xref: /linux/mm/mmap.c (revision 59024954a1e7e26b62680e1f2b5725249a6c09f7)
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52 
53 #include "internal.h"
54 
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)	(0)
57 #endif
58 
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69 
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72 
73 static void unmap_region(struct mm_struct *mm,
74 		struct vm_area_struct *vma, struct vm_area_struct *prev,
75 		unsigned long start, unsigned long end);
76 
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type	prot
82  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
83  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
84  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
85  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
86  *
87  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
88  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
89  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
90  *
91  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92  * MAP_PRIVATE:
93  *								r: (no) no
94  *								w: (no) no
95  *								x: (yes) yes
96  */
97 pgprot_t protection_map[16] = {
98 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101 
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104 	return __pgprot(pgprot_val(protection_map[vm_flags &
105 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109 
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114 
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118 	unsigned long vm_flags = vma->vm_flags;
119 
120 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
121 	if (vma_wants_writenotify(vma)) {
122 		vm_flags &= ~VM_SHARED;
123 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
124 						     vm_flags);
125 	}
126 }
127 
128 /*
129  * Requires inode->i_mapping->i_mmap_rwsem
130  */
131 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
132 		struct file *file, struct address_space *mapping)
133 {
134 	if (vma->vm_flags & VM_DENYWRITE)
135 		atomic_inc(&file_inode(file)->i_writecount);
136 	if (vma->vm_flags & VM_SHARED)
137 		mapping_unmap_writable(mapping);
138 
139 	flush_dcache_mmap_lock(mapping);
140 	vma_interval_tree_remove(vma, &mapping->i_mmap);
141 	flush_dcache_mmap_unlock(mapping);
142 }
143 
144 /*
145  * Unlink a file-based vm structure from its interval tree, to hide
146  * vma from rmap and vmtruncate before freeing its page tables.
147  */
148 void unlink_file_vma(struct vm_area_struct *vma)
149 {
150 	struct file *file = vma->vm_file;
151 
152 	if (file) {
153 		struct address_space *mapping = file->f_mapping;
154 		i_mmap_lock_write(mapping);
155 		__remove_shared_vm_struct(vma, file, mapping);
156 		i_mmap_unlock_write(mapping);
157 	}
158 }
159 
160 /*
161  * Close a vm structure and free it, returning the next.
162  */
163 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
164 {
165 	struct vm_area_struct *next = vma->vm_next;
166 
167 	might_sleep();
168 	if (vma->vm_ops && vma->vm_ops->close)
169 		vma->vm_ops->close(vma);
170 	if (vma->vm_file)
171 		fput(vma->vm_file);
172 	mpol_put(vma_policy(vma));
173 	kmem_cache_free(vm_area_cachep, vma);
174 	return next;
175 }
176 
177 static int do_brk(unsigned long addr, unsigned long len);
178 
179 SYSCALL_DEFINE1(brk, unsigned long, brk)
180 {
181 	unsigned long retval;
182 	unsigned long newbrk, oldbrk;
183 	struct mm_struct *mm = current->mm;
184 	unsigned long min_brk;
185 	bool populate;
186 
187 	if (down_write_killable(&mm->mmap_sem))
188 		return -EINTR;
189 
190 #ifdef CONFIG_COMPAT_BRK
191 	/*
192 	 * CONFIG_COMPAT_BRK can still be overridden by setting
193 	 * randomize_va_space to 2, which will still cause mm->start_brk
194 	 * to be arbitrarily shifted
195 	 */
196 	if (current->brk_randomized)
197 		min_brk = mm->start_brk;
198 	else
199 		min_brk = mm->end_data;
200 #else
201 	min_brk = mm->start_brk;
202 #endif
203 	if (brk < min_brk)
204 		goto out;
205 
206 	/*
207 	 * Check against rlimit here. If this check is done later after the test
208 	 * of oldbrk with newbrk then it can escape the test and let the data
209 	 * segment grow beyond its set limit the in case where the limit is
210 	 * not page aligned -Ram Gupta
211 	 */
212 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
213 			      mm->end_data, mm->start_data))
214 		goto out;
215 
216 	newbrk = PAGE_ALIGN(brk);
217 	oldbrk = PAGE_ALIGN(mm->brk);
218 	if (oldbrk == newbrk)
219 		goto set_brk;
220 
221 	/* Always allow shrinking brk. */
222 	if (brk <= mm->brk) {
223 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
224 			goto set_brk;
225 		goto out;
226 	}
227 
228 	/* Check against existing mmap mappings. */
229 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
230 		goto out;
231 
232 	/* Ok, looks good - let it rip. */
233 	if (do_brk(oldbrk, newbrk-oldbrk) < 0)
234 		goto out;
235 
236 set_brk:
237 	mm->brk = brk;
238 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
239 	up_write(&mm->mmap_sem);
240 	if (populate)
241 		mm_populate(oldbrk, newbrk - oldbrk);
242 	return brk;
243 
244 out:
245 	retval = mm->brk;
246 	up_write(&mm->mmap_sem);
247 	return retval;
248 }
249 
250 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
251 {
252 	unsigned long max, subtree_gap;
253 	max = vma->vm_start;
254 	if (vma->vm_prev)
255 		max -= vma->vm_prev->vm_end;
256 	if (vma->vm_rb.rb_left) {
257 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
258 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
259 		if (subtree_gap > max)
260 			max = subtree_gap;
261 	}
262 	if (vma->vm_rb.rb_right) {
263 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
264 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
265 		if (subtree_gap > max)
266 			max = subtree_gap;
267 	}
268 	return max;
269 }
270 
271 #ifdef CONFIG_DEBUG_VM_RB
272 static int browse_rb(struct mm_struct *mm)
273 {
274 	struct rb_root *root = &mm->mm_rb;
275 	int i = 0, j, bug = 0;
276 	struct rb_node *nd, *pn = NULL;
277 	unsigned long prev = 0, pend = 0;
278 
279 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
280 		struct vm_area_struct *vma;
281 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
282 		if (vma->vm_start < prev) {
283 			pr_emerg("vm_start %lx < prev %lx\n",
284 				  vma->vm_start, prev);
285 			bug = 1;
286 		}
287 		if (vma->vm_start < pend) {
288 			pr_emerg("vm_start %lx < pend %lx\n",
289 				  vma->vm_start, pend);
290 			bug = 1;
291 		}
292 		if (vma->vm_start > vma->vm_end) {
293 			pr_emerg("vm_start %lx > vm_end %lx\n",
294 				  vma->vm_start, vma->vm_end);
295 			bug = 1;
296 		}
297 		spin_lock(&mm->page_table_lock);
298 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
299 			pr_emerg("free gap %lx, correct %lx\n",
300 			       vma->rb_subtree_gap,
301 			       vma_compute_subtree_gap(vma));
302 			bug = 1;
303 		}
304 		spin_unlock(&mm->page_table_lock);
305 		i++;
306 		pn = nd;
307 		prev = vma->vm_start;
308 		pend = vma->vm_end;
309 	}
310 	j = 0;
311 	for (nd = pn; nd; nd = rb_prev(nd))
312 		j++;
313 	if (i != j) {
314 		pr_emerg("backwards %d, forwards %d\n", j, i);
315 		bug = 1;
316 	}
317 	return bug ? -1 : i;
318 }
319 
320 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
321 {
322 	struct rb_node *nd;
323 
324 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
325 		struct vm_area_struct *vma;
326 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
327 		VM_BUG_ON_VMA(vma != ignore &&
328 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
329 			vma);
330 	}
331 }
332 
333 static void validate_mm(struct mm_struct *mm)
334 {
335 	int bug = 0;
336 	int i = 0;
337 	unsigned long highest_address = 0;
338 	struct vm_area_struct *vma = mm->mmap;
339 
340 	while (vma) {
341 		struct anon_vma *anon_vma = vma->anon_vma;
342 		struct anon_vma_chain *avc;
343 
344 		if (anon_vma) {
345 			anon_vma_lock_read(anon_vma);
346 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
347 				anon_vma_interval_tree_verify(avc);
348 			anon_vma_unlock_read(anon_vma);
349 		}
350 
351 		highest_address = vma->vm_end;
352 		vma = vma->vm_next;
353 		i++;
354 	}
355 	if (i != mm->map_count) {
356 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
357 		bug = 1;
358 	}
359 	if (highest_address != mm->highest_vm_end) {
360 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
361 			  mm->highest_vm_end, highest_address);
362 		bug = 1;
363 	}
364 	i = browse_rb(mm);
365 	if (i != mm->map_count) {
366 		if (i != -1)
367 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
368 		bug = 1;
369 	}
370 	VM_BUG_ON_MM(bug, mm);
371 }
372 #else
373 #define validate_mm_rb(root, ignore) do { } while (0)
374 #define validate_mm(mm) do { } while (0)
375 #endif
376 
377 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
378 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
379 
380 /*
381  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
382  * vma->vm_prev->vm_end values changed, without modifying the vma's position
383  * in the rbtree.
384  */
385 static void vma_gap_update(struct vm_area_struct *vma)
386 {
387 	/*
388 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
389 	 * function that does exacltly what we want.
390 	 */
391 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
392 }
393 
394 static inline void vma_rb_insert(struct vm_area_struct *vma,
395 				 struct rb_root *root)
396 {
397 	/* All rb_subtree_gap values must be consistent prior to insertion */
398 	validate_mm_rb(root, NULL);
399 
400 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
401 }
402 
403 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
404 {
405 	/*
406 	 * All rb_subtree_gap values must be consistent prior to erase,
407 	 * with the possible exception of the vma being erased.
408 	 */
409 	validate_mm_rb(root, vma);
410 
411 	/*
412 	 * Note rb_erase_augmented is a fairly large inline function,
413 	 * so make sure we instantiate it only once with our desired
414 	 * augmented rbtree callbacks.
415 	 */
416 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
417 }
418 
419 /*
420  * vma has some anon_vma assigned, and is already inserted on that
421  * anon_vma's interval trees.
422  *
423  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
424  * vma must be removed from the anon_vma's interval trees using
425  * anon_vma_interval_tree_pre_update_vma().
426  *
427  * After the update, the vma will be reinserted using
428  * anon_vma_interval_tree_post_update_vma().
429  *
430  * The entire update must be protected by exclusive mmap_sem and by
431  * the root anon_vma's mutex.
432  */
433 static inline void
434 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
435 {
436 	struct anon_vma_chain *avc;
437 
438 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
439 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
440 }
441 
442 static inline void
443 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
444 {
445 	struct anon_vma_chain *avc;
446 
447 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
448 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
449 }
450 
451 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
452 		unsigned long end, struct vm_area_struct **pprev,
453 		struct rb_node ***rb_link, struct rb_node **rb_parent)
454 {
455 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
456 
457 	__rb_link = &mm->mm_rb.rb_node;
458 	rb_prev = __rb_parent = NULL;
459 
460 	while (*__rb_link) {
461 		struct vm_area_struct *vma_tmp;
462 
463 		__rb_parent = *__rb_link;
464 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
465 
466 		if (vma_tmp->vm_end > addr) {
467 			/* Fail if an existing vma overlaps the area */
468 			if (vma_tmp->vm_start < end)
469 				return -ENOMEM;
470 			__rb_link = &__rb_parent->rb_left;
471 		} else {
472 			rb_prev = __rb_parent;
473 			__rb_link = &__rb_parent->rb_right;
474 		}
475 	}
476 
477 	*pprev = NULL;
478 	if (rb_prev)
479 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
480 	*rb_link = __rb_link;
481 	*rb_parent = __rb_parent;
482 	return 0;
483 }
484 
485 static unsigned long count_vma_pages_range(struct mm_struct *mm,
486 		unsigned long addr, unsigned long end)
487 {
488 	unsigned long nr_pages = 0;
489 	struct vm_area_struct *vma;
490 
491 	/* Find first overlaping mapping */
492 	vma = find_vma_intersection(mm, addr, end);
493 	if (!vma)
494 		return 0;
495 
496 	nr_pages = (min(end, vma->vm_end) -
497 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
498 
499 	/* Iterate over the rest of the overlaps */
500 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
501 		unsigned long overlap_len;
502 
503 		if (vma->vm_start > end)
504 			break;
505 
506 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
507 		nr_pages += overlap_len >> PAGE_SHIFT;
508 	}
509 
510 	return nr_pages;
511 }
512 
513 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
514 		struct rb_node **rb_link, struct rb_node *rb_parent)
515 {
516 	/* Update tracking information for the gap following the new vma. */
517 	if (vma->vm_next)
518 		vma_gap_update(vma->vm_next);
519 	else
520 		mm->highest_vm_end = vma->vm_end;
521 
522 	/*
523 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
524 	 * correct insertion point for that vma. As a result, we could not
525 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
526 	 * So, we first insert the vma with a zero rb_subtree_gap value
527 	 * (to be consistent with what we did on the way down), and then
528 	 * immediately update the gap to the correct value. Finally we
529 	 * rebalance the rbtree after all augmented values have been set.
530 	 */
531 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
532 	vma->rb_subtree_gap = 0;
533 	vma_gap_update(vma);
534 	vma_rb_insert(vma, &mm->mm_rb);
535 }
536 
537 static void __vma_link_file(struct vm_area_struct *vma)
538 {
539 	struct file *file;
540 
541 	file = vma->vm_file;
542 	if (file) {
543 		struct address_space *mapping = file->f_mapping;
544 
545 		if (vma->vm_flags & VM_DENYWRITE)
546 			atomic_dec(&file_inode(file)->i_writecount);
547 		if (vma->vm_flags & VM_SHARED)
548 			atomic_inc(&mapping->i_mmap_writable);
549 
550 		flush_dcache_mmap_lock(mapping);
551 		vma_interval_tree_insert(vma, &mapping->i_mmap);
552 		flush_dcache_mmap_unlock(mapping);
553 	}
554 }
555 
556 static void
557 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
558 	struct vm_area_struct *prev, struct rb_node **rb_link,
559 	struct rb_node *rb_parent)
560 {
561 	__vma_link_list(mm, vma, prev, rb_parent);
562 	__vma_link_rb(mm, vma, rb_link, rb_parent);
563 }
564 
565 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
566 			struct vm_area_struct *prev, struct rb_node **rb_link,
567 			struct rb_node *rb_parent)
568 {
569 	struct address_space *mapping = NULL;
570 
571 	if (vma->vm_file) {
572 		mapping = vma->vm_file->f_mapping;
573 		i_mmap_lock_write(mapping);
574 	}
575 
576 	__vma_link(mm, vma, prev, rb_link, rb_parent);
577 	__vma_link_file(vma);
578 
579 	if (mapping)
580 		i_mmap_unlock_write(mapping);
581 
582 	mm->map_count++;
583 	validate_mm(mm);
584 }
585 
586 /*
587  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
588  * mm's list and rbtree.  It has already been inserted into the interval tree.
589  */
590 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
591 {
592 	struct vm_area_struct *prev;
593 	struct rb_node **rb_link, *rb_parent;
594 
595 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
596 			   &prev, &rb_link, &rb_parent))
597 		BUG();
598 	__vma_link(mm, vma, prev, rb_link, rb_parent);
599 	mm->map_count++;
600 }
601 
602 static inline void
603 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
604 		struct vm_area_struct *prev)
605 {
606 	struct vm_area_struct *next;
607 
608 	vma_rb_erase(vma, &mm->mm_rb);
609 	prev->vm_next = next = vma->vm_next;
610 	if (next)
611 		next->vm_prev = prev;
612 
613 	/* Kill the cache */
614 	vmacache_invalidate(mm);
615 }
616 
617 /*
618  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
619  * is already present in an i_mmap tree without adjusting the tree.
620  * The following helper function should be used when such adjustments
621  * are necessary.  The "insert" vma (if any) is to be inserted
622  * before we drop the necessary locks.
623  */
624 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
625 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
626 {
627 	struct mm_struct *mm = vma->vm_mm;
628 	struct vm_area_struct *next = vma->vm_next;
629 	struct address_space *mapping = NULL;
630 	struct rb_root *root = NULL;
631 	struct anon_vma *anon_vma = NULL;
632 	struct file *file = vma->vm_file;
633 	bool start_changed = false, end_changed = false;
634 	long adjust_next = 0;
635 	int remove_next = 0;
636 
637 	if (next && !insert) {
638 		struct vm_area_struct *exporter = NULL, *importer = NULL;
639 
640 		if (end >= next->vm_end) {
641 			/*
642 			 * vma expands, overlapping all the next, and
643 			 * perhaps the one after too (mprotect case 6).
644 			 */
645 			remove_next = 1 + (end > next->vm_end);
646 			end = next->vm_end;
647 			exporter = next;
648 			importer = vma;
649 
650 			/*
651 			 * If next doesn't have anon_vma, import from vma after
652 			 * next, if the vma overlaps with it.
653 			 */
654 			if (remove_next == 2 && next && !next->anon_vma)
655 				exporter = next->vm_next;
656 
657 		} else if (end > next->vm_start) {
658 			/*
659 			 * vma expands, overlapping part of the next:
660 			 * mprotect case 5 shifting the boundary up.
661 			 */
662 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
663 			exporter = next;
664 			importer = vma;
665 		} else if (end < vma->vm_end) {
666 			/*
667 			 * vma shrinks, and !insert tells it's not
668 			 * split_vma inserting another: so it must be
669 			 * mprotect case 4 shifting the boundary down.
670 			 */
671 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
672 			exporter = vma;
673 			importer = next;
674 		}
675 
676 		/*
677 		 * Easily overlooked: when mprotect shifts the boundary,
678 		 * make sure the expanding vma has anon_vma set if the
679 		 * shrinking vma had, to cover any anon pages imported.
680 		 */
681 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
682 			int error;
683 
684 			importer->anon_vma = exporter->anon_vma;
685 			error = anon_vma_clone(importer, exporter);
686 			if (error)
687 				return error;
688 		}
689 	}
690 again:
691 	vma_adjust_trans_huge(vma, start, end, adjust_next);
692 
693 	if (file) {
694 		mapping = file->f_mapping;
695 		root = &mapping->i_mmap;
696 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
697 
698 		if (adjust_next)
699 			uprobe_munmap(next, next->vm_start, next->vm_end);
700 
701 		i_mmap_lock_write(mapping);
702 		if (insert) {
703 			/*
704 			 * Put into interval tree now, so instantiated pages
705 			 * are visible to arm/parisc __flush_dcache_page
706 			 * throughout; but we cannot insert into address
707 			 * space until vma start or end is updated.
708 			 */
709 			__vma_link_file(insert);
710 		}
711 	}
712 
713 	anon_vma = vma->anon_vma;
714 	if (!anon_vma && adjust_next)
715 		anon_vma = next->anon_vma;
716 	if (anon_vma) {
717 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
718 			  anon_vma != next->anon_vma, next);
719 		anon_vma_lock_write(anon_vma);
720 		anon_vma_interval_tree_pre_update_vma(vma);
721 		if (adjust_next)
722 			anon_vma_interval_tree_pre_update_vma(next);
723 	}
724 
725 	if (root) {
726 		flush_dcache_mmap_lock(mapping);
727 		vma_interval_tree_remove(vma, root);
728 		if (adjust_next)
729 			vma_interval_tree_remove(next, root);
730 	}
731 
732 	if (start != vma->vm_start) {
733 		vma->vm_start = start;
734 		start_changed = true;
735 	}
736 	if (end != vma->vm_end) {
737 		vma->vm_end = end;
738 		end_changed = true;
739 	}
740 	vma->vm_pgoff = pgoff;
741 	if (adjust_next) {
742 		next->vm_start += adjust_next << PAGE_SHIFT;
743 		next->vm_pgoff += adjust_next;
744 	}
745 
746 	if (root) {
747 		if (adjust_next)
748 			vma_interval_tree_insert(next, root);
749 		vma_interval_tree_insert(vma, root);
750 		flush_dcache_mmap_unlock(mapping);
751 	}
752 
753 	if (remove_next) {
754 		/*
755 		 * vma_merge has merged next into vma, and needs
756 		 * us to remove next before dropping the locks.
757 		 */
758 		__vma_unlink(mm, next, vma);
759 		if (file)
760 			__remove_shared_vm_struct(next, file, mapping);
761 	} else if (insert) {
762 		/*
763 		 * split_vma has split insert from vma, and needs
764 		 * us to insert it before dropping the locks
765 		 * (it may either follow vma or precede it).
766 		 */
767 		__insert_vm_struct(mm, insert);
768 	} else {
769 		if (start_changed)
770 			vma_gap_update(vma);
771 		if (end_changed) {
772 			if (!next)
773 				mm->highest_vm_end = end;
774 			else if (!adjust_next)
775 				vma_gap_update(next);
776 		}
777 	}
778 
779 	if (anon_vma) {
780 		anon_vma_interval_tree_post_update_vma(vma);
781 		if (adjust_next)
782 			anon_vma_interval_tree_post_update_vma(next);
783 		anon_vma_unlock_write(anon_vma);
784 	}
785 	if (mapping)
786 		i_mmap_unlock_write(mapping);
787 
788 	if (root) {
789 		uprobe_mmap(vma);
790 
791 		if (adjust_next)
792 			uprobe_mmap(next);
793 	}
794 
795 	if (remove_next) {
796 		if (file) {
797 			uprobe_munmap(next, next->vm_start, next->vm_end);
798 			fput(file);
799 		}
800 		if (next->anon_vma)
801 			anon_vma_merge(vma, next);
802 		mm->map_count--;
803 		mpol_put(vma_policy(next));
804 		kmem_cache_free(vm_area_cachep, next);
805 		/*
806 		 * In mprotect's case 6 (see comments on vma_merge),
807 		 * we must remove another next too. It would clutter
808 		 * up the code too much to do both in one go.
809 		 */
810 		next = vma->vm_next;
811 		if (remove_next == 2) {
812 			remove_next = 1;
813 			end = next->vm_end;
814 			goto again;
815 		}
816 		else if (next)
817 			vma_gap_update(next);
818 		else
819 			mm->highest_vm_end = end;
820 	}
821 	if (insert && file)
822 		uprobe_mmap(insert);
823 
824 	validate_mm(mm);
825 
826 	return 0;
827 }
828 
829 /*
830  * If the vma has a ->close operation then the driver probably needs to release
831  * per-vma resources, so we don't attempt to merge those.
832  */
833 static inline int is_mergeable_vma(struct vm_area_struct *vma,
834 				struct file *file, unsigned long vm_flags,
835 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
836 {
837 	/*
838 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
839 	 * match the flags but dirty bit -- the caller should mark
840 	 * merged VMA as dirty. If dirty bit won't be excluded from
841 	 * comparison, we increase pressue on the memory system forcing
842 	 * the kernel to generate new VMAs when old one could be
843 	 * extended instead.
844 	 */
845 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
846 		return 0;
847 	if (vma->vm_file != file)
848 		return 0;
849 	if (vma->vm_ops && vma->vm_ops->close)
850 		return 0;
851 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
852 		return 0;
853 	return 1;
854 }
855 
856 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
857 					struct anon_vma *anon_vma2,
858 					struct vm_area_struct *vma)
859 {
860 	/*
861 	 * The list_is_singular() test is to avoid merging VMA cloned from
862 	 * parents. This can improve scalability caused by anon_vma lock.
863 	 */
864 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
865 		list_is_singular(&vma->anon_vma_chain)))
866 		return 1;
867 	return anon_vma1 == anon_vma2;
868 }
869 
870 /*
871  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
872  * in front of (at a lower virtual address and file offset than) the vma.
873  *
874  * We cannot merge two vmas if they have differently assigned (non-NULL)
875  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
876  *
877  * We don't check here for the merged mmap wrapping around the end of pagecache
878  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
879  * wrap, nor mmaps which cover the final page at index -1UL.
880  */
881 static int
882 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
883 		     struct anon_vma *anon_vma, struct file *file,
884 		     pgoff_t vm_pgoff,
885 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
886 {
887 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
888 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
889 		if (vma->vm_pgoff == vm_pgoff)
890 			return 1;
891 	}
892 	return 0;
893 }
894 
895 /*
896  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
897  * beyond (at a higher virtual address and file offset than) the vma.
898  *
899  * We cannot merge two vmas if they have differently assigned (non-NULL)
900  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
901  */
902 static int
903 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
904 		    struct anon_vma *anon_vma, struct file *file,
905 		    pgoff_t vm_pgoff,
906 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
907 {
908 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
909 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
910 		pgoff_t vm_pglen;
911 		vm_pglen = vma_pages(vma);
912 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
913 			return 1;
914 	}
915 	return 0;
916 }
917 
918 /*
919  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
920  * whether that can be merged with its predecessor or its successor.
921  * Or both (it neatly fills a hole).
922  *
923  * In most cases - when called for mmap, brk or mremap - [addr,end) is
924  * certain not to be mapped by the time vma_merge is called; but when
925  * called for mprotect, it is certain to be already mapped (either at
926  * an offset within prev, or at the start of next), and the flags of
927  * this area are about to be changed to vm_flags - and the no-change
928  * case has already been eliminated.
929  *
930  * The following mprotect cases have to be considered, where AAAA is
931  * the area passed down from mprotect_fixup, never extending beyond one
932  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
933  *
934  *     AAAA             AAAA                AAAA          AAAA
935  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
936  *    cannot merge    might become    might become    might become
937  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
938  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
939  *    mremap move:                                    PPPPNNNNNNNN 8
940  *        AAAA
941  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
942  *    might become    case 1 below    case 2 below    case 3 below
943  *
944  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
945  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
946  */
947 struct vm_area_struct *vma_merge(struct mm_struct *mm,
948 			struct vm_area_struct *prev, unsigned long addr,
949 			unsigned long end, unsigned long vm_flags,
950 			struct anon_vma *anon_vma, struct file *file,
951 			pgoff_t pgoff, struct mempolicy *policy,
952 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
953 {
954 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
955 	struct vm_area_struct *area, *next;
956 	int err;
957 
958 	/*
959 	 * We later require that vma->vm_flags == vm_flags,
960 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
961 	 */
962 	if (vm_flags & VM_SPECIAL)
963 		return NULL;
964 
965 	if (prev)
966 		next = prev->vm_next;
967 	else
968 		next = mm->mmap;
969 	area = next;
970 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
971 		next = next->vm_next;
972 
973 	/*
974 	 * Can it merge with the predecessor?
975 	 */
976 	if (prev && prev->vm_end == addr &&
977 			mpol_equal(vma_policy(prev), policy) &&
978 			can_vma_merge_after(prev, vm_flags,
979 					    anon_vma, file, pgoff,
980 					    vm_userfaultfd_ctx)) {
981 		/*
982 		 * OK, it can.  Can we now merge in the successor as well?
983 		 */
984 		if (next && end == next->vm_start &&
985 				mpol_equal(policy, vma_policy(next)) &&
986 				can_vma_merge_before(next, vm_flags,
987 						     anon_vma, file,
988 						     pgoff+pglen,
989 						     vm_userfaultfd_ctx) &&
990 				is_mergeable_anon_vma(prev->anon_vma,
991 						      next->anon_vma, NULL)) {
992 							/* cases 1, 6 */
993 			err = vma_adjust(prev, prev->vm_start,
994 				next->vm_end, prev->vm_pgoff, NULL);
995 		} else					/* cases 2, 5, 7 */
996 			err = vma_adjust(prev, prev->vm_start,
997 				end, prev->vm_pgoff, NULL);
998 		if (err)
999 			return NULL;
1000 		khugepaged_enter_vma_merge(prev, vm_flags);
1001 		return prev;
1002 	}
1003 
1004 	/*
1005 	 * Can this new request be merged in front of next?
1006 	 */
1007 	if (next && end == next->vm_start &&
1008 			mpol_equal(policy, vma_policy(next)) &&
1009 			can_vma_merge_before(next, vm_flags,
1010 					     anon_vma, file, pgoff+pglen,
1011 					     vm_userfaultfd_ctx)) {
1012 		if (prev && addr < prev->vm_end)	/* case 4 */
1013 			err = vma_adjust(prev, prev->vm_start,
1014 				addr, prev->vm_pgoff, NULL);
1015 		else					/* cases 3, 8 */
1016 			err = vma_adjust(area, addr, next->vm_end,
1017 				next->vm_pgoff - pglen, NULL);
1018 		if (err)
1019 			return NULL;
1020 		khugepaged_enter_vma_merge(area, vm_flags);
1021 		return area;
1022 	}
1023 
1024 	return NULL;
1025 }
1026 
1027 /*
1028  * Rough compatbility check to quickly see if it's even worth looking
1029  * at sharing an anon_vma.
1030  *
1031  * They need to have the same vm_file, and the flags can only differ
1032  * in things that mprotect may change.
1033  *
1034  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1035  * we can merge the two vma's. For example, we refuse to merge a vma if
1036  * there is a vm_ops->close() function, because that indicates that the
1037  * driver is doing some kind of reference counting. But that doesn't
1038  * really matter for the anon_vma sharing case.
1039  */
1040 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1041 {
1042 	return a->vm_end == b->vm_start &&
1043 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1044 		a->vm_file == b->vm_file &&
1045 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1046 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1047 }
1048 
1049 /*
1050  * Do some basic sanity checking to see if we can re-use the anon_vma
1051  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1052  * the same as 'old', the other will be the new one that is trying
1053  * to share the anon_vma.
1054  *
1055  * NOTE! This runs with mm_sem held for reading, so it is possible that
1056  * the anon_vma of 'old' is concurrently in the process of being set up
1057  * by another page fault trying to merge _that_. But that's ok: if it
1058  * is being set up, that automatically means that it will be a singleton
1059  * acceptable for merging, so we can do all of this optimistically. But
1060  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1061  *
1062  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1063  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1064  * is to return an anon_vma that is "complex" due to having gone through
1065  * a fork).
1066  *
1067  * We also make sure that the two vma's are compatible (adjacent,
1068  * and with the same memory policies). That's all stable, even with just
1069  * a read lock on the mm_sem.
1070  */
1071 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1072 {
1073 	if (anon_vma_compatible(a, b)) {
1074 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1075 
1076 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1077 			return anon_vma;
1078 	}
1079 	return NULL;
1080 }
1081 
1082 /*
1083  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1084  * neighbouring vmas for a suitable anon_vma, before it goes off
1085  * to allocate a new anon_vma.  It checks because a repetitive
1086  * sequence of mprotects and faults may otherwise lead to distinct
1087  * anon_vmas being allocated, preventing vma merge in subsequent
1088  * mprotect.
1089  */
1090 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1091 {
1092 	struct anon_vma *anon_vma;
1093 	struct vm_area_struct *near;
1094 
1095 	near = vma->vm_next;
1096 	if (!near)
1097 		goto try_prev;
1098 
1099 	anon_vma = reusable_anon_vma(near, vma, near);
1100 	if (anon_vma)
1101 		return anon_vma;
1102 try_prev:
1103 	near = vma->vm_prev;
1104 	if (!near)
1105 		goto none;
1106 
1107 	anon_vma = reusable_anon_vma(near, near, vma);
1108 	if (anon_vma)
1109 		return anon_vma;
1110 none:
1111 	/*
1112 	 * There's no absolute need to look only at touching neighbours:
1113 	 * we could search further afield for "compatible" anon_vmas.
1114 	 * But it would probably just be a waste of time searching,
1115 	 * or lead to too many vmas hanging off the same anon_vma.
1116 	 * We're trying to allow mprotect remerging later on,
1117 	 * not trying to minimize memory used for anon_vmas.
1118 	 */
1119 	return NULL;
1120 }
1121 
1122 /*
1123  * If a hint addr is less than mmap_min_addr change hint to be as
1124  * low as possible but still greater than mmap_min_addr
1125  */
1126 static inline unsigned long round_hint_to_min(unsigned long hint)
1127 {
1128 	hint &= PAGE_MASK;
1129 	if (((void *)hint != NULL) &&
1130 	    (hint < mmap_min_addr))
1131 		return PAGE_ALIGN(mmap_min_addr);
1132 	return hint;
1133 }
1134 
1135 static inline int mlock_future_check(struct mm_struct *mm,
1136 				     unsigned long flags,
1137 				     unsigned long len)
1138 {
1139 	unsigned long locked, lock_limit;
1140 
1141 	/*  mlock MCL_FUTURE? */
1142 	if (flags & VM_LOCKED) {
1143 		locked = len >> PAGE_SHIFT;
1144 		locked += mm->locked_vm;
1145 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1146 		lock_limit >>= PAGE_SHIFT;
1147 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1148 			return -EAGAIN;
1149 	}
1150 	return 0;
1151 }
1152 
1153 /*
1154  * The caller must hold down_write(&current->mm->mmap_sem).
1155  */
1156 unsigned long do_mmap(struct file *file, unsigned long addr,
1157 			unsigned long len, unsigned long prot,
1158 			unsigned long flags, vm_flags_t vm_flags,
1159 			unsigned long pgoff, unsigned long *populate)
1160 {
1161 	struct mm_struct *mm = current->mm;
1162 	int pkey = 0;
1163 
1164 	*populate = 0;
1165 
1166 	if (!len)
1167 		return -EINVAL;
1168 
1169 	/*
1170 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1171 	 *
1172 	 * (the exception is when the underlying filesystem is noexec
1173 	 *  mounted, in which case we dont add PROT_EXEC.)
1174 	 */
1175 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1176 		if (!(file && path_noexec(&file->f_path)))
1177 			prot |= PROT_EXEC;
1178 
1179 	if (!(flags & MAP_FIXED))
1180 		addr = round_hint_to_min(addr);
1181 
1182 	/* Careful about overflows.. */
1183 	len = PAGE_ALIGN(len);
1184 	if (!len)
1185 		return -ENOMEM;
1186 
1187 	/* offset overflow? */
1188 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1189 		return -EOVERFLOW;
1190 
1191 	/* Too many mappings? */
1192 	if (mm->map_count > sysctl_max_map_count)
1193 		return -ENOMEM;
1194 
1195 	/* Obtain the address to map to. we verify (or select) it and ensure
1196 	 * that it represents a valid section of the address space.
1197 	 */
1198 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1199 	if (offset_in_page(addr))
1200 		return addr;
1201 
1202 	if (prot == PROT_EXEC) {
1203 		pkey = execute_only_pkey(mm);
1204 		if (pkey < 0)
1205 			pkey = 0;
1206 	}
1207 
1208 	/* Do simple checking here so the lower-level routines won't have
1209 	 * to. we assume access permissions have been handled by the open
1210 	 * of the memory object, so we don't do any here.
1211 	 */
1212 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1213 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1214 
1215 	if (flags & MAP_LOCKED)
1216 		if (!can_do_mlock())
1217 			return -EPERM;
1218 
1219 	if (mlock_future_check(mm, vm_flags, len))
1220 		return -EAGAIN;
1221 
1222 	if (file) {
1223 		struct inode *inode = file_inode(file);
1224 
1225 		switch (flags & MAP_TYPE) {
1226 		case MAP_SHARED:
1227 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1228 				return -EACCES;
1229 
1230 			/*
1231 			 * Make sure we don't allow writing to an append-only
1232 			 * file..
1233 			 */
1234 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1235 				return -EACCES;
1236 
1237 			/*
1238 			 * Make sure there are no mandatory locks on the file.
1239 			 */
1240 			if (locks_verify_locked(file))
1241 				return -EAGAIN;
1242 
1243 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1244 			if (!(file->f_mode & FMODE_WRITE))
1245 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1246 
1247 			/* fall through */
1248 		case MAP_PRIVATE:
1249 			if (!(file->f_mode & FMODE_READ))
1250 				return -EACCES;
1251 			if (path_noexec(&file->f_path)) {
1252 				if (vm_flags & VM_EXEC)
1253 					return -EPERM;
1254 				vm_flags &= ~VM_MAYEXEC;
1255 			}
1256 
1257 			if (!file->f_op->mmap)
1258 				return -ENODEV;
1259 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1260 				return -EINVAL;
1261 			break;
1262 
1263 		default:
1264 			return -EINVAL;
1265 		}
1266 	} else {
1267 		switch (flags & MAP_TYPE) {
1268 		case MAP_SHARED:
1269 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1270 				return -EINVAL;
1271 			/*
1272 			 * Ignore pgoff.
1273 			 */
1274 			pgoff = 0;
1275 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1276 			break;
1277 		case MAP_PRIVATE:
1278 			/*
1279 			 * Set pgoff according to addr for anon_vma.
1280 			 */
1281 			pgoff = addr >> PAGE_SHIFT;
1282 			break;
1283 		default:
1284 			return -EINVAL;
1285 		}
1286 	}
1287 
1288 	/*
1289 	 * Set 'VM_NORESERVE' if we should not account for the
1290 	 * memory use of this mapping.
1291 	 */
1292 	if (flags & MAP_NORESERVE) {
1293 		/* We honor MAP_NORESERVE if allowed to overcommit */
1294 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1295 			vm_flags |= VM_NORESERVE;
1296 
1297 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1298 		if (file && is_file_hugepages(file))
1299 			vm_flags |= VM_NORESERVE;
1300 	}
1301 
1302 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1303 	if (!IS_ERR_VALUE(addr) &&
1304 	    ((vm_flags & VM_LOCKED) ||
1305 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1306 		*populate = len;
1307 	return addr;
1308 }
1309 
1310 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1311 		unsigned long, prot, unsigned long, flags,
1312 		unsigned long, fd, unsigned long, pgoff)
1313 {
1314 	struct file *file = NULL;
1315 	unsigned long retval;
1316 
1317 	if (!(flags & MAP_ANONYMOUS)) {
1318 		audit_mmap_fd(fd, flags);
1319 		file = fget(fd);
1320 		if (!file)
1321 			return -EBADF;
1322 		if (is_file_hugepages(file))
1323 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1324 		retval = -EINVAL;
1325 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1326 			goto out_fput;
1327 	} else if (flags & MAP_HUGETLB) {
1328 		struct user_struct *user = NULL;
1329 		struct hstate *hs;
1330 
1331 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1332 		if (!hs)
1333 			return -EINVAL;
1334 
1335 		len = ALIGN(len, huge_page_size(hs));
1336 		/*
1337 		 * VM_NORESERVE is used because the reservations will be
1338 		 * taken when vm_ops->mmap() is called
1339 		 * A dummy user value is used because we are not locking
1340 		 * memory so no accounting is necessary
1341 		 */
1342 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1343 				VM_NORESERVE,
1344 				&user, HUGETLB_ANONHUGE_INODE,
1345 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1346 		if (IS_ERR(file))
1347 			return PTR_ERR(file);
1348 	}
1349 
1350 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1351 
1352 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1353 out_fput:
1354 	if (file)
1355 		fput(file);
1356 	return retval;
1357 }
1358 
1359 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1360 struct mmap_arg_struct {
1361 	unsigned long addr;
1362 	unsigned long len;
1363 	unsigned long prot;
1364 	unsigned long flags;
1365 	unsigned long fd;
1366 	unsigned long offset;
1367 };
1368 
1369 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1370 {
1371 	struct mmap_arg_struct a;
1372 
1373 	if (copy_from_user(&a, arg, sizeof(a)))
1374 		return -EFAULT;
1375 	if (offset_in_page(a.offset))
1376 		return -EINVAL;
1377 
1378 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1379 			      a.offset >> PAGE_SHIFT);
1380 }
1381 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1382 
1383 /*
1384  * Some shared mappigns will want the pages marked read-only
1385  * to track write events. If so, we'll downgrade vm_page_prot
1386  * to the private version (using protection_map[] without the
1387  * VM_SHARED bit).
1388  */
1389 int vma_wants_writenotify(struct vm_area_struct *vma)
1390 {
1391 	vm_flags_t vm_flags = vma->vm_flags;
1392 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1393 
1394 	/* If it was private or non-writable, the write bit is already clear */
1395 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1396 		return 0;
1397 
1398 	/* The backer wishes to know when pages are first written to? */
1399 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1400 		return 1;
1401 
1402 	/* The open routine did something to the protections that pgprot_modify
1403 	 * won't preserve? */
1404 	if (pgprot_val(vma->vm_page_prot) !=
1405 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1406 		return 0;
1407 
1408 	/* Do we need to track softdirty? */
1409 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1410 		return 1;
1411 
1412 	/* Specialty mapping? */
1413 	if (vm_flags & VM_PFNMAP)
1414 		return 0;
1415 
1416 	/* Can the mapping track the dirty pages? */
1417 	return vma->vm_file && vma->vm_file->f_mapping &&
1418 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1419 }
1420 
1421 /*
1422  * We account for memory if it's a private writeable mapping,
1423  * not hugepages and VM_NORESERVE wasn't set.
1424  */
1425 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1426 {
1427 	/*
1428 	 * hugetlb has its own accounting separate from the core VM
1429 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1430 	 */
1431 	if (file && is_file_hugepages(file))
1432 		return 0;
1433 
1434 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1435 }
1436 
1437 unsigned long mmap_region(struct file *file, unsigned long addr,
1438 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1439 {
1440 	struct mm_struct *mm = current->mm;
1441 	struct vm_area_struct *vma, *prev;
1442 	int error;
1443 	struct rb_node **rb_link, *rb_parent;
1444 	unsigned long charged = 0;
1445 
1446 	/* Check against address space limit. */
1447 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1448 		unsigned long nr_pages;
1449 
1450 		/*
1451 		 * MAP_FIXED may remove pages of mappings that intersects with
1452 		 * requested mapping. Account for the pages it would unmap.
1453 		 */
1454 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1455 
1456 		if (!may_expand_vm(mm, vm_flags,
1457 					(len >> PAGE_SHIFT) - nr_pages))
1458 			return -ENOMEM;
1459 	}
1460 
1461 	/* Clear old maps */
1462 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1463 			      &rb_parent)) {
1464 		if (do_munmap(mm, addr, len))
1465 			return -ENOMEM;
1466 	}
1467 
1468 	/*
1469 	 * Private writable mapping: check memory availability
1470 	 */
1471 	if (accountable_mapping(file, vm_flags)) {
1472 		charged = len >> PAGE_SHIFT;
1473 		if (security_vm_enough_memory_mm(mm, charged))
1474 			return -ENOMEM;
1475 		vm_flags |= VM_ACCOUNT;
1476 	}
1477 
1478 	/*
1479 	 * Can we just expand an old mapping?
1480 	 */
1481 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1482 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1483 	if (vma)
1484 		goto out;
1485 
1486 	/*
1487 	 * Determine the object being mapped and call the appropriate
1488 	 * specific mapper. the address has already been validated, but
1489 	 * not unmapped, but the maps are removed from the list.
1490 	 */
1491 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1492 	if (!vma) {
1493 		error = -ENOMEM;
1494 		goto unacct_error;
1495 	}
1496 
1497 	vma->vm_mm = mm;
1498 	vma->vm_start = addr;
1499 	vma->vm_end = addr + len;
1500 	vma->vm_flags = vm_flags;
1501 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1502 	vma->vm_pgoff = pgoff;
1503 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1504 
1505 	if (file) {
1506 		if (vm_flags & VM_DENYWRITE) {
1507 			error = deny_write_access(file);
1508 			if (error)
1509 				goto free_vma;
1510 		}
1511 		if (vm_flags & VM_SHARED) {
1512 			error = mapping_map_writable(file->f_mapping);
1513 			if (error)
1514 				goto allow_write_and_free_vma;
1515 		}
1516 
1517 		/* ->mmap() can change vma->vm_file, but must guarantee that
1518 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1519 		 * and map writably if VM_SHARED is set. This usually means the
1520 		 * new file must not have been exposed to user-space, yet.
1521 		 */
1522 		vma->vm_file = get_file(file);
1523 		error = file->f_op->mmap(file, vma);
1524 		if (error)
1525 			goto unmap_and_free_vma;
1526 
1527 		/* Can addr have changed??
1528 		 *
1529 		 * Answer: Yes, several device drivers can do it in their
1530 		 *         f_op->mmap method. -DaveM
1531 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1532 		 *      be updated for vma_link()
1533 		 */
1534 		WARN_ON_ONCE(addr != vma->vm_start);
1535 
1536 		addr = vma->vm_start;
1537 		vm_flags = vma->vm_flags;
1538 	} else if (vm_flags & VM_SHARED) {
1539 		error = shmem_zero_setup(vma);
1540 		if (error)
1541 			goto free_vma;
1542 	}
1543 
1544 	vma_link(mm, vma, prev, rb_link, rb_parent);
1545 	/* Once vma denies write, undo our temporary denial count */
1546 	if (file) {
1547 		if (vm_flags & VM_SHARED)
1548 			mapping_unmap_writable(file->f_mapping);
1549 		if (vm_flags & VM_DENYWRITE)
1550 			allow_write_access(file);
1551 	}
1552 	file = vma->vm_file;
1553 out:
1554 	perf_event_mmap(vma);
1555 
1556 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1557 	if (vm_flags & VM_LOCKED) {
1558 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1559 					vma == get_gate_vma(current->mm)))
1560 			mm->locked_vm += (len >> PAGE_SHIFT);
1561 		else
1562 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1563 	}
1564 
1565 	if (file)
1566 		uprobe_mmap(vma);
1567 
1568 	/*
1569 	 * New (or expanded) vma always get soft dirty status.
1570 	 * Otherwise user-space soft-dirty page tracker won't
1571 	 * be able to distinguish situation when vma area unmapped,
1572 	 * then new mapped in-place (which must be aimed as
1573 	 * a completely new data area).
1574 	 */
1575 	vma->vm_flags |= VM_SOFTDIRTY;
1576 
1577 	vma_set_page_prot(vma);
1578 
1579 	return addr;
1580 
1581 unmap_and_free_vma:
1582 	vma->vm_file = NULL;
1583 	fput(file);
1584 
1585 	/* Undo any partial mapping done by a device driver. */
1586 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1587 	charged = 0;
1588 	if (vm_flags & VM_SHARED)
1589 		mapping_unmap_writable(file->f_mapping);
1590 allow_write_and_free_vma:
1591 	if (vm_flags & VM_DENYWRITE)
1592 		allow_write_access(file);
1593 free_vma:
1594 	kmem_cache_free(vm_area_cachep, vma);
1595 unacct_error:
1596 	if (charged)
1597 		vm_unacct_memory(charged);
1598 	return error;
1599 }
1600 
1601 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1602 {
1603 	/*
1604 	 * We implement the search by looking for an rbtree node that
1605 	 * immediately follows a suitable gap. That is,
1606 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1607 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1608 	 * - gap_end - gap_start >= length
1609 	 */
1610 
1611 	struct mm_struct *mm = current->mm;
1612 	struct vm_area_struct *vma;
1613 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1614 
1615 	/* Adjust search length to account for worst case alignment overhead */
1616 	length = info->length + info->align_mask;
1617 	if (length < info->length)
1618 		return -ENOMEM;
1619 
1620 	/* Adjust search limits by the desired length */
1621 	if (info->high_limit < length)
1622 		return -ENOMEM;
1623 	high_limit = info->high_limit - length;
1624 
1625 	if (info->low_limit > high_limit)
1626 		return -ENOMEM;
1627 	low_limit = info->low_limit + length;
1628 
1629 	/* Check if rbtree root looks promising */
1630 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1631 		goto check_highest;
1632 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1633 	if (vma->rb_subtree_gap < length)
1634 		goto check_highest;
1635 
1636 	while (true) {
1637 		/* Visit left subtree if it looks promising */
1638 		gap_end = vma->vm_start;
1639 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1640 			struct vm_area_struct *left =
1641 				rb_entry(vma->vm_rb.rb_left,
1642 					 struct vm_area_struct, vm_rb);
1643 			if (left->rb_subtree_gap >= length) {
1644 				vma = left;
1645 				continue;
1646 			}
1647 		}
1648 
1649 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1650 check_current:
1651 		/* Check if current node has a suitable gap */
1652 		if (gap_start > high_limit)
1653 			return -ENOMEM;
1654 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1655 			goto found;
1656 
1657 		/* Visit right subtree if it looks promising */
1658 		if (vma->vm_rb.rb_right) {
1659 			struct vm_area_struct *right =
1660 				rb_entry(vma->vm_rb.rb_right,
1661 					 struct vm_area_struct, vm_rb);
1662 			if (right->rb_subtree_gap >= length) {
1663 				vma = right;
1664 				continue;
1665 			}
1666 		}
1667 
1668 		/* Go back up the rbtree to find next candidate node */
1669 		while (true) {
1670 			struct rb_node *prev = &vma->vm_rb;
1671 			if (!rb_parent(prev))
1672 				goto check_highest;
1673 			vma = rb_entry(rb_parent(prev),
1674 				       struct vm_area_struct, vm_rb);
1675 			if (prev == vma->vm_rb.rb_left) {
1676 				gap_start = vma->vm_prev->vm_end;
1677 				gap_end = vma->vm_start;
1678 				goto check_current;
1679 			}
1680 		}
1681 	}
1682 
1683 check_highest:
1684 	/* Check highest gap, which does not precede any rbtree node */
1685 	gap_start = mm->highest_vm_end;
1686 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1687 	if (gap_start > high_limit)
1688 		return -ENOMEM;
1689 
1690 found:
1691 	/* We found a suitable gap. Clip it with the original low_limit. */
1692 	if (gap_start < info->low_limit)
1693 		gap_start = info->low_limit;
1694 
1695 	/* Adjust gap address to the desired alignment */
1696 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1697 
1698 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1699 	VM_BUG_ON(gap_start + info->length > gap_end);
1700 	return gap_start;
1701 }
1702 
1703 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1704 {
1705 	struct mm_struct *mm = current->mm;
1706 	struct vm_area_struct *vma;
1707 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1708 
1709 	/* Adjust search length to account for worst case alignment overhead */
1710 	length = info->length + info->align_mask;
1711 	if (length < info->length)
1712 		return -ENOMEM;
1713 
1714 	/*
1715 	 * Adjust search limits by the desired length.
1716 	 * See implementation comment at top of unmapped_area().
1717 	 */
1718 	gap_end = info->high_limit;
1719 	if (gap_end < length)
1720 		return -ENOMEM;
1721 	high_limit = gap_end - length;
1722 
1723 	if (info->low_limit > high_limit)
1724 		return -ENOMEM;
1725 	low_limit = info->low_limit + length;
1726 
1727 	/* Check highest gap, which does not precede any rbtree node */
1728 	gap_start = mm->highest_vm_end;
1729 	if (gap_start <= high_limit)
1730 		goto found_highest;
1731 
1732 	/* Check if rbtree root looks promising */
1733 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1734 		return -ENOMEM;
1735 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1736 	if (vma->rb_subtree_gap < length)
1737 		return -ENOMEM;
1738 
1739 	while (true) {
1740 		/* Visit right subtree if it looks promising */
1741 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1742 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1743 			struct vm_area_struct *right =
1744 				rb_entry(vma->vm_rb.rb_right,
1745 					 struct vm_area_struct, vm_rb);
1746 			if (right->rb_subtree_gap >= length) {
1747 				vma = right;
1748 				continue;
1749 			}
1750 		}
1751 
1752 check_current:
1753 		/* Check if current node has a suitable gap */
1754 		gap_end = vma->vm_start;
1755 		if (gap_end < low_limit)
1756 			return -ENOMEM;
1757 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1758 			goto found;
1759 
1760 		/* Visit left subtree if it looks promising */
1761 		if (vma->vm_rb.rb_left) {
1762 			struct vm_area_struct *left =
1763 				rb_entry(vma->vm_rb.rb_left,
1764 					 struct vm_area_struct, vm_rb);
1765 			if (left->rb_subtree_gap >= length) {
1766 				vma = left;
1767 				continue;
1768 			}
1769 		}
1770 
1771 		/* Go back up the rbtree to find next candidate node */
1772 		while (true) {
1773 			struct rb_node *prev = &vma->vm_rb;
1774 			if (!rb_parent(prev))
1775 				return -ENOMEM;
1776 			vma = rb_entry(rb_parent(prev),
1777 				       struct vm_area_struct, vm_rb);
1778 			if (prev == vma->vm_rb.rb_right) {
1779 				gap_start = vma->vm_prev ?
1780 					vma->vm_prev->vm_end : 0;
1781 				goto check_current;
1782 			}
1783 		}
1784 	}
1785 
1786 found:
1787 	/* We found a suitable gap. Clip it with the original high_limit. */
1788 	if (gap_end > info->high_limit)
1789 		gap_end = info->high_limit;
1790 
1791 found_highest:
1792 	/* Compute highest gap address at the desired alignment */
1793 	gap_end -= info->length;
1794 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1795 
1796 	VM_BUG_ON(gap_end < info->low_limit);
1797 	VM_BUG_ON(gap_end < gap_start);
1798 	return gap_end;
1799 }
1800 
1801 /* Get an address range which is currently unmapped.
1802  * For shmat() with addr=0.
1803  *
1804  * Ugly calling convention alert:
1805  * Return value with the low bits set means error value,
1806  * ie
1807  *	if (ret & ~PAGE_MASK)
1808  *		error = ret;
1809  *
1810  * This function "knows" that -ENOMEM has the bits set.
1811  */
1812 #ifndef HAVE_ARCH_UNMAPPED_AREA
1813 unsigned long
1814 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1815 		unsigned long len, unsigned long pgoff, unsigned long flags)
1816 {
1817 	struct mm_struct *mm = current->mm;
1818 	struct vm_area_struct *vma;
1819 	struct vm_unmapped_area_info info;
1820 
1821 	if (len > TASK_SIZE - mmap_min_addr)
1822 		return -ENOMEM;
1823 
1824 	if (flags & MAP_FIXED)
1825 		return addr;
1826 
1827 	if (addr) {
1828 		addr = PAGE_ALIGN(addr);
1829 		vma = find_vma(mm, addr);
1830 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1831 		    (!vma || addr + len <= vma->vm_start))
1832 			return addr;
1833 	}
1834 
1835 	info.flags = 0;
1836 	info.length = len;
1837 	info.low_limit = mm->mmap_base;
1838 	info.high_limit = TASK_SIZE;
1839 	info.align_mask = 0;
1840 	return vm_unmapped_area(&info);
1841 }
1842 #endif
1843 
1844 /*
1845  * This mmap-allocator allocates new areas top-down from below the
1846  * stack's low limit (the base):
1847  */
1848 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1849 unsigned long
1850 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1851 			  const unsigned long len, const unsigned long pgoff,
1852 			  const unsigned long flags)
1853 {
1854 	struct vm_area_struct *vma;
1855 	struct mm_struct *mm = current->mm;
1856 	unsigned long addr = addr0;
1857 	struct vm_unmapped_area_info info;
1858 
1859 	/* requested length too big for entire address space */
1860 	if (len > TASK_SIZE - mmap_min_addr)
1861 		return -ENOMEM;
1862 
1863 	if (flags & MAP_FIXED)
1864 		return addr;
1865 
1866 	/* requesting a specific address */
1867 	if (addr) {
1868 		addr = PAGE_ALIGN(addr);
1869 		vma = find_vma(mm, addr);
1870 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1871 				(!vma || addr + len <= vma->vm_start))
1872 			return addr;
1873 	}
1874 
1875 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1876 	info.length = len;
1877 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1878 	info.high_limit = mm->mmap_base;
1879 	info.align_mask = 0;
1880 	addr = vm_unmapped_area(&info);
1881 
1882 	/*
1883 	 * A failed mmap() very likely causes application failure,
1884 	 * so fall back to the bottom-up function here. This scenario
1885 	 * can happen with large stack limits and large mmap()
1886 	 * allocations.
1887 	 */
1888 	if (offset_in_page(addr)) {
1889 		VM_BUG_ON(addr != -ENOMEM);
1890 		info.flags = 0;
1891 		info.low_limit = TASK_UNMAPPED_BASE;
1892 		info.high_limit = TASK_SIZE;
1893 		addr = vm_unmapped_area(&info);
1894 	}
1895 
1896 	return addr;
1897 }
1898 #endif
1899 
1900 unsigned long
1901 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1902 		unsigned long pgoff, unsigned long flags)
1903 {
1904 	unsigned long (*get_area)(struct file *, unsigned long,
1905 				  unsigned long, unsigned long, unsigned long);
1906 
1907 	unsigned long error = arch_mmap_check(addr, len, flags);
1908 	if (error)
1909 		return error;
1910 
1911 	/* Careful about overflows.. */
1912 	if (len > TASK_SIZE)
1913 		return -ENOMEM;
1914 
1915 	get_area = current->mm->get_unmapped_area;
1916 	if (file) {
1917 		if (file->f_op->get_unmapped_area)
1918 			get_area = file->f_op->get_unmapped_area;
1919 	} else if (flags & MAP_SHARED) {
1920 		/*
1921 		 * mmap_region() will call shmem_zero_setup() to create a file,
1922 		 * so use shmem's get_unmapped_area in case it can be huge.
1923 		 * do_mmap_pgoff() will clear pgoff, so match alignment.
1924 		 */
1925 		pgoff = 0;
1926 		get_area = shmem_get_unmapped_area;
1927 	}
1928 
1929 	addr = get_area(file, addr, len, pgoff, flags);
1930 	if (IS_ERR_VALUE(addr))
1931 		return addr;
1932 
1933 	if (addr > TASK_SIZE - len)
1934 		return -ENOMEM;
1935 	if (offset_in_page(addr))
1936 		return -EINVAL;
1937 
1938 	error = security_mmap_addr(addr);
1939 	return error ? error : addr;
1940 }
1941 
1942 EXPORT_SYMBOL(get_unmapped_area);
1943 
1944 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1945 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1946 {
1947 	struct rb_node *rb_node;
1948 	struct vm_area_struct *vma;
1949 
1950 	/* Check the cache first. */
1951 	vma = vmacache_find(mm, addr);
1952 	if (likely(vma))
1953 		return vma;
1954 
1955 	rb_node = mm->mm_rb.rb_node;
1956 
1957 	while (rb_node) {
1958 		struct vm_area_struct *tmp;
1959 
1960 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1961 
1962 		if (tmp->vm_end > addr) {
1963 			vma = tmp;
1964 			if (tmp->vm_start <= addr)
1965 				break;
1966 			rb_node = rb_node->rb_left;
1967 		} else
1968 			rb_node = rb_node->rb_right;
1969 	}
1970 
1971 	if (vma)
1972 		vmacache_update(addr, vma);
1973 	return vma;
1974 }
1975 
1976 EXPORT_SYMBOL(find_vma);
1977 
1978 /*
1979  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1980  */
1981 struct vm_area_struct *
1982 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1983 			struct vm_area_struct **pprev)
1984 {
1985 	struct vm_area_struct *vma;
1986 
1987 	vma = find_vma(mm, addr);
1988 	if (vma) {
1989 		*pprev = vma->vm_prev;
1990 	} else {
1991 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1992 		*pprev = NULL;
1993 		while (rb_node) {
1994 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1995 			rb_node = rb_node->rb_right;
1996 		}
1997 	}
1998 	return vma;
1999 }
2000 
2001 /*
2002  * Verify that the stack growth is acceptable and
2003  * update accounting. This is shared with both the
2004  * grow-up and grow-down cases.
2005  */
2006 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2007 {
2008 	struct mm_struct *mm = vma->vm_mm;
2009 	struct rlimit *rlim = current->signal->rlim;
2010 	unsigned long new_start, actual_size;
2011 
2012 	/* address space limit tests */
2013 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2014 		return -ENOMEM;
2015 
2016 	/* Stack limit test */
2017 	actual_size = size;
2018 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2019 		actual_size -= PAGE_SIZE;
2020 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2021 		return -ENOMEM;
2022 
2023 	/* mlock limit tests */
2024 	if (vma->vm_flags & VM_LOCKED) {
2025 		unsigned long locked;
2026 		unsigned long limit;
2027 		locked = mm->locked_vm + grow;
2028 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2029 		limit >>= PAGE_SHIFT;
2030 		if (locked > limit && !capable(CAP_IPC_LOCK))
2031 			return -ENOMEM;
2032 	}
2033 
2034 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2035 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2036 			vma->vm_end - size;
2037 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2038 		return -EFAULT;
2039 
2040 	/*
2041 	 * Overcommit..  This must be the final test, as it will
2042 	 * update security statistics.
2043 	 */
2044 	if (security_vm_enough_memory_mm(mm, grow))
2045 		return -ENOMEM;
2046 
2047 	return 0;
2048 }
2049 
2050 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2051 /*
2052  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2053  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2054  */
2055 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2056 {
2057 	struct mm_struct *mm = vma->vm_mm;
2058 	int error = 0;
2059 
2060 	if (!(vma->vm_flags & VM_GROWSUP))
2061 		return -EFAULT;
2062 
2063 	/* Guard against wrapping around to address 0. */
2064 	if (address < PAGE_ALIGN(address+4))
2065 		address = PAGE_ALIGN(address+4);
2066 	else
2067 		return -ENOMEM;
2068 
2069 	/* We must make sure the anon_vma is allocated. */
2070 	if (unlikely(anon_vma_prepare(vma)))
2071 		return -ENOMEM;
2072 
2073 	/*
2074 	 * vma->vm_start/vm_end cannot change under us because the caller
2075 	 * is required to hold the mmap_sem in read mode.  We need the
2076 	 * anon_vma lock to serialize against concurrent expand_stacks.
2077 	 */
2078 	anon_vma_lock_write(vma->anon_vma);
2079 
2080 	/* Somebody else might have raced and expanded it already */
2081 	if (address > vma->vm_end) {
2082 		unsigned long size, grow;
2083 
2084 		size = address - vma->vm_start;
2085 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2086 
2087 		error = -ENOMEM;
2088 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2089 			error = acct_stack_growth(vma, size, grow);
2090 			if (!error) {
2091 				/*
2092 				 * vma_gap_update() doesn't support concurrent
2093 				 * updates, but we only hold a shared mmap_sem
2094 				 * lock here, so we need to protect against
2095 				 * concurrent vma expansions.
2096 				 * anon_vma_lock_write() doesn't help here, as
2097 				 * we don't guarantee that all growable vmas
2098 				 * in a mm share the same root anon vma.
2099 				 * So, we reuse mm->page_table_lock to guard
2100 				 * against concurrent vma expansions.
2101 				 */
2102 				spin_lock(&mm->page_table_lock);
2103 				if (vma->vm_flags & VM_LOCKED)
2104 					mm->locked_vm += grow;
2105 				vm_stat_account(mm, vma->vm_flags, grow);
2106 				anon_vma_interval_tree_pre_update_vma(vma);
2107 				vma->vm_end = address;
2108 				anon_vma_interval_tree_post_update_vma(vma);
2109 				if (vma->vm_next)
2110 					vma_gap_update(vma->vm_next);
2111 				else
2112 					mm->highest_vm_end = address;
2113 				spin_unlock(&mm->page_table_lock);
2114 
2115 				perf_event_mmap(vma);
2116 			}
2117 		}
2118 	}
2119 	anon_vma_unlock_write(vma->anon_vma);
2120 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2121 	validate_mm(mm);
2122 	return error;
2123 }
2124 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2125 
2126 /*
2127  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2128  */
2129 int expand_downwards(struct vm_area_struct *vma,
2130 				   unsigned long address)
2131 {
2132 	struct mm_struct *mm = vma->vm_mm;
2133 	int error;
2134 
2135 	address &= PAGE_MASK;
2136 	error = security_mmap_addr(address);
2137 	if (error)
2138 		return error;
2139 
2140 	/* We must make sure the anon_vma is allocated. */
2141 	if (unlikely(anon_vma_prepare(vma)))
2142 		return -ENOMEM;
2143 
2144 	/*
2145 	 * vma->vm_start/vm_end cannot change under us because the caller
2146 	 * is required to hold the mmap_sem in read mode.  We need the
2147 	 * anon_vma lock to serialize against concurrent expand_stacks.
2148 	 */
2149 	anon_vma_lock_write(vma->anon_vma);
2150 
2151 	/* Somebody else might have raced and expanded it already */
2152 	if (address < vma->vm_start) {
2153 		unsigned long size, grow;
2154 
2155 		size = vma->vm_end - address;
2156 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2157 
2158 		error = -ENOMEM;
2159 		if (grow <= vma->vm_pgoff) {
2160 			error = acct_stack_growth(vma, size, grow);
2161 			if (!error) {
2162 				/*
2163 				 * vma_gap_update() doesn't support concurrent
2164 				 * updates, but we only hold a shared mmap_sem
2165 				 * lock here, so we need to protect against
2166 				 * concurrent vma expansions.
2167 				 * anon_vma_lock_write() doesn't help here, as
2168 				 * we don't guarantee that all growable vmas
2169 				 * in a mm share the same root anon vma.
2170 				 * So, we reuse mm->page_table_lock to guard
2171 				 * against concurrent vma expansions.
2172 				 */
2173 				spin_lock(&mm->page_table_lock);
2174 				if (vma->vm_flags & VM_LOCKED)
2175 					mm->locked_vm += grow;
2176 				vm_stat_account(mm, vma->vm_flags, grow);
2177 				anon_vma_interval_tree_pre_update_vma(vma);
2178 				vma->vm_start = address;
2179 				vma->vm_pgoff -= grow;
2180 				anon_vma_interval_tree_post_update_vma(vma);
2181 				vma_gap_update(vma);
2182 				spin_unlock(&mm->page_table_lock);
2183 
2184 				perf_event_mmap(vma);
2185 			}
2186 		}
2187 	}
2188 	anon_vma_unlock_write(vma->anon_vma);
2189 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2190 	validate_mm(mm);
2191 	return error;
2192 }
2193 
2194 /*
2195  * Note how expand_stack() refuses to expand the stack all the way to
2196  * abut the next virtual mapping, *unless* that mapping itself is also
2197  * a stack mapping. We want to leave room for a guard page, after all
2198  * (the guard page itself is not added here, that is done by the
2199  * actual page faulting logic)
2200  *
2201  * This matches the behavior of the guard page logic (see mm/memory.c:
2202  * check_stack_guard_page()), which only allows the guard page to be
2203  * removed under these circumstances.
2204  */
2205 #ifdef CONFIG_STACK_GROWSUP
2206 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2207 {
2208 	struct vm_area_struct *next;
2209 
2210 	address &= PAGE_MASK;
2211 	next = vma->vm_next;
2212 	if (next && next->vm_start == address + PAGE_SIZE) {
2213 		if (!(next->vm_flags & VM_GROWSUP))
2214 			return -ENOMEM;
2215 	}
2216 	return expand_upwards(vma, address);
2217 }
2218 
2219 struct vm_area_struct *
2220 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2221 {
2222 	struct vm_area_struct *vma, *prev;
2223 
2224 	addr &= PAGE_MASK;
2225 	vma = find_vma_prev(mm, addr, &prev);
2226 	if (vma && (vma->vm_start <= addr))
2227 		return vma;
2228 	if (!prev || expand_stack(prev, addr))
2229 		return NULL;
2230 	if (prev->vm_flags & VM_LOCKED)
2231 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2232 	return prev;
2233 }
2234 #else
2235 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2236 {
2237 	struct vm_area_struct *prev;
2238 
2239 	address &= PAGE_MASK;
2240 	prev = vma->vm_prev;
2241 	if (prev && prev->vm_end == address) {
2242 		if (!(prev->vm_flags & VM_GROWSDOWN))
2243 			return -ENOMEM;
2244 	}
2245 	return expand_downwards(vma, address);
2246 }
2247 
2248 struct vm_area_struct *
2249 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2250 {
2251 	struct vm_area_struct *vma;
2252 	unsigned long start;
2253 
2254 	addr &= PAGE_MASK;
2255 	vma = find_vma(mm, addr);
2256 	if (!vma)
2257 		return NULL;
2258 	if (vma->vm_start <= addr)
2259 		return vma;
2260 	if (!(vma->vm_flags & VM_GROWSDOWN))
2261 		return NULL;
2262 	start = vma->vm_start;
2263 	if (expand_stack(vma, addr))
2264 		return NULL;
2265 	if (vma->vm_flags & VM_LOCKED)
2266 		populate_vma_page_range(vma, addr, start, NULL);
2267 	return vma;
2268 }
2269 #endif
2270 
2271 EXPORT_SYMBOL_GPL(find_extend_vma);
2272 
2273 /*
2274  * Ok - we have the memory areas we should free on the vma list,
2275  * so release them, and do the vma updates.
2276  *
2277  * Called with the mm semaphore held.
2278  */
2279 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2280 {
2281 	unsigned long nr_accounted = 0;
2282 
2283 	/* Update high watermark before we lower total_vm */
2284 	update_hiwater_vm(mm);
2285 	do {
2286 		long nrpages = vma_pages(vma);
2287 
2288 		if (vma->vm_flags & VM_ACCOUNT)
2289 			nr_accounted += nrpages;
2290 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2291 		vma = remove_vma(vma);
2292 	} while (vma);
2293 	vm_unacct_memory(nr_accounted);
2294 	validate_mm(mm);
2295 }
2296 
2297 /*
2298  * Get rid of page table information in the indicated region.
2299  *
2300  * Called with the mm semaphore held.
2301  */
2302 static void unmap_region(struct mm_struct *mm,
2303 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2304 		unsigned long start, unsigned long end)
2305 {
2306 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2307 	struct mmu_gather tlb;
2308 
2309 	lru_add_drain();
2310 	tlb_gather_mmu(&tlb, mm, start, end);
2311 	update_hiwater_rss(mm);
2312 	unmap_vmas(&tlb, vma, start, end);
2313 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2314 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2315 	tlb_finish_mmu(&tlb, start, end);
2316 }
2317 
2318 /*
2319  * Create a list of vma's touched by the unmap, removing them from the mm's
2320  * vma list as we go..
2321  */
2322 static void
2323 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2324 	struct vm_area_struct *prev, unsigned long end)
2325 {
2326 	struct vm_area_struct **insertion_point;
2327 	struct vm_area_struct *tail_vma = NULL;
2328 
2329 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2330 	vma->vm_prev = NULL;
2331 	do {
2332 		vma_rb_erase(vma, &mm->mm_rb);
2333 		mm->map_count--;
2334 		tail_vma = vma;
2335 		vma = vma->vm_next;
2336 	} while (vma && vma->vm_start < end);
2337 	*insertion_point = vma;
2338 	if (vma) {
2339 		vma->vm_prev = prev;
2340 		vma_gap_update(vma);
2341 	} else
2342 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2343 	tail_vma->vm_next = NULL;
2344 
2345 	/* Kill the cache */
2346 	vmacache_invalidate(mm);
2347 }
2348 
2349 /*
2350  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2351  * munmap path where it doesn't make sense to fail.
2352  */
2353 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2354 	      unsigned long addr, int new_below)
2355 {
2356 	struct vm_area_struct *new;
2357 	int err;
2358 
2359 	if (is_vm_hugetlb_page(vma) && (addr &
2360 					~(huge_page_mask(hstate_vma(vma)))))
2361 		return -EINVAL;
2362 
2363 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2364 	if (!new)
2365 		return -ENOMEM;
2366 
2367 	/* most fields are the same, copy all, and then fixup */
2368 	*new = *vma;
2369 
2370 	INIT_LIST_HEAD(&new->anon_vma_chain);
2371 
2372 	if (new_below)
2373 		new->vm_end = addr;
2374 	else {
2375 		new->vm_start = addr;
2376 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2377 	}
2378 
2379 	err = vma_dup_policy(vma, new);
2380 	if (err)
2381 		goto out_free_vma;
2382 
2383 	err = anon_vma_clone(new, vma);
2384 	if (err)
2385 		goto out_free_mpol;
2386 
2387 	if (new->vm_file)
2388 		get_file(new->vm_file);
2389 
2390 	if (new->vm_ops && new->vm_ops->open)
2391 		new->vm_ops->open(new);
2392 
2393 	if (new_below)
2394 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2395 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2396 	else
2397 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2398 
2399 	/* Success. */
2400 	if (!err)
2401 		return 0;
2402 
2403 	/* Clean everything up if vma_adjust failed. */
2404 	if (new->vm_ops && new->vm_ops->close)
2405 		new->vm_ops->close(new);
2406 	if (new->vm_file)
2407 		fput(new->vm_file);
2408 	unlink_anon_vmas(new);
2409  out_free_mpol:
2410 	mpol_put(vma_policy(new));
2411  out_free_vma:
2412 	kmem_cache_free(vm_area_cachep, new);
2413 	return err;
2414 }
2415 
2416 /*
2417  * Split a vma into two pieces at address 'addr', a new vma is allocated
2418  * either for the first part or the tail.
2419  */
2420 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2421 	      unsigned long addr, int new_below)
2422 {
2423 	if (mm->map_count >= sysctl_max_map_count)
2424 		return -ENOMEM;
2425 
2426 	return __split_vma(mm, vma, addr, new_below);
2427 }
2428 
2429 /* Munmap is split into 2 main parts -- this part which finds
2430  * what needs doing, and the areas themselves, which do the
2431  * work.  This now handles partial unmappings.
2432  * Jeremy Fitzhardinge <jeremy@goop.org>
2433  */
2434 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2435 {
2436 	unsigned long end;
2437 	struct vm_area_struct *vma, *prev, *last;
2438 
2439 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2440 		return -EINVAL;
2441 
2442 	len = PAGE_ALIGN(len);
2443 	if (len == 0)
2444 		return -EINVAL;
2445 
2446 	/* Find the first overlapping VMA */
2447 	vma = find_vma(mm, start);
2448 	if (!vma)
2449 		return 0;
2450 	prev = vma->vm_prev;
2451 	/* we have  start < vma->vm_end  */
2452 
2453 	/* if it doesn't overlap, we have nothing.. */
2454 	end = start + len;
2455 	if (vma->vm_start >= end)
2456 		return 0;
2457 
2458 	/*
2459 	 * If we need to split any vma, do it now to save pain later.
2460 	 *
2461 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2462 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2463 	 * places tmp vma above, and higher split_vma places tmp vma below.
2464 	 */
2465 	if (start > vma->vm_start) {
2466 		int error;
2467 
2468 		/*
2469 		 * Make sure that map_count on return from munmap() will
2470 		 * not exceed its limit; but let map_count go just above
2471 		 * its limit temporarily, to help free resources as expected.
2472 		 */
2473 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2474 			return -ENOMEM;
2475 
2476 		error = __split_vma(mm, vma, start, 0);
2477 		if (error)
2478 			return error;
2479 		prev = vma;
2480 	}
2481 
2482 	/* Does it split the last one? */
2483 	last = find_vma(mm, end);
2484 	if (last && end > last->vm_start) {
2485 		int error = __split_vma(mm, last, end, 1);
2486 		if (error)
2487 			return error;
2488 	}
2489 	vma = prev ? prev->vm_next : mm->mmap;
2490 
2491 	/*
2492 	 * unlock any mlock()ed ranges before detaching vmas
2493 	 */
2494 	if (mm->locked_vm) {
2495 		struct vm_area_struct *tmp = vma;
2496 		while (tmp && tmp->vm_start < end) {
2497 			if (tmp->vm_flags & VM_LOCKED) {
2498 				mm->locked_vm -= vma_pages(tmp);
2499 				munlock_vma_pages_all(tmp);
2500 			}
2501 			tmp = tmp->vm_next;
2502 		}
2503 	}
2504 
2505 	/*
2506 	 * Remove the vma's, and unmap the actual pages
2507 	 */
2508 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2509 	unmap_region(mm, vma, prev, start, end);
2510 
2511 	arch_unmap(mm, vma, start, end);
2512 
2513 	/* Fix up all other VM information */
2514 	remove_vma_list(mm, vma);
2515 
2516 	return 0;
2517 }
2518 
2519 int vm_munmap(unsigned long start, size_t len)
2520 {
2521 	int ret;
2522 	struct mm_struct *mm = current->mm;
2523 
2524 	if (down_write_killable(&mm->mmap_sem))
2525 		return -EINTR;
2526 
2527 	ret = do_munmap(mm, start, len);
2528 	up_write(&mm->mmap_sem);
2529 	return ret;
2530 }
2531 EXPORT_SYMBOL(vm_munmap);
2532 
2533 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2534 {
2535 	int ret;
2536 	struct mm_struct *mm = current->mm;
2537 
2538 	profile_munmap(addr);
2539 	if (down_write_killable(&mm->mmap_sem))
2540 		return -EINTR;
2541 	ret = do_munmap(mm, addr, len);
2542 	up_write(&mm->mmap_sem);
2543 	return ret;
2544 }
2545 
2546 
2547 /*
2548  * Emulation of deprecated remap_file_pages() syscall.
2549  */
2550 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2551 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2552 {
2553 
2554 	struct mm_struct *mm = current->mm;
2555 	struct vm_area_struct *vma;
2556 	unsigned long populate = 0;
2557 	unsigned long ret = -EINVAL;
2558 	struct file *file;
2559 
2560 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2561 		     current->comm, current->pid);
2562 
2563 	if (prot)
2564 		return ret;
2565 	start = start & PAGE_MASK;
2566 	size = size & PAGE_MASK;
2567 
2568 	if (start + size <= start)
2569 		return ret;
2570 
2571 	/* Does pgoff wrap? */
2572 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2573 		return ret;
2574 
2575 	if (down_write_killable(&mm->mmap_sem))
2576 		return -EINTR;
2577 
2578 	vma = find_vma(mm, start);
2579 
2580 	if (!vma || !(vma->vm_flags & VM_SHARED))
2581 		goto out;
2582 
2583 	if (start < vma->vm_start)
2584 		goto out;
2585 
2586 	if (start + size > vma->vm_end) {
2587 		struct vm_area_struct *next;
2588 
2589 		for (next = vma->vm_next; next; next = next->vm_next) {
2590 			/* hole between vmas ? */
2591 			if (next->vm_start != next->vm_prev->vm_end)
2592 				goto out;
2593 
2594 			if (next->vm_file != vma->vm_file)
2595 				goto out;
2596 
2597 			if (next->vm_flags != vma->vm_flags)
2598 				goto out;
2599 
2600 			if (start + size <= next->vm_end)
2601 				break;
2602 		}
2603 
2604 		if (!next)
2605 			goto out;
2606 	}
2607 
2608 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2609 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2610 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2611 
2612 	flags &= MAP_NONBLOCK;
2613 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2614 	if (vma->vm_flags & VM_LOCKED) {
2615 		struct vm_area_struct *tmp;
2616 		flags |= MAP_LOCKED;
2617 
2618 		/* drop PG_Mlocked flag for over-mapped range */
2619 		for (tmp = vma; tmp->vm_start >= start + size;
2620 				tmp = tmp->vm_next) {
2621 			/*
2622 			 * Split pmd and munlock page on the border
2623 			 * of the range.
2624 			 */
2625 			vma_adjust_trans_huge(tmp, start, start + size, 0);
2626 
2627 			munlock_vma_pages_range(tmp,
2628 					max(tmp->vm_start, start),
2629 					min(tmp->vm_end, start + size));
2630 		}
2631 	}
2632 
2633 	file = get_file(vma->vm_file);
2634 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2635 			prot, flags, pgoff, &populate);
2636 	fput(file);
2637 out:
2638 	up_write(&mm->mmap_sem);
2639 	if (populate)
2640 		mm_populate(ret, populate);
2641 	if (!IS_ERR_VALUE(ret))
2642 		ret = 0;
2643 	return ret;
2644 }
2645 
2646 static inline void verify_mm_writelocked(struct mm_struct *mm)
2647 {
2648 #ifdef CONFIG_DEBUG_VM
2649 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2650 		WARN_ON(1);
2651 		up_read(&mm->mmap_sem);
2652 	}
2653 #endif
2654 }
2655 
2656 /*
2657  *  this is really a simplified "do_mmap".  it only handles
2658  *  anonymous maps.  eventually we may be able to do some
2659  *  brk-specific accounting here.
2660  */
2661 static int do_brk(unsigned long addr, unsigned long request)
2662 {
2663 	struct mm_struct *mm = current->mm;
2664 	struct vm_area_struct *vma, *prev;
2665 	unsigned long flags, len;
2666 	struct rb_node **rb_link, *rb_parent;
2667 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2668 	int error;
2669 
2670 	len = PAGE_ALIGN(request);
2671 	if (len < request)
2672 		return -ENOMEM;
2673 	if (!len)
2674 		return 0;
2675 
2676 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2677 
2678 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2679 	if (offset_in_page(error))
2680 		return error;
2681 
2682 	error = mlock_future_check(mm, mm->def_flags, len);
2683 	if (error)
2684 		return error;
2685 
2686 	/*
2687 	 * mm->mmap_sem is required to protect against another thread
2688 	 * changing the mappings in case we sleep.
2689 	 */
2690 	verify_mm_writelocked(mm);
2691 
2692 	/*
2693 	 * Clear old maps.  this also does some error checking for us
2694 	 */
2695 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2696 			      &rb_parent)) {
2697 		if (do_munmap(mm, addr, len))
2698 			return -ENOMEM;
2699 	}
2700 
2701 	/* Check against address space limits *after* clearing old maps... */
2702 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2703 		return -ENOMEM;
2704 
2705 	if (mm->map_count > sysctl_max_map_count)
2706 		return -ENOMEM;
2707 
2708 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2709 		return -ENOMEM;
2710 
2711 	/* Can we just expand an old private anonymous mapping? */
2712 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2713 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2714 	if (vma)
2715 		goto out;
2716 
2717 	/*
2718 	 * create a vma struct for an anonymous mapping
2719 	 */
2720 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2721 	if (!vma) {
2722 		vm_unacct_memory(len >> PAGE_SHIFT);
2723 		return -ENOMEM;
2724 	}
2725 
2726 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2727 	vma->vm_mm = mm;
2728 	vma->vm_start = addr;
2729 	vma->vm_end = addr + len;
2730 	vma->vm_pgoff = pgoff;
2731 	vma->vm_flags = flags;
2732 	vma->vm_page_prot = vm_get_page_prot(flags);
2733 	vma_link(mm, vma, prev, rb_link, rb_parent);
2734 out:
2735 	perf_event_mmap(vma);
2736 	mm->total_vm += len >> PAGE_SHIFT;
2737 	mm->data_vm += len >> PAGE_SHIFT;
2738 	if (flags & VM_LOCKED)
2739 		mm->locked_vm += (len >> PAGE_SHIFT);
2740 	vma->vm_flags |= VM_SOFTDIRTY;
2741 	return 0;
2742 }
2743 
2744 int vm_brk(unsigned long addr, unsigned long len)
2745 {
2746 	struct mm_struct *mm = current->mm;
2747 	int ret;
2748 	bool populate;
2749 
2750 	if (down_write_killable(&mm->mmap_sem))
2751 		return -EINTR;
2752 
2753 	ret = do_brk(addr, len);
2754 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2755 	up_write(&mm->mmap_sem);
2756 	if (populate && !ret)
2757 		mm_populate(addr, len);
2758 	return ret;
2759 }
2760 EXPORT_SYMBOL(vm_brk);
2761 
2762 /* Release all mmaps. */
2763 void exit_mmap(struct mm_struct *mm)
2764 {
2765 	struct mmu_gather tlb;
2766 	struct vm_area_struct *vma;
2767 	unsigned long nr_accounted = 0;
2768 
2769 	/* mm's last user has gone, and its about to be pulled down */
2770 	mmu_notifier_release(mm);
2771 
2772 	if (mm->locked_vm) {
2773 		vma = mm->mmap;
2774 		while (vma) {
2775 			if (vma->vm_flags & VM_LOCKED)
2776 				munlock_vma_pages_all(vma);
2777 			vma = vma->vm_next;
2778 		}
2779 	}
2780 
2781 	arch_exit_mmap(mm);
2782 
2783 	vma = mm->mmap;
2784 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2785 		return;
2786 
2787 	lru_add_drain();
2788 	flush_cache_mm(mm);
2789 	tlb_gather_mmu(&tlb, mm, 0, -1);
2790 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2791 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2792 	unmap_vmas(&tlb, vma, 0, -1);
2793 
2794 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2795 	tlb_finish_mmu(&tlb, 0, -1);
2796 
2797 	/*
2798 	 * Walk the list again, actually closing and freeing it,
2799 	 * with preemption enabled, without holding any MM locks.
2800 	 */
2801 	while (vma) {
2802 		if (vma->vm_flags & VM_ACCOUNT)
2803 			nr_accounted += vma_pages(vma);
2804 		vma = remove_vma(vma);
2805 	}
2806 	vm_unacct_memory(nr_accounted);
2807 }
2808 
2809 /* Insert vm structure into process list sorted by address
2810  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2811  * then i_mmap_rwsem is taken here.
2812  */
2813 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2814 {
2815 	struct vm_area_struct *prev;
2816 	struct rb_node **rb_link, *rb_parent;
2817 
2818 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2819 			   &prev, &rb_link, &rb_parent))
2820 		return -ENOMEM;
2821 	if ((vma->vm_flags & VM_ACCOUNT) &&
2822 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2823 		return -ENOMEM;
2824 
2825 	/*
2826 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2827 	 * until its first write fault, when page's anon_vma and index
2828 	 * are set.  But now set the vm_pgoff it will almost certainly
2829 	 * end up with (unless mremap moves it elsewhere before that
2830 	 * first wfault), so /proc/pid/maps tells a consistent story.
2831 	 *
2832 	 * By setting it to reflect the virtual start address of the
2833 	 * vma, merges and splits can happen in a seamless way, just
2834 	 * using the existing file pgoff checks and manipulations.
2835 	 * Similarly in do_mmap_pgoff and in do_brk.
2836 	 */
2837 	if (vma_is_anonymous(vma)) {
2838 		BUG_ON(vma->anon_vma);
2839 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2840 	}
2841 
2842 	vma_link(mm, vma, prev, rb_link, rb_parent);
2843 	return 0;
2844 }
2845 
2846 /*
2847  * Copy the vma structure to a new location in the same mm,
2848  * prior to moving page table entries, to effect an mremap move.
2849  */
2850 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2851 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2852 	bool *need_rmap_locks)
2853 {
2854 	struct vm_area_struct *vma = *vmap;
2855 	unsigned long vma_start = vma->vm_start;
2856 	struct mm_struct *mm = vma->vm_mm;
2857 	struct vm_area_struct *new_vma, *prev;
2858 	struct rb_node **rb_link, *rb_parent;
2859 	bool faulted_in_anon_vma = true;
2860 
2861 	/*
2862 	 * If anonymous vma has not yet been faulted, update new pgoff
2863 	 * to match new location, to increase its chance of merging.
2864 	 */
2865 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2866 		pgoff = addr >> PAGE_SHIFT;
2867 		faulted_in_anon_vma = false;
2868 	}
2869 
2870 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2871 		return NULL;	/* should never get here */
2872 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2873 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2874 			    vma->vm_userfaultfd_ctx);
2875 	if (new_vma) {
2876 		/*
2877 		 * Source vma may have been merged into new_vma
2878 		 */
2879 		if (unlikely(vma_start >= new_vma->vm_start &&
2880 			     vma_start < new_vma->vm_end)) {
2881 			/*
2882 			 * The only way we can get a vma_merge with
2883 			 * self during an mremap is if the vma hasn't
2884 			 * been faulted in yet and we were allowed to
2885 			 * reset the dst vma->vm_pgoff to the
2886 			 * destination address of the mremap to allow
2887 			 * the merge to happen. mremap must change the
2888 			 * vm_pgoff linearity between src and dst vmas
2889 			 * (in turn preventing a vma_merge) to be
2890 			 * safe. It is only safe to keep the vm_pgoff
2891 			 * linear if there are no pages mapped yet.
2892 			 */
2893 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2894 			*vmap = vma = new_vma;
2895 		}
2896 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2897 	} else {
2898 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2899 		if (!new_vma)
2900 			goto out;
2901 		*new_vma = *vma;
2902 		new_vma->vm_start = addr;
2903 		new_vma->vm_end = addr + len;
2904 		new_vma->vm_pgoff = pgoff;
2905 		if (vma_dup_policy(vma, new_vma))
2906 			goto out_free_vma;
2907 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2908 		if (anon_vma_clone(new_vma, vma))
2909 			goto out_free_mempol;
2910 		if (new_vma->vm_file)
2911 			get_file(new_vma->vm_file);
2912 		if (new_vma->vm_ops && new_vma->vm_ops->open)
2913 			new_vma->vm_ops->open(new_vma);
2914 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2915 		*need_rmap_locks = false;
2916 	}
2917 	return new_vma;
2918 
2919 out_free_mempol:
2920 	mpol_put(vma_policy(new_vma));
2921 out_free_vma:
2922 	kmem_cache_free(vm_area_cachep, new_vma);
2923 out:
2924 	return NULL;
2925 }
2926 
2927 /*
2928  * Return true if the calling process may expand its vm space by the passed
2929  * number of pages
2930  */
2931 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2932 {
2933 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2934 		return false;
2935 
2936 	if (is_data_mapping(flags) &&
2937 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2938 		/* Workaround for Valgrind */
2939 		if (rlimit(RLIMIT_DATA) == 0 &&
2940 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2941 			return true;
2942 		if (!ignore_rlimit_data) {
2943 			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2944 				     current->comm, current->pid,
2945 				     (mm->data_vm + npages) << PAGE_SHIFT,
2946 				     rlimit(RLIMIT_DATA));
2947 			return false;
2948 		}
2949 	}
2950 
2951 	return true;
2952 }
2953 
2954 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2955 {
2956 	mm->total_vm += npages;
2957 
2958 	if (is_exec_mapping(flags))
2959 		mm->exec_vm += npages;
2960 	else if (is_stack_mapping(flags))
2961 		mm->stack_vm += npages;
2962 	else if (is_data_mapping(flags))
2963 		mm->data_vm += npages;
2964 }
2965 
2966 static int special_mapping_fault(struct vm_area_struct *vma,
2967 				 struct vm_fault *vmf);
2968 
2969 /*
2970  * Having a close hook prevents vma merging regardless of flags.
2971  */
2972 static void special_mapping_close(struct vm_area_struct *vma)
2973 {
2974 }
2975 
2976 static const char *special_mapping_name(struct vm_area_struct *vma)
2977 {
2978 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2979 }
2980 
2981 static int special_mapping_mremap(struct vm_area_struct *new_vma)
2982 {
2983 	struct vm_special_mapping *sm = new_vma->vm_private_data;
2984 
2985 	if (sm->mremap)
2986 		return sm->mremap(sm, new_vma);
2987 	return 0;
2988 }
2989 
2990 static const struct vm_operations_struct special_mapping_vmops = {
2991 	.close = special_mapping_close,
2992 	.fault = special_mapping_fault,
2993 	.mremap = special_mapping_mremap,
2994 	.name = special_mapping_name,
2995 };
2996 
2997 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2998 	.close = special_mapping_close,
2999 	.fault = special_mapping_fault,
3000 };
3001 
3002 static int special_mapping_fault(struct vm_area_struct *vma,
3003 				struct vm_fault *vmf)
3004 {
3005 	pgoff_t pgoff;
3006 	struct page **pages;
3007 
3008 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3009 		pages = vma->vm_private_data;
3010 	} else {
3011 		struct vm_special_mapping *sm = vma->vm_private_data;
3012 
3013 		if (sm->fault)
3014 			return sm->fault(sm, vma, vmf);
3015 
3016 		pages = sm->pages;
3017 	}
3018 
3019 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3020 		pgoff--;
3021 
3022 	if (*pages) {
3023 		struct page *page = *pages;
3024 		get_page(page);
3025 		vmf->page = page;
3026 		return 0;
3027 	}
3028 
3029 	return VM_FAULT_SIGBUS;
3030 }
3031 
3032 static struct vm_area_struct *__install_special_mapping(
3033 	struct mm_struct *mm,
3034 	unsigned long addr, unsigned long len,
3035 	unsigned long vm_flags, void *priv,
3036 	const struct vm_operations_struct *ops)
3037 {
3038 	int ret;
3039 	struct vm_area_struct *vma;
3040 
3041 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3042 	if (unlikely(vma == NULL))
3043 		return ERR_PTR(-ENOMEM);
3044 
3045 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3046 	vma->vm_mm = mm;
3047 	vma->vm_start = addr;
3048 	vma->vm_end = addr + len;
3049 
3050 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3051 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3052 
3053 	vma->vm_ops = ops;
3054 	vma->vm_private_data = priv;
3055 
3056 	ret = insert_vm_struct(mm, vma);
3057 	if (ret)
3058 		goto out;
3059 
3060 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3061 
3062 	perf_event_mmap(vma);
3063 
3064 	return vma;
3065 
3066 out:
3067 	kmem_cache_free(vm_area_cachep, vma);
3068 	return ERR_PTR(ret);
3069 }
3070 
3071 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3072 	const struct vm_special_mapping *sm)
3073 {
3074 	return vma->vm_private_data == sm &&
3075 		(vma->vm_ops == &special_mapping_vmops ||
3076 		 vma->vm_ops == &legacy_special_mapping_vmops);
3077 }
3078 
3079 /*
3080  * Called with mm->mmap_sem held for writing.
3081  * Insert a new vma covering the given region, with the given flags.
3082  * Its pages are supplied by the given array of struct page *.
3083  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3084  * The region past the last page supplied will always produce SIGBUS.
3085  * The array pointer and the pages it points to are assumed to stay alive
3086  * for as long as this mapping might exist.
3087  */
3088 struct vm_area_struct *_install_special_mapping(
3089 	struct mm_struct *mm,
3090 	unsigned long addr, unsigned long len,
3091 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3092 {
3093 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3094 					&special_mapping_vmops);
3095 }
3096 
3097 int install_special_mapping(struct mm_struct *mm,
3098 			    unsigned long addr, unsigned long len,
3099 			    unsigned long vm_flags, struct page **pages)
3100 {
3101 	struct vm_area_struct *vma = __install_special_mapping(
3102 		mm, addr, len, vm_flags, (void *)pages,
3103 		&legacy_special_mapping_vmops);
3104 
3105 	return PTR_ERR_OR_ZERO(vma);
3106 }
3107 
3108 static DEFINE_MUTEX(mm_all_locks_mutex);
3109 
3110 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3111 {
3112 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3113 		/*
3114 		 * The LSB of head.next can't change from under us
3115 		 * because we hold the mm_all_locks_mutex.
3116 		 */
3117 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3118 		/*
3119 		 * We can safely modify head.next after taking the
3120 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3121 		 * the same anon_vma we won't take it again.
3122 		 *
3123 		 * No need of atomic instructions here, head.next
3124 		 * can't change from under us thanks to the
3125 		 * anon_vma->root->rwsem.
3126 		 */
3127 		if (__test_and_set_bit(0, (unsigned long *)
3128 				       &anon_vma->root->rb_root.rb_node))
3129 			BUG();
3130 	}
3131 }
3132 
3133 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3134 {
3135 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3136 		/*
3137 		 * AS_MM_ALL_LOCKS can't change from under us because
3138 		 * we hold the mm_all_locks_mutex.
3139 		 *
3140 		 * Operations on ->flags have to be atomic because
3141 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3142 		 * mm_all_locks_mutex, there may be other cpus
3143 		 * changing other bitflags in parallel to us.
3144 		 */
3145 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3146 			BUG();
3147 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3148 	}
3149 }
3150 
3151 /*
3152  * This operation locks against the VM for all pte/vma/mm related
3153  * operations that could ever happen on a certain mm. This includes
3154  * vmtruncate, try_to_unmap, and all page faults.
3155  *
3156  * The caller must take the mmap_sem in write mode before calling
3157  * mm_take_all_locks(). The caller isn't allowed to release the
3158  * mmap_sem until mm_drop_all_locks() returns.
3159  *
3160  * mmap_sem in write mode is required in order to block all operations
3161  * that could modify pagetables and free pages without need of
3162  * altering the vma layout. It's also needed in write mode to avoid new
3163  * anon_vmas to be associated with existing vmas.
3164  *
3165  * A single task can't take more than one mm_take_all_locks() in a row
3166  * or it would deadlock.
3167  *
3168  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3169  * mapping->flags avoid to take the same lock twice, if more than one
3170  * vma in this mm is backed by the same anon_vma or address_space.
3171  *
3172  * We take locks in following order, accordingly to comment at beginning
3173  * of mm/rmap.c:
3174  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3175  *     hugetlb mapping);
3176  *   - all i_mmap_rwsem locks;
3177  *   - all anon_vma->rwseml
3178  *
3179  * We can take all locks within these types randomly because the VM code
3180  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3181  * mm_all_locks_mutex.
3182  *
3183  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3184  * that may have to take thousand of locks.
3185  *
3186  * mm_take_all_locks() can fail if it's interrupted by signals.
3187  */
3188 int mm_take_all_locks(struct mm_struct *mm)
3189 {
3190 	struct vm_area_struct *vma;
3191 	struct anon_vma_chain *avc;
3192 
3193 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3194 
3195 	mutex_lock(&mm_all_locks_mutex);
3196 
3197 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3198 		if (signal_pending(current))
3199 			goto out_unlock;
3200 		if (vma->vm_file && vma->vm_file->f_mapping &&
3201 				is_vm_hugetlb_page(vma))
3202 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3203 	}
3204 
3205 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3206 		if (signal_pending(current))
3207 			goto out_unlock;
3208 		if (vma->vm_file && vma->vm_file->f_mapping &&
3209 				!is_vm_hugetlb_page(vma))
3210 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3211 	}
3212 
3213 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3214 		if (signal_pending(current))
3215 			goto out_unlock;
3216 		if (vma->anon_vma)
3217 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3218 				vm_lock_anon_vma(mm, avc->anon_vma);
3219 	}
3220 
3221 	return 0;
3222 
3223 out_unlock:
3224 	mm_drop_all_locks(mm);
3225 	return -EINTR;
3226 }
3227 
3228 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3229 {
3230 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3231 		/*
3232 		 * The LSB of head.next can't change to 0 from under
3233 		 * us because we hold the mm_all_locks_mutex.
3234 		 *
3235 		 * We must however clear the bitflag before unlocking
3236 		 * the vma so the users using the anon_vma->rb_root will
3237 		 * never see our bitflag.
3238 		 *
3239 		 * No need of atomic instructions here, head.next
3240 		 * can't change from under us until we release the
3241 		 * anon_vma->root->rwsem.
3242 		 */
3243 		if (!__test_and_clear_bit(0, (unsigned long *)
3244 					  &anon_vma->root->rb_root.rb_node))
3245 			BUG();
3246 		anon_vma_unlock_write(anon_vma);
3247 	}
3248 }
3249 
3250 static void vm_unlock_mapping(struct address_space *mapping)
3251 {
3252 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3253 		/*
3254 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3255 		 * because we hold the mm_all_locks_mutex.
3256 		 */
3257 		i_mmap_unlock_write(mapping);
3258 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3259 					&mapping->flags))
3260 			BUG();
3261 	}
3262 }
3263 
3264 /*
3265  * The mmap_sem cannot be released by the caller until
3266  * mm_drop_all_locks() returns.
3267  */
3268 void mm_drop_all_locks(struct mm_struct *mm)
3269 {
3270 	struct vm_area_struct *vma;
3271 	struct anon_vma_chain *avc;
3272 
3273 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3274 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3275 
3276 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3277 		if (vma->anon_vma)
3278 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3279 				vm_unlock_anon_vma(avc->anon_vma);
3280 		if (vma->vm_file && vma->vm_file->f_mapping)
3281 			vm_unlock_mapping(vma->vm_file->f_mapping);
3282 	}
3283 
3284 	mutex_unlock(&mm_all_locks_mutex);
3285 }
3286 
3287 /*
3288  * initialise the VMA slab
3289  */
3290 void __init mmap_init(void)
3291 {
3292 	int ret;
3293 
3294 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3295 	VM_BUG_ON(ret);
3296 }
3297 
3298 /*
3299  * Initialise sysctl_user_reserve_kbytes.
3300  *
3301  * This is intended to prevent a user from starting a single memory hogging
3302  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3303  * mode.
3304  *
3305  * The default value is min(3% of free memory, 128MB)
3306  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3307  */
3308 static int init_user_reserve(void)
3309 {
3310 	unsigned long free_kbytes;
3311 
3312 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3313 
3314 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3315 	return 0;
3316 }
3317 subsys_initcall(init_user_reserve);
3318 
3319 /*
3320  * Initialise sysctl_admin_reserve_kbytes.
3321  *
3322  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3323  * to log in and kill a memory hogging process.
3324  *
3325  * Systems with more than 256MB will reserve 8MB, enough to recover
3326  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3327  * only reserve 3% of free pages by default.
3328  */
3329 static int init_admin_reserve(void)
3330 {
3331 	unsigned long free_kbytes;
3332 
3333 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3334 
3335 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3336 	return 0;
3337 }
3338 subsys_initcall(init_admin_reserve);
3339 
3340 /*
3341  * Reinititalise user and admin reserves if memory is added or removed.
3342  *
3343  * The default user reserve max is 128MB, and the default max for the
3344  * admin reserve is 8MB. These are usually, but not always, enough to
3345  * enable recovery from a memory hogging process using login/sshd, a shell,
3346  * and tools like top. It may make sense to increase or even disable the
3347  * reserve depending on the existence of swap or variations in the recovery
3348  * tools. So, the admin may have changed them.
3349  *
3350  * If memory is added and the reserves have been eliminated or increased above
3351  * the default max, then we'll trust the admin.
3352  *
3353  * If memory is removed and there isn't enough free memory, then we
3354  * need to reset the reserves.
3355  *
3356  * Otherwise keep the reserve set by the admin.
3357  */
3358 static int reserve_mem_notifier(struct notifier_block *nb,
3359 			     unsigned long action, void *data)
3360 {
3361 	unsigned long tmp, free_kbytes;
3362 
3363 	switch (action) {
3364 	case MEM_ONLINE:
3365 		/* Default max is 128MB. Leave alone if modified by operator. */
3366 		tmp = sysctl_user_reserve_kbytes;
3367 		if (0 < tmp && tmp < (1UL << 17))
3368 			init_user_reserve();
3369 
3370 		/* Default max is 8MB.  Leave alone if modified by operator. */
3371 		tmp = sysctl_admin_reserve_kbytes;
3372 		if (0 < tmp && tmp < (1UL << 13))
3373 			init_admin_reserve();
3374 
3375 		break;
3376 	case MEM_OFFLINE:
3377 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3378 
3379 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3380 			init_user_reserve();
3381 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3382 				sysctl_user_reserve_kbytes);
3383 		}
3384 
3385 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3386 			init_admin_reserve();
3387 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3388 				sysctl_admin_reserve_kbytes);
3389 		}
3390 		break;
3391 	default:
3392 		break;
3393 	}
3394 	return NOTIFY_OK;
3395 }
3396 
3397 static struct notifier_block reserve_mem_nb = {
3398 	.notifier_call = reserve_mem_notifier,
3399 };
3400 
3401 static int __meminit init_reserve_notifier(void)
3402 {
3403 	if (register_hotmemory_notifier(&reserve_mem_nb))
3404 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3405 
3406 	return 0;
3407 }
3408 subsys_initcall(init_reserve_notifier);
3409