1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/swap.h> 10 #include <linux/interrupt.h> 11 #include <linux/pagemap.h> 12 #include <linux/compiler.h> 13 #include <linux/export.h> 14 #include <linux/pagevec.h> 15 #include <linux/writeback.h> 16 #include <linux/slab.h> 17 #include <linux/sysctl.h> 18 #include <linux/cpu.h> 19 #include <linux/memory.h> 20 #include <linux/memremap.h> 21 #include <linux/memory_hotplug.h> 22 #include <linux/highmem.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/bootmem.h> 36 37 #include <asm/tlbflush.h> 38 39 #include "internal.h" 40 41 /* 42 * online_page_callback contains pointer to current page onlining function. 43 * Initially it is generic_online_page(). If it is required it could be 44 * changed by calling set_online_page_callback() for callback registration 45 * and restore_online_page_callback() for generic callback restore. 46 */ 47 48 static void generic_online_page(struct page *page); 49 50 static online_page_callback_t online_page_callback = generic_online_page; 51 static DEFINE_MUTEX(online_page_callback_lock); 52 53 /* The same as the cpu_hotplug lock, but for memory hotplug. */ 54 static struct { 55 struct task_struct *active_writer; 56 struct mutex lock; /* Synchronizes accesses to refcount, */ 57 /* 58 * Also blocks the new readers during 59 * an ongoing mem hotplug operation. 60 */ 61 int refcount; 62 63 #ifdef CONFIG_DEBUG_LOCK_ALLOC 64 struct lockdep_map dep_map; 65 #endif 66 } mem_hotplug = { 67 .active_writer = NULL, 68 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock), 69 .refcount = 0, 70 #ifdef CONFIG_DEBUG_LOCK_ALLOC 71 .dep_map = {.name = "mem_hotplug.lock" }, 72 #endif 73 }; 74 75 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */ 76 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map) 77 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map) 78 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map) 79 80 bool memhp_auto_online; 81 EXPORT_SYMBOL_GPL(memhp_auto_online); 82 83 void get_online_mems(void) 84 { 85 might_sleep(); 86 if (mem_hotplug.active_writer == current) 87 return; 88 memhp_lock_acquire_read(); 89 mutex_lock(&mem_hotplug.lock); 90 mem_hotplug.refcount++; 91 mutex_unlock(&mem_hotplug.lock); 92 93 } 94 95 void put_online_mems(void) 96 { 97 if (mem_hotplug.active_writer == current) 98 return; 99 mutex_lock(&mem_hotplug.lock); 100 101 if (WARN_ON(!mem_hotplug.refcount)) 102 mem_hotplug.refcount++; /* try to fix things up */ 103 104 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer)) 105 wake_up_process(mem_hotplug.active_writer); 106 mutex_unlock(&mem_hotplug.lock); 107 memhp_lock_release(); 108 109 } 110 111 void mem_hotplug_begin(void) 112 { 113 mem_hotplug.active_writer = current; 114 115 memhp_lock_acquire(); 116 for (;;) { 117 mutex_lock(&mem_hotplug.lock); 118 if (likely(!mem_hotplug.refcount)) 119 break; 120 __set_current_state(TASK_UNINTERRUPTIBLE); 121 mutex_unlock(&mem_hotplug.lock); 122 schedule(); 123 } 124 } 125 126 void mem_hotplug_done(void) 127 { 128 mem_hotplug.active_writer = NULL; 129 mutex_unlock(&mem_hotplug.lock); 130 memhp_lock_release(); 131 } 132 133 /* add this memory to iomem resource */ 134 static struct resource *register_memory_resource(u64 start, u64 size) 135 { 136 struct resource *res; 137 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 138 if (!res) 139 return ERR_PTR(-ENOMEM); 140 141 res->name = "System RAM"; 142 res->start = start; 143 res->end = start + size - 1; 144 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 145 if (request_resource(&iomem_resource, res) < 0) { 146 pr_debug("System RAM resource %pR cannot be added\n", res); 147 kfree(res); 148 return ERR_PTR(-EEXIST); 149 } 150 return res; 151 } 152 153 static void release_memory_resource(struct resource *res) 154 { 155 if (!res) 156 return; 157 release_resource(res); 158 kfree(res); 159 return; 160 } 161 162 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 163 void get_page_bootmem(unsigned long info, struct page *page, 164 unsigned long type) 165 { 166 page->lru.next = (struct list_head *) type; 167 SetPagePrivate(page); 168 set_page_private(page, info); 169 atomic_inc(&page->_count); 170 } 171 172 void put_page_bootmem(struct page *page) 173 { 174 unsigned long type; 175 176 type = (unsigned long) page->lru.next; 177 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 178 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 179 180 if (atomic_dec_return(&page->_count) == 1) { 181 ClearPagePrivate(page); 182 set_page_private(page, 0); 183 INIT_LIST_HEAD(&page->lru); 184 free_reserved_page(page); 185 } 186 } 187 188 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 189 #ifndef CONFIG_SPARSEMEM_VMEMMAP 190 static void register_page_bootmem_info_section(unsigned long start_pfn) 191 { 192 unsigned long *usemap, mapsize, section_nr, i; 193 struct mem_section *ms; 194 struct page *page, *memmap; 195 196 section_nr = pfn_to_section_nr(start_pfn); 197 ms = __nr_to_section(section_nr); 198 199 /* Get section's memmap address */ 200 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 201 202 /* 203 * Get page for the memmap's phys address 204 * XXX: need more consideration for sparse_vmemmap... 205 */ 206 page = virt_to_page(memmap); 207 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 208 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 209 210 /* remember memmap's page */ 211 for (i = 0; i < mapsize; i++, page++) 212 get_page_bootmem(section_nr, page, SECTION_INFO); 213 214 usemap = __nr_to_section(section_nr)->pageblock_flags; 215 page = virt_to_page(usemap); 216 217 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 218 219 for (i = 0; i < mapsize; i++, page++) 220 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 221 222 } 223 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 224 static void register_page_bootmem_info_section(unsigned long start_pfn) 225 { 226 unsigned long *usemap, mapsize, section_nr, i; 227 struct mem_section *ms; 228 struct page *page, *memmap; 229 230 if (!pfn_valid(start_pfn)) 231 return; 232 233 section_nr = pfn_to_section_nr(start_pfn); 234 ms = __nr_to_section(section_nr); 235 236 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 237 238 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 239 240 usemap = __nr_to_section(section_nr)->pageblock_flags; 241 page = virt_to_page(usemap); 242 243 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 244 245 for (i = 0; i < mapsize; i++, page++) 246 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 247 } 248 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 249 250 void register_page_bootmem_info_node(struct pglist_data *pgdat) 251 { 252 unsigned long i, pfn, end_pfn, nr_pages; 253 int node = pgdat->node_id; 254 struct page *page; 255 struct zone *zone; 256 257 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 258 page = virt_to_page(pgdat); 259 260 for (i = 0; i < nr_pages; i++, page++) 261 get_page_bootmem(node, page, NODE_INFO); 262 263 zone = &pgdat->node_zones[0]; 264 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) { 265 if (zone_is_initialized(zone)) { 266 nr_pages = zone->wait_table_hash_nr_entries 267 * sizeof(wait_queue_head_t); 268 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT; 269 page = virt_to_page(zone->wait_table); 270 271 for (i = 0; i < nr_pages; i++, page++) 272 get_page_bootmem(node, page, NODE_INFO); 273 } 274 } 275 276 pfn = pgdat->node_start_pfn; 277 end_pfn = pgdat_end_pfn(pgdat); 278 279 /* register section info */ 280 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 281 /* 282 * Some platforms can assign the same pfn to multiple nodes - on 283 * node0 as well as nodeN. To avoid registering a pfn against 284 * multiple nodes we check that this pfn does not already 285 * reside in some other nodes. 286 */ 287 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node)) 288 register_page_bootmem_info_section(pfn); 289 } 290 } 291 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 292 293 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn, 294 unsigned long end_pfn) 295 { 296 unsigned long old_zone_end_pfn; 297 298 zone_span_writelock(zone); 299 300 old_zone_end_pfn = zone_end_pfn(zone); 301 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 302 zone->zone_start_pfn = start_pfn; 303 304 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) - 305 zone->zone_start_pfn; 306 307 zone_span_writeunlock(zone); 308 } 309 310 static void resize_zone(struct zone *zone, unsigned long start_pfn, 311 unsigned long end_pfn) 312 { 313 zone_span_writelock(zone); 314 315 if (end_pfn - start_pfn) { 316 zone->zone_start_pfn = start_pfn; 317 zone->spanned_pages = end_pfn - start_pfn; 318 } else { 319 /* 320 * make it consist as free_area_init_core(), 321 * if spanned_pages = 0, then keep start_pfn = 0 322 */ 323 zone->zone_start_pfn = 0; 324 zone->spanned_pages = 0; 325 } 326 327 zone_span_writeunlock(zone); 328 } 329 330 static void fix_zone_id(struct zone *zone, unsigned long start_pfn, 331 unsigned long end_pfn) 332 { 333 enum zone_type zid = zone_idx(zone); 334 int nid = zone->zone_pgdat->node_id; 335 unsigned long pfn; 336 337 for (pfn = start_pfn; pfn < end_pfn; pfn++) 338 set_page_links(pfn_to_page(pfn), zid, nid, pfn); 339 } 340 341 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or 342 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */ 343 static int __ref ensure_zone_is_initialized(struct zone *zone, 344 unsigned long start_pfn, unsigned long num_pages) 345 { 346 if (!zone_is_initialized(zone)) 347 return init_currently_empty_zone(zone, start_pfn, num_pages); 348 349 return 0; 350 } 351 352 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2, 353 unsigned long start_pfn, unsigned long end_pfn) 354 { 355 int ret; 356 unsigned long flags; 357 unsigned long z1_start_pfn; 358 359 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn); 360 if (ret) 361 return ret; 362 363 pgdat_resize_lock(z1->zone_pgdat, &flags); 364 365 /* can't move pfns which are higher than @z2 */ 366 if (end_pfn > zone_end_pfn(z2)) 367 goto out_fail; 368 /* the move out part must be at the left most of @z2 */ 369 if (start_pfn > z2->zone_start_pfn) 370 goto out_fail; 371 /* must included/overlap */ 372 if (end_pfn <= z2->zone_start_pfn) 373 goto out_fail; 374 375 /* use start_pfn for z1's start_pfn if z1 is empty */ 376 if (!zone_is_empty(z1)) 377 z1_start_pfn = z1->zone_start_pfn; 378 else 379 z1_start_pfn = start_pfn; 380 381 resize_zone(z1, z1_start_pfn, end_pfn); 382 resize_zone(z2, end_pfn, zone_end_pfn(z2)); 383 384 pgdat_resize_unlock(z1->zone_pgdat, &flags); 385 386 fix_zone_id(z1, start_pfn, end_pfn); 387 388 return 0; 389 out_fail: 390 pgdat_resize_unlock(z1->zone_pgdat, &flags); 391 return -1; 392 } 393 394 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2, 395 unsigned long start_pfn, unsigned long end_pfn) 396 { 397 int ret; 398 unsigned long flags; 399 unsigned long z2_end_pfn; 400 401 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn); 402 if (ret) 403 return ret; 404 405 pgdat_resize_lock(z1->zone_pgdat, &flags); 406 407 /* can't move pfns which are lower than @z1 */ 408 if (z1->zone_start_pfn > start_pfn) 409 goto out_fail; 410 /* the move out part mast at the right most of @z1 */ 411 if (zone_end_pfn(z1) > end_pfn) 412 goto out_fail; 413 /* must included/overlap */ 414 if (start_pfn >= zone_end_pfn(z1)) 415 goto out_fail; 416 417 /* use end_pfn for z2's end_pfn if z2 is empty */ 418 if (!zone_is_empty(z2)) 419 z2_end_pfn = zone_end_pfn(z2); 420 else 421 z2_end_pfn = end_pfn; 422 423 resize_zone(z1, z1->zone_start_pfn, start_pfn); 424 resize_zone(z2, start_pfn, z2_end_pfn); 425 426 pgdat_resize_unlock(z1->zone_pgdat, &flags); 427 428 fix_zone_id(z2, start_pfn, end_pfn); 429 430 return 0; 431 out_fail: 432 pgdat_resize_unlock(z1->zone_pgdat, &flags); 433 return -1; 434 } 435 436 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn, 437 unsigned long end_pfn) 438 { 439 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat); 440 441 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 442 pgdat->node_start_pfn = start_pfn; 443 444 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) - 445 pgdat->node_start_pfn; 446 } 447 448 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn) 449 { 450 struct pglist_data *pgdat = zone->zone_pgdat; 451 int nr_pages = PAGES_PER_SECTION; 452 int nid = pgdat->node_id; 453 int zone_type; 454 unsigned long flags, pfn; 455 int ret; 456 457 zone_type = zone - pgdat->node_zones; 458 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages); 459 if (ret) 460 return ret; 461 462 pgdat_resize_lock(zone->zone_pgdat, &flags); 463 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages); 464 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn, 465 phys_start_pfn + nr_pages); 466 pgdat_resize_unlock(zone->zone_pgdat, &flags); 467 memmap_init_zone(nr_pages, nid, zone_type, 468 phys_start_pfn, MEMMAP_HOTPLUG); 469 470 /* online_page_range is called later and expects pages reserved */ 471 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) { 472 if (!pfn_valid(pfn)) 473 continue; 474 475 SetPageReserved(pfn_to_page(pfn)); 476 } 477 return 0; 478 } 479 480 static int __meminit __add_section(int nid, struct zone *zone, 481 unsigned long phys_start_pfn) 482 { 483 int ret; 484 485 if (pfn_valid(phys_start_pfn)) 486 return -EEXIST; 487 488 ret = sparse_add_one_section(zone, phys_start_pfn); 489 490 if (ret < 0) 491 return ret; 492 493 ret = __add_zone(zone, phys_start_pfn); 494 495 if (ret < 0) 496 return ret; 497 498 return register_new_memory(nid, __pfn_to_section(phys_start_pfn)); 499 } 500 501 /* 502 * Reasonably generic function for adding memory. It is 503 * expected that archs that support memory hotplug will 504 * call this function after deciding the zone to which to 505 * add the new pages. 506 */ 507 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn, 508 unsigned long nr_pages) 509 { 510 unsigned long i; 511 int err = 0; 512 int start_sec, end_sec; 513 struct vmem_altmap *altmap; 514 515 clear_zone_contiguous(zone); 516 517 /* during initialize mem_map, align hot-added range to section */ 518 start_sec = pfn_to_section_nr(phys_start_pfn); 519 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 520 521 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn)); 522 if (altmap) { 523 /* 524 * Validate altmap is within bounds of the total request 525 */ 526 if (altmap->base_pfn != phys_start_pfn 527 || vmem_altmap_offset(altmap) > nr_pages) { 528 pr_warn_once("memory add fail, invalid altmap\n"); 529 err = -EINVAL; 530 goto out; 531 } 532 altmap->alloc = 0; 533 } 534 535 for (i = start_sec; i <= end_sec; i++) { 536 err = __add_section(nid, zone, section_nr_to_pfn(i)); 537 538 /* 539 * EEXIST is finally dealt with by ioresource collision 540 * check. see add_memory() => register_memory_resource() 541 * Warning will be printed if there is collision. 542 */ 543 if (err && (err != -EEXIST)) 544 break; 545 err = 0; 546 } 547 vmemmap_populate_print_last(); 548 out: 549 set_zone_contiguous(zone); 550 return err; 551 } 552 EXPORT_SYMBOL_GPL(__add_pages); 553 554 #ifdef CONFIG_MEMORY_HOTREMOVE 555 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 556 static int find_smallest_section_pfn(int nid, struct zone *zone, 557 unsigned long start_pfn, 558 unsigned long end_pfn) 559 { 560 struct mem_section *ms; 561 562 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 563 ms = __pfn_to_section(start_pfn); 564 565 if (unlikely(!valid_section(ms))) 566 continue; 567 568 if (unlikely(pfn_to_nid(start_pfn) != nid)) 569 continue; 570 571 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 572 continue; 573 574 return start_pfn; 575 } 576 577 return 0; 578 } 579 580 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 581 static int find_biggest_section_pfn(int nid, struct zone *zone, 582 unsigned long start_pfn, 583 unsigned long end_pfn) 584 { 585 struct mem_section *ms; 586 unsigned long pfn; 587 588 /* pfn is the end pfn of a memory section. */ 589 pfn = end_pfn - 1; 590 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 591 ms = __pfn_to_section(pfn); 592 593 if (unlikely(!valid_section(ms))) 594 continue; 595 596 if (unlikely(pfn_to_nid(pfn) != nid)) 597 continue; 598 599 if (zone && zone != page_zone(pfn_to_page(pfn))) 600 continue; 601 602 return pfn; 603 } 604 605 return 0; 606 } 607 608 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 609 unsigned long end_pfn) 610 { 611 unsigned long zone_start_pfn = zone->zone_start_pfn; 612 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 613 unsigned long zone_end_pfn = z; 614 unsigned long pfn; 615 struct mem_section *ms; 616 int nid = zone_to_nid(zone); 617 618 zone_span_writelock(zone); 619 if (zone_start_pfn == start_pfn) { 620 /* 621 * If the section is smallest section in the zone, it need 622 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 623 * In this case, we find second smallest valid mem_section 624 * for shrinking zone. 625 */ 626 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 627 zone_end_pfn); 628 if (pfn) { 629 zone->zone_start_pfn = pfn; 630 zone->spanned_pages = zone_end_pfn - pfn; 631 } 632 } else if (zone_end_pfn == end_pfn) { 633 /* 634 * If the section is biggest section in the zone, it need 635 * shrink zone->spanned_pages. 636 * In this case, we find second biggest valid mem_section for 637 * shrinking zone. 638 */ 639 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 640 start_pfn); 641 if (pfn) 642 zone->spanned_pages = pfn - zone_start_pfn + 1; 643 } 644 645 /* 646 * The section is not biggest or smallest mem_section in the zone, it 647 * only creates a hole in the zone. So in this case, we need not 648 * change the zone. But perhaps, the zone has only hole data. Thus 649 * it check the zone has only hole or not. 650 */ 651 pfn = zone_start_pfn; 652 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 653 ms = __pfn_to_section(pfn); 654 655 if (unlikely(!valid_section(ms))) 656 continue; 657 658 if (page_zone(pfn_to_page(pfn)) != zone) 659 continue; 660 661 /* If the section is current section, it continues the loop */ 662 if (start_pfn == pfn) 663 continue; 664 665 /* If we find valid section, we have nothing to do */ 666 zone_span_writeunlock(zone); 667 return; 668 } 669 670 /* The zone has no valid section */ 671 zone->zone_start_pfn = 0; 672 zone->spanned_pages = 0; 673 zone_span_writeunlock(zone); 674 } 675 676 static void shrink_pgdat_span(struct pglist_data *pgdat, 677 unsigned long start_pfn, unsigned long end_pfn) 678 { 679 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 680 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 681 unsigned long pgdat_end_pfn = p; 682 unsigned long pfn; 683 struct mem_section *ms; 684 int nid = pgdat->node_id; 685 686 if (pgdat_start_pfn == start_pfn) { 687 /* 688 * If the section is smallest section in the pgdat, it need 689 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 690 * In this case, we find second smallest valid mem_section 691 * for shrinking zone. 692 */ 693 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 694 pgdat_end_pfn); 695 if (pfn) { 696 pgdat->node_start_pfn = pfn; 697 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 698 } 699 } else if (pgdat_end_pfn == end_pfn) { 700 /* 701 * If the section is biggest section in the pgdat, it need 702 * shrink pgdat->node_spanned_pages. 703 * In this case, we find second biggest valid mem_section for 704 * shrinking zone. 705 */ 706 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 707 start_pfn); 708 if (pfn) 709 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 710 } 711 712 /* 713 * If the section is not biggest or smallest mem_section in the pgdat, 714 * it only creates a hole in the pgdat. So in this case, we need not 715 * change the pgdat. 716 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 717 * has only hole or not. 718 */ 719 pfn = pgdat_start_pfn; 720 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 721 ms = __pfn_to_section(pfn); 722 723 if (unlikely(!valid_section(ms))) 724 continue; 725 726 if (pfn_to_nid(pfn) != nid) 727 continue; 728 729 /* If the section is current section, it continues the loop */ 730 if (start_pfn == pfn) 731 continue; 732 733 /* If we find valid section, we have nothing to do */ 734 return; 735 } 736 737 /* The pgdat has no valid section */ 738 pgdat->node_start_pfn = 0; 739 pgdat->node_spanned_pages = 0; 740 } 741 742 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 743 { 744 struct pglist_data *pgdat = zone->zone_pgdat; 745 int nr_pages = PAGES_PER_SECTION; 746 int zone_type; 747 unsigned long flags; 748 749 zone_type = zone - pgdat->node_zones; 750 751 pgdat_resize_lock(zone->zone_pgdat, &flags); 752 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 753 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 754 pgdat_resize_unlock(zone->zone_pgdat, &flags); 755 } 756 757 static int __remove_section(struct zone *zone, struct mem_section *ms, 758 unsigned long map_offset) 759 { 760 unsigned long start_pfn; 761 int scn_nr; 762 int ret = -EINVAL; 763 764 if (!valid_section(ms)) 765 return ret; 766 767 ret = unregister_memory_section(ms); 768 if (ret) 769 return ret; 770 771 scn_nr = __section_nr(ms); 772 start_pfn = section_nr_to_pfn(scn_nr); 773 __remove_zone(zone, start_pfn); 774 775 sparse_remove_one_section(zone, ms, map_offset); 776 return 0; 777 } 778 779 /** 780 * __remove_pages() - remove sections of pages from a zone 781 * @zone: zone from which pages need to be removed 782 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 783 * @nr_pages: number of pages to remove (must be multiple of section size) 784 * 785 * Generic helper function to remove section mappings and sysfs entries 786 * for the section of the memory we are removing. Caller needs to make 787 * sure that pages are marked reserved and zones are adjust properly by 788 * calling offline_pages(). 789 */ 790 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 791 unsigned long nr_pages) 792 { 793 unsigned long i; 794 unsigned long map_offset = 0; 795 int sections_to_remove, ret = 0; 796 797 /* In the ZONE_DEVICE case device driver owns the memory region */ 798 if (is_dev_zone(zone)) { 799 struct page *page = pfn_to_page(phys_start_pfn); 800 struct vmem_altmap *altmap; 801 802 altmap = to_vmem_altmap((unsigned long) page); 803 if (altmap) 804 map_offset = vmem_altmap_offset(altmap); 805 } else { 806 resource_size_t start, size; 807 808 start = phys_start_pfn << PAGE_SHIFT; 809 size = nr_pages * PAGE_SIZE; 810 811 ret = release_mem_region_adjustable(&iomem_resource, start, 812 size); 813 if (ret) { 814 resource_size_t endres = start + size - 1; 815 816 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 817 &start, &endres, ret); 818 } 819 } 820 821 clear_zone_contiguous(zone); 822 823 /* 824 * We can only remove entire sections 825 */ 826 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 827 BUG_ON(nr_pages % PAGES_PER_SECTION); 828 829 sections_to_remove = nr_pages / PAGES_PER_SECTION; 830 for (i = 0; i < sections_to_remove; i++) { 831 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 832 833 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset); 834 map_offset = 0; 835 if (ret) 836 break; 837 } 838 839 set_zone_contiguous(zone); 840 841 return ret; 842 } 843 EXPORT_SYMBOL_GPL(__remove_pages); 844 #endif /* CONFIG_MEMORY_HOTREMOVE */ 845 846 int set_online_page_callback(online_page_callback_t callback) 847 { 848 int rc = -EINVAL; 849 850 get_online_mems(); 851 mutex_lock(&online_page_callback_lock); 852 853 if (online_page_callback == generic_online_page) { 854 online_page_callback = callback; 855 rc = 0; 856 } 857 858 mutex_unlock(&online_page_callback_lock); 859 put_online_mems(); 860 861 return rc; 862 } 863 EXPORT_SYMBOL_GPL(set_online_page_callback); 864 865 int restore_online_page_callback(online_page_callback_t callback) 866 { 867 int rc = -EINVAL; 868 869 get_online_mems(); 870 mutex_lock(&online_page_callback_lock); 871 872 if (online_page_callback == callback) { 873 online_page_callback = generic_online_page; 874 rc = 0; 875 } 876 877 mutex_unlock(&online_page_callback_lock); 878 put_online_mems(); 879 880 return rc; 881 } 882 EXPORT_SYMBOL_GPL(restore_online_page_callback); 883 884 void __online_page_set_limits(struct page *page) 885 { 886 } 887 EXPORT_SYMBOL_GPL(__online_page_set_limits); 888 889 void __online_page_increment_counters(struct page *page) 890 { 891 adjust_managed_page_count(page, 1); 892 } 893 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 894 895 void __online_page_free(struct page *page) 896 { 897 __free_reserved_page(page); 898 } 899 EXPORT_SYMBOL_GPL(__online_page_free); 900 901 static void generic_online_page(struct page *page) 902 { 903 __online_page_set_limits(page); 904 __online_page_increment_counters(page); 905 __online_page_free(page); 906 } 907 908 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 909 void *arg) 910 { 911 unsigned long i; 912 unsigned long onlined_pages = *(unsigned long *)arg; 913 struct page *page; 914 if (PageReserved(pfn_to_page(start_pfn))) 915 for (i = 0; i < nr_pages; i++) { 916 page = pfn_to_page(start_pfn + i); 917 (*online_page_callback)(page); 918 onlined_pages++; 919 } 920 *(unsigned long *)arg = onlined_pages; 921 return 0; 922 } 923 924 #ifdef CONFIG_MOVABLE_NODE 925 /* 926 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have 927 * normal memory. 928 */ 929 static bool can_online_high_movable(struct zone *zone) 930 { 931 return true; 932 } 933 #else /* CONFIG_MOVABLE_NODE */ 934 /* ensure every online node has NORMAL memory */ 935 static bool can_online_high_movable(struct zone *zone) 936 { 937 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY); 938 } 939 #endif /* CONFIG_MOVABLE_NODE */ 940 941 /* check which state of node_states will be changed when online memory */ 942 static void node_states_check_changes_online(unsigned long nr_pages, 943 struct zone *zone, struct memory_notify *arg) 944 { 945 int nid = zone_to_nid(zone); 946 enum zone_type zone_last = ZONE_NORMAL; 947 948 /* 949 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 950 * contains nodes which have zones of 0...ZONE_NORMAL, 951 * set zone_last to ZONE_NORMAL. 952 * 953 * If we don't have HIGHMEM nor movable node, 954 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 955 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 956 */ 957 if (N_MEMORY == N_NORMAL_MEMORY) 958 zone_last = ZONE_MOVABLE; 959 960 /* 961 * if the memory to be online is in a zone of 0...zone_last, and 962 * the zones of 0...zone_last don't have memory before online, we will 963 * need to set the node to node_states[N_NORMAL_MEMORY] after 964 * the memory is online. 965 */ 966 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY)) 967 arg->status_change_nid_normal = nid; 968 else 969 arg->status_change_nid_normal = -1; 970 971 #ifdef CONFIG_HIGHMEM 972 /* 973 * If we have movable node, node_states[N_HIGH_MEMORY] 974 * contains nodes which have zones of 0...ZONE_HIGHMEM, 975 * set zone_last to ZONE_HIGHMEM. 976 * 977 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 978 * contains nodes which have zones of 0...ZONE_MOVABLE, 979 * set zone_last to ZONE_MOVABLE. 980 */ 981 zone_last = ZONE_HIGHMEM; 982 if (N_MEMORY == N_HIGH_MEMORY) 983 zone_last = ZONE_MOVABLE; 984 985 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY)) 986 arg->status_change_nid_high = nid; 987 else 988 arg->status_change_nid_high = -1; 989 #else 990 arg->status_change_nid_high = arg->status_change_nid_normal; 991 #endif 992 993 /* 994 * if the node don't have memory befor online, we will need to 995 * set the node to node_states[N_MEMORY] after the memory 996 * is online. 997 */ 998 if (!node_state(nid, N_MEMORY)) 999 arg->status_change_nid = nid; 1000 else 1001 arg->status_change_nid = -1; 1002 } 1003 1004 static void node_states_set_node(int node, struct memory_notify *arg) 1005 { 1006 if (arg->status_change_nid_normal >= 0) 1007 node_set_state(node, N_NORMAL_MEMORY); 1008 1009 if (arg->status_change_nid_high >= 0) 1010 node_set_state(node, N_HIGH_MEMORY); 1011 1012 node_set_state(node, N_MEMORY); 1013 } 1014 1015 1016 /* Must be protected by mem_hotplug_begin() */ 1017 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 1018 { 1019 unsigned long flags; 1020 unsigned long onlined_pages = 0; 1021 struct zone *zone; 1022 int need_zonelists_rebuild = 0; 1023 int nid; 1024 int ret; 1025 struct memory_notify arg; 1026 1027 /* 1028 * This doesn't need a lock to do pfn_to_page(). 1029 * The section can't be removed here because of the 1030 * memory_block->state_mutex. 1031 */ 1032 zone = page_zone(pfn_to_page(pfn)); 1033 1034 if ((zone_idx(zone) > ZONE_NORMAL || 1035 online_type == MMOP_ONLINE_MOVABLE) && 1036 !can_online_high_movable(zone)) 1037 return -EINVAL; 1038 1039 if (online_type == MMOP_ONLINE_KERNEL && 1040 zone_idx(zone) == ZONE_MOVABLE) { 1041 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) 1042 return -EINVAL; 1043 } 1044 if (online_type == MMOP_ONLINE_MOVABLE && 1045 zone_idx(zone) == ZONE_MOVABLE - 1) { 1046 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) 1047 return -EINVAL; 1048 } 1049 1050 /* Previous code may changed the zone of the pfn range */ 1051 zone = page_zone(pfn_to_page(pfn)); 1052 1053 arg.start_pfn = pfn; 1054 arg.nr_pages = nr_pages; 1055 node_states_check_changes_online(nr_pages, zone, &arg); 1056 1057 nid = pfn_to_nid(pfn); 1058 1059 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1060 ret = notifier_to_errno(ret); 1061 if (ret) { 1062 memory_notify(MEM_CANCEL_ONLINE, &arg); 1063 return ret; 1064 } 1065 /* 1066 * If this zone is not populated, then it is not in zonelist. 1067 * This means the page allocator ignores this zone. 1068 * So, zonelist must be updated after online. 1069 */ 1070 mutex_lock(&zonelists_mutex); 1071 if (!populated_zone(zone)) { 1072 need_zonelists_rebuild = 1; 1073 build_all_zonelists(NULL, zone); 1074 } 1075 1076 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 1077 online_pages_range); 1078 if (ret) { 1079 if (need_zonelists_rebuild) 1080 zone_pcp_reset(zone); 1081 mutex_unlock(&zonelists_mutex); 1082 printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n", 1083 (unsigned long long) pfn << PAGE_SHIFT, 1084 (((unsigned long long) pfn + nr_pages) 1085 << PAGE_SHIFT) - 1); 1086 memory_notify(MEM_CANCEL_ONLINE, &arg); 1087 return ret; 1088 } 1089 1090 zone->present_pages += onlined_pages; 1091 1092 pgdat_resize_lock(zone->zone_pgdat, &flags); 1093 zone->zone_pgdat->node_present_pages += onlined_pages; 1094 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1095 1096 if (onlined_pages) { 1097 node_states_set_node(zone_to_nid(zone), &arg); 1098 if (need_zonelists_rebuild) 1099 build_all_zonelists(NULL, NULL); 1100 else 1101 zone_pcp_update(zone); 1102 } 1103 1104 mutex_unlock(&zonelists_mutex); 1105 1106 init_per_zone_wmark_min(); 1107 1108 if (onlined_pages) 1109 kswapd_run(zone_to_nid(zone)); 1110 1111 vm_total_pages = nr_free_pagecache_pages(); 1112 1113 writeback_set_ratelimit(); 1114 1115 if (onlined_pages) 1116 memory_notify(MEM_ONLINE, &arg); 1117 return 0; 1118 } 1119 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 1120 1121 static void reset_node_present_pages(pg_data_t *pgdat) 1122 { 1123 struct zone *z; 1124 1125 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1126 z->present_pages = 0; 1127 1128 pgdat->node_present_pages = 0; 1129 } 1130 1131 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1132 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 1133 { 1134 struct pglist_data *pgdat; 1135 unsigned long zones_size[MAX_NR_ZONES] = {0}; 1136 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 1137 unsigned long start_pfn = PFN_DOWN(start); 1138 1139 pgdat = NODE_DATA(nid); 1140 if (!pgdat) { 1141 pgdat = arch_alloc_nodedata(nid); 1142 if (!pgdat) 1143 return NULL; 1144 1145 arch_refresh_nodedata(nid, pgdat); 1146 } else { 1147 /* Reset the nr_zones and classzone_idx to 0 before reuse */ 1148 pgdat->nr_zones = 0; 1149 pgdat->classzone_idx = 0; 1150 } 1151 1152 /* we can use NODE_DATA(nid) from here */ 1153 1154 /* init node's zones as empty zones, we don't have any present pages.*/ 1155 free_area_init_node(nid, zones_size, start_pfn, zholes_size); 1156 1157 /* 1158 * The node we allocated has no zone fallback lists. For avoiding 1159 * to access not-initialized zonelist, build here. 1160 */ 1161 mutex_lock(&zonelists_mutex); 1162 build_all_zonelists(pgdat, NULL); 1163 mutex_unlock(&zonelists_mutex); 1164 1165 /* 1166 * zone->managed_pages is set to an approximate value in 1167 * free_area_init_core(), which will cause 1168 * /sys/device/system/node/nodeX/meminfo has wrong data. 1169 * So reset it to 0 before any memory is onlined. 1170 */ 1171 reset_node_managed_pages(pgdat); 1172 1173 /* 1174 * When memory is hot-added, all the memory is in offline state. So 1175 * clear all zones' present_pages because they will be updated in 1176 * online_pages() and offline_pages(). 1177 */ 1178 reset_node_present_pages(pgdat); 1179 1180 return pgdat; 1181 } 1182 1183 static void rollback_node_hotadd(int nid, pg_data_t *pgdat) 1184 { 1185 arch_refresh_nodedata(nid, NULL); 1186 arch_free_nodedata(pgdat); 1187 return; 1188 } 1189 1190 1191 /** 1192 * try_online_node - online a node if offlined 1193 * 1194 * called by cpu_up() to online a node without onlined memory. 1195 */ 1196 int try_online_node(int nid) 1197 { 1198 pg_data_t *pgdat; 1199 int ret; 1200 1201 if (node_online(nid)) 1202 return 0; 1203 1204 mem_hotplug_begin(); 1205 pgdat = hotadd_new_pgdat(nid, 0); 1206 if (!pgdat) { 1207 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1208 ret = -ENOMEM; 1209 goto out; 1210 } 1211 node_set_online(nid); 1212 ret = register_one_node(nid); 1213 BUG_ON(ret); 1214 1215 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 1216 mutex_lock(&zonelists_mutex); 1217 build_all_zonelists(NULL, NULL); 1218 mutex_unlock(&zonelists_mutex); 1219 } 1220 1221 out: 1222 mem_hotplug_done(); 1223 return ret; 1224 } 1225 1226 static int check_hotplug_memory_range(u64 start, u64 size) 1227 { 1228 u64 start_pfn = PFN_DOWN(start); 1229 u64 nr_pages = size >> PAGE_SHIFT; 1230 1231 /* Memory range must be aligned with section */ 1232 if ((start_pfn & ~PAGE_SECTION_MASK) || 1233 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) { 1234 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n", 1235 (unsigned long long)start, 1236 (unsigned long long)size); 1237 return -EINVAL; 1238 } 1239 1240 return 0; 1241 } 1242 1243 /* 1244 * If movable zone has already been setup, newly added memory should be check. 1245 * If its address is higher than movable zone, it should be added as movable. 1246 * Without this check, movable zone may overlap with other zone. 1247 */ 1248 static int should_add_memory_movable(int nid, u64 start, u64 size) 1249 { 1250 unsigned long start_pfn = start >> PAGE_SHIFT; 1251 pg_data_t *pgdat = NODE_DATA(nid); 1252 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE; 1253 1254 if (zone_is_empty(movable_zone)) 1255 return 0; 1256 1257 if (movable_zone->zone_start_pfn <= start_pfn) 1258 return 1; 1259 1260 return 0; 1261 } 1262 1263 int zone_for_memory(int nid, u64 start, u64 size, int zone_default, 1264 bool for_device) 1265 { 1266 #ifdef CONFIG_ZONE_DEVICE 1267 if (for_device) 1268 return ZONE_DEVICE; 1269 #endif 1270 if (should_add_memory_movable(nid, start, size)) 1271 return ZONE_MOVABLE; 1272 1273 return zone_default; 1274 } 1275 1276 static int online_memory_block(struct memory_block *mem, void *arg) 1277 { 1278 return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 1279 } 1280 1281 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1282 int __ref add_memory_resource(int nid, struct resource *res, bool online) 1283 { 1284 u64 start, size; 1285 pg_data_t *pgdat = NULL; 1286 bool new_pgdat; 1287 bool new_node; 1288 int ret; 1289 1290 start = res->start; 1291 size = resource_size(res); 1292 1293 ret = check_hotplug_memory_range(start, size); 1294 if (ret) 1295 return ret; 1296 1297 { /* Stupid hack to suppress address-never-null warning */ 1298 void *p = NODE_DATA(nid); 1299 new_pgdat = !p; 1300 } 1301 1302 mem_hotplug_begin(); 1303 1304 /* 1305 * Add new range to memblock so that when hotadd_new_pgdat() is called 1306 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1307 * this new range and calculate total pages correctly. The range will 1308 * be removed at hot-remove time. 1309 */ 1310 memblock_add_node(start, size, nid); 1311 1312 new_node = !node_online(nid); 1313 if (new_node) { 1314 pgdat = hotadd_new_pgdat(nid, start); 1315 ret = -ENOMEM; 1316 if (!pgdat) 1317 goto error; 1318 } 1319 1320 /* call arch's memory hotadd */ 1321 ret = arch_add_memory(nid, start, size, false); 1322 1323 if (ret < 0) 1324 goto error; 1325 1326 /* we online node here. we can't roll back from here. */ 1327 node_set_online(nid); 1328 1329 if (new_node) { 1330 ret = register_one_node(nid); 1331 /* 1332 * If sysfs file of new node can't create, cpu on the node 1333 * can't be hot-added. There is no rollback way now. 1334 * So, check by BUG_ON() to catch it reluctantly.. 1335 */ 1336 BUG_ON(ret); 1337 } 1338 1339 /* create new memmap entry */ 1340 firmware_map_add_hotplug(start, start + size, "System RAM"); 1341 1342 /* online pages if requested */ 1343 if (online) 1344 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1345 NULL, online_memory_block); 1346 1347 goto out; 1348 1349 error: 1350 /* rollback pgdat allocation and others */ 1351 if (new_pgdat) 1352 rollback_node_hotadd(nid, pgdat); 1353 memblock_remove(start, size); 1354 1355 out: 1356 mem_hotplug_done(); 1357 return ret; 1358 } 1359 EXPORT_SYMBOL_GPL(add_memory_resource); 1360 1361 int __ref add_memory(int nid, u64 start, u64 size) 1362 { 1363 struct resource *res; 1364 int ret; 1365 1366 res = register_memory_resource(start, size); 1367 if (IS_ERR(res)) 1368 return PTR_ERR(res); 1369 1370 ret = add_memory_resource(nid, res, memhp_auto_online); 1371 if (ret < 0) 1372 release_memory_resource(res); 1373 return ret; 1374 } 1375 EXPORT_SYMBOL_GPL(add_memory); 1376 1377 #ifdef CONFIG_MEMORY_HOTREMOVE 1378 /* 1379 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1380 * set and the size of the free page is given by page_order(). Using this, 1381 * the function determines if the pageblock contains only free pages. 1382 * Due to buddy contraints, a free page at least the size of a pageblock will 1383 * be located at the start of the pageblock 1384 */ 1385 static inline int pageblock_free(struct page *page) 1386 { 1387 return PageBuddy(page) && page_order(page) >= pageblock_order; 1388 } 1389 1390 /* Return the start of the next active pageblock after a given page */ 1391 static struct page *next_active_pageblock(struct page *page) 1392 { 1393 /* Ensure the starting page is pageblock-aligned */ 1394 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1395 1396 /* If the entire pageblock is free, move to the end of free page */ 1397 if (pageblock_free(page)) { 1398 int order; 1399 /* be careful. we don't have locks, page_order can be changed.*/ 1400 order = page_order(page); 1401 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1402 return page + (1 << order); 1403 } 1404 1405 return page + pageblock_nr_pages; 1406 } 1407 1408 /* Checks if this range of memory is likely to be hot-removable. */ 1409 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1410 { 1411 struct page *page = pfn_to_page(start_pfn); 1412 struct page *end_page = page + nr_pages; 1413 1414 /* Check the starting page of each pageblock within the range */ 1415 for (; page < end_page; page = next_active_pageblock(page)) { 1416 if (!is_pageblock_removable_nolock(page)) 1417 return 0; 1418 cond_resched(); 1419 } 1420 1421 /* All pageblocks in the memory block are likely to be hot-removable */ 1422 return 1; 1423 } 1424 1425 /* 1426 * Confirm all pages in a range [start, end) is belongs to the same zone. 1427 */ 1428 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) 1429 { 1430 unsigned long pfn, sec_end_pfn; 1431 struct zone *zone = NULL; 1432 struct page *page; 1433 int i; 1434 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn); 1435 pfn < end_pfn; 1436 pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) { 1437 /* Make sure the memory section is present first */ 1438 if (!present_section_nr(pfn_to_section_nr(pfn))) 1439 continue; 1440 for (; pfn < sec_end_pfn && pfn < end_pfn; 1441 pfn += MAX_ORDER_NR_PAGES) { 1442 i = 0; 1443 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1444 while ((i < MAX_ORDER_NR_PAGES) && 1445 !pfn_valid_within(pfn + i)) 1446 i++; 1447 if (i == MAX_ORDER_NR_PAGES) 1448 continue; 1449 page = pfn_to_page(pfn + i); 1450 if (zone && page_zone(page) != zone) 1451 return 0; 1452 zone = page_zone(page); 1453 } 1454 } 1455 return 1; 1456 } 1457 1458 /* 1459 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages 1460 * and hugepages). We scan pfn because it's much easier than scanning over 1461 * linked list. This function returns the pfn of the first found movable 1462 * page if it's found, otherwise 0. 1463 */ 1464 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1465 { 1466 unsigned long pfn; 1467 struct page *page; 1468 for (pfn = start; pfn < end; pfn++) { 1469 if (pfn_valid(pfn)) { 1470 page = pfn_to_page(pfn); 1471 if (PageLRU(page)) 1472 return pfn; 1473 if (PageHuge(page)) { 1474 if (page_huge_active(page)) 1475 return pfn; 1476 else 1477 pfn = round_up(pfn + 1, 1478 1 << compound_order(page)) - 1; 1479 } 1480 } 1481 } 1482 return 0; 1483 } 1484 1485 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1486 static int 1487 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1488 { 1489 unsigned long pfn; 1490 struct page *page; 1491 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1492 int not_managed = 0; 1493 int ret = 0; 1494 LIST_HEAD(source); 1495 1496 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1497 if (!pfn_valid(pfn)) 1498 continue; 1499 page = pfn_to_page(pfn); 1500 1501 if (PageHuge(page)) { 1502 struct page *head = compound_head(page); 1503 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1504 if (compound_order(head) > PFN_SECTION_SHIFT) { 1505 ret = -EBUSY; 1506 break; 1507 } 1508 if (isolate_huge_page(page, &source)) 1509 move_pages -= 1 << compound_order(head); 1510 continue; 1511 } 1512 1513 if (!get_page_unless_zero(page)) 1514 continue; 1515 /* 1516 * We can skip free pages. And we can only deal with pages on 1517 * LRU. 1518 */ 1519 ret = isolate_lru_page(page); 1520 if (!ret) { /* Success */ 1521 put_page(page); 1522 list_add_tail(&page->lru, &source); 1523 move_pages--; 1524 inc_zone_page_state(page, NR_ISOLATED_ANON + 1525 page_is_file_cache(page)); 1526 1527 } else { 1528 #ifdef CONFIG_DEBUG_VM 1529 printk(KERN_ALERT "removing pfn %lx from LRU failed\n", 1530 pfn); 1531 dump_page(page, "failed to remove from LRU"); 1532 #endif 1533 put_page(page); 1534 /* Because we don't have big zone->lock. we should 1535 check this again here. */ 1536 if (page_count(page)) { 1537 not_managed++; 1538 ret = -EBUSY; 1539 break; 1540 } 1541 } 1542 } 1543 if (!list_empty(&source)) { 1544 if (not_managed) { 1545 putback_movable_pages(&source); 1546 goto out; 1547 } 1548 1549 /* 1550 * alloc_migrate_target should be improooooved!! 1551 * migrate_pages returns # of failed pages. 1552 */ 1553 ret = migrate_pages(&source, alloc_migrate_target, NULL, 0, 1554 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1555 if (ret) 1556 putback_movable_pages(&source); 1557 } 1558 out: 1559 return ret; 1560 } 1561 1562 /* 1563 * remove from free_area[] and mark all as Reserved. 1564 */ 1565 static int 1566 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1567 void *data) 1568 { 1569 __offline_isolated_pages(start, start + nr_pages); 1570 return 0; 1571 } 1572 1573 static void 1574 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1575 { 1576 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1577 offline_isolated_pages_cb); 1578 } 1579 1580 /* 1581 * Check all pages in range, recoreded as memory resource, are isolated. 1582 */ 1583 static int 1584 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1585 void *data) 1586 { 1587 int ret; 1588 long offlined = *(long *)data; 1589 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1590 offlined = nr_pages; 1591 if (!ret) 1592 *(long *)data += offlined; 1593 return ret; 1594 } 1595 1596 static long 1597 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1598 { 1599 long offlined = 0; 1600 int ret; 1601 1602 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1603 check_pages_isolated_cb); 1604 if (ret < 0) 1605 offlined = (long)ret; 1606 return offlined; 1607 } 1608 1609 #ifdef CONFIG_MOVABLE_NODE 1610 /* 1611 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have 1612 * normal memory. 1613 */ 1614 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1615 { 1616 return true; 1617 } 1618 #else /* CONFIG_MOVABLE_NODE */ 1619 /* ensure the node has NORMAL memory if it is still online */ 1620 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1621 { 1622 struct pglist_data *pgdat = zone->zone_pgdat; 1623 unsigned long present_pages = 0; 1624 enum zone_type zt; 1625 1626 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1627 present_pages += pgdat->node_zones[zt].present_pages; 1628 1629 if (present_pages > nr_pages) 1630 return true; 1631 1632 present_pages = 0; 1633 for (; zt <= ZONE_MOVABLE; zt++) 1634 present_pages += pgdat->node_zones[zt].present_pages; 1635 1636 /* 1637 * we can't offline the last normal memory until all 1638 * higher memory is offlined. 1639 */ 1640 return present_pages == 0; 1641 } 1642 #endif /* CONFIG_MOVABLE_NODE */ 1643 1644 static int __init cmdline_parse_movable_node(char *p) 1645 { 1646 #ifdef CONFIG_MOVABLE_NODE 1647 /* 1648 * Memory used by the kernel cannot be hot-removed because Linux 1649 * cannot migrate the kernel pages. When memory hotplug is 1650 * enabled, we should prevent memblock from allocating memory 1651 * for the kernel. 1652 * 1653 * ACPI SRAT records all hotpluggable memory ranges. But before 1654 * SRAT is parsed, we don't know about it. 1655 * 1656 * The kernel image is loaded into memory at very early time. We 1657 * cannot prevent this anyway. So on NUMA system, we set any 1658 * node the kernel resides in as un-hotpluggable. 1659 * 1660 * Since on modern servers, one node could have double-digit 1661 * gigabytes memory, we can assume the memory around the kernel 1662 * image is also un-hotpluggable. So before SRAT is parsed, just 1663 * allocate memory near the kernel image to try the best to keep 1664 * the kernel away from hotpluggable memory. 1665 */ 1666 memblock_set_bottom_up(true); 1667 movable_node_enabled = true; 1668 #else 1669 pr_warn("movable_node option not supported\n"); 1670 #endif 1671 return 0; 1672 } 1673 early_param("movable_node", cmdline_parse_movable_node); 1674 1675 /* check which state of node_states will be changed when offline memory */ 1676 static void node_states_check_changes_offline(unsigned long nr_pages, 1677 struct zone *zone, struct memory_notify *arg) 1678 { 1679 struct pglist_data *pgdat = zone->zone_pgdat; 1680 unsigned long present_pages = 0; 1681 enum zone_type zt, zone_last = ZONE_NORMAL; 1682 1683 /* 1684 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 1685 * contains nodes which have zones of 0...ZONE_NORMAL, 1686 * set zone_last to ZONE_NORMAL. 1687 * 1688 * If we don't have HIGHMEM nor movable node, 1689 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 1690 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 1691 */ 1692 if (N_MEMORY == N_NORMAL_MEMORY) 1693 zone_last = ZONE_MOVABLE; 1694 1695 /* 1696 * check whether node_states[N_NORMAL_MEMORY] will be changed. 1697 * If the memory to be offline is in a zone of 0...zone_last, 1698 * and it is the last present memory, 0...zone_last will 1699 * become empty after offline , thus we can determind we will 1700 * need to clear the node from node_states[N_NORMAL_MEMORY]. 1701 */ 1702 for (zt = 0; zt <= zone_last; zt++) 1703 present_pages += pgdat->node_zones[zt].present_pages; 1704 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1705 arg->status_change_nid_normal = zone_to_nid(zone); 1706 else 1707 arg->status_change_nid_normal = -1; 1708 1709 #ifdef CONFIG_HIGHMEM 1710 /* 1711 * If we have movable node, node_states[N_HIGH_MEMORY] 1712 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1713 * set zone_last to ZONE_HIGHMEM. 1714 * 1715 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1716 * contains nodes which have zones of 0...ZONE_MOVABLE, 1717 * set zone_last to ZONE_MOVABLE. 1718 */ 1719 zone_last = ZONE_HIGHMEM; 1720 if (N_MEMORY == N_HIGH_MEMORY) 1721 zone_last = ZONE_MOVABLE; 1722 1723 for (; zt <= zone_last; zt++) 1724 present_pages += pgdat->node_zones[zt].present_pages; 1725 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1726 arg->status_change_nid_high = zone_to_nid(zone); 1727 else 1728 arg->status_change_nid_high = -1; 1729 #else 1730 arg->status_change_nid_high = arg->status_change_nid_normal; 1731 #endif 1732 1733 /* 1734 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE 1735 */ 1736 zone_last = ZONE_MOVABLE; 1737 1738 /* 1739 * check whether node_states[N_HIGH_MEMORY] will be changed 1740 * If we try to offline the last present @nr_pages from the node, 1741 * we can determind we will need to clear the node from 1742 * node_states[N_HIGH_MEMORY]. 1743 */ 1744 for (; zt <= zone_last; zt++) 1745 present_pages += pgdat->node_zones[zt].present_pages; 1746 if (nr_pages >= present_pages) 1747 arg->status_change_nid = zone_to_nid(zone); 1748 else 1749 arg->status_change_nid = -1; 1750 } 1751 1752 static void node_states_clear_node(int node, struct memory_notify *arg) 1753 { 1754 if (arg->status_change_nid_normal >= 0) 1755 node_clear_state(node, N_NORMAL_MEMORY); 1756 1757 if ((N_MEMORY != N_NORMAL_MEMORY) && 1758 (arg->status_change_nid_high >= 0)) 1759 node_clear_state(node, N_HIGH_MEMORY); 1760 1761 if ((N_MEMORY != N_HIGH_MEMORY) && 1762 (arg->status_change_nid >= 0)) 1763 node_clear_state(node, N_MEMORY); 1764 } 1765 1766 static int __ref __offline_pages(unsigned long start_pfn, 1767 unsigned long end_pfn, unsigned long timeout) 1768 { 1769 unsigned long pfn, nr_pages, expire; 1770 long offlined_pages; 1771 int ret, drain, retry_max, node; 1772 unsigned long flags; 1773 struct zone *zone; 1774 struct memory_notify arg; 1775 1776 /* at least, alignment against pageblock is necessary */ 1777 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1778 return -EINVAL; 1779 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1780 return -EINVAL; 1781 /* This makes hotplug much easier...and readable. 1782 we assume this for now. .*/ 1783 if (!test_pages_in_a_zone(start_pfn, end_pfn)) 1784 return -EINVAL; 1785 1786 zone = page_zone(pfn_to_page(start_pfn)); 1787 node = zone_to_nid(zone); 1788 nr_pages = end_pfn - start_pfn; 1789 1790 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages)) 1791 return -EINVAL; 1792 1793 /* set above range as isolated */ 1794 ret = start_isolate_page_range(start_pfn, end_pfn, 1795 MIGRATE_MOVABLE, true); 1796 if (ret) 1797 return ret; 1798 1799 arg.start_pfn = start_pfn; 1800 arg.nr_pages = nr_pages; 1801 node_states_check_changes_offline(nr_pages, zone, &arg); 1802 1803 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1804 ret = notifier_to_errno(ret); 1805 if (ret) 1806 goto failed_removal; 1807 1808 pfn = start_pfn; 1809 expire = jiffies + timeout; 1810 drain = 0; 1811 retry_max = 5; 1812 repeat: 1813 /* start memory hot removal */ 1814 ret = -EAGAIN; 1815 if (time_after(jiffies, expire)) 1816 goto failed_removal; 1817 ret = -EINTR; 1818 if (signal_pending(current)) 1819 goto failed_removal; 1820 ret = 0; 1821 if (drain) { 1822 lru_add_drain_all(); 1823 cond_resched(); 1824 drain_all_pages(zone); 1825 } 1826 1827 pfn = scan_movable_pages(start_pfn, end_pfn); 1828 if (pfn) { /* We have movable pages */ 1829 ret = do_migrate_range(pfn, end_pfn); 1830 if (!ret) { 1831 drain = 1; 1832 goto repeat; 1833 } else { 1834 if (ret < 0) 1835 if (--retry_max == 0) 1836 goto failed_removal; 1837 yield(); 1838 drain = 1; 1839 goto repeat; 1840 } 1841 } 1842 /* drain all zone's lru pagevec, this is asynchronous... */ 1843 lru_add_drain_all(); 1844 yield(); 1845 /* drain pcp pages, this is synchronous. */ 1846 drain_all_pages(zone); 1847 /* 1848 * dissolve free hugepages in the memory block before doing offlining 1849 * actually in order to make hugetlbfs's object counting consistent. 1850 */ 1851 dissolve_free_huge_pages(start_pfn, end_pfn); 1852 /* check again */ 1853 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1854 if (offlined_pages < 0) { 1855 ret = -EBUSY; 1856 goto failed_removal; 1857 } 1858 printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages); 1859 /* Ok, all of our target is isolated. 1860 We cannot do rollback at this point. */ 1861 offline_isolated_pages(start_pfn, end_pfn); 1862 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1863 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1864 /* removal success */ 1865 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1866 zone->present_pages -= offlined_pages; 1867 1868 pgdat_resize_lock(zone->zone_pgdat, &flags); 1869 zone->zone_pgdat->node_present_pages -= offlined_pages; 1870 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1871 1872 init_per_zone_wmark_min(); 1873 1874 if (!populated_zone(zone)) { 1875 zone_pcp_reset(zone); 1876 mutex_lock(&zonelists_mutex); 1877 build_all_zonelists(NULL, NULL); 1878 mutex_unlock(&zonelists_mutex); 1879 } else 1880 zone_pcp_update(zone); 1881 1882 node_states_clear_node(node, &arg); 1883 if (arg.status_change_nid >= 0) 1884 kswapd_stop(node); 1885 1886 vm_total_pages = nr_free_pagecache_pages(); 1887 writeback_set_ratelimit(); 1888 1889 memory_notify(MEM_OFFLINE, &arg); 1890 return 0; 1891 1892 failed_removal: 1893 printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n", 1894 (unsigned long long) start_pfn << PAGE_SHIFT, 1895 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1896 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1897 /* pushback to free area */ 1898 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1899 return ret; 1900 } 1901 1902 /* Must be protected by mem_hotplug_begin() */ 1903 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1904 { 1905 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ); 1906 } 1907 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1908 1909 /** 1910 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1911 * @start_pfn: start pfn of the memory range 1912 * @end_pfn: end pfn of the memory range 1913 * @arg: argument passed to func 1914 * @func: callback for each memory section walked 1915 * 1916 * This function walks through all present mem sections in range 1917 * [start_pfn, end_pfn) and call func on each mem section. 1918 * 1919 * Returns the return value of func. 1920 */ 1921 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1922 void *arg, int (*func)(struct memory_block *, void *)) 1923 { 1924 struct memory_block *mem = NULL; 1925 struct mem_section *section; 1926 unsigned long pfn, section_nr; 1927 int ret; 1928 1929 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1930 section_nr = pfn_to_section_nr(pfn); 1931 if (!present_section_nr(section_nr)) 1932 continue; 1933 1934 section = __nr_to_section(section_nr); 1935 /* same memblock? */ 1936 if (mem) 1937 if ((section_nr >= mem->start_section_nr) && 1938 (section_nr <= mem->end_section_nr)) 1939 continue; 1940 1941 mem = find_memory_block_hinted(section, mem); 1942 if (!mem) 1943 continue; 1944 1945 ret = func(mem, arg); 1946 if (ret) { 1947 kobject_put(&mem->dev.kobj); 1948 return ret; 1949 } 1950 } 1951 1952 if (mem) 1953 kobject_put(&mem->dev.kobj); 1954 1955 return 0; 1956 } 1957 1958 #ifdef CONFIG_MEMORY_HOTREMOVE 1959 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1960 { 1961 int ret = !is_memblock_offlined(mem); 1962 1963 if (unlikely(ret)) { 1964 phys_addr_t beginpa, endpa; 1965 1966 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1967 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1968 pr_warn("removing memory fails, because memory " 1969 "[%pa-%pa] is onlined\n", 1970 &beginpa, &endpa); 1971 } 1972 1973 return ret; 1974 } 1975 1976 static int check_cpu_on_node(pg_data_t *pgdat) 1977 { 1978 int cpu; 1979 1980 for_each_present_cpu(cpu) { 1981 if (cpu_to_node(cpu) == pgdat->node_id) 1982 /* 1983 * the cpu on this node isn't removed, and we can't 1984 * offline this node. 1985 */ 1986 return -EBUSY; 1987 } 1988 1989 return 0; 1990 } 1991 1992 static void unmap_cpu_on_node(pg_data_t *pgdat) 1993 { 1994 #ifdef CONFIG_ACPI_NUMA 1995 int cpu; 1996 1997 for_each_possible_cpu(cpu) 1998 if (cpu_to_node(cpu) == pgdat->node_id) 1999 numa_clear_node(cpu); 2000 #endif 2001 } 2002 2003 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 2004 { 2005 int ret; 2006 2007 ret = check_cpu_on_node(pgdat); 2008 if (ret) 2009 return ret; 2010 2011 /* 2012 * the node will be offlined when we come here, so we can clear 2013 * the cpu_to_node() now. 2014 */ 2015 2016 unmap_cpu_on_node(pgdat); 2017 return 0; 2018 } 2019 2020 /** 2021 * try_offline_node 2022 * 2023 * Offline a node if all memory sections and cpus of the node are removed. 2024 * 2025 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2026 * and online/offline operations before this call. 2027 */ 2028 void try_offline_node(int nid) 2029 { 2030 pg_data_t *pgdat = NODE_DATA(nid); 2031 unsigned long start_pfn = pgdat->node_start_pfn; 2032 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 2033 unsigned long pfn; 2034 int i; 2035 2036 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 2037 unsigned long section_nr = pfn_to_section_nr(pfn); 2038 2039 if (!present_section_nr(section_nr)) 2040 continue; 2041 2042 if (pfn_to_nid(pfn) != nid) 2043 continue; 2044 2045 /* 2046 * some memory sections of this node are not removed, and we 2047 * can't offline node now. 2048 */ 2049 return; 2050 } 2051 2052 if (check_and_unmap_cpu_on_node(pgdat)) 2053 return; 2054 2055 /* 2056 * all memory/cpu of this node are removed, we can offline this 2057 * node now. 2058 */ 2059 node_set_offline(nid); 2060 unregister_one_node(nid); 2061 2062 /* free waittable in each zone */ 2063 for (i = 0; i < MAX_NR_ZONES; i++) { 2064 struct zone *zone = pgdat->node_zones + i; 2065 2066 /* 2067 * wait_table may be allocated from boot memory, 2068 * here only free if it's allocated by vmalloc. 2069 */ 2070 if (is_vmalloc_addr(zone->wait_table)) { 2071 vfree(zone->wait_table); 2072 zone->wait_table = NULL; 2073 } 2074 } 2075 } 2076 EXPORT_SYMBOL(try_offline_node); 2077 2078 /** 2079 * remove_memory 2080 * 2081 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2082 * and online/offline operations before this call, as required by 2083 * try_offline_node(). 2084 */ 2085 void __ref remove_memory(int nid, u64 start, u64 size) 2086 { 2087 int ret; 2088 2089 BUG_ON(check_hotplug_memory_range(start, size)); 2090 2091 mem_hotplug_begin(); 2092 2093 /* 2094 * All memory blocks must be offlined before removing memory. Check 2095 * whether all memory blocks in question are offline and trigger a BUG() 2096 * if this is not the case. 2097 */ 2098 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 2099 check_memblock_offlined_cb); 2100 if (ret) 2101 BUG(); 2102 2103 /* remove memmap entry */ 2104 firmware_map_remove(start, start + size, "System RAM"); 2105 memblock_free(start, size); 2106 memblock_remove(start, size); 2107 2108 arch_remove_memory(start, size); 2109 2110 try_offline_node(nid); 2111 2112 mem_hotplug_done(); 2113 } 2114 EXPORT_SYMBOL_GPL(remove_memory); 2115 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2116