1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 #include <linux/dma-debug.h> 63 #include <linux/debugfs.h> 64 65 #include <asm/io.h> 66 #include <asm/pgalloc.h> 67 #include <asm/uaccess.h> 68 #include <asm/tlb.h> 69 #include <asm/tlbflush.h> 70 #include <asm/pgtable.h> 71 72 #include "internal.h" 73 74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 76 #endif 77 78 #ifndef CONFIG_NEED_MULTIPLE_NODES 79 /* use the per-pgdat data instead for discontigmem - mbligh */ 80 unsigned long max_mapnr; 81 struct page *mem_map; 82 83 EXPORT_SYMBOL(max_mapnr); 84 EXPORT_SYMBOL(mem_map); 85 #endif 86 87 /* 88 * A number of key systems in x86 including ioremap() rely on the assumption 89 * that high_memory defines the upper bound on direct map memory, then end 90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 92 * and ZONE_HIGHMEM. 93 */ 94 void * high_memory; 95 96 EXPORT_SYMBOL(high_memory); 97 98 /* 99 * Randomize the address space (stacks, mmaps, brk, etc.). 100 * 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 102 * as ancient (libc5 based) binaries can segfault. ) 103 */ 104 int randomize_va_space __read_mostly = 105 #ifdef CONFIG_COMPAT_BRK 106 1; 107 #else 108 2; 109 #endif 110 111 static int __init disable_randmaps(char *s) 112 { 113 randomize_va_space = 0; 114 return 1; 115 } 116 __setup("norandmaps", disable_randmaps); 117 118 unsigned long zero_pfn __read_mostly; 119 unsigned long highest_memmap_pfn __read_mostly; 120 121 EXPORT_SYMBOL(zero_pfn); 122 123 /* 124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 125 */ 126 static int __init init_zero_pfn(void) 127 { 128 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 129 return 0; 130 } 131 core_initcall(init_zero_pfn); 132 133 134 #if defined(SPLIT_RSS_COUNTING) 135 136 void sync_mm_rss(struct mm_struct *mm) 137 { 138 int i; 139 140 for (i = 0; i < NR_MM_COUNTERS; i++) { 141 if (current->rss_stat.count[i]) { 142 add_mm_counter(mm, i, current->rss_stat.count[i]); 143 current->rss_stat.count[i] = 0; 144 } 145 } 146 current->rss_stat.events = 0; 147 } 148 149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 150 { 151 struct task_struct *task = current; 152 153 if (likely(task->mm == mm)) 154 task->rss_stat.count[member] += val; 155 else 156 add_mm_counter(mm, member, val); 157 } 158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 160 161 /* sync counter once per 64 page faults */ 162 #define TASK_RSS_EVENTS_THRESH (64) 163 static void check_sync_rss_stat(struct task_struct *task) 164 { 165 if (unlikely(task != current)) 166 return; 167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 168 sync_mm_rss(task->mm); 169 } 170 #else /* SPLIT_RSS_COUNTING */ 171 172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 174 175 static void check_sync_rss_stat(struct task_struct *task) 176 { 177 } 178 179 #endif /* SPLIT_RSS_COUNTING */ 180 181 #ifdef HAVE_GENERIC_MMU_GATHER 182 183 static int tlb_next_batch(struct mmu_gather *tlb) 184 { 185 struct mmu_gather_batch *batch; 186 187 batch = tlb->active; 188 if (batch->next) { 189 tlb->active = batch->next; 190 return 1; 191 } 192 193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 194 return 0; 195 196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 197 if (!batch) 198 return 0; 199 200 tlb->batch_count++; 201 batch->next = NULL; 202 batch->nr = 0; 203 batch->max = MAX_GATHER_BATCH; 204 205 tlb->active->next = batch; 206 tlb->active = batch; 207 208 return 1; 209 } 210 211 /* tlb_gather_mmu 212 * Called to initialize an (on-stack) mmu_gather structure for page-table 213 * tear-down from @mm. The @fullmm argument is used when @mm is without 214 * users and we're going to destroy the full address space (exit/execve). 215 */ 216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 217 { 218 tlb->mm = mm; 219 220 /* Is it from 0 to ~0? */ 221 tlb->fullmm = !(start | (end+1)); 222 tlb->need_flush_all = 0; 223 tlb->local.next = NULL; 224 tlb->local.nr = 0; 225 tlb->local.max = ARRAY_SIZE(tlb->__pages); 226 tlb->active = &tlb->local; 227 tlb->batch_count = 0; 228 229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 230 tlb->batch = NULL; 231 #endif 232 233 __tlb_reset_range(tlb); 234 } 235 236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 237 { 238 if (!tlb->end) 239 return; 240 241 tlb_flush(tlb); 242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 243 tlb_table_flush(tlb); 244 #endif 245 __tlb_reset_range(tlb); 246 } 247 248 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 249 { 250 struct mmu_gather_batch *batch; 251 252 for (batch = &tlb->local; batch; batch = batch->next) { 253 free_pages_and_swap_cache(batch->pages, batch->nr); 254 batch->nr = 0; 255 } 256 tlb->active = &tlb->local; 257 } 258 259 void tlb_flush_mmu(struct mmu_gather *tlb) 260 { 261 tlb_flush_mmu_tlbonly(tlb); 262 tlb_flush_mmu_free(tlb); 263 } 264 265 /* tlb_finish_mmu 266 * Called at the end of the shootdown operation to free up any resources 267 * that were required. 268 */ 269 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 270 { 271 struct mmu_gather_batch *batch, *next; 272 273 tlb_flush_mmu(tlb); 274 275 /* keep the page table cache within bounds */ 276 check_pgt_cache(); 277 278 for (batch = tlb->local.next; batch; batch = next) { 279 next = batch->next; 280 free_pages((unsigned long)batch, 0); 281 } 282 tlb->local.next = NULL; 283 } 284 285 /* __tlb_remove_page 286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 287 * handling the additional races in SMP caused by other CPUs caching valid 288 * mappings in their TLBs. Returns the number of free page slots left. 289 * When out of page slots we must call tlb_flush_mmu(). 290 */ 291 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 292 { 293 struct mmu_gather_batch *batch; 294 295 VM_BUG_ON(!tlb->end); 296 297 batch = tlb->active; 298 batch->pages[batch->nr++] = page; 299 if (batch->nr == batch->max) { 300 if (!tlb_next_batch(tlb)) 301 return 0; 302 batch = tlb->active; 303 } 304 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 305 306 return batch->max - batch->nr; 307 } 308 309 #endif /* HAVE_GENERIC_MMU_GATHER */ 310 311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 312 313 /* 314 * See the comment near struct mmu_table_batch. 315 */ 316 317 static void tlb_remove_table_smp_sync(void *arg) 318 { 319 /* Simply deliver the interrupt */ 320 } 321 322 static void tlb_remove_table_one(void *table) 323 { 324 /* 325 * This isn't an RCU grace period and hence the page-tables cannot be 326 * assumed to be actually RCU-freed. 327 * 328 * It is however sufficient for software page-table walkers that rely on 329 * IRQ disabling. See the comment near struct mmu_table_batch. 330 */ 331 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 332 __tlb_remove_table(table); 333 } 334 335 static void tlb_remove_table_rcu(struct rcu_head *head) 336 { 337 struct mmu_table_batch *batch; 338 int i; 339 340 batch = container_of(head, struct mmu_table_batch, rcu); 341 342 for (i = 0; i < batch->nr; i++) 343 __tlb_remove_table(batch->tables[i]); 344 345 free_page((unsigned long)batch); 346 } 347 348 void tlb_table_flush(struct mmu_gather *tlb) 349 { 350 struct mmu_table_batch **batch = &tlb->batch; 351 352 if (*batch) { 353 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 354 *batch = NULL; 355 } 356 } 357 358 void tlb_remove_table(struct mmu_gather *tlb, void *table) 359 { 360 struct mmu_table_batch **batch = &tlb->batch; 361 362 /* 363 * When there's less then two users of this mm there cannot be a 364 * concurrent page-table walk. 365 */ 366 if (atomic_read(&tlb->mm->mm_users) < 2) { 367 __tlb_remove_table(table); 368 return; 369 } 370 371 if (*batch == NULL) { 372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 373 if (*batch == NULL) { 374 tlb_remove_table_one(table); 375 return; 376 } 377 (*batch)->nr = 0; 378 } 379 (*batch)->tables[(*batch)->nr++] = table; 380 if ((*batch)->nr == MAX_TABLE_BATCH) 381 tlb_table_flush(tlb); 382 } 383 384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 385 386 /* 387 * Note: this doesn't free the actual pages themselves. That 388 * has been handled earlier when unmapping all the memory regions. 389 */ 390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 391 unsigned long addr) 392 { 393 pgtable_t token = pmd_pgtable(*pmd); 394 pmd_clear(pmd); 395 pte_free_tlb(tlb, token, addr); 396 atomic_long_dec(&tlb->mm->nr_ptes); 397 } 398 399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 400 unsigned long addr, unsigned long end, 401 unsigned long floor, unsigned long ceiling) 402 { 403 pmd_t *pmd; 404 unsigned long next; 405 unsigned long start; 406 407 start = addr; 408 pmd = pmd_offset(pud, addr); 409 do { 410 next = pmd_addr_end(addr, end); 411 if (pmd_none_or_clear_bad(pmd)) 412 continue; 413 free_pte_range(tlb, pmd, addr); 414 } while (pmd++, addr = next, addr != end); 415 416 start &= PUD_MASK; 417 if (start < floor) 418 return; 419 if (ceiling) { 420 ceiling &= PUD_MASK; 421 if (!ceiling) 422 return; 423 } 424 if (end - 1 > ceiling - 1) 425 return; 426 427 pmd = pmd_offset(pud, start); 428 pud_clear(pud); 429 pmd_free_tlb(tlb, pmd, start); 430 } 431 432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 433 unsigned long addr, unsigned long end, 434 unsigned long floor, unsigned long ceiling) 435 { 436 pud_t *pud; 437 unsigned long next; 438 unsigned long start; 439 440 start = addr; 441 pud = pud_offset(pgd, addr); 442 do { 443 next = pud_addr_end(addr, end); 444 if (pud_none_or_clear_bad(pud)) 445 continue; 446 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 447 } while (pud++, addr = next, addr != end); 448 449 start &= PGDIR_MASK; 450 if (start < floor) 451 return; 452 if (ceiling) { 453 ceiling &= PGDIR_MASK; 454 if (!ceiling) 455 return; 456 } 457 if (end - 1 > ceiling - 1) 458 return; 459 460 pud = pud_offset(pgd, start); 461 pgd_clear(pgd); 462 pud_free_tlb(tlb, pud, start); 463 } 464 465 /* 466 * This function frees user-level page tables of a process. 467 */ 468 void free_pgd_range(struct mmu_gather *tlb, 469 unsigned long addr, unsigned long end, 470 unsigned long floor, unsigned long ceiling) 471 { 472 pgd_t *pgd; 473 unsigned long next; 474 475 /* 476 * The next few lines have given us lots of grief... 477 * 478 * Why are we testing PMD* at this top level? Because often 479 * there will be no work to do at all, and we'd prefer not to 480 * go all the way down to the bottom just to discover that. 481 * 482 * Why all these "- 1"s? Because 0 represents both the bottom 483 * of the address space and the top of it (using -1 for the 484 * top wouldn't help much: the masks would do the wrong thing). 485 * The rule is that addr 0 and floor 0 refer to the bottom of 486 * the address space, but end 0 and ceiling 0 refer to the top 487 * Comparisons need to use "end - 1" and "ceiling - 1" (though 488 * that end 0 case should be mythical). 489 * 490 * Wherever addr is brought up or ceiling brought down, we must 491 * be careful to reject "the opposite 0" before it confuses the 492 * subsequent tests. But what about where end is brought down 493 * by PMD_SIZE below? no, end can't go down to 0 there. 494 * 495 * Whereas we round start (addr) and ceiling down, by different 496 * masks at different levels, in order to test whether a table 497 * now has no other vmas using it, so can be freed, we don't 498 * bother to round floor or end up - the tests don't need that. 499 */ 500 501 addr &= PMD_MASK; 502 if (addr < floor) { 503 addr += PMD_SIZE; 504 if (!addr) 505 return; 506 } 507 if (ceiling) { 508 ceiling &= PMD_MASK; 509 if (!ceiling) 510 return; 511 } 512 if (end - 1 > ceiling - 1) 513 end -= PMD_SIZE; 514 if (addr > end - 1) 515 return; 516 517 pgd = pgd_offset(tlb->mm, addr); 518 do { 519 next = pgd_addr_end(addr, end); 520 if (pgd_none_or_clear_bad(pgd)) 521 continue; 522 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 523 } while (pgd++, addr = next, addr != end); 524 } 525 526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 527 unsigned long floor, unsigned long ceiling) 528 { 529 while (vma) { 530 struct vm_area_struct *next = vma->vm_next; 531 unsigned long addr = vma->vm_start; 532 533 /* 534 * Hide vma from rmap and truncate_pagecache before freeing 535 * pgtables 536 */ 537 unlink_anon_vmas(vma); 538 unlink_file_vma(vma); 539 540 if (is_vm_hugetlb_page(vma)) { 541 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 542 floor, next? next->vm_start: ceiling); 543 } else { 544 /* 545 * Optimization: gather nearby vmas into one call down 546 */ 547 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 548 && !is_vm_hugetlb_page(next)) { 549 vma = next; 550 next = vma->vm_next; 551 unlink_anon_vmas(vma); 552 unlink_file_vma(vma); 553 } 554 free_pgd_range(tlb, addr, vma->vm_end, 555 floor, next? next->vm_start: ceiling); 556 } 557 vma = next; 558 } 559 } 560 561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 562 pmd_t *pmd, unsigned long address) 563 { 564 spinlock_t *ptl; 565 pgtable_t new = pte_alloc_one(mm, address); 566 int wait_split_huge_page; 567 if (!new) 568 return -ENOMEM; 569 570 /* 571 * Ensure all pte setup (eg. pte page lock and page clearing) are 572 * visible before the pte is made visible to other CPUs by being 573 * put into page tables. 574 * 575 * The other side of the story is the pointer chasing in the page 576 * table walking code (when walking the page table without locking; 577 * ie. most of the time). Fortunately, these data accesses consist 578 * of a chain of data-dependent loads, meaning most CPUs (alpha 579 * being the notable exception) will already guarantee loads are 580 * seen in-order. See the alpha page table accessors for the 581 * smp_read_barrier_depends() barriers in page table walking code. 582 */ 583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 584 585 ptl = pmd_lock(mm, pmd); 586 wait_split_huge_page = 0; 587 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 588 atomic_long_inc(&mm->nr_ptes); 589 pmd_populate(mm, pmd, new); 590 new = NULL; 591 } else if (unlikely(pmd_trans_splitting(*pmd))) 592 wait_split_huge_page = 1; 593 spin_unlock(ptl); 594 if (new) 595 pte_free(mm, new); 596 if (wait_split_huge_page) 597 wait_split_huge_page(vma->anon_vma, pmd); 598 return 0; 599 } 600 601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 602 { 603 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 604 if (!new) 605 return -ENOMEM; 606 607 smp_wmb(); /* See comment in __pte_alloc */ 608 609 spin_lock(&init_mm.page_table_lock); 610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 611 pmd_populate_kernel(&init_mm, pmd, new); 612 new = NULL; 613 } else 614 VM_BUG_ON(pmd_trans_splitting(*pmd)); 615 spin_unlock(&init_mm.page_table_lock); 616 if (new) 617 pte_free_kernel(&init_mm, new); 618 return 0; 619 } 620 621 static inline void init_rss_vec(int *rss) 622 { 623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 624 } 625 626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 627 { 628 int i; 629 630 if (current->mm == mm) 631 sync_mm_rss(mm); 632 for (i = 0; i < NR_MM_COUNTERS; i++) 633 if (rss[i]) 634 add_mm_counter(mm, i, rss[i]); 635 } 636 637 /* 638 * This function is called to print an error when a bad pte 639 * is found. For example, we might have a PFN-mapped pte in 640 * a region that doesn't allow it. 641 * 642 * The calling function must still handle the error. 643 */ 644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 645 pte_t pte, struct page *page) 646 { 647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 648 pud_t *pud = pud_offset(pgd, addr); 649 pmd_t *pmd = pmd_offset(pud, addr); 650 struct address_space *mapping; 651 pgoff_t index; 652 static unsigned long resume; 653 static unsigned long nr_shown; 654 static unsigned long nr_unshown; 655 656 /* 657 * Allow a burst of 60 reports, then keep quiet for that minute; 658 * or allow a steady drip of one report per second. 659 */ 660 if (nr_shown == 60) { 661 if (time_before(jiffies, resume)) { 662 nr_unshown++; 663 return; 664 } 665 if (nr_unshown) { 666 printk(KERN_ALERT 667 "BUG: Bad page map: %lu messages suppressed\n", 668 nr_unshown); 669 nr_unshown = 0; 670 } 671 nr_shown = 0; 672 } 673 if (nr_shown++ == 0) 674 resume = jiffies + 60 * HZ; 675 676 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 677 index = linear_page_index(vma, addr); 678 679 printk(KERN_ALERT 680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 681 current->comm, 682 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 683 if (page) 684 dump_page(page, "bad pte"); 685 printk(KERN_ALERT 686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 687 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 688 /* 689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 690 */ 691 if (vma->vm_ops) 692 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 693 vma->vm_ops->fault); 694 if (vma->vm_file) 695 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 696 vma->vm_file->f_op->mmap); 697 dump_stack(); 698 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 699 } 700 701 /* 702 * vm_normal_page -- This function gets the "struct page" associated with a pte. 703 * 704 * "Special" mappings do not wish to be associated with a "struct page" (either 705 * it doesn't exist, or it exists but they don't want to touch it). In this 706 * case, NULL is returned here. "Normal" mappings do have a struct page. 707 * 708 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 709 * pte bit, in which case this function is trivial. Secondly, an architecture 710 * may not have a spare pte bit, which requires a more complicated scheme, 711 * described below. 712 * 713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 714 * special mapping (even if there are underlying and valid "struct pages"). 715 * COWed pages of a VM_PFNMAP are always normal. 716 * 717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 720 * mapping will always honor the rule 721 * 722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 723 * 724 * And for normal mappings this is false. 725 * 726 * This restricts such mappings to be a linear translation from virtual address 727 * to pfn. To get around this restriction, we allow arbitrary mappings so long 728 * as the vma is not a COW mapping; in that case, we know that all ptes are 729 * special (because none can have been COWed). 730 * 731 * 732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 733 * 734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 735 * page" backing, however the difference is that _all_ pages with a struct 736 * page (that is, those where pfn_valid is true) are refcounted and considered 737 * normal pages by the VM. The disadvantage is that pages are refcounted 738 * (which can be slower and simply not an option for some PFNMAP users). The 739 * advantage is that we don't have to follow the strict linearity rule of 740 * PFNMAP mappings in order to support COWable mappings. 741 * 742 */ 743 #ifdef __HAVE_ARCH_PTE_SPECIAL 744 # define HAVE_PTE_SPECIAL 1 745 #else 746 # define HAVE_PTE_SPECIAL 0 747 #endif 748 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 749 pte_t pte) 750 { 751 unsigned long pfn = pte_pfn(pte); 752 753 if (HAVE_PTE_SPECIAL) { 754 if (likely(!pte_special(pte))) 755 goto check_pfn; 756 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 757 return NULL; 758 if (!is_zero_pfn(pfn)) 759 print_bad_pte(vma, addr, pte, NULL); 760 return NULL; 761 } 762 763 /* !HAVE_PTE_SPECIAL case follows: */ 764 765 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 766 if (vma->vm_flags & VM_MIXEDMAP) { 767 if (!pfn_valid(pfn)) 768 return NULL; 769 goto out; 770 } else { 771 unsigned long off; 772 off = (addr - vma->vm_start) >> PAGE_SHIFT; 773 if (pfn == vma->vm_pgoff + off) 774 return NULL; 775 if (!is_cow_mapping(vma->vm_flags)) 776 return NULL; 777 } 778 } 779 780 if (is_zero_pfn(pfn)) 781 return NULL; 782 check_pfn: 783 if (unlikely(pfn > highest_memmap_pfn)) { 784 print_bad_pte(vma, addr, pte, NULL); 785 return NULL; 786 } 787 788 /* 789 * NOTE! We still have PageReserved() pages in the page tables. 790 * eg. VDSO mappings can cause them to exist. 791 */ 792 out: 793 return pfn_to_page(pfn); 794 } 795 796 /* 797 * copy one vm_area from one task to the other. Assumes the page tables 798 * already present in the new task to be cleared in the whole range 799 * covered by this vma. 800 */ 801 802 static inline unsigned long 803 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 804 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 805 unsigned long addr, int *rss) 806 { 807 unsigned long vm_flags = vma->vm_flags; 808 pte_t pte = *src_pte; 809 struct page *page; 810 811 /* pte contains position in swap or file, so copy. */ 812 if (unlikely(!pte_present(pte))) { 813 if (!pte_file(pte)) { 814 swp_entry_t entry = pte_to_swp_entry(pte); 815 816 if (likely(!non_swap_entry(entry))) { 817 if (swap_duplicate(entry) < 0) 818 return entry.val; 819 820 /* make sure dst_mm is on swapoff's mmlist. */ 821 if (unlikely(list_empty(&dst_mm->mmlist))) { 822 spin_lock(&mmlist_lock); 823 if (list_empty(&dst_mm->mmlist)) 824 list_add(&dst_mm->mmlist, 825 &src_mm->mmlist); 826 spin_unlock(&mmlist_lock); 827 } 828 rss[MM_SWAPENTS]++; 829 } else if (is_migration_entry(entry)) { 830 page = migration_entry_to_page(entry); 831 832 if (PageAnon(page)) 833 rss[MM_ANONPAGES]++; 834 else 835 rss[MM_FILEPAGES]++; 836 837 if (is_write_migration_entry(entry) && 838 is_cow_mapping(vm_flags)) { 839 /* 840 * COW mappings require pages in both 841 * parent and child to be set to read. 842 */ 843 make_migration_entry_read(&entry); 844 pte = swp_entry_to_pte(entry); 845 if (pte_swp_soft_dirty(*src_pte)) 846 pte = pte_swp_mksoft_dirty(pte); 847 set_pte_at(src_mm, addr, src_pte, pte); 848 } 849 } 850 } 851 goto out_set_pte; 852 } 853 854 /* 855 * If it's a COW mapping, write protect it both 856 * in the parent and the child 857 */ 858 if (is_cow_mapping(vm_flags)) { 859 ptep_set_wrprotect(src_mm, addr, src_pte); 860 pte = pte_wrprotect(pte); 861 } 862 863 /* 864 * If it's a shared mapping, mark it clean in 865 * the child 866 */ 867 if (vm_flags & VM_SHARED) 868 pte = pte_mkclean(pte); 869 pte = pte_mkold(pte); 870 871 page = vm_normal_page(vma, addr, pte); 872 if (page) { 873 get_page(page); 874 page_dup_rmap(page); 875 if (PageAnon(page)) 876 rss[MM_ANONPAGES]++; 877 else 878 rss[MM_FILEPAGES]++; 879 } 880 881 out_set_pte: 882 set_pte_at(dst_mm, addr, dst_pte, pte); 883 return 0; 884 } 885 886 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 887 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 888 unsigned long addr, unsigned long end) 889 { 890 pte_t *orig_src_pte, *orig_dst_pte; 891 pte_t *src_pte, *dst_pte; 892 spinlock_t *src_ptl, *dst_ptl; 893 int progress = 0; 894 int rss[NR_MM_COUNTERS]; 895 swp_entry_t entry = (swp_entry_t){0}; 896 897 again: 898 init_rss_vec(rss); 899 900 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 901 if (!dst_pte) 902 return -ENOMEM; 903 src_pte = pte_offset_map(src_pmd, addr); 904 src_ptl = pte_lockptr(src_mm, src_pmd); 905 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 906 orig_src_pte = src_pte; 907 orig_dst_pte = dst_pte; 908 arch_enter_lazy_mmu_mode(); 909 910 do { 911 /* 912 * We are holding two locks at this point - either of them 913 * could generate latencies in another task on another CPU. 914 */ 915 if (progress >= 32) { 916 progress = 0; 917 if (need_resched() || 918 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 919 break; 920 } 921 if (pte_none(*src_pte)) { 922 progress++; 923 continue; 924 } 925 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 926 vma, addr, rss); 927 if (entry.val) 928 break; 929 progress += 8; 930 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 931 932 arch_leave_lazy_mmu_mode(); 933 spin_unlock(src_ptl); 934 pte_unmap(orig_src_pte); 935 add_mm_rss_vec(dst_mm, rss); 936 pte_unmap_unlock(orig_dst_pte, dst_ptl); 937 cond_resched(); 938 939 if (entry.val) { 940 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 941 return -ENOMEM; 942 progress = 0; 943 } 944 if (addr != end) 945 goto again; 946 return 0; 947 } 948 949 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 950 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 951 unsigned long addr, unsigned long end) 952 { 953 pmd_t *src_pmd, *dst_pmd; 954 unsigned long next; 955 956 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 957 if (!dst_pmd) 958 return -ENOMEM; 959 src_pmd = pmd_offset(src_pud, addr); 960 do { 961 next = pmd_addr_end(addr, end); 962 if (pmd_trans_huge(*src_pmd)) { 963 int err; 964 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 965 err = copy_huge_pmd(dst_mm, src_mm, 966 dst_pmd, src_pmd, addr, vma); 967 if (err == -ENOMEM) 968 return -ENOMEM; 969 if (!err) 970 continue; 971 /* fall through */ 972 } 973 if (pmd_none_or_clear_bad(src_pmd)) 974 continue; 975 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 976 vma, addr, next)) 977 return -ENOMEM; 978 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 979 return 0; 980 } 981 982 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 983 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 984 unsigned long addr, unsigned long end) 985 { 986 pud_t *src_pud, *dst_pud; 987 unsigned long next; 988 989 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 990 if (!dst_pud) 991 return -ENOMEM; 992 src_pud = pud_offset(src_pgd, addr); 993 do { 994 next = pud_addr_end(addr, end); 995 if (pud_none_or_clear_bad(src_pud)) 996 continue; 997 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 998 vma, addr, next)) 999 return -ENOMEM; 1000 } while (dst_pud++, src_pud++, addr = next, addr != end); 1001 return 0; 1002 } 1003 1004 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1005 struct vm_area_struct *vma) 1006 { 1007 pgd_t *src_pgd, *dst_pgd; 1008 unsigned long next; 1009 unsigned long addr = vma->vm_start; 1010 unsigned long end = vma->vm_end; 1011 unsigned long mmun_start; /* For mmu_notifiers */ 1012 unsigned long mmun_end; /* For mmu_notifiers */ 1013 bool is_cow; 1014 int ret; 1015 1016 /* 1017 * Don't copy ptes where a page fault will fill them correctly. 1018 * Fork becomes much lighter when there are big shared or private 1019 * readonly mappings. The tradeoff is that copy_page_range is more 1020 * efficient than faulting. 1021 */ 1022 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1023 VM_PFNMAP | VM_MIXEDMAP))) { 1024 if (!vma->anon_vma) 1025 return 0; 1026 } 1027 1028 if (is_vm_hugetlb_page(vma)) 1029 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1030 1031 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1032 /* 1033 * We do not free on error cases below as remove_vma 1034 * gets called on error from higher level routine 1035 */ 1036 ret = track_pfn_copy(vma); 1037 if (ret) 1038 return ret; 1039 } 1040 1041 /* 1042 * We need to invalidate the secondary MMU mappings only when 1043 * there could be a permission downgrade on the ptes of the 1044 * parent mm. And a permission downgrade will only happen if 1045 * is_cow_mapping() returns true. 1046 */ 1047 is_cow = is_cow_mapping(vma->vm_flags); 1048 mmun_start = addr; 1049 mmun_end = end; 1050 if (is_cow) 1051 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1052 mmun_end); 1053 1054 ret = 0; 1055 dst_pgd = pgd_offset(dst_mm, addr); 1056 src_pgd = pgd_offset(src_mm, addr); 1057 do { 1058 next = pgd_addr_end(addr, end); 1059 if (pgd_none_or_clear_bad(src_pgd)) 1060 continue; 1061 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1062 vma, addr, next))) { 1063 ret = -ENOMEM; 1064 break; 1065 } 1066 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1067 1068 if (is_cow) 1069 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1070 return ret; 1071 } 1072 1073 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1074 struct vm_area_struct *vma, pmd_t *pmd, 1075 unsigned long addr, unsigned long end, 1076 struct zap_details *details) 1077 { 1078 struct mm_struct *mm = tlb->mm; 1079 int force_flush = 0; 1080 int rss[NR_MM_COUNTERS]; 1081 spinlock_t *ptl; 1082 pte_t *start_pte; 1083 pte_t *pte; 1084 1085 again: 1086 init_rss_vec(rss); 1087 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1088 pte = start_pte; 1089 arch_enter_lazy_mmu_mode(); 1090 do { 1091 pte_t ptent = *pte; 1092 if (pte_none(ptent)) { 1093 continue; 1094 } 1095 1096 if (pte_present(ptent)) { 1097 struct page *page; 1098 1099 page = vm_normal_page(vma, addr, ptent); 1100 if (unlikely(details) && page) { 1101 /* 1102 * unmap_shared_mapping_pages() wants to 1103 * invalidate cache without truncating: 1104 * unmap shared but keep private pages. 1105 */ 1106 if (details->check_mapping && 1107 details->check_mapping != page->mapping) 1108 continue; 1109 /* 1110 * Each page->index must be checked when 1111 * invalidating or truncating nonlinear. 1112 */ 1113 if (details->nonlinear_vma && 1114 (page->index < details->first_index || 1115 page->index > details->last_index)) 1116 continue; 1117 } 1118 ptent = ptep_get_and_clear_full(mm, addr, pte, 1119 tlb->fullmm); 1120 tlb_remove_tlb_entry(tlb, pte, addr); 1121 if (unlikely(!page)) 1122 continue; 1123 if (unlikely(details) && details->nonlinear_vma 1124 && linear_page_index(details->nonlinear_vma, 1125 addr) != page->index) { 1126 pte_t ptfile = pgoff_to_pte(page->index); 1127 if (pte_soft_dirty(ptent)) 1128 ptfile = pte_file_mksoft_dirty(ptfile); 1129 set_pte_at(mm, addr, pte, ptfile); 1130 } 1131 if (PageAnon(page)) 1132 rss[MM_ANONPAGES]--; 1133 else { 1134 if (pte_dirty(ptent)) { 1135 force_flush = 1; 1136 set_page_dirty(page); 1137 } 1138 if (pte_young(ptent) && 1139 likely(!(vma->vm_flags & VM_SEQ_READ))) 1140 mark_page_accessed(page); 1141 rss[MM_FILEPAGES]--; 1142 } 1143 page_remove_rmap(page); 1144 if (unlikely(page_mapcount(page) < 0)) 1145 print_bad_pte(vma, addr, ptent, page); 1146 if (unlikely(!__tlb_remove_page(tlb, page))) { 1147 force_flush = 1; 1148 addr += PAGE_SIZE; 1149 break; 1150 } 1151 continue; 1152 } 1153 /* 1154 * If details->check_mapping, we leave swap entries; 1155 * if details->nonlinear_vma, we leave file entries. 1156 */ 1157 if (unlikely(details)) 1158 continue; 1159 if (pte_file(ptent)) { 1160 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1161 print_bad_pte(vma, addr, ptent, NULL); 1162 } else { 1163 swp_entry_t entry = pte_to_swp_entry(ptent); 1164 1165 if (!non_swap_entry(entry)) 1166 rss[MM_SWAPENTS]--; 1167 else if (is_migration_entry(entry)) { 1168 struct page *page; 1169 1170 page = migration_entry_to_page(entry); 1171 1172 if (PageAnon(page)) 1173 rss[MM_ANONPAGES]--; 1174 else 1175 rss[MM_FILEPAGES]--; 1176 } 1177 if (unlikely(!free_swap_and_cache(entry))) 1178 print_bad_pte(vma, addr, ptent, NULL); 1179 } 1180 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1181 } while (pte++, addr += PAGE_SIZE, addr != end); 1182 1183 add_mm_rss_vec(mm, rss); 1184 arch_leave_lazy_mmu_mode(); 1185 1186 /* Do the actual TLB flush before dropping ptl */ 1187 if (force_flush) 1188 tlb_flush_mmu_tlbonly(tlb); 1189 pte_unmap_unlock(start_pte, ptl); 1190 1191 /* 1192 * If we forced a TLB flush (either due to running out of 1193 * batch buffers or because we needed to flush dirty TLB 1194 * entries before releasing the ptl), free the batched 1195 * memory too. Restart if we didn't do everything. 1196 */ 1197 if (force_flush) { 1198 force_flush = 0; 1199 tlb_flush_mmu_free(tlb); 1200 1201 if (addr != end) 1202 goto again; 1203 } 1204 1205 return addr; 1206 } 1207 1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1209 struct vm_area_struct *vma, pud_t *pud, 1210 unsigned long addr, unsigned long end, 1211 struct zap_details *details) 1212 { 1213 pmd_t *pmd; 1214 unsigned long next; 1215 1216 pmd = pmd_offset(pud, addr); 1217 do { 1218 next = pmd_addr_end(addr, end); 1219 if (pmd_trans_huge(*pmd)) { 1220 if (next - addr != HPAGE_PMD_SIZE) { 1221 #ifdef CONFIG_DEBUG_VM 1222 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1224 __func__, addr, end, 1225 vma->vm_start, 1226 vma->vm_end); 1227 BUG(); 1228 } 1229 #endif 1230 split_huge_page_pmd(vma, addr, pmd); 1231 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1232 goto next; 1233 /* fall through */ 1234 } 1235 /* 1236 * Here there can be other concurrent MADV_DONTNEED or 1237 * trans huge page faults running, and if the pmd is 1238 * none or trans huge it can change under us. This is 1239 * because MADV_DONTNEED holds the mmap_sem in read 1240 * mode. 1241 */ 1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1243 goto next; 1244 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1245 next: 1246 cond_resched(); 1247 } while (pmd++, addr = next, addr != end); 1248 1249 return addr; 1250 } 1251 1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1253 struct vm_area_struct *vma, pgd_t *pgd, 1254 unsigned long addr, unsigned long end, 1255 struct zap_details *details) 1256 { 1257 pud_t *pud; 1258 unsigned long next; 1259 1260 pud = pud_offset(pgd, addr); 1261 do { 1262 next = pud_addr_end(addr, end); 1263 if (pud_none_or_clear_bad(pud)) 1264 continue; 1265 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1266 } while (pud++, addr = next, addr != end); 1267 1268 return addr; 1269 } 1270 1271 static void unmap_page_range(struct mmu_gather *tlb, 1272 struct vm_area_struct *vma, 1273 unsigned long addr, unsigned long end, 1274 struct zap_details *details) 1275 { 1276 pgd_t *pgd; 1277 unsigned long next; 1278 1279 if (details && !details->check_mapping && !details->nonlinear_vma) 1280 details = NULL; 1281 1282 BUG_ON(addr >= end); 1283 tlb_start_vma(tlb, vma); 1284 pgd = pgd_offset(vma->vm_mm, addr); 1285 do { 1286 next = pgd_addr_end(addr, end); 1287 if (pgd_none_or_clear_bad(pgd)) 1288 continue; 1289 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1290 } while (pgd++, addr = next, addr != end); 1291 tlb_end_vma(tlb, vma); 1292 } 1293 1294 1295 static void unmap_single_vma(struct mmu_gather *tlb, 1296 struct vm_area_struct *vma, unsigned long start_addr, 1297 unsigned long end_addr, 1298 struct zap_details *details) 1299 { 1300 unsigned long start = max(vma->vm_start, start_addr); 1301 unsigned long end; 1302 1303 if (start >= vma->vm_end) 1304 return; 1305 end = min(vma->vm_end, end_addr); 1306 if (end <= vma->vm_start) 1307 return; 1308 1309 if (vma->vm_file) 1310 uprobe_munmap(vma, start, end); 1311 1312 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1313 untrack_pfn(vma, 0, 0); 1314 1315 if (start != end) { 1316 if (unlikely(is_vm_hugetlb_page(vma))) { 1317 /* 1318 * It is undesirable to test vma->vm_file as it 1319 * should be non-null for valid hugetlb area. 1320 * However, vm_file will be NULL in the error 1321 * cleanup path of mmap_region. When 1322 * hugetlbfs ->mmap method fails, 1323 * mmap_region() nullifies vma->vm_file 1324 * before calling this function to clean up. 1325 * Since no pte has actually been setup, it is 1326 * safe to do nothing in this case. 1327 */ 1328 if (vma->vm_file) { 1329 i_mmap_lock_write(vma->vm_file->f_mapping); 1330 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1331 i_mmap_unlock_write(vma->vm_file->f_mapping); 1332 } 1333 } else 1334 unmap_page_range(tlb, vma, start, end, details); 1335 } 1336 } 1337 1338 /** 1339 * unmap_vmas - unmap a range of memory covered by a list of vma's 1340 * @tlb: address of the caller's struct mmu_gather 1341 * @vma: the starting vma 1342 * @start_addr: virtual address at which to start unmapping 1343 * @end_addr: virtual address at which to end unmapping 1344 * 1345 * Unmap all pages in the vma list. 1346 * 1347 * Only addresses between `start' and `end' will be unmapped. 1348 * 1349 * The VMA list must be sorted in ascending virtual address order. 1350 * 1351 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1352 * range after unmap_vmas() returns. So the only responsibility here is to 1353 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1354 * drops the lock and schedules. 1355 */ 1356 void unmap_vmas(struct mmu_gather *tlb, 1357 struct vm_area_struct *vma, unsigned long start_addr, 1358 unsigned long end_addr) 1359 { 1360 struct mm_struct *mm = vma->vm_mm; 1361 1362 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1363 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1364 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1365 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1366 } 1367 1368 /** 1369 * zap_page_range - remove user pages in a given range 1370 * @vma: vm_area_struct holding the applicable pages 1371 * @start: starting address of pages to zap 1372 * @size: number of bytes to zap 1373 * @details: details of nonlinear truncation or shared cache invalidation 1374 * 1375 * Caller must protect the VMA list 1376 */ 1377 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1378 unsigned long size, struct zap_details *details) 1379 { 1380 struct mm_struct *mm = vma->vm_mm; 1381 struct mmu_gather tlb; 1382 unsigned long end = start + size; 1383 1384 lru_add_drain(); 1385 tlb_gather_mmu(&tlb, mm, start, end); 1386 update_hiwater_rss(mm); 1387 mmu_notifier_invalidate_range_start(mm, start, end); 1388 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1389 unmap_single_vma(&tlb, vma, start, end, details); 1390 mmu_notifier_invalidate_range_end(mm, start, end); 1391 tlb_finish_mmu(&tlb, start, end); 1392 } 1393 1394 /** 1395 * zap_page_range_single - remove user pages in a given range 1396 * @vma: vm_area_struct holding the applicable pages 1397 * @address: starting address of pages to zap 1398 * @size: number of bytes to zap 1399 * @details: details of nonlinear truncation or shared cache invalidation 1400 * 1401 * The range must fit into one VMA. 1402 */ 1403 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1404 unsigned long size, struct zap_details *details) 1405 { 1406 struct mm_struct *mm = vma->vm_mm; 1407 struct mmu_gather tlb; 1408 unsigned long end = address + size; 1409 1410 lru_add_drain(); 1411 tlb_gather_mmu(&tlb, mm, address, end); 1412 update_hiwater_rss(mm); 1413 mmu_notifier_invalidate_range_start(mm, address, end); 1414 unmap_single_vma(&tlb, vma, address, end, details); 1415 mmu_notifier_invalidate_range_end(mm, address, end); 1416 tlb_finish_mmu(&tlb, address, end); 1417 } 1418 1419 /** 1420 * zap_vma_ptes - remove ptes mapping the vma 1421 * @vma: vm_area_struct holding ptes to be zapped 1422 * @address: starting address of pages to zap 1423 * @size: number of bytes to zap 1424 * 1425 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1426 * 1427 * The entire address range must be fully contained within the vma. 1428 * 1429 * Returns 0 if successful. 1430 */ 1431 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1432 unsigned long size) 1433 { 1434 if (address < vma->vm_start || address + size > vma->vm_end || 1435 !(vma->vm_flags & VM_PFNMAP)) 1436 return -1; 1437 zap_page_range_single(vma, address, size, NULL); 1438 return 0; 1439 } 1440 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1441 1442 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1443 spinlock_t **ptl) 1444 { 1445 pgd_t * pgd = pgd_offset(mm, addr); 1446 pud_t * pud = pud_alloc(mm, pgd, addr); 1447 if (pud) { 1448 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1449 if (pmd) { 1450 VM_BUG_ON(pmd_trans_huge(*pmd)); 1451 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1452 } 1453 } 1454 return NULL; 1455 } 1456 1457 /* 1458 * This is the old fallback for page remapping. 1459 * 1460 * For historical reasons, it only allows reserved pages. Only 1461 * old drivers should use this, and they needed to mark their 1462 * pages reserved for the old functions anyway. 1463 */ 1464 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1465 struct page *page, pgprot_t prot) 1466 { 1467 struct mm_struct *mm = vma->vm_mm; 1468 int retval; 1469 pte_t *pte; 1470 spinlock_t *ptl; 1471 1472 retval = -EINVAL; 1473 if (PageAnon(page)) 1474 goto out; 1475 retval = -ENOMEM; 1476 flush_dcache_page(page); 1477 pte = get_locked_pte(mm, addr, &ptl); 1478 if (!pte) 1479 goto out; 1480 retval = -EBUSY; 1481 if (!pte_none(*pte)) 1482 goto out_unlock; 1483 1484 /* Ok, finally just insert the thing.. */ 1485 get_page(page); 1486 inc_mm_counter_fast(mm, MM_FILEPAGES); 1487 page_add_file_rmap(page); 1488 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1489 1490 retval = 0; 1491 pte_unmap_unlock(pte, ptl); 1492 return retval; 1493 out_unlock: 1494 pte_unmap_unlock(pte, ptl); 1495 out: 1496 return retval; 1497 } 1498 1499 /** 1500 * vm_insert_page - insert single page into user vma 1501 * @vma: user vma to map to 1502 * @addr: target user address of this page 1503 * @page: source kernel page 1504 * 1505 * This allows drivers to insert individual pages they've allocated 1506 * into a user vma. 1507 * 1508 * The page has to be a nice clean _individual_ kernel allocation. 1509 * If you allocate a compound page, you need to have marked it as 1510 * such (__GFP_COMP), or manually just split the page up yourself 1511 * (see split_page()). 1512 * 1513 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1514 * took an arbitrary page protection parameter. This doesn't allow 1515 * that. Your vma protection will have to be set up correctly, which 1516 * means that if you want a shared writable mapping, you'd better 1517 * ask for a shared writable mapping! 1518 * 1519 * The page does not need to be reserved. 1520 * 1521 * Usually this function is called from f_op->mmap() handler 1522 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1523 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1524 * function from other places, for example from page-fault handler. 1525 */ 1526 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1527 struct page *page) 1528 { 1529 if (addr < vma->vm_start || addr >= vma->vm_end) 1530 return -EFAULT; 1531 if (!page_count(page)) 1532 return -EINVAL; 1533 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1534 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1535 BUG_ON(vma->vm_flags & VM_PFNMAP); 1536 vma->vm_flags |= VM_MIXEDMAP; 1537 } 1538 return insert_page(vma, addr, page, vma->vm_page_prot); 1539 } 1540 EXPORT_SYMBOL(vm_insert_page); 1541 1542 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1543 unsigned long pfn, pgprot_t prot) 1544 { 1545 struct mm_struct *mm = vma->vm_mm; 1546 int retval; 1547 pte_t *pte, entry; 1548 spinlock_t *ptl; 1549 1550 retval = -ENOMEM; 1551 pte = get_locked_pte(mm, addr, &ptl); 1552 if (!pte) 1553 goto out; 1554 retval = -EBUSY; 1555 if (!pte_none(*pte)) 1556 goto out_unlock; 1557 1558 /* Ok, finally just insert the thing.. */ 1559 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1560 set_pte_at(mm, addr, pte, entry); 1561 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1562 1563 retval = 0; 1564 out_unlock: 1565 pte_unmap_unlock(pte, ptl); 1566 out: 1567 return retval; 1568 } 1569 1570 /** 1571 * vm_insert_pfn - insert single pfn into user vma 1572 * @vma: user vma to map to 1573 * @addr: target user address of this page 1574 * @pfn: source kernel pfn 1575 * 1576 * Similar to vm_insert_page, this allows drivers to insert individual pages 1577 * they've allocated into a user vma. Same comments apply. 1578 * 1579 * This function should only be called from a vm_ops->fault handler, and 1580 * in that case the handler should return NULL. 1581 * 1582 * vma cannot be a COW mapping. 1583 * 1584 * As this is called only for pages that do not currently exist, we 1585 * do not need to flush old virtual caches or the TLB. 1586 */ 1587 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1588 unsigned long pfn) 1589 { 1590 int ret; 1591 pgprot_t pgprot = vma->vm_page_prot; 1592 /* 1593 * Technically, architectures with pte_special can avoid all these 1594 * restrictions (same for remap_pfn_range). However we would like 1595 * consistency in testing and feature parity among all, so we should 1596 * try to keep these invariants in place for everybody. 1597 */ 1598 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1599 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1600 (VM_PFNMAP|VM_MIXEDMAP)); 1601 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1602 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1603 1604 if (addr < vma->vm_start || addr >= vma->vm_end) 1605 return -EFAULT; 1606 if (track_pfn_insert(vma, &pgprot, pfn)) 1607 return -EINVAL; 1608 1609 ret = insert_pfn(vma, addr, pfn, pgprot); 1610 1611 return ret; 1612 } 1613 EXPORT_SYMBOL(vm_insert_pfn); 1614 1615 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1616 unsigned long pfn) 1617 { 1618 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1619 1620 if (addr < vma->vm_start || addr >= vma->vm_end) 1621 return -EFAULT; 1622 1623 /* 1624 * If we don't have pte special, then we have to use the pfn_valid() 1625 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1626 * refcount the page if pfn_valid is true (hence insert_page rather 1627 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1628 * without pte special, it would there be refcounted as a normal page. 1629 */ 1630 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1631 struct page *page; 1632 1633 page = pfn_to_page(pfn); 1634 return insert_page(vma, addr, page, vma->vm_page_prot); 1635 } 1636 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1637 } 1638 EXPORT_SYMBOL(vm_insert_mixed); 1639 1640 /* 1641 * maps a range of physical memory into the requested pages. the old 1642 * mappings are removed. any references to nonexistent pages results 1643 * in null mappings (currently treated as "copy-on-access") 1644 */ 1645 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1646 unsigned long addr, unsigned long end, 1647 unsigned long pfn, pgprot_t prot) 1648 { 1649 pte_t *pte; 1650 spinlock_t *ptl; 1651 1652 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1653 if (!pte) 1654 return -ENOMEM; 1655 arch_enter_lazy_mmu_mode(); 1656 do { 1657 BUG_ON(!pte_none(*pte)); 1658 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1659 pfn++; 1660 } while (pte++, addr += PAGE_SIZE, addr != end); 1661 arch_leave_lazy_mmu_mode(); 1662 pte_unmap_unlock(pte - 1, ptl); 1663 return 0; 1664 } 1665 1666 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1667 unsigned long addr, unsigned long end, 1668 unsigned long pfn, pgprot_t prot) 1669 { 1670 pmd_t *pmd; 1671 unsigned long next; 1672 1673 pfn -= addr >> PAGE_SHIFT; 1674 pmd = pmd_alloc(mm, pud, addr); 1675 if (!pmd) 1676 return -ENOMEM; 1677 VM_BUG_ON(pmd_trans_huge(*pmd)); 1678 do { 1679 next = pmd_addr_end(addr, end); 1680 if (remap_pte_range(mm, pmd, addr, next, 1681 pfn + (addr >> PAGE_SHIFT), prot)) 1682 return -ENOMEM; 1683 } while (pmd++, addr = next, addr != end); 1684 return 0; 1685 } 1686 1687 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1688 unsigned long addr, unsigned long end, 1689 unsigned long pfn, pgprot_t prot) 1690 { 1691 pud_t *pud; 1692 unsigned long next; 1693 1694 pfn -= addr >> PAGE_SHIFT; 1695 pud = pud_alloc(mm, pgd, addr); 1696 if (!pud) 1697 return -ENOMEM; 1698 do { 1699 next = pud_addr_end(addr, end); 1700 if (remap_pmd_range(mm, pud, addr, next, 1701 pfn + (addr >> PAGE_SHIFT), prot)) 1702 return -ENOMEM; 1703 } while (pud++, addr = next, addr != end); 1704 return 0; 1705 } 1706 1707 /** 1708 * remap_pfn_range - remap kernel memory to userspace 1709 * @vma: user vma to map to 1710 * @addr: target user address to start at 1711 * @pfn: physical address of kernel memory 1712 * @size: size of map area 1713 * @prot: page protection flags for this mapping 1714 * 1715 * Note: this is only safe if the mm semaphore is held when called. 1716 */ 1717 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1718 unsigned long pfn, unsigned long size, pgprot_t prot) 1719 { 1720 pgd_t *pgd; 1721 unsigned long next; 1722 unsigned long end = addr + PAGE_ALIGN(size); 1723 struct mm_struct *mm = vma->vm_mm; 1724 int err; 1725 1726 /* 1727 * Physically remapped pages are special. Tell the 1728 * rest of the world about it: 1729 * VM_IO tells people not to look at these pages 1730 * (accesses can have side effects). 1731 * VM_PFNMAP tells the core MM that the base pages are just 1732 * raw PFN mappings, and do not have a "struct page" associated 1733 * with them. 1734 * VM_DONTEXPAND 1735 * Disable vma merging and expanding with mremap(). 1736 * VM_DONTDUMP 1737 * Omit vma from core dump, even when VM_IO turned off. 1738 * 1739 * There's a horrible special case to handle copy-on-write 1740 * behaviour that some programs depend on. We mark the "original" 1741 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1742 * See vm_normal_page() for details. 1743 */ 1744 if (is_cow_mapping(vma->vm_flags)) { 1745 if (addr != vma->vm_start || end != vma->vm_end) 1746 return -EINVAL; 1747 vma->vm_pgoff = pfn; 1748 } 1749 1750 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1751 if (err) 1752 return -EINVAL; 1753 1754 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1755 1756 BUG_ON(addr >= end); 1757 pfn -= addr >> PAGE_SHIFT; 1758 pgd = pgd_offset(mm, addr); 1759 flush_cache_range(vma, addr, end); 1760 do { 1761 next = pgd_addr_end(addr, end); 1762 err = remap_pud_range(mm, pgd, addr, next, 1763 pfn + (addr >> PAGE_SHIFT), prot); 1764 if (err) 1765 break; 1766 } while (pgd++, addr = next, addr != end); 1767 1768 if (err) 1769 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1770 1771 return err; 1772 } 1773 EXPORT_SYMBOL(remap_pfn_range); 1774 1775 /** 1776 * vm_iomap_memory - remap memory to userspace 1777 * @vma: user vma to map to 1778 * @start: start of area 1779 * @len: size of area 1780 * 1781 * This is a simplified io_remap_pfn_range() for common driver use. The 1782 * driver just needs to give us the physical memory range to be mapped, 1783 * we'll figure out the rest from the vma information. 1784 * 1785 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1786 * whatever write-combining details or similar. 1787 */ 1788 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1789 { 1790 unsigned long vm_len, pfn, pages; 1791 1792 /* Check that the physical memory area passed in looks valid */ 1793 if (start + len < start) 1794 return -EINVAL; 1795 /* 1796 * You *really* shouldn't map things that aren't page-aligned, 1797 * but we've historically allowed it because IO memory might 1798 * just have smaller alignment. 1799 */ 1800 len += start & ~PAGE_MASK; 1801 pfn = start >> PAGE_SHIFT; 1802 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1803 if (pfn + pages < pfn) 1804 return -EINVAL; 1805 1806 /* We start the mapping 'vm_pgoff' pages into the area */ 1807 if (vma->vm_pgoff > pages) 1808 return -EINVAL; 1809 pfn += vma->vm_pgoff; 1810 pages -= vma->vm_pgoff; 1811 1812 /* Can we fit all of the mapping? */ 1813 vm_len = vma->vm_end - vma->vm_start; 1814 if (vm_len >> PAGE_SHIFT > pages) 1815 return -EINVAL; 1816 1817 /* Ok, let it rip */ 1818 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1819 } 1820 EXPORT_SYMBOL(vm_iomap_memory); 1821 1822 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1823 unsigned long addr, unsigned long end, 1824 pte_fn_t fn, void *data) 1825 { 1826 pte_t *pte; 1827 int err; 1828 pgtable_t token; 1829 spinlock_t *uninitialized_var(ptl); 1830 1831 pte = (mm == &init_mm) ? 1832 pte_alloc_kernel(pmd, addr) : 1833 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1834 if (!pte) 1835 return -ENOMEM; 1836 1837 BUG_ON(pmd_huge(*pmd)); 1838 1839 arch_enter_lazy_mmu_mode(); 1840 1841 token = pmd_pgtable(*pmd); 1842 1843 do { 1844 err = fn(pte++, token, addr, data); 1845 if (err) 1846 break; 1847 } while (addr += PAGE_SIZE, addr != end); 1848 1849 arch_leave_lazy_mmu_mode(); 1850 1851 if (mm != &init_mm) 1852 pte_unmap_unlock(pte-1, ptl); 1853 return err; 1854 } 1855 1856 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1857 unsigned long addr, unsigned long end, 1858 pte_fn_t fn, void *data) 1859 { 1860 pmd_t *pmd; 1861 unsigned long next; 1862 int err; 1863 1864 BUG_ON(pud_huge(*pud)); 1865 1866 pmd = pmd_alloc(mm, pud, addr); 1867 if (!pmd) 1868 return -ENOMEM; 1869 do { 1870 next = pmd_addr_end(addr, end); 1871 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1872 if (err) 1873 break; 1874 } while (pmd++, addr = next, addr != end); 1875 return err; 1876 } 1877 1878 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1879 unsigned long addr, unsigned long end, 1880 pte_fn_t fn, void *data) 1881 { 1882 pud_t *pud; 1883 unsigned long next; 1884 int err; 1885 1886 pud = pud_alloc(mm, pgd, addr); 1887 if (!pud) 1888 return -ENOMEM; 1889 do { 1890 next = pud_addr_end(addr, end); 1891 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1892 if (err) 1893 break; 1894 } while (pud++, addr = next, addr != end); 1895 return err; 1896 } 1897 1898 /* 1899 * Scan a region of virtual memory, filling in page tables as necessary 1900 * and calling a provided function on each leaf page table. 1901 */ 1902 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1903 unsigned long size, pte_fn_t fn, void *data) 1904 { 1905 pgd_t *pgd; 1906 unsigned long next; 1907 unsigned long end = addr + size; 1908 int err; 1909 1910 BUG_ON(addr >= end); 1911 pgd = pgd_offset(mm, addr); 1912 do { 1913 next = pgd_addr_end(addr, end); 1914 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1915 if (err) 1916 break; 1917 } while (pgd++, addr = next, addr != end); 1918 1919 return err; 1920 } 1921 EXPORT_SYMBOL_GPL(apply_to_page_range); 1922 1923 /* 1924 * handle_pte_fault chooses page fault handler according to an entry 1925 * which was read non-atomically. Before making any commitment, on 1926 * those architectures or configurations (e.g. i386 with PAE) which 1927 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 1928 * must check under lock before unmapping the pte and proceeding 1929 * (but do_wp_page is only called after already making such a check; 1930 * and do_anonymous_page can safely check later on). 1931 */ 1932 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1933 pte_t *page_table, pte_t orig_pte) 1934 { 1935 int same = 1; 1936 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1937 if (sizeof(pte_t) > sizeof(unsigned long)) { 1938 spinlock_t *ptl = pte_lockptr(mm, pmd); 1939 spin_lock(ptl); 1940 same = pte_same(*page_table, orig_pte); 1941 spin_unlock(ptl); 1942 } 1943 #endif 1944 pte_unmap(page_table); 1945 return same; 1946 } 1947 1948 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1949 { 1950 debug_dma_assert_idle(src); 1951 1952 /* 1953 * If the source page was a PFN mapping, we don't have 1954 * a "struct page" for it. We do a best-effort copy by 1955 * just copying from the original user address. If that 1956 * fails, we just zero-fill it. Live with it. 1957 */ 1958 if (unlikely(!src)) { 1959 void *kaddr = kmap_atomic(dst); 1960 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1961 1962 /* 1963 * This really shouldn't fail, because the page is there 1964 * in the page tables. But it might just be unreadable, 1965 * in which case we just give up and fill the result with 1966 * zeroes. 1967 */ 1968 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1969 clear_page(kaddr); 1970 kunmap_atomic(kaddr); 1971 flush_dcache_page(dst); 1972 } else 1973 copy_user_highpage(dst, src, va, vma); 1974 } 1975 1976 /* 1977 * Notify the address space that the page is about to become writable so that 1978 * it can prohibit this or wait for the page to get into an appropriate state. 1979 * 1980 * We do this without the lock held, so that it can sleep if it needs to. 1981 */ 1982 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1983 unsigned long address) 1984 { 1985 struct vm_fault vmf; 1986 int ret; 1987 1988 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 1989 vmf.pgoff = page->index; 1990 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 1991 vmf.page = page; 1992 1993 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 1994 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 1995 return ret; 1996 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 1997 lock_page(page); 1998 if (!page->mapping) { 1999 unlock_page(page); 2000 return 0; /* retry */ 2001 } 2002 ret |= VM_FAULT_LOCKED; 2003 } else 2004 VM_BUG_ON_PAGE(!PageLocked(page), page); 2005 return ret; 2006 } 2007 2008 /* 2009 * This routine handles present pages, when users try to write 2010 * to a shared page. It is done by copying the page to a new address 2011 * and decrementing the shared-page counter for the old page. 2012 * 2013 * Note that this routine assumes that the protection checks have been 2014 * done by the caller (the low-level page fault routine in most cases). 2015 * Thus we can safely just mark it writable once we've done any necessary 2016 * COW. 2017 * 2018 * We also mark the page dirty at this point even though the page will 2019 * change only once the write actually happens. This avoids a few races, 2020 * and potentially makes it more efficient. 2021 * 2022 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2023 * but allow concurrent faults), with pte both mapped and locked. 2024 * We return with mmap_sem still held, but pte unmapped and unlocked. 2025 */ 2026 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2027 unsigned long address, pte_t *page_table, pmd_t *pmd, 2028 spinlock_t *ptl, pte_t orig_pte) 2029 __releases(ptl) 2030 { 2031 struct page *old_page, *new_page = NULL; 2032 pte_t entry; 2033 int ret = 0; 2034 int page_mkwrite = 0; 2035 struct page *dirty_page = NULL; 2036 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2037 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2038 struct mem_cgroup *memcg; 2039 2040 old_page = vm_normal_page(vma, address, orig_pte); 2041 if (!old_page) { 2042 /* 2043 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2044 * VM_PFNMAP VMA. 2045 * 2046 * We should not cow pages in a shared writeable mapping. 2047 * Just mark the pages writable as we can't do any dirty 2048 * accounting on raw pfn maps. 2049 */ 2050 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2051 (VM_WRITE|VM_SHARED)) 2052 goto reuse; 2053 goto gotten; 2054 } 2055 2056 /* 2057 * Take out anonymous pages first, anonymous shared vmas are 2058 * not dirty accountable. 2059 */ 2060 if (PageAnon(old_page) && !PageKsm(old_page)) { 2061 if (!trylock_page(old_page)) { 2062 page_cache_get(old_page); 2063 pte_unmap_unlock(page_table, ptl); 2064 lock_page(old_page); 2065 page_table = pte_offset_map_lock(mm, pmd, address, 2066 &ptl); 2067 if (!pte_same(*page_table, orig_pte)) { 2068 unlock_page(old_page); 2069 goto unlock; 2070 } 2071 page_cache_release(old_page); 2072 } 2073 if (reuse_swap_page(old_page)) { 2074 /* 2075 * The page is all ours. Move it to our anon_vma so 2076 * the rmap code will not search our parent or siblings. 2077 * Protected against the rmap code by the page lock. 2078 */ 2079 page_move_anon_rmap(old_page, vma, address); 2080 unlock_page(old_page); 2081 goto reuse; 2082 } 2083 unlock_page(old_page); 2084 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2085 (VM_WRITE|VM_SHARED))) { 2086 /* 2087 * Only catch write-faults on shared writable pages, 2088 * read-only shared pages can get COWed by 2089 * get_user_pages(.write=1, .force=1). 2090 */ 2091 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2092 int tmp; 2093 page_cache_get(old_page); 2094 pte_unmap_unlock(page_table, ptl); 2095 tmp = do_page_mkwrite(vma, old_page, address); 2096 if (unlikely(!tmp || (tmp & 2097 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2098 page_cache_release(old_page); 2099 return tmp; 2100 } 2101 /* 2102 * Since we dropped the lock we need to revalidate 2103 * the PTE as someone else may have changed it. If 2104 * they did, we just return, as we can count on the 2105 * MMU to tell us if they didn't also make it writable. 2106 */ 2107 page_table = pte_offset_map_lock(mm, pmd, address, 2108 &ptl); 2109 if (!pte_same(*page_table, orig_pte)) { 2110 unlock_page(old_page); 2111 goto unlock; 2112 } 2113 2114 page_mkwrite = 1; 2115 } 2116 dirty_page = old_page; 2117 get_page(dirty_page); 2118 2119 reuse: 2120 /* 2121 * Clear the pages cpupid information as the existing 2122 * information potentially belongs to a now completely 2123 * unrelated process. 2124 */ 2125 if (old_page) 2126 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1); 2127 2128 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2129 entry = pte_mkyoung(orig_pte); 2130 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2131 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2132 update_mmu_cache(vma, address, page_table); 2133 pte_unmap_unlock(page_table, ptl); 2134 ret |= VM_FAULT_WRITE; 2135 2136 if (!dirty_page) 2137 return ret; 2138 2139 /* 2140 * Yes, Virginia, this is actually required to prevent a race 2141 * with clear_page_dirty_for_io() from clearing the page dirty 2142 * bit after it clear all dirty ptes, but before a racing 2143 * do_wp_page installs a dirty pte. 2144 * 2145 * do_shared_fault is protected similarly. 2146 */ 2147 if (!page_mkwrite) { 2148 wait_on_page_locked(dirty_page); 2149 set_page_dirty_balance(dirty_page); 2150 /* file_update_time outside page_lock */ 2151 if (vma->vm_file) 2152 file_update_time(vma->vm_file); 2153 } 2154 put_page(dirty_page); 2155 if (page_mkwrite) { 2156 struct address_space *mapping = dirty_page->mapping; 2157 2158 set_page_dirty(dirty_page); 2159 unlock_page(dirty_page); 2160 page_cache_release(dirty_page); 2161 if (mapping) { 2162 /* 2163 * Some device drivers do not set page.mapping 2164 * but still dirty their pages 2165 */ 2166 balance_dirty_pages_ratelimited(mapping); 2167 } 2168 } 2169 2170 return ret; 2171 } 2172 2173 /* 2174 * Ok, we need to copy. Oh, well.. 2175 */ 2176 page_cache_get(old_page); 2177 gotten: 2178 pte_unmap_unlock(page_table, ptl); 2179 2180 if (unlikely(anon_vma_prepare(vma))) 2181 goto oom; 2182 2183 if (is_zero_pfn(pte_pfn(orig_pte))) { 2184 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2185 if (!new_page) 2186 goto oom; 2187 } else { 2188 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2189 if (!new_page) 2190 goto oom; 2191 cow_user_page(new_page, old_page, address, vma); 2192 } 2193 __SetPageUptodate(new_page); 2194 2195 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) 2196 goto oom_free_new; 2197 2198 mmun_start = address & PAGE_MASK; 2199 mmun_end = mmun_start + PAGE_SIZE; 2200 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2201 2202 /* 2203 * Re-check the pte - we dropped the lock 2204 */ 2205 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2206 if (likely(pte_same(*page_table, orig_pte))) { 2207 if (old_page) { 2208 if (!PageAnon(old_page)) { 2209 dec_mm_counter_fast(mm, MM_FILEPAGES); 2210 inc_mm_counter_fast(mm, MM_ANONPAGES); 2211 } 2212 } else 2213 inc_mm_counter_fast(mm, MM_ANONPAGES); 2214 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2215 entry = mk_pte(new_page, vma->vm_page_prot); 2216 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2217 /* 2218 * Clear the pte entry and flush it first, before updating the 2219 * pte with the new entry. This will avoid a race condition 2220 * seen in the presence of one thread doing SMC and another 2221 * thread doing COW. 2222 */ 2223 ptep_clear_flush(vma, address, page_table); 2224 page_add_new_anon_rmap(new_page, vma, address); 2225 mem_cgroup_commit_charge(new_page, memcg, false); 2226 lru_cache_add_active_or_unevictable(new_page, vma); 2227 /* 2228 * We call the notify macro here because, when using secondary 2229 * mmu page tables (such as kvm shadow page tables), we want the 2230 * new page to be mapped directly into the secondary page table. 2231 */ 2232 set_pte_at_notify(mm, address, page_table, entry); 2233 update_mmu_cache(vma, address, page_table); 2234 if (old_page) { 2235 /* 2236 * Only after switching the pte to the new page may 2237 * we remove the mapcount here. Otherwise another 2238 * process may come and find the rmap count decremented 2239 * before the pte is switched to the new page, and 2240 * "reuse" the old page writing into it while our pte 2241 * here still points into it and can be read by other 2242 * threads. 2243 * 2244 * The critical issue is to order this 2245 * page_remove_rmap with the ptp_clear_flush above. 2246 * Those stores are ordered by (if nothing else,) 2247 * the barrier present in the atomic_add_negative 2248 * in page_remove_rmap. 2249 * 2250 * Then the TLB flush in ptep_clear_flush ensures that 2251 * no process can access the old page before the 2252 * decremented mapcount is visible. And the old page 2253 * cannot be reused until after the decremented 2254 * mapcount is visible. So transitively, TLBs to 2255 * old page will be flushed before it can be reused. 2256 */ 2257 page_remove_rmap(old_page); 2258 } 2259 2260 /* Free the old page.. */ 2261 new_page = old_page; 2262 ret |= VM_FAULT_WRITE; 2263 } else 2264 mem_cgroup_cancel_charge(new_page, memcg); 2265 2266 if (new_page) 2267 page_cache_release(new_page); 2268 unlock: 2269 pte_unmap_unlock(page_table, ptl); 2270 if (mmun_end > mmun_start) 2271 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2272 if (old_page) { 2273 /* 2274 * Don't let another task, with possibly unlocked vma, 2275 * keep the mlocked page. 2276 */ 2277 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2278 lock_page(old_page); /* LRU manipulation */ 2279 munlock_vma_page(old_page); 2280 unlock_page(old_page); 2281 } 2282 page_cache_release(old_page); 2283 } 2284 return ret; 2285 oom_free_new: 2286 page_cache_release(new_page); 2287 oom: 2288 if (old_page) 2289 page_cache_release(old_page); 2290 return VM_FAULT_OOM; 2291 } 2292 2293 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2294 unsigned long start_addr, unsigned long end_addr, 2295 struct zap_details *details) 2296 { 2297 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2298 } 2299 2300 static inline void unmap_mapping_range_tree(struct rb_root *root, 2301 struct zap_details *details) 2302 { 2303 struct vm_area_struct *vma; 2304 pgoff_t vba, vea, zba, zea; 2305 2306 vma_interval_tree_foreach(vma, root, 2307 details->first_index, details->last_index) { 2308 2309 vba = vma->vm_pgoff; 2310 vea = vba + vma_pages(vma) - 1; 2311 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2312 zba = details->first_index; 2313 if (zba < vba) 2314 zba = vba; 2315 zea = details->last_index; 2316 if (zea > vea) 2317 zea = vea; 2318 2319 unmap_mapping_range_vma(vma, 2320 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2321 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2322 details); 2323 } 2324 } 2325 2326 static inline void unmap_mapping_range_list(struct list_head *head, 2327 struct zap_details *details) 2328 { 2329 struct vm_area_struct *vma; 2330 2331 /* 2332 * In nonlinear VMAs there is no correspondence between virtual address 2333 * offset and file offset. So we must perform an exhaustive search 2334 * across *all* the pages in each nonlinear VMA, not just the pages 2335 * whose virtual address lies outside the file truncation point. 2336 */ 2337 list_for_each_entry(vma, head, shared.nonlinear) { 2338 details->nonlinear_vma = vma; 2339 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2340 } 2341 } 2342 2343 /** 2344 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2345 * @mapping: the address space containing mmaps to be unmapped. 2346 * @holebegin: byte in first page to unmap, relative to the start of 2347 * the underlying file. This will be rounded down to a PAGE_SIZE 2348 * boundary. Note that this is different from truncate_pagecache(), which 2349 * must keep the partial page. In contrast, we must get rid of 2350 * partial pages. 2351 * @holelen: size of prospective hole in bytes. This will be rounded 2352 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2353 * end of the file. 2354 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2355 * but 0 when invalidating pagecache, don't throw away private data. 2356 */ 2357 void unmap_mapping_range(struct address_space *mapping, 2358 loff_t const holebegin, loff_t const holelen, int even_cows) 2359 { 2360 struct zap_details details; 2361 pgoff_t hba = holebegin >> PAGE_SHIFT; 2362 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2363 2364 /* Check for overflow. */ 2365 if (sizeof(holelen) > sizeof(hlen)) { 2366 long long holeend = 2367 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2368 if (holeend & ~(long long)ULONG_MAX) 2369 hlen = ULONG_MAX - hba + 1; 2370 } 2371 2372 details.check_mapping = even_cows? NULL: mapping; 2373 details.nonlinear_vma = NULL; 2374 details.first_index = hba; 2375 details.last_index = hba + hlen - 1; 2376 if (details.last_index < details.first_index) 2377 details.last_index = ULONG_MAX; 2378 2379 2380 i_mmap_lock_read(mapping); 2381 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2382 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2383 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2384 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2385 i_mmap_unlock_read(mapping); 2386 } 2387 EXPORT_SYMBOL(unmap_mapping_range); 2388 2389 /* 2390 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2391 * but allow concurrent faults), and pte mapped but not yet locked. 2392 * We return with pte unmapped and unlocked. 2393 * 2394 * We return with the mmap_sem locked or unlocked in the same cases 2395 * as does filemap_fault(). 2396 */ 2397 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2398 unsigned long address, pte_t *page_table, pmd_t *pmd, 2399 unsigned int flags, pte_t orig_pte) 2400 { 2401 spinlock_t *ptl; 2402 struct page *page, *swapcache; 2403 struct mem_cgroup *memcg; 2404 swp_entry_t entry; 2405 pte_t pte; 2406 int locked; 2407 int exclusive = 0; 2408 int ret = 0; 2409 2410 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2411 goto out; 2412 2413 entry = pte_to_swp_entry(orig_pte); 2414 if (unlikely(non_swap_entry(entry))) { 2415 if (is_migration_entry(entry)) { 2416 migration_entry_wait(mm, pmd, address); 2417 } else if (is_hwpoison_entry(entry)) { 2418 ret = VM_FAULT_HWPOISON; 2419 } else { 2420 print_bad_pte(vma, address, orig_pte, NULL); 2421 ret = VM_FAULT_SIGBUS; 2422 } 2423 goto out; 2424 } 2425 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2426 page = lookup_swap_cache(entry); 2427 if (!page) { 2428 page = swapin_readahead(entry, 2429 GFP_HIGHUSER_MOVABLE, vma, address); 2430 if (!page) { 2431 /* 2432 * Back out if somebody else faulted in this pte 2433 * while we released the pte lock. 2434 */ 2435 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2436 if (likely(pte_same(*page_table, orig_pte))) 2437 ret = VM_FAULT_OOM; 2438 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2439 goto unlock; 2440 } 2441 2442 /* Had to read the page from swap area: Major fault */ 2443 ret = VM_FAULT_MAJOR; 2444 count_vm_event(PGMAJFAULT); 2445 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2446 } else if (PageHWPoison(page)) { 2447 /* 2448 * hwpoisoned dirty swapcache pages are kept for killing 2449 * owner processes (which may be unknown at hwpoison time) 2450 */ 2451 ret = VM_FAULT_HWPOISON; 2452 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2453 swapcache = page; 2454 goto out_release; 2455 } 2456 2457 swapcache = page; 2458 locked = lock_page_or_retry(page, mm, flags); 2459 2460 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2461 if (!locked) { 2462 ret |= VM_FAULT_RETRY; 2463 goto out_release; 2464 } 2465 2466 /* 2467 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2468 * release the swapcache from under us. The page pin, and pte_same 2469 * test below, are not enough to exclude that. Even if it is still 2470 * swapcache, we need to check that the page's swap has not changed. 2471 */ 2472 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2473 goto out_page; 2474 2475 page = ksm_might_need_to_copy(page, vma, address); 2476 if (unlikely(!page)) { 2477 ret = VM_FAULT_OOM; 2478 page = swapcache; 2479 goto out_page; 2480 } 2481 2482 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) { 2483 ret = VM_FAULT_OOM; 2484 goto out_page; 2485 } 2486 2487 /* 2488 * Back out if somebody else already faulted in this pte. 2489 */ 2490 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2491 if (unlikely(!pte_same(*page_table, orig_pte))) 2492 goto out_nomap; 2493 2494 if (unlikely(!PageUptodate(page))) { 2495 ret = VM_FAULT_SIGBUS; 2496 goto out_nomap; 2497 } 2498 2499 /* 2500 * The page isn't present yet, go ahead with the fault. 2501 * 2502 * Be careful about the sequence of operations here. 2503 * To get its accounting right, reuse_swap_page() must be called 2504 * while the page is counted on swap but not yet in mapcount i.e. 2505 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2506 * must be called after the swap_free(), or it will never succeed. 2507 */ 2508 2509 inc_mm_counter_fast(mm, MM_ANONPAGES); 2510 dec_mm_counter_fast(mm, MM_SWAPENTS); 2511 pte = mk_pte(page, vma->vm_page_prot); 2512 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2513 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2514 flags &= ~FAULT_FLAG_WRITE; 2515 ret |= VM_FAULT_WRITE; 2516 exclusive = 1; 2517 } 2518 flush_icache_page(vma, page); 2519 if (pte_swp_soft_dirty(orig_pte)) 2520 pte = pte_mksoft_dirty(pte); 2521 set_pte_at(mm, address, page_table, pte); 2522 if (page == swapcache) { 2523 do_page_add_anon_rmap(page, vma, address, exclusive); 2524 mem_cgroup_commit_charge(page, memcg, true); 2525 } else { /* ksm created a completely new copy */ 2526 page_add_new_anon_rmap(page, vma, address); 2527 mem_cgroup_commit_charge(page, memcg, false); 2528 lru_cache_add_active_or_unevictable(page, vma); 2529 } 2530 2531 swap_free(entry); 2532 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2533 try_to_free_swap(page); 2534 unlock_page(page); 2535 if (page != swapcache) { 2536 /* 2537 * Hold the lock to avoid the swap entry to be reused 2538 * until we take the PT lock for the pte_same() check 2539 * (to avoid false positives from pte_same). For 2540 * further safety release the lock after the swap_free 2541 * so that the swap count won't change under a 2542 * parallel locked swapcache. 2543 */ 2544 unlock_page(swapcache); 2545 page_cache_release(swapcache); 2546 } 2547 2548 if (flags & FAULT_FLAG_WRITE) { 2549 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2550 if (ret & VM_FAULT_ERROR) 2551 ret &= VM_FAULT_ERROR; 2552 goto out; 2553 } 2554 2555 /* No need to invalidate - it was non-present before */ 2556 update_mmu_cache(vma, address, page_table); 2557 unlock: 2558 pte_unmap_unlock(page_table, ptl); 2559 out: 2560 return ret; 2561 out_nomap: 2562 mem_cgroup_cancel_charge(page, memcg); 2563 pte_unmap_unlock(page_table, ptl); 2564 out_page: 2565 unlock_page(page); 2566 out_release: 2567 page_cache_release(page); 2568 if (page != swapcache) { 2569 unlock_page(swapcache); 2570 page_cache_release(swapcache); 2571 } 2572 return ret; 2573 } 2574 2575 /* 2576 * This is like a special single-page "expand_{down|up}wards()", 2577 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2578 * doesn't hit another vma. 2579 */ 2580 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2581 { 2582 address &= PAGE_MASK; 2583 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2584 struct vm_area_struct *prev = vma->vm_prev; 2585 2586 /* 2587 * Is there a mapping abutting this one below? 2588 * 2589 * That's only ok if it's the same stack mapping 2590 * that has gotten split.. 2591 */ 2592 if (prev && prev->vm_end == address) 2593 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2594 2595 expand_downwards(vma, address - PAGE_SIZE); 2596 } 2597 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2598 struct vm_area_struct *next = vma->vm_next; 2599 2600 /* As VM_GROWSDOWN but s/below/above/ */ 2601 if (next && next->vm_start == address + PAGE_SIZE) 2602 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2603 2604 expand_upwards(vma, address + PAGE_SIZE); 2605 } 2606 return 0; 2607 } 2608 2609 /* 2610 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2611 * but allow concurrent faults), and pte mapped but not yet locked. 2612 * We return with mmap_sem still held, but pte unmapped and unlocked. 2613 */ 2614 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2615 unsigned long address, pte_t *page_table, pmd_t *pmd, 2616 unsigned int flags) 2617 { 2618 struct mem_cgroup *memcg; 2619 struct page *page; 2620 spinlock_t *ptl; 2621 pte_t entry; 2622 2623 pte_unmap(page_table); 2624 2625 /* Check if we need to add a guard page to the stack */ 2626 if (check_stack_guard_page(vma, address) < 0) 2627 return VM_FAULT_SIGBUS; 2628 2629 /* Use the zero-page for reads */ 2630 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { 2631 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2632 vma->vm_page_prot)); 2633 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2634 if (!pte_none(*page_table)) 2635 goto unlock; 2636 goto setpte; 2637 } 2638 2639 /* Allocate our own private page. */ 2640 if (unlikely(anon_vma_prepare(vma))) 2641 goto oom; 2642 page = alloc_zeroed_user_highpage_movable(vma, address); 2643 if (!page) 2644 goto oom; 2645 /* 2646 * The memory barrier inside __SetPageUptodate makes sure that 2647 * preceeding stores to the page contents become visible before 2648 * the set_pte_at() write. 2649 */ 2650 __SetPageUptodate(page); 2651 2652 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) 2653 goto oom_free_page; 2654 2655 entry = mk_pte(page, vma->vm_page_prot); 2656 if (vma->vm_flags & VM_WRITE) 2657 entry = pte_mkwrite(pte_mkdirty(entry)); 2658 2659 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2660 if (!pte_none(*page_table)) 2661 goto release; 2662 2663 inc_mm_counter_fast(mm, MM_ANONPAGES); 2664 page_add_new_anon_rmap(page, vma, address); 2665 mem_cgroup_commit_charge(page, memcg, false); 2666 lru_cache_add_active_or_unevictable(page, vma); 2667 setpte: 2668 set_pte_at(mm, address, page_table, entry); 2669 2670 /* No need to invalidate - it was non-present before */ 2671 update_mmu_cache(vma, address, page_table); 2672 unlock: 2673 pte_unmap_unlock(page_table, ptl); 2674 return 0; 2675 release: 2676 mem_cgroup_cancel_charge(page, memcg); 2677 page_cache_release(page); 2678 goto unlock; 2679 oom_free_page: 2680 page_cache_release(page); 2681 oom: 2682 return VM_FAULT_OOM; 2683 } 2684 2685 /* 2686 * The mmap_sem must have been held on entry, and may have been 2687 * released depending on flags and vma->vm_ops->fault() return value. 2688 * See filemap_fault() and __lock_page_retry(). 2689 */ 2690 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2691 pgoff_t pgoff, unsigned int flags, struct page **page) 2692 { 2693 struct vm_fault vmf; 2694 int ret; 2695 2696 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2697 vmf.pgoff = pgoff; 2698 vmf.flags = flags; 2699 vmf.page = NULL; 2700 2701 ret = vma->vm_ops->fault(vma, &vmf); 2702 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2703 return ret; 2704 2705 if (unlikely(PageHWPoison(vmf.page))) { 2706 if (ret & VM_FAULT_LOCKED) 2707 unlock_page(vmf.page); 2708 page_cache_release(vmf.page); 2709 return VM_FAULT_HWPOISON; 2710 } 2711 2712 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2713 lock_page(vmf.page); 2714 else 2715 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2716 2717 *page = vmf.page; 2718 return ret; 2719 } 2720 2721 /** 2722 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2723 * 2724 * @vma: virtual memory area 2725 * @address: user virtual address 2726 * @page: page to map 2727 * @pte: pointer to target page table entry 2728 * @write: true, if new entry is writable 2729 * @anon: true, if it's anonymous page 2730 * 2731 * Caller must hold page table lock relevant for @pte. 2732 * 2733 * Target users are page handler itself and implementations of 2734 * vm_ops->map_pages. 2735 */ 2736 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2737 struct page *page, pte_t *pte, bool write, bool anon) 2738 { 2739 pte_t entry; 2740 2741 flush_icache_page(vma, page); 2742 entry = mk_pte(page, vma->vm_page_prot); 2743 if (write) 2744 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2745 else if (pte_file(*pte) && pte_file_soft_dirty(*pte)) 2746 entry = pte_mksoft_dirty(entry); 2747 if (anon) { 2748 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2749 page_add_new_anon_rmap(page, vma, address); 2750 } else { 2751 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES); 2752 page_add_file_rmap(page); 2753 } 2754 set_pte_at(vma->vm_mm, address, pte, entry); 2755 2756 /* no need to invalidate: a not-present page won't be cached */ 2757 update_mmu_cache(vma, address, pte); 2758 } 2759 2760 static unsigned long fault_around_bytes __read_mostly = 2761 rounddown_pow_of_two(65536); 2762 2763 #ifdef CONFIG_DEBUG_FS 2764 static int fault_around_bytes_get(void *data, u64 *val) 2765 { 2766 *val = fault_around_bytes; 2767 return 0; 2768 } 2769 2770 /* 2771 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2772 * rounded down to nearest page order. It's what do_fault_around() expects to 2773 * see. 2774 */ 2775 static int fault_around_bytes_set(void *data, u64 val) 2776 { 2777 if (val / PAGE_SIZE > PTRS_PER_PTE) 2778 return -EINVAL; 2779 if (val > PAGE_SIZE) 2780 fault_around_bytes = rounddown_pow_of_two(val); 2781 else 2782 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2783 return 0; 2784 } 2785 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2786 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2787 2788 static int __init fault_around_debugfs(void) 2789 { 2790 void *ret; 2791 2792 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2793 &fault_around_bytes_fops); 2794 if (!ret) 2795 pr_warn("Failed to create fault_around_bytes in debugfs"); 2796 return 0; 2797 } 2798 late_initcall(fault_around_debugfs); 2799 #endif 2800 2801 /* 2802 * do_fault_around() tries to map few pages around the fault address. The hope 2803 * is that the pages will be needed soon and this will lower the number of 2804 * faults to handle. 2805 * 2806 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2807 * not ready to be mapped: not up-to-date, locked, etc. 2808 * 2809 * This function is called with the page table lock taken. In the split ptlock 2810 * case the page table lock only protects only those entries which belong to 2811 * the page table corresponding to the fault address. 2812 * 2813 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2814 * only once. 2815 * 2816 * fault_around_pages() defines how many pages we'll try to map. 2817 * do_fault_around() expects it to return a power of two less than or equal to 2818 * PTRS_PER_PTE. 2819 * 2820 * The virtual address of the area that we map is naturally aligned to the 2821 * fault_around_pages() value (and therefore to page order). This way it's 2822 * easier to guarantee that we don't cross page table boundaries. 2823 */ 2824 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2825 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2826 { 2827 unsigned long start_addr, nr_pages, mask; 2828 pgoff_t max_pgoff; 2829 struct vm_fault vmf; 2830 int off; 2831 2832 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2833 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2834 2835 start_addr = max(address & mask, vma->vm_start); 2836 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2837 pte -= off; 2838 pgoff -= off; 2839 2840 /* 2841 * max_pgoff is either end of page table or end of vma 2842 * or fault_around_pages() from pgoff, depending what is nearest. 2843 */ 2844 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2845 PTRS_PER_PTE - 1; 2846 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2847 pgoff + nr_pages - 1); 2848 2849 /* Check if it makes any sense to call ->map_pages */ 2850 while (!pte_none(*pte)) { 2851 if (++pgoff > max_pgoff) 2852 return; 2853 start_addr += PAGE_SIZE; 2854 if (start_addr >= vma->vm_end) 2855 return; 2856 pte++; 2857 } 2858 2859 vmf.virtual_address = (void __user *) start_addr; 2860 vmf.pte = pte; 2861 vmf.pgoff = pgoff; 2862 vmf.max_pgoff = max_pgoff; 2863 vmf.flags = flags; 2864 vma->vm_ops->map_pages(vma, &vmf); 2865 } 2866 2867 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2868 unsigned long address, pmd_t *pmd, 2869 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2870 { 2871 struct page *fault_page; 2872 spinlock_t *ptl; 2873 pte_t *pte; 2874 int ret = 0; 2875 2876 /* 2877 * Let's call ->map_pages() first and use ->fault() as fallback 2878 * if page by the offset is not ready to be mapped (cold cache or 2879 * something). 2880 */ 2881 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) && 2882 fault_around_bytes >> PAGE_SHIFT > 1) { 2883 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2884 do_fault_around(vma, address, pte, pgoff, flags); 2885 if (!pte_same(*pte, orig_pte)) 2886 goto unlock_out; 2887 pte_unmap_unlock(pte, ptl); 2888 } 2889 2890 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2891 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2892 return ret; 2893 2894 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2895 if (unlikely(!pte_same(*pte, orig_pte))) { 2896 pte_unmap_unlock(pte, ptl); 2897 unlock_page(fault_page); 2898 page_cache_release(fault_page); 2899 return ret; 2900 } 2901 do_set_pte(vma, address, fault_page, pte, false, false); 2902 unlock_page(fault_page); 2903 unlock_out: 2904 pte_unmap_unlock(pte, ptl); 2905 return ret; 2906 } 2907 2908 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2909 unsigned long address, pmd_t *pmd, 2910 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2911 { 2912 struct page *fault_page, *new_page; 2913 struct mem_cgroup *memcg; 2914 spinlock_t *ptl; 2915 pte_t *pte; 2916 int ret; 2917 2918 if (unlikely(anon_vma_prepare(vma))) 2919 return VM_FAULT_OOM; 2920 2921 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2922 if (!new_page) 2923 return VM_FAULT_OOM; 2924 2925 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) { 2926 page_cache_release(new_page); 2927 return VM_FAULT_OOM; 2928 } 2929 2930 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2931 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2932 goto uncharge_out; 2933 2934 copy_user_highpage(new_page, fault_page, address, vma); 2935 __SetPageUptodate(new_page); 2936 2937 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2938 if (unlikely(!pte_same(*pte, orig_pte))) { 2939 pte_unmap_unlock(pte, ptl); 2940 unlock_page(fault_page); 2941 page_cache_release(fault_page); 2942 goto uncharge_out; 2943 } 2944 do_set_pte(vma, address, new_page, pte, true, true); 2945 mem_cgroup_commit_charge(new_page, memcg, false); 2946 lru_cache_add_active_or_unevictable(new_page, vma); 2947 pte_unmap_unlock(pte, ptl); 2948 unlock_page(fault_page); 2949 page_cache_release(fault_page); 2950 return ret; 2951 uncharge_out: 2952 mem_cgroup_cancel_charge(new_page, memcg); 2953 page_cache_release(new_page); 2954 return ret; 2955 } 2956 2957 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2958 unsigned long address, pmd_t *pmd, 2959 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2960 { 2961 struct page *fault_page; 2962 struct address_space *mapping; 2963 spinlock_t *ptl; 2964 pte_t *pte; 2965 int dirtied = 0; 2966 int ret, tmp; 2967 2968 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2969 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2970 return ret; 2971 2972 /* 2973 * Check if the backing address space wants to know that the page is 2974 * about to become writable 2975 */ 2976 if (vma->vm_ops->page_mkwrite) { 2977 unlock_page(fault_page); 2978 tmp = do_page_mkwrite(vma, fault_page, address); 2979 if (unlikely(!tmp || 2980 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2981 page_cache_release(fault_page); 2982 return tmp; 2983 } 2984 } 2985 2986 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2987 if (unlikely(!pte_same(*pte, orig_pte))) { 2988 pte_unmap_unlock(pte, ptl); 2989 unlock_page(fault_page); 2990 page_cache_release(fault_page); 2991 return ret; 2992 } 2993 do_set_pte(vma, address, fault_page, pte, true, false); 2994 pte_unmap_unlock(pte, ptl); 2995 2996 if (set_page_dirty(fault_page)) 2997 dirtied = 1; 2998 mapping = fault_page->mapping; 2999 unlock_page(fault_page); 3000 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3001 /* 3002 * Some device drivers do not set page.mapping but still 3003 * dirty their pages 3004 */ 3005 balance_dirty_pages_ratelimited(mapping); 3006 } 3007 3008 /* file_update_time outside page_lock */ 3009 if (vma->vm_file && !vma->vm_ops->page_mkwrite) 3010 file_update_time(vma->vm_file); 3011 3012 return ret; 3013 } 3014 3015 /* 3016 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3017 * but allow concurrent faults). 3018 * The mmap_sem may have been released depending on flags and our 3019 * return value. See filemap_fault() and __lock_page_or_retry(). 3020 */ 3021 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3022 unsigned long address, pte_t *page_table, pmd_t *pmd, 3023 unsigned int flags, pte_t orig_pte) 3024 { 3025 pgoff_t pgoff = (((address & PAGE_MASK) 3026 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3027 3028 pte_unmap(page_table); 3029 if (!(flags & FAULT_FLAG_WRITE)) 3030 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3031 orig_pte); 3032 if (!(vma->vm_flags & VM_SHARED)) 3033 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3034 orig_pte); 3035 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3036 } 3037 3038 /* 3039 * Fault of a previously existing named mapping. Repopulate the pte 3040 * from the encoded file_pte if possible. This enables swappable 3041 * nonlinear vmas. 3042 * 3043 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3044 * but allow concurrent faults), and pte mapped but not yet locked. 3045 * We return with pte unmapped and unlocked. 3046 * The mmap_sem may have been released depending on flags and our 3047 * return value. See filemap_fault() and __lock_page_or_retry(). 3048 */ 3049 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3050 unsigned long address, pte_t *page_table, pmd_t *pmd, 3051 unsigned int flags, pte_t orig_pte) 3052 { 3053 pgoff_t pgoff; 3054 3055 flags |= FAULT_FLAG_NONLINEAR; 3056 3057 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3058 return 0; 3059 3060 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3061 /* 3062 * Page table corrupted: show pte and kill process. 3063 */ 3064 print_bad_pte(vma, address, orig_pte, NULL); 3065 return VM_FAULT_SIGBUS; 3066 } 3067 3068 pgoff = pte_to_pgoff(orig_pte); 3069 if (!(flags & FAULT_FLAG_WRITE)) 3070 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3071 orig_pte); 3072 if (!(vma->vm_flags & VM_SHARED)) 3073 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3074 orig_pte); 3075 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3076 } 3077 3078 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3079 unsigned long addr, int page_nid, 3080 int *flags) 3081 { 3082 get_page(page); 3083 3084 count_vm_numa_event(NUMA_HINT_FAULTS); 3085 if (page_nid == numa_node_id()) { 3086 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3087 *flags |= TNF_FAULT_LOCAL; 3088 } 3089 3090 return mpol_misplaced(page, vma, addr); 3091 } 3092 3093 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3094 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3095 { 3096 struct page *page = NULL; 3097 spinlock_t *ptl; 3098 int page_nid = -1; 3099 int last_cpupid; 3100 int target_nid; 3101 bool migrated = false; 3102 int flags = 0; 3103 3104 /* 3105 * The "pte" at this point cannot be used safely without 3106 * validation through pte_unmap_same(). It's of NUMA type but 3107 * the pfn may be screwed if the read is non atomic. 3108 * 3109 * ptep_modify_prot_start is not called as this is clearing 3110 * the _PAGE_NUMA bit and it is not really expected that there 3111 * would be concurrent hardware modifications to the PTE. 3112 */ 3113 ptl = pte_lockptr(mm, pmd); 3114 spin_lock(ptl); 3115 if (unlikely(!pte_same(*ptep, pte))) { 3116 pte_unmap_unlock(ptep, ptl); 3117 goto out; 3118 } 3119 3120 pte = pte_mknonnuma(pte); 3121 set_pte_at(mm, addr, ptep, pte); 3122 update_mmu_cache(vma, addr, ptep); 3123 3124 page = vm_normal_page(vma, addr, pte); 3125 if (!page) { 3126 pte_unmap_unlock(ptep, ptl); 3127 return 0; 3128 } 3129 BUG_ON(is_zero_pfn(page_to_pfn(page))); 3130 3131 /* 3132 * Avoid grouping on DSO/COW pages in specific and RO pages 3133 * in general, RO pages shouldn't hurt as much anyway since 3134 * they can be in shared cache state. 3135 */ 3136 if (!pte_write(pte)) 3137 flags |= TNF_NO_GROUP; 3138 3139 /* 3140 * Flag if the page is shared between multiple address spaces. This 3141 * is later used when determining whether to group tasks together 3142 */ 3143 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3144 flags |= TNF_SHARED; 3145 3146 last_cpupid = page_cpupid_last(page); 3147 page_nid = page_to_nid(page); 3148 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3149 pte_unmap_unlock(ptep, ptl); 3150 if (target_nid == -1) { 3151 put_page(page); 3152 goto out; 3153 } 3154 3155 /* Migrate to the requested node */ 3156 migrated = migrate_misplaced_page(page, vma, target_nid); 3157 if (migrated) { 3158 page_nid = target_nid; 3159 flags |= TNF_MIGRATED; 3160 } 3161 3162 out: 3163 if (page_nid != -1) 3164 task_numa_fault(last_cpupid, page_nid, 1, flags); 3165 return 0; 3166 } 3167 3168 /* 3169 * These routines also need to handle stuff like marking pages dirty 3170 * and/or accessed for architectures that don't do it in hardware (most 3171 * RISC architectures). The early dirtying is also good on the i386. 3172 * 3173 * There is also a hook called "update_mmu_cache()" that architectures 3174 * with external mmu caches can use to update those (ie the Sparc or 3175 * PowerPC hashed page tables that act as extended TLBs). 3176 * 3177 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3178 * but allow concurrent faults), and pte mapped but not yet locked. 3179 * We return with pte unmapped and unlocked. 3180 * 3181 * The mmap_sem may have been released depending on flags and our 3182 * return value. See filemap_fault() and __lock_page_or_retry(). 3183 */ 3184 static int handle_pte_fault(struct mm_struct *mm, 3185 struct vm_area_struct *vma, unsigned long address, 3186 pte_t *pte, pmd_t *pmd, unsigned int flags) 3187 { 3188 pte_t entry; 3189 spinlock_t *ptl; 3190 3191 entry = ACCESS_ONCE(*pte); 3192 if (!pte_present(entry)) { 3193 if (pte_none(entry)) { 3194 if (vma->vm_ops) { 3195 if (likely(vma->vm_ops->fault)) 3196 return do_linear_fault(mm, vma, address, 3197 pte, pmd, flags, entry); 3198 } 3199 return do_anonymous_page(mm, vma, address, 3200 pte, pmd, flags); 3201 } 3202 if (pte_file(entry)) 3203 return do_nonlinear_fault(mm, vma, address, 3204 pte, pmd, flags, entry); 3205 return do_swap_page(mm, vma, address, 3206 pte, pmd, flags, entry); 3207 } 3208 3209 if (pte_numa(entry)) 3210 return do_numa_page(mm, vma, address, entry, pte, pmd); 3211 3212 ptl = pte_lockptr(mm, pmd); 3213 spin_lock(ptl); 3214 if (unlikely(!pte_same(*pte, entry))) 3215 goto unlock; 3216 if (flags & FAULT_FLAG_WRITE) { 3217 if (!pte_write(entry)) 3218 return do_wp_page(mm, vma, address, 3219 pte, pmd, ptl, entry); 3220 entry = pte_mkdirty(entry); 3221 } 3222 entry = pte_mkyoung(entry); 3223 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3224 update_mmu_cache(vma, address, pte); 3225 } else { 3226 /* 3227 * This is needed only for protection faults but the arch code 3228 * is not yet telling us if this is a protection fault or not. 3229 * This still avoids useless tlb flushes for .text page faults 3230 * with threads. 3231 */ 3232 if (flags & FAULT_FLAG_WRITE) 3233 flush_tlb_fix_spurious_fault(vma, address); 3234 } 3235 unlock: 3236 pte_unmap_unlock(pte, ptl); 3237 return 0; 3238 } 3239 3240 /* 3241 * By the time we get here, we already hold the mm semaphore 3242 * 3243 * The mmap_sem may have been released depending on flags and our 3244 * return value. See filemap_fault() and __lock_page_or_retry(). 3245 */ 3246 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3247 unsigned long address, unsigned int flags) 3248 { 3249 pgd_t *pgd; 3250 pud_t *pud; 3251 pmd_t *pmd; 3252 pte_t *pte; 3253 3254 if (unlikely(is_vm_hugetlb_page(vma))) 3255 return hugetlb_fault(mm, vma, address, flags); 3256 3257 pgd = pgd_offset(mm, address); 3258 pud = pud_alloc(mm, pgd, address); 3259 if (!pud) 3260 return VM_FAULT_OOM; 3261 pmd = pmd_alloc(mm, pud, address); 3262 if (!pmd) 3263 return VM_FAULT_OOM; 3264 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3265 int ret = VM_FAULT_FALLBACK; 3266 if (!vma->vm_ops) 3267 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3268 pmd, flags); 3269 if (!(ret & VM_FAULT_FALLBACK)) 3270 return ret; 3271 } else { 3272 pmd_t orig_pmd = *pmd; 3273 int ret; 3274 3275 barrier(); 3276 if (pmd_trans_huge(orig_pmd)) { 3277 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3278 3279 /* 3280 * If the pmd is splitting, return and retry the 3281 * the fault. Alternative: wait until the split 3282 * is done, and goto retry. 3283 */ 3284 if (pmd_trans_splitting(orig_pmd)) 3285 return 0; 3286 3287 if (pmd_numa(orig_pmd)) 3288 return do_huge_pmd_numa_page(mm, vma, address, 3289 orig_pmd, pmd); 3290 3291 if (dirty && !pmd_write(orig_pmd)) { 3292 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3293 orig_pmd); 3294 if (!(ret & VM_FAULT_FALLBACK)) 3295 return ret; 3296 } else { 3297 huge_pmd_set_accessed(mm, vma, address, pmd, 3298 orig_pmd, dirty); 3299 return 0; 3300 } 3301 } 3302 } 3303 3304 /* 3305 * Use __pte_alloc instead of pte_alloc_map, because we can't 3306 * run pte_offset_map on the pmd, if an huge pmd could 3307 * materialize from under us from a different thread. 3308 */ 3309 if (unlikely(pmd_none(*pmd)) && 3310 unlikely(__pte_alloc(mm, vma, pmd, address))) 3311 return VM_FAULT_OOM; 3312 /* if an huge pmd materialized from under us just retry later */ 3313 if (unlikely(pmd_trans_huge(*pmd))) 3314 return 0; 3315 /* 3316 * A regular pmd is established and it can't morph into a huge pmd 3317 * from under us anymore at this point because we hold the mmap_sem 3318 * read mode and khugepaged takes it in write mode. So now it's 3319 * safe to run pte_offset_map(). 3320 */ 3321 pte = pte_offset_map(pmd, address); 3322 3323 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3324 } 3325 3326 /* 3327 * By the time we get here, we already hold the mm semaphore 3328 * 3329 * The mmap_sem may have been released depending on flags and our 3330 * return value. See filemap_fault() and __lock_page_or_retry(). 3331 */ 3332 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3333 unsigned long address, unsigned int flags) 3334 { 3335 int ret; 3336 3337 __set_current_state(TASK_RUNNING); 3338 3339 count_vm_event(PGFAULT); 3340 mem_cgroup_count_vm_event(mm, PGFAULT); 3341 3342 /* do counter updates before entering really critical section. */ 3343 check_sync_rss_stat(current); 3344 3345 /* 3346 * Enable the memcg OOM handling for faults triggered in user 3347 * space. Kernel faults are handled more gracefully. 3348 */ 3349 if (flags & FAULT_FLAG_USER) 3350 mem_cgroup_oom_enable(); 3351 3352 ret = __handle_mm_fault(mm, vma, address, flags); 3353 3354 if (flags & FAULT_FLAG_USER) { 3355 mem_cgroup_oom_disable(); 3356 /* 3357 * The task may have entered a memcg OOM situation but 3358 * if the allocation error was handled gracefully (no 3359 * VM_FAULT_OOM), there is no need to kill anything. 3360 * Just clean up the OOM state peacefully. 3361 */ 3362 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3363 mem_cgroup_oom_synchronize(false); 3364 } 3365 3366 return ret; 3367 } 3368 EXPORT_SYMBOL_GPL(handle_mm_fault); 3369 3370 #ifndef __PAGETABLE_PUD_FOLDED 3371 /* 3372 * Allocate page upper directory. 3373 * We've already handled the fast-path in-line. 3374 */ 3375 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3376 { 3377 pud_t *new = pud_alloc_one(mm, address); 3378 if (!new) 3379 return -ENOMEM; 3380 3381 smp_wmb(); /* See comment in __pte_alloc */ 3382 3383 spin_lock(&mm->page_table_lock); 3384 if (pgd_present(*pgd)) /* Another has populated it */ 3385 pud_free(mm, new); 3386 else 3387 pgd_populate(mm, pgd, new); 3388 spin_unlock(&mm->page_table_lock); 3389 return 0; 3390 } 3391 #endif /* __PAGETABLE_PUD_FOLDED */ 3392 3393 #ifndef __PAGETABLE_PMD_FOLDED 3394 /* 3395 * Allocate page middle directory. 3396 * We've already handled the fast-path in-line. 3397 */ 3398 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3399 { 3400 pmd_t *new = pmd_alloc_one(mm, address); 3401 if (!new) 3402 return -ENOMEM; 3403 3404 smp_wmb(); /* See comment in __pte_alloc */ 3405 3406 spin_lock(&mm->page_table_lock); 3407 #ifndef __ARCH_HAS_4LEVEL_HACK 3408 if (pud_present(*pud)) /* Another has populated it */ 3409 pmd_free(mm, new); 3410 else 3411 pud_populate(mm, pud, new); 3412 #else 3413 if (pgd_present(*pud)) /* Another has populated it */ 3414 pmd_free(mm, new); 3415 else 3416 pgd_populate(mm, pud, new); 3417 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3418 spin_unlock(&mm->page_table_lock); 3419 return 0; 3420 } 3421 #endif /* __PAGETABLE_PMD_FOLDED */ 3422 3423 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3424 pte_t **ptepp, spinlock_t **ptlp) 3425 { 3426 pgd_t *pgd; 3427 pud_t *pud; 3428 pmd_t *pmd; 3429 pte_t *ptep; 3430 3431 pgd = pgd_offset(mm, address); 3432 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3433 goto out; 3434 3435 pud = pud_offset(pgd, address); 3436 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3437 goto out; 3438 3439 pmd = pmd_offset(pud, address); 3440 VM_BUG_ON(pmd_trans_huge(*pmd)); 3441 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3442 goto out; 3443 3444 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3445 if (pmd_huge(*pmd)) 3446 goto out; 3447 3448 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3449 if (!ptep) 3450 goto out; 3451 if (!pte_present(*ptep)) 3452 goto unlock; 3453 *ptepp = ptep; 3454 return 0; 3455 unlock: 3456 pte_unmap_unlock(ptep, *ptlp); 3457 out: 3458 return -EINVAL; 3459 } 3460 3461 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3462 pte_t **ptepp, spinlock_t **ptlp) 3463 { 3464 int res; 3465 3466 /* (void) is needed to make gcc happy */ 3467 (void) __cond_lock(*ptlp, 3468 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3469 return res; 3470 } 3471 3472 /** 3473 * follow_pfn - look up PFN at a user virtual address 3474 * @vma: memory mapping 3475 * @address: user virtual address 3476 * @pfn: location to store found PFN 3477 * 3478 * Only IO mappings and raw PFN mappings are allowed. 3479 * 3480 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3481 */ 3482 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3483 unsigned long *pfn) 3484 { 3485 int ret = -EINVAL; 3486 spinlock_t *ptl; 3487 pte_t *ptep; 3488 3489 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3490 return ret; 3491 3492 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3493 if (ret) 3494 return ret; 3495 *pfn = pte_pfn(*ptep); 3496 pte_unmap_unlock(ptep, ptl); 3497 return 0; 3498 } 3499 EXPORT_SYMBOL(follow_pfn); 3500 3501 #ifdef CONFIG_HAVE_IOREMAP_PROT 3502 int follow_phys(struct vm_area_struct *vma, 3503 unsigned long address, unsigned int flags, 3504 unsigned long *prot, resource_size_t *phys) 3505 { 3506 int ret = -EINVAL; 3507 pte_t *ptep, pte; 3508 spinlock_t *ptl; 3509 3510 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3511 goto out; 3512 3513 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3514 goto out; 3515 pte = *ptep; 3516 3517 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3518 goto unlock; 3519 3520 *prot = pgprot_val(pte_pgprot(pte)); 3521 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3522 3523 ret = 0; 3524 unlock: 3525 pte_unmap_unlock(ptep, ptl); 3526 out: 3527 return ret; 3528 } 3529 3530 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3531 void *buf, int len, int write) 3532 { 3533 resource_size_t phys_addr; 3534 unsigned long prot = 0; 3535 void __iomem *maddr; 3536 int offset = addr & (PAGE_SIZE-1); 3537 3538 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3539 return -EINVAL; 3540 3541 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3542 if (write) 3543 memcpy_toio(maddr + offset, buf, len); 3544 else 3545 memcpy_fromio(buf, maddr + offset, len); 3546 iounmap(maddr); 3547 3548 return len; 3549 } 3550 EXPORT_SYMBOL_GPL(generic_access_phys); 3551 #endif 3552 3553 /* 3554 * Access another process' address space as given in mm. If non-NULL, use the 3555 * given task for page fault accounting. 3556 */ 3557 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3558 unsigned long addr, void *buf, int len, int write) 3559 { 3560 struct vm_area_struct *vma; 3561 void *old_buf = buf; 3562 3563 down_read(&mm->mmap_sem); 3564 /* ignore errors, just check how much was successfully transferred */ 3565 while (len) { 3566 int bytes, ret, offset; 3567 void *maddr; 3568 struct page *page = NULL; 3569 3570 ret = get_user_pages(tsk, mm, addr, 1, 3571 write, 1, &page, &vma); 3572 if (ret <= 0) { 3573 #ifndef CONFIG_HAVE_IOREMAP_PROT 3574 break; 3575 #else 3576 /* 3577 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3578 * we can access using slightly different code. 3579 */ 3580 vma = find_vma(mm, addr); 3581 if (!vma || vma->vm_start > addr) 3582 break; 3583 if (vma->vm_ops && vma->vm_ops->access) 3584 ret = vma->vm_ops->access(vma, addr, buf, 3585 len, write); 3586 if (ret <= 0) 3587 break; 3588 bytes = ret; 3589 #endif 3590 } else { 3591 bytes = len; 3592 offset = addr & (PAGE_SIZE-1); 3593 if (bytes > PAGE_SIZE-offset) 3594 bytes = PAGE_SIZE-offset; 3595 3596 maddr = kmap(page); 3597 if (write) { 3598 copy_to_user_page(vma, page, addr, 3599 maddr + offset, buf, bytes); 3600 set_page_dirty_lock(page); 3601 } else { 3602 copy_from_user_page(vma, page, addr, 3603 buf, maddr + offset, bytes); 3604 } 3605 kunmap(page); 3606 page_cache_release(page); 3607 } 3608 len -= bytes; 3609 buf += bytes; 3610 addr += bytes; 3611 } 3612 up_read(&mm->mmap_sem); 3613 3614 return buf - old_buf; 3615 } 3616 3617 /** 3618 * access_remote_vm - access another process' address space 3619 * @mm: the mm_struct of the target address space 3620 * @addr: start address to access 3621 * @buf: source or destination buffer 3622 * @len: number of bytes to transfer 3623 * @write: whether the access is a write 3624 * 3625 * The caller must hold a reference on @mm. 3626 */ 3627 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3628 void *buf, int len, int write) 3629 { 3630 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3631 } 3632 3633 /* 3634 * Access another process' address space. 3635 * Source/target buffer must be kernel space, 3636 * Do not walk the page table directly, use get_user_pages 3637 */ 3638 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3639 void *buf, int len, int write) 3640 { 3641 struct mm_struct *mm; 3642 int ret; 3643 3644 mm = get_task_mm(tsk); 3645 if (!mm) 3646 return 0; 3647 3648 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3649 mmput(mm); 3650 3651 return ret; 3652 } 3653 3654 /* 3655 * Print the name of a VMA. 3656 */ 3657 void print_vma_addr(char *prefix, unsigned long ip) 3658 { 3659 struct mm_struct *mm = current->mm; 3660 struct vm_area_struct *vma; 3661 3662 /* 3663 * Do not print if we are in atomic 3664 * contexts (in exception stacks, etc.): 3665 */ 3666 if (preempt_count()) 3667 return; 3668 3669 down_read(&mm->mmap_sem); 3670 vma = find_vma(mm, ip); 3671 if (vma && vma->vm_file) { 3672 struct file *f = vma->vm_file; 3673 char *buf = (char *)__get_free_page(GFP_KERNEL); 3674 if (buf) { 3675 char *p; 3676 3677 p = d_path(&f->f_path, buf, PAGE_SIZE); 3678 if (IS_ERR(p)) 3679 p = "?"; 3680 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3681 vma->vm_start, 3682 vma->vm_end - vma->vm_start); 3683 free_page((unsigned long)buf); 3684 } 3685 } 3686 up_read(&mm->mmap_sem); 3687 } 3688 3689 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3690 void might_fault(void) 3691 { 3692 /* 3693 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3694 * holding the mmap_sem, this is safe because kernel memory doesn't 3695 * get paged out, therefore we'll never actually fault, and the 3696 * below annotations will generate false positives. 3697 */ 3698 if (segment_eq(get_fs(), KERNEL_DS)) 3699 return; 3700 3701 /* 3702 * it would be nicer only to annotate paths which are not under 3703 * pagefault_disable, however that requires a larger audit and 3704 * providing helpers like get_user_atomic. 3705 */ 3706 if (in_atomic()) 3707 return; 3708 3709 __might_sleep(__FILE__, __LINE__, 0); 3710 3711 if (current->mm) 3712 might_lock_read(¤t->mm->mmap_sem); 3713 } 3714 EXPORT_SYMBOL(might_fault); 3715 #endif 3716 3717 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3718 static void clear_gigantic_page(struct page *page, 3719 unsigned long addr, 3720 unsigned int pages_per_huge_page) 3721 { 3722 int i; 3723 struct page *p = page; 3724 3725 might_sleep(); 3726 for (i = 0; i < pages_per_huge_page; 3727 i++, p = mem_map_next(p, page, i)) { 3728 cond_resched(); 3729 clear_user_highpage(p, addr + i * PAGE_SIZE); 3730 } 3731 } 3732 void clear_huge_page(struct page *page, 3733 unsigned long addr, unsigned int pages_per_huge_page) 3734 { 3735 int i; 3736 3737 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3738 clear_gigantic_page(page, addr, pages_per_huge_page); 3739 return; 3740 } 3741 3742 might_sleep(); 3743 for (i = 0; i < pages_per_huge_page; i++) { 3744 cond_resched(); 3745 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3746 } 3747 } 3748 3749 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3750 unsigned long addr, 3751 struct vm_area_struct *vma, 3752 unsigned int pages_per_huge_page) 3753 { 3754 int i; 3755 struct page *dst_base = dst; 3756 struct page *src_base = src; 3757 3758 for (i = 0; i < pages_per_huge_page; ) { 3759 cond_resched(); 3760 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3761 3762 i++; 3763 dst = mem_map_next(dst, dst_base, i); 3764 src = mem_map_next(src, src_base, i); 3765 } 3766 } 3767 3768 void copy_user_huge_page(struct page *dst, struct page *src, 3769 unsigned long addr, struct vm_area_struct *vma, 3770 unsigned int pages_per_huge_page) 3771 { 3772 int i; 3773 3774 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3775 copy_user_gigantic_page(dst, src, addr, vma, 3776 pages_per_huge_page); 3777 return; 3778 } 3779 3780 might_sleep(); 3781 for (i = 0; i < pages_per_huge_page; i++) { 3782 cond_resched(); 3783 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3784 } 3785 } 3786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3787 3788 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3789 3790 static struct kmem_cache *page_ptl_cachep; 3791 3792 void __init ptlock_cache_init(void) 3793 { 3794 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3795 SLAB_PANIC, NULL); 3796 } 3797 3798 bool ptlock_alloc(struct page *page) 3799 { 3800 spinlock_t *ptl; 3801 3802 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3803 if (!ptl) 3804 return false; 3805 page->ptl = ptl; 3806 return true; 3807 } 3808 3809 void ptlock_free(struct page *page) 3810 { 3811 kmem_cache_free(page_ptl_cachep, page->ptl); 3812 } 3813 #endif 3814