* Do we need to track softdirty? */ 1409 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1410 return 1; 1411 1412 /* Specialty mapping? */ 1413 if (vm_flags & VM_PFNMAP) 1414 return 0; 1415 1416 /* Can the mapping track the dirty pages? */ 1417 return vma->vm_file && vma->vm_file->f_mapping && 1418 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1419 } 1420 1421 /* 1422 * We account for memory if it's a private writeable mapping, 1423 * not hugepages and VM_NORESERVE wasn't set. 1424 */ 1425 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1426 { 1427 /* 1428 * hugetlb has its own accounting separate from the core VM 1429 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1430 */ 1431 if (file && is_file_hugepages(file)) 1432 return 0; 1433 1434 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1435 } 1436 1437 unsigned long mmap_region(struct file *file, unsigned long addr, 1438 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1439 { 1440 struct mm_struct *mm = current->mm; 1441 struct vm_area_struct *vma, *prev; 1442 int error; 1443 struct rb_node **rb_link, *rb_parent; 1444 unsigned long charged = 0; 1445 1446 /* Check against address space limit. */ 1447 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { 1448 unsigned long nr_pages; 1449 1450 /* 1451 * MAP_FIXED may remove pages of mappings that intersects with 1452 * requested mapping. Account for the pages it would unmap. 1453 */ 1454 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1455 1456 if (!may_expand_vm(mm, vm_flags, 1457 (len >> PAGE_SHIFT) - nr_pages)) 1458 return -ENOMEM; 1459 } 1460 1461 /* Clear old maps */ 1462 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1463 &rb_parent)) { 1464 if (do_munmap(mm, addr, len)) 1465 return -ENOMEM; 1466 } 1467 1468 /* 1469 * Private writable mapping: check memory availability 1470 */ 1471 if (accountable_mapping(file, vm_flags)) { 1472 charged = len >> PAGE_SHIFT; 1473 if (security_vm_enough_memory_mm(mm, charged)) 1474 return -ENOMEM; 1475 vm_flags |= VM_ACCOUNT; 1476 } 1477 1478 /* 1479 * Can we just expand an old mapping? 1480 */ 1481 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, 1482 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); 1483 if (vma) 1484 goto out; 1485 1486 /* 1487 * Determine the object being mapped and call the appropriate 1488 * specific mapper. the address has already been validated, but 1489 * not unmapped, but the maps are removed from the list. 1490 */ 1491 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1492 if (!vma) { 1493 error = -ENOMEM; 1494 goto unacct_error; 1495 } 1496 1497 vma->vm_mm = mm; 1498 vma->vm_start = addr; 1499 vma->vm_end = addr + len; 1500 vma->vm_flags = vm_flags; 1501 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1502 vma->vm_pgoff = pgoff; 1503 INIT_LIST_HEAD(&vma->anon_vma_chain); 1504 1505 if (file) { 1506 if (vm_flags & VM_DENYWRITE) { 1507 error = deny_write_access(file); 1508 if (error) 1509 goto free_vma; 1510 } 1511 if (vm_flags & VM_SHARED) { 1512 error = mapping_map_writable(file->f_mapping); 1513 if (error) 1514 goto allow_write_and_free_vma; 1515 } 1516 1517 /* ->mmap() can change vma->vm_file, but must guarantee that 1518 * vma_link() below can deny write-access if VM_DENYWRITE is set 1519 * and map writably if VM_SHARED is set. This usually means the 1520 * new file must not have been exposed to user-space, yet. 1521 */ 1522 vma->vm_file = get_file(file); 1523 error = file->f_op->mmap(file, vma); 1524 if (error) 1525 goto unmap_and_free_vma; 1526 1527 /* Can addr have changed?? 1528 * 1529 * Answer: Yes, several device drivers can do it in their 1530 * f_op->mmap method. -DaveM 1531 * Bug: If addr is changed, prev, rb_link, rb_parent should 1532 * be updated for vma_link() 1533 */ 1534 WARN_ON_ONCE(addr != vma->vm_start); 1535 1536 addr = vma->vm_start; 1537 vm_flags = vma->vm_flags; 1538 } else if (vm_flags & VM_SHARED) { 1539 error = shmem_zero_setup(vma); 1540 if (error) 1541 goto free_vma; 1542 } 1543 1544 vma_link(mm, vma, prev, rb_link, rb_parent); 1545 /* Once vma denies write, undo our temporary denial count */ 1546 if (file) { 1547 if (vm_flags & VM_SHARED) 1548 mapping_unmap_writable(file->f_mapping); 1549 if (vm_flags & VM_DENYWRITE) 1550 allow_write_access(file); 1551 } 1552 file = vma->vm_file; 1553 out: 1554 perf_event_mmap(vma); 1555 1556 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); 1557 if (vm_flags & VM_LOCKED) { 1558 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1559 vma == get_gate_vma(current->mm))) 1560 mm->locked_vm += (len >> PAGE_SHIFT); 1561 else 1562 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 1563 } 1564 1565 if (file) 1566 uprobe_mmap(vma); 1567 1568 /* 1569 * New (or expanded) vma always get soft dirty status. 1570 * Otherwise user-space soft-dirty page tracker won't 1571 * be able to distinguish situation when vma area unmapped, 1572 * then new mapped in-place (which must be aimed as 1573 * a completely new data area). 1574 */ 1575 vma->vm_flags |= VM_SOFTDIRTY; 1576 1577 vma_set_page_prot(vma); 1578 1579 return addr; 1580 1581 unmap_and_free_vma: 1582 vma->vm_file = NULL; 1583 fput(file); 1584 1585 /* Undo any partial mapping done by a device driver. */ 1586 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1587 charged = 0; 1588 if (vm_flags & VM_SHARED) 1589 mapping_unmap_writable(file->f_mapping); 1590 allow_write_and_free_vma: 1591 if (vm_flags & VM_DENYWRITE) 1592 allow_write_access(file); 1593 free_vma: 1594 kmem_cache_free(vm_area_cachep, vma); 1595 unacct_error: 1596 if (charged) 1597 vm_unacct_memory(charged); 1598 return error; 1599 } 1600 1601 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1602 { 1603 /* 1604 * We implement the search by looking for an rbtree node that 1605 * immediately follows a suitable gap. That is, 1606 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1607 * - gap_end = vma->vm_start >= info->low_limit + length; 1608 * - gap_end - gap_start >= length 1609 */ 1610 1611 struct mm_struct *mm = current->mm; 1612 struct vm_area_struct *vma; 1613 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1614 1615 /* Adjust search length to account for worst case alignment overhead */ 1616 length = info->length + info->align_mask; 1617 if (length < info->length) 1618 return -ENOMEM; 1619 1620 /* Adjust search limits by the desired length */ 1621 if (info->high_limit < length) 1622 return -ENOMEM; 1623 high_limit = info->high_limit - length; 1624 1625 if (info->low_limit > high_limit) 1626 return -ENOMEM; 1627 low_limit = info->low_limit + length; 1628 1629 /* Check if rbtree root looks promising */ 1630 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1631 goto check_highest; 1632 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1633 if (vma->rb_subtree_gap < length) 1634 goto check_highest; 1635 1636 while (true) { 1637 /* Visit left subtree if it looks promising */ 1638 gap_end = vma->vm_start; 1639 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1640 struct vm_area_struct *left = 1641 rb_entry(vma->vm_rb.rb_left, 1642 struct vm_area_struct, vm_rb); 1643 if (left->rb_subtree_gap >= length) { 1644 vma = left; 1645 continue; 1646 } 1647 } 1648 1649 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1650 check_current: 1651 /* Check if current node has a suitable gap */ 1652 if (gap_start > high_limit) 1653 return -ENOMEM; 1654 if (gap_end >= low_limit && gap_end - gap_start >= length) 1655 goto found; 1656 1657 /* Visit right subtree if it looks promising */ 1658 if (vma->vm_rb.rb_right) { 1659 struct vm_area_struct *right = 1660 rb_entry(vma->vm_rb.rb_right, 1661 struct vm_area_struct, vm_rb); 1662 if (right->rb_subtree_gap >= length) { 1663 vma = right; 1664 continue; 1665 } 1666 } 1667 1668 /* Go back up the rbtree to find next candidate node */ 1669 while (true) { 1670 struct rb_node *prev = &vma->vm_rb; 1671 if (!rb_parent(prev)) 1672 goto check_highest; 1673 vma = rb_entry(rb_parent(prev), 1674 struct vm_area_struct, vm_rb); 1675 if (prev == vma->vm_rb.rb_left) { 1676 gap_start = vma->vm_prev->vm_end; 1677 gap_end = vma->vm_start; 1678 goto check_current; 1679 } 1680 } 1681 } 1682 1683 check_highest: 1684 /* Check highest gap, which does not precede any rbtree node */ 1685 gap_start = mm->highest_vm_end; 1686 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1687 if (gap_start > high_limit) 1688 return -ENOMEM; 1689 1690 found: 1691 /* We found a suitable gap. Clip it with the original low_limit. */ 1692 if (gap_start < info->low_limit) 1693 gap_start = info->low_limit; 1694 1695 /* Adjust gap address to the desired alignment */ 1696 gap_start += (info->align_offset - gap_start) & info->align_mask; 1697 1698 VM_BUG_ON(gap_start + info->length > info->high_limit); 1699 VM_BUG_ON(gap_start + info->length > gap_end); 1700 return gap_start; 1701 } 1702 1703 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1704 { 1705 struct mm_struct *mm = current->mm; 1706 struct vm_area_struct *vma; 1707 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1708 1709 /* Adjust search length to account for worst case alignment overhead */ 1710 length = info->length + info->align_mask; 1711 if (length < info->length) 1712 return -ENOMEM; 1713 1714 /* 1715 * Adjust search limits by the desired length. 1716 * See implementation comment at top of unmapped_area(). 1717 */ 1718 gap_end = info->high_limit; 1719 if (gap_end < length) 1720 return -ENOMEM; 1721 high_limit = gap_end - length; 1722 1723 if (info->low_limit > high_limit) 1724 return -ENOMEM; 1725 low_limit = info->low_limit + length; 1726 1727 /* Check highest gap, which does not precede any rbtree node */ 1728 gap_start = mm->highest_vm_end; 1729 if (gap_start <= high_limit) 1730 goto found_highest; 1731 1732 /* Check if rbtree root looks promising */ 1733 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1734 return -ENOMEM; 1735 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1736 if (vma->rb_subtree_gap < length) 1737 return -ENOMEM; 1738 1739 while (true) { 1740 /* Visit right subtree if it looks promising */ 1741 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1742 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1743 struct vm_area_struct *right = 1744 rb_entry(vma->vm_rb.rb_right, 1745 struct vm_area_struct, vm_rb); 1746 if (right->rb_subtree_gap >= length) { 1747 vma = right; 1748 continue; 1749 } 1750 } 1751 1752 check_current: 1753 /* Check if current node has a suitable gap */ 1754 gap_end = vma->vm_start; 1755 if (gap_end < low_limit) 1756 return -ENOMEM; 1757 if (gap_start <= high_limit && gap_end - gap_start >= length) 1758 goto found; 1759 1760 /* Visit left subtree if it looks promising */ 1761 if (vma->vm_rb.rb_left) { 1762 struct vm_area_struct *left = 1763 rb_entry(vma->vm_rb.rb_left, 1764 struct vm_area_struct, vm_rb); 1765 if (left->rb_subtree_gap >= length) { 1766 vma = left; 1767 continue; 1768 } 1769 } 1770 1771 /* Go back up the rbtree to find next candidate node */ 1772 while (true) { 1773 struct rb_node *prev = &vma->vm_rb; 1774 if (!rb_parent(prev)) 1775 return -ENOMEM; 1776 vma = rb_entry(rb_parent(prev), 1777 struct vm_area_struct, vm_rb); 1778 if (prev == vma->vm_rb.rb_right) { 1779 gap_start = vma->vm_prev ? 1780 vma->vm_prev->vm_end : 0; 1781 goto check_current; 1782 } 1783 } 1784 } 1785 1786 found: 1787 /* We found a suitable gap. Clip it with the original high_limit. */ 1788 if (gap_end > info->high_limit) 1789 gap_end = info->high_limit; 1790 1791 found_highest: 1792 /* Compute highest gap address at the desired alignment */ 1793 gap_end -= info->length; 1794 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1795 1796 VM_BUG_ON(gap_end < info->low_limit); 1797 VM_BUG_ON(gap_end < gap_start); 1798 return gap_end; 1799 } 1800 1801 /* Get an address range which is currently unmapped. 1802 * For shmat() with addr=0. 1803 * 1804 * Ugly calling convention alert: 1805 * Return value with the low bits set means error value, 1806 * ie 1807 * if (ret & ~PAGE_MASK) 1808 * error = ret; 1809 * 1810 * This function "knows" that -ENOMEM has the bits set. 1811 */ 1812 #ifndef HAVE_ARCH_UNMAPPED_AREA 1813 unsigned long 1814 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1815 unsigned long len, unsigned long pgoff, unsigned long flags) 1816 { 1817 struct mm_struct *mm = current->mm; 1818 struct vm_area_struct *vma; 1819 struct vm_unmapped_area_info info; 1820 1821 if (len > TASK_SIZE - mmap_min_addr) 1822 return -ENOMEM; 1823 1824 if (flags & MAP_FIXED) 1825 return addr; 1826 1827 if (addr) { 1828 addr = PAGE_ALIGN(addr); 1829 vma = find_vma(mm, addr); 1830 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1831 (!vma || addr + len <= vma->vm_start)) 1832 return addr; 1833 } 1834 1835 info.flags = 0; 1836 info.length = len; 1837 info.low_limit = mm->mmap_base; 1838 info.high_limit = TASK_SIZE; 1839 info.align_mask = 0; 1840 return vm_unmapped_area(&info); 1841 } 1842 #endif 1843 1844 /* 1845 * This mmap-allocator allocates new areas top-down from below the 1846 * stack's low limit (the base): 1847 */ 1848 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1849 unsigned long 1850 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1851 const unsigned long len, const unsigned long pgoff, 1852 const unsigned long flags) 1853 { 1854 struct vm_area_struct *vma; 1855 struct mm_struct *mm = current->mm; 1856 unsigned long addr = addr0; 1857 struct vm_unmapped_area_info info; 1858 1859 /* requested length too big for entire address space */ 1860 if (len > TASK_SIZE - mmap_min_addr) 1861 return -ENOMEM; 1862 1863 if (flags & MAP_FIXED) 1864 return addr; 1865 1866 /* requesting a specific address */ 1867 if (addr) { 1868 addr = PAGE_ALIGN(addr); 1869 vma = find_vma(mm, addr); 1870 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1871 (!vma || addr + len <= vma->vm_start)) 1872 return addr; 1873 } 1874 1875 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1876 info.length = len; 1877 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1878 info.high_limit = mm->mmap_base; 1879 info.align_mask = 0; 1880 addr = vm_unmapped_area(&info); 1881 1882 /* 1883 * A failed mmap() very likely causes application failure, 1884 * so fall back to the bottom-up function here. This scenario 1885 * can happen with large stack limits and large mmap() 1886 * allocations. 1887 */ 1888 if (offset_in_page(addr)) { 1889 VM_BUG_ON(addr != -ENOMEM); 1890 info.flags = 0; 1891 info.low_limit = TASK_UNMAPPED_BASE; 1892 info.high_limit = TASK_SIZE; 1893 addr = vm_unmapped_area(&info); 1894 } 1895 1896 return addr; 1897 } 1898 #endif 1899 1900 unsigned long 1901 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1902 unsigned long pgoff, unsigned long flags) 1903 { 1904 unsigned long (*get_area)(struct file *, unsigned long, 1905 unsigned long, unsigned long, unsigned long); 1906 1907 unsigned long error = arch_mmap_check(addr, len, flags); 1908 if (error) 1909 return error; 1910 1911 /* Careful about overflows.. */ 1912 if (len > TASK_SIZE) 1913 return -ENOMEM; 1914 1915 get_area = current->mm->get_unmapped_area; 1916 if (file) { 1917 if (file->f_op->get_unmapped_area) 1918 get_area = file->f_op->get_unmapped_area; 1919 } else if (flags & MAP_SHARED) { 1920 /* 1921 * mmap_region() will call shmem_zero_setup() to create a file, 1922 * so use shmem's get_unmapped_area in case it can be huge. 1923 * do_mmap_pgoff() will clear pgoff, so match alignment. 1924 */ 1925 pgoff = 0; 1926 get_area = shmem_get_unmapped_area; 1927 } 1928 1929 addr = get_area(file, addr, len, pgoff, flags); 1930 if (IS_ERR_VALUE(addr)) 1931 return addr; 1932 1933 if (addr > TASK_SIZE - len) 1934 return -ENOMEM; 1935 if (offset_in_page(addr)) 1936 return -EINVAL; 1937 1938 error = security_mmap_addr(addr); 1939 return error ? error : addr; 1940 } 1941 1942 EXPORT_SYMBOL(get_unmapped_area); 1943 1944 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1945 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1946 { 1947 struct rb_node *rb_node; 1948 struct vm_area_struct *vma; 1949 1950 /* Check the cache first. */ 1951 vma = vmacache_find(mm, addr); 1952 if (likely(vma)) 1953 return vma; 1954 1955 rb_node = mm->mm_rb.rb_node; 1956 1957 while (rb_node) { 1958 struct vm_area_struct *tmp; 1959 1960 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1961 1962 if (tmp->vm_end > addr) { 1963 vma = tmp; 1964 if (tmp->vm_start <= addr) 1965 break; 1966 rb_node = rb_node->rb_left; 1967 } else 1968 rb_node = rb_node->rb_right; 1969 } 1970 1971 if (vma) 1972 vmacache_update(addr, vma); 1973 return vma; 1974 } 1975 1976 EXPORT_SYMBOL(find_vma); 1977 1978 /* 1979 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 1980 */ 1981 struct vm_area_struct * 1982 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1983 struct vm_area_struct **pprev) 1984 { 1985 struct vm_area_struct *vma; 1986 1987 vma = find_vma(mm, addr); 1988 if (vma) { 1989 *pprev = vma->vm_prev; 1990 } else { 1991 struct rb_node *rb_node = mm->mm_rb.rb_node; 1992 *pprev = NULL; 1993 while (rb_node) { 1994 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1995 rb_node = rb_node->rb_right; 1996 } 1997 } 1998 return vma; 1999 } 2000 2001 /* 2002 * Verify that the stack growth is acceptable and 2003 * update accounting. This is shared with both the 2004 * grow-up and grow-down cases. 2005 */ 2006 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2007 { 2008 struct mm_struct *mm = vma->vm_mm; 2009 struct rlimit *rlim = current->signal->rlim; 2010 unsigned long new_start, actual_size; 2011 2012 /* address space limit tests */ 2013 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2014 return -ENOMEM; 2015 2016 /* Stack limit test */ 2017 actual_size = size; 2018 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 2019 actual_size -= PAGE_SIZE; 2020 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2021 return -ENOMEM; 2022 2023 /* mlock limit tests */ 2024 if (vma->vm_flags & VM_LOCKED) { 2025 unsigned long locked; 2026 unsigned long limit; 2027 locked = mm->locked_vm + grow; 2028 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2029 limit >>= PAGE_SHIFT; 2030 if (locked > limit && !capable(CAP_IPC_LOCK)) 2031 return -ENOMEM; 2032 } 2033 2034 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2035 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2036 vma->vm_end - size; 2037 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2038 return -EFAULT; 2039 2040 /* 2041 * Overcommit.. This must be the final test, as it will 2042 * update security statistics. 2043 */ 2044 if (security_vm_enough_memory_mm(mm, grow)) 2045 return -ENOMEM; 2046 2047 return 0; 2048 } 2049 2050 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2051 /* 2052 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2053 * vma is the last one with address > vma->vm_end. Have to extend vma. 2054 */ 2055 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2056 { 2057 struct mm_struct *mm = vma->vm_mm; 2058 int error = 0; 2059 2060 if (!(vma->vm_flags & VM_GROWSUP)) 2061 return -EFAULT; 2062 2063 /* Guard against wrapping around to address 0. */ 2064 if (address < PAGE_ALIGN(address+4)) 2065 address = PAGE_ALIGN(address+4); 2066 else 2067 return -ENOMEM; 2068 2069 /* We must make sure the anon_vma is allocated. */ 2070 if (unlikely(anon_vma_prepare(vma))) 2071 return -ENOMEM; 2072 2073 /* 2074 * vma->vm_start/vm_end cannot change under us because the caller 2075 * is required to hold the mmap_sem in read mode. We need the 2076 * anon_vma lock to serialize against concurrent expand_stacks. 2077 */ 2078 anon_vma_lock_write(vma->anon_vma); 2079 2080 /* Somebody else might have raced and expanded it already */ 2081 if (address > vma->vm_end) { 2082 unsigned long size, grow; 2083 2084 size = address - vma->vm_start; 2085 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2086 2087 error = -ENOMEM; 2088 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2089 error = acct_stack_growth(vma, size, grow); 2090 if (!error) { 2091 /* 2092 * vma_gap_update() doesn't support concurrent 2093 * updates, but we only hold a shared mmap_sem 2094 * lock here, so we need to protect against 2095 * concurrent vma expansions. 2096 * anon_vma_lock_write() doesn't help here, as 2097 * we don't guarantee that all growable vmas 2098 * in a mm share the same root anon vma. 2099 * So, we reuse mm->page_table_lock to guard 2100 * against concurrent vma expansions. 2101 */ 2102 spin_lock(&mm->page_table_lock); 2103 if (vma->vm_flags & VM_LOCKED) 2104 mm->locked_vm += grow; 2105 vm_stat_account(mm, vma->vm_flags, grow); 2106 anon_vma_interval_tree_pre_update_vma(vma); 2107 vma->vm_end = address; 2108 anon_vma_interval_tree_post_update_vma(vma); 2109 if (vma->vm_next) 2110 vma_gap_update(vma->vm_next); 2111 else 2112 mm->highest_vm_end = address; 2113 spin_unlock(&mm->page_table_lock); 2114 2115 perf_event_mmap(vma); 2116 } 2117 } 2118 } 2119 anon_vma_unlock_write(vma->anon_vma); 2120 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2121 validate_mm(mm); 2122 return error; 2123 } 2124 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2125 2126 /* 2127 * vma is the first one with address < vma->vm_start. Have to extend vma. 2128 */ 2129 int expand_downwards(struct vm_area_struct *vma, 2130 unsigned long address) 2131 { 2132 struct mm_struct *mm = vma->vm_mm; 2133 int error; 2134 2135 address &= PAGE_MASK; 2136 error = security_mmap_addr(address); 2137 if (error) 2138 return error; 2139 2140 /* We must make sure the anon_vma is allocated. */ 2141 if (unlikely(anon_vma_prepare(vma))) 2142 return -ENOMEM; 2143 2144 /* 2145 * vma->vm_start/vm_end cannot change under us because the caller 2146 * is required to hold the mmap_sem in read mode. We need the 2147 * anon_vma lock to serialize against concurrent expand_stacks. 2148 */ 2149 anon_vma_lock_write(vma->anon_vma); 2150 2151 /* Somebody else might have raced and expanded it already */ 2152 if (address < vma->vm_start) { 2153 unsigned long size, grow; 2154 2155 size = vma->vm_end - address; 2156 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2157 2158 error = -ENOMEM; 2159 if (grow <= vma->vm_pgoff) { 2160 error = acct_stack_growth(vma, size, grow); 2161 if (!error) { 2162 /* 2163 * vma_gap_update() doesn't support concurrent 2164 * updates, but we only hold a shared mmap_sem 2165 * lock here, so we need to protect against 2166 * concurrent vma expansions. 2167 * anon_vma_lock_write() doesn't help here, as 2168 * we don't guarantee that all growable vmas 2169 * in a mm share the same root anon vma. 2170 * So, we reuse mm->page_table_lock to guard 2171 * against concurrent vma expansions. 2172 */ 2173 spin_lock(&mm->page_table_lock); 2174 if (vma->vm_flags & VM_LOCKED) 2175 mm->locked_vm += grow; 2176 vm_stat_account(mm, vma->vm_flags, grow); 2177 anon_vma_interval_tree_pre_update_vma(vma); 2178 vma->vm_start = address; 2179 vma->vm_pgoff -= grow; 2180 anon_vma_interval_tree_post_update_vma(vma); 2181 vma_gap_update(vma); 2182 spin_unlock(&mm->page_table_lock); 2183 2184 perf_event_mmap(vma); 2185 } 2186 } 2187 } 2188 anon_vma_unlock_write(vma->anon_vma); 2189 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2190 validate_mm(mm); 2191 return error; 2192 } 2193 2194 /* 2195 * Note how expand_stack() refuses to expand the stack all the way to 2196 * abut the next virtual mapping, *unless* that mapping itself is also 2197 * a stack mapping. We want to leave room for a guard page, after all 2198 * (the guard page itself is not added here, that is done by the 2199 * actual page faulting logic) 2200 * 2201 * This matches the behavior of the guard page logic (see mm/memory.c: 2202 * check_stack_guard_page()), which only allows the guard page to be 2203 * removed under these circumstances. 2204 */ 2205 #ifdef CONFIG_STACK_GROWSUP 2206 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2207 { 2208 struct vm_area_struct *next; 2209 2210 address &= PAGE_MASK; 2211 next = vma->vm_next; 2212 if (next && next->vm_start == address + PAGE_SIZE) { 2213 if (!(next->vm_flags & VM_GROWSUP)) 2214 return -ENOMEM; 2215 } 2216 return expand_upwards(vma, address); 2217 } 2218 2219 struct vm_area_struct * 2220 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2221 { 2222 struct vm_area_struct *vma, *prev; 2223 2224 addr &= PAGE_MASK; 2225 vma = find_vma_prev(mm, addr, &prev); 2226 if (vma && (vma->vm_start <= addr)) 2227 return vma; 2228 if (!prev || expand_stack(prev, addr)) 2229 return NULL; 2230 if (prev->vm_flags & VM_LOCKED) 2231 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2232 return prev; 2233 } 2234 #else 2235 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2236 { 2237 struct vm_area_struct *prev; 2238 2239 address &= PAGE_MASK; 2240 prev = vma->vm_prev; 2241 if (prev && prev->vm_end == address) { 2242 if (!(prev->vm_flags & VM_GROWSDOWN)) 2243 return -ENOMEM; 2244 } 2245 return expand_downwards(vma, address); 2246 } 2247 2248 struct vm_area_struct * 2249 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2250 { 2251 struct vm_area_struct *vma; 2252 unsigned long start; 2253 2254 addr &= PAGE_MASK; 2255 vma = find_vma(mm, addr); 2256 if (!vma) 2257 return NULL; 2258 if (vma->vm_start <= addr) 2259 return vma; 2260 if (!(vma->vm_flags & VM_GROWSDOWN)) 2261 return NULL; 2262 start = vma->vm_start; 2263 if (expand_stack(vma, addr)) 2264 return NULL; 2265 if (vma->vm_flags & VM_LOCKED) 2266 populate_vma_page_range(vma, addr, start, NULL); 2267 return vma; 2268 } 2269 #endif 2270 2271 EXPORT_SYMBOL_GPL(find_extend_vma); 2272 2273 /* 2274 * Ok - we have the memory areas we should free on the vma list, 2275 * so release them, and do the vma updates. 2276 * 2277 * Called with the mm semaphore held. 2278 */ 2279 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2280 { 2281 unsigned long nr_accounted = 0; 2282 2283 /* Update high watermark before we lower total_vm */ 2284 update_hiwater_vm(mm); 2285 do { 2286 long nrpages = vma_pages(vma); 2287 2288 if (vma->vm_flags & VM_ACCOUNT) 2289 nr_accounted += nrpages; 2290 vm_stat_account(mm, vma->vm_flags, -nrpages); 2291 vma = remove_vma(vma); 2292 } while (vma); 2293 vm_unacct_memory(nr_accounted); 2294 validate_mm(mm); 2295 } 2296 2297 /* 2298 * Get rid of page table information in the indicated region. 2299 * 2300 * Called with the mm semaphore held. 2301 */ 2302 static void unmap_region(struct mm_struct *mm, 2303 struct vm_area_struct *vma, struct vm_area_struct *prev, 2304 unsigned long start, unsigned long end) 2305 { 2306 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2307 struct mmu_gather tlb; 2308 2309 lru_add_drain(); 2310 tlb_gather_mmu(&tlb, mm, start, end); 2311 update_hiwater_rss(mm); 2312 unmap_vmas(&tlb, vma, start, end); 2313 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2314 next ? next->vm_start : USER_PGTABLES_CEILING); 2315 tlb_finish_mmu(&tlb, start, end); 2316 } 2317 2318 /* 2319 * Create a list of vma's touched by the unmap, removing them from the mm's 2320 * vma list as we go.. 2321 */ 2322 static void 2323 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2324 struct vm_area_struct *prev, unsigned long end) 2325 { 2326 struct vm_area_struct **insertion_point; 2327 struct vm_area_struct *tail_vma = NULL; 2328 2329 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2330 vma->vm_prev = NULL; 2331 do { 2332 vma_rb_erase(vma, &mm->mm_rb); 2333 mm->map_count--; 2334 tail_vma = vma; 2335 vma = vma->vm_next; 2336 } while (vma && vma->vm_start < end); 2337 *insertion_point = vma; 2338 if (vma) { 2339 vma->vm_prev = prev; 2340 vma_gap_update(vma); 2341 } else 2342 mm->highest_vm_end = prev ? prev->vm_end : 0; 2343 tail_vma->vm_next = NULL; 2344 2345 /* Kill the cache */ 2346 vmacache_invalidate(mm); 2347 } 2348 2349 /* 2350 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2351 * munmap path where it doesn't make sense to fail. 2352 */ 2353 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2354 unsigned long addr, int new_below) 2355 { 2356 struct vm_area_struct *new; 2357 int err; 2358 2359 if (is_vm_hugetlb_page(vma) && (addr & 2360 ~(huge_page_mask(hstate_vma(vma))))) 2361 return -EINVAL; 2362 2363 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2364 if (!new) 2365 return -ENOMEM; 2366 2367 /* most fields are the same, copy all, and then fixup */ 2368 *new = *vma; 2369 2370 INIT_LIST_HEAD(&new->anon_vma_chain); 2371 2372 if (new_below) 2373 new->vm_end = addr; 2374 else { 2375 new->vm_start = addr; 2376 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2377 } 2378 2379 err = vma_dup_policy(vma, new); 2380 if (err) 2381 goto out_free_vma; 2382 2383 err = anon_vma_clone(new, vma); 2384 if (err) 2385 goto out_free_mpol; 2386 2387 if (new->vm_file) 2388 get_file(new->vm_file); 2389 2390 if (new->vm_ops && new->vm_ops->open) 2391 new->vm_ops->open(new); 2392 2393 if (new_below) 2394 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2395 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2396 else 2397 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2398 2399 /* Success. */ 2400 if (!err) 2401 return 0; 2402 2403 /* Clean everything up if vma_adjust failed. */ 2404 if (new->vm_ops && new->vm_ops->close) 2405 new->vm_ops->close(new); 2406 if (new->vm_file) 2407 fput(new->vm_file); 2408 unlink_anon_vmas(new); 2409 out_free_mpol: 2410 mpol_put(vma_policy(new)); 2411 out_free_vma: 2412 kmem_cache_free(vm_area_cachep, new); 2413 return err; 2414 } 2415 2416 /* 2417 * Split a vma into two pieces at address 'addr', a new vma is allocated 2418 * either for the first part or the tail. 2419 */ 2420 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2421 unsigned long addr, int new_below) 2422 { 2423 if (mm->map_count >= sysctl_max_map_count) 2424 return -ENOMEM; 2425 2426 return __split_vma(mm, vma, addr, new_below); 2427 } 2428 2429 /* Munmap is split into 2 main parts -- this part which finds 2430 * what needs doing, and the areas themselves, which do the 2431 * work. This now handles partial unmappings. 2432 * Jeremy Fitzhardinge <jeremy@goop.org> 2433 */ 2434 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2435 { 2436 unsigned long end; 2437 struct vm_area_struct *vma, *prev, *last; 2438 2439 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2440 return -EINVAL; 2441 2442 len = PAGE_ALIGN(len); 2443 if (len == 0) 2444 return -EINVAL; 2445 2446 /* Find the first overlapping VMA */ 2447 vma = find_vma(mm, start); 2448 if (!vma) 2449 return 0; 2450 prev = vma->vm_prev; 2451 /* we have start < vma->vm_end */ 2452 2453 /* if it doesn't overlap, we have nothing.. */ 2454 end = start + len; 2455 if (vma->vm_start >= end) 2456 return 0; 2457 2458 /* 2459 * If we need to split any vma, do it now to save pain later. 2460 * 2461 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2462 * unmapped vm_area_struct will remain in use: so lower split_vma 2463 * places tmp vma above, and higher split_vma places tmp vma below. 2464 */ 2465 if (start > vma->vm_start) { 2466 int error; 2467 2468 /* 2469 * Make sure that map_count on return from munmap() will 2470 * not exceed its limit; but let map_count go just above 2471 * its limit temporarily, to help free resources as expected. 2472 */ 2473 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2474 return -ENOMEM; 2475 2476 error = __split_vma(mm, vma, start, 0); 2477 if (error) 2478 return error; 2479 prev = vma; 2480 } 2481 2482 /* Does it split the last one? */ 2483 last = find_vma(mm, end); 2484 if (last && end > last->vm_start) { 2485 int error = __split_vma(mm, last, end, 1); 2486 if (error) 2487 return error; 2488 } 2489 vma = prev ? prev->vm_next : mm->mmap; 2490 2491 /* 2492 * unlock any mlock()ed ranges before detaching vmas 2493 */ 2494 if (mm->locked_vm) { 2495 struct vm_area_struct *tmp = vma; 2496 while (tmp && tmp->vm_start < end) { 2497 if (tmp->vm_flags & VM_LOCKED) { 2498 mm->locked_vm -= vma_pages(tmp); 2499 munlock_vma_pages_all(tmp); 2500 } 2501 tmp = tmp->vm_next; 2502 } 2503 } 2504 2505 /* 2506 * Remove the vma's, and unmap the actual pages 2507 */ 2508 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2509 unmap_region(mm, vma, prev, start, end); 2510 2511 arch_unmap(mm, vma, start, end); 2512 2513 /* Fix up all other VM information */ 2514 remove_vma_list(mm, vma); 2515 2516 return 0; 2517 } 2518 2519 int vm_munmap(unsigned long start, size_t len) 2520 { 2521 int ret; 2522 struct mm_struct *mm = current->mm; 2523 2524 if (down_write_killable(&mm->mmap_sem)) 2525 return -EINTR; 2526 2527 ret = do_munmap(mm, start, len); 2528 up_write(&mm->mmap_sem); 2529 return ret; 2530 } 2531 EXPORT_SYMBOL(vm_munmap); 2532 2533 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2534 { 2535 int ret; 2536 struct mm_struct *mm = current->mm; 2537 2538 profile_munmap(addr); 2539 if (down_write_killable(&mm->mmap_sem)) 2540 return -EINTR; 2541 ret = do_munmap(mm, addr, len); 2542 up_write(&mm->mmap_sem); 2543 return ret; 2544 } 2545 2546 2547 /* 2548 * Emulation of deprecated remap_file_pages() syscall. 2549 */ 2550 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2551 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2552 { 2553 2554 struct mm_struct *mm = current->mm; 2555 struct vm_area_struct *vma; 2556 unsigned long populate = 0; 2557 unsigned long ret = -EINVAL; 2558 struct file *file; 2559 2560 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", 2561 current->comm, current->pid); 2562 2563 if (prot) 2564 return ret; 2565 start = start & PAGE_MASK; 2566 size = size & PAGE_MASK; 2567 2568 if (start + size <= start) 2569 return ret; 2570 2571 /* Does pgoff wrap? */ 2572 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2573 return ret; 2574 2575 if (down_write_killable(&mm->mmap_sem)) 2576 return -EINTR; 2577 2578 vma = find_vma(mm, start); 2579 2580 if (!vma || !(vma->vm_flags & VM_SHARED)) 2581 goto out; 2582 2583 if (start < vma->vm_start) 2584 goto out; 2585 2586 if (start + size > vma->vm_end) { 2587 struct vm_area_struct *next; 2588 2589 for (next = vma->vm_next; next; next = next->vm_next) { 2590 /* hole between vmas ? */ 2591 if (next->vm_start != next->vm_prev->vm_end) 2592 goto out; 2593 2594 if (next->vm_file != vma->vm_file) 2595 goto out; 2596 2597 if (next->vm_flags != vma->vm_flags) 2598 goto out; 2599 2600 if (start + size <= next->vm_end) 2601 break; 2602 } 2603 2604 if (!next) 2605 goto out; 2606 } 2607 2608 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2609 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2610 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2611 2612 flags &= MAP_NONBLOCK; 2613 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2614 if (vma->vm_flags & VM_LOCKED) { 2615 struct vm_area_struct *tmp; 2616 flags |= MAP_LOCKED; 2617 2618 /* drop PG_Mlocked flag for over-mapped range */ 2619 for (tmp = vma; tmp->vm_start >= start + size; 2620 tmp = tmp->vm_next) { 2621 /* 2622 * Split pmd and munlock page on the border 2623 * of the range. 2624 */ 2625 vma_adjust_trans_huge(tmp, start, start + size, 0); 2626 2627 munlock_vma_pages_range(tmp, 2628 max(tmp->vm_start, start), 2629 min(tmp->vm_end, start + size)); 2630 } 2631 } 2632 2633 file = get_file(vma->vm_file); 2634 ret = do_mmap_pgoff(vma->vm_file, start, size, 2635 prot, flags, pgoff, &populate); 2636 fput(file); 2637 out: 2638 up_write(&mm->mmap_sem); 2639 if (populate) 2640 mm_populate(ret, populate); 2641 if (!IS_ERR_VALUE(ret)) 2642 ret = 0; 2643 return ret; 2644 } 2645 2646 static inline void verify_mm_writelocked(struct mm_struct *mm) 2647 { 2648 #ifdef CONFIG_DEBUG_VM 2649 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2650 WARN_ON(1); 2651 up_read(&mm->mmap_sem); 2652 } 2653 #endif 2654 } 2655 2656 /* 2657 * this is really a simplified "do_mmap". it only handles 2658 * anonymous maps. eventually we may be able to do some 2659 * brk-specific accounting here. 2660 */ 2661 static int do_brk(unsigned long addr, unsigned long request) 2662 { 2663 struct mm_struct *mm = current->mm; 2664 struct vm_area_struct *vma, *prev; 2665 unsigned long flags, len; 2666 struct rb_node **rb_link, *rb_parent; 2667 pgoff_t pgoff = addr >> PAGE_SHIFT; 2668 int error; 2669 2670 len = PAGE_ALIGN(request); 2671 if (len < request) 2672 return -ENOMEM; 2673 if (!len) 2674 return 0; 2675 2676 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2677 2678 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2679 if (offset_in_page(error)) 2680 return error; 2681 2682 error = mlock_future_check(mm, mm->def_flags, len); 2683 if (error) 2684 return error; 2685 2686 /* 2687 * mm->mmap_sem is required to protect against another thread 2688 * changing the mappings in case we sleep. 2689 */ 2690 verify_mm_writelocked(mm); 2691 2692 /* 2693 * Clear old maps. this also does some error checking for us 2694 */ 2695 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2696 &rb_parent)) { 2697 if (do_munmap(mm, addr, len)) 2698 return -ENOMEM; 2699 } 2700 2701 /* Check against address space limits *after* clearing old maps... */ 2702 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2703 return -ENOMEM; 2704 2705 if (mm->map_count > sysctl_max_map_count) 2706 return -ENOMEM; 2707 2708 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2709 return -ENOMEM; 2710 2711 /* Can we just expand an old private anonymous mapping? */ 2712 vma = vma_merge(mm, prev, addr, addr + len, flags, 2713 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); 2714 if (vma) 2715 goto out; 2716 2717 /* 2718 * create a vma struct for an anonymous mapping 2719 */ 2720 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2721 if (!vma) { 2722 vm_unacct_memory(len >> PAGE_SHIFT); 2723 return -ENOMEM; 2724 } 2725 2726 INIT_LIST_HEAD(&vma->anon_vma_chain); 2727 vma->vm_mm = mm; 2728 vma->vm_start = addr; 2729 vma->vm_end = addr + len; 2730 vma->vm_pgoff = pgoff; 2731 vma->vm_flags = flags; 2732 vma->vm_page_prot = vm_get_page_prot(flags); 2733 vma_link(mm, vma, prev, rb_link, rb_parent); 2734 out: 2735 perf_event_mmap(vma); 2736 mm->total_vm += len >> PAGE_SHIFT; 2737 mm->data_vm += len >> PAGE_SHIFT; 2738 if (flags & VM_LOCKED) 2739 mm->locked_vm += (len >> PAGE_SHIFT); 2740 vma->vm_flags |= VM_SOFTDIRTY; 2741 return 0; 2742 } 2743 2744 int vm_brk(unsigned long addr, unsigned long len) 2745 { 2746 struct mm_struct *mm = current->mm; 2747 int ret; 2748 bool populate; 2749 2750 if (down_write_killable(&mm->mmap_sem)) 2751 return -EINTR; 2752 2753 ret = do_brk(addr, len); 2754 populate = ((mm->def_flags & VM_LOCKED) != 0); 2755 up_write(&mm->mmap_sem); 2756 if (populate && !ret) 2757 mm_populate(addr, len); 2758 return ret; 2759 } 2760 EXPORT_SYMBOL(vm_brk); 2761 2762 /* Release all mmaps. */ 2763 void exit_mmap(struct mm_struct *mm) 2764 { 2765 struct mmu_gather tlb; 2766 struct vm_area_struct *vma; 2767 unsigned long nr_accounted = 0; 2768 2769 /* mm's last user has gone, and its about to be pulled down */ 2770 mmu_notifier_release(mm); 2771 2772 if (mm->locked_vm) { 2773 vma = mm->mmap; 2774 while (vma) { 2775 if (vma->vm_flags & VM_LOCKED) 2776 munlock_vma_pages_all(vma); 2777 vma = vma->vm_next; 2778 } 2779 } 2780 2781 arch_exit_mmap(mm); 2782 2783 vma = mm->mmap; 2784 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2785 return; 2786 2787 lru_add_drain(); 2788 flush_cache_mm(mm); 2789 tlb_gather_mmu(&tlb, mm, 0, -1); 2790 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2791 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2792 unmap_vmas(&tlb, vma, 0, -1); 2793 2794 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2795 tlb_finish_mmu(&tlb, 0, -1); 2796 2797 /* 2798 * Walk the list again, actually closing and freeing it, 2799 * with preemption enabled, without holding any MM locks. 2800 */ 2801 while (vma) { 2802 if (vma->vm_flags & VM_ACCOUNT) 2803 nr_accounted += vma_pages(vma); 2804 vma = remove_vma(vma); 2805 } 2806 vm_unacct_memory(nr_accounted); 2807 } 2808 2809 /* Insert vm structure into process list sorted by address 2810 * and into the inode's i_mmap tree. If vm_file is non-NULL 2811 * then i_mmap_rwsem is taken here. 2812 */ 2813 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2814 { 2815 struct vm_area_struct *prev; 2816 struct rb_node **rb_link, *rb_parent; 2817 2818 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2819 &prev, &rb_link, &rb_parent)) 2820 return -ENOMEM; 2821 if ((vma->vm_flags & VM_ACCOUNT) && 2822 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2823 return -ENOMEM; 2824 2825 /* 2826 * The vm_pgoff of a purely anonymous vma should be irrelevant 2827 * until its first write fault, when page's anon_vma and index 2828 * are set. But now set the vm_pgoff it will almost certainly 2829 * end up with (unless mremap moves it elsewhere before that 2830 * first wfault), so /proc/pid/maps tells a consistent story. 2831 * 2832 * By setting it to reflect the virtual start address of the 2833 * vma, merges and splits can happen in a seamless way, just 2834 * using the existing file pgoff checks and manipulations. 2835 * Similarly in do_mmap_pgoff and in do_brk. 2836 */ 2837 if (vma_is_anonymous(vma)) { 2838 BUG_ON(vma->anon_vma); 2839 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2840 } 2841 2842 vma_link(mm, vma, prev, rb_link, rb_parent); 2843 return 0; 2844 } 2845 2846 /* 2847 * Copy the vma structure to a new location in the same mm, 2848 * prior to moving page table entries, to effect an mremap move. 2849 */ 2850 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2851 unsigned long addr, unsigned long len, pgoff_t pgoff, 2852 bool *need_rmap_locks) 2853 { 2854 struct vm_area_struct *vma = *vmap; 2855 unsigned long vma_start = vma->vm_start; 2856 struct mm_struct *mm = vma->vm_mm; 2857 struct vm_area_struct *new_vma, *prev; 2858 struct rb_node **rb_link, *rb_parent; 2859 bool faulted_in_anon_vma = true; 2860 2861 /* 2862 * If anonymous vma has not yet been faulted, update new pgoff 2863 * to match new location, to increase its chance of merging. 2864 */ 2865 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 2866 pgoff = addr >> PAGE_SHIFT; 2867 faulted_in_anon_vma = false; 2868 } 2869 2870 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2871 return NULL; /* should never get here */ 2872 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2873 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 2874 vma->vm_userfaultfd_ctx); 2875 if (new_vma) { 2876 /* 2877 * Source vma may have been merged into new_vma 2878 */ 2879 if (unlikely(vma_start >= new_vma->vm_start && 2880 vma_start < new_vma->vm_end)) { 2881 /* 2882 * The only way we can get a vma_merge with 2883 * self during an mremap is if the vma hasn't 2884 * been faulted in yet and we were allowed to 2885 * reset the dst vma->vm_pgoff to the 2886 * destination address of the mremap to allow 2887 * the merge to happen. mremap must change the 2888 * vm_pgoff linearity between src and dst vmas 2889 * (in turn preventing a vma_merge) to be 2890 * safe. It is only safe to keep the vm_pgoff 2891 * linear if there are no pages mapped yet. 2892 */ 2893 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2894 *vmap = vma = new_vma; 2895 } 2896 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2897 } else { 2898 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2899 if (!new_vma) 2900 goto out; 2901 *new_vma = *vma; 2902 new_vma->vm_start = addr; 2903 new_vma->vm_end = addr + len; 2904 new_vma->vm_pgoff = pgoff; 2905 if (vma_dup_policy(vma, new_vma)) 2906 goto out_free_vma; 2907 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2908 if (anon_vma_clone(new_vma, vma)) 2909 goto out_free_mempol; 2910 if (new_vma->vm_file) 2911 get_file(new_vma->vm_file); 2912 if (new_vma->vm_ops && new_vma->vm_ops->open) 2913 new_vma->vm_ops->open(new_vma); 2914 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2915 *need_rmap_locks = false; 2916 } 2917 return new_vma; 2918 2919 out_free_mempol: 2920 mpol_put(vma_policy(new_vma)); 2921 out_free_vma: 2922 kmem_cache_free(vm_area_cachep, new_vma); 2923 out: 2924 return NULL; 2925 } 2926 2927 /* 2928 * Return true if the calling process may expand its vm space by the passed 2929 * number of pages 2930 */ 2931 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 2932 { 2933 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 2934 return false; 2935 2936 if (is_data_mapping(flags) && 2937 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { 2938 /* Workaround for Valgrind */ 2939 if (rlimit(RLIMIT_DATA) == 0 && 2940 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) 2941 return true; 2942 if (!ignore_rlimit_data) { 2943 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n", 2944 current->comm, current->pid, 2945 (mm->data_vm + npages) << PAGE_SHIFT, 2946 rlimit(RLIMIT_DATA)); 2947 return false; 2948 } 2949 } 2950 2951 return true; 2952 } 2953 2954 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) 2955 { 2956 mm->total_vm += npages; 2957 2958 if (is_exec_mapping(flags)) 2959 mm->exec_vm += npages; 2960 else if (is_stack_mapping(flags)) 2961 mm->stack_vm += npages; 2962 else if (is_data_mapping(flags)) 2963 mm->data_vm += npages; 2964 } 2965 2966 static int special_mapping_fault(struct vm_area_struct *vma, 2967 struct vm_fault *vmf); 2968 2969 /* 2970 * Having a close hook prevents vma merging regardless of flags. 2971 */ 2972 static void special_mapping_close(struct vm_area_struct *vma) 2973 { 2974 } 2975 2976 static const char *special_mapping_name(struct vm_area_struct *vma) 2977 { 2978 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2979 } 2980 2981 static int special_mapping_mremap(struct vm_area_struct *new_vma) 2982 { 2983 struct vm_special_mapping *sm = new_vma->vm_private_data; 2984 2985 if (sm->mremap) 2986 return sm->mremap(sm, new_vma); 2987 return 0; 2988 } 2989 2990 static const struct vm_operations_struct special_mapping_vmops = { 2991 .close = special_mapping_close, 2992 .fault = special_mapping_fault, 2993 .mremap = special_mapping_mremap, 2994 .name = special_mapping_name, 2995 }; 2996 2997 static const struct vm_operations_struct legacy_special_mapping_vmops = { 2998 .close = special_mapping_close, 2999 .fault = special_mapping_fault, 3000 }; 3001 3002 static int special_mapping_fault(struct vm_area_struct *vma, 3003 struct vm_fault *vmf) 3004 { 3005 pgoff_t pgoff; 3006 struct page **pages; 3007 3008 if (vma->vm_ops == &legacy_special_mapping_vmops) { 3009 pages = vma->vm_private_data; 3010 } else { 3011 struct vm_special_mapping *sm = vma->vm_private_data; 3012 3013 if (sm->fault) 3014 return sm->fault(sm, vma, vmf); 3015 3016 pages = sm->pages; 3017 } 3018 3019 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) 3020 pgoff--; 3021 3022 if (*pages) { 3023 struct page *page = *pages; 3024 get_page(page); 3025 vmf->page = page; 3026 return 0; 3027 } 3028 3029 return VM_FAULT_SIGBUS; 3030 } 3031 3032 static struct vm_area_struct *__install_special_mapping( 3033 struct mm_struct *mm, 3034 unsigned long addr, unsigned long len, 3035 unsigned long vm_flags, void *priv, 3036 const struct vm_operations_struct *ops) 3037 { 3038 int ret; 3039 struct vm_area_struct *vma; 3040 3041 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3042 if (unlikely(vma == NULL)) 3043 return ERR_PTR(-ENOMEM); 3044 3045 INIT_LIST_HEAD(&vma->anon_vma_chain); 3046 vma->vm_mm = mm; 3047 vma->vm_start = addr; 3048 vma->vm_end = addr + len; 3049 3050 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3051 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3052 3053 vma->vm_ops = ops; 3054 vma->vm_private_data = priv; 3055 3056 ret = insert_vm_struct(mm, vma); 3057 if (ret) 3058 goto out; 3059 3060 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); 3061 3062 perf_event_mmap(vma); 3063 3064 return vma; 3065 3066 out: 3067 kmem_cache_free(vm_area_cachep, vma); 3068 return ERR_PTR(ret); 3069 } 3070 3071 bool vma_is_special_mapping(const struct vm_area_struct *vma, 3072 const struct vm_special_mapping *sm) 3073 { 3074 return vma->vm_private_data == sm && 3075 (vma->vm_ops == &special_mapping_vmops || 3076 vma->vm_ops == &legacy_special_mapping_vmops); 3077 } 3078 3079 /* 3080 * Called with mm->mmap_sem held for writing. 3081 * Insert a new vma covering the given region, with the given flags. 3082 * Its pages are supplied by the given array of struct page *. 3083 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3084 * The region past the last page supplied will always produce SIGBUS. 3085 * The array pointer and the pages it points to are assumed to stay alive 3086 * for as long as this mapping might exist. 3087 */ 3088 struct vm_area_struct *_install_special_mapping( 3089 struct mm_struct *mm, 3090 unsigned long addr, unsigned long len, 3091 unsigned long vm_flags, const struct vm_special_mapping *spec) 3092 { 3093 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, 3094 &special_mapping_vmops); 3095 } 3096 3097 int install_special_mapping(struct mm_struct *mm, 3098 unsigned long addr, unsigned long len, 3099 unsigned long vm_flags, struct page **pages) 3100 { 3101 struct vm_area_struct *vma = __install_special_mapping( 3102 mm, addr, len, vm_flags, (void *)pages, 3103 &legacy_special_mapping_vmops); 3104 3105 return PTR_ERR_OR_ZERO(vma); 3106 } 3107 3108 static DEFINE_MUTEX(mm_all_locks_mutex); 3109 3110 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3111 { 3112 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3113 /* 3114 * The LSB of head.next can't change from under us 3115 * because we hold the mm_all_locks_mutex. 3116 */ 3117 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3118 /* 3119 * We can safely modify head.next after taking the 3120 * anon_vma->root->rwsem. If some other vma in this mm shares 3121 * the same anon_vma we won't take it again. 3122 * 3123 * No need of atomic instructions here, head.next 3124 * can't change from under us thanks to the 3125 * anon_vma->root->rwsem. 3126 */ 3127 if (__test_and_set_bit(0, (unsigned long *) 3128 &anon_vma->root->rb_root.rb_node)) 3129 BUG(); 3130 } 3131 } 3132 3133 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3134 { 3135 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3136 /* 3137 * AS_MM_ALL_LOCKS can't change from under us because 3138 * we hold the mm_all_locks_mutex. 3139 * 3140 * Operations on ->flags have to be atomic because 3141 * even if AS_MM_ALL_LOCKS is stable thanks to the 3142 * mm_all_locks_mutex, there may be other cpus 3143 * changing other bitflags in parallel to us. 3144 */ 3145 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3146 BUG(); 3147 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3148 } 3149 } 3150 3151 /* 3152 * This operation locks against the VM for all pte/vma/mm related 3153 * operations that could ever happen on a certain mm. This includes 3154 * vmtruncate, try_to_unmap, and all page faults. 3155 * 3156 * The caller must take the mmap_sem in write mode before calling 3157 * mm_take_all_locks(). The caller isn't allowed to release the 3158 * mmap_sem until mm_drop_all_locks() returns. 3159 * 3160 * mmap_sem in write mode is required in order to block all operations 3161 * that could modify pagetables and free pages without need of 3162 * altering the vma layout. It's also needed in write mode to avoid new 3163 * anon_vmas to be associated with existing vmas. 3164 * 3165 * A single task can't take more than one mm_take_all_locks() in a row 3166 * or it would deadlock. 3167 * 3168 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3169 * mapping->flags avoid to take the same lock twice, if more than one 3170 * vma in this mm is backed by the same anon_vma or address_space. 3171 * 3172 * We take locks in following order, accordingly to comment at beginning 3173 * of mm/rmap.c: 3174 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3175 * hugetlb mapping); 3176 * - all i_mmap_rwsem locks; 3177 * - all anon_vma->rwseml 3178 * 3179 * We can take all locks within these types randomly because the VM code 3180 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3181 * mm_all_locks_mutex. 3182 * 3183 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3184 * that may have to take thousand of locks. 3185 * 3186 * mm_take_all_locks() can fail if it's interrupted by signals. 3187 */ 3188 int mm_take_all_locks(struct mm_struct *mm) 3189 { 3190 struct vm_area_struct *vma; 3191 struct anon_vma_chain *avc; 3192 3193 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3194 3195 mutex_lock(&mm_all_locks_mutex); 3196 3197 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3198 if (signal_pending(current)) 3199 goto out_unlock; 3200 if (vma->vm_file && vma->vm_file->f_mapping && 3201 is_vm_hugetlb_page(vma)) 3202 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3203 } 3204 3205 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3206 if (signal_pending(current)) 3207 goto out_unlock; 3208 if (vma->vm_file && vma->vm_file->f_mapping && 3209 !is_vm_hugetlb_page(vma)) 3210 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3211 } 3212 3213 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3214 if (signal_pending(current)) 3215 goto out_unlock; 3216 if (vma->anon_vma) 3217 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3218 vm_lock_anon_vma(mm, avc->anon_vma); 3219 } 3220 3221 return 0; 3222 3223 out_unlock: 3224 mm_drop_all_locks(mm); 3225 return -EINTR; 3226 } 3227 3228 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3229 { 3230 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3231 /* 3232 * The LSB of head.next can't change to 0 from under 3233 * us because we hold the mm_all_locks_mutex. 3234 * 3235 * We must however clear the bitflag before unlocking 3236 * the vma so the users using the anon_vma->rb_root will 3237 * never see our bitflag. 3238 * 3239 * No need of atomic instructions here, head.next 3240 * can't change from under us until we release the 3241 * anon_vma->root->rwsem. 3242 */ 3243 if (!__test_and_clear_bit(0, (unsigned long *) 3244 &anon_vma->root->rb_root.rb_node)) 3245 BUG(); 3246 anon_vma_unlock_write(anon_vma); 3247 } 3248 } 3249 3250 static void vm_unlock_mapping(struct address_space *mapping) 3251 { 3252 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3253 /* 3254 * AS_MM_ALL_LOCKS can't change to 0 from under us 3255 * because we hold the mm_all_locks_mutex. 3256 */ 3257 i_mmap_unlock_write(mapping); 3258 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3259 &mapping->flags)) 3260 BUG(); 3261 } 3262 } 3263 3264 /* 3265 * The mmap_sem cannot be released by the caller until 3266 * mm_drop_all_locks() returns. 3267 */ 3268 void mm_drop_all_locks(struct mm_struct *mm) 3269 { 3270 struct vm_area_struct *vma; 3271 struct anon_vma_chain *avc; 3272 3273 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3274 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3275 3276 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3277 if (vma->anon_vma) 3278 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3279 vm_unlock_anon_vma(avc->anon_vma); 3280 if (vma->vm_file && vma->vm_file->f_mapping) 3281 vm_unlock_mapping(vma->vm_file->f_mapping); 3282 } 3283 3284 mutex_unlock(&mm_all_locks_mutex); 3285 } 3286 3287 /* 3288 * initialise the VMA slab 3289 */ 3290 void __init mmap_init(void) 3291 { 3292 int ret; 3293 3294 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3295 VM_BUG_ON(ret); 3296 } 3297 3298 /* 3299 * Initialise sysctl_user_reserve_kbytes. 3300 * 3301 * This is intended to prevent a user from starting a single memory hogging 3302 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3303 * mode. 3304 * 3305 * The default value is min(3% of free memory, 128MB) 3306 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3307 */ 3308 static int init_user_reserve(void) 3309 { 3310 unsigned long free_kbytes; 3311 3312 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3313 3314 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3315 return 0; 3316 } 3317 subsys_initcall(init_user_reserve); 3318 3319 /* 3320 * Initialise sysctl_admin_reserve_kbytes. 3321 * 3322 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3323 * to log in and kill a memory hogging process. 3324 * 3325 * Systems with more than 256MB will reserve 8MB, enough to recover 3326 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3327 * only reserve 3% of free pages by default. 3328 */ 3329 static int init_admin_reserve(void) 3330 { 3331 unsigned long free_kbytes; 3332 3333 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3334 3335 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3336 return 0; 3337 } 3338 subsys_initcall(init_admin_reserve); 3339 3340 /* 3341 * Reinititalise user and admin reserves if memory is added or removed. 3342 * 3343 * The default user reserve max is 128MB, and the default max for the 3344 * admin reserve is 8MB. These are usually, but not always, enough to 3345 * enable recovery from a memory hogging process using login/sshd, a shell, 3346 * and tools like top. It may make sense to increase or even disable the 3347 * reserve depending on the existence of swap or variations in the recovery 3348 * tools. So, the admin may have changed them. 3349 * 3350 * If memory is added and the reserves have been eliminated or increased above 3351 * the default max, then we'll trust the admin. 3352 * 3353 * If memory is removed and there isn't enough free memory, then we 3354 * need to reset the reserves. 3355 * 3356 * Otherwise keep the reserve set by the admin. 3357 */ 3358 static int reserve_mem_notifier(struct notifier_block *nb, 3359 unsigned long action, void *data) 3360 { 3361 unsigned long tmp, free_kbytes; 3362 3363 switch (action) { 3364 case MEM_ONLINE: 3365 /* Default max is 128MB. Leave alone if modified by operator. */ 3366 tmp = sysctl_user_reserve_kbytes; 3367 if (0 < tmp && tmp < (1UL << 17)) 3368 init_user_reserve(); 3369 3370 /* Default max is 8MB. Leave alone if modified by operator. */ 3371 tmp = sysctl_admin_reserve_kbytes; 3372 if (0 < tmp && tmp < (1UL << 13)) 3373 init_admin_reserve(); 3374 3375 break; 3376 case MEM_OFFLINE: 3377 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3378 3379 if (sysctl_user_reserve_kbytes > free_kbytes) { 3380 init_user_reserve(); 3381 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3382 sysctl_user_reserve_kbytes); 3383 } 3384 3385 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3386 init_admin_reserve(); 3387 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3388 sysctl_admin_reserve_kbytes); 3389 } 3390 break; 3391 default: 3392 break; 3393 } 3394 return NOTIFY_OK; 3395 } 3396 3397 static struct notifier_block reserve_mem_nb = { 3398 .notifier_call = reserve_mem_notifier, 3399 }; 3400 3401 static int __meminit init_reserve_notifier(void) 3402 { 3403 if (register_hotmemory_notifier(&reserve_mem_nb)) 3404 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3405 3406 return 0; 3407 } 3408 subsys_initcall(init_reserve_notifier); 3409