xref: /linux/mm/memory.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71 
72 #include "internal.h"
73 
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77 
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82 
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86 
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95 
96 EXPORT_SYMBOL(high_memory);
97 
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 					1;
107 #else
108 					2;
109 #endif
110 
111 static int __init disable_randmaps(char *s)
112 {
113 	randomize_va_space = 0;
114 	return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117 
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120 
121 EXPORT_SYMBOL(zero_pfn);
122 
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 	return 0;
130 }
131 core_initcall(init_zero_pfn);
132 
133 
134 #if defined(SPLIT_RSS_COUNTING)
135 
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 	int i;
139 
140 	for (i = 0; i < NR_MM_COUNTERS; i++) {
141 		if (current->rss_stat.count[i]) {
142 			add_mm_counter(mm, i, current->rss_stat.count[i]);
143 			current->rss_stat.count[i] = 0;
144 		}
145 	}
146 	current->rss_stat.events = 0;
147 }
148 
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 	struct task_struct *task = current;
152 
153 	if (likely(task->mm == mm))
154 		task->rss_stat.count[member] += val;
155 	else
156 		add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160 
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH	(64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 	if (unlikely(task != current))
166 		return;
167 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 		sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171 
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174 
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178 
179 #endif /* SPLIT_RSS_COUNTING */
180 
181 #ifdef HAVE_GENERIC_MMU_GATHER
182 
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 	struct mmu_gather_batch *batch;
186 
187 	batch = tlb->active;
188 	if (batch->next) {
189 		tlb->active = batch->next;
190 		return 1;
191 	}
192 
193 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 		return 0;
195 
196 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 	if (!batch)
198 		return 0;
199 
200 	tlb->batch_count++;
201 	batch->next = NULL;
202 	batch->nr   = 0;
203 	batch->max  = MAX_GATHER_BATCH;
204 
205 	tlb->active->next = batch;
206 	tlb->active = batch;
207 
208 	return 1;
209 }
210 
211 /* tlb_gather_mmu
212  *	Called to initialize an (on-stack) mmu_gather structure for page-table
213  *	tear-down from @mm. The @fullmm argument is used when @mm is without
214  *	users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 	tlb->mm = mm;
219 
220 	/* Is it from 0 to ~0? */
221 	tlb->fullmm     = !(start | (end+1));
222 	tlb->need_flush_all = 0;
223 	tlb->local.next = NULL;
224 	tlb->local.nr   = 0;
225 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226 	tlb->active     = &tlb->local;
227 	tlb->batch_count = 0;
228 
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 	tlb->batch = NULL;
231 #endif
232 
233 	__tlb_reset_range(tlb);
234 }
235 
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238 	if (!tlb->end)
239 		return;
240 
241 	tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 	tlb_table_flush(tlb);
244 #endif
245 	__tlb_reset_range(tlb);
246 }
247 
248 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
249 {
250 	struct mmu_gather_batch *batch;
251 
252 	for (batch = &tlb->local; batch; batch = batch->next) {
253 		free_pages_and_swap_cache(batch->pages, batch->nr);
254 		batch->nr = 0;
255 	}
256 	tlb->active = &tlb->local;
257 }
258 
259 void tlb_flush_mmu(struct mmu_gather *tlb)
260 {
261 	tlb_flush_mmu_tlbonly(tlb);
262 	tlb_flush_mmu_free(tlb);
263 }
264 
265 /* tlb_finish_mmu
266  *	Called at the end of the shootdown operation to free up any resources
267  *	that were required.
268  */
269 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
270 {
271 	struct mmu_gather_batch *batch, *next;
272 
273 	tlb_flush_mmu(tlb);
274 
275 	/* keep the page table cache within bounds */
276 	check_pgt_cache();
277 
278 	for (batch = tlb->local.next; batch; batch = next) {
279 		next = batch->next;
280 		free_pages((unsigned long)batch, 0);
281 	}
282 	tlb->local.next = NULL;
283 }
284 
285 /* __tlb_remove_page
286  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287  *	handling the additional races in SMP caused by other CPUs caching valid
288  *	mappings in their TLBs. Returns the number of free page slots left.
289  *	When out of page slots we must call tlb_flush_mmu().
290  */
291 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
292 {
293 	struct mmu_gather_batch *batch;
294 
295 	VM_BUG_ON(!tlb->end);
296 
297 	batch = tlb->active;
298 	batch->pages[batch->nr++] = page;
299 	if (batch->nr == batch->max) {
300 		if (!tlb_next_batch(tlb))
301 			return 0;
302 		batch = tlb->active;
303 	}
304 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
305 
306 	return batch->max - batch->nr;
307 }
308 
309 #endif /* HAVE_GENERIC_MMU_GATHER */
310 
311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312 
313 /*
314  * See the comment near struct mmu_table_batch.
315  */
316 
317 static void tlb_remove_table_smp_sync(void *arg)
318 {
319 	/* Simply deliver the interrupt */
320 }
321 
322 static void tlb_remove_table_one(void *table)
323 {
324 	/*
325 	 * This isn't an RCU grace period and hence the page-tables cannot be
326 	 * assumed to be actually RCU-freed.
327 	 *
328 	 * It is however sufficient for software page-table walkers that rely on
329 	 * IRQ disabling. See the comment near struct mmu_table_batch.
330 	 */
331 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332 	__tlb_remove_table(table);
333 }
334 
335 static void tlb_remove_table_rcu(struct rcu_head *head)
336 {
337 	struct mmu_table_batch *batch;
338 	int i;
339 
340 	batch = container_of(head, struct mmu_table_batch, rcu);
341 
342 	for (i = 0; i < batch->nr; i++)
343 		__tlb_remove_table(batch->tables[i]);
344 
345 	free_page((unsigned long)batch);
346 }
347 
348 void tlb_table_flush(struct mmu_gather *tlb)
349 {
350 	struct mmu_table_batch **batch = &tlb->batch;
351 
352 	if (*batch) {
353 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354 		*batch = NULL;
355 	}
356 }
357 
358 void tlb_remove_table(struct mmu_gather *tlb, void *table)
359 {
360 	struct mmu_table_batch **batch = &tlb->batch;
361 
362 	/*
363 	 * When there's less then two users of this mm there cannot be a
364 	 * concurrent page-table walk.
365 	 */
366 	if (atomic_read(&tlb->mm->mm_users) < 2) {
367 		__tlb_remove_table(table);
368 		return;
369 	}
370 
371 	if (*batch == NULL) {
372 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 		if (*batch == NULL) {
374 			tlb_remove_table_one(table);
375 			return;
376 		}
377 		(*batch)->nr = 0;
378 	}
379 	(*batch)->tables[(*batch)->nr++] = table;
380 	if ((*batch)->nr == MAX_TABLE_BATCH)
381 		tlb_table_flush(tlb);
382 }
383 
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
385 
386 /*
387  * Note: this doesn't free the actual pages themselves. That
388  * has been handled earlier when unmapping all the memory regions.
389  */
390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391 			   unsigned long addr)
392 {
393 	pgtable_t token = pmd_pgtable(*pmd);
394 	pmd_clear(pmd);
395 	pte_free_tlb(tlb, token, addr);
396 	atomic_long_dec(&tlb->mm->nr_ptes);
397 }
398 
399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400 				unsigned long addr, unsigned long end,
401 				unsigned long floor, unsigned long ceiling)
402 {
403 	pmd_t *pmd;
404 	unsigned long next;
405 	unsigned long start;
406 
407 	start = addr;
408 	pmd = pmd_offset(pud, addr);
409 	do {
410 		next = pmd_addr_end(addr, end);
411 		if (pmd_none_or_clear_bad(pmd))
412 			continue;
413 		free_pte_range(tlb, pmd, addr);
414 	} while (pmd++, addr = next, addr != end);
415 
416 	start &= PUD_MASK;
417 	if (start < floor)
418 		return;
419 	if (ceiling) {
420 		ceiling &= PUD_MASK;
421 		if (!ceiling)
422 			return;
423 	}
424 	if (end - 1 > ceiling - 1)
425 		return;
426 
427 	pmd = pmd_offset(pud, start);
428 	pud_clear(pud);
429 	pmd_free_tlb(tlb, pmd, start);
430 }
431 
432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433 				unsigned long addr, unsigned long end,
434 				unsigned long floor, unsigned long ceiling)
435 {
436 	pud_t *pud;
437 	unsigned long next;
438 	unsigned long start;
439 
440 	start = addr;
441 	pud = pud_offset(pgd, addr);
442 	do {
443 		next = pud_addr_end(addr, end);
444 		if (pud_none_or_clear_bad(pud))
445 			continue;
446 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
447 	} while (pud++, addr = next, addr != end);
448 
449 	start &= PGDIR_MASK;
450 	if (start < floor)
451 		return;
452 	if (ceiling) {
453 		ceiling &= PGDIR_MASK;
454 		if (!ceiling)
455 			return;
456 	}
457 	if (end - 1 > ceiling - 1)
458 		return;
459 
460 	pud = pud_offset(pgd, start);
461 	pgd_clear(pgd);
462 	pud_free_tlb(tlb, pud, start);
463 }
464 
465 /*
466  * This function frees user-level page tables of a process.
467  */
468 void free_pgd_range(struct mmu_gather *tlb,
469 			unsigned long addr, unsigned long end,
470 			unsigned long floor, unsigned long ceiling)
471 {
472 	pgd_t *pgd;
473 	unsigned long next;
474 
475 	/*
476 	 * The next few lines have given us lots of grief...
477 	 *
478 	 * Why are we testing PMD* at this top level?  Because often
479 	 * there will be no work to do at all, and we'd prefer not to
480 	 * go all the way down to the bottom just to discover that.
481 	 *
482 	 * Why all these "- 1"s?  Because 0 represents both the bottom
483 	 * of the address space and the top of it (using -1 for the
484 	 * top wouldn't help much: the masks would do the wrong thing).
485 	 * The rule is that addr 0 and floor 0 refer to the bottom of
486 	 * the address space, but end 0 and ceiling 0 refer to the top
487 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 	 * that end 0 case should be mythical).
489 	 *
490 	 * Wherever addr is brought up or ceiling brought down, we must
491 	 * be careful to reject "the opposite 0" before it confuses the
492 	 * subsequent tests.  But what about where end is brought down
493 	 * by PMD_SIZE below? no, end can't go down to 0 there.
494 	 *
495 	 * Whereas we round start (addr) and ceiling down, by different
496 	 * masks at different levels, in order to test whether a table
497 	 * now has no other vmas using it, so can be freed, we don't
498 	 * bother to round floor or end up - the tests don't need that.
499 	 */
500 
501 	addr &= PMD_MASK;
502 	if (addr < floor) {
503 		addr += PMD_SIZE;
504 		if (!addr)
505 			return;
506 	}
507 	if (ceiling) {
508 		ceiling &= PMD_MASK;
509 		if (!ceiling)
510 			return;
511 	}
512 	if (end - 1 > ceiling - 1)
513 		end -= PMD_SIZE;
514 	if (addr > end - 1)
515 		return;
516 
517 	pgd = pgd_offset(tlb->mm, addr);
518 	do {
519 		next = pgd_addr_end(addr, end);
520 		if (pgd_none_or_clear_bad(pgd))
521 			continue;
522 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
523 	} while (pgd++, addr = next, addr != end);
524 }
525 
526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
527 		unsigned long floor, unsigned long ceiling)
528 {
529 	while (vma) {
530 		struct vm_area_struct *next = vma->vm_next;
531 		unsigned long addr = vma->vm_start;
532 
533 		/*
534 		 * Hide vma from rmap and truncate_pagecache before freeing
535 		 * pgtables
536 		 */
537 		unlink_anon_vmas(vma);
538 		unlink_file_vma(vma);
539 
540 		if (is_vm_hugetlb_page(vma)) {
541 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
542 				floor, next? next->vm_start: ceiling);
543 		} else {
544 			/*
545 			 * Optimization: gather nearby vmas into one call down
546 			 */
547 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
548 			       && !is_vm_hugetlb_page(next)) {
549 				vma = next;
550 				next = vma->vm_next;
551 				unlink_anon_vmas(vma);
552 				unlink_file_vma(vma);
553 			}
554 			free_pgd_range(tlb, addr, vma->vm_end,
555 				floor, next? next->vm_start: ceiling);
556 		}
557 		vma = next;
558 	}
559 }
560 
561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562 		pmd_t *pmd, unsigned long address)
563 {
564 	spinlock_t *ptl;
565 	pgtable_t new = pte_alloc_one(mm, address);
566 	int wait_split_huge_page;
567 	if (!new)
568 		return -ENOMEM;
569 
570 	/*
571 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 	 * visible before the pte is made visible to other CPUs by being
573 	 * put into page tables.
574 	 *
575 	 * The other side of the story is the pointer chasing in the page
576 	 * table walking code (when walking the page table without locking;
577 	 * ie. most of the time). Fortunately, these data accesses consist
578 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 	 * being the notable exception) will already guarantee loads are
580 	 * seen in-order. See the alpha page table accessors for the
581 	 * smp_read_barrier_depends() barriers in page table walking code.
582 	 */
583 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584 
585 	ptl = pmd_lock(mm, pmd);
586 	wait_split_huge_page = 0;
587 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
588 		atomic_long_inc(&mm->nr_ptes);
589 		pmd_populate(mm, pmd, new);
590 		new = NULL;
591 	} else if (unlikely(pmd_trans_splitting(*pmd)))
592 		wait_split_huge_page = 1;
593 	spin_unlock(ptl);
594 	if (new)
595 		pte_free(mm, new);
596 	if (wait_split_huge_page)
597 		wait_split_huge_page(vma->anon_vma, pmd);
598 	return 0;
599 }
600 
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 	if (!new)
605 		return -ENOMEM;
606 
607 	smp_wmb(); /* See comment in __pte_alloc */
608 
609 	spin_lock(&init_mm.page_table_lock);
610 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
611 		pmd_populate_kernel(&init_mm, pmd, new);
612 		new = NULL;
613 	} else
614 		VM_BUG_ON(pmd_trans_splitting(*pmd));
615 	spin_unlock(&init_mm.page_table_lock);
616 	if (new)
617 		pte_free_kernel(&init_mm, new);
618 	return 0;
619 }
620 
621 static inline void init_rss_vec(int *rss)
622 {
623 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 }
625 
626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
627 {
628 	int i;
629 
630 	if (current->mm == mm)
631 		sync_mm_rss(mm);
632 	for (i = 0; i < NR_MM_COUNTERS; i++)
633 		if (rss[i])
634 			add_mm_counter(mm, i, rss[i]);
635 }
636 
637 /*
638  * This function is called to print an error when a bad pte
639  * is found. For example, we might have a PFN-mapped pte in
640  * a region that doesn't allow it.
641  *
642  * The calling function must still handle the error.
643  */
644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 			  pte_t pte, struct page *page)
646 {
647 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 	pud_t *pud = pud_offset(pgd, addr);
649 	pmd_t *pmd = pmd_offset(pud, addr);
650 	struct address_space *mapping;
651 	pgoff_t index;
652 	static unsigned long resume;
653 	static unsigned long nr_shown;
654 	static unsigned long nr_unshown;
655 
656 	/*
657 	 * Allow a burst of 60 reports, then keep quiet for that minute;
658 	 * or allow a steady drip of one report per second.
659 	 */
660 	if (nr_shown == 60) {
661 		if (time_before(jiffies, resume)) {
662 			nr_unshown++;
663 			return;
664 		}
665 		if (nr_unshown) {
666 			printk(KERN_ALERT
667 				"BUG: Bad page map: %lu messages suppressed\n",
668 				nr_unshown);
669 			nr_unshown = 0;
670 		}
671 		nr_shown = 0;
672 	}
673 	if (nr_shown++ == 0)
674 		resume = jiffies + 60 * HZ;
675 
676 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677 	index = linear_page_index(vma, addr);
678 
679 	printk(KERN_ALERT
680 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
681 		current->comm,
682 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
683 	if (page)
684 		dump_page(page, "bad pte");
685 	printk(KERN_ALERT
686 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688 	/*
689 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690 	 */
691 	if (vma->vm_ops)
692 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693 		       vma->vm_ops->fault);
694 	if (vma->vm_file)
695 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696 		       vma->vm_file->f_op->mmap);
697 	dump_stack();
698 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
699 }
700 
701 /*
702  * vm_normal_page -- This function gets the "struct page" associated with a pte.
703  *
704  * "Special" mappings do not wish to be associated with a "struct page" (either
705  * it doesn't exist, or it exists but they don't want to touch it). In this
706  * case, NULL is returned here. "Normal" mappings do have a struct page.
707  *
708  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709  * pte bit, in which case this function is trivial. Secondly, an architecture
710  * may not have a spare pte bit, which requires a more complicated scheme,
711  * described below.
712  *
713  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714  * special mapping (even if there are underlying and valid "struct pages").
715  * COWed pages of a VM_PFNMAP are always normal.
716  *
717  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
719  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720  * mapping will always honor the rule
721  *
722  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
723  *
724  * And for normal mappings this is false.
725  *
726  * This restricts such mappings to be a linear translation from virtual address
727  * to pfn. To get around this restriction, we allow arbitrary mappings so long
728  * as the vma is not a COW mapping; in that case, we know that all ptes are
729  * special (because none can have been COWed).
730  *
731  *
732  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
733  *
734  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735  * page" backing, however the difference is that _all_ pages with a struct
736  * page (that is, those where pfn_valid is true) are refcounted and considered
737  * normal pages by the VM. The disadvantage is that pages are refcounted
738  * (which can be slower and simply not an option for some PFNMAP users). The
739  * advantage is that we don't have to follow the strict linearity rule of
740  * PFNMAP mappings in order to support COWable mappings.
741  *
742  */
743 #ifdef __HAVE_ARCH_PTE_SPECIAL
744 # define HAVE_PTE_SPECIAL 1
745 #else
746 # define HAVE_PTE_SPECIAL 0
747 #endif
748 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
749 				pte_t pte)
750 {
751 	unsigned long pfn = pte_pfn(pte);
752 
753 	if (HAVE_PTE_SPECIAL) {
754 		if (likely(!pte_special(pte)))
755 			goto check_pfn;
756 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757 			return NULL;
758 		if (!is_zero_pfn(pfn))
759 			print_bad_pte(vma, addr, pte, NULL);
760 		return NULL;
761 	}
762 
763 	/* !HAVE_PTE_SPECIAL case follows: */
764 
765 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766 		if (vma->vm_flags & VM_MIXEDMAP) {
767 			if (!pfn_valid(pfn))
768 				return NULL;
769 			goto out;
770 		} else {
771 			unsigned long off;
772 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
773 			if (pfn == vma->vm_pgoff + off)
774 				return NULL;
775 			if (!is_cow_mapping(vma->vm_flags))
776 				return NULL;
777 		}
778 	}
779 
780 	if (is_zero_pfn(pfn))
781 		return NULL;
782 check_pfn:
783 	if (unlikely(pfn > highest_memmap_pfn)) {
784 		print_bad_pte(vma, addr, pte, NULL);
785 		return NULL;
786 	}
787 
788 	/*
789 	 * NOTE! We still have PageReserved() pages in the page tables.
790 	 * eg. VDSO mappings can cause them to exist.
791 	 */
792 out:
793 	return pfn_to_page(pfn);
794 }
795 
796 /*
797  * copy one vm_area from one task to the other. Assumes the page tables
798  * already present in the new task to be cleared in the whole range
799  * covered by this vma.
800  */
801 
802 static inline unsigned long
803 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
804 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
805 		unsigned long addr, int *rss)
806 {
807 	unsigned long vm_flags = vma->vm_flags;
808 	pte_t pte = *src_pte;
809 	struct page *page;
810 
811 	/* pte contains position in swap or file, so copy. */
812 	if (unlikely(!pte_present(pte))) {
813 		if (!pte_file(pte)) {
814 			swp_entry_t entry = pte_to_swp_entry(pte);
815 
816 			if (likely(!non_swap_entry(entry))) {
817 				if (swap_duplicate(entry) < 0)
818 					return entry.val;
819 
820 				/* make sure dst_mm is on swapoff's mmlist. */
821 				if (unlikely(list_empty(&dst_mm->mmlist))) {
822 					spin_lock(&mmlist_lock);
823 					if (list_empty(&dst_mm->mmlist))
824 						list_add(&dst_mm->mmlist,
825 							 &src_mm->mmlist);
826 					spin_unlock(&mmlist_lock);
827 				}
828 				rss[MM_SWAPENTS]++;
829 			} else if (is_migration_entry(entry)) {
830 				page = migration_entry_to_page(entry);
831 
832 				if (PageAnon(page))
833 					rss[MM_ANONPAGES]++;
834 				else
835 					rss[MM_FILEPAGES]++;
836 
837 				if (is_write_migration_entry(entry) &&
838 				    is_cow_mapping(vm_flags)) {
839 					/*
840 					 * COW mappings require pages in both
841 					 * parent and child to be set to read.
842 					 */
843 					make_migration_entry_read(&entry);
844 					pte = swp_entry_to_pte(entry);
845 					if (pte_swp_soft_dirty(*src_pte))
846 						pte = pte_swp_mksoft_dirty(pte);
847 					set_pte_at(src_mm, addr, src_pte, pte);
848 				}
849 			}
850 		}
851 		goto out_set_pte;
852 	}
853 
854 	/*
855 	 * If it's a COW mapping, write protect it both
856 	 * in the parent and the child
857 	 */
858 	if (is_cow_mapping(vm_flags)) {
859 		ptep_set_wrprotect(src_mm, addr, src_pte);
860 		pte = pte_wrprotect(pte);
861 	}
862 
863 	/*
864 	 * If it's a shared mapping, mark it clean in
865 	 * the child
866 	 */
867 	if (vm_flags & VM_SHARED)
868 		pte = pte_mkclean(pte);
869 	pte = pte_mkold(pte);
870 
871 	page = vm_normal_page(vma, addr, pte);
872 	if (page) {
873 		get_page(page);
874 		page_dup_rmap(page);
875 		if (PageAnon(page))
876 			rss[MM_ANONPAGES]++;
877 		else
878 			rss[MM_FILEPAGES]++;
879 	}
880 
881 out_set_pte:
882 	set_pte_at(dst_mm, addr, dst_pte, pte);
883 	return 0;
884 }
885 
886 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
887 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
888 		   unsigned long addr, unsigned long end)
889 {
890 	pte_t *orig_src_pte, *orig_dst_pte;
891 	pte_t *src_pte, *dst_pte;
892 	spinlock_t *src_ptl, *dst_ptl;
893 	int progress = 0;
894 	int rss[NR_MM_COUNTERS];
895 	swp_entry_t entry = (swp_entry_t){0};
896 
897 again:
898 	init_rss_vec(rss);
899 
900 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
901 	if (!dst_pte)
902 		return -ENOMEM;
903 	src_pte = pte_offset_map(src_pmd, addr);
904 	src_ptl = pte_lockptr(src_mm, src_pmd);
905 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
906 	orig_src_pte = src_pte;
907 	orig_dst_pte = dst_pte;
908 	arch_enter_lazy_mmu_mode();
909 
910 	do {
911 		/*
912 		 * We are holding two locks at this point - either of them
913 		 * could generate latencies in another task on another CPU.
914 		 */
915 		if (progress >= 32) {
916 			progress = 0;
917 			if (need_resched() ||
918 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
919 				break;
920 		}
921 		if (pte_none(*src_pte)) {
922 			progress++;
923 			continue;
924 		}
925 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
926 							vma, addr, rss);
927 		if (entry.val)
928 			break;
929 		progress += 8;
930 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
931 
932 	arch_leave_lazy_mmu_mode();
933 	spin_unlock(src_ptl);
934 	pte_unmap(orig_src_pte);
935 	add_mm_rss_vec(dst_mm, rss);
936 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
937 	cond_resched();
938 
939 	if (entry.val) {
940 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
941 			return -ENOMEM;
942 		progress = 0;
943 	}
944 	if (addr != end)
945 		goto again;
946 	return 0;
947 }
948 
949 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
951 		unsigned long addr, unsigned long end)
952 {
953 	pmd_t *src_pmd, *dst_pmd;
954 	unsigned long next;
955 
956 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
957 	if (!dst_pmd)
958 		return -ENOMEM;
959 	src_pmd = pmd_offset(src_pud, addr);
960 	do {
961 		next = pmd_addr_end(addr, end);
962 		if (pmd_trans_huge(*src_pmd)) {
963 			int err;
964 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
965 			err = copy_huge_pmd(dst_mm, src_mm,
966 					    dst_pmd, src_pmd, addr, vma);
967 			if (err == -ENOMEM)
968 				return -ENOMEM;
969 			if (!err)
970 				continue;
971 			/* fall through */
972 		}
973 		if (pmd_none_or_clear_bad(src_pmd))
974 			continue;
975 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
976 						vma, addr, next))
977 			return -ENOMEM;
978 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
979 	return 0;
980 }
981 
982 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
983 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
984 		unsigned long addr, unsigned long end)
985 {
986 	pud_t *src_pud, *dst_pud;
987 	unsigned long next;
988 
989 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
990 	if (!dst_pud)
991 		return -ENOMEM;
992 	src_pud = pud_offset(src_pgd, addr);
993 	do {
994 		next = pud_addr_end(addr, end);
995 		if (pud_none_or_clear_bad(src_pud))
996 			continue;
997 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
998 						vma, addr, next))
999 			return -ENOMEM;
1000 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1001 	return 0;
1002 }
1003 
1004 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1005 		struct vm_area_struct *vma)
1006 {
1007 	pgd_t *src_pgd, *dst_pgd;
1008 	unsigned long next;
1009 	unsigned long addr = vma->vm_start;
1010 	unsigned long end = vma->vm_end;
1011 	unsigned long mmun_start;	/* For mmu_notifiers */
1012 	unsigned long mmun_end;		/* For mmu_notifiers */
1013 	bool is_cow;
1014 	int ret;
1015 
1016 	/*
1017 	 * Don't copy ptes where a page fault will fill them correctly.
1018 	 * Fork becomes much lighter when there are big shared or private
1019 	 * readonly mappings. The tradeoff is that copy_page_range is more
1020 	 * efficient than faulting.
1021 	 */
1022 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1023 			       VM_PFNMAP | VM_MIXEDMAP))) {
1024 		if (!vma->anon_vma)
1025 			return 0;
1026 	}
1027 
1028 	if (is_vm_hugetlb_page(vma))
1029 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030 
1031 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1032 		/*
1033 		 * We do not free on error cases below as remove_vma
1034 		 * gets called on error from higher level routine
1035 		 */
1036 		ret = track_pfn_copy(vma);
1037 		if (ret)
1038 			return ret;
1039 	}
1040 
1041 	/*
1042 	 * We need to invalidate the secondary MMU mappings only when
1043 	 * there could be a permission downgrade on the ptes of the
1044 	 * parent mm. And a permission downgrade will only happen if
1045 	 * is_cow_mapping() returns true.
1046 	 */
1047 	is_cow = is_cow_mapping(vma->vm_flags);
1048 	mmun_start = addr;
1049 	mmun_end   = end;
1050 	if (is_cow)
1051 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052 						    mmun_end);
1053 
1054 	ret = 0;
1055 	dst_pgd = pgd_offset(dst_mm, addr);
1056 	src_pgd = pgd_offset(src_mm, addr);
1057 	do {
1058 		next = pgd_addr_end(addr, end);
1059 		if (pgd_none_or_clear_bad(src_pgd))
1060 			continue;
1061 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062 					    vma, addr, next))) {
1063 			ret = -ENOMEM;
1064 			break;
1065 		}
1066 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1067 
1068 	if (is_cow)
1069 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1070 	return ret;
1071 }
1072 
1073 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1074 				struct vm_area_struct *vma, pmd_t *pmd,
1075 				unsigned long addr, unsigned long end,
1076 				struct zap_details *details)
1077 {
1078 	struct mm_struct *mm = tlb->mm;
1079 	int force_flush = 0;
1080 	int rss[NR_MM_COUNTERS];
1081 	spinlock_t *ptl;
1082 	pte_t *start_pte;
1083 	pte_t *pte;
1084 
1085 again:
1086 	init_rss_vec(rss);
1087 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088 	pte = start_pte;
1089 	arch_enter_lazy_mmu_mode();
1090 	do {
1091 		pte_t ptent = *pte;
1092 		if (pte_none(ptent)) {
1093 			continue;
1094 		}
1095 
1096 		if (pte_present(ptent)) {
1097 			struct page *page;
1098 
1099 			page = vm_normal_page(vma, addr, ptent);
1100 			if (unlikely(details) && page) {
1101 				/*
1102 				 * unmap_shared_mapping_pages() wants to
1103 				 * invalidate cache without truncating:
1104 				 * unmap shared but keep private pages.
1105 				 */
1106 				if (details->check_mapping &&
1107 				    details->check_mapping != page->mapping)
1108 					continue;
1109 				/*
1110 				 * Each page->index must be checked when
1111 				 * invalidating or truncating nonlinear.
1112 				 */
1113 				if (details->nonlinear_vma &&
1114 				    (page->index < details->first_index ||
1115 				     page->index > details->last_index))
1116 					continue;
1117 			}
1118 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1119 							tlb->fullmm);
1120 			tlb_remove_tlb_entry(tlb, pte, addr);
1121 			if (unlikely(!page))
1122 				continue;
1123 			if (unlikely(details) && details->nonlinear_vma
1124 			    && linear_page_index(details->nonlinear_vma,
1125 						addr) != page->index) {
1126 				pte_t ptfile = pgoff_to_pte(page->index);
1127 				if (pte_soft_dirty(ptent))
1128 					ptfile = pte_file_mksoft_dirty(ptfile);
1129 				set_pte_at(mm, addr, pte, ptfile);
1130 			}
1131 			if (PageAnon(page))
1132 				rss[MM_ANONPAGES]--;
1133 			else {
1134 				if (pte_dirty(ptent)) {
1135 					force_flush = 1;
1136 					set_page_dirty(page);
1137 				}
1138 				if (pte_young(ptent) &&
1139 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1140 					mark_page_accessed(page);
1141 				rss[MM_FILEPAGES]--;
1142 			}
1143 			page_remove_rmap(page);
1144 			if (unlikely(page_mapcount(page) < 0))
1145 				print_bad_pte(vma, addr, ptent, page);
1146 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1147 				force_flush = 1;
1148 				addr += PAGE_SIZE;
1149 				break;
1150 			}
1151 			continue;
1152 		}
1153 		/*
1154 		 * If details->check_mapping, we leave swap entries;
1155 		 * if details->nonlinear_vma, we leave file entries.
1156 		 */
1157 		if (unlikely(details))
1158 			continue;
1159 		if (pte_file(ptent)) {
1160 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1161 				print_bad_pte(vma, addr, ptent, NULL);
1162 		} else {
1163 			swp_entry_t entry = pte_to_swp_entry(ptent);
1164 
1165 			if (!non_swap_entry(entry))
1166 				rss[MM_SWAPENTS]--;
1167 			else if (is_migration_entry(entry)) {
1168 				struct page *page;
1169 
1170 				page = migration_entry_to_page(entry);
1171 
1172 				if (PageAnon(page))
1173 					rss[MM_ANONPAGES]--;
1174 				else
1175 					rss[MM_FILEPAGES]--;
1176 			}
1177 			if (unlikely(!free_swap_and_cache(entry)))
1178 				print_bad_pte(vma, addr, ptent, NULL);
1179 		}
1180 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1181 	} while (pte++, addr += PAGE_SIZE, addr != end);
1182 
1183 	add_mm_rss_vec(mm, rss);
1184 	arch_leave_lazy_mmu_mode();
1185 
1186 	/* Do the actual TLB flush before dropping ptl */
1187 	if (force_flush)
1188 		tlb_flush_mmu_tlbonly(tlb);
1189 	pte_unmap_unlock(start_pte, ptl);
1190 
1191 	/*
1192 	 * If we forced a TLB flush (either due to running out of
1193 	 * batch buffers or because we needed to flush dirty TLB
1194 	 * entries before releasing the ptl), free the batched
1195 	 * memory too. Restart if we didn't do everything.
1196 	 */
1197 	if (force_flush) {
1198 		force_flush = 0;
1199 		tlb_flush_mmu_free(tlb);
1200 
1201 		if (addr != end)
1202 			goto again;
1203 	}
1204 
1205 	return addr;
1206 }
1207 
1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1209 				struct vm_area_struct *vma, pud_t *pud,
1210 				unsigned long addr, unsigned long end,
1211 				struct zap_details *details)
1212 {
1213 	pmd_t *pmd;
1214 	unsigned long next;
1215 
1216 	pmd = pmd_offset(pud, addr);
1217 	do {
1218 		next = pmd_addr_end(addr, end);
1219 		if (pmd_trans_huge(*pmd)) {
1220 			if (next - addr != HPAGE_PMD_SIZE) {
1221 #ifdef CONFIG_DEBUG_VM
1222 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224 						__func__, addr, end,
1225 						vma->vm_start,
1226 						vma->vm_end);
1227 					BUG();
1228 				}
1229 #endif
1230 				split_huge_page_pmd(vma, addr, pmd);
1231 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1232 				goto next;
1233 			/* fall through */
1234 		}
1235 		/*
1236 		 * Here there can be other concurrent MADV_DONTNEED or
1237 		 * trans huge page faults running, and if the pmd is
1238 		 * none or trans huge it can change under us. This is
1239 		 * because MADV_DONTNEED holds the mmap_sem in read
1240 		 * mode.
1241 		 */
1242 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243 			goto next;
1244 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1245 next:
1246 		cond_resched();
1247 	} while (pmd++, addr = next, addr != end);
1248 
1249 	return addr;
1250 }
1251 
1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1253 				struct vm_area_struct *vma, pgd_t *pgd,
1254 				unsigned long addr, unsigned long end,
1255 				struct zap_details *details)
1256 {
1257 	pud_t *pud;
1258 	unsigned long next;
1259 
1260 	pud = pud_offset(pgd, addr);
1261 	do {
1262 		next = pud_addr_end(addr, end);
1263 		if (pud_none_or_clear_bad(pud))
1264 			continue;
1265 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266 	} while (pud++, addr = next, addr != end);
1267 
1268 	return addr;
1269 }
1270 
1271 static void unmap_page_range(struct mmu_gather *tlb,
1272 			     struct vm_area_struct *vma,
1273 			     unsigned long addr, unsigned long end,
1274 			     struct zap_details *details)
1275 {
1276 	pgd_t *pgd;
1277 	unsigned long next;
1278 
1279 	if (details && !details->check_mapping && !details->nonlinear_vma)
1280 		details = NULL;
1281 
1282 	BUG_ON(addr >= end);
1283 	tlb_start_vma(tlb, vma);
1284 	pgd = pgd_offset(vma->vm_mm, addr);
1285 	do {
1286 		next = pgd_addr_end(addr, end);
1287 		if (pgd_none_or_clear_bad(pgd))
1288 			continue;
1289 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290 	} while (pgd++, addr = next, addr != end);
1291 	tlb_end_vma(tlb, vma);
1292 }
1293 
1294 
1295 static void unmap_single_vma(struct mmu_gather *tlb,
1296 		struct vm_area_struct *vma, unsigned long start_addr,
1297 		unsigned long end_addr,
1298 		struct zap_details *details)
1299 {
1300 	unsigned long start = max(vma->vm_start, start_addr);
1301 	unsigned long end;
1302 
1303 	if (start >= vma->vm_end)
1304 		return;
1305 	end = min(vma->vm_end, end_addr);
1306 	if (end <= vma->vm_start)
1307 		return;
1308 
1309 	if (vma->vm_file)
1310 		uprobe_munmap(vma, start, end);
1311 
1312 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1313 		untrack_pfn(vma, 0, 0);
1314 
1315 	if (start != end) {
1316 		if (unlikely(is_vm_hugetlb_page(vma))) {
1317 			/*
1318 			 * It is undesirable to test vma->vm_file as it
1319 			 * should be non-null for valid hugetlb area.
1320 			 * However, vm_file will be NULL in the error
1321 			 * cleanup path of mmap_region. When
1322 			 * hugetlbfs ->mmap method fails,
1323 			 * mmap_region() nullifies vma->vm_file
1324 			 * before calling this function to clean up.
1325 			 * Since no pte has actually been setup, it is
1326 			 * safe to do nothing in this case.
1327 			 */
1328 			if (vma->vm_file) {
1329 				i_mmap_lock_write(vma->vm_file->f_mapping);
1330 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1331 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1332 			}
1333 		} else
1334 			unmap_page_range(tlb, vma, start, end, details);
1335 	}
1336 }
1337 
1338 /**
1339  * unmap_vmas - unmap a range of memory covered by a list of vma's
1340  * @tlb: address of the caller's struct mmu_gather
1341  * @vma: the starting vma
1342  * @start_addr: virtual address at which to start unmapping
1343  * @end_addr: virtual address at which to end unmapping
1344  *
1345  * Unmap all pages in the vma list.
1346  *
1347  * Only addresses between `start' and `end' will be unmapped.
1348  *
1349  * The VMA list must be sorted in ascending virtual address order.
1350  *
1351  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352  * range after unmap_vmas() returns.  So the only responsibility here is to
1353  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354  * drops the lock and schedules.
1355  */
1356 void unmap_vmas(struct mmu_gather *tlb,
1357 		struct vm_area_struct *vma, unsigned long start_addr,
1358 		unsigned long end_addr)
1359 {
1360 	struct mm_struct *mm = vma->vm_mm;
1361 
1362 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1363 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1364 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1365 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1366 }
1367 
1368 /**
1369  * zap_page_range - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @start: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  * @details: details of nonlinear truncation or shared cache invalidation
1374  *
1375  * Caller must protect the VMA list
1376  */
1377 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1378 		unsigned long size, struct zap_details *details)
1379 {
1380 	struct mm_struct *mm = vma->vm_mm;
1381 	struct mmu_gather tlb;
1382 	unsigned long end = start + size;
1383 
1384 	lru_add_drain();
1385 	tlb_gather_mmu(&tlb, mm, start, end);
1386 	update_hiwater_rss(mm);
1387 	mmu_notifier_invalidate_range_start(mm, start, end);
1388 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1389 		unmap_single_vma(&tlb, vma, start, end, details);
1390 	mmu_notifier_invalidate_range_end(mm, start, end);
1391 	tlb_finish_mmu(&tlb, start, end);
1392 }
1393 
1394 /**
1395  * zap_page_range_single - remove user pages in a given range
1396  * @vma: vm_area_struct holding the applicable pages
1397  * @address: starting address of pages to zap
1398  * @size: number of bytes to zap
1399  * @details: details of nonlinear truncation or shared cache invalidation
1400  *
1401  * The range must fit into one VMA.
1402  */
1403 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1404 		unsigned long size, struct zap_details *details)
1405 {
1406 	struct mm_struct *mm = vma->vm_mm;
1407 	struct mmu_gather tlb;
1408 	unsigned long end = address + size;
1409 
1410 	lru_add_drain();
1411 	tlb_gather_mmu(&tlb, mm, address, end);
1412 	update_hiwater_rss(mm);
1413 	mmu_notifier_invalidate_range_start(mm, address, end);
1414 	unmap_single_vma(&tlb, vma, address, end, details);
1415 	mmu_notifier_invalidate_range_end(mm, address, end);
1416 	tlb_finish_mmu(&tlb, address, end);
1417 }
1418 
1419 /**
1420  * zap_vma_ptes - remove ptes mapping the vma
1421  * @vma: vm_area_struct holding ptes to be zapped
1422  * @address: starting address of pages to zap
1423  * @size: number of bytes to zap
1424  *
1425  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1426  *
1427  * The entire address range must be fully contained within the vma.
1428  *
1429  * Returns 0 if successful.
1430  */
1431 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1432 		unsigned long size)
1433 {
1434 	if (address < vma->vm_start || address + size > vma->vm_end ||
1435 	    		!(vma->vm_flags & VM_PFNMAP))
1436 		return -1;
1437 	zap_page_range_single(vma, address, size, NULL);
1438 	return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1441 
1442 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1443 			spinlock_t **ptl)
1444 {
1445 	pgd_t * pgd = pgd_offset(mm, addr);
1446 	pud_t * pud = pud_alloc(mm, pgd, addr);
1447 	if (pud) {
1448 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1449 		if (pmd) {
1450 			VM_BUG_ON(pmd_trans_huge(*pmd));
1451 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1452 		}
1453 	}
1454 	return NULL;
1455 }
1456 
1457 /*
1458  * This is the old fallback for page remapping.
1459  *
1460  * For historical reasons, it only allows reserved pages. Only
1461  * old drivers should use this, and they needed to mark their
1462  * pages reserved for the old functions anyway.
1463  */
1464 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1465 			struct page *page, pgprot_t prot)
1466 {
1467 	struct mm_struct *mm = vma->vm_mm;
1468 	int retval;
1469 	pte_t *pte;
1470 	spinlock_t *ptl;
1471 
1472 	retval = -EINVAL;
1473 	if (PageAnon(page))
1474 		goto out;
1475 	retval = -ENOMEM;
1476 	flush_dcache_page(page);
1477 	pte = get_locked_pte(mm, addr, &ptl);
1478 	if (!pte)
1479 		goto out;
1480 	retval = -EBUSY;
1481 	if (!pte_none(*pte))
1482 		goto out_unlock;
1483 
1484 	/* Ok, finally just insert the thing.. */
1485 	get_page(page);
1486 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1487 	page_add_file_rmap(page);
1488 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1489 
1490 	retval = 0;
1491 	pte_unmap_unlock(pte, ptl);
1492 	return retval;
1493 out_unlock:
1494 	pte_unmap_unlock(pte, ptl);
1495 out:
1496 	return retval;
1497 }
1498 
1499 /**
1500  * vm_insert_page - insert single page into user vma
1501  * @vma: user vma to map to
1502  * @addr: target user address of this page
1503  * @page: source kernel page
1504  *
1505  * This allows drivers to insert individual pages they've allocated
1506  * into a user vma.
1507  *
1508  * The page has to be a nice clean _individual_ kernel allocation.
1509  * If you allocate a compound page, you need to have marked it as
1510  * such (__GFP_COMP), or manually just split the page up yourself
1511  * (see split_page()).
1512  *
1513  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1514  * took an arbitrary page protection parameter. This doesn't allow
1515  * that. Your vma protection will have to be set up correctly, which
1516  * means that if you want a shared writable mapping, you'd better
1517  * ask for a shared writable mapping!
1518  *
1519  * The page does not need to be reserved.
1520  *
1521  * Usually this function is called from f_op->mmap() handler
1522  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1523  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1524  * function from other places, for example from page-fault handler.
1525  */
1526 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1527 			struct page *page)
1528 {
1529 	if (addr < vma->vm_start || addr >= vma->vm_end)
1530 		return -EFAULT;
1531 	if (!page_count(page))
1532 		return -EINVAL;
1533 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1534 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1535 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1536 		vma->vm_flags |= VM_MIXEDMAP;
1537 	}
1538 	return insert_page(vma, addr, page, vma->vm_page_prot);
1539 }
1540 EXPORT_SYMBOL(vm_insert_page);
1541 
1542 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1543 			unsigned long pfn, pgprot_t prot)
1544 {
1545 	struct mm_struct *mm = vma->vm_mm;
1546 	int retval;
1547 	pte_t *pte, entry;
1548 	spinlock_t *ptl;
1549 
1550 	retval = -ENOMEM;
1551 	pte = get_locked_pte(mm, addr, &ptl);
1552 	if (!pte)
1553 		goto out;
1554 	retval = -EBUSY;
1555 	if (!pte_none(*pte))
1556 		goto out_unlock;
1557 
1558 	/* Ok, finally just insert the thing.. */
1559 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1560 	set_pte_at(mm, addr, pte, entry);
1561 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1562 
1563 	retval = 0;
1564 out_unlock:
1565 	pte_unmap_unlock(pte, ptl);
1566 out:
1567 	return retval;
1568 }
1569 
1570 /**
1571  * vm_insert_pfn - insert single pfn into user vma
1572  * @vma: user vma to map to
1573  * @addr: target user address of this page
1574  * @pfn: source kernel pfn
1575  *
1576  * Similar to vm_insert_page, this allows drivers to insert individual pages
1577  * they've allocated into a user vma. Same comments apply.
1578  *
1579  * This function should only be called from a vm_ops->fault handler, and
1580  * in that case the handler should return NULL.
1581  *
1582  * vma cannot be a COW mapping.
1583  *
1584  * As this is called only for pages that do not currently exist, we
1585  * do not need to flush old virtual caches or the TLB.
1586  */
1587 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1588 			unsigned long pfn)
1589 {
1590 	int ret;
1591 	pgprot_t pgprot = vma->vm_page_prot;
1592 	/*
1593 	 * Technically, architectures with pte_special can avoid all these
1594 	 * restrictions (same for remap_pfn_range).  However we would like
1595 	 * consistency in testing and feature parity among all, so we should
1596 	 * try to keep these invariants in place for everybody.
1597 	 */
1598 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1599 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1600 						(VM_PFNMAP|VM_MIXEDMAP));
1601 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1602 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1603 
1604 	if (addr < vma->vm_start || addr >= vma->vm_end)
1605 		return -EFAULT;
1606 	if (track_pfn_insert(vma, &pgprot, pfn))
1607 		return -EINVAL;
1608 
1609 	ret = insert_pfn(vma, addr, pfn, pgprot);
1610 
1611 	return ret;
1612 }
1613 EXPORT_SYMBOL(vm_insert_pfn);
1614 
1615 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1616 			unsigned long pfn)
1617 {
1618 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1619 
1620 	if (addr < vma->vm_start || addr >= vma->vm_end)
1621 		return -EFAULT;
1622 
1623 	/*
1624 	 * If we don't have pte special, then we have to use the pfn_valid()
1625 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1626 	 * refcount the page if pfn_valid is true (hence insert_page rather
1627 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1628 	 * without pte special, it would there be refcounted as a normal page.
1629 	 */
1630 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1631 		struct page *page;
1632 
1633 		page = pfn_to_page(pfn);
1634 		return insert_page(vma, addr, page, vma->vm_page_prot);
1635 	}
1636 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1637 }
1638 EXPORT_SYMBOL(vm_insert_mixed);
1639 
1640 /*
1641  * maps a range of physical memory into the requested pages. the old
1642  * mappings are removed. any references to nonexistent pages results
1643  * in null mappings (currently treated as "copy-on-access")
1644  */
1645 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1646 			unsigned long addr, unsigned long end,
1647 			unsigned long pfn, pgprot_t prot)
1648 {
1649 	pte_t *pte;
1650 	spinlock_t *ptl;
1651 
1652 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1653 	if (!pte)
1654 		return -ENOMEM;
1655 	arch_enter_lazy_mmu_mode();
1656 	do {
1657 		BUG_ON(!pte_none(*pte));
1658 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1659 		pfn++;
1660 	} while (pte++, addr += PAGE_SIZE, addr != end);
1661 	arch_leave_lazy_mmu_mode();
1662 	pte_unmap_unlock(pte - 1, ptl);
1663 	return 0;
1664 }
1665 
1666 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1667 			unsigned long addr, unsigned long end,
1668 			unsigned long pfn, pgprot_t prot)
1669 {
1670 	pmd_t *pmd;
1671 	unsigned long next;
1672 
1673 	pfn -= addr >> PAGE_SHIFT;
1674 	pmd = pmd_alloc(mm, pud, addr);
1675 	if (!pmd)
1676 		return -ENOMEM;
1677 	VM_BUG_ON(pmd_trans_huge(*pmd));
1678 	do {
1679 		next = pmd_addr_end(addr, end);
1680 		if (remap_pte_range(mm, pmd, addr, next,
1681 				pfn + (addr >> PAGE_SHIFT), prot))
1682 			return -ENOMEM;
1683 	} while (pmd++, addr = next, addr != end);
1684 	return 0;
1685 }
1686 
1687 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1688 			unsigned long addr, unsigned long end,
1689 			unsigned long pfn, pgprot_t prot)
1690 {
1691 	pud_t *pud;
1692 	unsigned long next;
1693 
1694 	pfn -= addr >> PAGE_SHIFT;
1695 	pud = pud_alloc(mm, pgd, addr);
1696 	if (!pud)
1697 		return -ENOMEM;
1698 	do {
1699 		next = pud_addr_end(addr, end);
1700 		if (remap_pmd_range(mm, pud, addr, next,
1701 				pfn + (addr >> PAGE_SHIFT), prot))
1702 			return -ENOMEM;
1703 	} while (pud++, addr = next, addr != end);
1704 	return 0;
1705 }
1706 
1707 /**
1708  * remap_pfn_range - remap kernel memory to userspace
1709  * @vma: user vma to map to
1710  * @addr: target user address to start at
1711  * @pfn: physical address of kernel memory
1712  * @size: size of map area
1713  * @prot: page protection flags for this mapping
1714  *
1715  *  Note: this is only safe if the mm semaphore is held when called.
1716  */
1717 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1718 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1719 {
1720 	pgd_t *pgd;
1721 	unsigned long next;
1722 	unsigned long end = addr + PAGE_ALIGN(size);
1723 	struct mm_struct *mm = vma->vm_mm;
1724 	int err;
1725 
1726 	/*
1727 	 * Physically remapped pages are special. Tell the
1728 	 * rest of the world about it:
1729 	 *   VM_IO tells people not to look at these pages
1730 	 *	(accesses can have side effects).
1731 	 *   VM_PFNMAP tells the core MM that the base pages are just
1732 	 *	raw PFN mappings, and do not have a "struct page" associated
1733 	 *	with them.
1734 	 *   VM_DONTEXPAND
1735 	 *      Disable vma merging and expanding with mremap().
1736 	 *   VM_DONTDUMP
1737 	 *      Omit vma from core dump, even when VM_IO turned off.
1738 	 *
1739 	 * There's a horrible special case to handle copy-on-write
1740 	 * behaviour that some programs depend on. We mark the "original"
1741 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1742 	 * See vm_normal_page() for details.
1743 	 */
1744 	if (is_cow_mapping(vma->vm_flags)) {
1745 		if (addr != vma->vm_start || end != vma->vm_end)
1746 			return -EINVAL;
1747 		vma->vm_pgoff = pfn;
1748 	}
1749 
1750 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1751 	if (err)
1752 		return -EINVAL;
1753 
1754 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1755 
1756 	BUG_ON(addr >= end);
1757 	pfn -= addr >> PAGE_SHIFT;
1758 	pgd = pgd_offset(mm, addr);
1759 	flush_cache_range(vma, addr, end);
1760 	do {
1761 		next = pgd_addr_end(addr, end);
1762 		err = remap_pud_range(mm, pgd, addr, next,
1763 				pfn + (addr >> PAGE_SHIFT), prot);
1764 		if (err)
1765 			break;
1766 	} while (pgd++, addr = next, addr != end);
1767 
1768 	if (err)
1769 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1770 
1771 	return err;
1772 }
1773 EXPORT_SYMBOL(remap_pfn_range);
1774 
1775 /**
1776  * vm_iomap_memory - remap memory to userspace
1777  * @vma: user vma to map to
1778  * @start: start of area
1779  * @len: size of area
1780  *
1781  * This is a simplified io_remap_pfn_range() for common driver use. The
1782  * driver just needs to give us the physical memory range to be mapped,
1783  * we'll figure out the rest from the vma information.
1784  *
1785  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1786  * whatever write-combining details or similar.
1787  */
1788 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1789 {
1790 	unsigned long vm_len, pfn, pages;
1791 
1792 	/* Check that the physical memory area passed in looks valid */
1793 	if (start + len < start)
1794 		return -EINVAL;
1795 	/*
1796 	 * You *really* shouldn't map things that aren't page-aligned,
1797 	 * but we've historically allowed it because IO memory might
1798 	 * just have smaller alignment.
1799 	 */
1800 	len += start & ~PAGE_MASK;
1801 	pfn = start >> PAGE_SHIFT;
1802 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1803 	if (pfn + pages < pfn)
1804 		return -EINVAL;
1805 
1806 	/* We start the mapping 'vm_pgoff' pages into the area */
1807 	if (vma->vm_pgoff > pages)
1808 		return -EINVAL;
1809 	pfn += vma->vm_pgoff;
1810 	pages -= vma->vm_pgoff;
1811 
1812 	/* Can we fit all of the mapping? */
1813 	vm_len = vma->vm_end - vma->vm_start;
1814 	if (vm_len >> PAGE_SHIFT > pages)
1815 		return -EINVAL;
1816 
1817 	/* Ok, let it rip */
1818 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1819 }
1820 EXPORT_SYMBOL(vm_iomap_memory);
1821 
1822 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1823 				     unsigned long addr, unsigned long end,
1824 				     pte_fn_t fn, void *data)
1825 {
1826 	pte_t *pte;
1827 	int err;
1828 	pgtable_t token;
1829 	spinlock_t *uninitialized_var(ptl);
1830 
1831 	pte = (mm == &init_mm) ?
1832 		pte_alloc_kernel(pmd, addr) :
1833 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1834 	if (!pte)
1835 		return -ENOMEM;
1836 
1837 	BUG_ON(pmd_huge(*pmd));
1838 
1839 	arch_enter_lazy_mmu_mode();
1840 
1841 	token = pmd_pgtable(*pmd);
1842 
1843 	do {
1844 		err = fn(pte++, token, addr, data);
1845 		if (err)
1846 			break;
1847 	} while (addr += PAGE_SIZE, addr != end);
1848 
1849 	arch_leave_lazy_mmu_mode();
1850 
1851 	if (mm != &init_mm)
1852 		pte_unmap_unlock(pte-1, ptl);
1853 	return err;
1854 }
1855 
1856 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1857 				     unsigned long addr, unsigned long end,
1858 				     pte_fn_t fn, void *data)
1859 {
1860 	pmd_t *pmd;
1861 	unsigned long next;
1862 	int err;
1863 
1864 	BUG_ON(pud_huge(*pud));
1865 
1866 	pmd = pmd_alloc(mm, pud, addr);
1867 	if (!pmd)
1868 		return -ENOMEM;
1869 	do {
1870 		next = pmd_addr_end(addr, end);
1871 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1872 		if (err)
1873 			break;
1874 	} while (pmd++, addr = next, addr != end);
1875 	return err;
1876 }
1877 
1878 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1879 				     unsigned long addr, unsigned long end,
1880 				     pte_fn_t fn, void *data)
1881 {
1882 	pud_t *pud;
1883 	unsigned long next;
1884 	int err;
1885 
1886 	pud = pud_alloc(mm, pgd, addr);
1887 	if (!pud)
1888 		return -ENOMEM;
1889 	do {
1890 		next = pud_addr_end(addr, end);
1891 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1892 		if (err)
1893 			break;
1894 	} while (pud++, addr = next, addr != end);
1895 	return err;
1896 }
1897 
1898 /*
1899  * Scan a region of virtual memory, filling in page tables as necessary
1900  * and calling a provided function on each leaf page table.
1901  */
1902 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1903 			unsigned long size, pte_fn_t fn, void *data)
1904 {
1905 	pgd_t *pgd;
1906 	unsigned long next;
1907 	unsigned long end = addr + size;
1908 	int err;
1909 
1910 	BUG_ON(addr >= end);
1911 	pgd = pgd_offset(mm, addr);
1912 	do {
1913 		next = pgd_addr_end(addr, end);
1914 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1915 		if (err)
1916 			break;
1917 	} while (pgd++, addr = next, addr != end);
1918 
1919 	return err;
1920 }
1921 EXPORT_SYMBOL_GPL(apply_to_page_range);
1922 
1923 /*
1924  * handle_pte_fault chooses page fault handler according to an entry
1925  * which was read non-atomically.  Before making any commitment, on
1926  * those architectures or configurations (e.g. i386 with PAE) which
1927  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1928  * must check under lock before unmapping the pte and proceeding
1929  * (but do_wp_page is only called after already making such a check;
1930  * and do_anonymous_page can safely check later on).
1931  */
1932 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1933 				pte_t *page_table, pte_t orig_pte)
1934 {
1935 	int same = 1;
1936 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1937 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1938 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1939 		spin_lock(ptl);
1940 		same = pte_same(*page_table, orig_pte);
1941 		spin_unlock(ptl);
1942 	}
1943 #endif
1944 	pte_unmap(page_table);
1945 	return same;
1946 }
1947 
1948 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1949 {
1950 	debug_dma_assert_idle(src);
1951 
1952 	/*
1953 	 * If the source page was a PFN mapping, we don't have
1954 	 * a "struct page" for it. We do a best-effort copy by
1955 	 * just copying from the original user address. If that
1956 	 * fails, we just zero-fill it. Live with it.
1957 	 */
1958 	if (unlikely(!src)) {
1959 		void *kaddr = kmap_atomic(dst);
1960 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1961 
1962 		/*
1963 		 * This really shouldn't fail, because the page is there
1964 		 * in the page tables. But it might just be unreadable,
1965 		 * in which case we just give up and fill the result with
1966 		 * zeroes.
1967 		 */
1968 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1969 			clear_page(kaddr);
1970 		kunmap_atomic(kaddr);
1971 		flush_dcache_page(dst);
1972 	} else
1973 		copy_user_highpage(dst, src, va, vma);
1974 }
1975 
1976 /*
1977  * Notify the address space that the page is about to become writable so that
1978  * it can prohibit this or wait for the page to get into an appropriate state.
1979  *
1980  * We do this without the lock held, so that it can sleep if it needs to.
1981  */
1982 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1983 	       unsigned long address)
1984 {
1985 	struct vm_fault vmf;
1986 	int ret;
1987 
1988 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1989 	vmf.pgoff = page->index;
1990 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1991 	vmf.page = page;
1992 
1993 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1994 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1995 		return ret;
1996 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1997 		lock_page(page);
1998 		if (!page->mapping) {
1999 			unlock_page(page);
2000 			return 0; /* retry */
2001 		}
2002 		ret |= VM_FAULT_LOCKED;
2003 	} else
2004 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2005 	return ret;
2006 }
2007 
2008 /*
2009  * This routine handles present pages, when users try to write
2010  * to a shared page. It is done by copying the page to a new address
2011  * and decrementing the shared-page counter for the old page.
2012  *
2013  * Note that this routine assumes that the protection checks have been
2014  * done by the caller (the low-level page fault routine in most cases).
2015  * Thus we can safely just mark it writable once we've done any necessary
2016  * COW.
2017  *
2018  * We also mark the page dirty at this point even though the page will
2019  * change only once the write actually happens. This avoids a few races,
2020  * and potentially makes it more efficient.
2021  *
2022  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2023  * but allow concurrent faults), with pte both mapped and locked.
2024  * We return with mmap_sem still held, but pte unmapped and unlocked.
2025  */
2026 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2027 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2028 		spinlock_t *ptl, pte_t orig_pte)
2029 	__releases(ptl)
2030 {
2031 	struct page *old_page, *new_page = NULL;
2032 	pte_t entry;
2033 	int ret = 0;
2034 	int page_mkwrite = 0;
2035 	struct page *dirty_page = NULL;
2036 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2037 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2038 	struct mem_cgroup *memcg;
2039 
2040 	old_page = vm_normal_page(vma, address, orig_pte);
2041 	if (!old_page) {
2042 		/*
2043 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2044 		 * VM_PFNMAP VMA.
2045 		 *
2046 		 * We should not cow pages in a shared writeable mapping.
2047 		 * Just mark the pages writable as we can't do any dirty
2048 		 * accounting on raw pfn maps.
2049 		 */
2050 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2051 				     (VM_WRITE|VM_SHARED))
2052 			goto reuse;
2053 		goto gotten;
2054 	}
2055 
2056 	/*
2057 	 * Take out anonymous pages first, anonymous shared vmas are
2058 	 * not dirty accountable.
2059 	 */
2060 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2061 		if (!trylock_page(old_page)) {
2062 			page_cache_get(old_page);
2063 			pte_unmap_unlock(page_table, ptl);
2064 			lock_page(old_page);
2065 			page_table = pte_offset_map_lock(mm, pmd, address,
2066 							 &ptl);
2067 			if (!pte_same(*page_table, orig_pte)) {
2068 				unlock_page(old_page);
2069 				goto unlock;
2070 			}
2071 			page_cache_release(old_page);
2072 		}
2073 		if (reuse_swap_page(old_page)) {
2074 			/*
2075 			 * The page is all ours.  Move it to our anon_vma so
2076 			 * the rmap code will not search our parent or siblings.
2077 			 * Protected against the rmap code by the page lock.
2078 			 */
2079 			page_move_anon_rmap(old_page, vma, address);
2080 			unlock_page(old_page);
2081 			goto reuse;
2082 		}
2083 		unlock_page(old_page);
2084 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2085 					(VM_WRITE|VM_SHARED))) {
2086 		/*
2087 		 * Only catch write-faults on shared writable pages,
2088 		 * read-only shared pages can get COWed by
2089 		 * get_user_pages(.write=1, .force=1).
2090 		 */
2091 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2092 			int tmp;
2093 			page_cache_get(old_page);
2094 			pte_unmap_unlock(page_table, ptl);
2095 			tmp = do_page_mkwrite(vma, old_page, address);
2096 			if (unlikely(!tmp || (tmp &
2097 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2098 				page_cache_release(old_page);
2099 				return tmp;
2100 			}
2101 			/*
2102 			 * Since we dropped the lock we need to revalidate
2103 			 * the PTE as someone else may have changed it.  If
2104 			 * they did, we just return, as we can count on the
2105 			 * MMU to tell us if they didn't also make it writable.
2106 			 */
2107 			page_table = pte_offset_map_lock(mm, pmd, address,
2108 							 &ptl);
2109 			if (!pte_same(*page_table, orig_pte)) {
2110 				unlock_page(old_page);
2111 				goto unlock;
2112 			}
2113 
2114 			page_mkwrite = 1;
2115 		}
2116 		dirty_page = old_page;
2117 		get_page(dirty_page);
2118 
2119 reuse:
2120 		/*
2121 		 * Clear the pages cpupid information as the existing
2122 		 * information potentially belongs to a now completely
2123 		 * unrelated process.
2124 		 */
2125 		if (old_page)
2126 			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2127 
2128 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2129 		entry = pte_mkyoung(orig_pte);
2130 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2131 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2132 			update_mmu_cache(vma, address, page_table);
2133 		pte_unmap_unlock(page_table, ptl);
2134 		ret |= VM_FAULT_WRITE;
2135 
2136 		if (!dirty_page)
2137 			return ret;
2138 
2139 		/*
2140 		 * Yes, Virginia, this is actually required to prevent a race
2141 		 * with clear_page_dirty_for_io() from clearing the page dirty
2142 		 * bit after it clear all dirty ptes, but before a racing
2143 		 * do_wp_page installs a dirty pte.
2144 		 *
2145 		 * do_shared_fault is protected similarly.
2146 		 */
2147 		if (!page_mkwrite) {
2148 			wait_on_page_locked(dirty_page);
2149 			set_page_dirty_balance(dirty_page);
2150 			/* file_update_time outside page_lock */
2151 			if (vma->vm_file)
2152 				file_update_time(vma->vm_file);
2153 		}
2154 		put_page(dirty_page);
2155 		if (page_mkwrite) {
2156 			struct address_space *mapping = dirty_page->mapping;
2157 
2158 			set_page_dirty(dirty_page);
2159 			unlock_page(dirty_page);
2160 			page_cache_release(dirty_page);
2161 			if (mapping)	{
2162 				/*
2163 				 * Some device drivers do not set page.mapping
2164 				 * but still dirty their pages
2165 				 */
2166 				balance_dirty_pages_ratelimited(mapping);
2167 			}
2168 		}
2169 
2170 		return ret;
2171 	}
2172 
2173 	/*
2174 	 * Ok, we need to copy. Oh, well..
2175 	 */
2176 	page_cache_get(old_page);
2177 gotten:
2178 	pte_unmap_unlock(page_table, ptl);
2179 
2180 	if (unlikely(anon_vma_prepare(vma)))
2181 		goto oom;
2182 
2183 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2184 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2185 		if (!new_page)
2186 			goto oom;
2187 	} else {
2188 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2189 		if (!new_page)
2190 			goto oom;
2191 		cow_user_page(new_page, old_page, address, vma);
2192 	}
2193 	__SetPageUptodate(new_page);
2194 
2195 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2196 		goto oom_free_new;
2197 
2198 	mmun_start  = address & PAGE_MASK;
2199 	mmun_end    = mmun_start + PAGE_SIZE;
2200 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2201 
2202 	/*
2203 	 * Re-check the pte - we dropped the lock
2204 	 */
2205 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2206 	if (likely(pte_same(*page_table, orig_pte))) {
2207 		if (old_page) {
2208 			if (!PageAnon(old_page)) {
2209 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2210 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2211 			}
2212 		} else
2213 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2214 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2215 		entry = mk_pte(new_page, vma->vm_page_prot);
2216 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2217 		/*
2218 		 * Clear the pte entry and flush it first, before updating the
2219 		 * pte with the new entry. This will avoid a race condition
2220 		 * seen in the presence of one thread doing SMC and another
2221 		 * thread doing COW.
2222 		 */
2223 		ptep_clear_flush(vma, address, page_table);
2224 		page_add_new_anon_rmap(new_page, vma, address);
2225 		mem_cgroup_commit_charge(new_page, memcg, false);
2226 		lru_cache_add_active_or_unevictable(new_page, vma);
2227 		/*
2228 		 * We call the notify macro here because, when using secondary
2229 		 * mmu page tables (such as kvm shadow page tables), we want the
2230 		 * new page to be mapped directly into the secondary page table.
2231 		 */
2232 		set_pte_at_notify(mm, address, page_table, entry);
2233 		update_mmu_cache(vma, address, page_table);
2234 		if (old_page) {
2235 			/*
2236 			 * Only after switching the pte to the new page may
2237 			 * we remove the mapcount here. Otherwise another
2238 			 * process may come and find the rmap count decremented
2239 			 * before the pte is switched to the new page, and
2240 			 * "reuse" the old page writing into it while our pte
2241 			 * here still points into it and can be read by other
2242 			 * threads.
2243 			 *
2244 			 * The critical issue is to order this
2245 			 * page_remove_rmap with the ptp_clear_flush above.
2246 			 * Those stores are ordered by (if nothing else,)
2247 			 * the barrier present in the atomic_add_negative
2248 			 * in page_remove_rmap.
2249 			 *
2250 			 * Then the TLB flush in ptep_clear_flush ensures that
2251 			 * no process can access the old page before the
2252 			 * decremented mapcount is visible. And the old page
2253 			 * cannot be reused until after the decremented
2254 			 * mapcount is visible. So transitively, TLBs to
2255 			 * old page will be flushed before it can be reused.
2256 			 */
2257 			page_remove_rmap(old_page);
2258 		}
2259 
2260 		/* Free the old page.. */
2261 		new_page = old_page;
2262 		ret |= VM_FAULT_WRITE;
2263 	} else
2264 		mem_cgroup_cancel_charge(new_page, memcg);
2265 
2266 	if (new_page)
2267 		page_cache_release(new_page);
2268 unlock:
2269 	pte_unmap_unlock(page_table, ptl);
2270 	if (mmun_end > mmun_start)
2271 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2272 	if (old_page) {
2273 		/*
2274 		 * Don't let another task, with possibly unlocked vma,
2275 		 * keep the mlocked page.
2276 		 */
2277 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2278 			lock_page(old_page);	/* LRU manipulation */
2279 			munlock_vma_page(old_page);
2280 			unlock_page(old_page);
2281 		}
2282 		page_cache_release(old_page);
2283 	}
2284 	return ret;
2285 oom_free_new:
2286 	page_cache_release(new_page);
2287 oom:
2288 	if (old_page)
2289 		page_cache_release(old_page);
2290 	return VM_FAULT_OOM;
2291 }
2292 
2293 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2294 		unsigned long start_addr, unsigned long end_addr,
2295 		struct zap_details *details)
2296 {
2297 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2298 }
2299 
2300 static inline void unmap_mapping_range_tree(struct rb_root *root,
2301 					    struct zap_details *details)
2302 {
2303 	struct vm_area_struct *vma;
2304 	pgoff_t vba, vea, zba, zea;
2305 
2306 	vma_interval_tree_foreach(vma, root,
2307 			details->first_index, details->last_index) {
2308 
2309 		vba = vma->vm_pgoff;
2310 		vea = vba + vma_pages(vma) - 1;
2311 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2312 		zba = details->first_index;
2313 		if (zba < vba)
2314 			zba = vba;
2315 		zea = details->last_index;
2316 		if (zea > vea)
2317 			zea = vea;
2318 
2319 		unmap_mapping_range_vma(vma,
2320 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2321 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2322 				details);
2323 	}
2324 }
2325 
2326 static inline void unmap_mapping_range_list(struct list_head *head,
2327 					    struct zap_details *details)
2328 {
2329 	struct vm_area_struct *vma;
2330 
2331 	/*
2332 	 * In nonlinear VMAs there is no correspondence between virtual address
2333 	 * offset and file offset.  So we must perform an exhaustive search
2334 	 * across *all* the pages in each nonlinear VMA, not just the pages
2335 	 * whose virtual address lies outside the file truncation point.
2336 	 */
2337 	list_for_each_entry(vma, head, shared.nonlinear) {
2338 		details->nonlinear_vma = vma;
2339 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2340 	}
2341 }
2342 
2343 /**
2344  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2345  * @mapping: the address space containing mmaps to be unmapped.
2346  * @holebegin: byte in first page to unmap, relative to the start of
2347  * the underlying file.  This will be rounded down to a PAGE_SIZE
2348  * boundary.  Note that this is different from truncate_pagecache(), which
2349  * must keep the partial page.  In contrast, we must get rid of
2350  * partial pages.
2351  * @holelen: size of prospective hole in bytes.  This will be rounded
2352  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2353  * end of the file.
2354  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2355  * but 0 when invalidating pagecache, don't throw away private data.
2356  */
2357 void unmap_mapping_range(struct address_space *mapping,
2358 		loff_t const holebegin, loff_t const holelen, int even_cows)
2359 {
2360 	struct zap_details details;
2361 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2362 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2363 
2364 	/* Check for overflow. */
2365 	if (sizeof(holelen) > sizeof(hlen)) {
2366 		long long holeend =
2367 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2368 		if (holeend & ~(long long)ULONG_MAX)
2369 			hlen = ULONG_MAX - hba + 1;
2370 	}
2371 
2372 	details.check_mapping = even_cows? NULL: mapping;
2373 	details.nonlinear_vma = NULL;
2374 	details.first_index = hba;
2375 	details.last_index = hba + hlen - 1;
2376 	if (details.last_index < details.first_index)
2377 		details.last_index = ULONG_MAX;
2378 
2379 
2380 	i_mmap_lock_read(mapping);
2381 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2382 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2383 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2384 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2385 	i_mmap_unlock_read(mapping);
2386 }
2387 EXPORT_SYMBOL(unmap_mapping_range);
2388 
2389 /*
2390  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2391  * but allow concurrent faults), and pte mapped but not yet locked.
2392  * We return with pte unmapped and unlocked.
2393  *
2394  * We return with the mmap_sem locked or unlocked in the same cases
2395  * as does filemap_fault().
2396  */
2397 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2398 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2399 		unsigned int flags, pte_t orig_pte)
2400 {
2401 	spinlock_t *ptl;
2402 	struct page *page, *swapcache;
2403 	struct mem_cgroup *memcg;
2404 	swp_entry_t entry;
2405 	pte_t pte;
2406 	int locked;
2407 	int exclusive = 0;
2408 	int ret = 0;
2409 
2410 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2411 		goto out;
2412 
2413 	entry = pte_to_swp_entry(orig_pte);
2414 	if (unlikely(non_swap_entry(entry))) {
2415 		if (is_migration_entry(entry)) {
2416 			migration_entry_wait(mm, pmd, address);
2417 		} else if (is_hwpoison_entry(entry)) {
2418 			ret = VM_FAULT_HWPOISON;
2419 		} else {
2420 			print_bad_pte(vma, address, orig_pte, NULL);
2421 			ret = VM_FAULT_SIGBUS;
2422 		}
2423 		goto out;
2424 	}
2425 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2426 	page = lookup_swap_cache(entry);
2427 	if (!page) {
2428 		page = swapin_readahead(entry,
2429 					GFP_HIGHUSER_MOVABLE, vma, address);
2430 		if (!page) {
2431 			/*
2432 			 * Back out if somebody else faulted in this pte
2433 			 * while we released the pte lock.
2434 			 */
2435 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2436 			if (likely(pte_same(*page_table, orig_pte)))
2437 				ret = VM_FAULT_OOM;
2438 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2439 			goto unlock;
2440 		}
2441 
2442 		/* Had to read the page from swap area: Major fault */
2443 		ret = VM_FAULT_MAJOR;
2444 		count_vm_event(PGMAJFAULT);
2445 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2446 	} else if (PageHWPoison(page)) {
2447 		/*
2448 		 * hwpoisoned dirty swapcache pages are kept for killing
2449 		 * owner processes (which may be unknown at hwpoison time)
2450 		 */
2451 		ret = VM_FAULT_HWPOISON;
2452 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2453 		swapcache = page;
2454 		goto out_release;
2455 	}
2456 
2457 	swapcache = page;
2458 	locked = lock_page_or_retry(page, mm, flags);
2459 
2460 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2461 	if (!locked) {
2462 		ret |= VM_FAULT_RETRY;
2463 		goto out_release;
2464 	}
2465 
2466 	/*
2467 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2468 	 * release the swapcache from under us.  The page pin, and pte_same
2469 	 * test below, are not enough to exclude that.  Even if it is still
2470 	 * swapcache, we need to check that the page's swap has not changed.
2471 	 */
2472 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2473 		goto out_page;
2474 
2475 	page = ksm_might_need_to_copy(page, vma, address);
2476 	if (unlikely(!page)) {
2477 		ret = VM_FAULT_OOM;
2478 		page = swapcache;
2479 		goto out_page;
2480 	}
2481 
2482 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2483 		ret = VM_FAULT_OOM;
2484 		goto out_page;
2485 	}
2486 
2487 	/*
2488 	 * Back out if somebody else already faulted in this pte.
2489 	 */
2490 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2491 	if (unlikely(!pte_same(*page_table, orig_pte)))
2492 		goto out_nomap;
2493 
2494 	if (unlikely(!PageUptodate(page))) {
2495 		ret = VM_FAULT_SIGBUS;
2496 		goto out_nomap;
2497 	}
2498 
2499 	/*
2500 	 * The page isn't present yet, go ahead with the fault.
2501 	 *
2502 	 * Be careful about the sequence of operations here.
2503 	 * To get its accounting right, reuse_swap_page() must be called
2504 	 * while the page is counted on swap but not yet in mapcount i.e.
2505 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2506 	 * must be called after the swap_free(), or it will never succeed.
2507 	 */
2508 
2509 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2510 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2511 	pte = mk_pte(page, vma->vm_page_prot);
2512 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2513 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2514 		flags &= ~FAULT_FLAG_WRITE;
2515 		ret |= VM_FAULT_WRITE;
2516 		exclusive = 1;
2517 	}
2518 	flush_icache_page(vma, page);
2519 	if (pte_swp_soft_dirty(orig_pte))
2520 		pte = pte_mksoft_dirty(pte);
2521 	set_pte_at(mm, address, page_table, pte);
2522 	if (page == swapcache) {
2523 		do_page_add_anon_rmap(page, vma, address, exclusive);
2524 		mem_cgroup_commit_charge(page, memcg, true);
2525 	} else { /* ksm created a completely new copy */
2526 		page_add_new_anon_rmap(page, vma, address);
2527 		mem_cgroup_commit_charge(page, memcg, false);
2528 		lru_cache_add_active_or_unevictable(page, vma);
2529 	}
2530 
2531 	swap_free(entry);
2532 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2533 		try_to_free_swap(page);
2534 	unlock_page(page);
2535 	if (page != swapcache) {
2536 		/*
2537 		 * Hold the lock to avoid the swap entry to be reused
2538 		 * until we take the PT lock for the pte_same() check
2539 		 * (to avoid false positives from pte_same). For
2540 		 * further safety release the lock after the swap_free
2541 		 * so that the swap count won't change under a
2542 		 * parallel locked swapcache.
2543 		 */
2544 		unlock_page(swapcache);
2545 		page_cache_release(swapcache);
2546 	}
2547 
2548 	if (flags & FAULT_FLAG_WRITE) {
2549 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2550 		if (ret & VM_FAULT_ERROR)
2551 			ret &= VM_FAULT_ERROR;
2552 		goto out;
2553 	}
2554 
2555 	/* No need to invalidate - it was non-present before */
2556 	update_mmu_cache(vma, address, page_table);
2557 unlock:
2558 	pte_unmap_unlock(page_table, ptl);
2559 out:
2560 	return ret;
2561 out_nomap:
2562 	mem_cgroup_cancel_charge(page, memcg);
2563 	pte_unmap_unlock(page_table, ptl);
2564 out_page:
2565 	unlock_page(page);
2566 out_release:
2567 	page_cache_release(page);
2568 	if (page != swapcache) {
2569 		unlock_page(swapcache);
2570 		page_cache_release(swapcache);
2571 	}
2572 	return ret;
2573 }
2574 
2575 /*
2576  * This is like a special single-page "expand_{down|up}wards()",
2577  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2578  * doesn't hit another vma.
2579  */
2580 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2581 {
2582 	address &= PAGE_MASK;
2583 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2584 		struct vm_area_struct *prev = vma->vm_prev;
2585 
2586 		/*
2587 		 * Is there a mapping abutting this one below?
2588 		 *
2589 		 * That's only ok if it's the same stack mapping
2590 		 * that has gotten split..
2591 		 */
2592 		if (prev && prev->vm_end == address)
2593 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2594 
2595 		expand_downwards(vma, address - PAGE_SIZE);
2596 	}
2597 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2598 		struct vm_area_struct *next = vma->vm_next;
2599 
2600 		/* As VM_GROWSDOWN but s/below/above/ */
2601 		if (next && next->vm_start == address + PAGE_SIZE)
2602 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2603 
2604 		expand_upwards(vma, address + PAGE_SIZE);
2605 	}
2606 	return 0;
2607 }
2608 
2609 /*
2610  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2611  * but allow concurrent faults), and pte mapped but not yet locked.
2612  * We return with mmap_sem still held, but pte unmapped and unlocked.
2613  */
2614 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2615 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2616 		unsigned int flags)
2617 {
2618 	struct mem_cgroup *memcg;
2619 	struct page *page;
2620 	spinlock_t *ptl;
2621 	pte_t entry;
2622 
2623 	pte_unmap(page_table);
2624 
2625 	/* Check if we need to add a guard page to the stack */
2626 	if (check_stack_guard_page(vma, address) < 0)
2627 		return VM_FAULT_SIGBUS;
2628 
2629 	/* Use the zero-page for reads */
2630 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2631 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2632 						vma->vm_page_prot));
2633 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2634 		if (!pte_none(*page_table))
2635 			goto unlock;
2636 		goto setpte;
2637 	}
2638 
2639 	/* Allocate our own private page. */
2640 	if (unlikely(anon_vma_prepare(vma)))
2641 		goto oom;
2642 	page = alloc_zeroed_user_highpage_movable(vma, address);
2643 	if (!page)
2644 		goto oom;
2645 	/*
2646 	 * The memory barrier inside __SetPageUptodate makes sure that
2647 	 * preceeding stores to the page contents become visible before
2648 	 * the set_pte_at() write.
2649 	 */
2650 	__SetPageUptodate(page);
2651 
2652 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2653 		goto oom_free_page;
2654 
2655 	entry = mk_pte(page, vma->vm_page_prot);
2656 	if (vma->vm_flags & VM_WRITE)
2657 		entry = pte_mkwrite(pte_mkdirty(entry));
2658 
2659 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2660 	if (!pte_none(*page_table))
2661 		goto release;
2662 
2663 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2664 	page_add_new_anon_rmap(page, vma, address);
2665 	mem_cgroup_commit_charge(page, memcg, false);
2666 	lru_cache_add_active_or_unevictable(page, vma);
2667 setpte:
2668 	set_pte_at(mm, address, page_table, entry);
2669 
2670 	/* No need to invalidate - it was non-present before */
2671 	update_mmu_cache(vma, address, page_table);
2672 unlock:
2673 	pte_unmap_unlock(page_table, ptl);
2674 	return 0;
2675 release:
2676 	mem_cgroup_cancel_charge(page, memcg);
2677 	page_cache_release(page);
2678 	goto unlock;
2679 oom_free_page:
2680 	page_cache_release(page);
2681 oom:
2682 	return VM_FAULT_OOM;
2683 }
2684 
2685 /*
2686  * The mmap_sem must have been held on entry, and may have been
2687  * released depending on flags and vma->vm_ops->fault() return value.
2688  * See filemap_fault() and __lock_page_retry().
2689  */
2690 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2691 		pgoff_t pgoff, unsigned int flags, struct page **page)
2692 {
2693 	struct vm_fault vmf;
2694 	int ret;
2695 
2696 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2697 	vmf.pgoff = pgoff;
2698 	vmf.flags = flags;
2699 	vmf.page = NULL;
2700 
2701 	ret = vma->vm_ops->fault(vma, &vmf);
2702 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2703 		return ret;
2704 
2705 	if (unlikely(PageHWPoison(vmf.page))) {
2706 		if (ret & VM_FAULT_LOCKED)
2707 			unlock_page(vmf.page);
2708 		page_cache_release(vmf.page);
2709 		return VM_FAULT_HWPOISON;
2710 	}
2711 
2712 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2713 		lock_page(vmf.page);
2714 	else
2715 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2716 
2717 	*page = vmf.page;
2718 	return ret;
2719 }
2720 
2721 /**
2722  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2723  *
2724  * @vma: virtual memory area
2725  * @address: user virtual address
2726  * @page: page to map
2727  * @pte: pointer to target page table entry
2728  * @write: true, if new entry is writable
2729  * @anon: true, if it's anonymous page
2730  *
2731  * Caller must hold page table lock relevant for @pte.
2732  *
2733  * Target users are page handler itself and implementations of
2734  * vm_ops->map_pages.
2735  */
2736 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2737 		struct page *page, pte_t *pte, bool write, bool anon)
2738 {
2739 	pte_t entry;
2740 
2741 	flush_icache_page(vma, page);
2742 	entry = mk_pte(page, vma->vm_page_prot);
2743 	if (write)
2744 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2745 	else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2746 		entry = pte_mksoft_dirty(entry);
2747 	if (anon) {
2748 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2749 		page_add_new_anon_rmap(page, vma, address);
2750 	} else {
2751 		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2752 		page_add_file_rmap(page);
2753 	}
2754 	set_pte_at(vma->vm_mm, address, pte, entry);
2755 
2756 	/* no need to invalidate: a not-present page won't be cached */
2757 	update_mmu_cache(vma, address, pte);
2758 }
2759 
2760 static unsigned long fault_around_bytes __read_mostly =
2761 	rounddown_pow_of_two(65536);
2762 
2763 #ifdef CONFIG_DEBUG_FS
2764 static int fault_around_bytes_get(void *data, u64 *val)
2765 {
2766 	*val = fault_around_bytes;
2767 	return 0;
2768 }
2769 
2770 /*
2771  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2772  * rounded down to nearest page order. It's what do_fault_around() expects to
2773  * see.
2774  */
2775 static int fault_around_bytes_set(void *data, u64 val)
2776 {
2777 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2778 		return -EINVAL;
2779 	if (val > PAGE_SIZE)
2780 		fault_around_bytes = rounddown_pow_of_two(val);
2781 	else
2782 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2783 	return 0;
2784 }
2785 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2786 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2787 
2788 static int __init fault_around_debugfs(void)
2789 {
2790 	void *ret;
2791 
2792 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2793 			&fault_around_bytes_fops);
2794 	if (!ret)
2795 		pr_warn("Failed to create fault_around_bytes in debugfs");
2796 	return 0;
2797 }
2798 late_initcall(fault_around_debugfs);
2799 #endif
2800 
2801 /*
2802  * do_fault_around() tries to map few pages around the fault address. The hope
2803  * is that the pages will be needed soon and this will lower the number of
2804  * faults to handle.
2805  *
2806  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2807  * not ready to be mapped: not up-to-date, locked, etc.
2808  *
2809  * This function is called with the page table lock taken. In the split ptlock
2810  * case the page table lock only protects only those entries which belong to
2811  * the page table corresponding to the fault address.
2812  *
2813  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2814  * only once.
2815  *
2816  * fault_around_pages() defines how many pages we'll try to map.
2817  * do_fault_around() expects it to return a power of two less than or equal to
2818  * PTRS_PER_PTE.
2819  *
2820  * The virtual address of the area that we map is naturally aligned to the
2821  * fault_around_pages() value (and therefore to page order).  This way it's
2822  * easier to guarantee that we don't cross page table boundaries.
2823  */
2824 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2825 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2826 {
2827 	unsigned long start_addr, nr_pages, mask;
2828 	pgoff_t max_pgoff;
2829 	struct vm_fault vmf;
2830 	int off;
2831 
2832 	nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2833 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2834 
2835 	start_addr = max(address & mask, vma->vm_start);
2836 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2837 	pte -= off;
2838 	pgoff -= off;
2839 
2840 	/*
2841 	 *  max_pgoff is either end of page table or end of vma
2842 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2843 	 */
2844 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2845 		PTRS_PER_PTE - 1;
2846 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2847 			pgoff + nr_pages - 1);
2848 
2849 	/* Check if it makes any sense to call ->map_pages */
2850 	while (!pte_none(*pte)) {
2851 		if (++pgoff > max_pgoff)
2852 			return;
2853 		start_addr += PAGE_SIZE;
2854 		if (start_addr >= vma->vm_end)
2855 			return;
2856 		pte++;
2857 	}
2858 
2859 	vmf.virtual_address = (void __user *) start_addr;
2860 	vmf.pte = pte;
2861 	vmf.pgoff = pgoff;
2862 	vmf.max_pgoff = max_pgoff;
2863 	vmf.flags = flags;
2864 	vma->vm_ops->map_pages(vma, &vmf);
2865 }
2866 
2867 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2868 		unsigned long address, pmd_t *pmd,
2869 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2870 {
2871 	struct page *fault_page;
2872 	spinlock_t *ptl;
2873 	pte_t *pte;
2874 	int ret = 0;
2875 
2876 	/*
2877 	 * Let's call ->map_pages() first and use ->fault() as fallback
2878 	 * if page by the offset is not ready to be mapped (cold cache or
2879 	 * something).
2880 	 */
2881 	if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2882 	    fault_around_bytes >> PAGE_SHIFT > 1) {
2883 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2884 		do_fault_around(vma, address, pte, pgoff, flags);
2885 		if (!pte_same(*pte, orig_pte))
2886 			goto unlock_out;
2887 		pte_unmap_unlock(pte, ptl);
2888 	}
2889 
2890 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2891 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2892 		return ret;
2893 
2894 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2895 	if (unlikely(!pte_same(*pte, orig_pte))) {
2896 		pte_unmap_unlock(pte, ptl);
2897 		unlock_page(fault_page);
2898 		page_cache_release(fault_page);
2899 		return ret;
2900 	}
2901 	do_set_pte(vma, address, fault_page, pte, false, false);
2902 	unlock_page(fault_page);
2903 unlock_out:
2904 	pte_unmap_unlock(pte, ptl);
2905 	return ret;
2906 }
2907 
2908 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2909 		unsigned long address, pmd_t *pmd,
2910 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2911 {
2912 	struct page *fault_page, *new_page;
2913 	struct mem_cgroup *memcg;
2914 	spinlock_t *ptl;
2915 	pte_t *pte;
2916 	int ret;
2917 
2918 	if (unlikely(anon_vma_prepare(vma)))
2919 		return VM_FAULT_OOM;
2920 
2921 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2922 	if (!new_page)
2923 		return VM_FAULT_OOM;
2924 
2925 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2926 		page_cache_release(new_page);
2927 		return VM_FAULT_OOM;
2928 	}
2929 
2930 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2931 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2932 		goto uncharge_out;
2933 
2934 	copy_user_highpage(new_page, fault_page, address, vma);
2935 	__SetPageUptodate(new_page);
2936 
2937 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2938 	if (unlikely(!pte_same(*pte, orig_pte))) {
2939 		pte_unmap_unlock(pte, ptl);
2940 		unlock_page(fault_page);
2941 		page_cache_release(fault_page);
2942 		goto uncharge_out;
2943 	}
2944 	do_set_pte(vma, address, new_page, pte, true, true);
2945 	mem_cgroup_commit_charge(new_page, memcg, false);
2946 	lru_cache_add_active_or_unevictable(new_page, vma);
2947 	pte_unmap_unlock(pte, ptl);
2948 	unlock_page(fault_page);
2949 	page_cache_release(fault_page);
2950 	return ret;
2951 uncharge_out:
2952 	mem_cgroup_cancel_charge(new_page, memcg);
2953 	page_cache_release(new_page);
2954 	return ret;
2955 }
2956 
2957 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2958 		unsigned long address, pmd_t *pmd,
2959 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2960 {
2961 	struct page *fault_page;
2962 	struct address_space *mapping;
2963 	spinlock_t *ptl;
2964 	pte_t *pte;
2965 	int dirtied = 0;
2966 	int ret, tmp;
2967 
2968 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2969 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2970 		return ret;
2971 
2972 	/*
2973 	 * Check if the backing address space wants to know that the page is
2974 	 * about to become writable
2975 	 */
2976 	if (vma->vm_ops->page_mkwrite) {
2977 		unlock_page(fault_page);
2978 		tmp = do_page_mkwrite(vma, fault_page, address);
2979 		if (unlikely(!tmp ||
2980 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2981 			page_cache_release(fault_page);
2982 			return tmp;
2983 		}
2984 	}
2985 
2986 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2987 	if (unlikely(!pte_same(*pte, orig_pte))) {
2988 		pte_unmap_unlock(pte, ptl);
2989 		unlock_page(fault_page);
2990 		page_cache_release(fault_page);
2991 		return ret;
2992 	}
2993 	do_set_pte(vma, address, fault_page, pte, true, false);
2994 	pte_unmap_unlock(pte, ptl);
2995 
2996 	if (set_page_dirty(fault_page))
2997 		dirtied = 1;
2998 	mapping = fault_page->mapping;
2999 	unlock_page(fault_page);
3000 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3001 		/*
3002 		 * Some device drivers do not set page.mapping but still
3003 		 * dirty their pages
3004 		 */
3005 		balance_dirty_pages_ratelimited(mapping);
3006 	}
3007 
3008 	/* file_update_time outside page_lock */
3009 	if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3010 		file_update_time(vma->vm_file);
3011 
3012 	return ret;
3013 }
3014 
3015 /*
3016  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3017  * but allow concurrent faults).
3018  * The mmap_sem may have been released depending on flags and our
3019  * return value.  See filemap_fault() and __lock_page_or_retry().
3020  */
3021 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3022 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3023 		unsigned int flags, pte_t orig_pte)
3024 {
3025 	pgoff_t pgoff = (((address & PAGE_MASK)
3026 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3027 
3028 	pte_unmap(page_table);
3029 	if (!(flags & FAULT_FLAG_WRITE))
3030 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3031 				orig_pte);
3032 	if (!(vma->vm_flags & VM_SHARED))
3033 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3034 				orig_pte);
3035 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3036 }
3037 
3038 /*
3039  * Fault of a previously existing named mapping. Repopulate the pte
3040  * from the encoded file_pte if possible. This enables swappable
3041  * nonlinear vmas.
3042  *
3043  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3044  * but allow concurrent faults), and pte mapped but not yet locked.
3045  * We return with pte unmapped and unlocked.
3046  * The mmap_sem may have been released depending on flags and our
3047  * return value.  See filemap_fault() and __lock_page_or_retry().
3048  */
3049 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3050 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3051 		unsigned int flags, pte_t orig_pte)
3052 {
3053 	pgoff_t pgoff;
3054 
3055 	flags |= FAULT_FLAG_NONLINEAR;
3056 
3057 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3058 		return 0;
3059 
3060 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3061 		/*
3062 		 * Page table corrupted: show pte and kill process.
3063 		 */
3064 		print_bad_pte(vma, address, orig_pte, NULL);
3065 		return VM_FAULT_SIGBUS;
3066 	}
3067 
3068 	pgoff = pte_to_pgoff(orig_pte);
3069 	if (!(flags & FAULT_FLAG_WRITE))
3070 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3071 				orig_pte);
3072 	if (!(vma->vm_flags & VM_SHARED))
3073 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3074 				orig_pte);
3075 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3076 }
3077 
3078 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3079 				unsigned long addr, int page_nid,
3080 				int *flags)
3081 {
3082 	get_page(page);
3083 
3084 	count_vm_numa_event(NUMA_HINT_FAULTS);
3085 	if (page_nid == numa_node_id()) {
3086 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3087 		*flags |= TNF_FAULT_LOCAL;
3088 	}
3089 
3090 	return mpol_misplaced(page, vma, addr);
3091 }
3092 
3093 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3094 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3095 {
3096 	struct page *page = NULL;
3097 	spinlock_t *ptl;
3098 	int page_nid = -1;
3099 	int last_cpupid;
3100 	int target_nid;
3101 	bool migrated = false;
3102 	int flags = 0;
3103 
3104 	/*
3105 	* The "pte" at this point cannot be used safely without
3106 	* validation through pte_unmap_same(). It's of NUMA type but
3107 	* the pfn may be screwed if the read is non atomic.
3108 	*
3109 	* ptep_modify_prot_start is not called as this is clearing
3110 	* the _PAGE_NUMA bit and it is not really expected that there
3111 	* would be concurrent hardware modifications to the PTE.
3112 	*/
3113 	ptl = pte_lockptr(mm, pmd);
3114 	spin_lock(ptl);
3115 	if (unlikely(!pte_same(*ptep, pte))) {
3116 		pte_unmap_unlock(ptep, ptl);
3117 		goto out;
3118 	}
3119 
3120 	pte = pte_mknonnuma(pte);
3121 	set_pte_at(mm, addr, ptep, pte);
3122 	update_mmu_cache(vma, addr, ptep);
3123 
3124 	page = vm_normal_page(vma, addr, pte);
3125 	if (!page) {
3126 		pte_unmap_unlock(ptep, ptl);
3127 		return 0;
3128 	}
3129 	BUG_ON(is_zero_pfn(page_to_pfn(page)));
3130 
3131 	/*
3132 	 * Avoid grouping on DSO/COW pages in specific and RO pages
3133 	 * in general, RO pages shouldn't hurt as much anyway since
3134 	 * they can be in shared cache state.
3135 	 */
3136 	if (!pte_write(pte))
3137 		flags |= TNF_NO_GROUP;
3138 
3139 	/*
3140 	 * Flag if the page is shared between multiple address spaces. This
3141 	 * is later used when determining whether to group tasks together
3142 	 */
3143 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3144 		flags |= TNF_SHARED;
3145 
3146 	last_cpupid = page_cpupid_last(page);
3147 	page_nid = page_to_nid(page);
3148 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3149 	pte_unmap_unlock(ptep, ptl);
3150 	if (target_nid == -1) {
3151 		put_page(page);
3152 		goto out;
3153 	}
3154 
3155 	/* Migrate to the requested node */
3156 	migrated = migrate_misplaced_page(page, vma, target_nid);
3157 	if (migrated) {
3158 		page_nid = target_nid;
3159 		flags |= TNF_MIGRATED;
3160 	}
3161 
3162 out:
3163 	if (page_nid != -1)
3164 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3165 	return 0;
3166 }
3167 
3168 /*
3169  * These routines also need to handle stuff like marking pages dirty
3170  * and/or accessed for architectures that don't do it in hardware (most
3171  * RISC architectures).  The early dirtying is also good on the i386.
3172  *
3173  * There is also a hook called "update_mmu_cache()" that architectures
3174  * with external mmu caches can use to update those (ie the Sparc or
3175  * PowerPC hashed page tables that act as extended TLBs).
3176  *
3177  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178  * but allow concurrent faults), and pte mapped but not yet locked.
3179  * We return with pte unmapped and unlocked.
3180  *
3181  * The mmap_sem may have been released depending on flags and our
3182  * return value.  See filemap_fault() and __lock_page_or_retry().
3183  */
3184 static int handle_pte_fault(struct mm_struct *mm,
3185 		     struct vm_area_struct *vma, unsigned long address,
3186 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3187 {
3188 	pte_t entry;
3189 	spinlock_t *ptl;
3190 
3191 	entry = ACCESS_ONCE(*pte);
3192 	if (!pte_present(entry)) {
3193 		if (pte_none(entry)) {
3194 			if (vma->vm_ops) {
3195 				if (likely(vma->vm_ops->fault))
3196 					return do_linear_fault(mm, vma, address,
3197 						pte, pmd, flags, entry);
3198 			}
3199 			return do_anonymous_page(mm, vma, address,
3200 						 pte, pmd, flags);
3201 		}
3202 		if (pte_file(entry))
3203 			return do_nonlinear_fault(mm, vma, address,
3204 					pte, pmd, flags, entry);
3205 		return do_swap_page(mm, vma, address,
3206 					pte, pmd, flags, entry);
3207 	}
3208 
3209 	if (pte_numa(entry))
3210 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3211 
3212 	ptl = pte_lockptr(mm, pmd);
3213 	spin_lock(ptl);
3214 	if (unlikely(!pte_same(*pte, entry)))
3215 		goto unlock;
3216 	if (flags & FAULT_FLAG_WRITE) {
3217 		if (!pte_write(entry))
3218 			return do_wp_page(mm, vma, address,
3219 					pte, pmd, ptl, entry);
3220 		entry = pte_mkdirty(entry);
3221 	}
3222 	entry = pte_mkyoung(entry);
3223 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3224 		update_mmu_cache(vma, address, pte);
3225 	} else {
3226 		/*
3227 		 * This is needed only for protection faults but the arch code
3228 		 * is not yet telling us if this is a protection fault or not.
3229 		 * This still avoids useless tlb flushes for .text page faults
3230 		 * with threads.
3231 		 */
3232 		if (flags & FAULT_FLAG_WRITE)
3233 			flush_tlb_fix_spurious_fault(vma, address);
3234 	}
3235 unlock:
3236 	pte_unmap_unlock(pte, ptl);
3237 	return 0;
3238 }
3239 
3240 /*
3241  * By the time we get here, we already hold the mm semaphore
3242  *
3243  * The mmap_sem may have been released depending on flags and our
3244  * return value.  See filemap_fault() and __lock_page_or_retry().
3245  */
3246 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3247 			     unsigned long address, unsigned int flags)
3248 {
3249 	pgd_t *pgd;
3250 	pud_t *pud;
3251 	pmd_t *pmd;
3252 	pte_t *pte;
3253 
3254 	if (unlikely(is_vm_hugetlb_page(vma)))
3255 		return hugetlb_fault(mm, vma, address, flags);
3256 
3257 	pgd = pgd_offset(mm, address);
3258 	pud = pud_alloc(mm, pgd, address);
3259 	if (!pud)
3260 		return VM_FAULT_OOM;
3261 	pmd = pmd_alloc(mm, pud, address);
3262 	if (!pmd)
3263 		return VM_FAULT_OOM;
3264 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3265 		int ret = VM_FAULT_FALLBACK;
3266 		if (!vma->vm_ops)
3267 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3268 					pmd, flags);
3269 		if (!(ret & VM_FAULT_FALLBACK))
3270 			return ret;
3271 	} else {
3272 		pmd_t orig_pmd = *pmd;
3273 		int ret;
3274 
3275 		barrier();
3276 		if (pmd_trans_huge(orig_pmd)) {
3277 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3278 
3279 			/*
3280 			 * If the pmd is splitting, return and retry the
3281 			 * the fault.  Alternative: wait until the split
3282 			 * is done, and goto retry.
3283 			 */
3284 			if (pmd_trans_splitting(orig_pmd))
3285 				return 0;
3286 
3287 			if (pmd_numa(orig_pmd))
3288 				return do_huge_pmd_numa_page(mm, vma, address,
3289 							     orig_pmd, pmd);
3290 
3291 			if (dirty && !pmd_write(orig_pmd)) {
3292 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3293 							  orig_pmd);
3294 				if (!(ret & VM_FAULT_FALLBACK))
3295 					return ret;
3296 			} else {
3297 				huge_pmd_set_accessed(mm, vma, address, pmd,
3298 						      orig_pmd, dirty);
3299 				return 0;
3300 			}
3301 		}
3302 	}
3303 
3304 	/*
3305 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3306 	 * run pte_offset_map on the pmd, if an huge pmd could
3307 	 * materialize from under us from a different thread.
3308 	 */
3309 	if (unlikely(pmd_none(*pmd)) &&
3310 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3311 		return VM_FAULT_OOM;
3312 	/* if an huge pmd materialized from under us just retry later */
3313 	if (unlikely(pmd_trans_huge(*pmd)))
3314 		return 0;
3315 	/*
3316 	 * A regular pmd is established and it can't morph into a huge pmd
3317 	 * from under us anymore at this point because we hold the mmap_sem
3318 	 * read mode and khugepaged takes it in write mode. So now it's
3319 	 * safe to run pte_offset_map().
3320 	 */
3321 	pte = pte_offset_map(pmd, address);
3322 
3323 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3324 }
3325 
3326 /*
3327  * By the time we get here, we already hold the mm semaphore
3328  *
3329  * The mmap_sem may have been released depending on flags and our
3330  * return value.  See filemap_fault() and __lock_page_or_retry().
3331  */
3332 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3333 		    unsigned long address, unsigned int flags)
3334 {
3335 	int ret;
3336 
3337 	__set_current_state(TASK_RUNNING);
3338 
3339 	count_vm_event(PGFAULT);
3340 	mem_cgroup_count_vm_event(mm, PGFAULT);
3341 
3342 	/* do counter updates before entering really critical section. */
3343 	check_sync_rss_stat(current);
3344 
3345 	/*
3346 	 * Enable the memcg OOM handling for faults triggered in user
3347 	 * space.  Kernel faults are handled more gracefully.
3348 	 */
3349 	if (flags & FAULT_FLAG_USER)
3350 		mem_cgroup_oom_enable();
3351 
3352 	ret = __handle_mm_fault(mm, vma, address, flags);
3353 
3354 	if (flags & FAULT_FLAG_USER) {
3355 		mem_cgroup_oom_disable();
3356                 /*
3357                  * The task may have entered a memcg OOM situation but
3358                  * if the allocation error was handled gracefully (no
3359                  * VM_FAULT_OOM), there is no need to kill anything.
3360                  * Just clean up the OOM state peacefully.
3361                  */
3362                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3363                         mem_cgroup_oom_synchronize(false);
3364 	}
3365 
3366 	return ret;
3367 }
3368 EXPORT_SYMBOL_GPL(handle_mm_fault);
3369 
3370 #ifndef __PAGETABLE_PUD_FOLDED
3371 /*
3372  * Allocate page upper directory.
3373  * We've already handled the fast-path in-line.
3374  */
3375 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3376 {
3377 	pud_t *new = pud_alloc_one(mm, address);
3378 	if (!new)
3379 		return -ENOMEM;
3380 
3381 	smp_wmb(); /* See comment in __pte_alloc */
3382 
3383 	spin_lock(&mm->page_table_lock);
3384 	if (pgd_present(*pgd))		/* Another has populated it */
3385 		pud_free(mm, new);
3386 	else
3387 		pgd_populate(mm, pgd, new);
3388 	spin_unlock(&mm->page_table_lock);
3389 	return 0;
3390 }
3391 #endif /* __PAGETABLE_PUD_FOLDED */
3392 
3393 #ifndef __PAGETABLE_PMD_FOLDED
3394 /*
3395  * Allocate page middle directory.
3396  * We've already handled the fast-path in-line.
3397  */
3398 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3399 {
3400 	pmd_t *new = pmd_alloc_one(mm, address);
3401 	if (!new)
3402 		return -ENOMEM;
3403 
3404 	smp_wmb(); /* See comment in __pte_alloc */
3405 
3406 	spin_lock(&mm->page_table_lock);
3407 #ifndef __ARCH_HAS_4LEVEL_HACK
3408 	if (pud_present(*pud))		/* Another has populated it */
3409 		pmd_free(mm, new);
3410 	else
3411 		pud_populate(mm, pud, new);
3412 #else
3413 	if (pgd_present(*pud))		/* Another has populated it */
3414 		pmd_free(mm, new);
3415 	else
3416 		pgd_populate(mm, pud, new);
3417 #endif /* __ARCH_HAS_4LEVEL_HACK */
3418 	spin_unlock(&mm->page_table_lock);
3419 	return 0;
3420 }
3421 #endif /* __PAGETABLE_PMD_FOLDED */
3422 
3423 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3424 		pte_t **ptepp, spinlock_t **ptlp)
3425 {
3426 	pgd_t *pgd;
3427 	pud_t *pud;
3428 	pmd_t *pmd;
3429 	pte_t *ptep;
3430 
3431 	pgd = pgd_offset(mm, address);
3432 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3433 		goto out;
3434 
3435 	pud = pud_offset(pgd, address);
3436 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3437 		goto out;
3438 
3439 	pmd = pmd_offset(pud, address);
3440 	VM_BUG_ON(pmd_trans_huge(*pmd));
3441 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3442 		goto out;
3443 
3444 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3445 	if (pmd_huge(*pmd))
3446 		goto out;
3447 
3448 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3449 	if (!ptep)
3450 		goto out;
3451 	if (!pte_present(*ptep))
3452 		goto unlock;
3453 	*ptepp = ptep;
3454 	return 0;
3455 unlock:
3456 	pte_unmap_unlock(ptep, *ptlp);
3457 out:
3458 	return -EINVAL;
3459 }
3460 
3461 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3462 			     pte_t **ptepp, spinlock_t **ptlp)
3463 {
3464 	int res;
3465 
3466 	/* (void) is needed to make gcc happy */
3467 	(void) __cond_lock(*ptlp,
3468 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3469 	return res;
3470 }
3471 
3472 /**
3473  * follow_pfn - look up PFN at a user virtual address
3474  * @vma: memory mapping
3475  * @address: user virtual address
3476  * @pfn: location to store found PFN
3477  *
3478  * Only IO mappings and raw PFN mappings are allowed.
3479  *
3480  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3481  */
3482 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3483 	unsigned long *pfn)
3484 {
3485 	int ret = -EINVAL;
3486 	spinlock_t *ptl;
3487 	pte_t *ptep;
3488 
3489 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3490 		return ret;
3491 
3492 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3493 	if (ret)
3494 		return ret;
3495 	*pfn = pte_pfn(*ptep);
3496 	pte_unmap_unlock(ptep, ptl);
3497 	return 0;
3498 }
3499 EXPORT_SYMBOL(follow_pfn);
3500 
3501 #ifdef CONFIG_HAVE_IOREMAP_PROT
3502 int follow_phys(struct vm_area_struct *vma,
3503 		unsigned long address, unsigned int flags,
3504 		unsigned long *prot, resource_size_t *phys)
3505 {
3506 	int ret = -EINVAL;
3507 	pte_t *ptep, pte;
3508 	spinlock_t *ptl;
3509 
3510 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3511 		goto out;
3512 
3513 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3514 		goto out;
3515 	pte = *ptep;
3516 
3517 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3518 		goto unlock;
3519 
3520 	*prot = pgprot_val(pte_pgprot(pte));
3521 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3522 
3523 	ret = 0;
3524 unlock:
3525 	pte_unmap_unlock(ptep, ptl);
3526 out:
3527 	return ret;
3528 }
3529 
3530 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3531 			void *buf, int len, int write)
3532 {
3533 	resource_size_t phys_addr;
3534 	unsigned long prot = 0;
3535 	void __iomem *maddr;
3536 	int offset = addr & (PAGE_SIZE-1);
3537 
3538 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3539 		return -EINVAL;
3540 
3541 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3542 	if (write)
3543 		memcpy_toio(maddr + offset, buf, len);
3544 	else
3545 		memcpy_fromio(buf, maddr + offset, len);
3546 	iounmap(maddr);
3547 
3548 	return len;
3549 }
3550 EXPORT_SYMBOL_GPL(generic_access_phys);
3551 #endif
3552 
3553 /*
3554  * Access another process' address space as given in mm.  If non-NULL, use the
3555  * given task for page fault accounting.
3556  */
3557 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3558 		unsigned long addr, void *buf, int len, int write)
3559 {
3560 	struct vm_area_struct *vma;
3561 	void *old_buf = buf;
3562 
3563 	down_read(&mm->mmap_sem);
3564 	/* ignore errors, just check how much was successfully transferred */
3565 	while (len) {
3566 		int bytes, ret, offset;
3567 		void *maddr;
3568 		struct page *page = NULL;
3569 
3570 		ret = get_user_pages(tsk, mm, addr, 1,
3571 				write, 1, &page, &vma);
3572 		if (ret <= 0) {
3573 #ifndef CONFIG_HAVE_IOREMAP_PROT
3574 			break;
3575 #else
3576 			/*
3577 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3578 			 * we can access using slightly different code.
3579 			 */
3580 			vma = find_vma(mm, addr);
3581 			if (!vma || vma->vm_start > addr)
3582 				break;
3583 			if (vma->vm_ops && vma->vm_ops->access)
3584 				ret = vma->vm_ops->access(vma, addr, buf,
3585 							  len, write);
3586 			if (ret <= 0)
3587 				break;
3588 			bytes = ret;
3589 #endif
3590 		} else {
3591 			bytes = len;
3592 			offset = addr & (PAGE_SIZE-1);
3593 			if (bytes > PAGE_SIZE-offset)
3594 				bytes = PAGE_SIZE-offset;
3595 
3596 			maddr = kmap(page);
3597 			if (write) {
3598 				copy_to_user_page(vma, page, addr,
3599 						  maddr + offset, buf, bytes);
3600 				set_page_dirty_lock(page);
3601 			} else {
3602 				copy_from_user_page(vma, page, addr,
3603 						    buf, maddr + offset, bytes);
3604 			}
3605 			kunmap(page);
3606 			page_cache_release(page);
3607 		}
3608 		len -= bytes;
3609 		buf += bytes;
3610 		addr += bytes;
3611 	}
3612 	up_read(&mm->mmap_sem);
3613 
3614 	return buf - old_buf;
3615 }
3616 
3617 /**
3618  * access_remote_vm - access another process' address space
3619  * @mm:		the mm_struct of the target address space
3620  * @addr:	start address to access
3621  * @buf:	source or destination buffer
3622  * @len:	number of bytes to transfer
3623  * @write:	whether the access is a write
3624  *
3625  * The caller must hold a reference on @mm.
3626  */
3627 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3628 		void *buf, int len, int write)
3629 {
3630 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3631 }
3632 
3633 /*
3634  * Access another process' address space.
3635  * Source/target buffer must be kernel space,
3636  * Do not walk the page table directly, use get_user_pages
3637  */
3638 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3639 		void *buf, int len, int write)
3640 {
3641 	struct mm_struct *mm;
3642 	int ret;
3643 
3644 	mm = get_task_mm(tsk);
3645 	if (!mm)
3646 		return 0;
3647 
3648 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3649 	mmput(mm);
3650 
3651 	return ret;
3652 }
3653 
3654 /*
3655  * Print the name of a VMA.
3656  */
3657 void print_vma_addr(char *prefix, unsigned long ip)
3658 {
3659 	struct mm_struct *mm = current->mm;
3660 	struct vm_area_struct *vma;
3661 
3662 	/*
3663 	 * Do not print if we are in atomic
3664 	 * contexts (in exception stacks, etc.):
3665 	 */
3666 	if (preempt_count())
3667 		return;
3668 
3669 	down_read(&mm->mmap_sem);
3670 	vma = find_vma(mm, ip);
3671 	if (vma && vma->vm_file) {
3672 		struct file *f = vma->vm_file;
3673 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3674 		if (buf) {
3675 			char *p;
3676 
3677 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3678 			if (IS_ERR(p))
3679 				p = "?";
3680 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3681 					vma->vm_start,
3682 					vma->vm_end - vma->vm_start);
3683 			free_page((unsigned long)buf);
3684 		}
3685 	}
3686 	up_read(&mm->mmap_sem);
3687 }
3688 
3689 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3690 void might_fault(void)
3691 {
3692 	/*
3693 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3694 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3695 	 * get paged out, therefore we'll never actually fault, and the
3696 	 * below annotations will generate false positives.
3697 	 */
3698 	if (segment_eq(get_fs(), KERNEL_DS))
3699 		return;
3700 
3701 	/*
3702 	 * it would be nicer only to annotate paths which are not under
3703 	 * pagefault_disable, however that requires a larger audit and
3704 	 * providing helpers like get_user_atomic.
3705 	 */
3706 	if (in_atomic())
3707 		return;
3708 
3709 	__might_sleep(__FILE__, __LINE__, 0);
3710 
3711 	if (current->mm)
3712 		might_lock_read(&current->mm->mmap_sem);
3713 }
3714 EXPORT_SYMBOL(might_fault);
3715 #endif
3716 
3717 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3718 static void clear_gigantic_page(struct page *page,
3719 				unsigned long addr,
3720 				unsigned int pages_per_huge_page)
3721 {
3722 	int i;
3723 	struct page *p = page;
3724 
3725 	might_sleep();
3726 	for (i = 0; i < pages_per_huge_page;
3727 	     i++, p = mem_map_next(p, page, i)) {
3728 		cond_resched();
3729 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3730 	}
3731 }
3732 void clear_huge_page(struct page *page,
3733 		     unsigned long addr, unsigned int pages_per_huge_page)
3734 {
3735 	int i;
3736 
3737 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3738 		clear_gigantic_page(page, addr, pages_per_huge_page);
3739 		return;
3740 	}
3741 
3742 	might_sleep();
3743 	for (i = 0; i < pages_per_huge_page; i++) {
3744 		cond_resched();
3745 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3746 	}
3747 }
3748 
3749 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3750 				    unsigned long addr,
3751 				    struct vm_area_struct *vma,
3752 				    unsigned int pages_per_huge_page)
3753 {
3754 	int i;
3755 	struct page *dst_base = dst;
3756 	struct page *src_base = src;
3757 
3758 	for (i = 0; i < pages_per_huge_page; ) {
3759 		cond_resched();
3760 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3761 
3762 		i++;
3763 		dst = mem_map_next(dst, dst_base, i);
3764 		src = mem_map_next(src, src_base, i);
3765 	}
3766 }
3767 
3768 void copy_user_huge_page(struct page *dst, struct page *src,
3769 			 unsigned long addr, struct vm_area_struct *vma,
3770 			 unsigned int pages_per_huge_page)
3771 {
3772 	int i;
3773 
3774 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3775 		copy_user_gigantic_page(dst, src, addr, vma,
3776 					pages_per_huge_page);
3777 		return;
3778 	}
3779 
3780 	might_sleep();
3781 	for (i = 0; i < pages_per_huge_page; i++) {
3782 		cond_resched();
3783 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3784 	}
3785 }
3786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3787 
3788 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3789 
3790 static struct kmem_cache *page_ptl_cachep;
3791 
3792 void __init ptlock_cache_init(void)
3793 {
3794 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3795 			SLAB_PANIC, NULL);
3796 }
3797 
3798 bool ptlock_alloc(struct page *page)
3799 {
3800 	spinlock_t *ptl;
3801 
3802 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3803 	if (!ptl)
3804 		return false;
3805 	page->ptl = ptl;
3806 	return true;
3807 }
3808 
3809 void ptlock_free(struct page *page)
3810 {
3811 	kmem_cache_free(page_ptl_cachep, page->ptl);
3812 }
3813 #endif
3814