xref: /linux/mm/memory.c (revision 537d196186e0a0ce28e494ca1881885accc35a12)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/shmem_fs.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 
80 #include <trace/events/kmem.h>
81 
82 #include <asm/io.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88 
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92 
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96 
97 static vm_fault_t do_fault(struct vm_fault *vmf);
98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
99 static bool vmf_pte_changed(struct vm_fault *vmf);
100 
101 /*
102  * Return true if the original pte was a uffd-wp pte marker (so the pte was
103  * wr-protected).
104  */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
106 {
107 	if (!userfaultfd_wp(vmf->vma))
108 		return false;
109 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
110 		return false;
111 
112 	return pte_marker_uffd_wp(vmf->orig_pte);
113 }
114 
115 /*
116  * Randomize the address space (stacks, mmaps, brk, etc.).
117  *
118  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119  *   as ancient (libc5 based) binaries can segfault. )
120  */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123 					1;
124 #else
125 					2;
126 #endif
127 
128 static const struct ctl_table mmu_sysctl_table[] = {
129 	{
130 		.procname	= "randomize_va_space",
131 		.data		= &randomize_va_space,
132 		.maxlen		= sizeof(int),
133 		.mode		= 0644,
134 		.proc_handler	= proc_dointvec,
135 	},
136 };
137 
init_mm_sysctl(void)138 static int __init init_mm_sysctl(void)
139 {
140 	register_sysctl_init("kernel", mmu_sysctl_table);
141 	return 0;
142 }
143 
144 subsys_initcall(init_mm_sysctl);
145 
146 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
disable_randmaps(char * s)158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
init_zero_pfn(void)173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
mm_trace_rss_stat(struct mm_struct * mm,int member)180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /**
300  * free_pgd_range - Unmap and free page tables in the range
301  * @tlb: the mmu_gather containing pending TLB flush info
302  * @addr: virtual address start
303  * @end: virtual address end
304  * @floor: lowest address boundary
305  * @ceiling: highest address boundary
306  *
307  * This function tears down all user-level page tables in the
308  * specified virtual address range [@addr..@end). It is part of
309  * the memory unmap flow.
310  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)311 void free_pgd_range(struct mmu_gather *tlb,
312 			unsigned long addr, unsigned long end,
313 			unsigned long floor, unsigned long ceiling)
314 {
315 	pgd_t *pgd;
316 	unsigned long next;
317 
318 	/*
319 	 * The next few lines have given us lots of grief...
320 	 *
321 	 * Why are we testing PMD* at this top level?  Because often
322 	 * there will be no work to do at all, and we'd prefer not to
323 	 * go all the way down to the bottom just to discover that.
324 	 *
325 	 * Why all these "- 1"s?  Because 0 represents both the bottom
326 	 * of the address space and the top of it (using -1 for the
327 	 * top wouldn't help much: the masks would do the wrong thing).
328 	 * The rule is that addr 0 and floor 0 refer to the bottom of
329 	 * the address space, but end 0 and ceiling 0 refer to the top
330 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
331 	 * that end 0 case should be mythical).
332 	 *
333 	 * Wherever addr is brought up or ceiling brought down, we must
334 	 * be careful to reject "the opposite 0" before it confuses the
335 	 * subsequent tests.  But what about where end is brought down
336 	 * by PMD_SIZE below? no, end can't go down to 0 there.
337 	 *
338 	 * Whereas we round start (addr) and ceiling down, by different
339 	 * masks at different levels, in order to test whether a table
340 	 * now has no other vmas using it, so can be freed, we don't
341 	 * bother to round floor or end up - the tests don't need that.
342 	 */
343 
344 	addr &= PMD_MASK;
345 	if (addr < floor) {
346 		addr += PMD_SIZE;
347 		if (!addr)
348 			return;
349 	}
350 	if (ceiling) {
351 		ceiling &= PMD_MASK;
352 		if (!ceiling)
353 			return;
354 	}
355 	if (end - 1 > ceiling - 1)
356 		end -= PMD_SIZE;
357 	if (addr > end - 1)
358 		return;
359 	/*
360 	 * We add page table cache pages with PAGE_SIZE,
361 	 * (see pte_free_tlb()), flush the tlb if we need
362 	 */
363 	tlb_change_page_size(tlb, PAGE_SIZE);
364 	pgd = pgd_offset(tlb->mm, addr);
365 	do {
366 		next = pgd_addr_end(addr, end);
367 		if (pgd_none_or_clear_bad(pgd))
368 			continue;
369 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
370 	} while (pgd++, addr = next, addr != end);
371 }
372 
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)373 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
374 		   struct vm_area_struct *vma, unsigned long floor,
375 		   unsigned long ceiling, bool mm_wr_locked)
376 {
377 	struct unlink_vma_file_batch vb;
378 
379 	tlb_free_vmas(tlb);
380 
381 	do {
382 		unsigned long addr = vma->vm_start;
383 		struct vm_area_struct *next;
384 
385 		/*
386 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
387 		 * be 0.  This will underflow and is okay.
388 		 */
389 		next = mas_find(mas, ceiling - 1);
390 		if (unlikely(xa_is_zero(next)))
391 			next = NULL;
392 
393 		/*
394 		 * Hide vma from rmap and truncate_pagecache before freeing
395 		 * pgtables
396 		 */
397 		if (mm_wr_locked)
398 			vma_start_write(vma);
399 		unlink_anon_vmas(vma);
400 
401 		unlink_file_vma_batch_init(&vb);
402 		unlink_file_vma_batch_add(&vb, vma);
403 
404 		/*
405 		 * Optimization: gather nearby vmas into one call down
406 		 */
407 		while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
408 			vma = next;
409 			next = mas_find(mas, ceiling - 1);
410 			if (unlikely(xa_is_zero(next)))
411 				next = NULL;
412 			if (mm_wr_locked)
413 				vma_start_write(vma);
414 			unlink_anon_vmas(vma);
415 			unlink_file_vma_batch_add(&vb, vma);
416 		}
417 		unlink_file_vma_batch_final(&vb);
418 
419 		free_pgd_range(tlb, addr, vma->vm_end,
420 			floor, next ? next->vm_start : ceiling);
421 		vma = next;
422 	} while (vma);
423 }
424 
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)425 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
426 {
427 	spinlock_t *ptl = pmd_lock(mm, pmd);
428 
429 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
430 		mm_inc_nr_ptes(mm);
431 		/*
432 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
433 		 * visible before the pte is made visible to other CPUs by being
434 		 * put into page tables.
435 		 *
436 		 * The other side of the story is the pointer chasing in the page
437 		 * table walking code (when walking the page table without locking;
438 		 * ie. most of the time). Fortunately, these data accesses consist
439 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
440 		 * being the notable exception) will already guarantee loads are
441 		 * seen in-order. See the alpha page table accessors for the
442 		 * smp_rmb() barriers in page table walking code.
443 		 */
444 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445 		pmd_populate(mm, pmd, *pte);
446 		*pte = NULL;
447 	}
448 	spin_unlock(ptl);
449 }
450 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)451 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
452 {
453 	pgtable_t new = pte_alloc_one(mm);
454 	if (!new)
455 		return -ENOMEM;
456 
457 	pmd_install(mm, pmd, &new);
458 	if (new)
459 		pte_free(mm, new);
460 	return 0;
461 }
462 
__pte_alloc_kernel(pmd_t * pmd)463 int __pte_alloc_kernel(pmd_t *pmd)
464 {
465 	pte_t *new = pte_alloc_one_kernel(&init_mm);
466 	if (!new)
467 		return -ENOMEM;
468 
469 	spin_lock(&init_mm.page_table_lock);
470 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
471 		smp_wmb(); /* See comment in pmd_install() */
472 		pmd_populate_kernel(&init_mm, pmd, new);
473 		new = NULL;
474 	}
475 	spin_unlock(&init_mm.page_table_lock);
476 	if (new)
477 		pte_free_kernel(&init_mm, new);
478 	return 0;
479 }
480 
init_rss_vec(int * rss)481 static inline void init_rss_vec(int *rss)
482 {
483 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
484 }
485 
add_mm_rss_vec(struct mm_struct * mm,int * rss)486 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
487 {
488 	int i;
489 
490 	for (i = 0; i < NR_MM_COUNTERS; i++)
491 		if (rss[i])
492 			add_mm_counter(mm, i, rss[i]);
493 }
494 
is_bad_page_map_ratelimited(void)495 static bool is_bad_page_map_ratelimited(void)
496 {
497 	static unsigned long resume;
498 	static unsigned long nr_shown;
499 	static unsigned long nr_unshown;
500 
501 	/*
502 	 * Allow a burst of 60 reports, then keep quiet for that minute;
503 	 * or allow a steady drip of one report per second.
504 	 */
505 	if (nr_shown == 60) {
506 		if (time_before(jiffies, resume)) {
507 			nr_unshown++;
508 			return true;
509 		}
510 		if (nr_unshown) {
511 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 				 nr_unshown);
513 			nr_unshown = 0;
514 		}
515 		nr_shown = 0;
516 	}
517 	if (nr_shown++ == 0)
518 		resume = jiffies + 60 * HZ;
519 	return false;
520 }
521 
__print_bad_page_map_pgtable(struct mm_struct * mm,unsigned long addr)522 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr)
523 {
524 	unsigned long long pgdv, p4dv, pudv, pmdv;
525 	p4d_t p4d, *p4dp;
526 	pud_t pud, *pudp;
527 	pmd_t pmd, *pmdp;
528 	pgd_t *pgdp;
529 
530 	/*
531 	 * Although this looks like a fully lockless pgtable walk, it is not:
532 	 * see locking requirements for print_bad_page_map().
533 	 */
534 	pgdp = pgd_offset(mm, addr);
535 	pgdv = pgd_val(*pgdp);
536 
537 	if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) {
538 		pr_alert("pgd:%08llx\n", pgdv);
539 		return;
540 	}
541 
542 	p4dp = p4d_offset(pgdp, addr);
543 	p4d = p4dp_get(p4dp);
544 	p4dv = p4d_val(p4d);
545 
546 	if (!p4d_present(p4d) || p4d_leaf(p4d)) {
547 		pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv);
548 		return;
549 	}
550 
551 	pudp = pud_offset(p4dp, addr);
552 	pud = pudp_get(pudp);
553 	pudv = pud_val(pud);
554 
555 	if (!pud_present(pud) || pud_leaf(pud)) {
556 		pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv);
557 		return;
558 	}
559 
560 	pmdp = pmd_offset(pudp, addr);
561 	pmd = pmdp_get(pmdp);
562 	pmdv = pmd_val(pmd);
563 
564 	/*
565 	 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE,
566 	 * because the table should already be mapped by the caller and
567 	 * doing another map would be bad. print_bad_page_map() should
568 	 * already take care of printing the PTE.
569 	 */
570 	pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv,
571 		 p4dv, pudv, pmdv);
572 }
573 
574 /*
575  * This function is called to print an error when a bad page table entry (e.g.,
576  * corrupted page table entry) is found. For example, we might have a
577  * PFN-mapped pte in a region that doesn't allow it.
578  *
579  * The calling function must still handle the error.
580  *
581  * This function must be called during a proper page table walk, as it will
582  * re-walk the page table to dump information: the caller MUST prevent page
583  * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf
584  * page table lock.
585  */
print_bad_page_map(struct vm_area_struct * vma,unsigned long addr,unsigned long long entry,struct page * page,enum pgtable_level level)586 static void print_bad_page_map(struct vm_area_struct *vma,
587 		unsigned long addr, unsigned long long entry, struct page *page,
588 		enum pgtable_level level)
589 {
590 	struct address_space *mapping;
591 	pgoff_t index;
592 
593 	if (is_bad_page_map_ratelimited())
594 		return;
595 
596 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
597 	index = linear_page_index(vma, addr);
598 
599 	pr_alert("BUG: Bad page map in process %s  %s:%08llx", current->comm,
600 		 pgtable_level_to_str(level), entry);
601 	__print_bad_page_map_pgtable(vma->vm_mm, addr);
602 	if (page)
603 		dump_page(page, "bad page map");
604 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
605 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
606 	pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n",
607 		 vma->vm_file,
608 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
609 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
610 		 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL,
611 		 mapping ? mapping->a_ops->read_folio : NULL);
612 	dump_stack();
613 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
614 }
615 #define print_bad_pte(vma, addr, pte, page) \
616 	print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE)
617 
618 /**
619  * __vm_normal_page() - Get the "struct page" associated with a page table entry.
620  * @vma: The VMA mapping the page table entry.
621  * @addr: The address where the page table entry is mapped.
622  * @pfn: The PFN stored in the page table entry.
623  * @special: Whether the page table entry is marked "special".
624  * @level: The page table level for error reporting purposes only.
625  * @entry: The page table entry value for error reporting purposes only.
626  *
627  * "Special" mappings do not wish to be associated with a "struct page" (either
628  * it doesn't exist, or it exists but they don't want to touch it). In this
629  * case, NULL is returned here. "Normal" mappings do have a struct page and
630  * are ordinarily refcounted.
631  *
632  * Page mappings of the shared zero folios are always considered "special", as
633  * they are not ordinarily refcounted: neither the refcount nor the mapcount
634  * of these folios is adjusted when mapping them into user page tables.
635  * Selected page table walkers (such as GUP) can still identify mappings of the
636  * shared zero folios and work with the underlying "struct page".
637  *
638  * There are 2 broad cases. Firstly, an architecture may define a "special"
639  * page table entry bit, such as pte_special(), in which case this function is
640  * trivial. Secondly, an architecture may not have a spare page table
641  * entry bit, which requires a more complicated scheme, described below.
642  *
643  * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on
644  * page table entries that actually map "normal" pages: however, that page
645  * cannot be looked up through the PFN stored in the page table entry, but
646  * instead will be looked up through vm_ops->find_normal_page(). So far, this
647  * only applies to PTEs.
648  *
649  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
650  * special mapping (even if there are underlying and valid "struct pages").
651  * COWed pages of a VM_PFNMAP are always normal.
652  *
653  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
654  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
655  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
656  * mapping will always honor the rule
657  *
658  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
659  *
660  * And for normal mappings this is false.
661  *
662  * This restricts such mappings to be a linear translation from virtual address
663  * to pfn. To get around this restriction, we allow arbitrary mappings so long
664  * as the vma is not a COW mapping; in that case, we know that all ptes are
665  * special (because none can have been COWed).
666  *
667  *
668  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
669  *
670  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
671  * page" backing, however the difference is that _all_ pages with a struct
672  * page (that is, those where pfn_valid is true, except the shared zero
673  * folios) are refcounted and considered normal pages by the VM.
674  *
675  * The disadvantage is that pages are refcounted (which can be slower and
676  * simply not an option for some PFNMAP users). The advantage is that we
677  * don't have to follow the strict linearity rule of PFNMAP mappings in
678  * order to support COWable mappings.
679  *
680  * Return: Returns the "struct page" if this is a "normal" mapping. Returns
681  *	   NULL if this is a "special" mapping.
682  */
__vm_normal_page(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,bool special,unsigned long long entry,enum pgtable_level level)683 static inline struct page *__vm_normal_page(struct vm_area_struct *vma,
684 		unsigned long addr, unsigned long pfn, bool special,
685 		unsigned long long entry, enum pgtable_level level)
686 {
687 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
688 		if (unlikely(special)) {
689 #ifdef CONFIG_FIND_NORMAL_PAGE
690 			if (vma->vm_ops && vma->vm_ops->find_normal_page)
691 				return vma->vm_ops->find_normal_page(vma, addr);
692 #endif /* CONFIG_FIND_NORMAL_PAGE */
693 			if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
694 				return NULL;
695 			if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
696 				return NULL;
697 
698 			print_bad_page_map(vma, addr, entry, NULL, level);
699 			return NULL;
700 		}
701 		/*
702 		 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table
703 		 * mappings (incl. shared zero folios) are marked accordingly.
704 		 */
705 	} else {
706 		if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) {
707 			if (vma->vm_flags & VM_MIXEDMAP) {
708 				/* If it has a "struct page", it's "normal". */
709 				if (!pfn_valid(pfn))
710 					return NULL;
711 			} else {
712 				unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
713 
714 				/* Only CoW'ed anon folios are "normal". */
715 				if (pfn == vma->vm_pgoff + off)
716 					return NULL;
717 				if (!is_cow_mapping(vma->vm_flags))
718 					return NULL;
719 			}
720 		}
721 
722 		if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
723 			return NULL;
724 	}
725 
726 	if (unlikely(pfn > highest_memmap_pfn)) {
727 		/* Corrupted page table entry. */
728 		print_bad_page_map(vma, addr, entry, NULL, level);
729 		return NULL;
730 	}
731 	/*
732 	 * NOTE! We still have PageReserved() pages in the page tables.
733 	 * For example, VDSO mappings can cause them to exist.
734 	 */
735 	VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn));
736 	return pfn_to_page(pfn);
737 }
738 
739 /**
740  * vm_normal_page() - Get the "struct page" associated with a PTE
741  * @vma: The VMA mapping the @pte.
742  * @addr: The address where the @pte is mapped.
743  * @pte: The PTE.
744  *
745  * Get the "struct page" associated with a PTE. See __vm_normal_page()
746  * for details on "normal" and "special" mappings.
747  *
748  * Return: Returns the "struct page" if this is a "normal" mapping. Returns
749  *	   NULL if this is a "special" mapping.
750  */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)751 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
752 			    pte_t pte)
753 {
754 	return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte),
755 				pte_val(pte), PGTABLE_LEVEL_PTE);
756 }
757 
758 /**
759  * vm_normal_folio() - Get the "struct folio" associated with a PTE
760  * @vma: The VMA mapping the @pte.
761  * @addr: The address where the @pte is mapped.
762  * @pte: The PTE.
763  *
764  * Get the "struct folio" associated with a PTE. See __vm_normal_page()
765  * for details on "normal" and "special" mappings.
766  *
767  * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
768  *	   NULL if this is a "special" mapping.
769  */
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)770 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
771 			    pte_t pte)
772 {
773 	struct page *page = vm_normal_page(vma, addr, pte);
774 
775 	if (page)
776 		return page_folio(page);
777 	return NULL;
778 }
779 
780 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
781 /**
782  * vm_normal_page_pmd() - Get the "struct page" associated with a PMD
783  * @vma: The VMA mapping the @pmd.
784  * @addr: The address where the @pmd is mapped.
785  * @pmd: The PMD.
786  *
787  * Get the "struct page" associated with a PTE. See __vm_normal_page()
788  * for details on "normal" and "special" mappings.
789  *
790  * Return: Returns the "struct page" if this is a "normal" mapping. Returns
791  *	   NULL if this is a "special" mapping.
792  */
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
794 				pmd_t pmd)
795 {
796 	return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd),
797 				pmd_val(pmd), PGTABLE_LEVEL_PMD);
798 }
799 
800 /**
801  * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD
802  * @vma: The VMA mapping the @pmd.
803  * @addr: The address where the @pmd is mapped.
804  * @pmd: The PMD.
805  *
806  * Get the "struct folio" associated with a PTE. See __vm_normal_page()
807  * for details on "normal" and "special" mappings.
808  *
809  * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
810  *	   NULL if this is a "special" mapping.
811  */
vm_normal_folio_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)812 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
813 				  unsigned long addr, pmd_t pmd)
814 {
815 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
816 
817 	if (page)
818 		return page_folio(page);
819 	return NULL;
820 }
821 
822 /**
823  * vm_normal_page_pud() - Get the "struct page" associated with a PUD
824  * @vma: The VMA mapping the @pud.
825  * @addr: The address where the @pud is mapped.
826  * @pud: The PUD.
827  *
828  * Get the "struct page" associated with a PUD. See __vm_normal_page()
829  * for details on "normal" and "special" mappings.
830  *
831  * Return: Returns the "struct page" if this is a "normal" mapping. Returns
832  *	   NULL if this is a "special" mapping.
833  */
vm_normal_page_pud(struct vm_area_struct * vma,unsigned long addr,pud_t pud)834 struct page *vm_normal_page_pud(struct vm_area_struct *vma,
835 		unsigned long addr, pud_t pud)
836 {
837 	return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud),
838 				pud_val(pud), PGTABLE_LEVEL_PUD);
839 }
840 #endif
841 
842 /**
843  * restore_exclusive_pte - Restore a device-exclusive entry
844  * @vma: VMA covering @address
845  * @folio: the mapped folio
846  * @page: the mapped folio page
847  * @address: the virtual address
848  * @ptep: pte pointer into the locked page table mapping the folio page
849  * @orig_pte: pte value at @ptep
850  *
851  * Restore a device-exclusive non-swap entry to an ordinary present pte.
852  *
853  * The folio and the page table must be locked, and MMU notifiers must have
854  * been called to invalidate any (exclusive) device mappings.
855  *
856  * Locking the folio makes sure that anybody who just converted the pte to
857  * a device-exclusive entry can map it into the device to make forward
858  * progress without others converting it back until the folio was unlocked.
859  *
860  * If the folio lock ever becomes an issue, we can stop relying on the folio
861  * lock; it might make some scenarios with heavy thrashing less likely to
862  * make forward progress, but these scenarios might not be valid use cases.
863  *
864  * Note that the folio lock does not protect against all cases of concurrent
865  * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers
866  * must use MMU notifiers to sync against any concurrent changes.
867  */
restore_exclusive_pte(struct vm_area_struct * vma,struct folio * folio,struct page * page,unsigned long address,pte_t * ptep,pte_t orig_pte)868 static void restore_exclusive_pte(struct vm_area_struct *vma,
869 		struct folio *folio, struct page *page, unsigned long address,
870 		pte_t *ptep, pte_t orig_pte)
871 {
872 	pte_t pte;
873 
874 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
875 
876 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
877 	if (pte_swp_soft_dirty(orig_pte))
878 		pte = pte_mksoft_dirty(pte);
879 
880 	if (pte_swp_uffd_wp(orig_pte))
881 		pte = pte_mkuffd_wp(pte);
882 
883 	if ((vma->vm_flags & VM_WRITE) &&
884 	    can_change_pte_writable(vma, address, pte)) {
885 		if (folio_test_dirty(folio))
886 			pte = pte_mkdirty(pte);
887 		pte = pte_mkwrite(pte, vma);
888 	}
889 	set_pte_at(vma->vm_mm, address, ptep, pte);
890 
891 	/*
892 	 * No need to invalidate - it was non-present before. However
893 	 * secondary CPUs may have mappings that need invalidating.
894 	 */
895 	update_mmu_cache(vma, address, ptep);
896 }
897 
898 /*
899  * Tries to restore an exclusive pte if the page lock can be acquired without
900  * sleeping.
901  */
try_restore_exclusive_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t orig_pte)902 static int try_restore_exclusive_pte(struct vm_area_struct *vma,
903 		unsigned long addr, pte_t *ptep, pte_t orig_pte)
904 {
905 	struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte));
906 	struct folio *folio = page_folio(page);
907 
908 	if (folio_trylock(folio)) {
909 		restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte);
910 		folio_unlock(folio);
911 		return 0;
912 	}
913 
914 	return -EBUSY;
915 }
916 
917 /*
918  * copy one vm_area from one task to the other. Assumes the page tables
919  * already present in the new task to be cleared in the whole range
920  * covered by this vma.
921  */
922 
923 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)924 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
925 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
926 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
927 {
928 	vm_flags_t vm_flags = dst_vma->vm_flags;
929 	pte_t orig_pte = ptep_get(src_pte);
930 	pte_t pte = orig_pte;
931 	struct folio *folio;
932 	struct page *page;
933 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
934 
935 	if (likely(!non_swap_entry(entry))) {
936 		if (swap_duplicate(entry) < 0)
937 			return -EIO;
938 
939 		/* make sure dst_mm is on swapoff's mmlist. */
940 		if (unlikely(list_empty(&dst_mm->mmlist))) {
941 			spin_lock(&mmlist_lock);
942 			if (list_empty(&dst_mm->mmlist))
943 				list_add(&dst_mm->mmlist,
944 						&src_mm->mmlist);
945 			spin_unlock(&mmlist_lock);
946 		}
947 		/* Mark the swap entry as shared. */
948 		if (pte_swp_exclusive(orig_pte)) {
949 			pte = pte_swp_clear_exclusive(orig_pte);
950 			set_pte_at(src_mm, addr, src_pte, pte);
951 		}
952 		rss[MM_SWAPENTS]++;
953 	} else if (is_migration_entry(entry)) {
954 		folio = pfn_swap_entry_folio(entry);
955 
956 		rss[mm_counter(folio)]++;
957 
958 		if (!is_readable_migration_entry(entry) &&
959 				is_cow_mapping(vm_flags)) {
960 			/*
961 			 * COW mappings require pages in both parent and child
962 			 * to be set to read. A previously exclusive entry is
963 			 * now shared.
964 			 */
965 			entry = make_readable_migration_entry(
966 							swp_offset(entry));
967 			pte = swp_entry_to_pte(entry);
968 			if (pte_swp_soft_dirty(orig_pte))
969 				pte = pte_swp_mksoft_dirty(pte);
970 			if (pte_swp_uffd_wp(orig_pte))
971 				pte = pte_swp_mkuffd_wp(pte);
972 			set_pte_at(src_mm, addr, src_pte, pte);
973 		}
974 	} else if (is_device_private_entry(entry)) {
975 		page = pfn_swap_entry_to_page(entry);
976 		folio = page_folio(page);
977 
978 		/*
979 		 * Update rss count even for unaddressable pages, as
980 		 * they should treated just like normal pages in this
981 		 * respect.
982 		 *
983 		 * We will likely want to have some new rss counters
984 		 * for unaddressable pages, at some point. But for now
985 		 * keep things as they are.
986 		 */
987 		folio_get(folio);
988 		rss[mm_counter(folio)]++;
989 		/* Cannot fail as these pages cannot get pinned. */
990 		folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma);
991 
992 		/*
993 		 * We do not preserve soft-dirty information, because so
994 		 * far, checkpoint/restore is the only feature that
995 		 * requires that. And checkpoint/restore does not work
996 		 * when a device driver is involved (you cannot easily
997 		 * save and restore device driver state).
998 		 */
999 		if (is_writable_device_private_entry(entry) &&
1000 		    is_cow_mapping(vm_flags)) {
1001 			entry = make_readable_device_private_entry(
1002 							swp_offset(entry));
1003 			pte = swp_entry_to_pte(entry);
1004 			if (pte_swp_uffd_wp(orig_pte))
1005 				pte = pte_swp_mkuffd_wp(pte);
1006 			set_pte_at(src_mm, addr, src_pte, pte);
1007 		}
1008 	} else if (is_device_exclusive_entry(entry)) {
1009 		/*
1010 		 * Make device exclusive entries present by restoring the
1011 		 * original entry then copying as for a present pte. Device
1012 		 * exclusive entries currently only support private writable
1013 		 * (ie. COW) mappings.
1014 		 */
1015 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
1016 		if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte))
1017 			return -EBUSY;
1018 		return -ENOENT;
1019 	} else if (is_pte_marker_entry(entry)) {
1020 		pte_marker marker = copy_pte_marker(entry, dst_vma);
1021 
1022 		if (marker)
1023 			set_pte_at(dst_mm, addr, dst_pte,
1024 				   make_pte_marker(marker));
1025 		return 0;
1026 	}
1027 	if (!userfaultfd_wp(dst_vma))
1028 		pte = pte_swp_clear_uffd_wp(pte);
1029 	set_pte_at(dst_mm, addr, dst_pte, pte);
1030 	return 0;
1031 }
1032 
1033 /*
1034  * Copy a present and normal page.
1035  *
1036  * NOTE! The usual case is that this isn't required;
1037  * instead, the caller can just increase the page refcount
1038  * and re-use the pte the traditional way.
1039  *
1040  * And if we need a pre-allocated page but don't yet have
1041  * one, return a negative error to let the preallocation
1042  * code know so that it can do so outside the page table
1043  * lock.
1044  */
1045 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)1046 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1047 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
1048 		  struct folio **prealloc, struct page *page)
1049 {
1050 	struct folio *new_folio;
1051 	pte_t pte;
1052 
1053 	new_folio = *prealloc;
1054 	if (!new_folio)
1055 		return -EAGAIN;
1056 
1057 	/*
1058 	 * We have a prealloc page, all good!  Take it
1059 	 * over and copy the page & arm it.
1060 	 */
1061 
1062 	if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
1063 		return -EHWPOISON;
1064 
1065 	*prealloc = NULL;
1066 	__folio_mark_uptodate(new_folio);
1067 	folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
1068 	folio_add_lru_vma(new_folio, dst_vma);
1069 	rss[MM_ANONPAGES]++;
1070 
1071 	/* All done, just insert the new page copy in the child */
1072 	pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot);
1073 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
1074 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
1075 		/* Uffd-wp needs to be delivered to dest pte as well */
1076 		pte = pte_mkuffd_wp(pte);
1077 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
1078 	return 0;
1079 }
1080 
__copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int nr)1081 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
1082 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
1083 		pte_t pte, unsigned long addr, int nr)
1084 {
1085 	struct mm_struct *src_mm = src_vma->vm_mm;
1086 
1087 	/* If it's a COW mapping, write protect it both processes. */
1088 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
1089 		wrprotect_ptes(src_mm, addr, src_pte, nr);
1090 		pte = pte_wrprotect(pte);
1091 	}
1092 
1093 	/* If it's a shared mapping, mark it clean in the child. */
1094 	if (src_vma->vm_flags & VM_SHARED)
1095 		pte = pte_mkclean(pte);
1096 	pte = pte_mkold(pte);
1097 
1098 	if (!userfaultfd_wp(dst_vma))
1099 		pte = pte_clear_uffd_wp(pte);
1100 
1101 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
1102 }
1103 
1104 /*
1105  * Copy one present PTE, trying to batch-process subsequent PTEs that map
1106  * consecutive pages of the same folio by copying them as well.
1107  *
1108  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
1109  * Otherwise, returns the number of copied PTEs (at least 1).
1110  */
1111 static inline int
copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int max_nr,int * rss,struct folio ** prealloc)1112 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1113 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
1114 		 int max_nr, int *rss, struct folio **prealloc)
1115 {
1116 	fpb_t flags = FPB_MERGE_WRITE;
1117 	struct page *page;
1118 	struct folio *folio;
1119 	int err, nr;
1120 
1121 	page = vm_normal_page(src_vma, addr, pte);
1122 	if (unlikely(!page))
1123 		goto copy_pte;
1124 
1125 	folio = page_folio(page);
1126 
1127 	/*
1128 	 * If we likely have to copy, just don't bother with batching. Make
1129 	 * sure that the common "small folio" case is as fast as possible
1130 	 * by keeping the batching logic separate.
1131 	 */
1132 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1133 		if (!(src_vma->vm_flags & VM_SHARED))
1134 			flags |= FPB_RESPECT_DIRTY;
1135 		if (vma_soft_dirty_enabled(src_vma))
1136 			flags |= FPB_RESPECT_SOFT_DIRTY;
1137 
1138 		nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags);
1139 		folio_ref_add(folio, nr);
1140 		if (folio_test_anon(folio)) {
1141 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1142 								  nr, dst_vma, src_vma))) {
1143 				folio_ref_sub(folio, nr);
1144 				return -EAGAIN;
1145 			}
1146 			rss[MM_ANONPAGES] += nr;
1147 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1148 		} else {
1149 			folio_dup_file_rmap_ptes(folio, page, nr, dst_vma);
1150 			rss[mm_counter_file(folio)] += nr;
1151 		}
1152 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1153 				    addr, nr);
1154 		return nr;
1155 	}
1156 
1157 	folio_get(folio);
1158 	if (folio_test_anon(folio)) {
1159 		/*
1160 		 * If this page may have been pinned by the parent process,
1161 		 * copy the page immediately for the child so that we'll always
1162 		 * guarantee the pinned page won't be randomly replaced in the
1163 		 * future.
1164 		 */
1165 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) {
1166 			/* Page may be pinned, we have to copy. */
1167 			folio_put(folio);
1168 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1169 						addr, rss, prealloc, page);
1170 			return err ? err : 1;
1171 		}
1172 		rss[MM_ANONPAGES]++;
1173 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1174 	} else {
1175 		folio_dup_file_rmap_pte(folio, page, dst_vma);
1176 		rss[mm_counter_file(folio)]++;
1177 	}
1178 
1179 copy_pte:
1180 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1181 	return 1;
1182 }
1183 
folio_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr,bool need_zero)1184 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1185 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1186 {
1187 	struct folio *new_folio;
1188 
1189 	if (need_zero)
1190 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1191 	else
1192 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1193 
1194 	if (!new_folio)
1195 		return NULL;
1196 
1197 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1198 		folio_put(new_folio);
1199 		return NULL;
1200 	}
1201 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1202 
1203 	return new_folio;
1204 }
1205 
1206 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1207 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1208 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1209 	       unsigned long end)
1210 {
1211 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1212 	struct mm_struct *src_mm = src_vma->vm_mm;
1213 	pte_t *orig_src_pte, *orig_dst_pte;
1214 	pte_t *src_pte, *dst_pte;
1215 	pmd_t dummy_pmdval;
1216 	pte_t ptent;
1217 	spinlock_t *src_ptl, *dst_ptl;
1218 	int progress, max_nr, ret = 0;
1219 	int rss[NR_MM_COUNTERS];
1220 	swp_entry_t entry = (swp_entry_t){0};
1221 	struct folio *prealloc = NULL;
1222 	int nr;
1223 
1224 again:
1225 	progress = 0;
1226 	init_rss_vec(rss);
1227 
1228 	/*
1229 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1230 	 * error handling here, assume that exclusive mmap_lock on dst and src
1231 	 * protects anon from unexpected THP transitions; with shmem and file
1232 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1233 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1234 	 * can remove such assumptions later, but this is good enough for now.
1235 	 */
1236 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1237 	if (!dst_pte) {
1238 		ret = -ENOMEM;
1239 		goto out;
1240 	}
1241 
1242 	/*
1243 	 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1244 	 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1245 	 * the PTE page is stable, and there is no need to get pmdval and do
1246 	 * pmd_same() check.
1247 	 */
1248 	src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1249 					   &src_ptl);
1250 	if (!src_pte) {
1251 		pte_unmap_unlock(dst_pte, dst_ptl);
1252 		/* ret == 0 */
1253 		goto out;
1254 	}
1255 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1256 	orig_src_pte = src_pte;
1257 	orig_dst_pte = dst_pte;
1258 	arch_enter_lazy_mmu_mode();
1259 
1260 	do {
1261 		nr = 1;
1262 
1263 		/*
1264 		 * We are holding two locks at this point - either of them
1265 		 * could generate latencies in another task on another CPU.
1266 		 */
1267 		if (progress >= 32) {
1268 			progress = 0;
1269 			if (need_resched() ||
1270 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1271 				break;
1272 		}
1273 		ptent = ptep_get(src_pte);
1274 		if (pte_none(ptent)) {
1275 			progress++;
1276 			continue;
1277 		}
1278 		if (unlikely(!pte_present(ptent))) {
1279 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1280 						  dst_pte, src_pte,
1281 						  dst_vma, src_vma,
1282 						  addr, rss);
1283 			if (ret == -EIO) {
1284 				entry = pte_to_swp_entry(ptep_get(src_pte));
1285 				break;
1286 			} else if (ret == -EBUSY) {
1287 				break;
1288 			} else if (!ret) {
1289 				progress += 8;
1290 				continue;
1291 			}
1292 			ptent = ptep_get(src_pte);
1293 			VM_WARN_ON_ONCE(!pte_present(ptent));
1294 
1295 			/*
1296 			 * Device exclusive entry restored, continue by copying
1297 			 * the now present pte.
1298 			 */
1299 			WARN_ON_ONCE(ret != -ENOENT);
1300 		}
1301 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1302 		max_nr = (end - addr) / PAGE_SIZE;
1303 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1304 					ptent, addr, max_nr, rss, &prealloc);
1305 		/*
1306 		 * If we need a pre-allocated page for this pte, drop the
1307 		 * locks, allocate, and try again.
1308 		 * If copy failed due to hwpoison in source page, break out.
1309 		 */
1310 		if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1311 			break;
1312 		if (unlikely(prealloc)) {
1313 			/*
1314 			 * pre-alloc page cannot be reused by next time so as
1315 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1316 			 * will allocate page according to address).  This
1317 			 * could only happen if one pinned pte changed.
1318 			 */
1319 			folio_put(prealloc);
1320 			prealloc = NULL;
1321 		}
1322 		nr = ret;
1323 		progress += 8 * nr;
1324 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1325 		 addr != end);
1326 
1327 	arch_leave_lazy_mmu_mode();
1328 	pte_unmap_unlock(orig_src_pte, src_ptl);
1329 	add_mm_rss_vec(dst_mm, rss);
1330 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1331 	cond_resched();
1332 
1333 	if (ret == -EIO) {
1334 		VM_WARN_ON_ONCE(!entry.val);
1335 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1336 			ret = -ENOMEM;
1337 			goto out;
1338 		}
1339 		entry.val = 0;
1340 	} else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1341 		goto out;
1342 	} else if (ret ==  -EAGAIN) {
1343 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1344 		if (!prealloc)
1345 			return -ENOMEM;
1346 	} else if (ret < 0) {
1347 		VM_WARN_ON_ONCE(1);
1348 	}
1349 
1350 	/* We've captured and resolved the error. Reset, try again. */
1351 	ret = 0;
1352 
1353 	if (addr != end)
1354 		goto again;
1355 out:
1356 	if (unlikely(prealloc))
1357 		folio_put(prealloc);
1358 	return ret;
1359 }
1360 
1361 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1362 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1363 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1364 	       unsigned long end)
1365 {
1366 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1367 	struct mm_struct *src_mm = src_vma->vm_mm;
1368 	pmd_t *src_pmd, *dst_pmd;
1369 	unsigned long next;
1370 
1371 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1372 	if (!dst_pmd)
1373 		return -ENOMEM;
1374 	src_pmd = pmd_offset(src_pud, addr);
1375 	do {
1376 		next = pmd_addr_end(addr, end);
1377 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)) {
1378 			int err;
1379 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1380 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1381 					    addr, dst_vma, src_vma);
1382 			if (err == -ENOMEM)
1383 				return -ENOMEM;
1384 			if (!err)
1385 				continue;
1386 			/* fall through */
1387 		}
1388 		if (pmd_none_or_clear_bad(src_pmd))
1389 			continue;
1390 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1391 				   addr, next))
1392 			return -ENOMEM;
1393 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1394 	return 0;
1395 }
1396 
1397 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1398 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1399 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1400 	       unsigned long end)
1401 {
1402 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1403 	struct mm_struct *src_mm = src_vma->vm_mm;
1404 	pud_t *src_pud, *dst_pud;
1405 	unsigned long next;
1406 
1407 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1408 	if (!dst_pud)
1409 		return -ENOMEM;
1410 	src_pud = pud_offset(src_p4d, addr);
1411 	do {
1412 		next = pud_addr_end(addr, end);
1413 		if (pud_trans_huge(*src_pud)) {
1414 			int err;
1415 
1416 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1417 			err = copy_huge_pud(dst_mm, src_mm,
1418 					    dst_pud, src_pud, addr, src_vma);
1419 			if (err == -ENOMEM)
1420 				return -ENOMEM;
1421 			if (!err)
1422 				continue;
1423 			/* fall through */
1424 		}
1425 		if (pud_none_or_clear_bad(src_pud))
1426 			continue;
1427 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1428 				   addr, next))
1429 			return -ENOMEM;
1430 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1431 	return 0;
1432 }
1433 
1434 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1435 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1436 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1437 	       unsigned long end)
1438 {
1439 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1440 	p4d_t *src_p4d, *dst_p4d;
1441 	unsigned long next;
1442 
1443 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1444 	if (!dst_p4d)
1445 		return -ENOMEM;
1446 	src_p4d = p4d_offset(src_pgd, addr);
1447 	do {
1448 		next = p4d_addr_end(addr, end);
1449 		if (p4d_none_or_clear_bad(src_p4d))
1450 			continue;
1451 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1452 				   addr, next))
1453 			return -ENOMEM;
1454 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1455 	return 0;
1456 }
1457 
1458 /*
1459  * Return true if the vma needs to copy the pgtable during this fork().  Return
1460  * false when we can speed up fork() by allowing lazy page faults later until
1461  * when the child accesses the memory range.
1462  */
1463 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1464 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1465 {
1466 	/*
1467 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1468 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1469 	 * contains uffd-wp protection information, that's something we can't
1470 	 * retrieve from page cache, and skip copying will lose those info.
1471 	 */
1472 	if (userfaultfd_wp(dst_vma))
1473 		return true;
1474 
1475 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1476 		return true;
1477 
1478 	if (src_vma->anon_vma)
1479 		return true;
1480 
1481 	/*
1482 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1483 	 * becomes much lighter when there are big shared or private readonly
1484 	 * mappings. The tradeoff is that copy_page_range is more efficient
1485 	 * than faulting.
1486 	 */
1487 	return false;
1488 }
1489 
1490 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1491 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1492 {
1493 	pgd_t *src_pgd, *dst_pgd;
1494 	unsigned long addr = src_vma->vm_start;
1495 	unsigned long end = src_vma->vm_end;
1496 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1497 	struct mm_struct *src_mm = src_vma->vm_mm;
1498 	struct mmu_notifier_range range;
1499 	unsigned long next;
1500 	bool is_cow;
1501 	int ret;
1502 
1503 	if (!vma_needs_copy(dst_vma, src_vma))
1504 		return 0;
1505 
1506 	if (is_vm_hugetlb_page(src_vma))
1507 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1508 
1509 	/*
1510 	 * We need to invalidate the secondary MMU mappings only when
1511 	 * there could be a permission downgrade on the ptes of the
1512 	 * parent mm. And a permission downgrade will only happen if
1513 	 * is_cow_mapping() returns true.
1514 	 */
1515 	is_cow = is_cow_mapping(src_vma->vm_flags);
1516 
1517 	if (is_cow) {
1518 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1519 					0, src_mm, addr, end);
1520 		mmu_notifier_invalidate_range_start(&range);
1521 		/*
1522 		 * Disabling preemption is not needed for the write side, as
1523 		 * the read side doesn't spin, but goes to the mmap_lock.
1524 		 *
1525 		 * Use the raw variant of the seqcount_t write API to avoid
1526 		 * lockdep complaining about preemptibility.
1527 		 */
1528 		vma_assert_write_locked(src_vma);
1529 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1530 	}
1531 
1532 	ret = 0;
1533 	dst_pgd = pgd_offset(dst_mm, addr);
1534 	src_pgd = pgd_offset(src_mm, addr);
1535 	do {
1536 		next = pgd_addr_end(addr, end);
1537 		if (pgd_none_or_clear_bad(src_pgd))
1538 			continue;
1539 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1540 					    addr, next))) {
1541 			ret = -ENOMEM;
1542 			break;
1543 		}
1544 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1545 
1546 	if (is_cow) {
1547 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1548 		mmu_notifier_invalidate_range_end(&range);
1549 	}
1550 	return ret;
1551 }
1552 
1553 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1554 static inline bool should_zap_cows(struct zap_details *details)
1555 {
1556 	/* By default, zap all pages */
1557 	if (!details || details->reclaim_pt)
1558 		return true;
1559 
1560 	/* Or, we zap COWed pages only if the caller wants to */
1561 	return details->even_cows;
1562 }
1563 
1564 /* Decides whether we should zap this folio with the folio pointer specified */
should_zap_folio(struct zap_details * details,struct folio * folio)1565 static inline bool should_zap_folio(struct zap_details *details,
1566 				    struct folio *folio)
1567 {
1568 	/* If we can make a decision without *folio.. */
1569 	if (should_zap_cows(details))
1570 		return true;
1571 
1572 	/* Otherwise we should only zap non-anon folios */
1573 	return !folio_test_anon(folio);
1574 }
1575 
zap_drop_markers(struct zap_details * details)1576 static inline bool zap_drop_markers(struct zap_details *details)
1577 {
1578 	if (!details)
1579 		return false;
1580 
1581 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1582 }
1583 
1584 /*
1585  * This function makes sure that we'll replace the none pte with an uffd-wp
1586  * swap special pte marker when necessary. Must be with the pgtable lock held.
1587  *
1588  * Returns true if uffd-wp ptes was installed, false otherwise.
1589  */
1590 static inline bool
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,int nr,struct zap_details * details,pte_t pteval)1591 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1592 			      unsigned long addr, pte_t *pte, int nr,
1593 			      struct zap_details *details, pte_t pteval)
1594 {
1595 	bool was_installed = false;
1596 
1597 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1598 	/* Zap on anonymous always means dropping everything */
1599 	if (vma_is_anonymous(vma))
1600 		return false;
1601 
1602 	if (zap_drop_markers(details))
1603 		return false;
1604 
1605 	for (;;) {
1606 		/* the PFN in the PTE is irrelevant. */
1607 		if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1608 			was_installed = true;
1609 		if (--nr == 0)
1610 			break;
1611 		pte++;
1612 		addr += PAGE_SIZE;
1613 	}
1614 #endif
1615 	return was_installed;
1616 }
1617 
zap_present_folio_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,struct folio * folio,struct page * page,pte_t * pte,pte_t ptent,unsigned int nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1618 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1619 		struct vm_area_struct *vma, struct folio *folio,
1620 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1621 		unsigned long addr, struct zap_details *details, int *rss,
1622 		bool *force_flush, bool *force_break, bool *any_skipped)
1623 {
1624 	struct mm_struct *mm = tlb->mm;
1625 	bool delay_rmap = false;
1626 
1627 	if (!folio_test_anon(folio)) {
1628 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1629 		if (pte_dirty(ptent)) {
1630 			folio_mark_dirty(folio);
1631 			if (tlb_delay_rmap(tlb)) {
1632 				delay_rmap = true;
1633 				*force_flush = true;
1634 			}
1635 		}
1636 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1637 			folio_mark_accessed(folio);
1638 		rss[mm_counter(folio)] -= nr;
1639 	} else {
1640 		/* We don't need up-to-date accessed/dirty bits. */
1641 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1642 		rss[MM_ANONPAGES] -= nr;
1643 	}
1644 	/* Checking a single PTE in a batch is sufficient. */
1645 	arch_check_zapped_pte(vma, ptent);
1646 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1647 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1648 		*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1649 							     nr, details, ptent);
1650 
1651 	if (!delay_rmap) {
1652 		folio_remove_rmap_ptes(folio, page, nr, vma);
1653 
1654 		if (unlikely(folio_mapcount(folio) < 0))
1655 			print_bad_pte(vma, addr, ptent, page);
1656 	}
1657 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1658 		*force_flush = true;
1659 		*force_break = true;
1660 	}
1661 }
1662 
1663 /*
1664  * Zap or skip at least one present PTE, trying to batch-process subsequent
1665  * PTEs that map consecutive pages of the same folio.
1666  *
1667  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1668  */
zap_present_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1669 static inline int zap_present_ptes(struct mmu_gather *tlb,
1670 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1671 		unsigned int max_nr, unsigned long addr,
1672 		struct zap_details *details, int *rss, bool *force_flush,
1673 		bool *force_break, bool *any_skipped)
1674 {
1675 	struct mm_struct *mm = tlb->mm;
1676 	struct folio *folio;
1677 	struct page *page;
1678 	int nr;
1679 
1680 	page = vm_normal_page(vma, addr, ptent);
1681 	if (!page) {
1682 		/* We don't need up-to-date accessed/dirty bits. */
1683 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1684 		arch_check_zapped_pte(vma, ptent);
1685 		tlb_remove_tlb_entry(tlb, pte, addr);
1686 		if (userfaultfd_pte_wp(vma, ptent))
1687 			*any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1688 						pte, 1, details, ptent);
1689 		ksm_might_unmap_zero_page(mm, ptent);
1690 		return 1;
1691 	}
1692 
1693 	folio = page_folio(page);
1694 	if (unlikely(!should_zap_folio(details, folio))) {
1695 		*any_skipped = true;
1696 		return 1;
1697 	}
1698 
1699 	/*
1700 	 * Make sure that the common "small folio" case is as fast as possible
1701 	 * by keeping the batching logic separate.
1702 	 */
1703 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1704 		nr = folio_pte_batch(folio, pte, ptent, max_nr);
1705 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1706 				       addr, details, rss, force_flush,
1707 				       force_break, any_skipped);
1708 		return nr;
1709 	}
1710 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1711 			       details, rss, force_flush, force_break, any_skipped);
1712 	return 1;
1713 }
1714 
zap_nonpresent_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * any_skipped)1715 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1716 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1717 		unsigned int max_nr, unsigned long addr,
1718 		struct zap_details *details, int *rss, bool *any_skipped)
1719 {
1720 	swp_entry_t entry;
1721 	int nr = 1;
1722 
1723 	*any_skipped = true;
1724 	entry = pte_to_swp_entry(ptent);
1725 	if (is_device_private_entry(entry) ||
1726 		is_device_exclusive_entry(entry)) {
1727 		struct page *page = pfn_swap_entry_to_page(entry);
1728 		struct folio *folio = page_folio(page);
1729 
1730 		if (unlikely(!should_zap_folio(details, folio)))
1731 			return 1;
1732 		/*
1733 		 * Both device private/exclusive mappings should only
1734 		 * work with anonymous page so far, so we don't need to
1735 		 * consider uffd-wp bit when zap. For more information,
1736 		 * see zap_install_uffd_wp_if_needed().
1737 		 */
1738 		WARN_ON_ONCE(!vma_is_anonymous(vma));
1739 		rss[mm_counter(folio)]--;
1740 		folio_remove_rmap_pte(folio, page, vma);
1741 		folio_put(folio);
1742 	} else if (!non_swap_entry(entry)) {
1743 		/* Genuine swap entries, hence a private anon pages */
1744 		if (!should_zap_cows(details))
1745 			return 1;
1746 
1747 		nr = swap_pte_batch(pte, max_nr, ptent);
1748 		rss[MM_SWAPENTS] -= nr;
1749 		free_swap_and_cache_nr(entry, nr);
1750 	} else if (is_migration_entry(entry)) {
1751 		struct folio *folio = pfn_swap_entry_folio(entry);
1752 
1753 		if (!should_zap_folio(details, folio))
1754 			return 1;
1755 		rss[mm_counter(folio)]--;
1756 	} else if (pte_marker_entry_uffd_wp(entry)) {
1757 		/*
1758 		 * For anon: always drop the marker; for file: only
1759 		 * drop the marker if explicitly requested.
1760 		 */
1761 		if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1762 			return 1;
1763 	} else if (is_guard_swp_entry(entry)) {
1764 		/*
1765 		 * Ordinary zapping should not remove guard PTE
1766 		 * markers. Only do so if we should remove PTE markers
1767 		 * in general.
1768 		 */
1769 		if (!zap_drop_markers(details))
1770 			return 1;
1771 	} else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
1772 		if (!should_zap_cows(details))
1773 			return 1;
1774 	} else {
1775 		/* We should have covered all the swap entry types */
1776 		pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1777 		WARN_ON_ONCE(1);
1778 	}
1779 	clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1780 	*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1781 
1782 	return nr;
1783 }
1784 
do_zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,unsigned long addr,unsigned long end,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1785 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1786 				   struct vm_area_struct *vma, pte_t *pte,
1787 				   unsigned long addr, unsigned long end,
1788 				   struct zap_details *details, int *rss,
1789 				   bool *force_flush, bool *force_break,
1790 				   bool *any_skipped)
1791 {
1792 	pte_t ptent = ptep_get(pte);
1793 	int max_nr = (end - addr) / PAGE_SIZE;
1794 	int nr = 0;
1795 
1796 	/* Skip all consecutive none ptes */
1797 	if (pte_none(ptent)) {
1798 		for (nr = 1; nr < max_nr; nr++) {
1799 			ptent = ptep_get(pte + nr);
1800 			if (!pte_none(ptent))
1801 				break;
1802 		}
1803 		max_nr -= nr;
1804 		if (!max_nr)
1805 			return nr;
1806 		pte += nr;
1807 		addr += nr * PAGE_SIZE;
1808 	}
1809 
1810 	if (pte_present(ptent))
1811 		nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1812 				       details, rss, force_flush, force_break,
1813 				       any_skipped);
1814 	else
1815 		nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1816 					  details, rss, any_skipped);
1817 
1818 	return nr;
1819 }
1820 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1821 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1822 				struct vm_area_struct *vma, pmd_t *pmd,
1823 				unsigned long addr, unsigned long end,
1824 				struct zap_details *details)
1825 {
1826 	bool force_flush = false, force_break = false;
1827 	struct mm_struct *mm = tlb->mm;
1828 	int rss[NR_MM_COUNTERS];
1829 	spinlock_t *ptl;
1830 	pte_t *start_pte;
1831 	pte_t *pte;
1832 	pmd_t pmdval;
1833 	unsigned long start = addr;
1834 	bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1835 	bool direct_reclaim = true;
1836 	int nr;
1837 
1838 retry:
1839 	tlb_change_page_size(tlb, PAGE_SIZE);
1840 	init_rss_vec(rss);
1841 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1842 	if (!pte)
1843 		return addr;
1844 
1845 	flush_tlb_batched_pending(mm);
1846 	arch_enter_lazy_mmu_mode();
1847 	do {
1848 		bool any_skipped = false;
1849 
1850 		if (need_resched()) {
1851 			direct_reclaim = false;
1852 			break;
1853 		}
1854 
1855 		nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1856 				      &force_flush, &force_break, &any_skipped);
1857 		if (any_skipped)
1858 			can_reclaim_pt = false;
1859 		if (unlikely(force_break)) {
1860 			addr += nr * PAGE_SIZE;
1861 			direct_reclaim = false;
1862 			break;
1863 		}
1864 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1865 
1866 	/*
1867 	 * Fast path: try to hold the pmd lock and unmap the PTE page.
1868 	 *
1869 	 * If the pte lock was released midway (retry case), or if the attempt
1870 	 * to hold the pmd lock failed, then we need to recheck all pte entries
1871 	 * to ensure they are still none, thereby preventing the pte entries
1872 	 * from being repopulated by another thread.
1873 	 */
1874 	if (can_reclaim_pt && direct_reclaim && addr == end)
1875 		direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1876 
1877 	add_mm_rss_vec(mm, rss);
1878 	arch_leave_lazy_mmu_mode();
1879 
1880 	/* Do the actual TLB flush before dropping ptl */
1881 	if (force_flush) {
1882 		tlb_flush_mmu_tlbonly(tlb);
1883 		tlb_flush_rmaps(tlb, vma);
1884 	}
1885 	pte_unmap_unlock(start_pte, ptl);
1886 
1887 	/*
1888 	 * If we forced a TLB flush (either due to running out of
1889 	 * batch buffers or because we needed to flush dirty TLB
1890 	 * entries before releasing the ptl), free the batched
1891 	 * memory too. Come back again if we didn't do everything.
1892 	 */
1893 	if (force_flush)
1894 		tlb_flush_mmu(tlb);
1895 
1896 	if (addr != end) {
1897 		cond_resched();
1898 		force_flush = false;
1899 		force_break = false;
1900 		goto retry;
1901 	}
1902 
1903 	if (can_reclaim_pt) {
1904 		if (direct_reclaim)
1905 			free_pte(mm, start, tlb, pmdval);
1906 		else
1907 			try_to_free_pte(mm, pmd, start, tlb);
1908 	}
1909 
1910 	return addr;
1911 }
1912 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1913 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1914 				struct vm_area_struct *vma, pud_t *pud,
1915 				unsigned long addr, unsigned long end,
1916 				struct zap_details *details)
1917 {
1918 	pmd_t *pmd;
1919 	unsigned long next;
1920 
1921 	pmd = pmd_offset(pud, addr);
1922 	do {
1923 		next = pmd_addr_end(addr, end);
1924 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)) {
1925 			if (next - addr != HPAGE_PMD_SIZE)
1926 				__split_huge_pmd(vma, pmd, addr, false);
1927 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1928 				addr = next;
1929 				continue;
1930 			}
1931 			/* fall through */
1932 		} else if (details && details->single_folio &&
1933 			   folio_test_pmd_mappable(details->single_folio) &&
1934 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1935 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1936 			/*
1937 			 * Take and drop THP pmd lock so that we cannot return
1938 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1939 			 * but not yet decremented compound_mapcount().
1940 			 */
1941 			spin_unlock(ptl);
1942 		}
1943 		if (pmd_none(*pmd)) {
1944 			addr = next;
1945 			continue;
1946 		}
1947 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1948 		if (addr != next)
1949 			pmd--;
1950 	} while (pmd++, cond_resched(), addr != end);
1951 
1952 	return addr;
1953 }
1954 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1955 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1956 				struct vm_area_struct *vma, p4d_t *p4d,
1957 				unsigned long addr, unsigned long end,
1958 				struct zap_details *details)
1959 {
1960 	pud_t *pud;
1961 	unsigned long next;
1962 
1963 	pud = pud_offset(p4d, addr);
1964 	do {
1965 		next = pud_addr_end(addr, end);
1966 		if (pud_trans_huge(*pud)) {
1967 			if (next - addr != HPAGE_PUD_SIZE) {
1968 				mmap_assert_locked(tlb->mm);
1969 				split_huge_pud(vma, pud, addr);
1970 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1971 				goto next;
1972 			/* fall through */
1973 		}
1974 		if (pud_none_or_clear_bad(pud))
1975 			continue;
1976 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1977 next:
1978 		cond_resched();
1979 	} while (pud++, addr = next, addr != end);
1980 
1981 	return addr;
1982 }
1983 
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1984 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1985 				struct vm_area_struct *vma, pgd_t *pgd,
1986 				unsigned long addr, unsigned long end,
1987 				struct zap_details *details)
1988 {
1989 	p4d_t *p4d;
1990 	unsigned long next;
1991 
1992 	p4d = p4d_offset(pgd, addr);
1993 	do {
1994 		next = p4d_addr_end(addr, end);
1995 		if (p4d_none_or_clear_bad(p4d))
1996 			continue;
1997 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1998 	} while (p4d++, addr = next, addr != end);
1999 
2000 	return addr;
2001 }
2002 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)2003 void unmap_page_range(struct mmu_gather *tlb,
2004 			     struct vm_area_struct *vma,
2005 			     unsigned long addr, unsigned long end,
2006 			     struct zap_details *details)
2007 {
2008 	pgd_t *pgd;
2009 	unsigned long next;
2010 
2011 	BUG_ON(addr >= end);
2012 	tlb_start_vma(tlb, vma);
2013 	pgd = pgd_offset(vma->vm_mm, addr);
2014 	do {
2015 		next = pgd_addr_end(addr, end);
2016 		if (pgd_none_or_clear_bad(pgd))
2017 			continue;
2018 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
2019 	} while (pgd++, addr = next, addr != end);
2020 	tlb_end_vma(tlb, vma);
2021 }
2022 
2023 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)2024 static void unmap_single_vma(struct mmu_gather *tlb,
2025 		struct vm_area_struct *vma, unsigned long start_addr,
2026 		unsigned long end_addr,
2027 		struct zap_details *details, bool mm_wr_locked)
2028 {
2029 	unsigned long start = max(vma->vm_start, start_addr);
2030 	unsigned long end;
2031 
2032 	if (start >= vma->vm_end)
2033 		return;
2034 	end = min(vma->vm_end, end_addr);
2035 	if (end <= vma->vm_start)
2036 		return;
2037 
2038 	if (vma->vm_file)
2039 		uprobe_munmap(vma, start, end);
2040 
2041 	if (start != end) {
2042 		if (unlikely(is_vm_hugetlb_page(vma))) {
2043 			/*
2044 			 * It is undesirable to test vma->vm_file as it
2045 			 * should be non-null for valid hugetlb area.
2046 			 * However, vm_file will be NULL in the error
2047 			 * cleanup path of mmap_region. When
2048 			 * hugetlbfs ->mmap method fails,
2049 			 * mmap_region() nullifies vma->vm_file
2050 			 * before calling this function to clean up.
2051 			 * Since no pte has actually been setup, it is
2052 			 * safe to do nothing in this case.
2053 			 */
2054 			if (vma->vm_file) {
2055 				zap_flags_t zap_flags = details ?
2056 				    details->zap_flags : 0;
2057 				__unmap_hugepage_range(tlb, vma, start, end,
2058 							     NULL, zap_flags);
2059 			}
2060 		} else
2061 			unmap_page_range(tlb, vma, start, end, details);
2062 	}
2063 }
2064 
2065 /**
2066  * unmap_vmas - unmap a range of memory covered by a list of vma's
2067  * @tlb: address of the caller's struct mmu_gather
2068  * @mas: the maple state
2069  * @vma: the starting vma
2070  * @start_addr: virtual address at which to start unmapping
2071  * @end_addr: virtual address at which to end unmapping
2072  * @tree_end: The maximum index to check
2073  * @mm_wr_locked: lock flag
2074  *
2075  * Unmap all pages in the vma list.
2076  *
2077  * Only addresses between `start' and `end' will be unmapped.
2078  *
2079  * The VMA list must be sorted in ascending virtual address order.
2080  *
2081  * unmap_vmas() assumes that the caller will flush the whole unmapped address
2082  * range after unmap_vmas() returns.  So the only responsibility here is to
2083  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
2084  * drops the lock and schedules.
2085  */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)2086 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2087 		struct vm_area_struct *vma, unsigned long start_addr,
2088 		unsigned long end_addr, unsigned long tree_end,
2089 		bool mm_wr_locked)
2090 {
2091 	struct mmu_notifier_range range;
2092 	struct zap_details details = {
2093 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
2094 		/* Careful - we need to zap private pages too! */
2095 		.even_cows = true,
2096 	};
2097 
2098 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
2099 				start_addr, end_addr);
2100 	mmu_notifier_invalidate_range_start(&range);
2101 	do {
2102 		unsigned long start = start_addr;
2103 		unsigned long end = end_addr;
2104 		hugetlb_zap_begin(vma, &start, &end);
2105 		unmap_single_vma(tlb, vma, start, end, &details,
2106 				 mm_wr_locked);
2107 		hugetlb_zap_end(vma, &details);
2108 		vma = mas_find(mas, tree_end - 1);
2109 	} while (vma && likely(!xa_is_zero(vma)));
2110 	mmu_notifier_invalidate_range_end(&range);
2111 }
2112 
2113 /**
2114  * zap_page_range_single_batched - remove user pages in a given range
2115  * @tlb: pointer to the caller's struct mmu_gather
2116  * @vma: vm_area_struct holding the applicable pages
2117  * @address: starting address of pages to remove
2118  * @size: number of bytes to remove
2119  * @details: details of shared cache invalidation
2120  *
2121  * @tlb shouldn't be NULL.  The range must fit into one VMA.  If @vma is for
2122  * hugetlb, @tlb is flushed and re-initialized by this function.
2123  */
zap_page_range_single_batched(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2124 void zap_page_range_single_batched(struct mmu_gather *tlb,
2125 		struct vm_area_struct *vma, unsigned long address,
2126 		unsigned long size, struct zap_details *details)
2127 {
2128 	const unsigned long end = address + size;
2129 	struct mmu_notifier_range range;
2130 
2131 	VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm);
2132 
2133 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2134 				address, end);
2135 	hugetlb_zap_begin(vma, &range.start, &range.end);
2136 	update_hiwater_rss(vma->vm_mm);
2137 	mmu_notifier_invalidate_range_start(&range);
2138 	/*
2139 	 * unmap 'address-end' not 'range.start-range.end' as range
2140 	 * could have been expanded for hugetlb pmd sharing.
2141 	 */
2142 	unmap_single_vma(tlb, vma, address, end, details, false);
2143 	mmu_notifier_invalidate_range_end(&range);
2144 	if (is_vm_hugetlb_page(vma)) {
2145 		/*
2146 		 * flush tlb and free resources before hugetlb_zap_end(), to
2147 		 * avoid concurrent page faults' allocation failure.
2148 		 */
2149 		tlb_finish_mmu(tlb);
2150 		hugetlb_zap_end(vma, details);
2151 		tlb_gather_mmu(tlb, vma->vm_mm);
2152 	}
2153 }
2154 
2155 /**
2156  * zap_page_range_single - remove user pages in a given range
2157  * @vma: vm_area_struct holding the applicable pages
2158  * @address: starting address of pages to zap
2159  * @size: number of bytes to zap
2160  * @details: details of shared cache invalidation
2161  *
2162  * The range must fit into one VMA.
2163  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2164 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2165 		unsigned long size, struct zap_details *details)
2166 {
2167 	struct mmu_gather tlb;
2168 
2169 	tlb_gather_mmu(&tlb, vma->vm_mm);
2170 	zap_page_range_single_batched(&tlb, vma, address, size, details);
2171 	tlb_finish_mmu(&tlb);
2172 }
2173 
2174 /**
2175  * zap_vma_ptes - remove ptes mapping the vma
2176  * @vma: vm_area_struct holding ptes to be zapped
2177  * @address: starting address of pages to zap
2178  * @size: number of bytes to zap
2179  *
2180  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2181  *
2182  * The entire address range must be fully contained within the vma.
2183  *
2184  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)2185 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2186 		unsigned long size)
2187 {
2188 	if (!range_in_vma(vma, address, address + size) ||
2189 	    		!(vma->vm_flags & VM_PFNMAP))
2190 		return;
2191 
2192 	zap_page_range_single(vma, address, size, NULL);
2193 }
2194 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2195 
walk_to_pmd(struct mm_struct * mm,unsigned long addr)2196 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2197 {
2198 	pgd_t *pgd;
2199 	p4d_t *p4d;
2200 	pud_t *pud;
2201 	pmd_t *pmd;
2202 
2203 	pgd = pgd_offset(mm, addr);
2204 	p4d = p4d_alloc(mm, pgd, addr);
2205 	if (!p4d)
2206 		return NULL;
2207 	pud = pud_alloc(mm, p4d, addr);
2208 	if (!pud)
2209 		return NULL;
2210 	pmd = pmd_alloc(mm, pud, addr);
2211 	if (!pmd)
2212 		return NULL;
2213 
2214 	VM_BUG_ON(pmd_trans_huge(*pmd));
2215 	return pmd;
2216 }
2217 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2218 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2219 			spinlock_t **ptl)
2220 {
2221 	pmd_t *pmd = walk_to_pmd(mm, addr);
2222 
2223 	if (!pmd)
2224 		return NULL;
2225 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
2226 }
2227 
vm_mixed_zeropage_allowed(struct vm_area_struct * vma)2228 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2229 {
2230 	VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2231 	/*
2232 	 * Whoever wants to forbid the zeropage after some zeropages
2233 	 * might already have been mapped has to scan the page tables and
2234 	 * bail out on any zeropages. Zeropages in COW mappings can
2235 	 * be unshared using FAULT_FLAG_UNSHARE faults.
2236 	 */
2237 	if (mm_forbids_zeropage(vma->vm_mm))
2238 		return false;
2239 	/* zeropages in COW mappings are common and unproblematic. */
2240 	if (is_cow_mapping(vma->vm_flags))
2241 		return true;
2242 	/* Mappings that do not allow for writable PTEs are unproblematic. */
2243 	if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2244 		return true;
2245 	/*
2246 	 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2247 	 * find the shared zeropage and longterm-pin it, which would
2248 	 * be problematic as soon as the zeropage gets replaced by a different
2249 	 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2250 	 * now differ to what GUP looked up. FSDAX is incompatible to
2251 	 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2252 	 * check_vma_flags).
2253 	 */
2254 	return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2255 	       (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2256 }
2257 
validate_page_before_insert(struct vm_area_struct * vma,struct page * page)2258 static int validate_page_before_insert(struct vm_area_struct *vma,
2259 				       struct page *page)
2260 {
2261 	struct folio *folio = page_folio(page);
2262 
2263 	if (!folio_ref_count(folio))
2264 		return -EINVAL;
2265 	if (unlikely(is_zero_folio(folio))) {
2266 		if (!vm_mixed_zeropage_allowed(vma))
2267 			return -EINVAL;
2268 		return 0;
2269 	}
2270 	if (folio_test_anon(folio) || page_has_type(page))
2271 		return -EINVAL;
2272 	flush_dcache_folio(folio);
2273 	return 0;
2274 }
2275 
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2276 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2277 				unsigned long addr, struct page *page,
2278 				pgprot_t prot, bool mkwrite)
2279 {
2280 	struct folio *folio = page_folio(page);
2281 	pte_t pteval = ptep_get(pte);
2282 
2283 	if (!pte_none(pteval)) {
2284 		if (!mkwrite)
2285 			return -EBUSY;
2286 
2287 		/* see insert_pfn(). */
2288 		if (pte_pfn(pteval) != page_to_pfn(page)) {
2289 			WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval)));
2290 			return -EFAULT;
2291 		}
2292 		pteval = maybe_mkwrite(pteval, vma);
2293 		pteval = pte_mkyoung(pteval);
2294 		if (ptep_set_access_flags(vma, addr, pte, pteval, 1))
2295 			update_mmu_cache(vma, addr, pte);
2296 		return 0;
2297 	}
2298 
2299 	/* Ok, finally just insert the thing.. */
2300 	pteval = mk_pte(page, prot);
2301 	if (unlikely(is_zero_folio(folio))) {
2302 		pteval = pte_mkspecial(pteval);
2303 	} else {
2304 		folio_get(folio);
2305 		pteval = mk_pte(page, prot);
2306 		if (mkwrite) {
2307 			pteval = pte_mkyoung(pteval);
2308 			pteval = maybe_mkwrite(pte_mkdirty(pteval), vma);
2309 		}
2310 		inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2311 		folio_add_file_rmap_pte(folio, page, vma);
2312 	}
2313 	set_pte_at(vma->vm_mm, addr, pte, pteval);
2314 	return 0;
2315 }
2316 
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2317 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2318 			struct page *page, pgprot_t prot, bool mkwrite)
2319 {
2320 	int retval;
2321 	pte_t *pte;
2322 	spinlock_t *ptl;
2323 
2324 	retval = validate_page_before_insert(vma, page);
2325 	if (retval)
2326 		goto out;
2327 	retval = -ENOMEM;
2328 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2329 	if (!pte)
2330 		goto out;
2331 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot,
2332 					mkwrite);
2333 	pte_unmap_unlock(pte, ptl);
2334 out:
2335 	return retval;
2336 }
2337 
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2338 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2339 			unsigned long addr, struct page *page, pgprot_t prot)
2340 {
2341 	int err;
2342 
2343 	err = validate_page_before_insert(vma, page);
2344 	if (err)
2345 		return err;
2346 	return insert_page_into_pte_locked(vma, pte, addr, page, prot, false);
2347 }
2348 
2349 /* insert_pages() amortizes the cost of spinlock operations
2350  * when inserting pages in a loop.
2351  */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)2352 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2353 			struct page **pages, unsigned long *num, pgprot_t prot)
2354 {
2355 	pmd_t *pmd = NULL;
2356 	pte_t *start_pte, *pte;
2357 	spinlock_t *pte_lock;
2358 	struct mm_struct *const mm = vma->vm_mm;
2359 	unsigned long curr_page_idx = 0;
2360 	unsigned long remaining_pages_total = *num;
2361 	unsigned long pages_to_write_in_pmd;
2362 	int ret;
2363 more:
2364 	ret = -EFAULT;
2365 	pmd = walk_to_pmd(mm, addr);
2366 	if (!pmd)
2367 		goto out;
2368 
2369 	pages_to_write_in_pmd = min_t(unsigned long,
2370 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2371 
2372 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2373 	ret = -ENOMEM;
2374 	if (pte_alloc(mm, pmd))
2375 		goto out;
2376 
2377 	while (pages_to_write_in_pmd) {
2378 		int pte_idx = 0;
2379 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2380 
2381 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2382 		if (!start_pte) {
2383 			ret = -EFAULT;
2384 			goto out;
2385 		}
2386 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2387 			int err = insert_page_in_batch_locked(vma, pte,
2388 				addr, pages[curr_page_idx], prot);
2389 			if (unlikely(err)) {
2390 				pte_unmap_unlock(start_pte, pte_lock);
2391 				ret = err;
2392 				remaining_pages_total -= pte_idx;
2393 				goto out;
2394 			}
2395 			addr += PAGE_SIZE;
2396 			++curr_page_idx;
2397 		}
2398 		pte_unmap_unlock(start_pte, pte_lock);
2399 		pages_to_write_in_pmd -= batch_size;
2400 		remaining_pages_total -= batch_size;
2401 	}
2402 	if (remaining_pages_total)
2403 		goto more;
2404 	ret = 0;
2405 out:
2406 	*num = remaining_pages_total;
2407 	return ret;
2408 }
2409 
2410 /**
2411  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2412  * @vma: user vma to map to
2413  * @addr: target start user address of these pages
2414  * @pages: source kernel pages
2415  * @num: in: number of pages to map. out: number of pages that were *not*
2416  * mapped. (0 means all pages were successfully mapped).
2417  *
2418  * Preferred over vm_insert_page() when inserting multiple pages.
2419  *
2420  * In case of error, we may have mapped a subset of the provided
2421  * pages. It is the caller's responsibility to account for this case.
2422  *
2423  * The same restrictions apply as in vm_insert_page().
2424  */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)2425 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2426 			struct page **pages, unsigned long *num)
2427 {
2428 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2429 
2430 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2431 		return -EFAULT;
2432 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2433 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2434 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2435 		vm_flags_set(vma, VM_MIXEDMAP);
2436 	}
2437 	/* Defer page refcount checking till we're about to map that page. */
2438 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2439 }
2440 EXPORT_SYMBOL(vm_insert_pages);
2441 
2442 /**
2443  * vm_insert_page - insert single page into user vma
2444  * @vma: user vma to map to
2445  * @addr: target user address of this page
2446  * @page: source kernel page
2447  *
2448  * This allows drivers to insert individual pages they've allocated
2449  * into a user vma. The zeropage is supported in some VMAs,
2450  * see vm_mixed_zeropage_allowed().
2451  *
2452  * The page has to be a nice clean _individual_ kernel allocation.
2453  * If you allocate a compound page, you need to have marked it as
2454  * such (__GFP_COMP), or manually just split the page up yourself
2455  * (see split_page()).
2456  *
2457  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2458  * took an arbitrary page protection parameter. This doesn't allow
2459  * that. Your vma protection will have to be set up correctly, which
2460  * means that if you want a shared writable mapping, you'd better
2461  * ask for a shared writable mapping!
2462  *
2463  * The page does not need to be reserved.
2464  *
2465  * Usually this function is called from f_op->mmap() handler
2466  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2467  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2468  * function from other places, for example from page-fault handler.
2469  *
2470  * Return: %0 on success, negative error code otherwise.
2471  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2472 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2473 			struct page *page)
2474 {
2475 	if (addr < vma->vm_start || addr >= vma->vm_end)
2476 		return -EFAULT;
2477 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2478 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2479 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2480 		vm_flags_set(vma, VM_MIXEDMAP);
2481 	}
2482 	return insert_page(vma, addr, page, vma->vm_page_prot, false);
2483 }
2484 EXPORT_SYMBOL(vm_insert_page);
2485 
2486 /*
2487  * __vm_map_pages - maps range of kernel pages into user vma
2488  * @vma: user vma to map to
2489  * @pages: pointer to array of source kernel pages
2490  * @num: number of pages in page array
2491  * @offset: user's requested vm_pgoff
2492  *
2493  * This allows drivers to map range of kernel pages into a user vma.
2494  * The zeropage is supported in some VMAs, see
2495  * vm_mixed_zeropage_allowed().
2496  *
2497  * Return: 0 on success and error code otherwise.
2498  */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2499 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2500 				unsigned long num, unsigned long offset)
2501 {
2502 	unsigned long count = vma_pages(vma);
2503 	unsigned long uaddr = vma->vm_start;
2504 	int ret, i;
2505 
2506 	/* Fail if the user requested offset is beyond the end of the object */
2507 	if (offset >= num)
2508 		return -ENXIO;
2509 
2510 	/* Fail if the user requested size exceeds available object size */
2511 	if (count > num - offset)
2512 		return -ENXIO;
2513 
2514 	for (i = 0; i < count; i++) {
2515 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2516 		if (ret < 0)
2517 			return ret;
2518 		uaddr += PAGE_SIZE;
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 /**
2525  * vm_map_pages - maps range of kernel pages starts with non zero offset
2526  * @vma: user vma to map to
2527  * @pages: pointer to array of source kernel pages
2528  * @num: number of pages in page array
2529  *
2530  * Maps an object consisting of @num pages, catering for the user's
2531  * requested vm_pgoff
2532  *
2533  * If we fail to insert any page into the vma, the function will return
2534  * immediately leaving any previously inserted pages present.  Callers
2535  * from the mmap handler may immediately return the error as their caller
2536  * will destroy the vma, removing any successfully inserted pages. Other
2537  * callers should make their own arrangements for calling unmap_region().
2538  *
2539  * Context: Process context. Called by mmap handlers.
2540  * Return: 0 on success and error code otherwise.
2541  */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2542 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2543 				unsigned long num)
2544 {
2545 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2546 }
2547 EXPORT_SYMBOL(vm_map_pages);
2548 
2549 /**
2550  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2551  * @vma: user vma to map to
2552  * @pages: pointer to array of source kernel pages
2553  * @num: number of pages in page array
2554  *
2555  * Similar to vm_map_pages(), except that it explicitly sets the offset
2556  * to 0. This function is intended for the drivers that did not consider
2557  * vm_pgoff.
2558  *
2559  * Context: Process context. Called by mmap handlers.
2560  * Return: 0 on success and error code otherwise.
2561  */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2562 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2563 				unsigned long num)
2564 {
2565 	return __vm_map_pages(vma, pages, num, 0);
2566 }
2567 EXPORT_SYMBOL(vm_map_pages_zero);
2568 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot,bool mkwrite)2569 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2570 			unsigned long pfn, pgprot_t prot, bool mkwrite)
2571 {
2572 	struct mm_struct *mm = vma->vm_mm;
2573 	pte_t *pte, entry;
2574 	spinlock_t *ptl;
2575 
2576 	pte = get_locked_pte(mm, addr, &ptl);
2577 	if (!pte)
2578 		return VM_FAULT_OOM;
2579 	entry = ptep_get(pte);
2580 	if (!pte_none(entry)) {
2581 		if (mkwrite) {
2582 			/*
2583 			 * For read faults on private mappings the PFN passed
2584 			 * in may not match the PFN we have mapped if the
2585 			 * mapped PFN is a writeable COW page.  In the mkwrite
2586 			 * case we are creating a writable PTE for a shared
2587 			 * mapping and we expect the PFNs to match. If they
2588 			 * don't match, we are likely racing with block
2589 			 * allocation and mapping invalidation so just skip the
2590 			 * update.
2591 			 */
2592 			if (pte_pfn(entry) != pfn) {
2593 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2594 				goto out_unlock;
2595 			}
2596 			entry = pte_mkyoung(entry);
2597 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2598 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2599 				update_mmu_cache(vma, addr, pte);
2600 		}
2601 		goto out_unlock;
2602 	}
2603 
2604 	/* Ok, finally just insert the thing.. */
2605 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2606 
2607 	if (mkwrite) {
2608 		entry = pte_mkyoung(entry);
2609 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2610 	}
2611 
2612 	set_pte_at(mm, addr, pte, entry);
2613 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2614 
2615 out_unlock:
2616 	pte_unmap_unlock(pte, ptl);
2617 	return VM_FAULT_NOPAGE;
2618 }
2619 
2620 /**
2621  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2622  * @vma: user vma to map to
2623  * @addr: target user address of this page
2624  * @pfn: source kernel pfn
2625  * @pgprot: pgprot flags for the inserted page
2626  *
2627  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2628  * to override pgprot on a per-page basis.
2629  *
2630  * This only makes sense for IO mappings, and it makes no sense for
2631  * COW mappings.  In general, using multiple vmas is preferable;
2632  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2633  * impractical.
2634  *
2635  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2636  * caching- and encryption bits different than those of @vma->vm_page_prot,
2637  * because the caching- or encryption mode may not be known at mmap() time.
2638  *
2639  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2640  * to set caching and encryption bits for those vmas (except for COW pages).
2641  * This is ensured by core vm only modifying these page table entries using
2642  * functions that don't touch caching- or encryption bits, using pte_modify()
2643  * if needed. (See for example mprotect()).
2644  *
2645  * Also when new page-table entries are created, this is only done using the
2646  * fault() callback, and never using the value of vma->vm_page_prot,
2647  * except for page-table entries that point to anonymous pages as the result
2648  * of COW.
2649  *
2650  * Context: Process context.  May allocate using %GFP_KERNEL.
2651  * Return: vm_fault_t value.
2652  */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2653 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2654 			unsigned long pfn, pgprot_t pgprot)
2655 {
2656 	/*
2657 	 * Technically, architectures with pte_special can avoid all these
2658 	 * restrictions (same for remap_pfn_range).  However we would like
2659 	 * consistency in testing and feature parity among all, so we should
2660 	 * try to keep these invariants in place for everybody.
2661 	 */
2662 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2663 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2664 						(VM_PFNMAP|VM_MIXEDMAP));
2665 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2666 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2667 
2668 	if (addr < vma->vm_start || addr >= vma->vm_end)
2669 		return VM_FAULT_SIGBUS;
2670 
2671 	if (!pfn_modify_allowed(pfn, pgprot))
2672 		return VM_FAULT_SIGBUS;
2673 
2674 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2675 
2676 	return insert_pfn(vma, addr, pfn, pgprot, false);
2677 }
2678 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2679 
2680 /**
2681  * vmf_insert_pfn - insert single pfn into user vma
2682  * @vma: user vma to map to
2683  * @addr: target user address of this page
2684  * @pfn: source kernel pfn
2685  *
2686  * Similar to vm_insert_page, this allows drivers to insert individual pages
2687  * they've allocated into a user vma. Same comments apply.
2688  *
2689  * This function should only be called from a vm_ops->fault handler, and
2690  * in that case the handler should return the result of this function.
2691  *
2692  * vma cannot be a COW mapping.
2693  *
2694  * As this is called only for pages that do not currently exist, we
2695  * do not need to flush old virtual caches or the TLB.
2696  *
2697  * Context: Process context.  May allocate using %GFP_KERNEL.
2698  * Return: vm_fault_t value.
2699  */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2700 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2701 			unsigned long pfn)
2702 {
2703 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2704 }
2705 EXPORT_SYMBOL(vmf_insert_pfn);
2706 
vm_mixed_ok(struct vm_area_struct * vma,unsigned long pfn,bool mkwrite)2707 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn,
2708 			bool mkwrite)
2709 {
2710 	if (unlikely(is_zero_pfn(pfn)) &&
2711 	    (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2712 		return false;
2713 	/* these checks mirror the abort conditions in vm_normal_page */
2714 	if (vma->vm_flags & VM_MIXEDMAP)
2715 		return true;
2716 	if (is_zero_pfn(pfn))
2717 		return true;
2718 	return false;
2719 }
2720 
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,bool mkwrite)2721 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2722 		unsigned long addr, unsigned long pfn, bool mkwrite)
2723 {
2724 	pgprot_t pgprot = vma->vm_page_prot;
2725 	int err;
2726 
2727 	if (!vm_mixed_ok(vma, pfn, mkwrite))
2728 		return VM_FAULT_SIGBUS;
2729 
2730 	if (addr < vma->vm_start || addr >= vma->vm_end)
2731 		return VM_FAULT_SIGBUS;
2732 
2733 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2734 
2735 	if (!pfn_modify_allowed(pfn, pgprot))
2736 		return VM_FAULT_SIGBUS;
2737 
2738 	/*
2739 	 * If we don't have pte special, then we have to use the pfn_valid()
2740 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2741 	 * refcount the page if pfn_valid is true (hence insert_page rather
2742 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2743 	 * without pte special, it would there be refcounted as a normal page.
2744 	 */
2745 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) {
2746 		struct page *page;
2747 
2748 		/*
2749 		 * At this point we are committed to insert_page()
2750 		 * regardless of whether the caller specified flags that
2751 		 * result in pfn_t_has_page() == false.
2752 		 */
2753 		page = pfn_to_page(pfn);
2754 		err = insert_page(vma, addr, page, pgprot, mkwrite);
2755 	} else {
2756 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2757 	}
2758 
2759 	if (err == -ENOMEM)
2760 		return VM_FAULT_OOM;
2761 	if (err < 0 && err != -EBUSY)
2762 		return VM_FAULT_SIGBUS;
2763 
2764 	return VM_FAULT_NOPAGE;
2765 }
2766 
vmf_insert_page_mkwrite(struct vm_fault * vmf,struct page * page,bool write)2767 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
2768 			bool write)
2769 {
2770 	pgprot_t pgprot = vmf->vma->vm_page_prot;
2771 	unsigned long addr = vmf->address;
2772 	int err;
2773 
2774 	if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end)
2775 		return VM_FAULT_SIGBUS;
2776 
2777 	err = insert_page(vmf->vma, addr, page, pgprot, write);
2778 	if (err == -ENOMEM)
2779 		return VM_FAULT_OOM;
2780 	if (err < 0 && err != -EBUSY)
2781 		return VM_FAULT_SIGBUS;
2782 
2783 	return VM_FAULT_NOPAGE;
2784 }
2785 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite);
2786 
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2787 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2788 		unsigned long pfn)
2789 {
2790 	return __vm_insert_mixed(vma, addr, pfn, false);
2791 }
2792 EXPORT_SYMBOL(vmf_insert_mixed);
2793 
2794 /*
2795  *  If the insertion of PTE failed because someone else already added a
2796  *  different entry in the mean time, we treat that as success as we assume
2797  *  the same entry was actually inserted.
2798  */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2799 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2800 		unsigned long addr, unsigned long pfn)
2801 {
2802 	return __vm_insert_mixed(vma, addr, pfn, true);
2803 }
2804 
2805 /*
2806  * maps a range of physical memory into the requested pages. the old
2807  * mappings are removed. any references to nonexistent pages results
2808  * in null mappings (currently treated as "copy-on-access")
2809  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2810 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2811 			unsigned long addr, unsigned long end,
2812 			unsigned long pfn, pgprot_t prot)
2813 {
2814 	pte_t *pte, *mapped_pte;
2815 	spinlock_t *ptl;
2816 	int err = 0;
2817 
2818 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2819 	if (!pte)
2820 		return -ENOMEM;
2821 	arch_enter_lazy_mmu_mode();
2822 	do {
2823 		BUG_ON(!pte_none(ptep_get(pte)));
2824 		if (!pfn_modify_allowed(pfn, prot)) {
2825 			err = -EACCES;
2826 			break;
2827 		}
2828 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2829 		pfn++;
2830 	} while (pte++, addr += PAGE_SIZE, addr != end);
2831 	arch_leave_lazy_mmu_mode();
2832 	pte_unmap_unlock(mapped_pte, ptl);
2833 	return err;
2834 }
2835 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2836 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2837 			unsigned long addr, unsigned long end,
2838 			unsigned long pfn, pgprot_t prot)
2839 {
2840 	pmd_t *pmd;
2841 	unsigned long next;
2842 	int err;
2843 
2844 	pfn -= addr >> PAGE_SHIFT;
2845 	pmd = pmd_alloc(mm, pud, addr);
2846 	if (!pmd)
2847 		return -ENOMEM;
2848 	VM_BUG_ON(pmd_trans_huge(*pmd));
2849 	do {
2850 		next = pmd_addr_end(addr, end);
2851 		err = remap_pte_range(mm, pmd, addr, next,
2852 				pfn + (addr >> PAGE_SHIFT), prot);
2853 		if (err)
2854 			return err;
2855 	} while (pmd++, addr = next, addr != end);
2856 	return 0;
2857 }
2858 
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2859 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2860 			unsigned long addr, unsigned long end,
2861 			unsigned long pfn, pgprot_t prot)
2862 {
2863 	pud_t *pud;
2864 	unsigned long next;
2865 	int err;
2866 
2867 	pfn -= addr >> PAGE_SHIFT;
2868 	pud = pud_alloc(mm, p4d, addr);
2869 	if (!pud)
2870 		return -ENOMEM;
2871 	do {
2872 		next = pud_addr_end(addr, end);
2873 		err = remap_pmd_range(mm, pud, addr, next,
2874 				pfn + (addr >> PAGE_SHIFT), prot);
2875 		if (err)
2876 			return err;
2877 	} while (pud++, addr = next, addr != end);
2878 	return 0;
2879 }
2880 
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2881 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2882 			unsigned long addr, unsigned long end,
2883 			unsigned long pfn, pgprot_t prot)
2884 {
2885 	p4d_t *p4d;
2886 	unsigned long next;
2887 	int err;
2888 
2889 	pfn -= addr >> PAGE_SHIFT;
2890 	p4d = p4d_alloc(mm, pgd, addr);
2891 	if (!p4d)
2892 		return -ENOMEM;
2893 	do {
2894 		next = p4d_addr_end(addr, end);
2895 		err = remap_pud_range(mm, p4d, addr, next,
2896 				pfn + (addr >> PAGE_SHIFT), prot);
2897 		if (err)
2898 			return err;
2899 	} while (p4d++, addr = next, addr != end);
2900 	return 0;
2901 }
2902 
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2903 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2904 		unsigned long pfn, unsigned long size, pgprot_t prot)
2905 {
2906 	pgd_t *pgd;
2907 	unsigned long next;
2908 	unsigned long end = addr + PAGE_ALIGN(size);
2909 	struct mm_struct *mm = vma->vm_mm;
2910 	int err;
2911 
2912 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2913 		return -EINVAL;
2914 
2915 	/*
2916 	 * Physically remapped pages are special. Tell the
2917 	 * rest of the world about it:
2918 	 *   VM_IO tells people not to look at these pages
2919 	 *	(accesses can have side effects).
2920 	 *   VM_PFNMAP tells the core MM that the base pages are just
2921 	 *	raw PFN mappings, and do not have a "struct page" associated
2922 	 *	with them.
2923 	 *   VM_DONTEXPAND
2924 	 *      Disable vma merging and expanding with mremap().
2925 	 *   VM_DONTDUMP
2926 	 *      Omit vma from core dump, even when VM_IO turned off.
2927 	 *
2928 	 * There's a horrible special case to handle copy-on-write
2929 	 * behaviour that some programs depend on. We mark the "original"
2930 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2931 	 * See vm_normal_page() for details.
2932 	 */
2933 	if (is_cow_mapping(vma->vm_flags)) {
2934 		if (addr != vma->vm_start || end != vma->vm_end)
2935 			return -EINVAL;
2936 		vma->vm_pgoff = pfn;
2937 	}
2938 
2939 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2940 
2941 	BUG_ON(addr >= end);
2942 	pfn -= addr >> PAGE_SHIFT;
2943 	pgd = pgd_offset(mm, addr);
2944 	flush_cache_range(vma, addr, end);
2945 	do {
2946 		next = pgd_addr_end(addr, end);
2947 		err = remap_p4d_range(mm, pgd, addr, next,
2948 				pfn + (addr >> PAGE_SHIFT), prot);
2949 		if (err)
2950 			return err;
2951 	} while (pgd++, addr = next, addr != end);
2952 
2953 	return 0;
2954 }
2955 
2956 /*
2957  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2958  * must have pre-validated the caching bits of the pgprot_t.
2959  */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2960 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2961 		unsigned long pfn, unsigned long size, pgprot_t prot)
2962 {
2963 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2964 
2965 	if (!error)
2966 		return 0;
2967 
2968 	/*
2969 	 * A partial pfn range mapping is dangerous: it does not
2970 	 * maintain page reference counts, and callers may free
2971 	 * pages due to the error. So zap it early.
2972 	 */
2973 	zap_page_range_single(vma, addr, size, NULL);
2974 	return error;
2975 }
2976 
2977 #ifdef __HAVE_PFNMAP_TRACKING
pfnmap_track_ctx_alloc(unsigned long pfn,unsigned long size,pgprot_t * prot)2978 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn,
2979 		unsigned long size, pgprot_t *prot)
2980 {
2981 	struct pfnmap_track_ctx *ctx;
2982 
2983 	if (pfnmap_track(pfn, size, prot))
2984 		return ERR_PTR(-EINVAL);
2985 
2986 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
2987 	if (unlikely(!ctx)) {
2988 		pfnmap_untrack(pfn, size);
2989 		return ERR_PTR(-ENOMEM);
2990 	}
2991 
2992 	ctx->pfn = pfn;
2993 	ctx->size = size;
2994 	kref_init(&ctx->kref);
2995 	return ctx;
2996 }
2997 
pfnmap_track_ctx_release(struct kref * ref)2998 void pfnmap_track_ctx_release(struct kref *ref)
2999 {
3000 	struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref);
3001 
3002 	pfnmap_untrack(ctx->pfn, ctx->size);
3003 	kfree(ctx);
3004 }
3005 #endif /* __HAVE_PFNMAP_TRACKING */
3006 
3007 /**
3008  * remap_pfn_range - remap kernel memory to userspace
3009  * @vma: user vma to map to
3010  * @addr: target page aligned user address to start at
3011  * @pfn: page frame number of kernel physical memory address
3012  * @size: size of mapping area
3013  * @prot: page protection flags for this mapping
3014  *
3015  * Note: this is only safe if the mm semaphore is held when called.
3016  *
3017  * Return: %0 on success, negative error code otherwise.
3018  */
3019 #ifdef __HAVE_PFNMAP_TRACKING
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3020 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3021 		    unsigned long pfn, unsigned long size, pgprot_t prot)
3022 {
3023 	struct pfnmap_track_ctx *ctx = NULL;
3024 	int err;
3025 
3026 	size = PAGE_ALIGN(size);
3027 
3028 	/*
3029 	 * If we cover the full VMA, we'll perform actual tracking, and
3030 	 * remember to untrack when the last reference to our tracking
3031 	 * context from a VMA goes away. We'll keep tracking the whole pfn
3032 	 * range even during VMA splits and partial unmapping.
3033 	 *
3034 	 * If we only cover parts of the VMA, we'll only setup the cachemode
3035 	 * in the pgprot for the pfn range.
3036 	 */
3037 	if (addr == vma->vm_start && addr + size == vma->vm_end) {
3038 		if (vma->pfnmap_track_ctx)
3039 			return -EINVAL;
3040 		ctx = pfnmap_track_ctx_alloc(pfn, size, &prot);
3041 		if (IS_ERR(ctx))
3042 			return PTR_ERR(ctx);
3043 	} else if (pfnmap_setup_cachemode(pfn, size, &prot)) {
3044 		return -EINVAL;
3045 	}
3046 
3047 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
3048 	if (ctx) {
3049 		if (err)
3050 			kref_put(&ctx->kref, pfnmap_track_ctx_release);
3051 		else
3052 			vma->pfnmap_track_ctx = ctx;
3053 	}
3054 	return err;
3055 }
3056 
3057 #else
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3058 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3059 		    unsigned long pfn, unsigned long size, pgprot_t prot)
3060 {
3061 	return remap_pfn_range_notrack(vma, addr, pfn, size, prot);
3062 }
3063 #endif
3064 EXPORT_SYMBOL(remap_pfn_range);
3065 
3066 /**
3067  * vm_iomap_memory - remap memory to userspace
3068  * @vma: user vma to map to
3069  * @start: start of the physical memory to be mapped
3070  * @len: size of area
3071  *
3072  * This is a simplified io_remap_pfn_range() for common driver use. The
3073  * driver just needs to give us the physical memory range to be mapped,
3074  * we'll figure out the rest from the vma information.
3075  *
3076  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
3077  * whatever write-combining details or similar.
3078  *
3079  * Return: %0 on success, negative error code otherwise.
3080  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)3081 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
3082 {
3083 	unsigned long vm_len, pfn, pages;
3084 
3085 	/* Check that the physical memory area passed in looks valid */
3086 	if (start + len < start)
3087 		return -EINVAL;
3088 	/*
3089 	 * You *really* shouldn't map things that aren't page-aligned,
3090 	 * but we've historically allowed it because IO memory might
3091 	 * just have smaller alignment.
3092 	 */
3093 	len += start & ~PAGE_MASK;
3094 	pfn = start >> PAGE_SHIFT;
3095 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
3096 	if (pfn + pages < pfn)
3097 		return -EINVAL;
3098 
3099 	/* We start the mapping 'vm_pgoff' pages into the area */
3100 	if (vma->vm_pgoff > pages)
3101 		return -EINVAL;
3102 	pfn += vma->vm_pgoff;
3103 	pages -= vma->vm_pgoff;
3104 
3105 	/* Can we fit all of the mapping? */
3106 	vm_len = vma->vm_end - vma->vm_start;
3107 	if (vm_len >> PAGE_SHIFT > pages)
3108 		return -EINVAL;
3109 
3110 	/* Ok, let it rip */
3111 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
3112 }
3113 EXPORT_SYMBOL(vm_iomap_memory);
3114 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3115 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
3116 				     unsigned long addr, unsigned long end,
3117 				     pte_fn_t fn, void *data, bool create,
3118 				     pgtbl_mod_mask *mask)
3119 {
3120 	pte_t *pte, *mapped_pte;
3121 	int err = 0;
3122 	spinlock_t *ptl;
3123 
3124 	if (create) {
3125 		mapped_pte = pte = (mm == &init_mm) ?
3126 			pte_alloc_kernel_track(pmd, addr, mask) :
3127 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
3128 		if (!pte)
3129 			return -ENOMEM;
3130 	} else {
3131 		mapped_pte = pte = (mm == &init_mm) ?
3132 			pte_offset_kernel(pmd, addr) :
3133 			pte_offset_map_lock(mm, pmd, addr, &ptl);
3134 		if (!pte)
3135 			return -EINVAL;
3136 	}
3137 
3138 	arch_enter_lazy_mmu_mode();
3139 
3140 	if (fn) {
3141 		do {
3142 			if (create || !pte_none(ptep_get(pte))) {
3143 				err = fn(pte, addr, data);
3144 				if (err)
3145 					break;
3146 			}
3147 		} while (pte++, addr += PAGE_SIZE, addr != end);
3148 	}
3149 	*mask |= PGTBL_PTE_MODIFIED;
3150 
3151 	arch_leave_lazy_mmu_mode();
3152 
3153 	if (mm != &init_mm)
3154 		pte_unmap_unlock(mapped_pte, ptl);
3155 	return err;
3156 }
3157 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3158 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
3159 				     unsigned long addr, unsigned long end,
3160 				     pte_fn_t fn, void *data, bool create,
3161 				     pgtbl_mod_mask *mask)
3162 {
3163 	pmd_t *pmd;
3164 	unsigned long next;
3165 	int err = 0;
3166 
3167 	BUG_ON(pud_leaf(*pud));
3168 
3169 	if (create) {
3170 		pmd = pmd_alloc_track(mm, pud, addr, mask);
3171 		if (!pmd)
3172 			return -ENOMEM;
3173 	} else {
3174 		pmd = pmd_offset(pud, addr);
3175 	}
3176 	do {
3177 		next = pmd_addr_end(addr, end);
3178 		if (pmd_none(*pmd) && !create)
3179 			continue;
3180 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
3181 			return -EINVAL;
3182 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
3183 			if (!create)
3184 				continue;
3185 			pmd_clear_bad(pmd);
3186 		}
3187 		err = apply_to_pte_range(mm, pmd, addr, next,
3188 					 fn, data, create, mask);
3189 		if (err)
3190 			break;
3191 	} while (pmd++, addr = next, addr != end);
3192 
3193 	return err;
3194 }
3195 
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3196 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
3197 				     unsigned long addr, unsigned long end,
3198 				     pte_fn_t fn, void *data, bool create,
3199 				     pgtbl_mod_mask *mask)
3200 {
3201 	pud_t *pud;
3202 	unsigned long next;
3203 	int err = 0;
3204 
3205 	if (create) {
3206 		pud = pud_alloc_track(mm, p4d, addr, mask);
3207 		if (!pud)
3208 			return -ENOMEM;
3209 	} else {
3210 		pud = pud_offset(p4d, addr);
3211 	}
3212 	do {
3213 		next = pud_addr_end(addr, end);
3214 		if (pud_none(*pud) && !create)
3215 			continue;
3216 		if (WARN_ON_ONCE(pud_leaf(*pud)))
3217 			return -EINVAL;
3218 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
3219 			if (!create)
3220 				continue;
3221 			pud_clear_bad(pud);
3222 		}
3223 		err = apply_to_pmd_range(mm, pud, addr, next,
3224 					 fn, data, create, mask);
3225 		if (err)
3226 			break;
3227 	} while (pud++, addr = next, addr != end);
3228 
3229 	return err;
3230 }
3231 
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3232 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
3233 				     unsigned long addr, unsigned long end,
3234 				     pte_fn_t fn, void *data, bool create,
3235 				     pgtbl_mod_mask *mask)
3236 {
3237 	p4d_t *p4d;
3238 	unsigned long next;
3239 	int err = 0;
3240 
3241 	if (create) {
3242 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
3243 		if (!p4d)
3244 			return -ENOMEM;
3245 	} else {
3246 		p4d = p4d_offset(pgd, addr);
3247 	}
3248 	do {
3249 		next = p4d_addr_end(addr, end);
3250 		if (p4d_none(*p4d) && !create)
3251 			continue;
3252 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3253 			return -EINVAL;
3254 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3255 			if (!create)
3256 				continue;
3257 			p4d_clear_bad(p4d);
3258 		}
3259 		err = apply_to_pud_range(mm, p4d, addr, next,
3260 					 fn, data, create, mask);
3261 		if (err)
3262 			break;
3263 	} while (p4d++, addr = next, addr != end);
3264 
3265 	return err;
3266 }
3267 
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)3268 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3269 				 unsigned long size, pte_fn_t fn,
3270 				 void *data, bool create)
3271 {
3272 	pgd_t *pgd;
3273 	unsigned long start = addr, next;
3274 	unsigned long end = addr + size;
3275 	pgtbl_mod_mask mask = 0;
3276 	int err = 0;
3277 
3278 	if (WARN_ON(addr >= end))
3279 		return -EINVAL;
3280 
3281 	pgd = pgd_offset(mm, addr);
3282 	do {
3283 		next = pgd_addr_end(addr, end);
3284 		if (pgd_none(*pgd) && !create)
3285 			continue;
3286 		if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3287 			err = -EINVAL;
3288 			break;
3289 		}
3290 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3291 			if (!create)
3292 				continue;
3293 			pgd_clear_bad(pgd);
3294 		}
3295 		err = apply_to_p4d_range(mm, pgd, addr, next,
3296 					 fn, data, create, &mask);
3297 		if (err)
3298 			break;
3299 	} while (pgd++, addr = next, addr != end);
3300 
3301 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3302 		arch_sync_kernel_mappings(start, start + size);
3303 
3304 	return err;
3305 }
3306 
3307 /*
3308  * Scan a region of virtual memory, filling in page tables as necessary
3309  * and calling a provided function on each leaf page table.
3310  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3311 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3312 			unsigned long size, pte_fn_t fn, void *data)
3313 {
3314 	return __apply_to_page_range(mm, addr, size, fn, data, true);
3315 }
3316 EXPORT_SYMBOL_GPL(apply_to_page_range);
3317 
3318 /*
3319  * Scan a region of virtual memory, calling a provided function on
3320  * each leaf page table where it exists.
3321  *
3322  * Unlike apply_to_page_range, this does _not_ fill in page tables
3323  * where they are absent.
3324  */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3325 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3326 				 unsigned long size, pte_fn_t fn, void *data)
3327 {
3328 	return __apply_to_page_range(mm, addr, size, fn, data, false);
3329 }
3330 
3331 /*
3332  * handle_pte_fault chooses page fault handler according to an entry which was
3333  * read non-atomically.  Before making any commitment, on those architectures
3334  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3335  * parts, do_swap_page must check under lock before unmapping the pte and
3336  * proceeding (but do_wp_page is only called after already making such a check;
3337  * and do_anonymous_page can safely check later on).
3338  */
pte_unmap_same(struct vm_fault * vmf)3339 static inline int pte_unmap_same(struct vm_fault *vmf)
3340 {
3341 	int same = 1;
3342 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3343 	if (sizeof(pte_t) > sizeof(unsigned long)) {
3344 		spin_lock(vmf->ptl);
3345 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3346 		spin_unlock(vmf->ptl);
3347 	}
3348 #endif
3349 	pte_unmap(vmf->pte);
3350 	vmf->pte = NULL;
3351 	return same;
3352 }
3353 
3354 /*
3355  * Return:
3356  *	0:		copied succeeded
3357  *	-EHWPOISON:	copy failed due to hwpoison in source page
3358  *	-EAGAIN:	copied failed (some other reason)
3359  */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)3360 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3361 				      struct vm_fault *vmf)
3362 {
3363 	int ret;
3364 	void *kaddr;
3365 	void __user *uaddr;
3366 	struct vm_area_struct *vma = vmf->vma;
3367 	struct mm_struct *mm = vma->vm_mm;
3368 	unsigned long addr = vmf->address;
3369 
3370 	if (likely(src)) {
3371 		if (copy_mc_user_highpage(dst, src, addr, vma))
3372 			return -EHWPOISON;
3373 		return 0;
3374 	}
3375 
3376 	/*
3377 	 * If the source page was a PFN mapping, we don't have
3378 	 * a "struct page" for it. We do a best-effort copy by
3379 	 * just copying from the original user address. If that
3380 	 * fails, we just zero-fill it. Live with it.
3381 	 */
3382 	kaddr = kmap_local_page(dst);
3383 	pagefault_disable();
3384 	uaddr = (void __user *)(addr & PAGE_MASK);
3385 
3386 	/*
3387 	 * On architectures with software "accessed" bits, we would
3388 	 * take a double page fault, so mark it accessed here.
3389 	 */
3390 	vmf->pte = NULL;
3391 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3392 		pte_t entry;
3393 
3394 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3395 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3396 			/*
3397 			 * Other thread has already handled the fault
3398 			 * and update local tlb only
3399 			 */
3400 			if (vmf->pte)
3401 				update_mmu_tlb(vma, addr, vmf->pte);
3402 			ret = -EAGAIN;
3403 			goto pte_unlock;
3404 		}
3405 
3406 		entry = pte_mkyoung(vmf->orig_pte);
3407 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3408 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3409 	}
3410 
3411 	/*
3412 	 * This really shouldn't fail, because the page is there
3413 	 * in the page tables. But it might just be unreadable,
3414 	 * in which case we just give up and fill the result with
3415 	 * zeroes.
3416 	 */
3417 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3418 		if (vmf->pte)
3419 			goto warn;
3420 
3421 		/* Re-validate under PTL if the page is still mapped */
3422 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3423 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3424 			/* The PTE changed under us, update local tlb */
3425 			if (vmf->pte)
3426 				update_mmu_tlb(vma, addr, vmf->pte);
3427 			ret = -EAGAIN;
3428 			goto pte_unlock;
3429 		}
3430 
3431 		/*
3432 		 * The same page can be mapped back since last copy attempt.
3433 		 * Try to copy again under PTL.
3434 		 */
3435 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3436 			/*
3437 			 * Give a warn in case there can be some obscure
3438 			 * use-case
3439 			 */
3440 warn:
3441 			WARN_ON_ONCE(1);
3442 			clear_page(kaddr);
3443 		}
3444 	}
3445 
3446 	ret = 0;
3447 
3448 pte_unlock:
3449 	if (vmf->pte)
3450 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3451 	pagefault_enable();
3452 	kunmap_local(kaddr);
3453 	flush_dcache_page(dst);
3454 
3455 	return ret;
3456 }
3457 
__get_fault_gfp_mask(struct vm_area_struct * vma)3458 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3459 {
3460 	struct file *vm_file = vma->vm_file;
3461 
3462 	if (vm_file)
3463 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3464 
3465 	/*
3466 	 * Special mappings (e.g. VDSO) do not have any file so fake
3467 	 * a default GFP_KERNEL for them.
3468 	 */
3469 	return GFP_KERNEL;
3470 }
3471 
3472 /*
3473  * Notify the address space that the page is about to become writable so that
3474  * it can prohibit this or wait for the page to get into an appropriate state.
3475  *
3476  * We do this without the lock held, so that it can sleep if it needs to.
3477  */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)3478 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3479 {
3480 	vm_fault_t ret;
3481 	unsigned int old_flags = vmf->flags;
3482 
3483 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3484 
3485 	if (vmf->vma->vm_file &&
3486 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3487 		return VM_FAULT_SIGBUS;
3488 
3489 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3490 	/* Restore original flags so that caller is not surprised */
3491 	vmf->flags = old_flags;
3492 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3493 		return ret;
3494 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3495 		folio_lock(folio);
3496 		if (!folio->mapping) {
3497 			folio_unlock(folio);
3498 			return 0; /* retry */
3499 		}
3500 		ret |= VM_FAULT_LOCKED;
3501 	} else
3502 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3503 	return ret;
3504 }
3505 
3506 /*
3507  * Handle dirtying of a page in shared file mapping on a write fault.
3508  *
3509  * The function expects the page to be locked and unlocks it.
3510  */
fault_dirty_shared_page(struct vm_fault * vmf)3511 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3512 {
3513 	struct vm_area_struct *vma = vmf->vma;
3514 	struct address_space *mapping;
3515 	struct folio *folio = page_folio(vmf->page);
3516 	bool dirtied;
3517 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3518 
3519 	dirtied = folio_mark_dirty(folio);
3520 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3521 	/*
3522 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3523 	 * by truncate after folio_unlock().   The address_space itself remains
3524 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3525 	 * release semantics to prevent the compiler from undoing this copying.
3526 	 */
3527 	mapping = folio_raw_mapping(folio);
3528 	folio_unlock(folio);
3529 
3530 	if (!page_mkwrite)
3531 		file_update_time(vma->vm_file);
3532 
3533 	/*
3534 	 * Throttle page dirtying rate down to writeback speed.
3535 	 *
3536 	 * mapping may be NULL here because some device drivers do not
3537 	 * set page.mapping but still dirty their pages
3538 	 *
3539 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3540 	 * is pinning the mapping, as per above.
3541 	 */
3542 	if ((dirtied || page_mkwrite) && mapping) {
3543 		struct file *fpin;
3544 
3545 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3546 		balance_dirty_pages_ratelimited(mapping);
3547 		if (fpin) {
3548 			fput(fpin);
3549 			return VM_FAULT_COMPLETED;
3550 		}
3551 	}
3552 
3553 	return 0;
3554 }
3555 
3556 /*
3557  * Handle write page faults for pages that can be reused in the current vma
3558  *
3559  * This can happen either due to the mapping being with the VM_SHARED flag,
3560  * or due to us being the last reference standing to the page. In either
3561  * case, all we need to do here is to mark the page as writable and update
3562  * any related book-keeping.
3563  */
wp_page_reuse(struct vm_fault * vmf,struct folio * folio)3564 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3565 	__releases(vmf->ptl)
3566 {
3567 	struct vm_area_struct *vma = vmf->vma;
3568 	pte_t entry;
3569 
3570 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3571 	VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3572 
3573 	if (folio) {
3574 		VM_BUG_ON(folio_test_anon(folio) &&
3575 			  !PageAnonExclusive(vmf->page));
3576 		/*
3577 		 * Clear the folio's cpupid information as the existing
3578 		 * information potentially belongs to a now completely
3579 		 * unrelated process.
3580 		 */
3581 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3582 	}
3583 
3584 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3585 	entry = pte_mkyoung(vmf->orig_pte);
3586 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3587 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3588 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3589 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3590 	count_vm_event(PGREUSE);
3591 }
3592 
3593 /*
3594  * We could add a bitflag somewhere, but for now, we know that all
3595  * vm_ops that have a ->map_pages have been audited and don't need
3596  * the mmap_lock to be held.
3597  */
vmf_can_call_fault(const struct vm_fault * vmf)3598 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3599 {
3600 	struct vm_area_struct *vma = vmf->vma;
3601 
3602 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3603 		return 0;
3604 	vma_end_read(vma);
3605 	return VM_FAULT_RETRY;
3606 }
3607 
3608 /**
3609  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3610  * @vmf: The vm_fault descriptor passed from the fault handler.
3611  *
3612  * When preparing to insert an anonymous page into a VMA from a
3613  * fault handler, call this function rather than anon_vma_prepare().
3614  * If this vma does not already have an associated anon_vma and we are
3615  * only protected by the per-VMA lock, the caller must retry with the
3616  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3617  * determine if this VMA can share its anon_vma, and that's not safe to
3618  * do with only the per-VMA lock held for this VMA.
3619  *
3620  * Return: 0 if fault handling can proceed.  Any other value should be
3621  * returned to the caller.
3622  */
__vmf_anon_prepare(struct vm_fault * vmf)3623 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3624 {
3625 	struct vm_area_struct *vma = vmf->vma;
3626 	vm_fault_t ret = 0;
3627 
3628 	if (likely(vma->anon_vma))
3629 		return 0;
3630 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3631 		if (!mmap_read_trylock(vma->vm_mm))
3632 			return VM_FAULT_RETRY;
3633 	}
3634 	if (__anon_vma_prepare(vma))
3635 		ret = VM_FAULT_OOM;
3636 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3637 		mmap_read_unlock(vma->vm_mm);
3638 	return ret;
3639 }
3640 
3641 /*
3642  * Handle the case of a page which we actually need to copy to a new page,
3643  * either due to COW or unsharing.
3644  *
3645  * Called with mmap_lock locked and the old page referenced, but
3646  * without the ptl held.
3647  *
3648  * High level logic flow:
3649  *
3650  * - Allocate a page, copy the content of the old page to the new one.
3651  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3652  * - Take the PTL. If the pte changed, bail out and release the allocated page
3653  * - If the pte is still the way we remember it, update the page table and all
3654  *   relevant references. This includes dropping the reference the page-table
3655  *   held to the old page, as well as updating the rmap.
3656  * - In any case, unlock the PTL and drop the reference we took to the old page.
3657  */
wp_page_copy(struct vm_fault * vmf)3658 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3659 {
3660 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3661 	struct vm_area_struct *vma = vmf->vma;
3662 	struct mm_struct *mm = vma->vm_mm;
3663 	struct folio *old_folio = NULL;
3664 	struct folio *new_folio = NULL;
3665 	pte_t entry;
3666 	int page_copied = 0;
3667 	struct mmu_notifier_range range;
3668 	vm_fault_t ret;
3669 	bool pfn_is_zero;
3670 
3671 	delayacct_wpcopy_start();
3672 
3673 	if (vmf->page)
3674 		old_folio = page_folio(vmf->page);
3675 	ret = vmf_anon_prepare(vmf);
3676 	if (unlikely(ret))
3677 		goto out;
3678 
3679 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3680 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3681 	if (!new_folio)
3682 		goto oom;
3683 
3684 	if (!pfn_is_zero) {
3685 		int err;
3686 
3687 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3688 		if (err) {
3689 			/*
3690 			 * COW failed, if the fault was solved by other,
3691 			 * it's fine. If not, userspace would re-fault on
3692 			 * the same address and we will handle the fault
3693 			 * from the second attempt.
3694 			 * The -EHWPOISON case will not be retried.
3695 			 */
3696 			folio_put(new_folio);
3697 			if (old_folio)
3698 				folio_put(old_folio);
3699 
3700 			delayacct_wpcopy_end();
3701 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3702 		}
3703 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3704 	}
3705 
3706 	__folio_mark_uptodate(new_folio);
3707 
3708 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3709 				vmf->address & PAGE_MASK,
3710 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3711 	mmu_notifier_invalidate_range_start(&range);
3712 
3713 	/*
3714 	 * Re-check the pte - we dropped the lock
3715 	 */
3716 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3717 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3718 		if (old_folio) {
3719 			if (!folio_test_anon(old_folio)) {
3720 				dec_mm_counter(mm, mm_counter_file(old_folio));
3721 				inc_mm_counter(mm, MM_ANONPAGES);
3722 			}
3723 		} else {
3724 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3725 			inc_mm_counter(mm, MM_ANONPAGES);
3726 		}
3727 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3728 		entry = folio_mk_pte(new_folio, vma->vm_page_prot);
3729 		entry = pte_sw_mkyoung(entry);
3730 		if (unlikely(unshare)) {
3731 			if (pte_soft_dirty(vmf->orig_pte))
3732 				entry = pte_mksoft_dirty(entry);
3733 			if (pte_uffd_wp(vmf->orig_pte))
3734 				entry = pte_mkuffd_wp(entry);
3735 		} else {
3736 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3737 		}
3738 
3739 		/*
3740 		 * Clear the pte entry and flush it first, before updating the
3741 		 * pte with the new entry, to keep TLBs on different CPUs in
3742 		 * sync. This code used to set the new PTE then flush TLBs, but
3743 		 * that left a window where the new PTE could be loaded into
3744 		 * some TLBs while the old PTE remains in others.
3745 		 */
3746 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3747 		folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3748 		folio_add_lru_vma(new_folio, vma);
3749 		BUG_ON(unshare && pte_write(entry));
3750 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3751 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3752 		if (old_folio) {
3753 			/*
3754 			 * Only after switching the pte to the new page may
3755 			 * we remove the mapcount here. Otherwise another
3756 			 * process may come and find the rmap count decremented
3757 			 * before the pte is switched to the new page, and
3758 			 * "reuse" the old page writing into it while our pte
3759 			 * here still points into it and can be read by other
3760 			 * threads.
3761 			 *
3762 			 * The critical issue is to order this
3763 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3764 			 * above. Those stores are ordered by (if nothing else,)
3765 			 * the barrier present in the atomic_add_negative
3766 			 * in folio_remove_rmap_pte();
3767 			 *
3768 			 * Then the TLB flush in ptep_clear_flush ensures that
3769 			 * no process can access the old page before the
3770 			 * decremented mapcount is visible. And the old page
3771 			 * cannot be reused until after the decremented
3772 			 * mapcount is visible. So transitively, TLBs to
3773 			 * old page will be flushed before it can be reused.
3774 			 */
3775 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3776 		}
3777 
3778 		/* Free the old page.. */
3779 		new_folio = old_folio;
3780 		page_copied = 1;
3781 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3782 	} else if (vmf->pte) {
3783 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3784 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3785 	}
3786 
3787 	mmu_notifier_invalidate_range_end(&range);
3788 
3789 	if (new_folio)
3790 		folio_put(new_folio);
3791 	if (old_folio) {
3792 		if (page_copied)
3793 			free_swap_cache(old_folio);
3794 		folio_put(old_folio);
3795 	}
3796 
3797 	delayacct_wpcopy_end();
3798 	return 0;
3799 oom:
3800 	ret = VM_FAULT_OOM;
3801 out:
3802 	if (old_folio)
3803 		folio_put(old_folio);
3804 
3805 	delayacct_wpcopy_end();
3806 	return ret;
3807 }
3808 
3809 /**
3810  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3811  *			  writeable once the page is prepared
3812  *
3813  * @vmf: structure describing the fault
3814  * @folio: the folio of vmf->page
3815  *
3816  * This function handles all that is needed to finish a write page fault in a
3817  * shared mapping due to PTE being read-only once the mapped page is prepared.
3818  * It handles locking of PTE and modifying it.
3819  *
3820  * The function expects the page to be locked or other protection against
3821  * concurrent faults / writeback (such as DAX radix tree locks).
3822  *
3823  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3824  * we acquired PTE lock.
3825  */
finish_mkwrite_fault(struct vm_fault * vmf,struct folio * folio)3826 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3827 {
3828 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3829 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3830 				       &vmf->ptl);
3831 	if (!vmf->pte)
3832 		return VM_FAULT_NOPAGE;
3833 	/*
3834 	 * We might have raced with another page fault while we released the
3835 	 * pte_offset_map_lock.
3836 	 */
3837 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3838 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3839 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3840 		return VM_FAULT_NOPAGE;
3841 	}
3842 	wp_page_reuse(vmf, folio);
3843 	return 0;
3844 }
3845 
3846 /*
3847  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3848  * mapping
3849  */
wp_pfn_shared(struct vm_fault * vmf)3850 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3851 {
3852 	struct vm_area_struct *vma = vmf->vma;
3853 
3854 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3855 		vm_fault_t ret;
3856 
3857 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3858 		ret = vmf_can_call_fault(vmf);
3859 		if (ret)
3860 			return ret;
3861 
3862 		vmf->flags |= FAULT_FLAG_MKWRITE;
3863 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3864 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3865 			return ret;
3866 		return finish_mkwrite_fault(vmf, NULL);
3867 	}
3868 	wp_page_reuse(vmf, NULL);
3869 	return 0;
3870 }
3871 
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3872 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3873 	__releases(vmf->ptl)
3874 {
3875 	struct vm_area_struct *vma = vmf->vma;
3876 	vm_fault_t ret = 0;
3877 
3878 	folio_get(folio);
3879 
3880 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3881 		vm_fault_t tmp;
3882 
3883 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3884 		tmp = vmf_can_call_fault(vmf);
3885 		if (tmp) {
3886 			folio_put(folio);
3887 			return tmp;
3888 		}
3889 
3890 		tmp = do_page_mkwrite(vmf, folio);
3891 		if (unlikely(!tmp || (tmp &
3892 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3893 			folio_put(folio);
3894 			return tmp;
3895 		}
3896 		tmp = finish_mkwrite_fault(vmf, folio);
3897 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3898 			folio_unlock(folio);
3899 			folio_put(folio);
3900 			return tmp;
3901 		}
3902 	} else {
3903 		wp_page_reuse(vmf, folio);
3904 		folio_lock(folio);
3905 	}
3906 	ret |= fault_dirty_shared_page(vmf);
3907 	folio_put(folio);
3908 
3909 	return ret;
3910 }
3911 
3912 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)3913 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
3914 		struct vm_area_struct *vma)
3915 {
3916 	bool exclusive = false;
3917 
3918 	/* Let's just free up a large folio if only a single page is mapped. */
3919 	if (folio_large_mapcount(folio) <= 1)
3920 		return false;
3921 
3922 	/*
3923 	 * The assumption for anonymous folios is that each page can only get
3924 	 * mapped once into each MM. The only exception are KSM folios, which
3925 	 * are always small.
3926 	 *
3927 	 * Each taken mapcount must be paired with exactly one taken reference,
3928 	 * whereby the refcount must be incremented before the mapcount when
3929 	 * mapping a page, and the refcount must be decremented after the
3930 	 * mapcount when unmapping a page.
3931 	 *
3932 	 * If all folio references are from mappings, and all mappings are in
3933 	 * the page tables of this MM, then this folio is exclusive to this MM.
3934 	 */
3935 	if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3936 		return false;
3937 
3938 	VM_WARN_ON_ONCE(folio_test_ksm(folio));
3939 
3940 	if (unlikely(folio_test_swapcache(folio))) {
3941 		/*
3942 		 * Note: freeing up the swapcache will fail if some PTEs are
3943 		 * still swap entries.
3944 		 */
3945 		if (!folio_trylock(folio))
3946 			return false;
3947 		folio_free_swap(folio);
3948 		folio_unlock(folio);
3949 	}
3950 
3951 	if (folio_large_mapcount(folio) != folio_ref_count(folio))
3952 		return false;
3953 
3954 	/* Stabilize the mapcount vs. refcount and recheck. */
3955 	folio_lock_large_mapcount(folio);
3956 	VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio);
3957 
3958 	if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3959 		goto unlock;
3960 	if (folio_large_mapcount(folio) != folio_ref_count(folio))
3961 		goto unlock;
3962 
3963 	VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio);
3964 	VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio);
3965 	VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id &&
3966 			folio_mm_id(folio, 1) != vma->vm_mm->mm_id);
3967 
3968 	/*
3969 	 * Do we need the folio lock? Likely not. If there would have been
3970 	 * references from page migration/swapout, we would have detected
3971 	 * an additional folio reference and never ended up here.
3972 	 */
3973 	exclusive = true;
3974 unlock:
3975 	folio_unlock_large_mapcount(folio);
3976 	return exclusive;
3977 }
3978 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)3979 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
3980 		struct vm_area_struct *vma)
3981 {
3982 	BUILD_BUG();
3983 }
3984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3985 
wp_can_reuse_anon_folio(struct folio * folio,struct vm_area_struct * vma)3986 static bool wp_can_reuse_anon_folio(struct folio *folio,
3987 				    struct vm_area_struct *vma)
3988 {
3989 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio))
3990 		return __wp_can_reuse_large_anon_folio(folio, vma);
3991 
3992 	/*
3993 	 * We have to verify under folio lock: these early checks are
3994 	 * just an optimization to avoid locking the folio and freeing
3995 	 * the swapcache if there is little hope that we can reuse.
3996 	 *
3997 	 * KSM doesn't necessarily raise the folio refcount.
3998 	 */
3999 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
4000 		return false;
4001 	if (!folio_test_lru(folio))
4002 		/*
4003 		 * We cannot easily detect+handle references from
4004 		 * remote LRU caches or references to LRU folios.
4005 		 */
4006 		lru_add_drain();
4007 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
4008 		return false;
4009 	if (!folio_trylock(folio))
4010 		return false;
4011 	if (folio_test_swapcache(folio))
4012 		folio_free_swap(folio);
4013 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
4014 		folio_unlock(folio);
4015 		return false;
4016 	}
4017 	/*
4018 	 * Ok, we've got the only folio reference from our mapping
4019 	 * and the folio is locked, it's dark out, and we're wearing
4020 	 * sunglasses. Hit it.
4021 	 */
4022 	folio_move_anon_rmap(folio, vma);
4023 	folio_unlock(folio);
4024 	return true;
4025 }
4026 
4027 /*
4028  * This routine handles present pages, when
4029  * * users try to write to a shared page (FAULT_FLAG_WRITE)
4030  * * GUP wants to take a R/O pin on a possibly shared anonymous page
4031  *   (FAULT_FLAG_UNSHARE)
4032  *
4033  * It is done by copying the page to a new address and decrementing the
4034  * shared-page counter for the old page.
4035  *
4036  * Note that this routine assumes that the protection checks have been
4037  * done by the caller (the low-level page fault routine in most cases).
4038  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
4039  * done any necessary COW.
4040  *
4041  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
4042  * though the page will change only once the write actually happens. This
4043  * avoids a few races, and potentially makes it more efficient.
4044  *
4045  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4046  * but allow concurrent faults), with pte both mapped and locked.
4047  * We return with mmap_lock still held, but pte unmapped and unlocked.
4048  */
do_wp_page(struct vm_fault * vmf)4049 static vm_fault_t do_wp_page(struct vm_fault *vmf)
4050 	__releases(vmf->ptl)
4051 {
4052 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4053 	struct vm_area_struct *vma = vmf->vma;
4054 	struct folio *folio = NULL;
4055 	pte_t pte;
4056 
4057 	if (likely(!unshare)) {
4058 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
4059 			if (!userfaultfd_wp_async(vma)) {
4060 				pte_unmap_unlock(vmf->pte, vmf->ptl);
4061 				return handle_userfault(vmf, VM_UFFD_WP);
4062 			}
4063 
4064 			/*
4065 			 * Nothing needed (cache flush, TLB invalidations,
4066 			 * etc.) because we're only removing the uffd-wp bit,
4067 			 * which is completely invisible to the user.
4068 			 */
4069 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
4070 
4071 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4072 			/*
4073 			 * Update this to be prepared for following up CoW
4074 			 * handling
4075 			 */
4076 			vmf->orig_pte = pte;
4077 		}
4078 
4079 		/*
4080 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
4081 		 * is flushed in this case before copying.
4082 		 */
4083 		if (unlikely(userfaultfd_wp(vmf->vma) &&
4084 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
4085 			flush_tlb_page(vmf->vma, vmf->address);
4086 	}
4087 
4088 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
4089 
4090 	if (vmf->page)
4091 		folio = page_folio(vmf->page);
4092 
4093 	/*
4094 	 * Shared mapping: we are guaranteed to have VM_WRITE and
4095 	 * FAULT_FLAG_WRITE set at this point.
4096 	 */
4097 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4098 		/*
4099 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
4100 		 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called.
4101 		 *
4102 		 * We should not cow pages in a shared writeable mapping.
4103 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
4104 		 */
4105 		if (!vmf->page || is_fsdax_page(vmf->page)) {
4106 			vmf->page = NULL;
4107 			return wp_pfn_shared(vmf);
4108 		}
4109 		return wp_page_shared(vmf, folio);
4110 	}
4111 
4112 	/*
4113 	 * Private mapping: create an exclusive anonymous page copy if reuse
4114 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
4115 	 *
4116 	 * If we encounter a page that is marked exclusive, we must reuse
4117 	 * the page without further checks.
4118 	 */
4119 	if (folio && folio_test_anon(folio) &&
4120 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
4121 		if (!PageAnonExclusive(vmf->page))
4122 			SetPageAnonExclusive(vmf->page);
4123 		if (unlikely(unshare)) {
4124 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4125 			return 0;
4126 		}
4127 		wp_page_reuse(vmf, folio);
4128 		return 0;
4129 	}
4130 	/*
4131 	 * Ok, we need to copy. Oh, well..
4132 	 */
4133 	if (folio)
4134 		folio_get(folio);
4135 
4136 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4137 #ifdef CONFIG_KSM
4138 	if (folio && folio_test_ksm(folio))
4139 		count_vm_event(COW_KSM);
4140 #endif
4141 	return wp_page_copy(vmf);
4142 }
4143 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)4144 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
4145 		unsigned long start_addr, unsigned long end_addr,
4146 		struct zap_details *details)
4147 {
4148 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
4149 }
4150 
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)4151 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
4152 					    pgoff_t first_index,
4153 					    pgoff_t last_index,
4154 					    struct zap_details *details)
4155 {
4156 	struct vm_area_struct *vma;
4157 	pgoff_t vba, vea, zba, zea;
4158 
4159 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
4160 		vba = vma->vm_pgoff;
4161 		vea = vba + vma_pages(vma) - 1;
4162 		zba = max(first_index, vba);
4163 		zea = min(last_index, vea);
4164 
4165 		unmap_mapping_range_vma(vma,
4166 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
4167 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
4168 				details);
4169 	}
4170 }
4171 
4172 /**
4173  * unmap_mapping_folio() - Unmap single folio from processes.
4174  * @folio: The locked folio to be unmapped.
4175  *
4176  * Unmap this folio from any userspace process which still has it mmaped.
4177  * Typically, for efficiency, the range of nearby pages has already been
4178  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
4179  * truncation or invalidation holds the lock on a folio, it may find that
4180  * the page has been remapped again: and then uses unmap_mapping_folio()
4181  * to unmap it finally.
4182  */
unmap_mapping_folio(struct folio * folio)4183 void unmap_mapping_folio(struct folio *folio)
4184 {
4185 	struct address_space *mapping = folio->mapping;
4186 	struct zap_details details = { };
4187 	pgoff_t	first_index;
4188 	pgoff_t	last_index;
4189 
4190 	VM_BUG_ON(!folio_test_locked(folio));
4191 
4192 	first_index = folio->index;
4193 	last_index = folio_next_index(folio) - 1;
4194 
4195 	details.even_cows = false;
4196 	details.single_folio = folio;
4197 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
4198 
4199 	i_mmap_lock_read(mapping);
4200 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4201 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4202 					 last_index, &details);
4203 	i_mmap_unlock_read(mapping);
4204 }
4205 
4206 /**
4207  * unmap_mapping_pages() - Unmap pages from processes.
4208  * @mapping: The address space containing pages to be unmapped.
4209  * @start: Index of first page to be unmapped.
4210  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
4211  * @even_cows: Whether to unmap even private COWed pages.
4212  *
4213  * Unmap the pages in this address space from any userspace process which
4214  * has them mmaped.  Generally, you want to remove COWed pages as well when
4215  * a file is being truncated, but not when invalidating pages from the page
4216  * cache.
4217  */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)4218 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
4219 		pgoff_t nr, bool even_cows)
4220 {
4221 	struct zap_details details = { };
4222 	pgoff_t	first_index = start;
4223 	pgoff_t	last_index = start + nr - 1;
4224 
4225 	details.even_cows = even_cows;
4226 	if (last_index < first_index)
4227 		last_index = ULONG_MAX;
4228 
4229 	i_mmap_lock_read(mapping);
4230 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4231 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4232 					 last_index, &details);
4233 	i_mmap_unlock_read(mapping);
4234 }
4235 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
4236 
4237 /**
4238  * unmap_mapping_range - unmap the portion of all mmaps in the specified
4239  * address_space corresponding to the specified byte range in the underlying
4240  * file.
4241  *
4242  * @mapping: the address space containing mmaps to be unmapped.
4243  * @holebegin: byte in first page to unmap, relative to the start of
4244  * the underlying file.  This will be rounded down to a PAGE_SIZE
4245  * boundary.  Note that this is different from truncate_pagecache(), which
4246  * must keep the partial page.  In contrast, we must get rid of
4247  * partial pages.
4248  * @holelen: size of prospective hole in bytes.  This will be rounded
4249  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
4250  * end of the file.
4251  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
4252  * but 0 when invalidating pagecache, don't throw away private data.
4253  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)4254 void unmap_mapping_range(struct address_space *mapping,
4255 		loff_t const holebegin, loff_t const holelen, int even_cows)
4256 {
4257 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
4258 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
4259 
4260 	/* Check for overflow. */
4261 	if (sizeof(holelen) > sizeof(hlen)) {
4262 		long long holeend =
4263 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
4264 		if (holeend & ~(long long)ULONG_MAX)
4265 			hlen = ULONG_MAX - hba + 1;
4266 	}
4267 
4268 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
4269 }
4270 EXPORT_SYMBOL(unmap_mapping_range);
4271 
4272 /*
4273  * Restore a potential device exclusive pte to a working pte entry
4274  */
remove_device_exclusive_entry(struct vm_fault * vmf)4275 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
4276 {
4277 	struct folio *folio = page_folio(vmf->page);
4278 	struct vm_area_struct *vma = vmf->vma;
4279 	struct mmu_notifier_range range;
4280 	vm_fault_t ret;
4281 
4282 	/*
4283 	 * We need a reference to lock the folio because we don't hold
4284 	 * the PTL so a racing thread can remove the device-exclusive
4285 	 * entry and unmap it. If the folio is free the entry must
4286 	 * have been removed already. If it happens to have already
4287 	 * been re-allocated after being freed all we do is lock and
4288 	 * unlock it.
4289 	 */
4290 	if (!folio_try_get(folio))
4291 		return 0;
4292 
4293 	ret = folio_lock_or_retry(folio, vmf);
4294 	if (ret) {
4295 		folio_put(folio);
4296 		return ret;
4297 	}
4298 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0,
4299 				vma->vm_mm, vmf->address & PAGE_MASK,
4300 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
4301 	mmu_notifier_invalidate_range_start(&range);
4302 
4303 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4304 				&vmf->ptl);
4305 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4306 		restore_exclusive_pte(vma, folio, vmf->page, vmf->address,
4307 				      vmf->pte, vmf->orig_pte);
4308 
4309 	if (vmf->pte)
4310 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4311 	folio_unlock(folio);
4312 	folio_put(folio);
4313 
4314 	mmu_notifier_invalidate_range_end(&range);
4315 	return 0;
4316 }
4317 
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)4318 static inline bool should_try_to_free_swap(struct folio *folio,
4319 					   struct vm_area_struct *vma,
4320 					   unsigned int fault_flags)
4321 {
4322 	if (!folio_test_swapcache(folio))
4323 		return false;
4324 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4325 	    folio_test_mlocked(folio))
4326 		return true;
4327 	/*
4328 	 * If we want to map a page that's in the swapcache writable, we
4329 	 * have to detect via the refcount if we're really the exclusive
4330 	 * user. Try freeing the swapcache to get rid of the swapcache
4331 	 * reference only in case it's likely that we'll be the exlusive user.
4332 	 */
4333 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4334 		folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4335 }
4336 
pte_marker_clear(struct vm_fault * vmf)4337 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4338 {
4339 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4340 				       vmf->address, &vmf->ptl);
4341 	if (!vmf->pte)
4342 		return 0;
4343 	/*
4344 	 * Be careful so that we will only recover a special uffd-wp pte into a
4345 	 * none pte.  Otherwise it means the pte could have changed, so retry.
4346 	 *
4347 	 * This should also cover the case where e.g. the pte changed
4348 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4349 	 * So is_pte_marker() check is not enough to safely drop the pte.
4350 	 */
4351 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4352 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4353 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4354 	return 0;
4355 }
4356 
do_pte_missing(struct vm_fault * vmf)4357 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4358 {
4359 	if (vma_is_anonymous(vmf->vma))
4360 		return do_anonymous_page(vmf);
4361 	else
4362 		return do_fault(vmf);
4363 }
4364 
4365 /*
4366  * This is actually a page-missing access, but with uffd-wp special pte
4367  * installed.  It means this pte was wr-protected before being unmapped.
4368  */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)4369 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4370 {
4371 	/*
4372 	 * Just in case there're leftover special ptes even after the region
4373 	 * got unregistered - we can simply clear them.
4374 	 */
4375 	if (unlikely(!userfaultfd_wp(vmf->vma)))
4376 		return pte_marker_clear(vmf);
4377 
4378 	return do_pte_missing(vmf);
4379 }
4380 
handle_pte_marker(struct vm_fault * vmf)4381 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4382 {
4383 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4384 	unsigned long marker = pte_marker_get(entry);
4385 
4386 	/*
4387 	 * PTE markers should never be empty.  If anything weird happened,
4388 	 * the best thing to do is to kill the process along with its mm.
4389 	 */
4390 	if (WARN_ON_ONCE(!marker))
4391 		return VM_FAULT_SIGBUS;
4392 
4393 	/* Higher priority than uffd-wp when data corrupted */
4394 	if (marker & PTE_MARKER_POISONED)
4395 		return VM_FAULT_HWPOISON;
4396 
4397 	/* Hitting a guard page is always a fatal condition. */
4398 	if (marker & PTE_MARKER_GUARD)
4399 		return VM_FAULT_SIGSEGV;
4400 
4401 	if (pte_marker_entry_uffd_wp(entry))
4402 		return pte_marker_handle_uffd_wp(vmf);
4403 
4404 	/* This is an unknown pte marker */
4405 	return VM_FAULT_SIGBUS;
4406 }
4407 
__alloc_swap_folio(struct vm_fault * vmf)4408 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4409 {
4410 	struct vm_area_struct *vma = vmf->vma;
4411 	struct folio *folio;
4412 	swp_entry_t entry;
4413 
4414 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4415 	if (!folio)
4416 		return NULL;
4417 
4418 	entry = pte_to_swp_entry(vmf->orig_pte);
4419 	if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4420 					   GFP_KERNEL, entry)) {
4421 		folio_put(folio);
4422 		return NULL;
4423 	}
4424 
4425 	return folio;
4426 }
4427 
4428 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4429 /*
4430  * Check if the PTEs within a range are contiguous swap entries
4431  * and have consistent swapcache, zeromap.
4432  */
can_swapin_thp(struct vm_fault * vmf,pte_t * ptep,int nr_pages)4433 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4434 {
4435 	unsigned long addr;
4436 	swp_entry_t entry;
4437 	int idx;
4438 	pte_t pte;
4439 
4440 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4441 	idx = (vmf->address - addr) / PAGE_SIZE;
4442 	pte = ptep_get(ptep);
4443 
4444 	if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4445 		return false;
4446 	entry = pte_to_swp_entry(pte);
4447 	if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4448 		return false;
4449 
4450 	/*
4451 	 * swap_read_folio() can't handle the case a large folio is hybridly
4452 	 * from different backends. And they are likely corner cases. Similar
4453 	 * things might be added once zswap support large folios.
4454 	 */
4455 	if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4456 		return false;
4457 	if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4458 		return false;
4459 
4460 	return true;
4461 }
4462 
thp_swap_suitable_orders(pgoff_t swp_offset,unsigned long addr,unsigned long orders)4463 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4464 						     unsigned long addr,
4465 						     unsigned long orders)
4466 {
4467 	int order, nr;
4468 
4469 	order = highest_order(orders);
4470 
4471 	/*
4472 	 * To swap in a THP with nr pages, we require that its first swap_offset
4473 	 * is aligned with that number, as it was when the THP was swapped out.
4474 	 * This helps filter out most invalid entries.
4475 	 */
4476 	while (orders) {
4477 		nr = 1 << order;
4478 		if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4479 			break;
4480 		order = next_order(&orders, order);
4481 	}
4482 
4483 	return orders;
4484 }
4485 
alloc_swap_folio(struct vm_fault * vmf)4486 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4487 {
4488 	struct vm_area_struct *vma = vmf->vma;
4489 	unsigned long orders;
4490 	struct folio *folio;
4491 	unsigned long addr;
4492 	swp_entry_t entry;
4493 	spinlock_t *ptl;
4494 	pte_t *pte;
4495 	gfp_t gfp;
4496 	int order;
4497 
4498 	/*
4499 	 * If uffd is active for the vma we need per-page fault fidelity to
4500 	 * maintain the uffd semantics.
4501 	 */
4502 	if (unlikely(userfaultfd_armed(vma)))
4503 		goto fallback;
4504 
4505 	/*
4506 	 * A large swapped out folio could be partially or fully in zswap. We
4507 	 * lack handling for such cases, so fallback to swapping in order-0
4508 	 * folio.
4509 	 */
4510 	if (!zswap_never_enabled())
4511 		goto fallback;
4512 
4513 	entry = pte_to_swp_entry(vmf->orig_pte);
4514 	/*
4515 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4516 	 * and suitable for swapping THP.
4517 	 */
4518 	orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
4519 					  BIT(PMD_ORDER) - 1);
4520 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4521 	orders = thp_swap_suitable_orders(swp_offset(entry),
4522 					  vmf->address, orders);
4523 
4524 	if (!orders)
4525 		goto fallback;
4526 
4527 	pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4528 				  vmf->address & PMD_MASK, &ptl);
4529 	if (unlikely(!pte))
4530 		goto fallback;
4531 
4532 	/*
4533 	 * For do_swap_page, find the highest order where the aligned range is
4534 	 * completely swap entries with contiguous swap offsets.
4535 	 */
4536 	order = highest_order(orders);
4537 	while (orders) {
4538 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4539 		if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4540 			break;
4541 		order = next_order(&orders, order);
4542 	}
4543 
4544 	pte_unmap_unlock(pte, ptl);
4545 
4546 	/* Try allocating the highest of the remaining orders. */
4547 	gfp = vma_thp_gfp_mask(vma);
4548 	while (orders) {
4549 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4550 		folio = vma_alloc_folio(gfp, order, vma, addr);
4551 		if (folio) {
4552 			if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4553 							    gfp, entry))
4554 				return folio;
4555 			count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4556 			folio_put(folio);
4557 		}
4558 		count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4559 		order = next_order(&orders, order);
4560 	}
4561 
4562 fallback:
4563 	return __alloc_swap_folio(vmf);
4564 }
4565 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
alloc_swap_folio(struct vm_fault * vmf)4566 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4567 {
4568 	return __alloc_swap_folio(vmf);
4569 }
4570 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4571 
4572 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4573 
4574 /*
4575  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4576  * but allow concurrent faults), and pte mapped but not yet locked.
4577  * We return with pte unmapped and unlocked.
4578  *
4579  * We return with the mmap_lock locked or unlocked in the same cases
4580  * as does filemap_fault().
4581  */
do_swap_page(struct vm_fault * vmf)4582 vm_fault_t do_swap_page(struct vm_fault *vmf)
4583 {
4584 	struct vm_area_struct *vma = vmf->vma;
4585 	struct folio *swapcache, *folio = NULL;
4586 	DECLARE_WAITQUEUE(wait, current);
4587 	struct page *page;
4588 	struct swap_info_struct *si = NULL;
4589 	rmap_t rmap_flags = RMAP_NONE;
4590 	bool need_clear_cache = false;
4591 	bool exclusive = false;
4592 	swp_entry_t entry;
4593 	pte_t pte;
4594 	vm_fault_t ret = 0;
4595 	void *shadow = NULL;
4596 	int nr_pages;
4597 	unsigned long page_idx;
4598 	unsigned long address;
4599 	pte_t *ptep;
4600 
4601 	if (!pte_unmap_same(vmf))
4602 		goto out;
4603 
4604 	entry = pte_to_swp_entry(vmf->orig_pte);
4605 	if (unlikely(non_swap_entry(entry))) {
4606 		if (is_migration_entry(entry)) {
4607 			migration_entry_wait(vma->vm_mm, vmf->pmd,
4608 					     vmf->address);
4609 		} else if (is_device_exclusive_entry(entry)) {
4610 			vmf->page = pfn_swap_entry_to_page(entry);
4611 			ret = remove_device_exclusive_entry(vmf);
4612 		} else if (is_device_private_entry(entry)) {
4613 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4614 				/*
4615 				 * migrate_to_ram is not yet ready to operate
4616 				 * under VMA lock.
4617 				 */
4618 				vma_end_read(vma);
4619 				ret = VM_FAULT_RETRY;
4620 				goto out;
4621 			}
4622 
4623 			vmf->page = pfn_swap_entry_to_page(entry);
4624 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4625 					vmf->address, &vmf->ptl);
4626 			if (unlikely(!vmf->pte ||
4627 				     !pte_same(ptep_get(vmf->pte),
4628 							vmf->orig_pte)))
4629 				goto unlock;
4630 
4631 			/*
4632 			 * Get a page reference while we know the page can't be
4633 			 * freed.
4634 			 */
4635 			if (trylock_page(vmf->page)) {
4636 				struct dev_pagemap *pgmap;
4637 
4638 				get_page(vmf->page);
4639 				pte_unmap_unlock(vmf->pte, vmf->ptl);
4640 				pgmap = page_pgmap(vmf->page);
4641 				ret = pgmap->ops->migrate_to_ram(vmf);
4642 				unlock_page(vmf->page);
4643 				put_page(vmf->page);
4644 			} else {
4645 				pte_unmap_unlock(vmf->pte, vmf->ptl);
4646 			}
4647 		} else if (is_hwpoison_entry(entry)) {
4648 			ret = VM_FAULT_HWPOISON;
4649 		} else if (is_pte_marker_entry(entry)) {
4650 			ret = handle_pte_marker(vmf);
4651 		} else {
4652 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4653 			ret = VM_FAULT_SIGBUS;
4654 		}
4655 		goto out;
4656 	}
4657 
4658 	/* Prevent swapoff from happening to us. */
4659 	si = get_swap_device(entry);
4660 	if (unlikely(!si))
4661 		goto out;
4662 
4663 	folio = swap_cache_get_folio(entry);
4664 	if (folio)
4665 		swap_update_readahead(folio, vma, vmf->address);
4666 	swapcache = folio;
4667 
4668 	if (!folio) {
4669 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4670 		    __swap_count(entry) == 1) {
4671 			/* skip swapcache */
4672 			folio = alloc_swap_folio(vmf);
4673 			if (folio) {
4674 				__folio_set_locked(folio);
4675 				__folio_set_swapbacked(folio);
4676 
4677 				nr_pages = folio_nr_pages(folio);
4678 				if (folio_test_large(folio))
4679 					entry.val = ALIGN_DOWN(entry.val, nr_pages);
4680 				/*
4681 				 * Prevent parallel swapin from proceeding with
4682 				 * the cache flag. Otherwise, another thread
4683 				 * may finish swapin first, free the entry, and
4684 				 * swapout reusing the same entry. It's
4685 				 * undetectable as pte_same() returns true due
4686 				 * to entry reuse.
4687 				 */
4688 				if (swapcache_prepare(entry, nr_pages)) {
4689 					/*
4690 					 * Relax a bit to prevent rapid
4691 					 * repeated page faults.
4692 					 */
4693 					add_wait_queue(&swapcache_wq, &wait);
4694 					schedule_timeout_uninterruptible(1);
4695 					remove_wait_queue(&swapcache_wq, &wait);
4696 					goto out_page;
4697 				}
4698 				need_clear_cache = true;
4699 
4700 				memcg1_swapin(entry, nr_pages);
4701 
4702 				shadow = swap_cache_get_shadow(entry);
4703 				if (shadow)
4704 					workingset_refault(folio, shadow);
4705 
4706 				folio_add_lru(folio);
4707 
4708 				/* To provide entry to swap_read_folio() */
4709 				folio->swap = entry;
4710 				swap_read_folio(folio, NULL);
4711 				folio->private = NULL;
4712 			}
4713 		} else {
4714 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4715 						vmf);
4716 			swapcache = folio;
4717 		}
4718 
4719 		if (!folio) {
4720 			/*
4721 			 * Back out if somebody else faulted in this pte
4722 			 * while we released the pte lock.
4723 			 */
4724 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4725 					vmf->address, &vmf->ptl);
4726 			if (likely(vmf->pte &&
4727 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4728 				ret = VM_FAULT_OOM;
4729 			goto unlock;
4730 		}
4731 
4732 		/* Had to read the page from swap area: Major fault */
4733 		ret = VM_FAULT_MAJOR;
4734 		count_vm_event(PGMAJFAULT);
4735 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4736 	}
4737 
4738 	ret |= folio_lock_or_retry(folio, vmf);
4739 	if (ret & VM_FAULT_RETRY)
4740 		goto out_release;
4741 
4742 	page = folio_file_page(folio, swp_offset(entry));
4743 	if (swapcache) {
4744 		/*
4745 		 * Make sure folio_free_swap() or swapoff did not release the
4746 		 * swapcache from under us.  The page pin, and pte_same test
4747 		 * below, are not enough to exclude that.  Even if it is still
4748 		 * swapcache, we need to check that the page's swap has not
4749 		 * changed.
4750 		 */
4751 		if (unlikely(!folio_matches_swap_entry(folio, entry)))
4752 			goto out_page;
4753 
4754 		if (unlikely(PageHWPoison(page))) {
4755 			/*
4756 			 * hwpoisoned dirty swapcache pages are kept for killing
4757 			 * owner processes (which may be unknown at hwpoison time)
4758 			 */
4759 			ret = VM_FAULT_HWPOISON;
4760 			goto out_page;
4761 		}
4762 
4763 		/*
4764 		 * KSM sometimes has to copy on read faults, for example, if
4765 		 * folio->index of non-ksm folios would be nonlinear inside the
4766 		 * anon VMA -- the ksm flag is lost on actual swapout.
4767 		 */
4768 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4769 		if (unlikely(!folio)) {
4770 			ret = VM_FAULT_OOM;
4771 			folio = swapcache;
4772 			goto out_page;
4773 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4774 			ret = VM_FAULT_HWPOISON;
4775 			folio = swapcache;
4776 			goto out_page;
4777 		}
4778 		if (folio != swapcache)
4779 			page = folio_page(folio, 0);
4780 
4781 		/*
4782 		 * If we want to map a page that's in the swapcache writable, we
4783 		 * have to detect via the refcount if we're really the exclusive
4784 		 * owner. Try removing the extra reference from the local LRU
4785 		 * caches if required.
4786 		 */
4787 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4788 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4789 			lru_add_drain();
4790 	}
4791 
4792 	folio_throttle_swaprate(folio, GFP_KERNEL);
4793 
4794 	/*
4795 	 * Back out if somebody else already faulted in this pte.
4796 	 */
4797 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4798 			&vmf->ptl);
4799 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4800 		goto out_nomap;
4801 
4802 	if (unlikely(!folio_test_uptodate(folio))) {
4803 		ret = VM_FAULT_SIGBUS;
4804 		goto out_nomap;
4805 	}
4806 
4807 	/* allocated large folios for SWP_SYNCHRONOUS_IO */
4808 	if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4809 		unsigned long nr = folio_nr_pages(folio);
4810 		unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4811 		unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4812 		pte_t *folio_ptep = vmf->pte - idx;
4813 		pte_t folio_pte = ptep_get(folio_ptep);
4814 
4815 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4816 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4817 			goto out_nomap;
4818 
4819 		page_idx = idx;
4820 		address = folio_start;
4821 		ptep = folio_ptep;
4822 		goto check_folio;
4823 	}
4824 
4825 	nr_pages = 1;
4826 	page_idx = 0;
4827 	address = vmf->address;
4828 	ptep = vmf->pte;
4829 	if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4830 		int nr = folio_nr_pages(folio);
4831 		unsigned long idx = folio_page_idx(folio, page);
4832 		unsigned long folio_start = address - idx * PAGE_SIZE;
4833 		unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4834 		pte_t *folio_ptep;
4835 		pte_t folio_pte;
4836 
4837 		if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4838 			goto check_folio;
4839 		if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4840 			goto check_folio;
4841 
4842 		folio_ptep = vmf->pte - idx;
4843 		folio_pte = ptep_get(folio_ptep);
4844 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4845 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4846 			goto check_folio;
4847 
4848 		page_idx = idx;
4849 		address = folio_start;
4850 		ptep = folio_ptep;
4851 		nr_pages = nr;
4852 		entry = folio->swap;
4853 		page = &folio->page;
4854 	}
4855 
4856 check_folio:
4857 	/*
4858 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4859 	 * must never point at an anonymous page in the swapcache that is
4860 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4861 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4862 	 * check after taking the PT lock and making sure that nobody
4863 	 * concurrently faulted in this page and set PG_anon_exclusive.
4864 	 */
4865 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4866 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4867 
4868 	/*
4869 	 * Check under PT lock (to protect against concurrent fork() sharing
4870 	 * the swap entry concurrently) for certainly exclusive pages.
4871 	 */
4872 	if (!folio_test_ksm(folio)) {
4873 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4874 		if (folio != swapcache) {
4875 			/*
4876 			 * We have a fresh page that is not exposed to the
4877 			 * swapcache -> certainly exclusive.
4878 			 */
4879 			exclusive = true;
4880 		} else if (exclusive && folio_test_writeback(folio) &&
4881 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4882 			/*
4883 			 * This is tricky: not all swap backends support
4884 			 * concurrent page modifications while under writeback.
4885 			 *
4886 			 * So if we stumble over such a page in the swapcache
4887 			 * we must not set the page exclusive, otherwise we can
4888 			 * map it writable without further checks and modify it
4889 			 * while still under writeback.
4890 			 *
4891 			 * For these problematic swap backends, simply drop the
4892 			 * exclusive marker: this is perfectly fine as we start
4893 			 * writeback only if we fully unmapped the page and
4894 			 * there are no unexpected references on the page after
4895 			 * unmapping succeeded. After fully unmapped, no
4896 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4897 			 * appear, so dropping the exclusive marker and mapping
4898 			 * it only R/O is fine.
4899 			 */
4900 			exclusive = false;
4901 		}
4902 	}
4903 
4904 	/*
4905 	 * Some architectures may have to restore extra metadata to the page
4906 	 * when reading from swap. This metadata may be indexed by swap entry
4907 	 * so this must be called before swap_free().
4908 	 */
4909 	arch_swap_restore(folio_swap(entry, folio), folio);
4910 
4911 	/*
4912 	 * Remove the swap entry and conditionally try to free up the swapcache.
4913 	 * We're already holding a reference on the page but haven't mapped it
4914 	 * yet.
4915 	 */
4916 	swap_free_nr(entry, nr_pages);
4917 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4918 		folio_free_swap(folio);
4919 
4920 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4921 	add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4922 	pte = mk_pte(page, vma->vm_page_prot);
4923 	if (pte_swp_soft_dirty(vmf->orig_pte))
4924 		pte = pte_mksoft_dirty(pte);
4925 	if (pte_swp_uffd_wp(vmf->orig_pte))
4926 		pte = pte_mkuffd_wp(pte);
4927 
4928 	/*
4929 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4930 	 * certainly not shared either because we just allocated them without
4931 	 * exposing them to the swapcache or because the swap entry indicates
4932 	 * exclusivity.
4933 	 */
4934 	if (!folio_test_ksm(folio) &&
4935 	    (exclusive || folio_ref_count(folio) == 1)) {
4936 		if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4937 		    !pte_needs_soft_dirty_wp(vma, pte)) {
4938 			pte = pte_mkwrite(pte, vma);
4939 			if (vmf->flags & FAULT_FLAG_WRITE) {
4940 				pte = pte_mkdirty(pte);
4941 				vmf->flags &= ~FAULT_FLAG_WRITE;
4942 			}
4943 		}
4944 		rmap_flags |= RMAP_EXCLUSIVE;
4945 	}
4946 	folio_ref_add(folio, nr_pages - 1);
4947 	flush_icache_pages(vma, page, nr_pages);
4948 	vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4949 
4950 	/* ksm created a completely new copy */
4951 	if (unlikely(folio != swapcache && swapcache)) {
4952 		folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4953 		folio_add_lru_vma(folio, vma);
4954 	} else if (!folio_test_anon(folio)) {
4955 		/*
4956 		 * We currently only expect small !anon folios which are either
4957 		 * fully exclusive or fully shared, or new allocated large
4958 		 * folios which are fully exclusive. If we ever get large
4959 		 * folios within swapcache here, we have to be careful.
4960 		 */
4961 		VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4962 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4963 		folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4964 	} else {
4965 		folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4966 					rmap_flags);
4967 	}
4968 
4969 	VM_BUG_ON(!folio_test_anon(folio) ||
4970 			(pte_write(pte) && !PageAnonExclusive(page)));
4971 	set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4972 	arch_do_swap_page_nr(vma->vm_mm, vma, address,
4973 			pte, pte, nr_pages);
4974 
4975 	folio_unlock(folio);
4976 	if (folio != swapcache && swapcache) {
4977 		/*
4978 		 * Hold the lock to avoid the swap entry to be reused
4979 		 * until we take the PT lock for the pte_same() check
4980 		 * (to avoid false positives from pte_same). For
4981 		 * further safety release the lock after the swap_free
4982 		 * so that the swap count won't change under a
4983 		 * parallel locked swapcache.
4984 		 */
4985 		folio_unlock(swapcache);
4986 		folio_put(swapcache);
4987 	}
4988 
4989 	if (vmf->flags & FAULT_FLAG_WRITE) {
4990 		ret |= do_wp_page(vmf);
4991 		if (ret & VM_FAULT_ERROR)
4992 			ret &= VM_FAULT_ERROR;
4993 		goto out;
4994 	}
4995 
4996 	/* No need to invalidate - it was non-present before */
4997 	update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4998 unlock:
4999 	if (vmf->pte)
5000 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5001 out:
5002 	/* Clear the swap cache pin for direct swapin after PTL unlock */
5003 	if (need_clear_cache) {
5004 		swapcache_clear(si, entry, nr_pages);
5005 		if (waitqueue_active(&swapcache_wq))
5006 			wake_up(&swapcache_wq);
5007 	}
5008 	if (si)
5009 		put_swap_device(si);
5010 	return ret;
5011 out_nomap:
5012 	if (vmf->pte)
5013 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5014 out_page:
5015 	folio_unlock(folio);
5016 out_release:
5017 	folio_put(folio);
5018 	if (folio != swapcache && swapcache) {
5019 		folio_unlock(swapcache);
5020 		folio_put(swapcache);
5021 	}
5022 	if (need_clear_cache) {
5023 		swapcache_clear(si, entry, nr_pages);
5024 		if (waitqueue_active(&swapcache_wq))
5025 			wake_up(&swapcache_wq);
5026 	}
5027 	if (si)
5028 		put_swap_device(si);
5029 	return ret;
5030 }
5031 
pte_range_none(pte_t * pte,int nr_pages)5032 static bool pte_range_none(pte_t *pte, int nr_pages)
5033 {
5034 	int i;
5035 
5036 	for (i = 0; i < nr_pages; i++) {
5037 		if (!pte_none(ptep_get_lockless(pte + i)))
5038 			return false;
5039 	}
5040 
5041 	return true;
5042 }
5043 
alloc_anon_folio(struct vm_fault * vmf)5044 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
5045 {
5046 	struct vm_area_struct *vma = vmf->vma;
5047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5048 	unsigned long orders;
5049 	struct folio *folio;
5050 	unsigned long addr;
5051 	pte_t *pte;
5052 	gfp_t gfp;
5053 	int order;
5054 
5055 	/*
5056 	 * If uffd is active for the vma we need per-page fault fidelity to
5057 	 * maintain the uffd semantics.
5058 	 */
5059 	if (unlikely(userfaultfd_armed(vma)))
5060 		goto fallback;
5061 
5062 	/*
5063 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
5064 	 * for this vma. Then filter out the orders that can't be allocated over
5065 	 * the faulting address and still be fully contained in the vma.
5066 	 */
5067 	orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
5068 					  BIT(PMD_ORDER) - 1);
5069 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
5070 
5071 	if (!orders)
5072 		goto fallback;
5073 
5074 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
5075 	if (!pte)
5076 		return ERR_PTR(-EAGAIN);
5077 
5078 	/*
5079 	 * Find the highest order where the aligned range is completely
5080 	 * pte_none(). Note that all remaining orders will be completely
5081 	 * pte_none().
5082 	 */
5083 	order = highest_order(orders);
5084 	while (orders) {
5085 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
5086 		if (pte_range_none(pte + pte_index(addr), 1 << order))
5087 			break;
5088 		order = next_order(&orders, order);
5089 	}
5090 
5091 	pte_unmap(pte);
5092 
5093 	if (!orders)
5094 		goto fallback;
5095 
5096 	/* Try allocating the highest of the remaining orders. */
5097 	gfp = vma_thp_gfp_mask(vma);
5098 	while (orders) {
5099 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
5100 		folio = vma_alloc_folio(gfp, order, vma, addr);
5101 		if (folio) {
5102 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
5103 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
5104 				folio_put(folio);
5105 				goto next;
5106 			}
5107 			folio_throttle_swaprate(folio, gfp);
5108 			/*
5109 			 * When a folio is not zeroed during allocation
5110 			 * (__GFP_ZERO not used) or user folios require special
5111 			 * handling, folio_zero_user() is used to make sure
5112 			 * that the page corresponding to the faulting address
5113 			 * will be hot in the cache after zeroing.
5114 			 */
5115 			if (user_alloc_needs_zeroing())
5116 				folio_zero_user(folio, vmf->address);
5117 			return folio;
5118 		}
5119 next:
5120 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
5121 		order = next_order(&orders, order);
5122 	}
5123 
5124 fallback:
5125 #endif
5126 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
5127 }
5128 
5129 /*
5130  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5131  * but allow concurrent faults), and pte mapped but not yet locked.
5132  * We return with mmap_lock still held, but pte unmapped and unlocked.
5133  */
do_anonymous_page(struct vm_fault * vmf)5134 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
5135 {
5136 	struct vm_area_struct *vma = vmf->vma;
5137 	unsigned long addr = vmf->address;
5138 	struct folio *folio;
5139 	vm_fault_t ret = 0;
5140 	int nr_pages = 1;
5141 	pte_t entry;
5142 
5143 	/* File mapping without ->vm_ops ? */
5144 	if (vma->vm_flags & VM_SHARED)
5145 		return VM_FAULT_SIGBUS;
5146 
5147 	/*
5148 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
5149 	 * be distinguished from a transient failure of pte_offset_map().
5150 	 */
5151 	if (pte_alloc(vma->vm_mm, vmf->pmd))
5152 		return VM_FAULT_OOM;
5153 
5154 	/* Use the zero-page for reads */
5155 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
5156 			!mm_forbids_zeropage(vma->vm_mm)) {
5157 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
5158 						vma->vm_page_prot));
5159 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5160 				vmf->address, &vmf->ptl);
5161 		if (!vmf->pte)
5162 			goto unlock;
5163 		if (vmf_pte_changed(vmf)) {
5164 			update_mmu_tlb(vma, vmf->address, vmf->pte);
5165 			goto unlock;
5166 		}
5167 		ret = check_stable_address_space(vma->vm_mm);
5168 		if (ret)
5169 			goto unlock;
5170 		/* Deliver the page fault to userland, check inside PT lock */
5171 		if (userfaultfd_missing(vma)) {
5172 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5173 			return handle_userfault(vmf, VM_UFFD_MISSING);
5174 		}
5175 		goto setpte;
5176 	}
5177 
5178 	/* Allocate our own private page. */
5179 	ret = vmf_anon_prepare(vmf);
5180 	if (ret)
5181 		return ret;
5182 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
5183 	folio = alloc_anon_folio(vmf);
5184 	if (IS_ERR(folio))
5185 		return 0;
5186 	if (!folio)
5187 		goto oom;
5188 
5189 	nr_pages = folio_nr_pages(folio);
5190 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
5191 
5192 	/*
5193 	 * The memory barrier inside __folio_mark_uptodate makes sure that
5194 	 * preceding stores to the page contents become visible before
5195 	 * the set_pte_at() write.
5196 	 */
5197 	__folio_mark_uptodate(folio);
5198 
5199 	entry = folio_mk_pte(folio, vma->vm_page_prot);
5200 	entry = pte_sw_mkyoung(entry);
5201 	if (vma->vm_flags & VM_WRITE)
5202 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
5203 
5204 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
5205 	if (!vmf->pte)
5206 		goto release;
5207 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
5208 		update_mmu_tlb(vma, addr, vmf->pte);
5209 		goto release;
5210 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5211 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5212 		goto release;
5213 	}
5214 
5215 	ret = check_stable_address_space(vma->vm_mm);
5216 	if (ret)
5217 		goto release;
5218 
5219 	/* Deliver the page fault to userland, check inside PT lock */
5220 	if (userfaultfd_missing(vma)) {
5221 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5222 		folio_put(folio);
5223 		return handle_userfault(vmf, VM_UFFD_MISSING);
5224 	}
5225 
5226 	folio_ref_add(folio, nr_pages - 1);
5227 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
5228 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
5229 	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5230 	folio_add_lru_vma(folio, vma);
5231 setpte:
5232 	if (vmf_orig_pte_uffd_wp(vmf))
5233 		entry = pte_mkuffd_wp(entry);
5234 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
5235 
5236 	/* No need to invalidate - it was non-present before */
5237 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
5238 unlock:
5239 	if (vmf->pte)
5240 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5241 	return ret;
5242 release:
5243 	folio_put(folio);
5244 	goto unlock;
5245 oom:
5246 	return VM_FAULT_OOM;
5247 }
5248 
5249 /*
5250  * The mmap_lock must have been held on entry, and may have been
5251  * released depending on flags and vma->vm_ops->fault() return value.
5252  * See filemap_fault() and __lock_page_retry().
5253  */
__do_fault(struct vm_fault * vmf)5254 static vm_fault_t __do_fault(struct vm_fault *vmf)
5255 {
5256 	struct vm_area_struct *vma = vmf->vma;
5257 	struct folio *folio;
5258 	vm_fault_t ret;
5259 
5260 	/*
5261 	 * Preallocate pte before we take page_lock because this might lead to
5262 	 * deadlocks for memcg reclaim which waits for pages under writeback:
5263 	 *				lock_page(A)
5264 	 *				SetPageWriteback(A)
5265 	 *				unlock_page(A)
5266 	 * lock_page(B)
5267 	 *				lock_page(B)
5268 	 * pte_alloc_one
5269 	 *   shrink_folio_list
5270 	 *     wait_on_page_writeback(A)
5271 	 *				SetPageWriteback(B)
5272 	 *				unlock_page(B)
5273 	 *				# flush A, B to clear the writeback
5274 	 */
5275 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
5276 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5277 		if (!vmf->prealloc_pte)
5278 			return VM_FAULT_OOM;
5279 	}
5280 
5281 	ret = vma->vm_ops->fault(vmf);
5282 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
5283 			    VM_FAULT_DONE_COW)))
5284 		return ret;
5285 
5286 	folio = page_folio(vmf->page);
5287 	if (unlikely(PageHWPoison(vmf->page))) {
5288 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
5289 		if (ret & VM_FAULT_LOCKED) {
5290 			if (page_mapped(vmf->page))
5291 				unmap_mapping_folio(folio);
5292 			/* Retry if a clean folio was removed from the cache. */
5293 			if (mapping_evict_folio(folio->mapping, folio))
5294 				poisonret = VM_FAULT_NOPAGE;
5295 			folio_unlock(folio);
5296 		}
5297 		folio_put(folio);
5298 		vmf->page = NULL;
5299 		return poisonret;
5300 	}
5301 
5302 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
5303 		folio_lock(folio);
5304 	else
5305 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5306 
5307 	return ret;
5308 }
5309 
5310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)5311 static void deposit_prealloc_pte(struct vm_fault *vmf)
5312 {
5313 	struct vm_area_struct *vma = vmf->vma;
5314 
5315 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5316 	/*
5317 	 * We are going to consume the prealloc table,
5318 	 * count that as nr_ptes.
5319 	 */
5320 	mm_inc_nr_ptes(vma->vm_mm);
5321 	vmf->prealloc_pte = NULL;
5322 }
5323 
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5324 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5325 {
5326 	struct vm_area_struct *vma = vmf->vma;
5327 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5328 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5329 	pmd_t entry;
5330 	vm_fault_t ret = VM_FAULT_FALLBACK;
5331 
5332 	/*
5333 	 * It is too late to allocate a small folio, we already have a large
5334 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
5335 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5336 	 * PMD mappings if THPs are disabled. As we already have a THP,
5337 	 * behave as if we are forcing a collapse.
5338 	 */
5339 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags,
5340 						     /* forced_collapse=*/ true))
5341 		return ret;
5342 
5343 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5344 		return ret;
5345 
5346 	if (folio_order(folio) != HPAGE_PMD_ORDER)
5347 		return ret;
5348 	page = &folio->page;
5349 
5350 	/*
5351 	 * Just backoff if any subpage of a THP is corrupted otherwise
5352 	 * the corrupted page may mapped by PMD silently to escape the
5353 	 * check.  This kind of THP just can be PTE mapped.  Access to
5354 	 * the corrupted subpage should trigger SIGBUS as expected.
5355 	 */
5356 	if (unlikely(folio_test_has_hwpoisoned(folio)))
5357 		return ret;
5358 
5359 	/*
5360 	 * Archs like ppc64 need additional space to store information
5361 	 * related to pte entry. Use the preallocated table for that.
5362 	 */
5363 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5364 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5365 		if (!vmf->prealloc_pte)
5366 			return VM_FAULT_OOM;
5367 	}
5368 
5369 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5370 	if (unlikely(!pmd_none(*vmf->pmd)))
5371 		goto out;
5372 
5373 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
5374 
5375 	entry = folio_mk_pmd(folio, vma->vm_page_prot);
5376 	if (write)
5377 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5378 
5379 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5380 	folio_add_file_rmap_pmd(folio, page, vma);
5381 
5382 	/*
5383 	 * deposit and withdraw with pmd lock held
5384 	 */
5385 	if (arch_needs_pgtable_deposit())
5386 		deposit_prealloc_pte(vmf);
5387 
5388 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5389 
5390 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5391 
5392 	/* fault is handled */
5393 	ret = 0;
5394 	count_vm_event(THP_FILE_MAPPED);
5395 out:
5396 	spin_unlock(vmf->ptl);
5397 	return ret;
5398 }
5399 #else
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5400 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5401 {
5402 	return VM_FAULT_FALLBACK;
5403 }
5404 #endif
5405 
5406 /**
5407  * set_pte_range - Set a range of PTEs to point to pages in a folio.
5408  * @vmf: Fault decription.
5409  * @folio: The folio that contains @page.
5410  * @page: The first page to create a PTE for.
5411  * @nr: The number of PTEs to create.
5412  * @addr: The first address to create a PTE for.
5413  */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)5414 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5415 		struct page *page, unsigned int nr, unsigned long addr)
5416 {
5417 	struct vm_area_struct *vma = vmf->vma;
5418 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5419 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5420 	pte_t entry;
5421 
5422 	flush_icache_pages(vma, page, nr);
5423 	entry = mk_pte(page, vma->vm_page_prot);
5424 
5425 	if (prefault && arch_wants_old_prefaulted_pte())
5426 		entry = pte_mkold(entry);
5427 	else
5428 		entry = pte_sw_mkyoung(entry);
5429 
5430 	if (write)
5431 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5432 	else if (pte_write(entry) && folio_test_dirty(folio))
5433 		entry = pte_mkdirty(entry);
5434 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5435 		entry = pte_mkuffd_wp(entry);
5436 	/* copy-on-write page */
5437 	if (write && !(vma->vm_flags & VM_SHARED)) {
5438 		VM_BUG_ON_FOLIO(nr != 1, folio);
5439 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5440 		folio_add_lru_vma(folio, vma);
5441 	} else {
5442 		folio_add_file_rmap_ptes(folio, page, nr, vma);
5443 	}
5444 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5445 
5446 	/* no need to invalidate: a not-present page won't be cached */
5447 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5448 }
5449 
vmf_pte_changed(struct vm_fault * vmf)5450 static bool vmf_pte_changed(struct vm_fault *vmf)
5451 {
5452 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5453 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5454 
5455 	return !pte_none(ptep_get(vmf->pte));
5456 }
5457 
5458 /**
5459  * finish_fault - finish page fault once we have prepared the page to fault
5460  *
5461  * @vmf: structure describing the fault
5462  *
5463  * This function handles all that is needed to finish a page fault once the
5464  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5465  * given page, adds reverse page mapping, handles memcg charges and LRU
5466  * addition.
5467  *
5468  * The function expects the page to be locked and on success it consumes a
5469  * reference of a page being mapped (for the PTE which maps it).
5470  *
5471  * Return: %0 on success, %VM_FAULT_ code in case of error.
5472  */
finish_fault(struct vm_fault * vmf)5473 vm_fault_t finish_fault(struct vm_fault *vmf)
5474 {
5475 	struct vm_area_struct *vma = vmf->vma;
5476 	struct page *page;
5477 	struct folio *folio;
5478 	vm_fault_t ret;
5479 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5480 		      !(vma->vm_flags & VM_SHARED);
5481 	int type, nr_pages;
5482 	unsigned long addr;
5483 	bool needs_fallback = false;
5484 
5485 fallback:
5486 	addr = vmf->address;
5487 
5488 	/* Did we COW the page? */
5489 	if (is_cow)
5490 		page = vmf->cow_page;
5491 	else
5492 		page = vmf->page;
5493 
5494 	folio = page_folio(page);
5495 	/*
5496 	 * check even for read faults because we might have lost our CoWed
5497 	 * page
5498 	 */
5499 	if (!(vma->vm_flags & VM_SHARED)) {
5500 		ret = check_stable_address_space(vma->vm_mm);
5501 		if (ret)
5502 			return ret;
5503 	}
5504 
5505 	if (!needs_fallback && vma->vm_file) {
5506 		struct address_space *mapping = vma->vm_file->f_mapping;
5507 		pgoff_t file_end;
5508 
5509 		file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
5510 
5511 		/*
5512 		 * Do not allow to map with PTEs beyond i_size and with PMD
5513 		 * across i_size to preserve SIGBUS semantics.
5514 		 *
5515 		 * Make an exception for shmem/tmpfs that for long time
5516 		 * intentionally mapped with PMDs across i_size.
5517 		 */
5518 		needs_fallback = !shmem_mapping(mapping) &&
5519 			file_end < folio_next_index(folio);
5520 	}
5521 
5522 	if (pmd_none(*vmf->pmd)) {
5523 		if (!needs_fallback && folio_test_pmd_mappable(folio)) {
5524 			ret = do_set_pmd(vmf, folio, page);
5525 			if (ret != VM_FAULT_FALLBACK)
5526 				return ret;
5527 		}
5528 
5529 		if (vmf->prealloc_pte)
5530 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5531 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5532 			return VM_FAULT_OOM;
5533 	}
5534 
5535 	nr_pages = folio_nr_pages(folio);
5536 
5537 	/* Using per-page fault to maintain the uffd semantics */
5538 	if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) {
5539 		nr_pages = 1;
5540 	} else if (nr_pages > 1) {
5541 		pgoff_t idx = folio_page_idx(folio, page);
5542 		/* The page offset of vmf->address within the VMA. */
5543 		pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5544 		/* The index of the entry in the pagetable for fault page. */
5545 		pgoff_t pte_off = pte_index(vmf->address);
5546 
5547 		/*
5548 		 * Fallback to per-page fault in case the folio size in page
5549 		 * cache beyond the VMA limits and PMD pagetable limits.
5550 		 */
5551 		if (unlikely(vma_off < idx ||
5552 			    vma_off + (nr_pages - idx) > vma_pages(vma) ||
5553 			    pte_off < idx ||
5554 			    pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
5555 			nr_pages = 1;
5556 		} else {
5557 			/* Now we can set mappings for the whole large folio. */
5558 			addr = vmf->address - idx * PAGE_SIZE;
5559 			page = &folio->page;
5560 		}
5561 	}
5562 
5563 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5564 				       addr, &vmf->ptl);
5565 	if (!vmf->pte)
5566 		return VM_FAULT_NOPAGE;
5567 
5568 	/* Re-check under ptl */
5569 	if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5570 		update_mmu_tlb(vma, addr, vmf->pte);
5571 		ret = VM_FAULT_NOPAGE;
5572 		goto unlock;
5573 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5574 		needs_fallback = true;
5575 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5576 		goto fallback;
5577 	}
5578 
5579 	folio_ref_add(folio, nr_pages - 1);
5580 	set_pte_range(vmf, folio, page, nr_pages, addr);
5581 	type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5582 	add_mm_counter(vma->vm_mm, type, nr_pages);
5583 	ret = 0;
5584 
5585 unlock:
5586 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5587 	return ret;
5588 }
5589 
5590 static unsigned long fault_around_pages __read_mostly =
5591 	65536 >> PAGE_SHIFT;
5592 
5593 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)5594 static int fault_around_bytes_get(void *data, u64 *val)
5595 {
5596 	*val = fault_around_pages << PAGE_SHIFT;
5597 	return 0;
5598 }
5599 
5600 /*
5601  * fault_around_bytes must be rounded down to the nearest page order as it's
5602  * what do_fault_around() expects to see.
5603  */
fault_around_bytes_set(void * data,u64 val)5604 static int fault_around_bytes_set(void *data, u64 val)
5605 {
5606 	if (val / PAGE_SIZE > PTRS_PER_PTE)
5607 		return -EINVAL;
5608 
5609 	/*
5610 	 * The minimum value is 1 page, however this results in no fault-around
5611 	 * at all. See should_fault_around().
5612 	 */
5613 	val = max(val, PAGE_SIZE);
5614 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5615 
5616 	return 0;
5617 }
5618 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5619 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5620 
fault_around_debugfs(void)5621 static int __init fault_around_debugfs(void)
5622 {
5623 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5624 				   &fault_around_bytes_fops);
5625 	return 0;
5626 }
5627 late_initcall(fault_around_debugfs);
5628 #endif
5629 
5630 /*
5631  * do_fault_around() tries to map few pages around the fault address. The hope
5632  * is that the pages will be needed soon and this will lower the number of
5633  * faults to handle.
5634  *
5635  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5636  * not ready to be mapped: not up-to-date, locked, etc.
5637  *
5638  * This function doesn't cross VMA or page table boundaries, in order to call
5639  * map_pages() and acquire a PTE lock only once.
5640  *
5641  * fault_around_pages defines how many pages we'll try to map.
5642  * do_fault_around() expects it to be set to a power of two less than or equal
5643  * to PTRS_PER_PTE.
5644  *
5645  * The virtual address of the area that we map is naturally aligned to
5646  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5647  * (and therefore to page order).  This way it's easier to guarantee
5648  * that we don't cross page table boundaries.
5649  */
do_fault_around(struct vm_fault * vmf)5650 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5651 {
5652 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5653 	pgoff_t pte_off = pte_index(vmf->address);
5654 	/* The page offset of vmf->address within the VMA. */
5655 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5656 	pgoff_t from_pte, to_pte;
5657 	vm_fault_t ret;
5658 
5659 	/* The PTE offset of the start address, clamped to the VMA. */
5660 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5661 		       pte_off - min(pte_off, vma_off));
5662 
5663 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
5664 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5665 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5666 
5667 	if (pmd_none(*vmf->pmd)) {
5668 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5669 		if (!vmf->prealloc_pte)
5670 			return VM_FAULT_OOM;
5671 	}
5672 
5673 	rcu_read_lock();
5674 	ret = vmf->vma->vm_ops->map_pages(vmf,
5675 			vmf->pgoff + from_pte - pte_off,
5676 			vmf->pgoff + to_pte - pte_off);
5677 	rcu_read_unlock();
5678 
5679 	return ret;
5680 }
5681 
5682 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)5683 static inline bool should_fault_around(struct vm_fault *vmf)
5684 {
5685 	/* No ->map_pages?  No way to fault around... */
5686 	if (!vmf->vma->vm_ops->map_pages)
5687 		return false;
5688 
5689 	if (uffd_disable_fault_around(vmf->vma))
5690 		return false;
5691 
5692 	/* A single page implies no faulting 'around' at all. */
5693 	return fault_around_pages > 1;
5694 }
5695 
do_read_fault(struct vm_fault * vmf)5696 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5697 {
5698 	vm_fault_t ret = 0;
5699 	struct folio *folio;
5700 
5701 	/*
5702 	 * Let's call ->map_pages() first and use ->fault() as fallback
5703 	 * if page by the offset is not ready to be mapped (cold cache or
5704 	 * something).
5705 	 */
5706 	if (should_fault_around(vmf)) {
5707 		ret = do_fault_around(vmf);
5708 		if (ret)
5709 			return ret;
5710 	}
5711 
5712 	ret = vmf_can_call_fault(vmf);
5713 	if (ret)
5714 		return ret;
5715 
5716 	ret = __do_fault(vmf);
5717 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5718 		return ret;
5719 
5720 	ret |= finish_fault(vmf);
5721 	folio = page_folio(vmf->page);
5722 	folio_unlock(folio);
5723 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5724 		folio_put(folio);
5725 	return ret;
5726 }
5727 
do_cow_fault(struct vm_fault * vmf)5728 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5729 {
5730 	struct vm_area_struct *vma = vmf->vma;
5731 	struct folio *folio;
5732 	vm_fault_t ret;
5733 
5734 	ret = vmf_can_call_fault(vmf);
5735 	if (!ret)
5736 		ret = vmf_anon_prepare(vmf);
5737 	if (ret)
5738 		return ret;
5739 
5740 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5741 	if (!folio)
5742 		return VM_FAULT_OOM;
5743 
5744 	vmf->cow_page = &folio->page;
5745 
5746 	ret = __do_fault(vmf);
5747 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5748 		goto uncharge_out;
5749 	if (ret & VM_FAULT_DONE_COW)
5750 		return ret;
5751 
5752 	if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5753 		ret = VM_FAULT_HWPOISON;
5754 		goto unlock;
5755 	}
5756 	__folio_mark_uptodate(folio);
5757 
5758 	ret |= finish_fault(vmf);
5759 unlock:
5760 	unlock_page(vmf->page);
5761 	put_page(vmf->page);
5762 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5763 		goto uncharge_out;
5764 	return ret;
5765 uncharge_out:
5766 	folio_put(folio);
5767 	return ret;
5768 }
5769 
do_shared_fault(struct vm_fault * vmf)5770 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5771 {
5772 	struct vm_area_struct *vma = vmf->vma;
5773 	vm_fault_t ret, tmp;
5774 	struct folio *folio;
5775 
5776 	ret = vmf_can_call_fault(vmf);
5777 	if (ret)
5778 		return ret;
5779 
5780 	ret = __do_fault(vmf);
5781 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5782 		return ret;
5783 
5784 	folio = page_folio(vmf->page);
5785 
5786 	/*
5787 	 * Check if the backing address space wants to know that the page is
5788 	 * about to become writable
5789 	 */
5790 	if (vma->vm_ops->page_mkwrite) {
5791 		folio_unlock(folio);
5792 		tmp = do_page_mkwrite(vmf, folio);
5793 		if (unlikely(!tmp ||
5794 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5795 			folio_put(folio);
5796 			return tmp;
5797 		}
5798 	}
5799 
5800 	ret |= finish_fault(vmf);
5801 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5802 					VM_FAULT_RETRY))) {
5803 		folio_unlock(folio);
5804 		folio_put(folio);
5805 		return ret;
5806 	}
5807 
5808 	ret |= fault_dirty_shared_page(vmf);
5809 	return ret;
5810 }
5811 
5812 /*
5813  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5814  * but allow concurrent faults).
5815  * The mmap_lock may have been released depending on flags and our
5816  * return value.  See filemap_fault() and __folio_lock_or_retry().
5817  * If mmap_lock is released, vma may become invalid (for example
5818  * by other thread calling munmap()).
5819  */
do_fault(struct vm_fault * vmf)5820 static vm_fault_t do_fault(struct vm_fault *vmf)
5821 {
5822 	struct vm_area_struct *vma = vmf->vma;
5823 	struct mm_struct *vm_mm = vma->vm_mm;
5824 	vm_fault_t ret;
5825 
5826 	/*
5827 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5828 	 */
5829 	if (!vma->vm_ops->fault) {
5830 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5831 					       vmf->address, &vmf->ptl);
5832 		if (unlikely(!vmf->pte))
5833 			ret = VM_FAULT_SIGBUS;
5834 		else {
5835 			/*
5836 			 * Make sure this is not a temporary clearing of pte
5837 			 * by holding ptl and checking again. A R/M/W update
5838 			 * of pte involves: take ptl, clearing the pte so that
5839 			 * we don't have concurrent modification by hardware
5840 			 * followed by an update.
5841 			 */
5842 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5843 				ret = VM_FAULT_SIGBUS;
5844 			else
5845 				ret = VM_FAULT_NOPAGE;
5846 
5847 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5848 		}
5849 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5850 		ret = do_read_fault(vmf);
5851 	else if (!(vma->vm_flags & VM_SHARED))
5852 		ret = do_cow_fault(vmf);
5853 	else
5854 		ret = do_shared_fault(vmf);
5855 
5856 	/* preallocated pagetable is unused: free it */
5857 	if (vmf->prealloc_pte) {
5858 		pte_free(vm_mm, vmf->prealloc_pte);
5859 		vmf->prealloc_pte = NULL;
5860 	}
5861 	return ret;
5862 }
5863 
numa_migrate_check(struct folio * folio,struct vm_fault * vmf,unsigned long addr,int * flags,bool writable,int * last_cpupid)5864 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5865 		      unsigned long addr, int *flags,
5866 		      bool writable, int *last_cpupid)
5867 {
5868 	struct vm_area_struct *vma = vmf->vma;
5869 
5870 	/*
5871 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5872 	 * much anyway since they can be in shared cache state. This misses
5873 	 * the case where a mapping is writable but the process never writes
5874 	 * to it but pte_write gets cleared during protection updates and
5875 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5876 	 * background writeback, dirty balancing and application behaviour.
5877 	 */
5878 	if (!writable)
5879 		*flags |= TNF_NO_GROUP;
5880 
5881 	/*
5882 	 * Flag if the folio is shared between multiple address spaces. This
5883 	 * is later used when determining whether to group tasks together
5884 	 */
5885 	if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5886 		*flags |= TNF_SHARED;
5887 	/*
5888 	 * For memory tiering mode, cpupid of slow memory page is used
5889 	 * to record page access time.  So use default value.
5890 	 */
5891 	if (folio_use_access_time(folio))
5892 		*last_cpupid = (-1 & LAST_CPUPID_MASK);
5893 	else
5894 		*last_cpupid = folio_last_cpupid(folio);
5895 
5896 	/* Record the current PID acceesing VMA */
5897 	vma_set_access_pid_bit(vma);
5898 
5899 	count_vm_numa_event(NUMA_HINT_FAULTS);
5900 #ifdef CONFIG_NUMA_BALANCING
5901 	count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5902 #endif
5903 	if (folio_nid(folio) == numa_node_id()) {
5904 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5905 		*flags |= TNF_FAULT_LOCAL;
5906 	}
5907 
5908 	return mpol_misplaced(folio, vmf, addr);
5909 }
5910 
numa_rebuild_single_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long fault_addr,pte_t * fault_pte,bool writable)5911 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5912 					unsigned long fault_addr, pte_t *fault_pte,
5913 					bool writable)
5914 {
5915 	pte_t pte, old_pte;
5916 
5917 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5918 	pte = pte_modify(old_pte, vma->vm_page_prot);
5919 	pte = pte_mkyoung(pte);
5920 	if (writable)
5921 		pte = pte_mkwrite(pte, vma);
5922 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5923 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5924 }
5925 
numa_rebuild_large_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,struct folio * folio,pte_t fault_pte,bool ignore_writable,bool pte_write_upgrade)5926 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5927 				       struct folio *folio, pte_t fault_pte,
5928 				       bool ignore_writable, bool pte_write_upgrade)
5929 {
5930 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5931 	unsigned long start, end, addr = vmf->address;
5932 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5933 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5934 	pte_t *start_ptep;
5935 
5936 	/* Stay within the VMA and within the page table. */
5937 	start = max3(addr_start, pt_start, vma->vm_start);
5938 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5939 		   vma->vm_end);
5940 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5941 
5942 	/* Restore all PTEs' mapping of the large folio */
5943 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5944 		pte_t ptent = ptep_get(start_ptep);
5945 		bool writable = false;
5946 
5947 		if (!pte_present(ptent) || !pte_protnone(ptent))
5948 			continue;
5949 
5950 		if (pfn_folio(pte_pfn(ptent)) != folio)
5951 			continue;
5952 
5953 		if (!ignore_writable) {
5954 			ptent = pte_modify(ptent, vma->vm_page_prot);
5955 			writable = pte_write(ptent);
5956 			if (!writable && pte_write_upgrade &&
5957 			    can_change_pte_writable(vma, addr, ptent))
5958 				writable = true;
5959 		}
5960 
5961 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5962 	}
5963 }
5964 
do_numa_page(struct vm_fault * vmf)5965 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5966 {
5967 	struct vm_area_struct *vma = vmf->vma;
5968 	struct folio *folio = NULL;
5969 	int nid = NUMA_NO_NODE;
5970 	bool writable = false, ignore_writable = false;
5971 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5972 	int last_cpupid;
5973 	int target_nid;
5974 	pte_t pte, old_pte;
5975 	int flags = 0, nr_pages;
5976 
5977 	/*
5978 	 * The pte cannot be used safely until we verify, while holding the page
5979 	 * table lock, that its contents have not changed during fault handling.
5980 	 */
5981 	spin_lock(vmf->ptl);
5982 	/* Read the live PTE from the page tables: */
5983 	old_pte = ptep_get(vmf->pte);
5984 
5985 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5986 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5987 		return 0;
5988 	}
5989 
5990 	pte = pte_modify(old_pte, vma->vm_page_prot);
5991 
5992 	/*
5993 	 * Detect now whether the PTE could be writable; this information
5994 	 * is only valid while holding the PT lock.
5995 	 */
5996 	writable = pte_write(pte);
5997 	if (!writable && pte_write_upgrade &&
5998 	    can_change_pte_writable(vma, vmf->address, pte))
5999 		writable = true;
6000 
6001 	folio = vm_normal_folio(vma, vmf->address, pte);
6002 	if (!folio || folio_is_zone_device(folio))
6003 		goto out_map;
6004 
6005 	nid = folio_nid(folio);
6006 	nr_pages = folio_nr_pages(folio);
6007 
6008 	target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
6009 					writable, &last_cpupid);
6010 	if (target_nid == NUMA_NO_NODE)
6011 		goto out_map;
6012 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
6013 		flags |= TNF_MIGRATE_FAIL;
6014 		goto out_map;
6015 	}
6016 	/* The folio is isolated and isolation code holds a folio reference. */
6017 	pte_unmap_unlock(vmf->pte, vmf->ptl);
6018 	writable = false;
6019 	ignore_writable = true;
6020 
6021 	/* Migrate to the requested node */
6022 	if (!migrate_misplaced_folio(folio, target_nid)) {
6023 		nid = target_nid;
6024 		flags |= TNF_MIGRATED;
6025 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
6026 		return 0;
6027 	}
6028 
6029 	flags |= TNF_MIGRATE_FAIL;
6030 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
6031 				       vmf->address, &vmf->ptl);
6032 	if (unlikely(!vmf->pte))
6033 		return 0;
6034 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
6035 		pte_unmap_unlock(vmf->pte, vmf->ptl);
6036 		return 0;
6037 	}
6038 out_map:
6039 	/*
6040 	 * Make it present again, depending on how arch implements
6041 	 * non-accessible ptes, some can allow access by kernel mode.
6042 	 */
6043 	if (folio && folio_test_large(folio))
6044 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
6045 					   pte_write_upgrade);
6046 	else
6047 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
6048 					    writable);
6049 	pte_unmap_unlock(vmf->pte, vmf->ptl);
6050 
6051 	if (nid != NUMA_NO_NODE)
6052 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
6053 	return 0;
6054 }
6055 
create_huge_pmd(struct vm_fault * vmf)6056 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
6057 {
6058 	struct vm_area_struct *vma = vmf->vma;
6059 	if (vma_is_anonymous(vma))
6060 		return do_huge_pmd_anonymous_page(vmf);
6061 	if (vma->vm_ops->huge_fault)
6062 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
6063 	return VM_FAULT_FALLBACK;
6064 }
6065 
6066 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)6067 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
6068 {
6069 	struct vm_area_struct *vma = vmf->vma;
6070 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6071 	vm_fault_t ret;
6072 
6073 	if (vma_is_anonymous(vma)) {
6074 		if (likely(!unshare) &&
6075 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
6076 			if (userfaultfd_wp_async(vmf->vma))
6077 				goto split;
6078 			return handle_userfault(vmf, VM_UFFD_WP);
6079 		}
6080 		return do_huge_pmd_wp_page(vmf);
6081 	}
6082 
6083 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
6084 		if (vma->vm_ops->huge_fault) {
6085 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
6086 			if (!(ret & VM_FAULT_FALLBACK))
6087 				return ret;
6088 		}
6089 	}
6090 
6091 split:
6092 	/* COW or write-notify handled on pte level: split pmd. */
6093 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false);
6094 
6095 	return VM_FAULT_FALLBACK;
6096 }
6097 
create_huge_pud(struct vm_fault * vmf)6098 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
6099 {
6100 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
6101 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
6102 	struct vm_area_struct *vma = vmf->vma;
6103 	/* No support for anonymous transparent PUD pages yet */
6104 	if (vma_is_anonymous(vma))
6105 		return VM_FAULT_FALLBACK;
6106 	if (vma->vm_ops->huge_fault)
6107 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
6108 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
6109 	return VM_FAULT_FALLBACK;
6110 }
6111 
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)6112 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
6113 {
6114 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
6115 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
6116 	struct vm_area_struct *vma = vmf->vma;
6117 	vm_fault_t ret;
6118 
6119 	/* No support for anonymous transparent PUD pages yet */
6120 	if (vma_is_anonymous(vma))
6121 		goto split;
6122 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
6123 		if (vma->vm_ops->huge_fault) {
6124 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
6125 			if (!(ret & VM_FAULT_FALLBACK))
6126 				return ret;
6127 		}
6128 	}
6129 split:
6130 	/* COW or write-notify not handled on PUD level: split pud.*/
6131 	__split_huge_pud(vma, vmf->pud, vmf->address);
6132 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
6133 	return VM_FAULT_FALLBACK;
6134 }
6135 
6136 /*
6137  * These routines also need to handle stuff like marking pages dirty
6138  * and/or accessed for architectures that don't do it in hardware (most
6139  * RISC architectures).  The early dirtying is also good on the i386.
6140  *
6141  * There is also a hook called "update_mmu_cache()" that architectures
6142  * with external mmu caches can use to update those (ie the Sparc or
6143  * PowerPC hashed page tables that act as extended TLBs).
6144  *
6145  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
6146  * concurrent faults).
6147  *
6148  * The mmap_lock may have been released depending on flags and our return value.
6149  * See filemap_fault() and __folio_lock_or_retry().
6150  */
handle_pte_fault(struct vm_fault * vmf)6151 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
6152 {
6153 	pte_t entry;
6154 
6155 	if (unlikely(pmd_none(*vmf->pmd))) {
6156 		/*
6157 		 * Leave __pte_alloc() until later: because vm_ops->fault may
6158 		 * want to allocate huge page, and if we expose page table
6159 		 * for an instant, it will be difficult to retract from
6160 		 * concurrent faults and from rmap lookups.
6161 		 */
6162 		vmf->pte = NULL;
6163 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
6164 	} else {
6165 		pmd_t dummy_pmdval;
6166 
6167 		/*
6168 		 * A regular pmd is established and it can't morph into a huge
6169 		 * pmd by anon khugepaged, since that takes mmap_lock in write
6170 		 * mode; but shmem or file collapse to THP could still morph
6171 		 * it into a huge pmd: just retry later if so.
6172 		 *
6173 		 * Use the maywrite version to indicate that vmf->pte may be
6174 		 * modified, but since we will use pte_same() to detect the
6175 		 * change of the !pte_none() entry, there is no need to recheck
6176 		 * the pmdval. Here we chooes to pass a dummy variable instead
6177 		 * of NULL, which helps new user think about why this place is
6178 		 * special.
6179 		 */
6180 		vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
6181 						    vmf->address, &dummy_pmdval,
6182 						    &vmf->ptl);
6183 		if (unlikely(!vmf->pte))
6184 			return 0;
6185 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
6186 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
6187 
6188 		if (pte_none(vmf->orig_pte)) {
6189 			pte_unmap(vmf->pte);
6190 			vmf->pte = NULL;
6191 		}
6192 	}
6193 
6194 	if (!vmf->pte)
6195 		return do_pte_missing(vmf);
6196 
6197 	if (!pte_present(vmf->orig_pte))
6198 		return do_swap_page(vmf);
6199 
6200 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
6201 		return do_numa_page(vmf);
6202 
6203 	spin_lock(vmf->ptl);
6204 	entry = vmf->orig_pte;
6205 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
6206 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
6207 		goto unlock;
6208 	}
6209 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6210 		if (!pte_write(entry))
6211 			return do_wp_page(vmf);
6212 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
6213 			entry = pte_mkdirty(entry);
6214 	}
6215 	entry = pte_mkyoung(entry);
6216 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
6217 				vmf->flags & FAULT_FLAG_WRITE)) {
6218 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
6219 				vmf->pte, 1);
6220 	} else {
6221 		/* Skip spurious TLB flush for retried page fault */
6222 		if (vmf->flags & FAULT_FLAG_TRIED)
6223 			goto unlock;
6224 		/*
6225 		 * This is needed only for protection faults but the arch code
6226 		 * is not yet telling us if this is a protection fault or not.
6227 		 * This still avoids useless tlb flushes for .text page faults
6228 		 * with threads.
6229 		 */
6230 		if (vmf->flags & FAULT_FLAG_WRITE)
6231 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
6232 						     vmf->pte);
6233 	}
6234 unlock:
6235 	pte_unmap_unlock(vmf->pte, vmf->ptl);
6236 	return 0;
6237 }
6238 
6239 /*
6240  * On entry, we hold either the VMA lock or the mmap_lock
6241  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
6242  * the result, the mmap_lock is not held on exit.  See filemap_fault()
6243  * and __folio_lock_or_retry().
6244  */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)6245 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
6246 		unsigned long address, unsigned int flags)
6247 {
6248 	struct vm_fault vmf = {
6249 		.vma = vma,
6250 		.address = address & PAGE_MASK,
6251 		.real_address = address,
6252 		.flags = flags,
6253 		.pgoff = linear_page_index(vma, address),
6254 		.gfp_mask = __get_fault_gfp_mask(vma),
6255 	};
6256 	struct mm_struct *mm = vma->vm_mm;
6257 	vm_flags_t vm_flags = vma->vm_flags;
6258 	pgd_t *pgd;
6259 	p4d_t *p4d;
6260 	vm_fault_t ret;
6261 
6262 	pgd = pgd_offset(mm, address);
6263 	p4d = p4d_alloc(mm, pgd, address);
6264 	if (!p4d)
6265 		return VM_FAULT_OOM;
6266 
6267 	vmf.pud = pud_alloc(mm, p4d, address);
6268 	if (!vmf.pud)
6269 		return VM_FAULT_OOM;
6270 retry_pud:
6271 	if (pud_none(*vmf.pud) &&
6272 	    thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) {
6273 		ret = create_huge_pud(&vmf);
6274 		if (!(ret & VM_FAULT_FALLBACK))
6275 			return ret;
6276 	} else {
6277 		pud_t orig_pud = *vmf.pud;
6278 
6279 		barrier();
6280 		if (pud_trans_huge(orig_pud)) {
6281 
6282 			/*
6283 			 * TODO once we support anonymous PUDs: NUMA case and
6284 			 * FAULT_FLAG_UNSHARE handling.
6285 			 */
6286 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
6287 				ret = wp_huge_pud(&vmf, orig_pud);
6288 				if (!(ret & VM_FAULT_FALLBACK))
6289 					return ret;
6290 			} else {
6291 				huge_pud_set_accessed(&vmf, orig_pud);
6292 				return 0;
6293 			}
6294 		}
6295 	}
6296 
6297 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
6298 	if (!vmf.pmd)
6299 		return VM_FAULT_OOM;
6300 
6301 	/* Huge pud page fault raced with pmd_alloc? */
6302 	if (pud_trans_unstable(vmf.pud))
6303 		goto retry_pud;
6304 
6305 	if (pmd_none(*vmf.pmd) &&
6306 	    thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) {
6307 		ret = create_huge_pmd(&vmf);
6308 		if (!(ret & VM_FAULT_FALLBACK))
6309 			return ret;
6310 	} else {
6311 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6312 
6313 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
6314 			VM_BUG_ON(thp_migration_supported() &&
6315 					  !is_pmd_migration_entry(vmf.orig_pmd));
6316 			if (is_pmd_migration_entry(vmf.orig_pmd))
6317 				pmd_migration_entry_wait(mm, vmf.pmd);
6318 			return 0;
6319 		}
6320 		if (pmd_trans_huge(vmf.orig_pmd)) {
6321 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6322 				return do_huge_pmd_numa_page(&vmf);
6323 
6324 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6325 			    !pmd_write(vmf.orig_pmd)) {
6326 				ret = wp_huge_pmd(&vmf);
6327 				if (!(ret & VM_FAULT_FALLBACK))
6328 					return ret;
6329 			} else {
6330 				huge_pmd_set_accessed(&vmf);
6331 				return 0;
6332 			}
6333 		}
6334 	}
6335 
6336 	return handle_pte_fault(&vmf);
6337 }
6338 
6339 /**
6340  * mm_account_fault - Do page fault accounting
6341  * @mm: mm from which memcg should be extracted. It can be NULL.
6342  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
6343  *        of perf event counters, but we'll still do the per-task accounting to
6344  *        the task who triggered this page fault.
6345  * @address: the faulted address.
6346  * @flags: the fault flags.
6347  * @ret: the fault retcode.
6348  *
6349  * This will take care of most of the page fault accounting.  Meanwhile, it
6350  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6351  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6352  * still be in per-arch page fault handlers at the entry of page fault.
6353  */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)6354 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6355 				    unsigned long address, unsigned int flags,
6356 				    vm_fault_t ret)
6357 {
6358 	bool major;
6359 
6360 	/* Incomplete faults will be accounted upon completion. */
6361 	if (ret & VM_FAULT_RETRY)
6362 		return;
6363 
6364 	/*
6365 	 * To preserve the behavior of older kernels, PGFAULT counters record
6366 	 * both successful and failed faults, as opposed to perf counters,
6367 	 * which ignore failed cases.
6368 	 */
6369 	count_vm_event(PGFAULT);
6370 	count_memcg_event_mm(mm, PGFAULT);
6371 
6372 	/*
6373 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
6374 	 * valid).  That includes arch_vma_access_permitted() failing before
6375 	 * reaching here. So this is not a "this many hardware page faults"
6376 	 * counter.  We should use the hw profiling for that.
6377 	 */
6378 	if (ret & VM_FAULT_ERROR)
6379 		return;
6380 
6381 	/*
6382 	 * We define the fault as a major fault when the final successful fault
6383 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6384 	 * handle it immediately previously).
6385 	 */
6386 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6387 
6388 	if (major)
6389 		current->maj_flt++;
6390 	else
6391 		current->min_flt++;
6392 
6393 	/*
6394 	 * If the fault is done for GUP, regs will be NULL.  We only do the
6395 	 * accounting for the per thread fault counters who triggered the
6396 	 * fault, and we skip the perf event updates.
6397 	 */
6398 	if (!regs)
6399 		return;
6400 
6401 	if (major)
6402 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6403 	else
6404 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6405 }
6406 
6407 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)6408 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6409 {
6410 	/* the LRU algorithm only applies to accesses with recency */
6411 	current->in_lru_fault = vma_has_recency(vma);
6412 }
6413 
lru_gen_exit_fault(void)6414 static void lru_gen_exit_fault(void)
6415 {
6416 	current->in_lru_fault = false;
6417 }
6418 #else
lru_gen_enter_fault(struct vm_area_struct * vma)6419 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6420 {
6421 }
6422 
lru_gen_exit_fault(void)6423 static void lru_gen_exit_fault(void)
6424 {
6425 }
6426 #endif /* CONFIG_LRU_GEN */
6427 
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)6428 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6429 				       unsigned int *flags)
6430 {
6431 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6432 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6433 			return VM_FAULT_SIGSEGV;
6434 		/*
6435 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6436 		 * just treat it like an ordinary read-fault otherwise.
6437 		 */
6438 		if (!is_cow_mapping(vma->vm_flags))
6439 			*flags &= ~FAULT_FLAG_UNSHARE;
6440 	} else if (*flags & FAULT_FLAG_WRITE) {
6441 		/* Write faults on read-only mappings are impossible ... */
6442 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6443 			return VM_FAULT_SIGSEGV;
6444 		/* ... and FOLL_FORCE only applies to COW mappings. */
6445 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6446 				 !is_cow_mapping(vma->vm_flags)))
6447 			return VM_FAULT_SIGSEGV;
6448 	}
6449 #ifdef CONFIG_PER_VMA_LOCK
6450 	/*
6451 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6452 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
6453 	 */
6454 	if (WARN_ON_ONCE((*flags &
6455 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6456 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6457 		return VM_FAULT_SIGSEGV;
6458 #endif
6459 
6460 	return 0;
6461 }
6462 
6463 /*
6464  * By the time we get here, we already hold either the VMA lock or the
6465  * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6466  *
6467  * The mmap_lock may have been released depending on flags and our
6468  * return value.  See filemap_fault() and __folio_lock_or_retry().
6469  */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)6470 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6471 			   unsigned int flags, struct pt_regs *regs)
6472 {
6473 	/* If the fault handler drops the mmap_lock, vma may be freed */
6474 	struct mm_struct *mm = vma->vm_mm;
6475 	vm_fault_t ret;
6476 	bool is_droppable;
6477 
6478 	__set_current_state(TASK_RUNNING);
6479 
6480 	ret = sanitize_fault_flags(vma, &flags);
6481 	if (ret)
6482 		goto out;
6483 
6484 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6485 					    flags & FAULT_FLAG_INSTRUCTION,
6486 					    flags & FAULT_FLAG_REMOTE)) {
6487 		ret = VM_FAULT_SIGSEGV;
6488 		goto out;
6489 	}
6490 
6491 	is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6492 
6493 	/*
6494 	 * Enable the memcg OOM handling for faults triggered in user
6495 	 * space.  Kernel faults are handled more gracefully.
6496 	 */
6497 	if (flags & FAULT_FLAG_USER)
6498 		mem_cgroup_enter_user_fault();
6499 
6500 	lru_gen_enter_fault(vma);
6501 
6502 	if (unlikely(is_vm_hugetlb_page(vma)))
6503 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6504 	else
6505 		ret = __handle_mm_fault(vma, address, flags);
6506 
6507 	/*
6508 	 * Warning: It is no longer safe to dereference vma-> after this point,
6509 	 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6510 	 * vma might be destroyed from underneath us.
6511 	 */
6512 
6513 	lru_gen_exit_fault();
6514 
6515 	/* If the mapping is droppable, then errors due to OOM aren't fatal. */
6516 	if (is_droppable)
6517 		ret &= ~VM_FAULT_OOM;
6518 
6519 	if (flags & FAULT_FLAG_USER) {
6520 		mem_cgroup_exit_user_fault();
6521 		/*
6522 		 * The task may have entered a memcg OOM situation but
6523 		 * if the allocation error was handled gracefully (no
6524 		 * VM_FAULT_OOM), there is no need to kill anything.
6525 		 * Just clean up the OOM state peacefully.
6526 		 */
6527 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6528 			mem_cgroup_oom_synchronize(false);
6529 	}
6530 out:
6531 	mm_account_fault(mm, regs, address, flags, ret);
6532 
6533 	return ret;
6534 }
6535 EXPORT_SYMBOL_GPL(handle_mm_fault);
6536 
6537 #ifndef __PAGETABLE_P4D_FOLDED
6538 /*
6539  * Allocate p4d page table.
6540  * We've already handled the fast-path in-line.
6541  */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)6542 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6543 {
6544 	p4d_t *new = p4d_alloc_one(mm, address);
6545 	if (!new)
6546 		return -ENOMEM;
6547 
6548 	spin_lock(&mm->page_table_lock);
6549 	if (pgd_present(*pgd)) {	/* Another has populated it */
6550 		p4d_free(mm, new);
6551 	} else {
6552 		smp_wmb(); /* See comment in pmd_install() */
6553 		pgd_populate(mm, pgd, new);
6554 	}
6555 	spin_unlock(&mm->page_table_lock);
6556 	return 0;
6557 }
6558 #endif /* __PAGETABLE_P4D_FOLDED */
6559 
6560 #ifndef __PAGETABLE_PUD_FOLDED
6561 /*
6562  * Allocate page upper directory.
6563  * We've already handled the fast-path in-line.
6564  */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)6565 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6566 {
6567 	pud_t *new = pud_alloc_one(mm, address);
6568 	if (!new)
6569 		return -ENOMEM;
6570 
6571 	spin_lock(&mm->page_table_lock);
6572 	if (!p4d_present(*p4d)) {
6573 		mm_inc_nr_puds(mm);
6574 		smp_wmb(); /* See comment in pmd_install() */
6575 		p4d_populate(mm, p4d, new);
6576 	} else	/* Another has populated it */
6577 		pud_free(mm, new);
6578 	spin_unlock(&mm->page_table_lock);
6579 	return 0;
6580 }
6581 #endif /* __PAGETABLE_PUD_FOLDED */
6582 
6583 #ifndef __PAGETABLE_PMD_FOLDED
6584 /*
6585  * Allocate page middle directory.
6586  * We've already handled the fast-path in-line.
6587  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)6588 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6589 {
6590 	spinlock_t *ptl;
6591 	pmd_t *new = pmd_alloc_one(mm, address);
6592 	if (!new)
6593 		return -ENOMEM;
6594 
6595 	ptl = pud_lock(mm, pud);
6596 	if (!pud_present(*pud)) {
6597 		mm_inc_nr_pmds(mm);
6598 		smp_wmb(); /* See comment in pmd_install() */
6599 		pud_populate(mm, pud, new);
6600 	} else {	/* Another has populated it */
6601 		pmd_free(mm, new);
6602 	}
6603 	spin_unlock(ptl);
6604 	return 0;
6605 }
6606 #endif /* __PAGETABLE_PMD_FOLDED */
6607 
pfnmap_args_setup(struct follow_pfnmap_args * args,spinlock_t * lock,pte_t * ptep,pgprot_t pgprot,unsigned long pfn_base,unsigned long addr_mask,bool writable,bool special)6608 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6609 				     spinlock_t *lock, pte_t *ptep,
6610 				     pgprot_t pgprot, unsigned long pfn_base,
6611 				     unsigned long addr_mask, bool writable,
6612 				     bool special)
6613 {
6614 	args->lock = lock;
6615 	args->ptep = ptep;
6616 	args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6617 	args->addr_mask = addr_mask;
6618 	args->pgprot = pgprot;
6619 	args->writable = writable;
6620 	args->special = special;
6621 }
6622 
pfnmap_lockdep_assert(struct vm_area_struct * vma)6623 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6624 {
6625 #ifdef CONFIG_LOCKDEP
6626 	struct file *file = vma->vm_file;
6627 	struct address_space *mapping = file ? file->f_mapping : NULL;
6628 
6629 	if (mapping)
6630 		lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6631 			       lockdep_is_held(&vma->vm_mm->mmap_lock));
6632 	else
6633 		lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6634 #endif
6635 }
6636 
6637 /**
6638  * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6639  * @args: Pointer to struct @follow_pfnmap_args
6640  *
6641  * The caller needs to setup args->vma and args->address to point to the
6642  * virtual address as the target of such lookup.  On a successful return,
6643  * the results will be put into other output fields.
6644  *
6645  * After the caller finished using the fields, the caller must invoke
6646  * another follow_pfnmap_end() to proper releases the locks and resources
6647  * of such look up request.
6648  *
6649  * During the start() and end() calls, the results in @args will be valid
6650  * as proper locks will be held.  After the end() is called, all the fields
6651  * in @follow_pfnmap_args will be invalid to be further accessed.  Further
6652  * use of such information after end() may require proper synchronizations
6653  * by the caller with page table updates, otherwise it can create a
6654  * security bug.
6655  *
6656  * If the PTE maps a refcounted page, callers are responsible to protect
6657  * against invalidation with MMU notifiers; otherwise access to the PFN at
6658  * a later point in time can trigger use-after-free.
6659  *
6660  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6661  * should be taken for read, and the mmap semaphore cannot be released
6662  * before the end() is invoked.
6663  *
6664  * This function must not be used to modify PTE content.
6665  *
6666  * Return: zero on success, negative otherwise.
6667  */
follow_pfnmap_start(struct follow_pfnmap_args * args)6668 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6669 {
6670 	struct vm_area_struct *vma = args->vma;
6671 	unsigned long address = args->address;
6672 	struct mm_struct *mm = vma->vm_mm;
6673 	spinlock_t *lock;
6674 	pgd_t *pgdp;
6675 	p4d_t *p4dp, p4d;
6676 	pud_t *pudp, pud;
6677 	pmd_t *pmdp, pmd;
6678 	pte_t *ptep, pte;
6679 
6680 	pfnmap_lockdep_assert(vma);
6681 
6682 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6683 		goto out;
6684 
6685 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6686 		goto out;
6687 retry:
6688 	pgdp = pgd_offset(mm, address);
6689 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6690 		goto out;
6691 
6692 	p4dp = p4d_offset(pgdp, address);
6693 	p4d = READ_ONCE(*p4dp);
6694 	if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6695 		goto out;
6696 
6697 	pudp = pud_offset(p4dp, address);
6698 	pud = READ_ONCE(*pudp);
6699 	if (pud_none(pud))
6700 		goto out;
6701 	if (pud_leaf(pud)) {
6702 		lock = pud_lock(mm, pudp);
6703 		if (!unlikely(pud_leaf(pud))) {
6704 			spin_unlock(lock);
6705 			goto retry;
6706 		}
6707 		pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6708 				  pud_pfn(pud), PUD_MASK, pud_write(pud),
6709 				  pud_special(pud));
6710 		return 0;
6711 	}
6712 
6713 	pmdp = pmd_offset(pudp, address);
6714 	pmd = pmdp_get_lockless(pmdp);
6715 	if (pmd_leaf(pmd)) {
6716 		lock = pmd_lock(mm, pmdp);
6717 		if (!unlikely(pmd_leaf(pmd))) {
6718 			spin_unlock(lock);
6719 			goto retry;
6720 		}
6721 		pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6722 				  pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6723 				  pmd_special(pmd));
6724 		return 0;
6725 	}
6726 
6727 	ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6728 	if (!ptep)
6729 		goto out;
6730 	pte = ptep_get(ptep);
6731 	if (!pte_present(pte))
6732 		goto unlock;
6733 	pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6734 			  pte_pfn(pte), PAGE_MASK, pte_write(pte),
6735 			  pte_special(pte));
6736 	return 0;
6737 unlock:
6738 	pte_unmap_unlock(ptep, lock);
6739 out:
6740 	return -EINVAL;
6741 }
6742 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6743 
6744 /**
6745  * follow_pfnmap_end(): End a follow_pfnmap_start() process
6746  * @args: Pointer to struct @follow_pfnmap_args
6747  *
6748  * Must be used in pair of follow_pfnmap_start().  See the start() function
6749  * above for more information.
6750  */
follow_pfnmap_end(struct follow_pfnmap_args * args)6751 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6752 {
6753 	if (args->lock)
6754 		spin_unlock(args->lock);
6755 	if (args->ptep)
6756 		pte_unmap(args->ptep);
6757 }
6758 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6759 
6760 #ifdef CONFIG_HAVE_IOREMAP_PROT
6761 /**
6762  * generic_access_phys - generic implementation for iomem mmap access
6763  * @vma: the vma to access
6764  * @addr: userspace address, not relative offset within @vma
6765  * @buf: buffer to read/write
6766  * @len: length of transfer
6767  * @write: set to FOLL_WRITE when writing, otherwise reading
6768  *
6769  * This is a generic implementation for &vm_operations_struct.access for an
6770  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6771  * not page based.
6772  */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)6773 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6774 			void *buf, int len, int write)
6775 {
6776 	resource_size_t phys_addr;
6777 	pgprot_t prot = __pgprot(0);
6778 	void __iomem *maddr;
6779 	int offset = offset_in_page(addr);
6780 	int ret = -EINVAL;
6781 	bool writable;
6782 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6783 
6784 retry:
6785 	if (follow_pfnmap_start(&args))
6786 		return -EINVAL;
6787 	prot = args.pgprot;
6788 	phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6789 	writable = args.writable;
6790 	follow_pfnmap_end(&args);
6791 
6792 	if ((write & FOLL_WRITE) && !writable)
6793 		return -EINVAL;
6794 
6795 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6796 	if (!maddr)
6797 		return -ENOMEM;
6798 
6799 	if (follow_pfnmap_start(&args))
6800 		goto out_unmap;
6801 
6802 	if ((pgprot_val(prot) != pgprot_val(args.pgprot)) ||
6803 	    (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6804 	    (writable != args.writable)) {
6805 		follow_pfnmap_end(&args);
6806 		iounmap(maddr);
6807 		goto retry;
6808 	}
6809 
6810 	if (write)
6811 		memcpy_toio(maddr + offset, buf, len);
6812 	else
6813 		memcpy_fromio(buf, maddr + offset, len);
6814 	ret = len;
6815 	follow_pfnmap_end(&args);
6816 out_unmap:
6817 	iounmap(maddr);
6818 
6819 	return ret;
6820 }
6821 EXPORT_SYMBOL_GPL(generic_access_phys);
6822 #endif
6823 
6824 /*
6825  * Access another process' address space as given in mm.
6826  */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6827 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6828 			      void *buf, int len, unsigned int gup_flags)
6829 {
6830 	void *old_buf = buf;
6831 	int write = gup_flags & FOLL_WRITE;
6832 
6833 	if (mmap_read_lock_killable(mm))
6834 		return 0;
6835 
6836 	/* Untag the address before looking up the VMA */
6837 	addr = untagged_addr_remote(mm, addr);
6838 
6839 	/* Avoid triggering the temporary warning in __get_user_pages */
6840 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6841 		return 0;
6842 
6843 	/* ignore errors, just check how much was successfully transferred */
6844 	while (len) {
6845 		int bytes, offset;
6846 		void *maddr;
6847 		struct folio *folio;
6848 		struct vm_area_struct *vma = NULL;
6849 		struct page *page = get_user_page_vma_remote(mm, addr,
6850 							     gup_flags, &vma);
6851 
6852 		if (IS_ERR(page)) {
6853 			/* We might need to expand the stack to access it */
6854 			vma = vma_lookup(mm, addr);
6855 			if (!vma) {
6856 				vma = expand_stack(mm, addr);
6857 
6858 				/* mmap_lock was dropped on failure */
6859 				if (!vma)
6860 					return buf - old_buf;
6861 
6862 				/* Try again if stack expansion worked */
6863 				continue;
6864 			}
6865 
6866 			/*
6867 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6868 			 * we can access using slightly different code.
6869 			 */
6870 			bytes = 0;
6871 #ifdef CONFIG_HAVE_IOREMAP_PROT
6872 			if (vma->vm_ops && vma->vm_ops->access)
6873 				bytes = vma->vm_ops->access(vma, addr, buf,
6874 							    len, write);
6875 #endif
6876 			if (bytes <= 0)
6877 				break;
6878 		} else {
6879 			folio = page_folio(page);
6880 			bytes = len;
6881 			offset = addr & (PAGE_SIZE-1);
6882 			if (bytes > PAGE_SIZE-offset)
6883 				bytes = PAGE_SIZE-offset;
6884 
6885 			maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
6886 			if (write) {
6887 				copy_to_user_page(vma, page, addr,
6888 						  maddr + offset, buf, bytes);
6889 				folio_mark_dirty_lock(folio);
6890 			} else {
6891 				copy_from_user_page(vma, page, addr,
6892 						    buf, maddr + offset, bytes);
6893 			}
6894 			folio_release_kmap(folio, maddr);
6895 		}
6896 		len -= bytes;
6897 		buf += bytes;
6898 		addr += bytes;
6899 	}
6900 	mmap_read_unlock(mm);
6901 
6902 	return buf - old_buf;
6903 }
6904 
6905 /**
6906  * access_remote_vm - access another process' address space
6907  * @mm:		the mm_struct of the target address space
6908  * @addr:	start address to access
6909  * @buf:	source or destination buffer
6910  * @len:	number of bytes to transfer
6911  * @gup_flags:	flags modifying lookup behaviour
6912  *
6913  * The caller must hold a reference on @mm.
6914  *
6915  * Return: number of bytes copied from source to destination.
6916  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6917 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6918 		void *buf, int len, unsigned int gup_flags)
6919 {
6920 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6921 }
6922 
6923 /*
6924  * Access another process' address space.
6925  * Source/target buffer must be kernel space,
6926  * Do not walk the page table directly, use get_user_pages
6927  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)6928 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6929 		void *buf, int len, unsigned int gup_flags)
6930 {
6931 	struct mm_struct *mm;
6932 	int ret;
6933 
6934 	mm = get_task_mm(tsk);
6935 	if (!mm)
6936 		return 0;
6937 
6938 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6939 
6940 	mmput(mm);
6941 
6942 	return ret;
6943 }
6944 EXPORT_SYMBOL_GPL(access_process_vm);
6945 
6946 #ifdef CONFIG_BPF_SYSCALL
6947 /*
6948  * Copy a string from another process's address space as given in mm.
6949  * If there is any error return -EFAULT.
6950  */
__copy_remote_vm_str(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6951 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
6952 				void *buf, int len, unsigned int gup_flags)
6953 {
6954 	void *old_buf = buf;
6955 	int err = 0;
6956 
6957 	*(char *)buf = '\0';
6958 
6959 	if (mmap_read_lock_killable(mm))
6960 		return -EFAULT;
6961 
6962 	addr = untagged_addr_remote(mm, addr);
6963 
6964 	/* Avoid triggering the temporary warning in __get_user_pages */
6965 	if (!vma_lookup(mm, addr)) {
6966 		err = -EFAULT;
6967 		goto out;
6968 	}
6969 
6970 	while (len) {
6971 		int bytes, offset, retval;
6972 		void *maddr;
6973 		struct folio *folio;
6974 		struct page *page;
6975 		struct vm_area_struct *vma = NULL;
6976 
6977 		page = get_user_page_vma_remote(mm, addr, gup_flags, &vma);
6978 		if (IS_ERR(page)) {
6979 			/*
6980 			 * Treat as a total failure for now until we decide how
6981 			 * to handle the CONFIG_HAVE_IOREMAP_PROT case and
6982 			 * stack expansion.
6983 			 */
6984 			*(char *)buf = '\0';
6985 			err = -EFAULT;
6986 			goto out;
6987 		}
6988 
6989 		folio = page_folio(page);
6990 		bytes = len;
6991 		offset = addr & (PAGE_SIZE - 1);
6992 		if (bytes > PAGE_SIZE - offset)
6993 			bytes = PAGE_SIZE - offset;
6994 
6995 		maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
6996 		retval = strscpy(buf, maddr + offset, bytes);
6997 		if (retval >= 0) {
6998 			/* Found the end of the string */
6999 			buf += retval;
7000 			folio_release_kmap(folio, maddr);
7001 			break;
7002 		}
7003 
7004 		buf += bytes - 1;
7005 		/*
7006 		 * Because strscpy always NUL terminates we need to
7007 		 * copy the last byte in the page if we are going to
7008 		 * load more pages
7009 		 */
7010 		if (bytes != len) {
7011 			addr += bytes - 1;
7012 			copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1);
7013 			buf += 1;
7014 			addr += 1;
7015 		}
7016 		len -= bytes;
7017 
7018 		folio_release_kmap(folio, maddr);
7019 	}
7020 
7021 out:
7022 	mmap_read_unlock(mm);
7023 	if (err)
7024 		return err;
7025 	return buf - old_buf;
7026 }
7027 
7028 /**
7029  * copy_remote_vm_str - copy a string from another process's address space.
7030  * @tsk:	the task of the target address space
7031  * @addr:	start address to read from
7032  * @buf:	destination buffer
7033  * @len:	number of bytes to copy
7034  * @gup_flags:	flags modifying lookup behaviour
7035  *
7036  * The caller must hold a reference on @mm.
7037  *
7038  * Return: number of bytes copied from @addr (source) to @buf (destination);
7039  * not including the trailing NUL. Always guaranteed to leave NUL-terminated
7040  * buffer. On any error, return -EFAULT.
7041  */
copy_remote_vm_str(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)7042 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
7043 		       void *buf, int len, unsigned int gup_flags)
7044 {
7045 	struct mm_struct *mm;
7046 	int ret;
7047 
7048 	if (unlikely(len == 0))
7049 		return 0;
7050 
7051 	mm = get_task_mm(tsk);
7052 	if (!mm) {
7053 		*(char *)buf = '\0';
7054 		return -EFAULT;
7055 	}
7056 
7057 	ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags);
7058 
7059 	mmput(mm);
7060 
7061 	return ret;
7062 }
7063 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
7064 #endif /* CONFIG_BPF_SYSCALL */
7065 
7066 /*
7067  * Print the name of a VMA.
7068  */
print_vma_addr(char * prefix,unsigned long ip)7069 void print_vma_addr(char *prefix, unsigned long ip)
7070 {
7071 	struct mm_struct *mm = current->mm;
7072 	struct vm_area_struct *vma;
7073 
7074 	/*
7075 	 * we might be running from an atomic context so we cannot sleep
7076 	 */
7077 	if (!mmap_read_trylock(mm))
7078 		return;
7079 
7080 	vma = vma_lookup(mm, ip);
7081 	if (vma && vma->vm_file) {
7082 		struct file *f = vma->vm_file;
7083 		ip -= vma->vm_start;
7084 		ip += vma->vm_pgoff << PAGE_SHIFT;
7085 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
7086 				vma->vm_start,
7087 				vma->vm_end - vma->vm_start);
7088 	}
7089 	mmap_read_unlock(mm);
7090 }
7091 
7092 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)7093 void __might_fault(const char *file, int line)
7094 {
7095 	if (pagefault_disabled())
7096 		return;
7097 	__might_sleep(file, line);
7098 	if (current->mm)
7099 		might_lock_read(&current->mm->mmap_lock);
7100 }
7101 EXPORT_SYMBOL(__might_fault);
7102 #endif
7103 
7104 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
7105 /*
7106  * Process all subpages of the specified huge page with the specified
7107  * operation.  The target subpage will be processed last to keep its
7108  * cache lines hot.
7109  */
process_huge_page(unsigned long addr_hint,unsigned int nr_pages,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)7110 static inline int process_huge_page(
7111 	unsigned long addr_hint, unsigned int nr_pages,
7112 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
7113 	void *arg)
7114 {
7115 	int i, n, base, l, ret;
7116 	unsigned long addr = addr_hint &
7117 		~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
7118 
7119 	/* Process target subpage last to keep its cache lines hot */
7120 	might_sleep();
7121 	n = (addr_hint - addr) / PAGE_SIZE;
7122 	if (2 * n <= nr_pages) {
7123 		/* If target subpage in first half of huge page */
7124 		base = 0;
7125 		l = n;
7126 		/* Process subpages at the end of huge page */
7127 		for (i = nr_pages - 1; i >= 2 * n; i--) {
7128 			cond_resched();
7129 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7130 			if (ret)
7131 				return ret;
7132 		}
7133 	} else {
7134 		/* If target subpage in second half of huge page */
7135 		base = nr_pages - 2 * (nr_pages - n);
7136 		l = nr_pages - n;
7137 		/* Process subpages at the begin of huge page */
7138 		for (i = 0; i < base; i++) {
7139 			cond_resched();
7140 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7141 			if (ret)
7142 				return ret;
7143 		}
7144 	}
7145 	/*
7146 	 * Process remaining subpages in left-right-left-right pattern
7147 	 * towards the target subpage
7148 	 */
7149 	for (i = 0; i < l; i++) {
7150 		int left_idx = base + i;
7151 		int right_idx = base + 2 * l - 1 - i;
7152 
7153 		cond_resched();
7154 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
7155 		if (ret)
7156 			return ret;
7157 		cond_resched();
7158 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
7159 		if (ret)
7160 			return ret;
7161 	}
7162 	return 0;
7163 }
7164 
clear_gigantic_page(struct folio * folio,unsigned long addr_hint,unsigned int nr_pages)7165 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
7166 				unsigned int nr_pages)
7167 {
7168 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
7169 	int i;
7170 
7171 	might_sleep();
7172 	for (i = 0; i < nr_pages; i++) {
7173 		cond_resched();
7174 		clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
7175 	}
7176 }
7177 
clear_subpage(unsigned long addr,int idx,void * arg)7178 static int clear_subpage(unsigned long addr, int idx, void *arg)
7179 {
7180 	struct folio *folio = arg;
7181 
7182 	clear_user_highpage(folio_page(folio, idx), addr);
7183 	return 0;
7184 }
7185 
7186 /**
7187  * folio_zero_user - Zero a folio which will be mapped to userspace.
7188  * @folio: The folio to zero.
7189  * @addr_hint: The address will be accessed or the base address if uncelar.
7190  */
folio_zero_user(struct folio * folio,unsigned long addr_hint)7191 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
7192 {
7193 	unsigned int nr_pages = folio_nr_pages(folio);
7194 
7195 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7196 		clear_gigantic_page(folio, addr_hint, nr_pages);
7197 	else
7198 		process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
7199 }
7200 
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int nr_pages)7201 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
7202 				   unsigned long addr_hint,
7203 				   struct vm_area_struct *vma,
7204 				   unsigned int nr_pages)
7205 {
7206 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
7207 	struct page *dst_page;
7208 	struct page *src_page;
7209 	int i;
7210 
7211 	for (i = 0; i < nr_pages; i++) {
7212 		dst_page = folio_page(dst, i);
7213 		src_page = folio_page(src, i);
7214 
7215 		cond_resched();
7216 		if (copy_mc_user_highpage(dst_page, src_page,
7217 					  addr + i*PAGE_SIZE, vma))
7218 			return -EHWPOISON;
7219 	}
7220 	return 0;
7221 }
7222 
7223 struct copy_subpage_arg {
7224 	struct folio *dst;
7225 	struct folio *src;
7226 	struct vm_area_struct *vma;
7227 };
7228 
copy_subpage(unsigned long addr,int idx,void * arg)7229 static int copy_subpage(unsigned long addr, int idx, void *arg)
7230 {
7231 	struct copy_subpage_arg *copy_arg = arg;
7232 	struct page *dst = folio_page(copy_arg->dst, idx);
7233 	struct page *src = folio_page(copy_arg->src, idx);
7234 
7235 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
7236 		return -EHWPOISON;
7237 	return 0;
7238 }
7239 
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)7240 int copy_user_large_folio(struct folio *dst, struct folio *src,
7241 			  unsigned long addr_hint, struct vm_area_struct *vma)
7242 {
7243 	unsigned int nr_pages = folio_nr_pages(dst);
7244 	struct copy_subpage_arg arg = {
7245 		.dst = dst,
7246 		.src = src,
7247 		.vma = vma,
7248 	};
7249 
7250 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7251 		return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7252 
7253 	return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7254 }
7255 
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)7256 long copy_folio_from_user(struct folio *dst_folio,
7257 			   const void __user *usr_src,
7258 			   bool allow_pagefault)
7259 {
7260 	void *kaddr;
7261 	unsigned long i, rc = 0;
7262 	unsigned int nr_pages = folio_nr_pages(dst_folio);
7263 	unsigned long ret_val = nr_pages * PAGE_SIZE;
7264 	struct page *subpage;
7265 
7266 	for (i = 0; i < nr_pages; i++) {
7267 		subpage = folio_page(dst_folio, i);
7268 		kaddr = kmap_local_page(subpage);
7269 		if (!allow_pagefault)
7270 			pagefault_disable();
7271 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7272 		if (!allow_pagefault)
7273 			pagefault_enable();
7274 		kunmap_local(kaddr);
7275 
7276 		ret_val -= (PAGE_SIZE - rc);
7277 		if (rc)
7278 			break;
7279 
7280 		flush_dcache_page(subpage);
7281 
7282 		cond_resched();
7283 	}
7284 	return ret_val;
7285 }
7286 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7287 
7288 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7289 
7290 static struct kmem_cache *page_ptl_cachep;
7291 
ptlock_cache_init(void)7292 void __init ptlock_cache_init(void)
7293 {
7294 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7295 			SLAB_PANIC, NULL);
7296 }
7297 
ptlock_alloc(struct ptdesc * ptdesc)7298 bool ptlock_alloc(struct ptdesc *ptdesc)
7299 {
7300 	spinlock_t *ptl;
7301 
7302 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7303 	if (!ptl)
7304 		return false;
7305 	ptdesc->ptl = ptl;
7306 	return true;
7307 }
7308 
ptlock_free(struct ptdesc * ptdesc)7309 void ptlock_free(struct ptdesc *ptdesc)
7310 {
7311 	if (ptdesc->ptl)
7312 		kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7313 }
7314 #endif
7315 
vma_pgtable_walk_begin(struct vm_area_struct * vma)7316 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7317 {
7318 	if (is_vm_hugetlb_page(vma))
7319 		hugetlb_vma_lock_read(vma);
7320 }
7321 
vma_pgtable_walk_end(struct vm_area_struct * vma)7322 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7323 {
7324 	if (is_vm_hugetlb_page(vma))
7325 		hugetlb_vma_unlock_read(vma);
7326 }
7327