1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/compaction.h> 36 #include <linux/rmap.h> 37 #include <linux/module.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 #include "shuffle.h" 43 44 enum { 45 MEMMAP_ON_MEMORY_DISABLE = 0, 46 MEMMAP_ON_MEMORY_ENABLE, 47 MEMMAP_ON_MEMORY_FORCE, 48 }; 49 50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE; 51 52 static inline unsigned long memory_block_memmap_size(void) 53 { 54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page); 55 } 56 57 static inline unsigned long memory_block_memmap_on_memory_pages(void) 58 { 59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size()); 60 61 /* 62 * In "forced" memmap_on_memory mode, we add extra pages to align the 63 * vmemmap size to cover full pageblocks. That way, we can add memory 64 * even if the vmemmap size is not properly aligned, however, we might waste 65 * memory. 66 */ 67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE) 68 return pageblock_align(nr_pages); 69 return nr_pages; 70 } 71 72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 73 /* 74 * memory_hotplug.memmap_on_memory parameter 75 */ 76 static int set_memmap_mode(const char *val, const struct kernel_param *kp) 77 { 78 int ret, mode; 79 bool enabled; 80 81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) { 82 mode = MEMMAP_ON_MEMORY_FORCE; 83 } else { 84 ret = kstrtobool(val, &enabled); 85 if (ret < 0) 86 return ret; 87 if (enabled) 88 mode = MEMMAP_ON_MEMORY_ENABLE; 89 else 90 mode = MEMMAP_ON_MEMORY_DISABLE; 91 } 92 *((int *)kp->arg) = mode; 93 if (mode == MEMMAP_ON_MEMORY_FORCE) { 94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 95 96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n", 97 memmap_pages - PFN_UP(memory_block_memmap_size())); 98 } 99 return 0; 100 } 101 102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp) 103 { 104 if (*((int *)kp->arg) == MEMMAP_ON_MEMORY_FORCE) 105 return sprintf(buffer, "force\n"); 106 return param_get_bool(buffer, kp); 107 } 108 109 static const struct kernel_param_ops memmap_mode_ops = { 110 .set = set_memmap_mode, 111 .get = get_memmap_mode, 112 }; 113 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444); 114 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n" 115 "With value \"force\" it could result in memory wastage due " 116 "to memmap size limitations (Y/N/force)"); 117 118 static inline bool mhp_memmap_on_memory(void) 119 { 120 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE; 121 } 122 #else 123 static inline bool mhp_memmap_on_memory(void) 124 { 125 return false; 126 } 127 #endif 128 129 enum { 130 ONLINE_POLICY_CONTIG_ZONES = 0, 131 ONLINE_POLICY_AUTO_MOVABLE, 132 }; 133 134 static const char * const online_policy_to_str[] = { 135 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 136 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 137 }; 138 139 static int set_online_policy(const char *val, const struct kernel_param *kp) 140 { 141 int ret = sysfs_match_string(online_policy_to_str, val); 142 143 if (ret < 0) 144 return ret; 145 *((int *)kp->arg) = ret; 146 return 0; 147 } 148 149 static int get_online_policy(char *buffer, const struct kernel_param *kp) 150 { 151 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 152 } 153 154 /* 155 * memory_hotplug.online_policy: configure online behavior when onlining without 156 * specifying a zone (MMOP_ONLINE) 157 * 158 * "contig-zones": keep zone contiguous 159 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 160 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 161 */ 162 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 163 static const struct kernel_param_ops online_policy_ops = { 164 .set = set_online_policy, 165 .get = get_online_policy, 166 }; 167 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 168 MODULE_PARM_DESC(online_policy, 169 "Set the online policy (\"contig-zones\", \"auto-movable\") " 170 "Default: \"contig-zones\""); 171 172 /* 173 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 174 * 175 * The ratio represent an upper limit and the kernel might decide to not 176 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 177 * doesn't allow for more MOVABLE memory. 178 */ 179 static unsigned int auto_movable_ratio __read_mostly = 301; 180 module_param(auto_movable_ratio, uint, 0644); 181 MODULE_PARM_DESC(auto_movable_ratio, 182 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 183 "in percent for \"auto-movable\" online policy. Default: 301"); 184 185 /* 186 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 187 */ 188 #ifdef CONFIG_NUMA 189 static bool auto_movable_numa_aware __read_mostly = true; 190 module_param(auto_movable_numa_aware, bool, 0644); 191 MODULE_PARM_DESC(auto_movable_numa_aware, 192 "Consider numa node stats in addition to global stats in " 193 "\"auto-movable\" online policy. Default: true"); 194 #endif /* CONFIG_NUMA */ 195 196 /* 197 * online_page_callback contains pointer to current page onlining function. 198 * Initially it is generic_online_page(). If it is required it could be 199 * changed by calling set_online_page_callback() for callback registration 200 * and restore_online_page_callback() for generic callback restore. 201 */ 202 203 static online_page_callback_t online_page_callback = generic_online_page; 204 static DEFINE_MUTEX(online_page_callback_lock); 205 206 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 207 208 void get_online_mems(void) 209 { 210 percpu_down_read(&mem_hotplug_lock); 211 } 212 213 void put_online_mems(void) 214 { 215 percpu_up_read(&mem_hotplug_lock); 216 } 217 218 bool movable_node_enabled = false; 219 220 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 221 int mhp_default_online_type = MMOP_OFFLINE; 222 #else 223 int mhp_default_online_type = MMOP_ONLINE; 224 #endif 225 226 static int __init setup_memhp_default_state(char *str) 227 { 228 const int online_type = mhp_online_type_from_str(str); 229 230 if (online_type >= 0) 231 mhp_default_online_type = online_type; 232 233 return 1; 234 } 235 __setup("memhp_default_state=", setup_memhp_default_state); 236 237 void mem_hotplug_begin(void) 238 { 239 cpus_read_lock(); 240 percpu_down_write(&mem_hotplug_lock); 241 } 242 243 void mem_hotplug_done(void) 244 { 245 percpu_up_write(&mem_hotplug_lock); 246 cpus_read_unlock(); 247 } 248 249 u64 max_mem_size = U64_MAX; 250 251 /* add this memory to iomem resource */ 252 static struct resource *register_memory_resource(u64 start, u64 size, 253 const char *resource_name) 254 { 255 struct resource *res; 256 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 257 258 if (strcmp(resource_name, "System RAM")) 259 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 260 261 if (!mhp_range_allowed(start, size, true)) 262 return ERR_PTR(-E2BIG); 263 264 /* 265 * Make sure value parsed from 'mem=' only restricts memory adding 266 * while booting, so that memory hotplug won't be impacted. Please 267 * refer to document of 'mem=' in kernel-parameters.txt for more 268 * details. 269 */ 270 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 271 return ERR_PTR(-E2BIG); 272 273 /* 274 * Request ownership of the new memory range. This might be 275 * a child of an existing resource that was present but 276 * not marked as busy. 277 */ 278 res = __request_region(&iomem_resource, start, size, 279 resource_name, flags); 280 281 if (!res) { 282 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 283 start, start + size); 284 return ERR_PTR(-EEXIST); 285 } 286 return res; 287 } 288 289 static void release_memory_resource(struct resource *res) 290 { 291 if (!res) 292 return; 293 release_resource(res); 294 kfree(res); 295 } 296 297 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages) 298 { 299 /* 300 * Disallow all operations smaller than a sub-section and only 301 * allow operations smaller than a section for 302 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 303 * enforces a larger memory_block_size_bytes() granularity for 304 * memory that will be marked online, so this check should only 305 * fire for direct arch_{add,remove}_memory() users outside of 306 * add_memory_resource(). 307 */ 308 unsigned long min_align; 309 310 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 311 min_align = PAGES_PER_SUBSECTION; 312 else 313 min_align = PAGES_PER_SECTION; 314 if (!IS_ALIGNED(pfn | nr_pages, min_align)) 315 return -EINVAL; 316 return 0; 317 } 318 319 /* 320 * Return page for the valid pfn only if the page is online. All pfn 321 * walkers which rely on the fully initialized page->flags and others 322 * should use this rather than pfn_valid && pfn_to_page 323 */ 324 struct page *pfn_to_online_page(unsigned long pfn) 325 { 326 unsigned long nr = pfn_to_section_nr(pfn); 327 struct dev_pagemap *pgmap; 328 struct mem_section *ms; 329 330 if (nr >= NR_MEM_SECTIONS) 331 return NULL; 332 333 ms = __nr_to_section(nr); 334 if (!online_section(ms)) 335 return NULL; 336 337 /* 338 * Save some code text when online_section() + 339 * pfn_section_valid() are sufficient. 340 */ 341 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 342 return NULL; 343 344 if (!pfn_section_valid(ms, pfn)) 345 return NULL; 346 347 if (!online_device_section(ms)) 348 return pfn_to_page(pfn); 349 350 /* 351 * Slowpath: when ZONE_DEVICE collides with 352 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 353 * the section may be 'offline' but 'valid'. Only 354 * get_dev_pagemap() can determine sub-section online status. 355 */ 356 pgmap = get_dev_pagemap(pfn, NULL); 357 put_dev_pagemap(pgmap); 358 359 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 360 if (pgmap) 361 return NULL; 362 363 return pfn_to_page(pfn); 364 } 365 EXPORT_SYMBOL_GPL(pfn_to_online_page); 366 367 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 368 struct mhp_params *params) 369 { 370 const unsigned long end_pfn = pfn + nr_pages; 371 unsigned long cur_nr_pages; 372 int err; 373 struct vmem_altmap *altmap = params->altmap; 374 375 if (WARN_ON_ONCE(!pgprot_val(params->pgprot))) 376 return -EINVAL; 377 378 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 379 380 if (altmap) { 381 /* 382 * Validate altmap is within bounds of the total request 383 */ 384 if (altmap->base_pfn != pfn 385 || vmem_altmap_offset(altmap) > nr_pages) { 386 pr_warn_once("memory add fail, invalid altmap\n"); 387 return -EINVAL; 388 } 389 altmap->alloc = 0; 390 } 391 392 if (check_pfn_span(pfn, nr_pages)) { 393 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 394 return -EINVAL; 395 } 396 397 for (; pfn < end_pfn; pfn += cur_nr_pages) { 398 /* Select all remaining pages up to the next section boundary */ 399 cur_nr_pages = min(end_pfn - pfn, 400 SECTION_ALIGN_UP(pfn + 1) - pfn); 401 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap, 402 params->pgmap); 403 if (err) 404 break; 405 cond_resched(); 406 } 407 vmemmap_populate_print_last(); 408 return err; 409 } 410 411 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 412 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 413 unsigned long start_pfn, 414 unsigned long end_pfn) 415 { 416 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 417 if (unlikely(!pfn_to_online_page(start_pfn))) 418 continue; 419 420 if (unlikely(pfn_to_nid(start_pfn) != nid)) 421 continue; 422 423 if (zone != page_zone(pfn_to_page(start_pfn))) 424 continue; 425 426 return start_pfn; 427 } 428 429 return 0; 430 } 431 432 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 433 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 434 unsigned long start_pfn, 435 unsigned long end_pfn) 436 { 437 unsigned long pfn; 438 439 /* pfn is the end pfn of a memory section. */ 440 pfn = end_pfn - 1; 441 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 442 if (unlikely(!pfn_to_online_page(pfn))) 443 continue; 444 445 if (unlikely(pfn_to_nid(pfn) != nid)) 446 continue; 447 448 if (zone != page_zone(pfn_to_page(pfn))) 449 continue; 450 451 return pfn; 452 } 453 454 return 0; 455 } 456 457 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 458 unsigned long end_pfn) 459 { 460 unsigned long pfn; 461 int nid = zone_to_nid(zone); 462 463 if (zone->zone_start_pfn == start_pfn) { 464 /* 465 * If the section is smallest section in the zone, it need 466 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 467 * In this case, we find second smallest valid mem_section 468 * for shrinking zone. 469 */ 470 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 471 zone_end_pfn(zone)); 472 if (pfn) { 473 zone->spanned_pages = zone_end_pfn(zone) - pfn; 474 zone->zone_start_pfn = pfn; 475 } else { 476 zone->zone_start_pfn = 0; 477 zone->spanned_pages = 0; 478 } 479 } else if (zone_end_pfn(zone) == end_pfn) { 480 /* 481 * If the section is biggest section in the zone, it need 482 * shrink zone->spanned_pages. 483 * In this case, we find second biggest valid mem_section for 484 * shrinking zone. 485 */ 486 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 487 start_pfn); 488 if (pfn) 489 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 490 else { 491 zone->zone_start_pfn = 0; 492 zone->spanned_pages = 0; 493 } 494 } 495 } 496 497 static void update_pgdat_span(struct pglist_data *pgdat) 498 { 499 unsigned long node_start_pfn = 0, node_end_pfn = 0; 500 struct zone *zone; 501 502 for (zone = pgdat->node_zones; 503 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 504 unsigned long end_pfn = zone_end_pfn(zone); 505 506 /* No need to lock the zones, they can't change. */ 507 if (!zone->spanned_pages) 508 continue; 509 if (!node_end_pfn) { 510 node_start_pfn = zone->zone_start_pfn; 511 node_end_pfn = end_pfn; 512 continue; 513 } 514 515 if (end_pfn > node_end_pfn) 516 node_end_pfn = end_pfn; 517 if (zone->zone_start_pfn < node_start_pfn) 518 node_start_pfn = zone->zone_start_pfn; 519 } 520 521 pgdat->node_start_pfn = node_start_pfn; 522 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 523 } 524 525 void __ref remove_pfn_range_from_zone(struct zone *zone, 526 unsigned long start_pfn, 527 unsigned long nr_pages) 528 { 529 const unsigned long end_pfn = start_pfn + nr_pages; 530 struct pglist_data *pgdat = zone->zone_pgdat; 531 unsigned long pfn, cur_nr_pages; 532 533 /* Poison struct pages because they are now uninitialized again. */ 534 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 535 cond_resched(); 536 537 /* Select all remaining pages up to the next section boundary */ 538 cur_nr_pages = 539 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 540 page_init_poison(pfn_to_page(pfn), 541 sizeof(struct page) * cur_nr_pages); 542 } 543 544 /* 545 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 546 * we will not try to shrink the zones - which is okay as 547 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 548 */ 549 if (zone_is_zone_device(zone)) 550 return; 551 552 clear_zone_contiguous(zone); 553 554 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 555 update_pgdat_span(pgdat); 556 557 set_zone_contiguous(zone); 558 } 559 560 /** 561 * __remove_pages() - remove sections of pages 562 * @pfn: starting pageframe (must be aligned to start of a section) 563 * @nr_pages: number of pages to remove (must be multiple of section size) 564 * @altmap: alternative device page map or %NULL if default memmap is used 565 * 566 * Generic helper function to remove section mappings and sysfs entries 567 * for the section of the memory we are removing. Caller needs to make 568 * sure that pages are marked reserved and zones are adjust properly by 569 * calling offline_pages(). 570 */ 571 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 572 struct vmem_altmap *altmap) 573 { 574 const unsigned long end_pfn = pfn + nr_pages; 575 unsigned long cur_nr_pages; 576 577 if (check_pfn_span(pfn, nr_pages)) { 578 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 579 return; 580 } 581 582 for (; pfn < end_pfn; pfn += cur_nr_pages) { 583 cond_resched(); 584 /* Select all remaining pages up to the next section boundary */ 585 cur_nr_pages = min(end_pfn - pfn, 586 SECTION_ALIGN_UP(pfn + 1) - pfn); 587 sparse_remove_section(pfn, cur_nr_pages, altmap); 588 } 589 } 590 591 int set_online_page_callback(online_page_callback_t callback) 592 { 593 int rc = -EINVAL; 594 595 get_online_mems(); 596 mutex_lock(&online_page_callback_lock); 597 598 if (online_page_callback == generic_online_page) { 599 online_page_callback = callback; 600 rc = 0; 601 } 602 603 mutex_unlock(&online_page_callback_lock); 604 put_online_mems(); 605 606 return rc; 607 } 608 EXPORT_SYMBOL_GPL(set_online_page_callback); 609 610 int restore_online_page_callback(online_page_callback_t callback) 611 { 612 int rc = -EINVAL; 613 614 get_online_mems(); 615 mutex_lock(&online_page_callback_lock); 616 617 if (online_page_callback == callback) { 618 online_page_callback = generic_online_page; 619 rc = 0; 620 } 621 622 mutex_unlock(&online_page_callback_lock); 623 put_online_mems(); 624 625 return rc; 626 } 627 EXPORT_SYMBOL_GPL(restore_online_page_callback); 628 629 void generic_online_page(struct page *page, unsigned int order) 630 { 631 /* 632 * Freeing the page with debug_pagealloc enabled will try to unmap it, 633 * so we should map it first. This is better than introducing a special 634 * case in page freeing fast path. 635 */ 636 debug_pagealloc_map_pages(page, 1 << order); 637 __free_pages_core(page, order); 638 totalram_pages_add(1UL << order); 639 } 640 EXPORT_SYMBOL_GPL(generic_online_page); 641 642 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 643 { 644 const unsigned long end_pfn = start_pfn + nr_pages; 645 unsigned long pfn; 646 647 /* 648 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might 649 * decide to not expose all pages to the buddy (e.g., expose them 650 * later). We account all pages as being online and belonging to this 651 * zone ("present"). 652 * When using memmap_on_memory, the range might not be aligned to 653 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 654 * this and the first chunk to online will be pageblock_nr_pages. 655 */ 656 for (pfn = start_pfn; pfn < end_pfn;) { 657 int order; 658 659 /* 660 * Free to online pages in the largest chunks alignment allows. 661 * 662 * __ffs() behaviour is undefined for 0. start == 0 is 663 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for 664 * the case. 665 */ 666 if (pfn) 667 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn)); 668 else 669 order = MAX_PAGE_ORDER; 670 671 (*online_page_callback)(pfn_to_page(pfn), order); 672 pfn += (1UL << order); 673 } 674 675 /* mark all involved sections as online */ 676 online_mem_sections(start_pfn, end_pfn); 677 } 678 679 /* check which state of node_states will be changed when online memory */ 680 static void node_states_check_changes_online(unsigned long nr_pages, 681 struct zone *zone, struct memory_notify *arg) 682 { 683 int nid = zone_to_nid(zone); 684 685 arg->status_change_nid = NUMA_NO_NODE; 686 arg->status_change_nid_normal = NUMA_NO_NODE; 687 688 if (!node_state(nid, N_MEMORY)) 689 arg->status_change_nid = nid; 690 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 691 arg->status_change_nid_normal = nid; 692 } 693 694 static void node_states_set_node(int node, struct memory_notify *arg) 695 { 696 if (arg->status_change_nid_normal >= 0) 697 node_set_state(node, N_NORMAL_MEMORY); 698 699 if (arg->status_change_nid >= 0) 700 node_set_state(node, N_MEMORY); 701 } 702 703 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 704 unsigned long nr_pages) 705 { 706 unsigned long old_end_pfn = zone_end_pfn(zone); 707 708 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 709 zone->zone_start_pfn = start_pfn; 710 711 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 712 } 713 714 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 715 unsigned long nr_pages) 716 { 717 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 718 719 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 720 pgdat->node_start_pfn = start_pfn; 721 722 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 723 724 } 725 726 #ifdef CONFIG_ZONE_DEVICE 727 static void section_taint_zone_device(unsigned long pfn) 728 { 729 struct mem_section *ms = __pfn_to_section(pfn); 730 731 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 732 } 733 #else 734 static inline void section_taint_zone_device(unsigned long pfn) 735 { 736 } 737 #endif 738 739 /* 740 * Associate the pfn range with the given zone, initializing the memmaps 741 * and resizing the pgdat/zone data to span the added pages. After this 742 * call, all affected pages are PG_reserved. 743 * 744 * All aligned pageblocks are initialized to the specified migratetype 745 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 746 * zone stats (e.g., nr_isolate_pageblock) are touched. 747 */ 748 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 749 unsigned long nr_pages, 750 struct vmem_altmap *altmap, int migratetype) 751 { 752 struct pglist_data *pgdat = zone->zone_pgdat; 753 int nid = pgdat->node_id; 754 755 clear_zone_contiguous(zone); 756 757 if (zone_is_empty(zone)) 758 init_currently_empty_zone(zone, start_pfn, nr_pages); 759 resize_zone_range(zone, start_pfn, nr_pages); 760 resize_pgdat_range(pgdat, start_pfn, nr_pages); 761 762 /* 763 * Subsection population requires care in pfn_to_online_page(). 764 * Set the taint to enable the slow path detection of 765 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 766 * section. 767 */ 768 if (zone_is_zone_device(zone)) { 769 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 770 section_taint_zone_device(start_pfn); 771 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 772 section_taint_zone_device(start_pfn + nr_pages); 773 } 774 775 /* 776 * TODO now we have a visible range of pages which are not associated 777 * with their zone properly. Not nice but set_pfnblock_flags_mask 778 * expects the zone spans the pfn range. All the pages in the range 779 * are reserved so nobody should be touching them so we should be safe 780 */ 781 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 782 MEMINIT_HOTPLUG, altmap, migratetype); 783 784 set_zone_contiguous(zone); 785 } 786 787 struct auto_movable_stats { 788 unsigned long kernel_early_pages; 789 unsigned long movable_pages; 790 }; 791 792 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 793 struct zone *zone) 794 { 795 if (zone_idx(zone) == ZONE_MOVABLE) { 796 stats->movable_pages += zone->present_pages; 797 } else { 798 stats->kernel_early_pages += zone->present_early_pages; 799 #ifdef CONFIG_CMA 800 /* 801 * CMA pages (never on hotplugged memory) behave like 802 * ZONE_MOVABLE. 803 */ 804 stats->movable_pages += zone->cma_pages; 805 stats->kernel_early_pages -= zone->cma_pages; 806 #endif /* CONFIG_CMA */ 807 } 808 } 809 struct auto_movable_group_stats { 810 unsigned long movable_pages; 811 unsigned long req_kernel_early_pages; 812 }; 813 814 static int auto_movable_stats_account_group(struct memory_group *group, 815 void *arg) 816 { 817 const int ratio = READ_ONCE(auto_movable_ratio); 818 struct auto_movable_group_stats *stats = arg; 819 long pages; 820 821 /* 822 * We don't support modifying the config while the auto-movable online 823 * policy is already enabled. Just avoid the division by zero below. 824 */ 825 if (!ratio) 826 return 0; 827 828 /* 829 * Calculate how many early kernel pages this group requires to 830 * satisfy the configured zone ratio. 831 */ 832 pages = group->present_movable_pages * 100 / ratio; 833 pages -= group->present_kernel_pages; 834 835 if (pages > 0) 836 stats->req_kernel_early_pages += pages; 837 stats->movable_pages += group->present_movable_pages; 838 return 0; 839 } 840 841 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 842 unsigned long nr_pages) 843 { 844 unsigned long kernel_early_pages, movable_pages; 845 struct auto_movable_group_stats group_stats = {}; 846 struct auto_movable_stats stats = {}; 847 pg_data_t *pgdat = NODE_DATA(nid); 848 struct zone *zone; 849 int i; 850 851 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 852 if (nid == NUMA_NO_NODE) { 853 /* TODO: cache values */ 854 for_each_populated_zone(zone) 855 auto_movable_stats_account_zone(&stats, zone); 856 } else { 857 for (i = 0; i < MAX_NR_ZONES; i++) { 858 zone = pgdat->node_zones + i; 859 if (populated_zone(zone)) 860 auto_movable_stats_account_zone(&stats, zone); 861 } 862 } 863 864 kernel_early_pages = stats.kernel_early_pages; 865 movable_pages = stats.movable_pages; 866 867 /* 868 * Kernel memory inside dynamic memory group allows for more MOVABLE 869 * memory within the same group. Remove the effect of all but the 870 * current group from the stats. 871 */ 872 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 873 group, &group_stats); 874 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 875 return false; 876 kernel_early_pages -= group_stats.req_kernel_early_pages; 877 movable_pages -= group_stats.movable_pages; 878 879 if (group && group->is_dynamic) 880 kernel_early_pages += group->present_kernel_pages; 881 882 /* 883 * Test if we could online the given number of pages to ZONE_MOVABLE 884 * and still stay in the configured ratio. 885 */ 886 movable_pages += nr_pages; 887 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 888 } 889 890 /* 891 * Returns a default kernel memory zone for the given pfn range. 892 * If no kernel zone covers this pfn range it will automatically go 893 * to the ZONE_NORMAL. 894 */ 895 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 896 unsigned long nr_pages) 897 { 898 struct pglist_data *pgdat = NODE_DATA(nid); 899 int zid; 900 901 for (zid = 0; zid < ZONE_NORMAL; zid++) { 902 struct zone *zone = &pgdat->node_zones[zid]; 903 904 if (zone_intersects(zone, start_pfn, nr_pages)) 905 return zone; 906 } 907 908 return &pgdat->node_zones[ZONE_NORMAL]; 909 } 910 911 /* 912 * Determine to which zone to online memory dynamically based on user 913 * configuration and system stats. We care about the following ratio: 914 * 915 * MOVABLE : KERNEL 916 * 917 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 918 * one of the kernel zones. CMA pages inside one of the kernel zones really 919 * behaves like ZONE_MOVABLE, so we treat them accordingly. 920 * 921 * We don't allow for hotplugged memory in a KERNEL zone to increase the 922 * amount of MOVABLE memory we can have, so we end up with: 923 * 924 * MOVABLE : KERNEL_EARLY 925 * 926 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 927 * boot. We base our calculation on KERNEL_EARLY internally, because: 928 * 929 * a) Hotplugged memory in one of the kernel zones can sometimes still get 930 * hotunplugged, especially when hot(un)plugging individual memory blocks. 931 * There is no coordination across memory devices, therefore "automatic" 932 * hotunplugging, as implemented in hypervisors, could result in zone 933 * imbalances. 934 * b) Early/boot memory in one of the kernel zones can usually not get 935 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 936 * with unmovable allocations). While there are corner cases where it might 937 * still work, it is barely relevant in practice. 938 * 939 * Exceptions are dynamic memory groups, which allow for more MOVABLE 940 * memory within the same memory group -- because in that case, there is 941 * coordination within the single memory device managed by a single driver. 942 * 943 * We rely on "present pages" instead of "managed pages", as the latter is 944 * highly unreliable and dynamic in virtualized environments, and does not 945 * consider boot time allocations. For example, memory ballooning adjusts the 946 * managed pages when inflating/deflating the balloon, and balloon compaction 947 * can even migrate inflated pages between zones. 948 * 949 * Using "present pages" is better but some things to keep in mind are: 950 * 951 * a) Some memblock allocations, such as for the crashkernel area, are 952 * effectively unused by the kernel, yet they account to "present pages". 953 * Fortunately, these allocations are comparatively small in relevant setups 954 * (e.g., fraction of system memory). 955 * b) Some hotplugged memory blocks in virtualized environments, esecially 956 * hotplugged by virtio-mem, look like they are completely present, however, 957 * only parts of the memory block are actually currently usable. 958 * "present pages" is an upper limit that can get reached at runtime. As 959 * we base our calculations on KERNEL_EARLY, this is not an issue. 960 */ 961 static struct zone *auto_movable_zone_for_pfn(int nid, 962 struct memory_group *group, 963 unsigned long pfn, 964 unsigned long nr_pages) 965 { 966 unsigned long online_pages = 0, max_pages, end_pfn; 967 struct page *page; 968 969 if (!auto_movable_ratio) 970 goto kernel_zone; 971 972 if (group && !group->is_dynamic) { 973 max_pages = group->s.max_pages; 974 online_pages = group->present_movable_pages; 975 976 /* If anything is !MOVABLE online the rest !MOVABLE. */ 977 if (group->present_kernel_pages) 978 goto kernel_zone; 979 } else if (!group || group->d.unit_pages == nr_pages) { 980 max_pages = nr_pages; 981 } else { 982 max_pages = group->d.unit_pages; 983 /* 984 * Take a look at all online sections in the current unit. 985 * We can safely assume that all pages within a section belong 986 * to the same zone, because dynamic memory groups only deal 987 * with hotplugged memory. 988 */ 989 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 990 end_pfn = pfn + group->d.unit_pages; 991 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 992 page = pfn_to_online_page(pfn); 993 if (!page) 994 continue; 995 /* If anything is !MOVABLE online the rest !MOVABLE. */ 996 if (!is_zone_movable_page(page)) 997 goto kernel_zone; 998 online_pages += PAGES_PER_SECTION; 999 } 1000 } 1001 1002 /* 1003 * Online MOVABLE if we could *currently* online all remaining parts 1004 * MOVABLE. We expect to (add+) online them immediately next, so if 1005 * nobody interferes, all will be MOVABLE if possible. 1006 */ 1007 nr_pages = max_pages - online_pages; 1008 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 1009 goto kernel_zone; 1010 1011 #ifdef CONFIG_NUMA 1012 if (auto_movable_numa_aware && 1013 !auto_movable_can_online_movable(nid, group, nr_pages)) 1014 goto kernel_zone; 1015 #endif /* CONFIG_NUMA */ 1016 1017 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1018 kernel_zone: 1019 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 1020 } 1021 1022 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 1023 unsigned long nr_pages) 1024 { 1025 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 1026 nr_pages); 1027 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1028 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 1029 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 1030 1031 /* 1032 * We inherit the existing zone in a simple case where zones do not 1033 * overlap in the given range 1034 */ 1035 if (in_kernel ^ in_movable) 1036 return (in_kernel) ? kernel_zone : movable_zone; 1037 1038 /* 1039 * If the range doesn't belong to any zone or two zones overlap in the 1040 * given range then we use movable zone only if movable_node is 1041 * enabled because we always online to a kernel zone by default. 1042 */ 1043 return movable_node_enabled ? movable_zone : kernel_zone; 1044 } 1045 1046 struct zone *zone_for_pfn_range(int online_type, int nid, 1047 struct memory_group *group, unsigned long start_pfn, 1048 unsigned long nr_pages) 1049 { 1050 if (online_type == MMOP_ONLINE_KERNEL) 1051 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 1052 1053 if (online_type == MMOP_ONLINE_MOVABLE) 1054 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1055 1056 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 1057 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 1058 1059 return default_zone_for_pfn(nid, start_pfn, nr_pages); 1060 } 1061 1062 /* 1063 * This function should only be called by memory_block_{online,offline}, 1064 * and {online,offline}_pages. 1065 */ 1066 void adjust_present_page_count(struct page *page, struct memory_group *group, 1067 long nr_pages) 1068 { 1069 struct zone *zone = page_zone(page); 1070 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1071 1072 /* 1073 * We only support onlining/offlining/adding/removing of complete 1074 * memory blocks; therefore, either all is either early or hotplugged. 1075 */ 1076 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1077 zone->present_early_pages += nr_pages; 1078 zone->present_pages += nr_pages; 1079 zone->zone_pgdat->node_present_pages += nr_pages; 1080 1081 if (group && movable) 1082 group->present_movable_pages += nr_pages; 1083 else if (group && !movable) 1084 group->present_kernel_pages += nr_pages; 1085 } 1086 1087 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1088 struct zone *zone) 1089 { 1090 unsigned long end_pfn = pfn + nr_pages; 1091 int ret, i; 1092 1093 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1094 if (ret) 1095 return ret; 1096 1097 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1098 1099 for (i = 0; i < nr_pages; i++) 1100 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i)); 1101 1102 /* 1103 * It might be that the vmemmap_pages fully span sections. If that is 1104 * the case, mark those sections online here as otherwise they will be 1105 * left offline. 1106 */ 1107 if (nr_pages >= PAGES_PER_SECTION) 1108 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1109 1110 return ret; 1111 } 1112 1113 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1114 { 1115 unsigned long end_pfn = pfn + nr_pages; 1116 1117 /* 1118 * It might be that the vmemmap_pages fully span sections. If that is 1119 * the case, mark those sections offline here as otherwise they will be 1120 * left online. 1121 */ 1122 if (nr_pages >= PAGES_PER_SECTION) 1123 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1124 1125 /* 1126 * The pages associated with this vmemmap have been offlined, so 1127 * we can reset its state here. 1128 */ 1129 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1130 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1131 } 1132 1133 /* 1134 * Must be called with mem_hotplug_lock in write mode. 1135 */ 1136 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1137 struct zone *zone, struct memory_group *group) 1138 { 1139 unsigned long flags; 1140 int need_zonelists_rebuild = 0; 1141 const int nid = zone_to_nid(zone); 1142 int ret; 1143 struct memory_notify arg; 1144 1145 /* 1146 * {on,off}lining is constrained to full memory sections (or more 1147 * precisely to memory blocks from the user space POV). 1148 * memmap_on_memory is an exception because it reserves initial part 1149 * of the physical memory space for vmemmaps. That space is pageblock 1150 * aligned. 1151 */ 1152 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) || 1153 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1154 return -EINVAL; 1155 1156 1157 /* associate pfn range with the zone */ 1158 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1159 1160 arg.start_pfn = pfn; 1161 arg.nr_pages = nr_pages; 1162 node_states_check_changes_online(nr_pages, zone, &arg); 1163 1164 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1165 ret = notifier_to_errno(ret); 1166 if (ret) 1167 goto failed_addition; 1168 1169 /* 1170 * Fixup the number of isolated pageblocks before marking the sections 1171 * onlining, such that undo_isolate_page_range() works correctly. 1172 */ 1173 spin_lock_irqsave(&zone->lock, flags); 1174 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1175 spin_unlock_irqrestore(&zone->lock, flags); 1176 1177 /* 1178 * If this zone is not populated, then it is not in zonelist. 1179 * This means the page allocator ignores this zone. 1180 * So, zonelist must be updated after online. 1181 */ 1182 if (!populated_zone(zone)) { 1183 need_zonelists_rebuild = 1; 1184 setup_zone_pageset(zone); 1185 } 1186 1187 online_pages_range(pfn, nr_pages); 1188 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1189 1190 node_states_set_node(nid, &arg); 1191 if (need_zonelists_rebuild) 1192 build_all_zonelists(NULL); 1193 1194 /* Basic onlining is complete, allow allocation of onlined pages. */ 1195 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1196 1197 /* 1198 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1199 * the tail of the freelist when undoing isolation). Shuffle the whole 1200 * zone to make sure the just onlined pages are properly distributed 1201 * across the whole freelist - to create an initial shuffle. 1202 */ 1203 shuffle_zone(zone); 1204 1205 /* reinitialise watermarks and update pcp limits */ 1206 init_per_zone_wmark_min(); 1207 1208 kswapd_run(nid); 1209 kcompactd_run(nid); 1210 1211 writeback_set_ratelimit(); 1212 1213 memory_notify(MEM_ONLINE, &arg); 1214 return 0; 1215 1216 failed_addition: 1217 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1218 (unsigned long long) pfn << PAGE_SHIFT, 1219 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1220 memory_notify(MEM_CANCEL_ONLINE, &arg); 1221 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1222 return ret; 1223 } 1224 1225 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1226 static pg_data_t __ref *hotadd_init_pgdat(int nid) 1227 { 1228 struct pglist_data *pgdat; 1229 1230 /* 1231 * NODE_DATA is preallocated (free_area_init) but its internal 1232 * state is not allocated completely. Add missing pieces. 1233 * Completely offline nodes stay around and they just need 1234 * reintialization. 1235 */ 1236 pgdat = NODE_DATA(nid); 1237 1238 /* init node's zones as empty zones, we don't have any present pages.*/ 1239 free_area_init_core_hotplug(pgdat); 1240 1241 /* 1242 * The node we allocated has no zone fallback lists. For avoiding 1243 * to access not-initialized zonelist, build here. 1244 */ 1245 build_all_zonelists(pgdat); 1246 1247 return pgdat; 1248 } 1249 1250 /* 1251 * __try_online_node - online a node if offlined 1252 * @nid: the node ID 1253 * @set_node_online: Whether we want to online the node 1254 * called by cpu_up() to online a node without onlined memory. 1255 * 1256 * Returns: 1257 * 1 -> a new node has been allocated 1258 * 0 -> the node is already online 1259 * -ENOMEM -> the node could not be allocated 1260 */ 1261 static int __try_online_node(int nid, bool set_node_online) 1262 { 1263 pg_data_t *pgdat; 1264 int ret = 1; 1265 1266 if (node_online(nid)) 1267 return 0; 1268 1269 pgdat = hotadd_init_pgdat(nid); 1270 if (!pgdat) { 1271 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1272 ret = -ENOMEM; 1273 goto out; 1274 } 1275 1276 if (set_node_online) { 1277 node_set_online(nid); 1278 ret = register_one_node(nid); 1279 BUG_ON(ret); 1280 } 1281 out: 1282 return ret; 1283 } 1284 1285 /* 1286 * Users of this function always want to online/register the node 1287 */ 1288 int try_online_node(int nid) 1289 { 1290 int ret; 1291 1292 mem_hotplug_begin(); 1293 ret = __try_online_node(nid, true); 1294 mem_hotplug_done(); 1295 return ret; 1296 } 1297 1298 static int check_hotplug_memory_range(u64 start, u64 size) 1299 { 1300 /* memory range must be block size aligned */ 1301 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1302 !IS_ALIGNED(size, memory_block_size_bytes())) { 1303 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1304 memory_block_size_bytes(), start, size); 1305 return -EINVAL; 1306 } 1307 1308 return 0; 1309 } 1310 1311 static int online_memory_block(struct memory_block *mem, void *arg) 1312 { 1313 mem->online_type = mhp_default_online_type; 1314 return device_online(&mem->dev); 1315 } 1316 1317 #ifndef arch_supports_memmap_on_memory 1318 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size) 1319 { 1320 /* 1321 * As default, we want the vmemmap to span a complete PMD such that we 1322 * can map the vmemmap using a single PMD if supported by the 1323 * architecture. 1324 */ 1325 return IS_ALIGNED(vmemmap_size, PMD_SIZE); 1326 } 1327 #endif 1328 1329 static bool mhp_supports_memmap_on_memory(unsigned long size) 1330 { 1331 unsigned long vmemmap_size = memory_block_memmap_size(); 1332 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 1333 1334 /* 1335 * Besides having arch support and the feature enabled at runtime, we 1336 * need a few more assumptions to hold true: 1337 * 1338 * a) We span a single memory block: memory onlining/offlinin;g happens 1339 * in memory block granularity. We don't want the vmemmap of online 1340 * memory blocks to reside on offline memory blocks. In the future, 1341 * we might want to support variable-sized memory blocks to make the 1342 * feature more versatile. 1343 * 1344 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code 1345 * to populate memory from the altmap for unrelated parts (i.e., 1346 * other memory blocks) 1347 * 1348 * c) The vmemmap pages (and thereby the pages that will be exposed to 1349 * the buddy) have to cover full pageblocks: memory onlining/offlining 1350 * code requires applicable ranges to be page-aligned, for example, to 1351 * set the migratetypes properly. 1352 * 1353 * TODO: Although we have a check here to make sure that vmemmap pages 1354 * fully populate a PMD, it is not the right place to check for 1355 * this. A much better solution involves improving vmemmap code 1356 * to fallback to base pages when trying to populate vmemmap using 1357 * altmap as an alternative source of memory, and we do not exactly 1358 * populate a single PMD. 1359 */ 1360 if (!mhp_memmap_on_memory() || size != memory_block_size_bytes()) 1361 return false; 1362 1363 /* 1364 * Make sure the vmemmap allocation is fully contained 1365 * so that we always allocate vmemmap memory from altmap area. 1366 */ 1367 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE)) 1368 return false; 1369 1370 /* 1371 * start pfn should be pageblock_nr_pages aligned for correctly 1372 * setting migrate types 1373 */ 1374 if (!pageblock_aligned(memmap_pages)) 1375 return false; 1376 1377 if (memmap_pages == PHYS_PFN(memory_block_size_bytes())) 1378 /* No effective hotplugged memory doesn't make sense. */ 1379 return false; 1380 1381 return arch_supports_memmap_on_memory(vmemmap_size); 1382 } 1383 1384 static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size) 1385 { 1386 unsigned long memblock_size = memory_block_size_bytes(); 1387 u64 cur_start; 1388 1389 /* 1390 * For memmap_on_memory, the altmaps were added on a per-memblock 1391 * basis; we have to process each individual memory block. 1392 */ 1393 for (cur_start = start; cur_start < start + size; 1394 cur_start += memblock_size) { 1395 struct vmem_altmap *altmap = NULL; 1396 struct memory_block *mem; 1397 1398 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start))); 1399 if (WARN_ON_ONCE(!mem)) 1400 continue; 1401 1402 altmap = mem->altmap; 1403 mem->altmap = NULL; 1404 1405 remove_memory_block_devices(cur_start, memblock_size); 1406 1407 arch_remove_memory(cur_start, memblock_size, altmap); 1408 1409 /* Verify that all vmemmap pages have actually been freed. */ 1410 WARN(altmap->alloc, "Altmap not fully unmapped"); 1411 kfree(altmap); 1412 } 1413 } 1414 1415 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group, 1416 u64 start, u64 size) 1417 { 1418 unsigned long memblock_size = memory_block_size_bytes(); 1419 u64 cur_start; 1420 int ret; 1421 1422 for (cur_start = start; cur_start < start + size; 1423 cur_start += memblock_size) { 1424 struct mhp_params params = { .pgprot = 1425 pgprot_mhp(PAGE_KERNEL) }; 1426 struct vmem_altmap mhp_altmap = { 1427 .base_pfn = PHYS_PFN(cur_start), 1428 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1), 1429 }; 1430 1431 mhp_altmap.free = memory_block_memmap_on_memory_pages(); 1432 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap), 1433 GFP_KERNEL); 1434 if (!params.altmap) { 1435 ret = -ENOMEM; 1436 goto out; 1437 } 1438 1439 /* call arch's memory hotadd */ 1440 ret = arch_add_memory(nid, cur_start, memblock_size, ¶ms); 1441 if (ret < 0) { 1442 kfree(params.altmap); 1443 goto out; 1444 } 1445 1446 /* create memory block devices after memory was added */ 1447 ret = create_memory_block_devices(cur_start, memblock_size, 1448 params.altmap, group); 1449 if (ret) { 1450 arch_remove_memory(cur_start, memblock_size, NULL); 1451 kfree(params.altmap); 1452 goto out; 1453 } 1454 } 1455 1456 return 0; 1457 out: 1458 if (ret && cur_start != start) 1459 remove_memory_blocks_and_altmaps(start, cur_start - start); 1460 return ret; 1461 } 1462 1463 /* 1464 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1465 * and online/offline operations (triggered e.g. by sysfs). 1466 * 1467 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1468 */ 1469 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1470 { 1471 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1472 enum memblock_flags memblock_flags = MEMBLOCK_NONE; 1473 struct memory_group *group = NULL; 1474 u64 start, size; 1475 bool new_node = false; 1476 int ret; 1477 1478 start = res->start; 1479 size = resource_size(res); 1480 1481 ret = check_hotplug_memory_range(start, size); 1482 if (ret) 1483 return ret; 1484 1485 if (mhp_flags & MHP_NID_IS_MGID) { 1486 group = memory_group_find_by_id(nid); 1487 if (!group) 1488 return -EINVAL; 1489 nid = group->nid; 1490 } 1491 1492 if (!node_possible(nid)) { 1493 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1494 return -EINVAL; 1495 } 1496 1497 mem_hotplug_begin(); 1498 1499 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1500 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 1501 memblock_flags = MEMBLOCK_DRIVER_MANAGED; 1502 ret = memblock_add_node(start, size, nid, memblock_flags); 1503 if (ret) 1504 goto error_mem_hotplug_end; 1505 } 1506 1507 ret = __try_online_node(nid, false); 1508 if (ret < 0) 1509 goto error; 1510 new_node = ret; 1511 1512 /* 1513 * Self hosted memmap array 1514 */ 1515 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) && 1516 mhp_supports_memmap_on_memory(memory_block_size_bytes())) { 1517 ret = create_altmaps_and_memory_blocks(nid, group, start, size); 1518 if (ret) 1519 goto error; 1520 } else { 1521 ret = arch_add_memory(nid, start, size, ¶ms); 1522 if (ret < 0) 1523 goto error; 1524 1525 /* create memory block devices after memory was added */ 1526 ret = create_memory_block_devices(start, size, NULL, group); 1527 if (ret) { 1528 arch_remove_memory(start, size, params.altmap); 1529 goto error; 1530 } 1531 } 1532 1533 if (new_node) { 1534 /* If sysfs file of new node can't be created, cpu on the node 1535 * can't be hot-added. There is no rollback way now. 1536 * So, check by BUG_ON() to catch it reluctantly.. 1537 * We online node here. We can't roll back from here. 1538 */ 1539 node_set_online(nid); 1540 ret = __register_one_node(nid); 1541 BUG_ON(ret); 1542 } 1543 1544 register_memory_blocks_under_node(nid, PFN_DOWN(start), 1545 PFN_UP(start + size - 1), 1546 MEMINIT_HOTPLUG); 1547 1548 /* create new memmap entry */ 1549 if (!strcmp(res->name, "System RAM")) 1550 firmware_map_add_hotplug(start, start + size, "System RAM"); 1551 1552 /* device_online() will take the lock when calling online_pages() */ 1553 mem_hotplug_done(); 1554 1555 /* 1556 * In case we're allowed to merge the resource, flag it and trigger 1557 * merging now that adding succeeded. 1558 */ 1559 if (mhp_flags & MHP_MERGE_RESOURCE) 1560 merge_system_ram_resource(res); 1561 1562 /* online pages if requested */ 1563 if (mhp_default_online_type != MMOP_OFFLINE) 1564 walk_memory_blocks(start, size, NULL, online_memory_block); 1565 1566 return ret; 1567 error: 1568 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1569 memblock_remove(start, size); 1570 error_mem_hotplug_end: 1571 mem_hotplug_done(); 1572 return ret; 1573 } 1574 1575 /* requires device_hotplug_lock, see add_memory_resource() */ 1576 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1577 { 1578 struct resource *res; 1579 int ret; 1580 1581 res = register_memory_resource(start, size, "System RAM"); 1582 if (IS_ERR(res)) 1583 return PTR_ERR(res); 1584 1585 ret = add_memory_resource(nid, res, mhp_flags); 1586 if (ret < 0) 1587 release_memory_resource(res); 1588 return ret; 1589 } 1590 1591 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1592 { 1593 int rc; 1594 1595 lock_device_hotplug(); 1596 rc = __add_memory(nid, start, size, mhp_flags); 1597 unlock_device_hotplug(); 1598 1599 return rc; 1600 } 1601 EXPORT_SYMBOL_GPL(add_memory); 1602 1603 /* 1604 * Add special, driver-managed memory to the system as system RAM. Such 1605 * memory is not exposed via the raw firmware-provided memmap as system 1606 * RAM, instead, it is detected and added by a driver - during cold boot, 1607 * after a reboot, and after kexec. 1608 * 1609 * Reasons why this memory should not be used for the initial memmap of a 1610 * kexec kernel or for placing kexec images: 1611 * - The booting kernel is in charge of determining how this memory will be 1612 * used (e.g., use persistent memory as system RAM) 1613 * - Coordination with a hypervisor is required before this memory 1614 * can be used (e.g., inaccessible parts). 1615 * 1616 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1617 * memory map") are created. Also, the created memory resource is flagged 1618 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1619 * this memory as well (esp., not place kexec images onto it). 1620 * 1621 * The resource_name (visible via /proc/iomem) has to have the format 1622 * "System RAM ($DRIVER)". 1623 */ 1624 int add_memory_driver_managed(int nid, u64 start, u64 size, 1625 const char *resource_name, mhp_t mhp_flags) 1626 { 1627 struct resource *res; 1628 int rc; 1629 1630 if (!resource_name || 1631 strstr(resource_name, "System RAM (") != resource_name || 1632 resource_name[strlen(resource_name) - 1] != ')') 1633 return -EINVAL; 1634 1635 lock_device_hotplug(); 1636 1637 res = register_memory_resource(start, size, resource_name); 1638 if (IS_ERR(res)) { 1639 rc = PTR_ERR(res); 1640 goto out_unlock; 1641 } 1642 1643 rc = add_memory_resource(nid, res, mhp_flags); 1644 if (rc < 0) 1645 release_memory_resource(res); 1646 1647 out_unlock: 1648 unlock_device_hotplug(); 1649 return rc; 1650 } 1651 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1652 1653 /* 1654 * Platforms should define arch_get_mappable_range() that provides 1655 * maximum possible addressable physical memory range for which the 1656 * linear mapping could be created. The platform returned address 1657 * range must adhere to these following semantics. 1658 * 1659 * - range.start <= range.end 1660 * - Range includes both end points [range.start..range.end] 1661 * 1662 * There is also a fallback definition provided here, allowing the 1663 * entire possible physical address range in case any platform does 1664 * not define arch_get_mappable_range(). 1665 */ 1666 struct range __weak arch_get_mappable_range(void) 1667 { 1668 struct range mhp_range = { 1669 .start = 0UL, 1670 .end = -1ULL, 1671 }; 1672 return mhp_range; 1673 } 1674 1675 struct range mhp_get_pluggable_range(bool need_mapping) 1676 { 1677 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1678 struct range mhp_range; 1679 1680 if (need_mapping) { 1681 mhp_range = arch_get_mappable_range(); 1682 if (mhp_range.start > max_phys) { 1683 mhp_range.start = 0; 1684 mhp_range.end = 0; 1685 } 1686 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1687 } else { 1688 mhp_range.start = 0; 1689 mhp_range.end = max_phys; 1690 } 1691 return mhp_range; 1692 } 1693 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1694 1695 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1696 { 1697 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1698 u64 end = start + size; 1699 1700 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1701 return true; 1702 1703 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1704 start, end, mhp_range.start, mhp_range.end); 1705 return false; 1706 } 1707 1708 #ifdef CONFIG_MEMORY_HOTREMOVE 1709 /* 1710 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1711 * non-lru movable pages and hugepages). Will skip over most unmovable 1712 * pages (esp., pages that can be skipped when offlining), but bail out on 1713 * definitely unmovable pages. 1714 * 1715 * Returns: 1716 * 0 in case a movable page is found and movable_pfn was updated. 1717 * -ENOENT in case no movable page was found. 1718 * -EBUSY in case a definitely unmovable page was found. 1719 */ 1720 static int scan_movable_pages(unsigned long start, unsigned long end, 1721 unsigned long *movable_pfn) 1722 { 1723 unsigned long pfn; 1724 1725 for (pfn = start; pfn < end; pfn++) { 1726 struct page *page, *head; 1727 unsigned long skip; 1728 1729 if (!pfn_valid(pfn)) 1730 continue; 1731 page = pfn_to_page(pfn); 1732 if (PageLRU(page)) 1733 goto found; 1734 if (__PageMovable(page)) 1735 goto found; 1736 1737 /* 1738 * PageOffline() pages that are not marked __PageMovable() and 1739 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1740 * definitely unmovable. If their reference count would be 0, 1741 * they could at least be skipped when offlining memory. 1742 */ 1743 if (PageOffline(page) && page_count(page)) 1744 return -EBUSY; 1745 1746 if (!PageHuge(page)) 1747 continue; 1748 head = compound_head(page); 1749 /* 1750 * This test is racy as we hold no reference or lock. The 1751 * hugetlb page could have been free'ed and head is no longer 1752 * a hugetlb page before the following check. In such unlikely 1753 * cases false positives and negatives are possible. Calling 1754 * code must deal with these scenarios. 1755 */ 1756 if (HPageMigratable(head)) 1757 goto found; 1758 skip = compound_nr(head) - (pfn - page_to_pfn(head)); 1759 pfn += skip - 1; 1760 } 1761 return -ENOENT; 1762 found: 1763 *movable_pfn = pfn; 1764 return 0; 1765 } 1766 1767 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1768 { 1769 unsigned long pfn; 1770 struct page *page, *head; 1771 LIST_HEAD(source); 1772 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1773 DEFAULT_RATELIMIT_BURST); 1774 1775 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1776 struct folio *folio; 1777 bool isolated; 1778 1779 if (!pfn_valid(pfn)) 1780 continue; 1781 page = pfn_to_page(pfn); 1782 folio = page_folio(page); 1783 head = &folio->page; 1784 1785 if (PageHuge(page)) { 1786 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1787 isolate_hugetlb(folio, &source); 1788 continue; 1789 } else if (PageTransHuge(page)) 1790 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1791 1792 /* 1793 * HWPoison pages have elevated reference counts so the migration would 1794 * fail on them. It also doesn't make any sense to migrate them in the 1795 * first place. Still try to unmap such a page in case it is still mapped 1796 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1797 * the unmap as the catch all safety net). 1798 */ 1799 if (PageHWPoison(page)) { 1800 if (WARN_ON(folio_test_lru(folio))) 1801 folio_isolate_lru(folio); 1802 if (folio_mapped(folio)) 1803 try_to_unmap(folio, TTU_IGNORE_MLOCK); 1804 continue; 1805 } 1806 1807 if (!get_page_unless_zero(page)) 1808 continue; 1809 /* 1810 * We can skip free pages. And we can deal with pages on 1811 * LRU and non-lru movable pages. 1812 */ 1813 if (PageLRU(page)) 1814 isolated = isolate_lru_page(page); 1815 else 1816 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1817 if (isolated) { 1818 list_add_tail(&page->lru, &source); 1819 if (!__PageMovable(page)) 1820 inc_node_page_state(page, NR_ISOLATED_ANON + 1821 page_is_file_lru(page)); 1822 1823 } else { 1824 if (__ratelimit(&migrate_rs)) { 1825 pr_warn("failed to isolate pfn %lx\n", pfn); 1826 dump_page(page, "isolation failed"); 1827 } 1828 } 1829 put_page(page); 1830 } 1831 if (!list_empty(&source)) { 1832 nodemask_t nmask = node_states[N_MEMORY]; 1833 struct migration_target_control mtc = { 1834 .nmask = &nmask, 1835 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1836 }; 1837 int ret; 1838 1839 /* 1840 * We have checked that migration range is on a single zone so 1841 * we can use the nid of the first page to all the others. 1842 */ 1843 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1844 1845 /* 1846 * try to allocate from a different node but reuse this node 1847 * if there are no other online nodes to be used (e.g. we are 1848 * offlining a part of the only existing node) 1849 */ 1850 node_clear(mtc.nid, nmask); 1851 if (nodes_empty(nmask)) 1852 node_set(mtc.nid, nmask); 1853 ret = migrate_pages(&source, alloc_migration_target, NULL, 1854 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1855 if (ret) { 1856 list_for_each_entry(page, &source, lru) { 1857 if (__ratelimit(&migrate_rs)) { 1858 pr_warn("migrating pfn %lx failed ret:%d\n", 1859 page_to_pfn(page), ret); 1860 dump_page(page, "migration failure"); 1861 } 1862 } 1863 putback_movable_pages(&source); 1864 } 1865 } 1866 } 1867 1868 static int __init cmdline_parse_movable_node(char *p) 1869 { 1870 movable_node_enabled = true; 1871 return 0; 1872 } 1873 early_param("movable_node", cmdline_parse_movable_node); 1874 1875 /* check which state of node_states will be changed when offline memory */ 1876 static void node_states_check_changes_offline(unsigned long nr_pages, 1877 struct zone *zone, struct memory_notify *arg) 1878 { 1879 struct pglist_data *pgdat = zone->zone_pgdat; 1880 unsigned long present_pages = 0; 1881 enum zone_type zt; 1882 1883 arg->status_change_nid = NUMA_NO_NODE; 1884 arg->status_change_nid_normal = NUMA_NO_NODE; 1885 1886 /* 1887 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1888 * If the memory to be offline is within the range 1889 * [0..ZONE_NORMAL], and it is the last present memory there, 1890 * the zones in that range will become empty after the offlining, 1891 * thus we can determine that we need to clear the node from 1892 * node_states[N_NORMAL_MEMORY]. 1893 */ 1894 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1895 present_pages += pgdat->node_zones[zt].present_pages; 1896 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1897 arg->status_change_nid_normal = zone_to_nid(zone); 1898 1899 /* 1900 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM 1901 * does not apply as we don't support 32bit. 1902 * Here we count the possible pages from ZONE_MOVABLE. 1903 * If after having accounted all the pages, we see that the nr_pages 1904 * to be offlined is over or equal to the accounted pages, 1905 * we know that the node will become empty, and so, we can clear 1906 * it for N_MEMORY as well. 1907 */ 1908 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1909 1910 if (nr_pages >= present_pages) 1911 arg->status_change_nid = zone_to_nid(zone); 1912 } 1913 1914 static void node_states_clear_node(int node, struct memory_notify *arg) 1915 { 1916 if (arg->status_change_nid_normal >= 0) 1917 node_clear_state(node, N_NORMAL_MEMORY); 1918 1919 if (arg->status_change_nid >= 0) 1920 node_clear_state(node, N_MEMORY); 1921 } 1922 1923 static int count_system_ram_pages_cb(unsigned long start_pfn, 1924 unsigned long nr_pages, void *data) 1925 { 1926 unsigned long *nr_system_ram_pages = data; 1927 1928 *nr_system_ram_pages += nr_pages; 1929 return 0; 1930 } 1931 1932 /* 1933 * Must be called with mem_hotplug_lock in write mode. 1934 */ 1935 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1936 struct zone *zone, struct memory_group *group) 1937 { 1938 const unsigned long end_pfn = start_pfn + nr_pages; 1939 unsigned long pfn, system_ram_pages = 0; 1940 const int node = zone_to_nid(zone); 1941 unsigned long flags; 1942 struct memory_notify arg; 1943 char *reason; 1944 int ret; 1945 1946 /* 1947 * {on,off}lining is constrained to full memory sections (or more 1948 * precisely to memory blocks from the user space POV). 1949 * memmap_on_memory is an exception because it reserves initial part 1950 * of the physical memory space for vmemmaps. That space is pageblock 1951 * aligned. 1952 */ 1953 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) || 1954 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1955 return -EINVAL; 1956 1957 /* 1958 * Don't allow to offline memory blocks that contain holes. 1959 * Consequently, memory blocks with holes can never get onlined 1960 * via the hotplug path - online_pages() - as hotplugged memory has 1961 * no holes. This way, we e.g., don't have to worry about marking 1962 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1963 * avoid using walk_system_ram_range() later. 1964 */ 1965 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1966 count_system_ram_pages_cb); 1967 if (system_ram_pages != nr_pages) { 1968 ret = -EINVAL; 1969 reason = "memory holes"; 1970 goto failed_removal; 1971 } 1972 1973 /* 1974 * We only support offlining of memory blocks managed by a single zone, 1975 * checked by calling code. This is just a sanity check that we might 1976 * want to remove in the future. 1977 */ 1978 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone || 1979 page_zone(pfn_to_page(end_pfn - 1)) != zone)) { 1980 ret = -EINVAL; 1981 reason = "multizone range"; 1982 goto failed_removal; 1983 } 1984 1985 /* 1986 * Disable pcplists so that page isolation cannot race with freeing 1987 * in a way that pages from isolated pageblock are left on pcplists. 1988 */ 1989 zone_pcp_disable(zone); 1990 lru_cache_disable(); 1991 1992 /* set above range as isolated */ 1993 ret = start_isolate_page_range(start_pfn, end_pfn, 1994 MIGRATE_MOVABLE, 1995 MEMORY_OFFLINE | REPORT_FAILURE, 1996 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL); 1997 if (ret) { 1998 reason = "failure to isolate range"; 1999 goto failed_removal_pcplists_disabled; 2000 } 2001 2002 arg.start_pfn = start_pfn; 2003 arg.nr_pages = nr_pages; 2004 node_states_check_changes_offline(nr_pages, zone, &arg); 2005 2006 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 2007 ret = notifier_to_errno(ret); 2008 if (ret) { 2009 reason = "notifier failure"; 2010 goto failed_removal_isolated; 2011 } 2012 2013 do { 2014 pfn = start_pfn; 2015 do { 2016 /* 2017 * Historically we always checked for any signal and 2018 * can't limit it to fatal signals without eventually 2019 * breaking user space. 2020 */ 2021 if (signal_pending(current)) { 2022 ret = -EINTR; 2023 reason = "signal backoff"; 2024 goto failed_removal_isolated; 2025 } 2026 2027 cond_resched(); 2028 2029 ret = scan_movable_pages(pfn, end_pfn, &pfn); 2030 if (!ret) { 2031 /* 2032 * TODO: fatal migration failures should bail 2033 * out 2034 */ 2035 do_migrate_range(pfn, end_pfn); 2036 } 2037 } while (!ret); 2038 2039 if (ret != -ENOENT) { 2040 reason = "unmovable page"; 2041 goto failed_removal_isolated; 2042 } 2043 2044 /* 2045 * Dissolve free hugepages in the memory block before doing 2046 * offlining actually in order to make hugetlbfs's object 2047 * counting consistent. 2048 */ 2049 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 2050 if (ret) { 2051 reason = "failure to dissolve huge pages"; 2052 goto failed_removal_isolated; 2053 } 2054 2055 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 2056 2057 } while (ret); 2058 2059 /* Mark all sections offline and remove free pages from the buddy. */ 2060 __offline_isolated_pages(start_pfn, end_pfn); 2061 pr_debug("Offlined Pages %ld\n", nr_pages); 2062 2063 /* 2064 * The memory sections are marked offline, and the pageblock flags 2065 * effectively stale; nobody should be touching them. Fixup the number 2066 * of isolated pageblocks, memory onlining will properly revert this. 2067 */ 2068 spin_lock_irqsave(&zone->lock, flags); 2069 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 2070 spin_unlock_irqrestore(&zone->lock, flags); 2071 2072 lru_cache_enable(); 2073 zone_pcp_enable(zone); 2074 2075 /* removal success */ 2076 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 2077 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 2078 2079 /* reinitialise watermarks and update pcp limits */ 2080 init_per_zone_wmark_min(); 2081 2082 /* 2083 * Make sure to mark the node as memory-less before rebuilding the zone 2084 * list. Otherwise this node would still appear in the fallback lists. 2085 */ 2086 node_states_clear_node(node, &arg); 2087 if (!populated_zone(zone)) { 2088 zone_pcp_reset(zone); 2089 build_all_zonelists(NULL); 2090 } 2091 2092 if (arg.status_change_nid >= 0) { 2093 kcompactd_stop(node); 2094 kswapd_stop(node); 2095 } 2096 2097 writeback_set_ratelimit(); 2098 2099 memory_notify(MEM_OFFLINE, &arg); 2100 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 2101 return 0; 2102 2103 failed_removal_isolated: 2104 /* pushback to free area */ 2105 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 2106 memory_notify(MEM_CANCEL_OFFLINE, &arg); 2107 failed_removal_pcplists_disabled: 2108 lru_cache_enable(); 2109 zone_pcp_enable(zone); 2110 failed_removal: 2111 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 2112 (unsigned long long) start_pfn << PAGE_SHIFT, 2113 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 2114 reason); 2115 return ret; 2116 } 2117 2118 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2119 { 2120 int *nid = arg; 2121 2122 *nid = mem->nid; 2123 if (unlikely(mem->state != MEM_OFFLINE)) { 2124 phys_addr_t beginpa, endpa; 2125 2126 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2127 endpa = beginpa + memory_block_size_bytes() - 1; 2128 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2129 &beginpa, &endpa); 2130 2131 return -EBUSY; 2132 } 2133 return 0; 2134 } 2135 2136 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg) 2137 { 2138 u64 *num_altmaps = (u64 *)arg; 2139 2140 if (mem->altmap) 2141 *num_altmaps += 1; 2142 2143 return 0; 2144 } 2145 2146 static int check_cpu_on_node(int nid) 2147 { 2148 int cpu; 2149 2150 for_each_present_cpu(cpu) { 2151 if (cpu_to_node(cpu) == nid) 2152 /* 2153 * the cpu on this node isn't removed, and we can't 2154 * offline this node. 2155 */ 2156 return -EBUSY; 2157 } 2158 2159 return 0; 2160 } 2161 2162 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2163 { 2164 int nid = *(int *)arg; 2165 2166 /* 2167 * If a memory block belongs to multiple nodes, the stored nid is not 2168 * reliable. However, such blocks are always online (e.g., cannot get 2169 * offlined) and, therefore, are still spanned by the node. 2170 */ 2171 return mem->nid == nid ? -EEXIST : 0; 2172 } 2173 2174 /** 2175 * try_offline_node 2176 * @nid: the node ID 2177 * 2178 * Offline a node if all memory sections and cpus of the node are removed. 2179 * 2180 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2181 * and online/offline operations before this call. 2182 */ 2183 void try_offline_node(int nid) 2184 { 2185 int rc; 2186 2187 /* 2188 * If the node still spans pages (especially ZONE_DEVICE), don't 2189 * offline it. A node spans memory after move_pfn_range_to_zone(), 2190 * e.g., after the memory block was onlined. 2191 */ 2192 if (node_spanned_pages(nid)) 2193 return; 2194 2195 /* 2196 * Especially offline memory blocks might not be spanned by the 2197 * node. They will get spanned by the node once they get onlined. 2198 * However, they link to the node in sysfs and can get onlined later. 2199 */ 2200 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2201 if (rc) 2202 return; 2203 2204 if (check_cpu_on_node(nid)) 2205 return; 2206 2207 /* 2208 * all memory/cpu of this node are removed, we can offline this 2209 * node now. 2210 */ 2211 node_set_offline(nid); 2212 unregister_one_node(nid); 2213 } 2214 EXPORT_SYMBOL(try_offline_node); 2215 2216 static int memory_blocks_have_altmaps(u64 start, u64 size) 2217 { 2218 u64 num_memblocks = size / memory_block_size_bytes(); 2219 u64 num_altmaps = 0; 2220 2221 if (!mhp_memmap_on_memory()) 2222 return 0; 2223 2224 walk_memory_blocks(start, size, &num_altmaps, 2225 count_memory_range_altmaps_cb); 2226 2227 if (num_altmaps == 0) 2228 return 0; 2229 2230 if (WARN_ON_ONCE(num_memblocks != num_altmaps)) 2231 return -EINVAL; 2232 2233 return 1; 2234 } 2235 2236 static int __ref try_remove_memory(u64 start, u64 size) 2237 { 2238 int rc, nid = NUMA_NO_NODE; 2239 2240 BUG_ON(check_hotplug_memory_range(start, size)); 2241 2242 /* 2243 * All memory blocks must be offlined before removing memory. Check 2244 * whether all memory blocks in question are offline and return error 2245 * if this is not the case. 2246 * 2247 * While at it, determine the nid. Note that if we'd have mixed nodes, 2248 * we'd only try to offline the last determined one -- which is good 2249 * enough for the cases we care about. 2250 */ 2251 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2252 if (rc) 2253 return rc; 2254 2255 /* remove memmap entry */ 2256 firmware_map_remove(start, start + size, "System RAM"); 2257 2258 mem_hotplug_begin(); 2259 2260 rc = memory_blocks_have_altmaps(start, size); 2261 if (rc < 0) { 2262 mem_hotplug_done(); 2263 return rc; 2264 } else if (!rc) { 2265 /* 2266 * Memory block device removal under the device_hotplug_lock is 2267 * a barrier against racing online attempts. 2268 * No altmaps present, do the removal directly 2269 */ 2270 remove_memory_block_devices(start, size); 2271 arch_remove_memory(start, size, NULL); 2272 } else { 2273 /* all memblocks in the range have altmaps */ 2274 remove_memory_blocks_and_altmaps(start, size); 2275 } 2276 2277 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 2278 memblock_phys_free(start, size); 2279 memblock_remove(start, size); 2280 } 2281 2282 release_mem_region_adjustable(start, size); 2283 2284 if (nid != NUMA_NO_NODE) 2285 try_offline_node(nid); 2286 2287 mem_hotplug_done(); 2288 return 0; 2289 } 2290 2291 /** 2292 * __remove_memory - Remove memory if every memory block is offline 2293 * @start: physical address of the region to remove 2294 * @size: size of the region to remove 2295 * 2296 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2297 * and online/offline operations before this call, as required by 2298 * try_offline_node(). 2299 */ 2300 void __remove_memory(u64 start, u64 size) 2301 { 2302 2303 /* 2304 * trigger BUG() if some memory is not offlined prior to calling this 2305 * function 2306 */ 2307 if (try_remove_memory(start, size)) 2308 BUG(); 2309 } 2310 2311 /* 2312 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2313 * some memory is not offline 2314 */ 2315 int remove_memory(u64 start, u64 size) 2316 { 2317 int rc; 2318 2319 lock_device_hotplug(); 2320 rc = try_remove_memory(start, size); 2321 unlock_device_hotplug(); 2322 2323 return rc; 2324 } 2325 EXPORT_SYMBOL_GPL(remove_memory); 2326 2327 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2328 { 2329 uint8_t online_type = MMOP_ONLINE_KERNEL; 2330 uint8_t **online_types = arg; 2331 struct page *page; 2332 int rc; 2333 2334 /* 2335 * Sense the online_type via the zone of the memory block. Offlining 2336 * with multiple zones within one memory block will be rejected 2337 * by offlining code ... so we don't care about that. 2338 */ 2339 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2340 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2341 online_type = MMOP_ONLINE_MOVABLE; 2342 2343 rc = device_offline(&mem->dev); 2344 /* 2345 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2346 * so try_reonline_memory_block() can do the right thing. 2347 */ 2348 if (!rc) 2349 **online_types = online_type; 2350 2351 (*online_types)++; 2352 /* Ignore if already offline. */ 2353 return rc < 0 ? rc : 0; 2354 } 2355 2356 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2357 { 2358 uint8_t **online_types = arg; 2359 int rc; 2360 2361 if (**online_types != MMOP_OFFLINE) { 2362 mem->online_type = **online_types; 2363 rc = device_online(&mem->dev); 2364 if (rc < 0) 2365 pr_warn("%s: Failed to re-online memory: %d", 2366 __func__, rc); 2367 } 2368 2369 /* Continue processing all remaining memory blocks. */ 2370 (*online_types)++; 2371 return 0; 2372 } 2373 2374 /* 2375 * Try to offline and remove memory. Might take a long time to finish in case 2376 * memory is still in use. Primarily useful for memory devices that logically 2377 * unplugged all memory (so it's no longer in use) and want to offline + remove 2378 * that memory. 2379 */ 2380 int offline_and_remove_memory(u64 start, u64 size) 2381 { 2382 const unsigned long mb_count = size / memory_block_size_bytes(); 2383 uint8_t *online_types, *tmp; 2384 int rc; 2385 2386 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2387 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2388 return -EINVAL; 2389 2390 /* 2391 * We'll remember the old online type of each memory block, so we can 2392 * try to revert whatever we did when offlining one memory block fails 2393 * after offlining some others succeeded. 2394 */ 2395 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2396 GFP_KERNEL); 2397 if (!online_types) 2398 return -ENOMEM; 2399 /* 2400 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2401 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2402 * try_reonline_memory_block(). 2403 */ 2404 memset(online_types, MMOP_OFFLINE, mb_count); 2405 2406 lock_device_hotplug(); 2407 2408 tmp = online_types; 2409 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2410 2411 /* 2412 * In case we succeeded to offline all memory, remove it. 2413 * This cannot fail as it cannot get onlined in the meantime. 2414 */ 2415 if (!rc) { 2416 rc = try_remove_memory(start, size); 2417 if (rc) 2418 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2419 } 2420 2421 /* 2422 * Rollback what we did. While memory onlining might theoretically fail 2423 * (nacked by a notifier), it barely ever happens. 2424 */ 2425 if (rc) { 2426 tmp = online_types; 2427 walk_memory_blocks(start, size, &tmp, 2428 try_reonline_memory_block); 2429 } 2430 unlock_device_hotplug(); 2431 2432 kfree(online_types); 2433 return rc; 2434 } 2435 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2436 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2437