xref: /linux/mm/mempolicy.c (revision 64fc2a947a9873700929ec0ef02b4654a04e0476)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97 
98 #include <asm/tlbflush.h>
99 #include <linux/uaccess.h>
100 
101 #include "internal.h"
102 
103 /* Internal flags */
104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
106 
107 static struct kmem_cache *policy_cache;
108 static struct kmem_cache *sn_cache;
109 
110 /* Highest zone. An specific allocation for a zone below that is not
111    policied. */
112 enum zone_type policy_zone = 0;
113 
114 /*
115  * run-time system-wide default policy => local allocation
116  */
117 static struct mempolicy default_policy = {
118 	.refcnt = ATOMIC_INIT(1), /* never free it */
119 	.mode = MPOL_PREFERRED,
120 	.flags = MPOL_F_LOCAL,
121 };
122 
123 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
124 
125 struct mempolicy *get_task_policy(struct task_struct *p)
126 {
127 	struct mempolicy *pol = p->mempolicy;
128 	int node;
129 
130 	if (pol)
131 		return pol;
132 
133 	node = numa_node_id();
134 	if (node != NUMA_NO_NODE) {
135 		pol = &preferred_node_policy[node];
136 		/* preferred_node_policy is not initialised early in boot */
137 		if (pol->mode)
138 			return pol;
139 	}
140 
141 	return &default_policy;
142 }
143 
144 static const struct mempolicy_operations {
145 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 	/*
147 	 * If read-side task has no lock to protect task->mempolicy, write-side
148 	 * task will rebind the task->mempolicy by two step. The first step is
149 	 * setting all the newly nodes, and the second step is cleaning all the
150 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 	 * page.
152 	 * If we have a lock to protect task->mempolicy in read-side, we do
153 	 * rebind directly.
154 	 *
155 	 * step:
156 	 * 	MPOL_REBIND_ONCE - do rebind work at once
157 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
158 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 	 */
160 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 			enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163 
164 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
165 {
166 	return pol->flags & MPOL_MODE_FLAGS;
167 }
168 
169 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
170 				   const nodemask_t *rel)
171 {
172 	nodemask_t tmp;
173 	nodes_fold(tmp, *orig, nodes_weight(*rel));
174 	nodes_onto(*ret, tmp, *rel);
175 }
176 
177 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
178 {
179 	if (nodes_empty(*nodes))
180 		return -EINVAL;
181 	pol->v.nodes = *nodes;
182 	return 0;
183 }
184 
185 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
186 {
187 	if (!nodes)
188 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
189 	else if (nodes_empty(*nodes))
190 		return -EINVAL;			/*  no allowed nodes */
191 	else
192 		pol->v.preferred_node = first_node(*nodes);
193 	return 0;
194 }
195 
196 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
197 {
198 	if (nodes_empty(*nodes))
199 		return -EINVAL;
200 	pol->v.nodes = *nodes;
201 	return 0;
202 }
203 
204 /*
205  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
206  * any, for the new policy.  mpol_new() has already validated the nodes
207  * parameter with respect to the policy mode and flags.  But, we need to
208  * handle an empty nodemask with MPOL_PREFERRED here.
209  *
210  * Must be called holding task's alloc_lock to protect task's mems_allowed
211  * and mempolicy.  May also be called holding the mmap_semaphore for write.
212  */
213 static int mpol_set_nodemask(struct mempolicy *pol,
214 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
215 {
216 	int ret;
217 
218 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
219 	if (pol == NULL)
220 		return 0;
221 	/* Check N_MEMORY */
222 	nodes_and(nsc->mask1,
223 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
224 
225 	VM_BUG_ON(!nodes);
226 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
227 		nodes = NULL;	/* explicit local allocation */
228 	else {
229 		if (pol->flags & MPOL_F_RELATIVE_NODES)
230 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
231 		else
232 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
233 
234 		if (mpol_store_user_nodemask(pol))
235 			pol->w.user_nodemask = *nodes;
236 		else
237 			pol->w.cpuset_mems_allowed =
238 						cpuset_current_mems_allowed;
239 	}
240 
241 	if (nodes)
242 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
243 	else
244 		ret = mpol_ops[pol->mode].create(pol, NULL);
245 	return ret;
246 }
247 
248 /*
249  * This function just creates a new policy, does some check and simple
250  * initialization. You must invoke mpol_set_nodemask() to set nodes.
251  */
252 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
253 				  nodemask_t *nodes)
254 {
255 	struct mempolicy *policy;
256 
257 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
258 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
259 
260 	if (mode == MPOL_DEFAULT) {
261 		if (nodes && !nodes_empty(*nodes))
262 			return ERR_PTR(-EINVAL);
263 		return NULL;
264 	}
265 	VM_BUG_ON(!nodes);
266 
267 	/*
268 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
269 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
270 	 * All other modes require a valid pointer to a non-empty nodemask.
271 	 */
272 	if (mode == MPOL_PREFERRED) {
273 		if (nodes_empty(*nodes)) {
274 			if (((flags & MPOL_F_STATIC_NODES) ||
275 			     (flags & MPOL_F_RELATIVE_NODES)))
276 				return ERR_PTR(-EINVAL);
277 		}
278 	} else if (mode == MPOL_LOCAL) {
279 		if (!nodes_empty(*nodes) ||
280 		    (flags & MPOL_F_STATIC_NODES) ||
281 		    (flags & MPOL_F_RELATIVE_NODES))
282 			return ERR_PTR(-EINVAL);
283 		mode = MPOL_PREFERRED;
284 	} else if (nodes_empty(*nodes))
285 		return ERR_PTR(-EINVAL);
286 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
287 	if (!policy)
288 		return ERR_PTR(-ENOMEM);
289 	atomic_set(&policy->refcnt, 1);
290 	policy->mode = mode;
291 	policy->flags = flags;
292 
293 	return policy;
294 }
295 
296 /* Slow path of a mpol destructor. */
297 void __mpol_put(struct mempolicy *p)
298 {
299 	if (!atomic_dec_and_test(&p->refcnt))
300 		return;
301 	kmem_cache_free(policy_cache, p);
302 }
303 
304 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
305 				enum mpol_rebind_step step)
306 {
307 }
308 
309 /*
310  * step:
311  * 	MPOL_REBIND_ONCE  - do rebind work at once
312  * 	MPOL_REBIND_STEP1 - set all the newly nodes
313  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
314  */
315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
316 				 enum mpol_rebind_step step)
317 {
318 	nodemask_t tmp;
319 
320 	if (pol->flags & MPOL_F_STATIC_NODES)
321 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
322 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
323 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
324 	else {
325 		/*
326 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
327 		 * result
328 		 */
329 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
330 			nodes_remap(tmp, pol->v.nodes,
331 					pol->w.cpuset_mems_allowed, *nodes);
332 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
333 		} else if (step == MPOL_REBIND_STEP2) {
334 			tmp = pol->w.cpuset_mems_allowed;
335 			pol->w.cpuset_mems_allowed = *nodes;
336 		} else
337 			BUG();
338 	}
339 
340 	if (nodes_empty(tmp))
341 		tmp = *nodes;
342 
343 	if (step == MPOL_REBIND_STEP1)
344 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
345 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
346 		pol->v.nodes = tmp;
347 	else
348 		BUG();
349 
350 	if (!node_isset(current->il_next, tmp)) {
351 		current->il_next = next_node_in(current->il_next, tmp);
352 		if (current->il_next >= MAX_NUMNODES)
353 			current->il_next = numa_node_id();
354 	}
355 }
356 
357 static void mpol_rebind_preferred(struct mempolicy *pol,
358 				  const nodemask_t *nodes,
359 				  enum mpol_rebind_step step)
360 {
361 	nodemask_t tmp;
362 
363 	if (pol->flags & MPOL_F_STATIC_NODES) {
364 		int node = first_node(pol->w.user_nodemask);
365 
366 		if (node_isset(node, *nodes)) {
367 			pol->v.preferred_node = node;
368 			pol->flags &= ~MPOL_F_LOCAL;
369 		} else
370 			pol->flags |= MPOL_F_LOCAL;
371 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
372 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
373 		pol->v.preferred_node = first_node(tmp);
374 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
375 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
376 						   pol->w.cpuset_mems_allowed,
377 						   *nodes);
378 		pol->w.cpuset_mems_allowed = *nodes;
379 	}
380 }
381 
382 /*
383  * mpol_rebind_policy - Migrate a policy to a different set of nodes
384  *
385  * If read-side task has no lock to protect task->mempolicy, write-side
386  * task will rebind the task->mempolicy by two step. The first step is
387  * setting all the newly nodes, and the second step is cleaning all the
388  * disallowed nodes. In this way, we can avoid finding no node to alloc
389  * page.
390  * If we have a lock to protect task->mempolicy in read-side, we do
391  * rebind directly.
392  *
393  * step:
394  * 	MPOL_REBIND_ONCE  - do rebind work at once
395  * 	MPOL_REBIND_STEP1 - set all the newly nodes
396  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
397  */
398 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
399 				enum mpol_rebind_step step)
400 {
401 	if (!pol)
402 		return;
403 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
404 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
405 		return;
406 
407 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
408 		return;
409 
410 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
411 		BUG();
412 
413 	if (step == MPOL_REBIND_STEP1)
414 		pol->flags |= MPOL_F_REBINDING;
415 	else if (step == MPOL_REBIND_STEP2)
416 		pol->flags &= ~MPOL_F_REBINDING;
417 	else if (step >= MPOL_REBIND_NSTEP)
418 		BUG();
419 
420 	mpol_ops[pol->mode].rebind(pol, newmask, step);
421 }
422 
423 /*
424  * Wrapper for mpol_rebind_policy() that just requires task
425  * pointer, and updates task mempolicy.
426  *
427  * Called with task's alloc_lock held.
428  */
429 
430 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
431 			enum mpol_rebind_step step)
432 {
433 	mpol_rebind_policy(tsk->mempolicy, new, step);
434 }
435 
436 /*
437  * Rebind each vma in mm to new nodemask.
438  *
439  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
440  */
441 
442 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
443 {
444 	struct vm_area_struct *vma;
445 
446 	down_write(&mm->mmap_sem);
447 	for (vma = mm->mmap; vma; vma = vma->vm_next)
448 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
449 	up_write(&mm->mmap_sem);
450 }
451 
452 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
453 	[MPOL_DEFAULT] = {
454 		.rebind = mpol_rebind_default,
455 	},
456 	[MPOL_INTERLEAVE] = {
457 		.create = mpol_new_interleave,
458 		.rebind = mpol_rebind_nodemask,
459 	},
460 	[MPOL_PREFERRED] = {
461 		.create = mpol_new_preferred,
462 		.rebind = mpol_rebind_preferred,
463 	},
464 	[MPOL_BIND] = {
465 		.create = mpol_new_bind,
466 		.rebind = mpol_rebind_nodemask,
467 	},
468 };
469 
470 static void migrate_page_add(struct page *page, struct list_head *pagelist,
471 				unsigned long flags);
472 
473 struct queue_pages {
474 	struct list_head *pagelist;
475 	unsigned long flags;
476 	nodemask_t *nmask;
477 	struct vm_area_struct *prev;
478 };
479 
480 /*
481  * Scan through pages checking if pages follow certain conditions,
482  * and move them to the pagelist if they do.
483  */
484 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
485 			unsigned long end, struct mm_walk *walk)
486 {
487 	struct vm_area_struct *vma = walk->vma;
488 	struct page *page;
489 	struct queue_pages *qp = walk->private;
490 	unsigned long flags = qp->flags;
491 	int nid, ret;
492 	pte_t *pte;
493 	spinlock_t *ptl;
494 
495 	if (pmd_trans_huge(*pmd)) {
496 		ptl = pmd_lock(walk->mm, pmd);
497 		if (pmd_trans_huge(*pmd)) {
498 			page = pmd_page(*pmd);
499 			if (is_huge_zero_page(page)) {
500 				spin_unlock(ptl);
501 				__split_huge_pmd(vma, pmd, addr, false, NULL);
502 			} else {
503 				get_page(page);
504 				spin_unlock(ptl);
505 				lock_page(page);
506 				ret = split_huge_page(page);
507 				unlock_page(page);
508 				put_page(page);
509 				if (ret)
510 					return 0;
511 			}
512 		} else {
513 			spin_unlock(ptl);
514 		}
515 	}
516 
517 	if (pmd_trans_unstable(pmd))
518 		return 0;
519 retry:
520 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 	for (; addr != end; pte++, addr += PAGE_SIZE) {
522 		if (!pte_present(*pte))
523 			continue;
524 		page = vm_normal_page(vma, addr, *pte);
525 		if (!page)
526 			continue;
527 		/*
528 		 * vm_normal_page() filters out zero pages, but there might
529 		 * still be PageReserved pages to skip, perhaps in a VDSO.
530 		 */
531 		if (PageReserved(page))
532 			continue;
533 		nid = page_to_nid(page);
534 		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
535 			continue;
536 		if (PageTransCompound(page)) {
537 			get_page(page);
538 			pte_unmap_unlock(pte, ptl);
539 			lock_page(page);
540 			ret = split_huge_page(page);
541 			unlock_page(page);
542 			put_page(page);
543 			/* Failed to split -- skip. */
544 			if (ret) {
545 				pte = pte_offset_map_lock(walk->mm, pmd,
546 						addr, &ptl);
547 				continue;
548 			}
549 			goto retry;
550 		}
551 
552 		migrate_page_add(page, qp->pagelist, flags);
553 	}
554 	pte_unmap_unlock(pte - 1, ptl);
555 	cond_resched();
556 	return 0;
557 }
558 
559 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
560 			       unsigned long addr, unsigned long end,
561 			       struct mm_walk *walk)
562 {
563 #ifdef CONFIG_HUGETLB_PAGE
564 	struct queue_pages *qp = walk->private;
565 	unsigned long flags = qp->flags;
566 	int nid;
567 	struct page *page;
568 	spinlock_t *ptl;
569 	pte_t entry;
570 
571 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
572 	entry = huge_ptep_get(pte);
573 	if (!pte_present(entry))
574 		goto unlock;
575 	page = pte_page(entry);
576 	nid = page_to_nid(page);
577 	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
578 		goto unlock;
579 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
580 	if (flags & (MPOL_MF_MOVE_ALL) ||
581 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
582 		isolate_huge_page(page, qp->pagelist);
583 unlock:
584 	spin_unlock(ptl);
585 #else
586 	BUG();
587 #endif
588 	return 0;
589 }
590 
591 #ifdef CONFIG_NUMA_BALANCING
592 /*
593  * This is used to mark a range of virtual addresses to be inaccessible.
594  * These are later cleared by a NUMA hinting fault. Depending on these
595  * faults, pages may be migrated for better NUMA placement.
596  *
597  * This is assuming that NUMA faults are handled using PROT_NONE. If
598  * an architecture makes a different choice, it will need further
599  * changes to the core.
600  */
601 unsigned long change_prot_numa(struct vm_area_struct *vma,
602 			unsigned long addr, unsigned long end)
603 {
604 	int nr_updated;
605 
606 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
607 	if (nr_updated)
608 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
609 
610 	return nr_updated;
611 }
612 #else
613 static unsigned long change_prot_numa(struct vm_area_struct *vma,
614 			unsigned long addr, unsigned long end)
615 {
616 	return 0;
617 }
618 #endif /* CONFIG_NUMA_BALANCING */
619 
620 static int queue_pages_test_walk(unsigned long start, unsigned long end,
621 				struct mm_walk *walk)
622 {
623 	struct vm_area_struct *vma = walk->vma;
624 	struct queue_pages *qp = walk->private;
625 	unsigned long endvma = vma->vm_end;
626 	unsigned long flags = qp->flags;
627 
628 	if (!vma_migratable(vma))
629 		return 1;
630 
631 	if (endvma > end)
632 		endvma = end;
633 	if (vma->vm_start > start)
634 		start = vma->vm_start;
635 
636 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
637 		if (!vma->vm_next && vma->vm_end < end)
638 			return -EFAULT;
639 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
640 			return -EFAULT;
641 	}
642 
643 	qp->prev = vma;
644 
645 	if (flags & MPOL_MF_LAZY) {
646 		/* Similar to task_numa_work, skip inaccessible VMAs */
647 		if (!is_vm_hugetlb_page(vma) &&
648 			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
649 			!(vma->vm_flags & VM_MIXEDMAP))
650 			change_prot_numa(vma, start, endvma);
651 		return 1;
652 	}
653 
654 	/* queue pages from current vma */
655 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
656 		return 0;
657 	return 1;
658 }
659 
660 /*
661  * Walk through page tables and collect pages to be migrated.
662  *
663  * If pages found in a given range are on a set of nodes (determined by
664  * @nodes and @flags,) it's isolated and queued to the pagelist which is
665  * passed via @private.)
666  */
667 static int
668 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
669 		nodemask_t *nodes, unsigned long flags,
670 		struct list_head *pagelist)
671 {
672 	struct queue_pages qp = {
673 		.pagelist = pagelist,
674 		.flags = flags,
675 		.nmask = nodes,
676 		.prev = NULL,
677 	};
678 	struct mm_walk queue_pages_walk = {
679 		.hugetlb_entry = queue_pages_hugetlb,
680 		.pmd_entry = queue_pages_pte_range,
681 		.test_walk = queue_pages_test_walk,
682 		.mm = mm,
683 		.private = &qp,
684 	};
685 
686 	return walk_page_range(start, end, &queue_pages_walk);
687 }
688 
689 /*
690  * Apply policy to a single VMA
691  * This must be called with the mmap_sem held for writing.
692  */
693 static int vma_replace_policy(struct vm_area_struct *vma,
694 						struct mempolicy *pol)
695 {
696 	int err;
697 	struct mempolicy *old;
698 	struct mempolicy *new;
699 
700 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
701 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
702 		 vma->vm_ops, vma->vm_file,
703 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
704 
705 	new = mpol_dup(pol);
706 	if (IS_ERR(new))
707 		return PTR_ERR(new);
708 
709 	if (vma->vm_ops && vma->vm_ops->set_policy) {
710 		err = vma->vm_ops->set_policy(vma, new);
711 		if (err)
712 			goto err_out;
713 	}
714 
715 	old = vma->vm_policy;
716 	vma->vm_policy = new; /* protected by mmap_sem */
717 	mpol_put(old);
718 
719 	return 0;
720  err_out:
721 	mpol_put(new);
722 	return err;
723 }
724 
725 /* Step 2: apply policy to a range and do splits. */
726 static int mbind_range(struct mm_struct *mm, unsigned long start,
727 		       unsigned long end, struct mempolicy *new_pol)
728 {
729 	struct vm_area_struct *next;
730 	struct vm_area_struct *prev;
731 	struct vm_area_struct *vma;
732 	int err = 0;
733 	pgoff_t pgoff;
734 	unsigned long vmstart;
735 	unsigned long vmend;
736 
737 	vma = find_vma(mm, start);
738 	if (!vma || vma->vm_start > start)
739 		return -EFAULT;
740 
741 	prev = vma->vm_prev;
742 	if (start > vma->vm_start)
743 		prev = vma;
744 
745 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
746 		next = vma->vm_next;
747 		vmstart = max(start, vma->vm_start);
748 		vmend   = min(end, vma->vm_end);
749 
750 		if (mpol_equal(vma_policy(vma), new_pol))
751 			continue;
752 
753 		pgoff = vma->vm_pgoff +
754 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
755 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
756 				 vma->anon_vma, vma->vm_file, pgoff,
757 				 new_pol, vma->vm_userfaultfd_ctx);
758 		if (prev) {
759 			vma = prev;
760 			next = vma->vm_next;
761 			if (mpol_equal(vma_policy(vma), new_pol))
762 				continue;
763 			/* vma_merge() joined vma && vma->next, case 8 */
764 			goto replace;
765 		}
766 		if (vma->vm_start != vmstart) {
767 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
768 			if (err)
769 				goto out;
770 		}
771 		if (vma->vm_end != vmend) {
772 			err = split_vma(vma->vm_mm, vma, vmend, 0);
773 			if (err)
774 				goto out;
775 		}
776  replace:
777 		err = vma_replace_policy(vma, new_pol);
778 		if (err)
779 			goto out;
780 	}
781 
782  out:
783 	return err;
784 }
785 
786 /* Set the process memory policy */
787 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
788 			     nodemask_t *nodes)
789 {
790 	struct mempolicy *new, *old;
791 	NODEMASK_SCRATCH(scratch);
792 	int ret;
793 
794 	if (!scratch)
795 		return -ENOMEM;
796 
797 	new = mpol_new(mode, flags, nodes);
798 	if (IS_ERR(new)) {
799 		ret = PTR_ERR(new);
800 		goto out;
801 	}
802 
803 	task_lock(current);
804 	ret = mpol_set_nodemask(new, nodes, scratch);
805 	if (ret) {
806 		task_unlock(current);
807 		mpol_put(new);
808 		goto out;
809 	}
810 	old = current->mempolicy;
811 	current->mempolicy = new;
812 	if (new && new->mode == MPOL_INTERLEAVE &&
813 	    nodes_weight(new->v.nodes))
814 		current->il_next = first_node(new->v.nodes);
815 	task_unlock(current);
816 	mpol_put(old);
817 	ret = 0;
818 out:
819 	NODEMASK_SCRATCH_FREE(scratch);
820 	return ret;
821 }
822 
823 /*
824  * Return nodemask for policy for get_mempolicy() query
825  *
826  * Called with task's alloc_lock held
827  */
828 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
829 {
830 	nodes_clear(*nodes);
831 	if (p == &default_policy)
832 		return;
833 
834 	switch (p->mode) {
835 	case MPOL_BIND:
836 		/* Fall through */
837 	case MPOL_INTERLEAVE:
838 		*nodes = p->v.nodes;
839 		break;
840 	case MPOL_PREFERRED:
841 		if (!(p->flags & MPOL_F_LOCAL))
842 			node_set(p->v.preferred_node, *nodes);
843 		/* else return empty node mask for local allocation */
844 		break;
845 	default:
846 		BUG();
847 	}
848 }
849 
850 static int lookup_node(unsigned long addr)
851 {
852 	struct page *p;
853 	int err;
854 
855 	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
856 	if (err >= 0) {
857 		err = page_to_nid(p);
858 		put_page(p);
859 	}
860 	return err;
861 }
862 
863 /* Retrieve NUMA policy */
864 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
865 			     unsigned long addr, unsigned long flags)
866 {
867 	int err;
868 	struct mm_struct *mm = current->mm;
869 	struct vm_area_struct *vma = NULL;
870 	struct mempolicy *pol = current->mempolicy;
871 
872 	if (flags &
873 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
874 		return -EINVAL;
875 
876 	if (flags & MPOL_F_MEMS_ALLOWED) {
877 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
878 			return -EINVAL;
879 		*policy = 0;	/* just so it's initialized */
880 		task_lock(current);
881 		*nmask  = cpuset_current_mems_allowed;
882 		task_unlock(current);
883 		return 0;
884 	}
885 
886 	if (flags & MPOL_F_ADDR) {
887 		/*
888 		 * Do NOT fall back to task policy if the
889 		 * vma/shared policy at addr is NULL.  We
890 		 * want to return MPOL_DEFAULT in this case.
891 		 */
892 		down_read(&mm->mmap_sem);
893 		vma = find_vma_intersection(mm, addr, addr+1);
894 		if (!vma) {
895 			up_read(&mm->mmap_sem);
896 			return -EFAULT;
897 		}
898 		if (vma->vm_ops && vma->vm_ops->get_policy)
899 			pol = vma->vm_ops->get_policy(vma, addr);
900 		else
901 			pol = vma->vm_policy;
902 	} else if (addr)
903 		return -EINVAL;
904 
905 	if (!pol)
906 		pol = &default_policy;	/* indicates default behavior */
907 
908 	if (flags & MPOL_F_NODE) {
909 		if (flags & MPOL_F_ADDR) {
910 			err = lookup_node(addr);
911 			if (err < 0)
912 				goto out;
913 			*policy = err;
914 		} else if (pol == current->mempolicy &&
915 				pol->mode == MPOL_INTERLEAVE) {
916 			*policy = current->il_next;
917 		} else {
918 			err = -EINVAL;
919 			goto out;
920 		}
921 	} else {
922 		*policy = pol == &default_policy ? MPOL_DEFAULT :
923 						pol->mode;
924 		/*
925 		 * Internal mempolicy flags must be masked off before exposing
926 		 * the policy to userspace.
927 		 */
928 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
929 	}
930 
931 	if (vma) {
932 		up_read(&current->mm->mmap_sem);
933 		vma = NULL;
934 	}
935 
936 	err = 0;
937 	if (nmask) {
938 		if (mpol_store_user_nodemask(pol)) {
939 			*nmask = pol->w.user_nodemask;
940 		} else {
941 			task_lock(current);
942 			get_policy_nodemask(pol, nmask);
943 			task_unlock(current);
944 		}
945 	}
946 
947  out:
948 	mpol_cond_put(pol);
949 	if (vma)
950 		up_read(&current->mm->mmap_sem);
951 	return err;
952 }
953 
954 #ifdef CONFIG_MIGRATION
955 /*
956  * page migration
957  */
958 static void migrate_page_add(struct page *page, struct list_head *pagelist,
959 				unsigned long flags)
960 {
961 	/*
962 	 * Avoid migrating a page that is shared with others.
963 	 */
964 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
965 		if (!isolate_lru_page(page)) {
966 			list_add_tail(&page->lru, pagelist);
967 			inc_node_page_state(page, NR_ISOLATED_ANON +
968 					    page_is_file_cache(page));
969 		}
970 	}
971 }
972 
973 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
974 {
975 	if (PageHuge(page))
976 		return alloc_huge_page_node(page_hstate(compound_head(page)),
977 					node);
978 	else
979 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
980 						    __GFP_THISNODE, 0);
981 }
982 
983 /*
984  * Migrate pages from one node to a target node.
985  * Returns error or the number of pages not migrated.
986  */
987 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
988 			   int flags)
989 {
990 	nodemask_t nmask;
991 	LIST_HEAD(pagelist);
992 	int err = 0;
993 
994 	nodes_clear(nmask);
995 	node_set(source, nmask);
996 
997 	/*
998 	 * This does not "check" the range but isolates all pages that
999 	 * need migration.  Between passing in the full user address
1000 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1001 	 */
1002 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1003 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1004 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1005 
1006 	if (!list_empty(&pagelist)) {
1007 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1008 					MIGRATE_SYNC, MR_SYSCALL);
1009 		if (err)
1010 			putback_movable_pages(&pagelist);
1011 	}
1012 
1013 	return err;
1014 }
1015 
1016 /*
1017  * Move pages between the two nodesets so as to preserve the physical
1018  * layout as much as possible.
1019  *
1020  * Returns the number of page that could not be moved.
1021  */
1022 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1023 		     const nodemask_t *to, int flags)
1024 {
1025 	int busy = 0;
1026 	int err;
1027 	nodemask_t tmp;
1028 
1029 	err = migrate_prep();
1030 	if (err)
1031 		return err;
1032 
1033 	down_read(&mm->mmap_sem);
1034 
1035 	/*
1036 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1037 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1038 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1039 	 * The pair of nodemasks 'to' and 'from' define the map.
1040 	 *
1041 	 * If no pair of bits is found that way, fallback to picking some
1042 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1043 	 * 'source' and 'dest' bits are the same, this represents a node
1044 	 * that will be migrating to itself, so no pages need move.
1045 	 *
1046 	 * If no bits are left in 'tmp', or if all remaining bits left
1047 	 * in 'tmp' correspond to the same bit in 'to', return false
1048 	 * (nothing left to migrate).
1049 	 *
1050 	 * This lets us pick a pair of nodes to migrate between, such that
1051 	 * if possible the dest node is not already occupied by some other
1052 	 * source node, minimizing the risk of overloading the memory on a
1053 	 * node that would happen if we migrated incoming memory to a node
1054 	 * before migrating outgoing memory source that same node.
1055 	 *
1056 	 * A single scan of tmp is sufficient.  As we go, we remember the
1057 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1058 	 * that not only moved, but what's better, moved to an empty slot
1059 	 * (d is not set in tmp), then we break out then, with that pair.
1060 	 * Otherwise when we finish scanning from_tmp, we at least have the
1061 	 * most recent <s, d> pair that moved.  If we get all the way through
1062 	 * the scan of tmp without finding any node that moved, much less
1063 	 * moved to an empty node, then there is nothing left worth migrating.
1064 	 */
1065 
1066 	tmp = *from;
1067 	while (!nodes_empty(tmp)) {
1068 		int s,d;
1069 		int source = NUMA_NO_NODE;
1070 		int dest = 0;
1071 
1072 		for_each_node_mask(s, tmp) {
1073 
1074 			/*
1075 			 * do_migrate_pages() tries to maintain the relative
1076 			 * node relationship of the pages established between
1077 			 * threads and memory areas.
1078                          *
1079 			 * However if the number of source nodes is not equal to
1080 			 * the number of destination nodes we can not preserve
1081 			 * this node relative relationship.  In that case, skip
1082 			 * copying memory from a node that is in the destination
1083 			 * mask.
1084 			 *
1085 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1086 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1087 			 */
1088 
1089 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1090 						(node_isset(s, *to)))
1091 				continue;
1092 
1093 			d = node_remap(s, *from, *to);
1094 			if (s == d)
1095 				continue;
1096 
1097 			source = s;	/* Node moved. Memorize */
1098 			dest = d;
1099 
1100 			/* dest not in remaining from nodes? */
1101 			if (!node_isset(dest, tmp))
1102 				break;
1103 		}
1104 		if (source == NUMA_NO_NODE)
1105 			break;
1106 
1107 		node_clear(source, tmp);
1108 		err = migrate_to_node(mm, source, dest, flags);
1109 		if (err > 0)
1110 			busy += err;
1111 		if (err < 0)
1112 			break;
1113 	}
1114 	up_read(&mm->mmap_sem);
1115 	if (err < 0)
1116 		return err;
1117 	return busy;
1118 
1119 }
1120 
1121 /*
1122  * Allocate a new page for page migration based on vma policy.
1123  * Start by assuming the page is mapped by the same vma as contains @start.
1124  * Search forward from there, if not.  N.B., this assumes that the
1125  * list of pages handed to migrate_pages()--which is how we get here--
1126  * is in virtual address order.
1127  */
1128 static struct page *new_page(struct page *page, unsigned long start, int **x)
1129 {
1130 	struct vm_area_struct *vma;
1131 	unsigned long uninitialized_var(address);
1132 
1133 	vma = find_vma(current->mm, start);
1134 	while (vma) {
1135 		address = page_address_in_vma(page, vma);
1136 		if (address != -EFAULT)
1137 			break;
1138 		vma = vma->vm_next;
1139 	}
1140 
1141 	if (PageHuge(page)) {
1142 		BUG_ON(!vma);
1143 		return alloc_huge_page_noerr(vma, address, 1);
1144 	}
1145 	/*
1146 	 * if !vma, alloc_page_vma() will use task or system default policy
1147 	 */
1148 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1149 }
1150 #else
1151 
1152 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1153 				unsigned long flags)
1154 {
1155 }
1156 
1157 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1158 		     const nodemask_t *to, int flags)
1159 {
1160 	return -ENOSYS;
1161 }
1162 
1163 static struct page *new_page(struct page *page, unsigned long start, int **x)
1164 {
1165 	return NULL;
1166 }
1167 #endif
1168 
1169 static long do_mbind(unsigned long start, unsigned long len,
1170 		     unsigned short mode, unsigned short mode_flags,
1171 		     nodemask_t *nmask, unsigned long flags)
1172 {
1173 	struct mm_struct *mm = current->mm;
1174 	struct mempolicy *new;
1175 	unsigned long end;
1176 	int err;
1177 	LIST_HEAD(pagelist);
1178 
1179 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1180 		return -EINVAL;
1181 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1182 		return -EPERM;
1183 
1184 	if (start & ~PAGE_MASK)
1185 		return -EINVAL;
1186 
1187 	if (mode == MPOL_DEFAULT)
1188 		flags &= ~MPOL_MF_STRICT;
1189 
1190 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1191 	end = start + len;
1192 
1193 	if (end < start)
1194 		return -EINVAL;
1195 	if (end == start)
1196 		return 0;
1197 
1198 	new = mpol_new(mode, mode_flags, nmask);
1199 	if (IS_ERR(new))
1200 		return PTR_ERR(new);
1201 
1202 	if (flags & MPOL_MF_LAZY)
1203 		new->flags |= MPOL_F_MOF;
1204 
1205 	/*
1206 	 * If we are using the default policy then operation
1207 	 * on discontinuous address spaces is okay after all
1208 	 */
1209 	if (!new)
1210 		flags |= MPOL_MF_DISCONTIG_OK;
1211 
1212 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1213 		 start, start + len, mode, mode_flags,
1214 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1215 
1216 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1217 
1218 		err = migrate_prep();
1219 		if (err)
1220 			goto mpol_out;
1221 	}
1222 	{
1223 		NODEMASK_SCRATCH(scratch);
1224 		if (scratch) {
1225 			down_write(&mm->mmap_sem);
1226 			task_lock(current);
1227 			err = mpol_set_nodemask(new, nmask, scratch);
1228 			task_unlock(current);
1229 			if (err)
1230 				up_write(&mm->mmap_sem);
1231 		} else
1232 			err = -ENOMEM;
1233 		NODEMASK_SCRATCH_FREE(scratch);
1234 	}
1235 	if (err)
1236 		goto mpol_out;
1237 
1238 	err = queue_pages_range(mm, start, end, nmask,
1239 			  flags | MPOL_MF_INVERT, &pagelist);
1240 	if (!err)
1241 		err = mbind_range(mm, start, end, new);
1242 
1243 	if (!err) {
1244 		int nr_failed = 0;
1245 
1246 		if (!list_empty(&pagelist)) {
1247 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1248 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1249 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1250 			if (nr_failed)
1251 				putback_movable_pages(&pagelist);
1252 		}
1253 
1254 		if (nr_failed && (flags & MPOL_MF_STRICT))
1255 			err = -EIO;
1256 	} else
1257 		putback_movable_pages(&pagelist);
1258 
1259 	up_write(&mm->mmap_sem);
1260  mpol_out:
1261 	mpol_put(new);
1262 	return err;
1263 }
1264 
1265 /*
1266  * User space interface with variable sized bitmaps for nodelists.
1267  */
1268 
1269 /* Copy a node mask from user space. */
1270 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1271 		     unsigned long maxnode)
1272 {
1273 	unsigned long k;
1274 	unsigned long nlongs;
1275 	unsigned long endmask;
1276 
1277 	--maxnode;
1278 	nodes_clear(*nodes);
1279 	if (maxnode == 0 || !nmask)
1280 		return 0;
1281 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1282 		return -EINVAL;
1283 
1284 	nlongs = BITS_TO_LONGS(maxnode);
1285 	if ((maxnode % BITS_PER_LONG) == 0)
1286 		endmask = ~0UL;
1287 	else
1288 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1289 
1290 	/* When the user specified more nodes than supported just check
1291 	   if the non supported part is all zero. */
1292 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1293 		if (nlongs > PAGE_SIZE/sizeof(long))
1294 			return -EINVAL;
1295 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1296 			unsigned long t;
1297 			if (get_user(t, nmask + k))
1298 				return -EFAULT;
1299 			if (k == nlongs - 1) {
1300 				if (t & endmask)
1301 					return -EINVAL;
1302 			} else if (t)
1303 				return -EINVAL;
1304 		}
1305 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1306 		endmask = ~0UL;
1307 	}
1308 
1309 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1310 		return -EFAULT;
1311 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1312 	return 0;
1313 }
1314 
1315 /* Copy a kernel node mask to user space */
1316 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1317 			      nodemask_t *nodes)
1318 {
1319 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1320 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1321 
1322 	if (copy > nbytes) {
1323 		if (copy > PAGE_SIZE)
1324 			return -EINVAL;
1325 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1326 			return -EFAULT;
1327 		copy = nbytes;
1328 	}
1329 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1330 }
1331 
1332 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1333 		unsigned long, mode, const unsigned long __user *, nmask,
1334 		unsigned long, maxnode, unsigned, flags)
1335 {
1336 	nodemask_t nodes;
1337 	int err;
1338 	unsigned short mode_flags;
1339 
1340 	mode_flags = mode & MPOL_MODE_FLAGS;
1341 	mode &= ~MPOL_MODE_FLAGS;
1342 	if (mode >= MPOL_MAX)
1343 		return -EINVAL;
1344 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1345 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1346 		return -EINVAL;
1347 	err = get_nodes(&nodes, nmask, maxnode);
1348 	if (err)
1349 		return err;
1350 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1351 }
1352 
1353 /* Set the process memory policy */
1354 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1355 		unsigned long, maxnode)
1356 {
1357 	int err;
1358 	nodemask_t nodes;
1359 	unsigned short flags;
1360 
1361 	flags = mode & MPOL_MODE_FLAGS;
1362 	mode &= ~MPOL_MODE_FLAGS;
1363 	if ((unsigned int)mode >= MPOL_MAX)
1364 		return -EINVAL;
1365 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1366 		return -EINVAL;
1367 	err = get_nodes(&nodes, nmask, maxnode);
1368 	if (err)
1369 		return err;
1370 	return do_set_mempolicy(mode, flags, &nodes);
1371 }
1372 
1373 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1374 		const unsigned long __user *, old_nodes,
1375 		const unsigned long __user *, new_nodes)
1376 {
1377 	const struct cred *cred = current_cred(), *tcred;
1378 	struct mm_struct *mm = NULL;
1379 	struct task_struct *task;
1380 	nodemask_t task_nodes;
1381 	int err;
1382 	nodemask_t *old;
1383 	nodemask_t *new;
1384 	NODEMASK_SCRATCH(scratch);
1385 
1386 	if (!scratch)
1387 		return -ENOMEM;
1388 
1389 	old = &scratch->mask1;
1390 	new = &scratch->mask2;
1391 
1392 	err = get_nodes(old, old_nodes, maxnode);
1393 	if (err)
1394 		goto out;
1395 
1396 	err = get_nodes(new, new_nodes, maxnode);
1397 	if (err)
1398 		goto out;
1399 
1400 	/* Find the mm_struct */
1401 	rcu_read_lock();
1402 	task = pid ? find_task_by_vpid(pid) : current;
1403 	if (!task) {
1404 		rcu_read_unlock();
1405 		err = -ESRCH;
1406 		goto out;
1407 	}
1408 	get_task_struct(task);
1409 
1410 	err = -EINVAL;
1411 
1412 	/*
1413 	 * Check if this process has the right to modify the specified
1414 	 * process. The right exists if the process has administrative
1415 	 * capabilities, superuser privileges or the same
1416 	 * userid as the target process.
1417 	 */
1418 	tcred = __task_cred(task);
1419 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1420 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1421 	    !capable(CAP_SYS_NICE)) {
1422 		rcu_read_unlock();
1423 		err = -EPERM;
1424 		goto out_put;
1425 	}
1426 	rcu_read_unlock();
1427 
1428 	task_nodes = cpuset_mems_allowed(task);
1429 	/* Is the user allowed to access the target nodes? */
1430 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1431 		err = -EPERM;
1432 		goto out_put;
1433 	}
1434 
1435 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1436 		err = -EINVAL;
1437 		goto out_put;
1438 	}
1439 
1440 	err = security_task_movememory(task);
1441 	if (err)
1442 		goto out_put;
1443 
1444 	mm = get_task_mm(task);
1445 	put_task_struct(task);
1446 
1447 	if (!mm) {
1448 		err = -EINVAL;
1449 		goto out;
1450 	}
1451 
1452 	err = do_migrate_pages(mm, old, new,
1453 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1454 
1455 	mmput(mm);
1456 out:
1457 	NODEMASK_SCRATCH_FREE(scratch);
1458 
1459 	return err;
1460 
1461 out_put:
1462 	put_task_struct(task);
1463 	goto out;
1464 
1465 }
1466 
1467 
1468 /* Retrieve NUMA policy */
1469 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1470 		unsigned long __user *, nmask, unsigned long, maxnode,
1471 		unsigned long, addr, unsigned long, flags)
1472 {
1473 	int err;
1474 	int uninitialized_var(pval);
1475 	nodemask_t nodes;
1476 
1477 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1478 		return -EINVAL;
1479 
1480 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1481 
1482 	if (err)
1483 		return err;
1484 
1485 	if (policy && put_user(pval, policy))
1486 		return -EFAULT;
1487 
1488 	if (nmask)
1489 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1490 
1491 	return err;
1492 }
1493 
1494 #ifdef CONFIG_COMPAT
1495 
1496 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1497 		       compat_ulong_t __user *, nmask,
1498 		       compat_ulong_t, maxnode,
1499 		       compat_ulong_t, addr, compat_ulong_t, flags)
1500 {
1501 	long err;
1502 	unsigned long __user *nm = NULL;
1503 	unsigned long nr_bits, alloc_size;
1504 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1505 
1506 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1507 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1508 
1509 	if (nmask)
1510 		nm = compat_alloc_user_space(alloc_size);
1511 
1512 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1513 
1514 	if (!err && nmask) {
1515 		unsigned long copy_size;
1516 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1517 		err = copy_from_user(bm, nm, copy_size);
1518 		/* ensure entire bitmap is zeroed */
1519 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1520 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1521 	}
1522 
1523 	return err;
1524 }
1525 
1526 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1527 		       compat_ulong_t, maxnode)
1528 {
1529 	long err = 0;
1530 	unsigned long __user *nm = NULL;
1531 	unsigned long nr_bits, alloc_size;
1532 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1533 
1534 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1535 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1536 
1537 	if (nmask) {
1538 		err = compat_get_bitmap(bm, nmask, nr_bits);
1539 		nm = compat_alloc_user_space(alloc_size);
1540 		err |= copy_to_user(nm, bm, alloc_size);
1541 	}
1542 
1543 	if (err)
1544 		return -EFAULT;
1545 
1546 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1547 }
1548 
1549 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1550 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1551 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1552 {
1553 	long err = 0;
1554 	unsigned long __user *nm = NULL;
1555 	unsigned long nr_bits, alloc_size;
1556 	nodemask_t bm;
1557 
1558 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1559 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1560 
1561 	if (nmask) {
1562 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1563 		nm = compat_alloc_user_space(alloc_size);
1564 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1565 	}
1566 
1567 	if (err)
1568 		return -EFAULT;
1569 
1570 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1571 }
1572 
1573 #endif
1574 
1575 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1576 						unsigned long addr)
1577 {
1578 	struct mempolicy *pol = NULL;
1579 
1580 	if (vma) {
1581 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1582 			pol = vma->vm_ops->get_policy(vma, addr);
1583 		} else if (vma->vm_policy) {
1584 			pol = vma->vm_policy;
1585 
1586 			/*
1587 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1588 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1589 			 * count on these policies which will be dropped by
1590 			 * mpol_cond_put() later
1591 			 */
1592 			if (mpol_needs_cond_ref(pol))
1593 				mpol_get(pol);
1594 		}
1595 	}
1596 
1597 	return pol;
1598 }
1599 
1600 /*
1601  * get_vma_policy(@vma, @addr)
1602  * @vma: virtual memory area whose policy is sought
1603  * @addr: address in @vma for shared policy lookup
1604  *
1605  * Returns effective policy for a VMA at specified address.
1606  * Falls back to current->mempolicy or system default policy, as necessary.
1607  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1608  * count--added by the get_policy() vm_op, as appropriate--to protect against
1609  * freeing by another task.  It is the caller's responsibility to free the
1610  * extra reference for shared policies.
1611  */
1612 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1613 						unsigned long addr)
1614 {
1615 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1616 
1617 	if (!pol)
1618 		pol = get_task_policy(current);
1619 
1620 	return pol;
1621 }
1622 
1623 bool vma_policy_mof(struct vm_area_struct *vma)
1624 {
1625 	struct mempolicy *pol;
1626 
1627 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1628 		bool ret = false;
1629 
1630 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1631 		if (pol && (pol->flags & MPOL_F_MOF))
1632 			ret = true;
1633 		mpol_cond_put(pol);
1634 
1635 		return ret;
1636 	}
1637 
1638 	pol = vma->vm_policy;
1639 	if (!pol)
1640 		pol = get_task_policy(current);
1641 
1642 	return pol->flags & MPOL_F_MOF;
1643 }
1644 
1645 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1646 {
1647 	enum zone_type dynamic_policy_zone = policy_zone;
1648 
1649 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1650 
1651 	/*
1652 	 * if policy->v.nodes has movable memory only,
1653 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1654 	 *
1655 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1656 	 * so if the following test faile, it implies
1657 	 * policy->v.nodes has movable memory only.
1658 	 */
1659 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1660 		dynamic_policy_zone = ZONE_MOVABLE;
1661 
1662 	return zone >= dynamic_policy_zone;
1663 }
1664 
1665 /*
1666  * Return a nodemask representing a mempolicy for filtering nodes for
1667  * page allocation
1668  */
1669 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1670 {
1671 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1672 	if (unlikely(policy->mode == MPOL_BIND) &&
1673 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1674 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1675 		return &policy->v.nodes;
1676 
1677 	return NULL;
1678 }
1679 
1680 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1681 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1682 	int nd)
1683 {
1684 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1685 		nd = policy->v.preferred_node;
1686 	else {
1687 		/*
1688 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1689 		 * because we might easily break the expectation to stay on the
1690 		 * requested node and not break the policy.
1691 		 */
1692 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1693 	}
1694 
1695 	return node_zonelist(nd, gfp);
1696 }
1697 
1698 /* Do dynamic interleaving for a process */
1699 static unsigned interleave_nodes(struct mempolicy *policy)
1700 {
1701 	unsigned nid, next;
1702 	struct task_struct *me = current;
1703 
1704 	nid = me->il_next;
1705 	next = next_node_in(nid, policy->v.nodes);
1706 	if (next < MAX_NUMNODES)
1707 		me->il_next = next;
1708 	return nid;
1709 }
1710 
1711 /*
1712  * Depending on the memory policy provide a node from which to allocate the
1713  * next slab entry.
1714  */
1715 unsigned int mempolicy_slab_node(void)
1716 {
1717 	struct mempolicy *policy;
1718 	int node = numa_mem_id();
1719 
1720 	if (in_interrupt())
1721 		return node;
1722 
1723 	policy = current->mempolicy;
1724 	if (!policy || policy->flags & MPOL_F_LOCAL)
1725 		return node;
1726 
1727 	switch (policy->mode) {
1728 	case MPOL_PREFERRED:
1729 		/*
1730 		 * handled MPOL_F_LOCAL above
1731 		 */
1732 		return policy->v.preferred_node;
1733 
1734 	case MPOL_INTERLEAVE:
1735 		return interleave_nodes(policy);
1736 
1737 	case MPOL_BIND: {
1738 		struct zoneref *z;
1739 
1740 		/*
1741 		 * Follow bind policy behavior and start allocation at the
1742 		 * first node.
1743 		 */
1744 		struct zonelist *zonelist;
1745 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1746 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1747 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1748 							&policy->v.nodes);
1749 		return z->zone ? z->zone->node : node;
1750 	}
1751 
1752 	default:
1753 		BUG();
1754 	}
1755 }
1756 
1757 /*
1758  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1759  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1760  * number of present nodes.
1761  */
1762 static unsigned offset_il_node(struct mempolicy *pol,
1763 			       struct vm_area_struct *vma, unsigned long n)
1764 {
1765 	unsigned nnodes = nodes_weight(pol->v.nodes);
1766 	unsigned target;
1767 	int i;
1768 	int nid;
1769 
1770 	if (!nnodes)
1771 		return numa_node_id();
1772 	target = (unsigned int)n % nnodes;
1773 	nid = first_node(pol->v.nodes);
1774 	for (i = 0; i < target; i++)
1775 		nid = next_node(nid, pol->v.nodes);
1776 	return nid;
1777 }
1778 
1779 /* Determine a node number for interleave */
1780 static inline unsigned interleave_nid(struct mempolicy *pol,
1781 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1782 {
1783 	if (vma) {
1784 		unsigned long off;
1785 
1786 		/*
1787 		 * for small pages, there is no difference between
1788 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1789 		 * for huge pages, since vm_pgoff is in units of small
1790 		 * pages, we need to shift off the always 0 bits to get
1791 		 * a useful offset.
1792 		 */
1793 		BUG_ON(shift < PAGE_SHIFT);
1794 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1795 		off += (addr - vma->vm_start) >> shift;
1796 		return offset_il_node(pol, vma, off);
1797 	} else
1798 		return interleave_nodes(pol);
1799 }
1800 
1801 #ifdef CONFIG_HUGETLBFS
1802 /*
1803  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1804  * @vma: virtual memory area whose policy is sought
1805  * @addr: address in @vma for shared policy lookup and interleave policy
1806  * @gfp_flags: for requested zone
1807  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1808  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1809  *
1810  * Returns a zonelist suitable for a huge page allocation and a pointer
1811  * to the struct mempolicy for conditional unref after allocation.
1812  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1813  * @nodemask for filtering the zonelist.
1814  *
1815  * Must be protected by read_mems_allowed_begin()
1816  */
1817 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1818 				gfp_t gfp_flags, struct mempolicy **mpol,
1819 				nodemask_t **nodemask)
1820 {
1821 	struct zonelist *zl;
1822 
1823 	*mpol = get_vma_policy(vma, addr);
1824 	*nodemask = NULL;	/* assume !MPOL_BIND */
1825 
1826 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1827 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1828 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1829 	} else {
1830 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1831 		if ((*mpol)->mode == MPOL_BIND)
1832 			*nodemask = &(*mpol)->v.nodes;
1833 	}
1834 	return zl;
1835 }
1836 
1837 /*
1838  * init_nodemask_of_mempolicy
1839  *
1840  * If the current task's mempolicy is "default" [NULL], return 'false'
1841  * to indicate default policy.  Otherwise, extract the policy nodemask
1842  * for 'bind' or 'interleave' policy into the argument nodemask, or
1843  * initialize the argument nodemask to contain the single node for
1844  * 'preferred' or 'local' policy and return 'true' to indicate presence
1845  * of non-default mempolicy.
1846  *
1847  * We don't bother with reference counting the mempolicy [mpol_get/put]
1848  * because the current task is examining it's own mempolicy and a task's
1849  * mempolicy is only ever changed by the task itself.
1850  *
1851  * N.B., it is the caller's responsibility to free a returned nodemask.
1852  */
1853 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1854 {
1855 	struct mempolicy *mempolicy;
1856 	int nid;
1857 
1858 	if (!(mask && current->mempolicy))
1859 		return false;
1860 
1861 	task_lock(current);
1862 	mempolicy = current->mempolicy;
1863 	switch (mempolicy->mode) {
1864 	case MPOL_PREFERRED:
1865 		if (mempolicy->flags & MPOL_F_LOCAL)
1866 			nid = numa_node_id();
1867 		else
1868 			nid = mempolicy->v.preferred_node;
1869 		init_nodemask_of_node(mask, nid);
1870 		break;
1871 
1872 	case MPOL_BIND:
1873 		/* Fall through */
1874 	case MPOL_INTERLEAVE:
1875 		*mask =  mempolicy->v.nodes;
1876 		break;
1877 
1878 	default:
1879 		BUG();
1880 	}
1881 	task_unlock(current);
1882 
1883 	return true;
1884 }
1885 #endif
1886 
1887 /*
1888  * mempolicy_nodemask_intersects
1889  *
1890  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1891  * policy.  Otherwise, check for intersection between mask and the policy
1892  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1893  * policy, always return true since it may allocate elsewhere on fallback.
1894  *
1895  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1896  */
1897 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1898 					const nodemask_t *mask)
1899 {
1900 	struct mempolicy *mempolicy;
1901 	bool ret = true;
1902 
1903 	if (!mask)
1904 		return ret;
1905 	task_lock(tsk);
1906 	mempolicy = tsk->mempolicy;
1907 	if (!mempolicy)
1908 		goto out;
1909 
1910 	switch (mempolicy->mode) {
1911 	case MPOL_PREFERRED:
1912 		/*
1913 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1914 		 * allocate from, they may fallback to other nodes when oom.
1915 		 * Thus, it's possible for tsk to have allocated memory from
1916 		 * nodes in mask.
1917 		 */
1918 		break;
1919 	case MPOL_BIND:
1920 	case MPOL_INTERLEAVE:
1921 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1922 		break;
1923 	default:
1924 		BUG();
1925 	}
1926 out:
1927 	task_unlock(tsk);
1928 	return ret;
1929 }
1930 
1931 /* Allocate a page in interleaved policy.
1932    Own path because it needs to do special accounting. */
1933 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1934 					unsigned nid)
1935 {
1936 	struct zonelist *zl;
1937 	struct page *page;
1938 
1939 	zl = node_zonelist(nid, gfp);
1940 	page = __alloc_pages(gfp, order, zl);
1941 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1942 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1943 	return page;
1944 }
1945 
1946 /**
1947  * 	alloc_pages_vma	- Allocate a page for a VMA.
1948  *
1949  * 	@gfp:
1950  *      %GFP_USER    user allocation.
1951  *      %GFP_KERNEL  kernel allocations,
1952  *      %GFP_HIGHMEM highmem/user allocations,
1953  *      %GFP_FS      allocation should not call back into a file system.
1954  *      %GFP_ATOMIC  don't sleep.
1955  *
1956  *	@order:Order of the GFP allocation.
1957  * 	@vma:  Pointer to VMA or NULL if not available.
1958  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1959  *	@node: Which node to prefer for allocation (modulo policy).
1960  *	@hugepage: for hugepages try only the preferred node if possible
1961  *
1962  * 	This function allocates a page from the kernel page pool and applies
1963  *	a NUMA policy associated with the VMA or the current process.
1964  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1965  *	mm_struct of the VMA to prevent it from going away. Should be used for
1966  *	all allocations for pages that will be mapped into user space. Returns
1967  *	NULL when no page can be allocated.
1968  */
1969 struct page *
1970 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1971 		unsigned long addr, int node, bool hugepage)
1972 {
1973 	struct mempolicy *pol;
1974 	struct page *page;
1975 	unsigned int cpuset_mems_cookie;
1976 	struct zonelist *zl;
1977 	nodemask_t *nmask;
1978 
1979 retry_cpuset:
1980 	pol = get_vma_policy(vma, addr);
1981 	cpuset_mems_cookie = read_mems_allowed_begin();
1982 
1983 	if (pol->mode == MPOL_INTERLEAVE) {
1984 		unsigned nid;
1985 
1986 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1987 		mpol_cond_put(pol);
1988 		page = alloc_page_interleave(gfp, order, nid);
1989 		goto out;
1990 	}
1991 
1992 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1993 		int hpage_node = node;
1994 
1995 		/*
1996 		 * For hugepage allocation and non-interleave policy which
1997 		 * allows the current node (or other explicitly preferred
1998 		 * node) we only try to allocate from the current/preferred
1999 		 * node and don't fall back to other nodes, as the cost of
2000 		 * remote accesses would likely offset THP benefits.
2001 		 *
2002 		 * If the policy is interleave, or does not allow the current
2003 		 * node in its nodemask, we allocate the standard way.
2004 		 */
2005 		if (pol->mode == MPOL_PREFERRED &&
2006 						!(pol->flags & MPOL_F_LOCAL))
2007 			hpage_node = pol->v.preferred_node;
2008 
2009 		nmask = policy_nodemask(gfp, pol);
2010 		if (!nmask || node_isset(hpage_node, *nmask)) {
2011 			mpol_cond_put(pol);
2012 			page = __alloc_pages_node(hpage_node,
2013 						gfp | __GFP_THISNODE, order);
2014 			goto out;
2015 		}
2016 	}
2017 
2018 	nmask = policy_nodemask(gfp, pol);
2019 	zl = policy_zonelist(gfp, pol, node);
2020 	mpol_cond_put(pol);
2021 	page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2022 out:
2023 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2024 		goto retry_cpuset;
2025 	return page;
2026 }
2027 
2028 /**
2029  * 	alloc_pages_current - Allocate pages.
2030  *
2031  *	@gfp:
2032  *		%GFP_USER   user allocation,
2033  *      	%GFP_KERNEL kernel allocation,
2034  *      	%GFP_HIGHMEM highmem allocation,
2035  *      	%GFP_FS     don't call back into a file system.
2036  *      	%GFP_ATOMIC don't sleep.
2037  *	@order: Power of two of allocation size in pages. 0 is a single page.
2038  *
2039  *	Allocate a page from the kernel page pool.  When not in
2040  *	interrupt context and apply the current process NUMA policy.
2041  *	Returns NULL when no page can be allocated.
2042  *
2043  *	Don't call cpuset_update_task_memory_state() unless
2044  *	1) it's ok to take cpuset_sem (can WAIT), and
2045  *	2) allocating for current task (not interrupt).
2046  */
2047 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2048 {
2049 	struct mempolicy *pol = &default_policy;
2050 	struct page *page;
2051 	unsigned int cpuset_mems_cookie;
2052 
2053 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2054 		pol = get_task_policy(current);
2055 
2056 retry_cpuset:
2057 	cpuset_mems_cookie = read_mems_allowed_begin();
2058 
2059 	/*
2060 	 * No reference counting needed for current->mempolicy
2061 	 * nor system default_policy
2062 	 */
2063 	if (pol->mode == MPOL_INTERLEAVE)
2064 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2065 	else
2066 		page = __alloc_pages_nodemask(gfp, order,
2067 				policy_zonelist(gfp, pol, numa_node_id()),
2068 				policy_nodemask(gfp, pol));
2069 
2070 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2071 		goto retry_cpuset;
2072 
2073 	return page;
2074 }
2075 EXPORT_SYMBOL(alloc_pages_current);
2076 
2077 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2078 {
2079 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2080 
2081 	if (IS_ERR(pol))
2082 		return PTR_ERR(pol);
2083 	dst->vm_policy = pol;
2084 	return 0;
2085 }
2086 
2087 /*
2088  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2089  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2090  * with the mems_allowed returned by cpuset_mems_allowed().  This
2091  * keeps mempolicies cpuset relative after its cpuset moves.  See
2092  * further kernel/cpuset.c update_nodemask().
2093  *
2094  * current's mempolicy may be rebinded by the other task(the task that changes
2095  * cpuset's mems), so we needn't do rebind work for current task.
2096  */
2097 
2098 /* Slow path of a mempolicy duplicate */
2099 struct mempolicy *__mpol_dup(struct mempolicy *old)
2100 {
2101 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2102 
2103 	if (!new)
2104 		return ERR_PTR(-ENOMEM);
2105 
2106 	/* task's mempolicy is protected by alloc_lock */
2107 	if (old == current->mempolicy) {
2108 		task_lock(current);
2109 		*new = *old;
2110 		task_unlock(current);
2111 	} else
2112 		*new = *old;
2113 
2114 	if (current_cpuset_is_being_rebound()) {
2115 		nodemask_t mems = cpuset_mems_allowed(current);
2116 		if (new->flags & MPOL_F_REBINDING)
2117 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2118 		else
2119 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2120 	}
2121 	atomic_set(&new->refcnt, 1);
2122 	return new;
2123 }
2124 
2125 /* Slow path of a mempolicy comparison */
2126 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2127 {
2128 	if (!a || !b)
2129 		return false;
2130 	if (a->mode != b->mode)
2131 		return false;
2132 	if (a->flags != b->flags)
2133 		return false;
2134 	if (mpol_store_user_nodemask(a))
2135 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2136 			return false;
2137 
2138 	switch (a->mode) {
2139 	case MPOL_BIND:
2140 		/* Fall through */
2141 	case MPOL_INTERLEAVE:
2142 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2143 	case MPOL_PREFERRED:
2144 		return a->v.preferred_node == b->v.preferred_node;
2145 	default:
2146 		BUG();
2147 		return false;
2148 	}
2149 }
2150 
2151 /*
2152  * Shared memory backing store policy support.
2153  *
2154  * Remember policies even when nobody has shared memory mapped.
2155  * The policies are kept in Red-Black tree linked from the inode.
2156  * They are protected by the sp->lock rwlock, which should be held
2157  * for any accesses to the tree.
2158  */
2159 
2160 /*
2161  * lookup first element intersecting start-end.  Caller holds sp->lock for
2162  * reading or for writing
2163  */
2164 static struct sp_node *
2165 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2166 {
2167 	struct rb_node *n = sp->root.rb_node;
2168 
2169 	while (n) {
2170 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2171 
2172 		if (start >= p->end)
2173 			n = n->rb_right;
2174 		else if (end <= p->start)
2175 			n = n->rb_left;
2176 		else
2177 			break;
2178 	}
2179 	if (!n)
2180 		return NULL;
2181 	for (;;) {
2182 		struct sp_node *w = NULL;
2183 		struct rb_node *prev = rb_prev(n);
2184 		if (!prev)
2185 			break;
2186 		w = rb_entry(prev, struct sp_node, nd);
2187 		if (w->end <= start)
2188 			break;
2189 		n = prev;
2190 	}
2191 	return rb_entry(n, struct sp_node, nd);
2192 }
2193 
2194 /*
2195  * Insert a new shared policy into the list.  Caller holds sp->lock for
2196  * writing.
2197  */
2198 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2199 {
2200 	struct rb_node **p = &sp->root.rb_node;
2201 	struct rb_node *parent = NULL;
2202 	struct sp_node *nd;
2203 
2204 	while (*p) {
2205 		parent = *p;
2206 		nd = rb_entry(parent, struct sp_node, nd);
2207 		if (new->start < nd->start)
2208 			p = &(*p)->rb_left;
2209 		else if (new->end > nd->end)
2210 			p = &(*p)->rb_right;
2211 		else
2212 			BUG();
2213 	}
2214 	rb_link_node(&new->nd, parent, p);
2215 	rb_insert_color(&new->nd, &sp->root);
2216 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2217 		 new->policy ? new->policy->mode : 0);
2218 }
2219 
2220 /* Find shared policy intersecting idx */
2221 struct mempolicy *
2222 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2223 {
2224 	struct mempolicy *pol = NULL;
2225 	struct sp_node *sn;
2226 
2227 	if (!sp->root.rb_node)
2228 		return NULL;
2229 	read_lock(&sp->lock);
2230 	sn = sp_lookup(sp, idx, idx+1);
2231 	if (sn) {
2232 		mpol_get(sn->policy);
2233 		pol = sn->policy;
2234 	}
2235 	read_unlock(&sp->lock);
2236 	return pol;
2237 }
2238 
2239 static void sp_free(struct sp_node *n)
2240 {
2241 	mpol_put(n->policy);
2242 	kmem_cache_free(sn_cache, n);
2243 }
2244 
2245 /**
2246  * mpol_misplaced - check whether current page node is valid in policy
2247  *
2248  * @page: page to be checked
2249  * @vma: vm area where page mapped
2250  * @addr: virtual address where page mapped
2251  *
2252  * Lookup current policy node id for vma,addr and "compare to" page's
2253  * node id.
2254  *
2255  * Returns:
2256  *	-1	- not misplaced, page is in the right node
2257  *	node	- node id where the page should be
2258  *
2259  * Policy determination "mimics" alloc_page_vma().
2260  * Called from fault path where we know the vma and faulting address.
2261  */
2262 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2263 {
2264 	struct mempolicy *pol;
2265 	struct zoneref *z;
2266 	int curnid = page_to_nid(page);
2267 	unsigned long pgoff;
2268 	int thiscpu = raw_smp_processor_id();
2269 	int thisnid = cpu_to_node(thiscpu);
2270 	int polnid = -1;
2271 	int ret = -1;
2272 
2273 	BUG_ON(!vma);
2274 
2275 	pol = get_vma_policy(vma, addr);
2276 	if (!(pol->flags & MPOL_F_MOF))
2277 		goto out;
2278 
2279 	switch (pol->mode) {
2280 	case MPOL_INTERLEAVE:
2281 		BUG_ON(addr >= vma->vm_end);
2282 		BUG_ON(addr < vma->vm_start);
2283 
2284 		pgoff = vma->vm_pgoff;
2285 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2286 		polnid = offset_il_node(pol, vma, pgoff);
2287 		break;
2288 
2289 	case MPOL_PREFERRED:
2290 		if (pol->flags & MPOL_F_LOCAL)
2291 			polnid = numa_node_id();
2292 		else
2293 			polnid = pol->v.preferred_node;
2294 		break;
2295 
2296 	case MPOL_BIND:
2297 
2298 		/*
2299 		 * allows binding to multiple nodes.
2300 		 * use current page if in policy nodemask,
2301 		 * else select nearest allowed node, if any.
2302 		 * If no allowed nodes, use current [!misplaced].
2303 		 */
2304 		if (node_isset(curnid, pol->v.nodes))
2305 			goto out;
2306 		z = first_zones_zonelist(
2307 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2308 				gfp_zone(GFP_HIGHUSER),
2309 				&pol->v.nodes);
2310 		polnid = z->zone->node;
2311 		break;
2312 
2313 	default:
2314 		BUG();
2315 	}
2316 
2317 	/* Migrate the page towards the node whose CPU is referencing it */
2318 	if (pol->flags & MPOL_F_MORON) {
2319 		polnid = thisnid;
2320 
2321 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2322 			goto out;
2323 	}
2324 
2325 	if (curnid != polnid)
2326 		ret = polnid;
2327 out:
2328 	mpol_cond_put(pol);
2329 
2330 	return ret;
2331 }
2332 
2333 /*
2334  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2335  * dropped after task->mempolicy is set to NULL so that any allocation done as
2336  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2337  * policy.
2338  */
2339 void mpol_put_task_policy(struct task_struct *task)
2340 {
2341 	struct mempolicy *pol;
2342 
2343 	task_lock(task);
2344 	pol = task->mempolicy;
2345 	task->mempolicy = NULL;
2346 	task_unlock(task);
2347 	mpol_put(pol);
2348 }
2349 
2350 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2351 {
2352 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2353 	rb_erase(&n->nd, &sp->root);
2354 	sp_free(n);
2355 }
2356 
2357 static void sp_node_init(struct sp_node *node, unsigned long start,
2358 			unsigned long end, struct mempolicy *pol)
2359 {
2360 	node->start = start;
2361 	node->end = end;
2362 	node->policy = pol;
2363 }
2364 
2365 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2366 				struct mempolicy *pol)
2367 {
2368 	struct sp_node *n;
2369 	struct mempolicy *newpol;
2370 
2371 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2372 	if (!n)
2373 		return NULL;
2374 
2375 	newpol = mpol_dup(pol);
2376 	if (IS_ERR(newpol)) {
2377 		kmem_cache_free(sn_cache, n);
2378 		return NULL;
2379 	}
2380 	newpol->flags |= MPOL_F_SHARED;
2381 	sp_node_init(n, start, end, newpol);
2382 
2383 	return n;
2384 }
2385 
2386 /* Replace a policy range. */
2387 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2388 				 unsigned long end, struct sp_node *new)
2389 {
2390 	struct sp_node *n;
2391 	struct sp_node *n_new = NULL;
2392 	struct mempolicy *mpol_new = NULL;
2393 	int ret = 0;
2394 
2395 restart:
2396 	write_lock(&sp->lock);
2397 	n = sp_lookup(sp, start, end);
2398 	/* Take care of old policies in the same range. */
2399 	while (n && n->start < end) {
2400 		struct rb_node *next = rb_next(&n->nd);
2401 		if (n->start >= start) {
2402 			if (n->end <= end)
2403 				sp_delete(sp, n);
2404 			else
2405 				n->start = end;
2406 		} else {
2407 			/* Old policy spanning whole new range. */
2408 			if (n->end > end) {
2409 				if (!n_new)
2410 					goto alloc_new;
2411 
2412 				*mpol_new = *n->policy;
2413 				atomic_set(&mpol_new->refcnt, 1);
2414 				sp_node_init(n_new, end, n->end, mpol_new);
2415 				n->end = start;
2416 				sp_insert(sp, n_new);
2417 				n_new = NULL;
2418 				mpol_new = NULL;
2419 				break;
2420 			} else
2421 				n->end = start;
2422 		}
2423 		if (!next)
2424 			break;
2425 		n = rb_entry(next, struct sp_node, nd);
2426 	}
2427 	if (new)
2428 		sp_insert(sp, new);
2429 	write_unlock(&sp->lock);
2430 	ret = 0;
2431 
2432 err_out:
2433 	if (mpol_new)
2434 		mpol_put(mpol_new);
2435 	if (n_new)
2436 		kmem_cache_free(sn_cache, n_new);
2437 
2438 	return ret;
2439 
2440 alloc_new:
2441 	write_unlock(&sp->lock);
2442 	ret = -ENOMEM;
2443 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2444 	if (!n_new)
2445 		goto err_out;
2446 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2447 	if (!mpol_new)
2448 		goto err_out;
2449 	goto restart;
2450 }
2451 
2452 /**
2453  * mpol_shared_policy_init - initialize shared policy for inode
2454  * @sp: pointer to inode shared policy
2455  * @mpol:  struct mempolicy to install
2456  *
2457  * Install non-NULL @mpol in inode's shared policy rb-tree.
2458  * On entry, the current task has a reference on a non-NULL @mpol.
2459  * This must be released on exit.
2460  * This is called at get_inode() calls and we can use GFP_KERNEL.
2461  */
2462 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2463 {
2464 	int ret;
2465 
2466 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2467 	rwlock_init(&sp->lock);
2468 
2469 	if (mpol) {
2470 		struct vm_area_struct pvma;
2471 		struct mempolicy *new;
2472 		NODEMASK_SCRATCH(scratch);
2473 
2474 		if (!scratch)
2475 			goto put_mpol;
2476 		/* contextualize the tmpfs mount point mempolicy */
2477 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2478 		if (IS_ERR(new))
2479 			goto free_scratch; /* no valid nodemask intersection */
2480 
2481 		task_lock(current);
2482 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2483 		task_unlock(current);
2484 		if (ret)
2485 			goto put_new;
2486 
2487 		/* Create pseudo-vma that contains just the policy */
2488 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2489 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2490 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2491 
2492 put_new:
2493 		mpol_put(new);			/* drop initial ref */
2494 free_scratch:
2495 		NODEMASK_SCRATCH_FREE(scratch);
2496 put_mpol:
2497 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2498 	}
2499 }
2500 
2501 int mpol_set_shared_policy(struct shared_policy *info,
2502 			struct vm_area_struct *vma, struct mempolicy *npol)
2503 {
2504 	int err;
2505 	struct sp_node *new = NULL;
2506 	unsigned long sz = vma_pages(vma);
2507 
2508 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2509 		 vma->vm_pgoff,
2510 		 sz, npol ? npol->mode : -1,
2511 		 npol ? npol->flags : -1,
2512 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2513 
2514 	if (npol) {
2515 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2516 		if (!new)
2517 			return -ENOMEM;
2518 	}
2519 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2520 	if (err && new)
2521 		sp_free(new);
2522 	return err;
2523 }
2524 
2525 /* Free a backing policy store on inode delete. */
2526 void mpol_free_shared_policy(struct shared_policy *p)
2527 {
2528 	struct sp_node *n;
2529 	struct rb_node *next;
2530 
2531 	if (!p->root.rb_node)
2532 		return;
2533 	write_lock(&p->lock);
2534 	next = rb_first(&p->root);
2535 	while (next) {
2536 		n = rb_entry(next, struct sp_node, nd);
2537 		next = rb_next(&n->nd);
2538 		sp_delete(p, n);
2539 	}
2540 	write_unlock(&p->lock);
2541 }
2542 
2543 #ifdef CONFIG_NUMA_BALANCING
2544 static int __initdata numabalancing_override;
2545 
2546 static void __init check_numabalancing_enable(void)
2547 {
2548 	bool numabalancing_default = false;
2549 
2550 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2551 		numabalancing_default = true;
2552 
2553 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2554 	if (numabalancing_override)
2555 		set_numabalancing_state(numabalancing_override == 1);
2556 
2557 	if (num_online_nodes() > 1 && !numabalancing_override) {
2558 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2559 			numabalancing_default ? "Enabling" : "Disabling");
2560 		set_numabalancing_state(numabalancing_default);
2561 	}
2562 }
2563 
2564 static int __init setup_numabalancing(char *str)
2565 {
2566 	int ret = 0;
2567 	if (!str)
2568 		goto out;
2569 
2570 	if (!strcmp(str, "enable")) {
2571 		numabalancing_override = 1;
2572 		ret = 1;
2573 	} else if (!strcmp(str, "disable")) {
2574 		numabalancing_override = -1;
2575 		ret = 1;
2576 	}
2577 out:
2578 	if (!ret)
2579 		pr_warn("Unable to parse numa_balancing=\n");
2580 
2581 	return ret;
2582 }
2583 __setup("numa_balancing=", setup_numabalancing);
2584 #else
2585 static inline void __init check_numabalancing_enable(void)
2586 {
2587 }
2588 #endif /* CONFIG_NUMA_BALANCING */
2589 
2590 /* assumes fs == KERNEL_DS */
2591 void __init numa_policy_init(void)
2592 {
2593 	nodemask_t interleave_nodes;
2594 	unsigned long largest = 0;
2595 	int nid, prefer = 0;
2596 
2597 	policy_cache = kmem_cache_create("numa_policy",
2598 					 sizeof(struct mempolicy),
2599 					 0, SLAB_PANIC, NULL);
2600 
2601 	sn_cache = kmem_cache_create("shared_policy_node",
2602 				     sizeof(struct sp_node),
2603 				     0, SLAB_PANIC, NULL);
2604 
2605 	for_each_node(nid) {
2606 		preferred_node_policy[nid] = (struct mempolicy) {
2607 			.refcnt = ATOMIC_INIT(1),
2608 			.mode = MPOL_PREFERRED,
2609 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2610 			.v = { .preferred_node = nid, },
2611 		};
2612 	}
2613 
2614 	/*
2615 	 * Set interleaving policy for system init. Interleaving is only
2616 	 * enabled across suitably sized nodes (default is >= 16MB), or
2617 	 * fall back to the largest node if they're all smaller.
2618 	 */
2619 	nodes_clear(interleave_nodes);
2620 	for_each_node_state(nid, N_MEMORY) {
2621 		unsigned long total_pages = node_present_pages(nid);
2622 
2623 		/* Preserve the largest node */
2624 		if (largest < total_pages) {
2625 			largest = total_pages;
2626 			prefer = nid;
2627 		}
2628 
2629 		/* Interleave this node? */
2630 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2631 			node_set(nid, interleave_nodes);
2632 	}
2633 
2634 	/* All too small, use the largest */
2635 	if (unlikely(nodes_empty(interleave_nodes)))
2636 		node_set(prefer, interleave_nodes);
2637 
2638 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2639 		pr_err("%s: interleaving failed\n", __func__);
2640 
2641 	check_numabalancing_enable();
2642 }
2643 
2644 /* Reset policy of current process to default */
2645 void numa_default_policy(void)
2646 {
2647 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2648 }
2649 
2650 /*
2651  * Parse and format mempolicy from/to strings
2652  */
2653 
2654 /*
2655  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2656  */
2657 static const char * const policy_modes[] =
2658 {
2659 	[MPOL_DEFAULT]    = "default",
2660 	[MPOL_PREFERRED]  = "prefer",
2661 	[MPOL_BIND]       = "bind",
2662 	[MPOL_INTERLEAVE] = "interleave",
2663 	[MPOL_LOCAL]      = "local",
2664 };
2665 
2666 
2667 #ifdef CONFIG_TMPFS
2668 /**
2669  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2670  * @str:  string containing mempolicy to parse
2671  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2672  *
2673  * Format of input:
2674  *	<mode>[=<flags>][:<nodelist>]
2675  *
2676  * On success, returns 0, else 1
2677  */
2678 int mpol_parse_str(char *str, struct mempolicy **mpol)
2679 {
2680 	struct mempolicy *new = NULL;
2681 	unsigned short mode;
2682 	unsigned short mode_flags;
2683 	nodemask_t nodes;
2684 	char *nodelist = strchr(str, ':');
2685 	char *flags = strchr(str, '=');
2686 	int err = 1;
2687 
2688 	if (nodelist) {
2689 		/* NUL-terminate mode or flags string */
2690 		*nodelist++ = '\0';
2691 		if (nodelist_parse(nodelist, nodes))
2692 			goto out;
2693 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2694 			goto out;
2695 	} else
2696 		nodes_clear(nodes);
2697 
2698 	if (flags)
2699 		*flags++ = '\0';	/* terminate mode string */
2700 
2701 	for (mode = 0; mode < MPOL_MAX; mode++) {
2702 		if (!strcmp(str, policy_modes[mode])) {
2703 			break;
2704 		}
2705 	}
2706 	if (mode >= MPOL_MAX)
2707 		goto out;
2708 
2709 	switch (mode) {
2710 	case MPOL_PREFERRED:
2711 		/*
2712 		 * Insist on a nodelist of one node only
2713 		 */
2714 		if (nodelist) {
2715 			char *rest = nodelist;
2716 			while (isdigit(*rest))
2717 				rest++;
2718 			if (*rest)
2719 				goto out;
2720 		}
2721 		break;
2722 	case MPOL_INTERLEAVE:
2723 		/*
2724 		 * Default to online nodes with memory if no nodelist
2725 		 */
2726 		if (!nodelist)
2727 			nodes = node_states[N_MEMORY];
2728 		break;
2729 	case MPOL_LOCAL:
2730 		/*
2731 		 * Don't allow a nodelist;  mpol_new() checks flags
2732 		 */
2733 		if (nodelist)
2734 			goto out;
2735 		mode = MPOL_PREFERRED;
2736 		break;
2737 	case MPOL_DEFAULT:
2738 		/*
2739 		 * Insist on a empty nodelist
2740 		 */
2741 		if (!nodelist)
2742 			err = 0;
2743 		goto out;
2744 	case MPOL_BIND:
2745 		/*
2746 		 * Insist on a nodelist
2747 		 */
2748 		if (!nodelist)
2749 			goto out;
2750 	}
2751 
2752 	mode_flags = 0;
2753 	if (flags) {
2754 		/*
2755 		 * Currently, we only support two mutually exclusive
2756 		 * mode flags.
2757 		 */
2758 		if (!strcmp(flags, "static"))
2759 			mode_flags |= MPOL_F_STATIC_NODES;
2760 		else if (!strcmp(flags, "relative"))
2761 			mode_flags |= MPOL_F_RELATIVE_NODES;
2762 		else
2763 			goto out;
2764 	}
2765 
2766 	new = mpol_new(mode, mode_flags, &nodes);
2767 	if (IS_ERR(new))
2768 		goto out;
2769 
2770 	/*
2771 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2772 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2773 	 */
2774 	if (mode != MPOL_PREFERRED)
2775 		new->v.nodes = nodes;
2776 	else if (nodelist)
2777 		new->v.preferred_node = first_node(nodes);
2778 	else
2779 		new->flags |= MPOL_F_LOCAL;
2780 
2781 	/*
2782 	 * Save nodes for contextualization: this will be used to "clone"
2783 	 * the mempolicy in a specific context [cpuset] at a later time.
2784 	 */
2785 	new->w.user_nodemask = nodes;
2786 
2787 	err = 0;
2788 
2789 out:
2790 	/* Restore string for error message */
2791 	if (nodelist)
2792 		*--nodelist = ':';
2793 	if (flags)
2794 		*--flags = '=';
2795 	if (!err)
2796 		*mpol = new;
2797 	return err;
2798 }
2799 #endif /* CONFIG_TMPFS */
2800 
2801 /**
2802  * mpol_to_str - format a mempolicy structure for printing
2803  * @buffer:  to contain formatted mempolicy string
2804  * @maxlen:  length of @buffer
2805  * @pol:  pointer to mempolicy to be formatted
2806  *
2807  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2808  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2809  * longest flag, "relative", and to display at least a few node ids.
2810  */
2811 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2812 {
2813 	char *p = buffer;
2814 	nodemask_t nodes = NODE_MASK_NONE;
2815 	unsigned short mode = MPOL_DEFAULT;
2816 	unsigned short flags = 0;
2817 
2818 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2819 		mode = pol->mode;
2820 		flags = pol->flags;
2821 	}
2822 
2823 	switch (mode) {
2824 	case MPOL_DEFAULT:
2825 		break;
2826 	case MPOL_PREFERRED:
2827 		if (flags & MPOL_F_LOCAL)
2828 			mode = MPOL_LOCAL;
2829 		else
2830 			node_set(pol->v.preferred_node, nodes);
2831 		break;
2832 	case MPOL_BIND:
2833 	case MPOL_INTERLEAVE:
2834 		nodes = pol->v.nodes;
2835 		break;
2836 	default:
2837 		WARN_ON_ONCE(1);
2838 		snprintf(p, maxlen, "unknown");
2839 		return;
2840 	}
2841 
2842 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2843 
2844 	if (flags & MPOL_MODE_FLAGS) {
2845 		p += snprintf(p, buffer + maxlen - p, "=");
2846 
2847 		/*
2848 		 * Currently, the only defined flags are mutually exclusive
2849 		 */
2850 		if (flags & MPOL_F_STATIC_NODES)
2851 			p += snprintf(p, buffer + maxlen - p, "static");
2852 		else if (flags & MPOL_F_RELATIVE_NODES)
2853 			p += snprintf(p, buffer + maxlen - p, "relative");
2854 	}
2855 
2856 	if (!nodes_empty(nodes))
2857 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2858 			       nodemask_pr_args(&nodes));
2859 }
2860