xref: /linux/mm/memcontrol.c (revision 78700c0a2102dbe0fb35b6c146a639dc4622036f)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_zone {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree_per_node {
141 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143 
144 struct mem_cgroup_tree {
145 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147 
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149 
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 	struct list_head list;
153 	struct eventfd_ctx *eventfd;
154 };
155 
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160 	/*
161 	 * memcg which the event belongs to.
162 	 */
163 	struct mem_cgroup *memcg;
164 	/*
165 	 * eventfd to signal userspace about the event.
166 	 */
167 	struct eventfd_ctx *eventfd;
168 	/*
169 	 * Each of these stored in a list by the cgroup.
170 	 */
171 	struct list_head list;
172 	/*
173 	 * register_event() callback will be used to add new userspace
174 	 * waiter for changes related to this event.  Use eventfd_signal()
175 	 * on eventfd to send notification to userspace.
176 	 */
177 	int (*register_event)(struct mem_cgroup *memcg,
178 			      struct eventfd_ctx *eventfd, const char *args);
179 	/*
180 	 * unregister_event() callback will be called when userspace closes
181 	 * the eventfd or on cgroup removing.  This callback must be set,
182 	 * if you want provide notification functionality.
183 	 */
184 	void (*unregister_event)(struct mem_cgroup *memcg,
185 				 struct eventfd_ctx *eventfd);
186 	/*
187 	 * All fields below needed to unregister event when
188 	 * userspace closes eventfd.
189 	 */
190 	poll_table pt;
191 	wait_queue_head_t *wqh;
192 	wait_queue_t wait;
193 	struct work_struct remove;
194 };
195 
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198 
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON	0x1U
204 #define MOVE_FILE	0x2U
205 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206 
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 	spinlock_t	  lock; /* for from, to */
210 	struct mm_struct  *mm;
211 	struct mem_cgroup *from;
212 	struct mem_cgroup *to;
213 	unsigned long flags;
214 	unsigned long precharge;
215 	unsigned long moved_charge;
216 	unsigned long moved_swap;
217 	struct task_struct *moving_task;	/* a task moving charges */
218 	wait_queue_head_t waitq;		/* a waitq for other context */
219 } mc = {
220 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223 
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230 
231 enum charge_type {
232 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 	MEM_CGROUP_CHARGE_TYPE_ANON,
234 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
235 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 	NR_CHARGE_TYPE,
237 };
238 
239 /* for encoding cft->private value on file */
240 enum res_type {
241 	_MEM,
242 	_MEMSWAP,
243 	_OOM_TYPE,
244 	_KMEM,
245 	_TCP,
246 };
247 
248 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)	((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL		(0)
253 
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 	if (!memcg)
258 		memcg = root_mem_cgroup;
259 	return &memcg->vmpressure;
260 }
261 
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266 
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 	return (memcg == root_mem_cgroup);
270 }
271 
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286 
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289 
290 void memcg_get_cache_ids(void)
291 {
292 	down_read(&memcg_cache_ids_sem);
293 }
294 
295 void memcg_put_cache_ids(void)
296 {
297 	up_read(&memcg_cache_ids_sem);
298 }
299 
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314 
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323 
324 #endif /* !CONFIG_SLOB */
325 
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329 	int nid = zone_to_nid(zone);
330 	int zid = zone_idx(zone);
331 
332 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334 
335 /**
336  * mem_cgroup_css_from_page - css of the memcg associated with a page
337  * @page: page of interest
338  *
339  * If memcg is bound to the default hierarchy, css of the memcg associated
340  * with @page is returned.  The returned css remains associated with @page
341  * until it is released.
342  *
343  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344  * is returned.
345  */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348 	struct mem_cgroup *memcg;
349 
350 	memcg = page->mem_cgroup;
351 
352 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 		memcg = root_mem_cgroup;
354 
355 	return &memcg->css;
356 }
357 
358 /**
359  * page_cgroup_ino - return inode number of the memcg a page is charged to
360  * @page: the page
361  *
362  * Look up the closest online ancestor of the memory cgroup @page is charged to
363  * and return its inode number or 0 if @page is not charged to any cgroup. It
364  * is safe to call this function without holding a reference to @page.
365  *
366  * Note, this function is inherently racy, because there is nothing to prevent
367  * the cgroup inode from getting torn down and potentially reallocated a moment
368  * after page_cgroup_ino() returns, so it only should be used by callers that
369  * do not care (such as procfs interfaces).
370  */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373 	struct mem_cgroup *memcg;
374 	unsigned long ino = 0;
375 
376 	rcu_read_lock();
377 	memcg = READ_ONCE(page->mem_cgroup);
378 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 		memcg = parent_mem_cgroup(memcg);
380 	if (memcg)
381 		ino = cgroup_ino(memcg->css.cgroup);
382 	rcu_read_unlock();
383 	return ino;
384 }
385 
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389 	int nid = page_to_nid(page);
390 	int zid = page_zonenum(page);
391 
392 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394 
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400 
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404 	int nid = page_to_nid(page);
405 	int zid = page_zonenum(page);
406 
407 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409 
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 					 struct mem_cgroup_tree_per_zone *mctz,
412 					 unsigned long new_usage_in_excess)
413 {
414 	struct rb_node **p = &mctz->rb_root.rb_node;
415 	struct rb_node *parent = NULL;
416 	struct mem_cgroup_per_zone *mz_node;
417 
418 	if (mz->on_tree)
419 		return;
420 
421 	mz->usage_in_excess = new_usage_in_excess;
422 	if (!mz->usage_in_excess)
423 		return;
424 	while (*p) {
425 		parent = *p;
426 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 					tree_node);
428 		if (mz->usage_in_excess < mz_node->usage_in_excess)
429 			p = &(*p)->rb_left;
430 		/*
431 		 * We can't avoid mem cgroups that are over their soft
432 		 * limit by the same amount
433 		 */
434 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 			p = &(*p)->rb_right;
436 	}
437 	rb_link_node(&mz->tree_node, parent, p);
438 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 	mz->on_tree = true;
440 }
441 
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 					 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 	if (!mz->on_tree)
446 		return;
447 	rb_erase(&mz->tree_node, &mctz->rb_root);
448 	mz->on_tree = false;
449 }
450 
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 				       struct mem_cgroup_tree_per_zone *mctz)
453 {
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(&mctz->lock, flags);
457 	__mem_cgroup_remove_exceeded(mz, mctz);
458 	spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460 
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463 	unsigned long nr_pages = page_counter_read(&memcg->memory);
464 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 	unsigned long excess = 0;
466 
467 	if (nr_pages > soft_limit)
468 		excess = nr_pages - soft_limit;
469 
470 	return excess;
471 }
472 
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475 	unsigned long excess;
476 	struct mem_cgroup_per_zone *mz;
477 	struct mem_cgroup_tree_per_zone *mctz;
478 
479 	mctz = soft_limit_tree_from_page(page);
480 	/*
481 	 * Necessary to update all ancestors when hierarchy is used.
482 	 * because their event counter is not touched.
483 	 */
484 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 		mz = mem_cgroup_page_zoneinfo(memcg, page);
486 		excess = soft_limit_excess(memcg);
487 		/*
488 		 * We have to update the tree if mz is on RB-tree or
489 		 * mem is over its softlimit.
490 		 */
491 		if (excess || mz->on_tree) {
492 			unsigned long flags;
493 
494 			spin_lock_irqsave(&mctz->lock, flags);
495 			/* if on-tree, remove it */
496 			if (mz->on_tree)
497 				__mem_cgroup_remove_exceeded(mz, mctz);
498 			/*
499 			 * Insert again. mz->usage_in_excess will be updated.
500 			 * If excess is 0, no tree ops.
501 			 */
502 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
503 			spin_unlock_irqrestore(&mctz->lock, flags);
504 		}
505 	}
506 }
507 
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510 	struct mem_cgroup_tree_per_zone *mctz;
511 	struct mem_cgroup_per_zone *mz;
512 	int nid, zid;
513 
514 	for_each_node(nid) {
515 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 			mctz = soft_limit_tree_node_zone(nid, zid);
518 			mem_cgroup_remove_exceeded(mz, mctz);
519 		}
520 	}
521 }
522 
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526 	struct rb_node *rightmost = NULL;
527 	struct mem_cgroup_per_zone *mz;
528 
529 retry:
530 	mz = NULL;
531 	rightmost = rb_last(&mctz->rb_root);
532 	if (!rightmost)
533 		goto done;		/* Nothing to reclaim from */
534 
535 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 	/*
537 	 * Remove the node now but someone else can add it back,
538 	 * we will to add it back at the end of reclaim to its correct
539 	 * position in the tree.
540 	 */
541 	__mem_cgroup_remove_exceeded(mz, mctz);
542 	if (!soft_limit_excess(mz->memcg) ||
543 	    !css_tryget_online(&mz->memcg->css))
544 		goto retry;
545 done:
546 	return mz;
547 }
548 
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552 	struct mem_cgroup_per_zone *mz;
553 
554 	spin_lock_irq(&mctz->lock);
555 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 	spin_unlock_irq(&mctz->lock);
557 	return mz;
558 }
559 
560 /*
561  * Return page count for single (non recursive) @memcg.
562  *
563  * Implementation Note: reading percpu statistics for memcg.
564  *
565  * Both of vmstat[] and percpu_counter has threshold and do periodic
566  * synchronization to implement "quick" read. There are trade-off between
567  * reading cost and precision of value. Then, we may have a chance to implement
568  * a periodic synchronization of counter in memcg's counter.
569  *
570  * But this _read() function is used for user interface now. The user accounts
571  * memory usage by memory cgroup and he _always_ requires exact value because
572  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573  * have to visit all online cpus and make sum. So, for now, unnecessary
574  * synchronization is not implemented. (just implemented for cpu hotplug)
575  *
576  * If there are kernel internal actions which can make use of some not-exact
577  * value, and reading all cpu value can be performance bottleneck in some
578  * common workload, threshold and synchronization as vmstat[] should be
579  * implemented.
580  */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584 	long val = 0;
585 	int cpu;
586 
587 	/* Per-cpu values can be negative, use a signed accumulator */
588 	for_each_possible_cpu(cpu)
589 		val += per_cpu(memcg->stat->count[idx], cpu);
590 	/*
591 	 * Summing races with updates, so val may be negative.  Avoid exposing
592 	 * transient negative values.
593 	 */
594 	if (val < 0)
595 		val = 0;
596 	return val;
597 }
598 
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 					    enum mem_cgroup_events_index idx)
601 {
602 	unsigned long val = 0;
603 	int cpu;
604 
605 	for_each_possible_cpu(cpu)
606 		val += per_cpu(memcg->stat->events[idx], cpu);
607 	return val;
608 }
609 
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 					 struct page *page,
612 					 bool compound, int nr_pages)
613 {
614 	/*
615 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 	 * counted as CACHE even if it's on ANON LRU.
617 	 */
618 	if (PageAnon(page))
619 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 				nr_pages);
621 	else
622 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 				nr_pages);
624 
625 	if (compound) {
626 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 				nr_pages);
629 	}
630 
631 	/* pagein of a big page is an event. So, ignore page size */
632 	if (nr_pages > 0)
633 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 	else {
635 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 		nr_pages = -nr_pages; /* for event */
637 	}
638 
639 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641 
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 					   int nid, unsigned int lru_mask)
644 {
645 	unsigned long nr = 0;
646 	int zid;
647 
648 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649 
650 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 		struct mem_cgroup_per_zone *mz;
652 		enum lru_list lru;
653 
654 		for_each_lru(lru) {
655 			if (!(BIT(lru) & lru_mask))
656 				continue;
657 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 			nr += mz->lru_size[lru];
659 		}
660 	}
661 	return nr;
662 }
663 
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 			unsigned int lru_mask)
666 {
667 	unsigned long nr = 0;
668 	int nid;
669 
670 	for_each_node_state(nid, N_MEMORY)
671 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 	return nr;
673 }
674 
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 				       enum mem_cgroup_events_target target)
677 {
678 	unsigned long val, next;
679 
680 	val = __this_cpu_read(memcg->stat->nr_page_events);
681 	next = __this_cpu_read(memcg->stat->targets[target]);
682 	/* from time_after() in jiffies.h */
683 	if ((long)next - (long)val < 0) {
684 		switch (target) {
685 		case MEM_CGROUP_TARGET_THRESH:
686 			next = val + THRESHOLDS_EVENTS_TARGET;
687 			break;
688 		case MEM_CGROUP_TARGET_SOFTLIMIT:
689 			next = val + SOFTLIMIT_EVENTS_TARGET;
690 			break;
691 		case MEM_CGROUP_TARGET_NUMAINFO:
692 			next = val + NUMAINFO_EVENTS_TARGET;
693 			break;
694 		default:
695 			break;
696 		}
697 		__this_cpu_write(memcg->stat->targets[target], next);
698 		return true;
699 	}
700 	return false;
701 }
702 
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 	/* threshold event is triggered in finer grain than soft limit */
710 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 						MEM_CGROUP_TARGET_THRESH))) {
712 		bool do_softlimit;
713 		bool do_numainfo __maybe_unused;
714 
715 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 						MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 						MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 		mem_cgroup_threshold(memcg);
722 		if (unlikely(do_softlimit))
723 			mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 		if (unlikely(do_numainfo))
726 			atomic_inc(&memcg->numainfo_events);
727 #endif
728 	}
729 }
730 
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 	/*
734 	 * mm_update_next_owner() may clear mm->owner to NULL
735 	 * if it races with swapoff, page migration, etc.
736 	 * So this can be called with p == NULL.
737 	 */
738 	if (unlikely(!p))
739 		return NULL;
740 
741 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744 
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 	struct mem_cgroup *memcg = NULL;
748 
749 	rcu_read_lock();
750 	do {
751 		/*
752 		 * Page cache insertions can happen withou an
753 		 * actual mm context, e.g. during disk probing
754 		 * on boot, loopback IO, acct() writes etc.
755 		 */
756 		if (unlikely(!mm))
757 			memcg = root_mem_cgroup;
758 		else {
759 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 			if (unlikely(!memcg))
761 				memcg = root_mem_cgroup;
762 		}
763 	} while (!css_tryget_online(&memcg->css));
764 	rcu_read_unlock();
765 	return memcg;
766 }
767 
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 				   struct mem_cgroup *prev,
787 				   struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 	struct cgroup_subsys_state *css = NULL;
791 	struct mem_cgroup *memcg = NULL;
792 	struct mem_cgroup *pos = NULL;
793 
794 	if (mem_cgroup_disabled())
795 		return NULL;
796 
797 	if (!root)
798 		root = root_mem_cgroup;
799 
800 	if (prev && !reclaim)
801 		pos = prev;
802 
803 	if (!root->use_hierarchy && root != root_mem_cgroup) {
804 		if (prev)
805 			goto out;
806 		return root;
807 	}
808 
809 	rcu_read_lock();
810 
811 	if (reclaim) {
812 		struct mem_cgroup_per_zone *mz;
813 
814 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 		iter = &mz->iter[reclaim->priority];
816 
817 		if (prev && reclaim->generation != iter->generation)
818 			goto out_unlock;
819 
820 		while (1) {
821 			pos = READ_ONCE(iter->position);
822 			if (!pos || css_tryget(&pos->css))
823 				break;
824 			/*
825 			 * css reference reached zero, so iter->position will
826 			 * be cleared by ->css_released. However, we should not
827 			 * rely on this happening soon, because ->css_released
828 			 * is called from a work queue, and by busy-waiting we
829 			 * might block it. So we clear iter->position right
830 			 * away.
831 			 */
832 			(void)cmpxchg(&iter->position, pos, NULL);
833 		}
834 	}
835 
836 	if (pos)
837 		css = &pos->css;
838 
839 	for (;;) {
840 		css = css_next_descendant_pre(css, &root->css);
841 		if (!css) {
842 			/*
843 			 * Reclaimers share the hierarchy walk, and a
844 			 * new one might jump in right at the end of
845 			 * the hierarchy - make sure they see at least
846 			 * one group and restart from the beginning.
847 			 */
848 			if (!prev)
849 				continue;
850 			break;
851 		}
852 
853 		/*
854 		 * Verify the css and acquire a reference.  The root
855 		 * is provided by the caller, so we know it's alive
856 		 * and kicking, and don't take an extra reference.
857 		 */
858 		memcg = mem_cgroup_from_css(css);
859 
860 		if (css == &root->css)
861 			break;
862 
863 		if (css_tryget(css))
864 			break;
865 
866 		memcg = NULL;
867 	}
868 
869 	if (reclaim) {
870 		/*
871 		 * The position could have already been updated by a competing
872 		 * thread, so check that the value hasn't changed since we read
873 		 * it to avoid reclaiming from the same cgroup twice.
874 		 */
875 		(void)cmpxchg(&iter->position, pos, memcg);
876 
877 		if (pos)
878 			css_put(&pos->css);
879 
880 		if (!memcg)
881 			iter->generation++;
882 		else if (!prev)
883 			reclaim->generation = iter->generation;
884 	}
885 
886 out_unlock:
887 	rcu_read_unlock();
888 out:
889 	if (prev && prev != root)
890 		css_put(&prev->css);
891 
892 	return memcg;
893 }
894 
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 			   struct mem_cgroup *prev)
902 {
903 	if (!root)
904 		root = root_mem_cgroup;
905 	if (prev && prev != root)
906 		css_put(&prev->css);
907 }
908 
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 	struct mem_cgroup *memcg = dead_memcg;
912 	struct mem_cgroup_reclaim_iter *iter;
913 	struct mem_cgroup_per_zone *mz;
914 	int nid, zid;
915 	int i;
916 
917 	while ((memcg = parent_mem_cgroup(memcg))) {
918 		for_each_node(nid) {
919 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 				for (i = 0; i <= DEF_PRIORITY; i++) {
922 					iter = &mz->iter[i];
923 					cmpxchg(&iter->position,
924 						dead_memcg, NULL);
925 				}
926 			}
927 		}
928 	}
929 }
930 
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)		\
937 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938 	     iter != NULL;				\
939 	     iter = mem_cgroup_iter(root, iter, NULL))
940 
941 #define for_each_mem_cgroup(iter)			\
942 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943 	     iter != NULL;				\
944 	     iter = mem_cgroup_iter(NULL, iter, NULL))
945 
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 				      struct mem_cgroup *memcg)
957 {
958 	struct mem_cgroup_per_zone *mz;
959 	struct lruvec *lruvec;
960 
961 	if (mem_cgroup_disabled()) {
962 		lruvec = &zone->lruvec;
963 		goto out;
964 	}
965 
966 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 	lruvec = &mz->lruvec;
968 out:
969 	/*
970 	 * Since a node can be onlined after the mem_cgroup was created,
971 	 * we have to be prepared to initialize lruvec->zone here;
972 	 * and if offlined then reonlined, we need to reinitialize it.
973 	 */
974 	if (unlikely(lruvec->zone != zone))
975 		lruvec->zone = zone;
976 	return lruvec;
977 }
978 
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 	struct mem_cgroup_per_zone *mz;
991 	struct mem_cgroup *memcg;
992 	struct lruvec *lruvec;
993 
994 	if (mem_cgroup_disabled()) {
995 		lruvec = &zone->lruvec;
996 		goto out;
997 	}
998 
999 	memcg = page->mem_cgroup;
1000 	/*
1001 	 * Swapcache readahead pages are added to the LRU - and
1002 	 * possibly migrated - before they are charged.
1003 	 */
1004 	if (!memcg)
1005 		memcg = root_mem_cgroup;
1006 
1007 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 	lruvec = &mz->lruvec;
1009 out:
1010 	/*
1011 	 * Since a node can be onlined after the mem_cgroup was created,
1012 	 * we have to be prepared to initialize lruvec->zone here;
1013 	 * and if offlined then reonlined, we need to reinitialize it.
1014 	 */
1015 	if (unlikely(lruvec->zone != zone))
1016 		lruvec->zone = zone;
1017 	return lruvec;
1018 }
1019 
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called under lru_lock, just before a page is added
1027  * to or just after a page is removed from an lru list (that ordering being
1028  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029  */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 				int nr_pages)
1032 {
1033 	struct mem_cgroup_per_zone *mz;
1034 	unsigned long *lru_size;
1035 	long size;
1036 	bool empty;
1037 
1038 	__update_lru_size(lruvec, lru, nr_pages);
1039 
1040 	if (mem_cgroup_disabled())
1041 		return;
1042 
1043 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 	lru_size = mz->lru_size + lru;
1045 	empty = list_empty(lruvec->lists + lru);
1046 
1047 	if (nr_pages < 0)
1048 		*lru_size += nr_pages;
1049 
1050 	size = *lru_size;
1051 	if (WARN_ONCE(size < 0 || empty != !size,
1052 		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 		VM_BUG_ON(1);
1055 		*lru_size = 0;
1056 	}
1057 
1058 	if (nr_pages > 0)
1059 		*lru_size += nr_pages;
1060 }
1061 
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064 	struct mem_cgroup *task_memcg;
1065 	struct task_struct *p;
1066 	bool ret;
1067 
1068 	p = find_lock_task_mm(task);
1069 	if (p) {
1070 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 		task_unlock(p);
1072 	} else {
1073 		/*
1074 		 * All threads may have already detached their mm's, but the oom
1075 		 * killer still needs to detect if they have already been oom
1076 		 * killed to prevent needlessly killing additional tasks.
1077 		 */
1078 		rcu_read_lock();
1079 		task_memcg = mem_cgroup_from_task(task);
1080 		css_get(&task_memcg->css);
1081 		rcu_read_unlock();
1082 	}
1083 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 	css_put(&task_memcg->css);
1085 	return ret;
1086 }
1087 
1088 /**
1089  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090  * @memcg: the memory cgroup
1091  *
1092  * Returns the maximum amount of memory @mem can be charged with, in
1093  * pages.
1094  */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097 	unsigned long margin = 0;
1098 	unsigned long count;
1099 	unsigned long limit;
1100 
1101 	count = page_counter_read(&memcg->memory);
1102 	limit = READ_ONCE(memcg->memory.limit);
1103 	if (count < limit)
1104 		margin = limit - count;
1105 
1106 	if (do_memsw_account()) {
1107 		count = page_counter_read(&memcg->memsw);
1108 		limit = READ_ONCE(memcg->memsw.limit);
1109 		if (count <= limit)
1110 			margin = min(margin, limit - count);
1111 		else
1112 			margin = 0;
1113 	}
1114 
1115 	return margin;
1116 }
1117 
1118 /*
1119  * A routine for checking "mem" is under move_account() or not.
1120  *
1121  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1122  * moving cgroups. This is for waiting at high-memory pressure
1123  * caused by "move".
1124  */
1125 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1126 {
1127 	struct mem_cgroup *from;
1128 	struct mem_cgroup *to;
1129 	bool ret = false;
1130 	/*
1131 	 * Unlike task_move routines, we access mc.to, mc.from not under
1132 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1133 	 */
1134 	spin_lock(&mc.lock);
1135 	from = mc.from;
1136 	to = mc.to;
1137 	if (!from)
1138 		goto unlock;
1139 
1140 	ret = mem_cgroup_is_descendant(from, memcg) ||
1141 		mem_cgroup_is_descendant(to, memcg);
1142 unlock:
1143 	spin_unlock(&mc.lock);
1144 	return ret;
1145 }
1146 
1147 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1148 {
1149 	if (mc.moving_task && current != mc.moving_task) {
1150 		if (mem_cgroup_under_move(memcg)) {
1151 			DEFINE_WAIT(wait);
1152 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1153 			/* moving charge context might have finished. */
1154 			if (mc.moving_task)
1155 				schedule();
1156 			finish_wait(&mc.waitq, &wait);
1157 			return true;
1158 		}
1159 	}
1160 	return false;
1161 }
1162 
1163 #define K(x) ((x) << (PAGE_SHIFT-10))
1164 /**
1165  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1166  * @memcg: The memory cgroup that went over limit
1167  * @p: Task that is going to be killed
1168  *
1169  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1170  * enabled
1171  */
1172 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1173 {
1174 	struct mem_cgroup *iter;
1175 	unsigned int i;
1176 
1177 	rcu_read_lock();
1178 
1179 	if (p) {
1180 		pr_info("Task in ");
1181 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1182 		pr_cont(" killed as a result of limit of ");
1183 	} else {
1184 		pr_info("Memory limit reached of cgroup ");
1185 	}
1186 
1187 	pr_cont_cgroup_path(memcg->css.cgroup);
1188 	pr_cont("\n");
1189 
1190 	rcu_read_unlock();
1191 
1192 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1193 		K((u64)page_counter_read(&memcg->memory)),
1194 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1195 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1196 		K((u64)page_counter_read(&memcg->memsw)),
1197 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1198 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1199 		K((u64)page_counter_read(&memcg->kmem)),
1200 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1201 
1202 	for_each_mem_cgroup_tree(iter, memcg) {
1203 		pr_info("Memory cgroup stats for ");
1204 		pr_cont_cgroup_path(iter->css.cgroup);
1205 		pr_cont(":");
1206 
1207 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1208 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1209 				continue;
1210 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1211 				K(mem_cgroup_read_stat(iter, i)));
1212 		}
1213 
1214 		for (i = 0; i < NR_LRU_LISTS; i++)
1215 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1216 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1217 
1218 		pr_cont("\n");
1219 	}
1220 }
1221 
1222 /*
1223  * This function returns the number of memcg under hierarchy tree. Returns
1224  * 1(self count) if no children.
1225  */
1226 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1227 {
1228 	int num = 0;
1229 	struct mem_cgroup *iter;
1230 
1231 	for_each_mem_cgroup_tree(iter, memcg)
1232 		num++;
1233 	return num;
1234 }
1235 
1236 /*
1237  * Return the memory (and swap, if configured) limit for a memcg.
1238  */
1239 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1240 {
1241 	unsigned long limit;
1242 
1243 	limit = memcg->memory.limit;
1244 	if (mem_cgroup_swappiness(memcg)) {
1245 		unsigned long memsw_limit;
1246 		unsigned long swap_limit;
1247 
1248 		memsw_limit = memcg->memsw.limit;
1249 		swap_limit = memcg->swap.limit;
1250 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1251 		limit = min(limit + swap_limit, memsw_limit);
1252 	}
1253 	return limit;
1254 }
1255 
1256 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1257 				     int order)
1258 {
1259 	struct oom_control oc = {
1260 		.zonelist = NULL,
1261 		.nodemask = NULL,
1262 		.gfp_mask = gfp_mask,
1263 		.order = order,
1264 	};
1265 	struct mem_cgroup *iter;
1266 	unsigned long chosen_points = 0;
1267 	unsigned long totalpages;
1268 	unsigned int points = 0;
1269 	struct task_struct *chosen = NULL;
1270 
1271 	mutex_lock(&oom_lock);
1272 
1273 	/*
1274 	 * If current has a pending SIGKILL or is exiting, then automatically
1275 	 * select it.  The goal is to allow it to allocate so that it may
1276 	 * quickly exit and free its memory.
1277 	 */
1278 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1279 		mark_oom_victim(current);
1280 		try_oom_reaper(current);
1281 		goto unlock;
1282 	}
1283 
1284 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1285 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1286 	for_each_mem_cgroup_tree(iter, memcg) {
1287 		struct css_task_iter it;
1288 		struct task_struct *task;
1289 
1290 		css_task_iter_start(&iter->css, &it);
1291 		while ((task = css_task_iter_next(&it))) {
1292 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1293 			case OOM_SCAN_SELECT:
1294 				if (chosen)
1295 					put_task_struct(chosen);
1296 				chosen = task;
1297 				chosen_points = ULONG_MAX;
1298 				get_task_struct(chosen);
1299 				/* fall through */
1300 			case OOM_SCAN_CONTINUE:
1301 				continue;
1302 			case OOM_SCAN_ABORT:
1303 				css_task_iter_end(&it);
1304 				mem_cgroup_iter_break(memcg, iter);
1305 				if (chosen)
1306 					put_task_struct(chosen);
1307 				/* Set a dummy value to return "true". */
1308 				chosen = (void *) 1;
1309 				goto unlock;
1310 			case OOM_SCAN_OK:
1311 				break;
1312 			};
1313 			points = oom_badness(task, memcg, NULL, totalpages);
1314 			if (!points || points < chosen_points)
1315 				continue;
1316 			/* Prefer thread group leaders for display purposes */
1317 			if (points == chosen_points &&
1318 			    thread_group_leader(chosen))
1319 				continue;
1320 
1321 			if (chosen)
1322 				put_task_struct(chosen);
1323 			chosen = task;
1324 			chosen_points = points;
1325 			get_task_struct(chosen);
1326 		}
1327 		css_task_iter_end(&it);
1328 	}
1329 
1330 	if (chosen) {
1331 		points = chosen_points * 1000 / totalpages;
1332 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1333 				 "Memory cgroup out of memory");
1334 	}
1335 unlock:
1336 	mutex_unlock(&oom_lock);
1337 	return chosen;
1338 }
1339 
1340 #if MAX_NUMNODES > 1
1341 
1342 /**
1343  * test_mem_cgroup_node_reclaimable
1344  * @memcg: the target memcg
1345  * @nid: the node ID to be checked.
1346  * @noswap : specify true here if the user wants flle only information.
1347  *
1348  * This function returns whether the specified memcg contains any
1349  * reclaimable pages on a node. Returns true if there are any reclaimable
1350  * pages in the node.
1351  */
1352 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1353 		int nid, bool noswap)
1354 {
1355 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1356 		return true;
1357 	if (noswap || !total_swap_pages)
1358 		return false;
1359 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1360 		return true;
1361 	return false;
1362 
1363 }
1364 
1365 /*
1366  * Always updating the nodemask is not very good - even if we have an empty
1367  * list or the wrong list here, we can start from some node and traverse all
1368  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1369  *
1370  */
1371 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1372 {
1373 	int nid;
1374 	/*
1375 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1376 	 * pagein/pageout changes since the last update.
1377 	 */
1378 	if (!atomic_read(&memcg->numainfo_events))
1379 		return;
1380 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1381 		return;
1382 
1383 	/* make a nodemask where this memcg uses memory from */
1384 	memcg->scan_nodes = node_states[N_MEMORY];
1385 
1386 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1387 
1388 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1389 			node_clear(nid, memcg->scan_nodes);
1390 	}
1391 
1392 	atomic_set(&memcg->numainfo_events, 0);
1393 	atomic_set(&memcg->numainfo_updating, 0);
1394 }
1395 
1396 /*
1397  * Selecting a node where we start reclaim from. Because what we need is just
1398  * reducing usage counter, start from anywhere is O,K. Considering
1399  * memory reclaim from current node, there are pros. and cons.
1400  *
1401  * Freeing memory from current node means freeing memory from a node which
1402  * we'll use or we've used. So, it may make LRU bad. And if several threads
1403  * hit limits, it will see a contention on a node. But freeing from remote
1404  * node means more costs for memory reclaim because of memory latency.
1405  *
1406  * Now, we use round-robin. Better algorithm is welcomed.
1407  */
1408 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409 {
1410 	int node;
1411 
1412 	mem_cgroup_may_update_nodemask(memcg);
1413 	node = memcg->last_scanned_node;
1414 
1415 	node = next_node_in(node, memcg->scan_nodes);
1416 	/*
1417 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1418 	 * last time it really checked all the LRUs due to rate limiting.
1419 	 * Fallback to the current node in that case for simplicity.
1420 	 */
1421 	if (unlikely(node == MAX_NUMNODES))
1422 		node = numa_node_id();
1423 
1424 	memcg->last_scanned_node = node;
1425 	return node;
1426 }
1427 #else
1428 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1429 {
1430 	return 0;
1431 }
1432 #endif
1433 
1434 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1435 				   struct zone *zone,
1436 				   gfp_t gfp_mask,
1437 				   unsigned long *total_scanned)
1438 {
1439 	struct mem_cgroup *victim = NULL;
1440 	int total = 0;
1441 	int loop = 0;
1442 	unsigned long excess;
1443 	unsigned long nr_scanned;
1444 	struct mem_cgroup_reclaim_cookie reclaim = {
1445 		.zone = zone,
1446 		.priority = 0,
1447 	};
1448 
1449 	excess = soft_limit_excess(root_memcg);
1450 
1451 	while (1) {
1452 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1453 		if (!victim) {
1454 			loop++;
1455 			if (loop >= 2) {
1456 				/*
1457 				 * If we have not been able to reclaim
1458 				 * anything, it might because there are
1459 				 * no reclaimable pages under this hierarchy
1460 				 */
1461 				if (!total)
1462 					break;
1463 				/*
1464 				 * We want to do more targeted reclaim.
1465 				 * excess >> 2 is not to excessive so as to
1466 				 * reclaim too much, nor too less that we keep
1467 				 * coming back to reclaim from this cgroup
1468 				 */
1469 				if (total >= (excess >> 2) ||
1470 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1471 					break;
1472 			}
1473 			continue;
1474 		}
1475 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1476 						     zone, &nr_scanned);
1477 		*total_scanned += nr_scanned;
1478 		if (!soft_limit_excess(root_memcg))
1479 			break;
1480 	}
1481 	mem_cgroup_iter_break(root_memcg, victim);
1482 	return total;
1483 }
1484 
1485 #ifdef CONFIG_LOCKDEP
1486 static struct lockdep_map memcg_oom_lock_dep_map = {
1487 	.name = "memcg_oom_lock",
1488 };
1489 #endif
1490 
1491 static DEFINE_SPINLOCK(memcg_oom_lock);
1492 
1493 /*
1494  * Check OOM-Killer is already running under our hierarchy.
1495  * If someone is running, return false.
1496  */
1497 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1498 {
1499 	struct mem_cgroup *iter, *failed = NULL;
1500 
1501 	spin_lock(&memcg_oom_lock);
1502 
1503 	for_each_mem_cgroup_tree(iter, memcg) {
1504 		if (iter->oom_lock) {
1505 			/*
1506 			 * this subtree of our hierarchy is already locked
1507 			 * so we cannot give a lock.
1508 			 */
1509 			failed = iter;
1510 			mem_cgroup_iter_break(memcg, iter);
1511 			break;
1512 		} else
1513 			iter->oom_lock = true;
1514 	}
1515 
1516 	if (failed) {
1517 		/*
1518 		 * OK, we failed to lock the whole subtree so we have
1519 		 * to clean up what we set up to the failing subtree
1520 		 */
1521 		for_each_mem_cgroup_tree(iter, memcg) {
1522 			if (iter == failed) {
1523 				mem_cgroup_iter_break(memcg, iter);
1524 				break;
1525 			}
1526 			iter->oom_lock = false;
1527 		}
1528 	} else
1529 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1530 
1531 	spin_unlock(&memcg_oom_lock);
1532 
1533 	return !failed;
1534 }
1535 
1536 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1537 {
1538 	struct mem_cgroup *iter;
1539 
1540 	spin_lock(&memcg_oom_lock);
1541 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1542 	for_each_mem_cgroup_tree(iter, memcg)
1543 		iter->oom_lock = false;
1544 	spin_unlock(&memcg_oom_lock);
1545 }
1546 
1547 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1548 {
1549 	struct mem_cgroup *iter;
1550 
1551 	spin_lock(&memcg_oom_lock);
1552 	for_each_mem_cgroup_tree(iter, memcg)
1553 		iter->under_oom++;
1554 	spin_unlock(&memcg_oom_lock);
1555 }
1556 
1557 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1558 {
1559 	struct mem_cgroup *iter;
1560 
1561 	/*
1562 	 * When a new child is created while the hierarchy is under oom,
1563 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1564 	 */
1565 	spin_lock(&memcg_oom_lock);
1566 	for_each_mem_cgroup_tree(iter, memcg)
1567 		if (iter->under_oom > 0)
1568 			iter->under_oom--;
1569 	spin_unlock(&memcg_oom_lock);
1570 }
1571 
1572 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1573 
1574 struct oom_wait_info {
1575 	struct mem_cgroup *memcg;
1576 	wait_queue_t	wait;
1577 };
1578 
1579 static int memcg_oom_wake_function(wait_queue_t *wait,
1580 	unsigned mode, int sync, void *arg)
1581 {
1582 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1583 	struct mem_cgroup *oom_wait_memcg;
1584 	struct oom_wait_info *oom_wait_info;
1585 
1586 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1587 	oom_wait_memcg = oom_wait_info->memcg;
1588 
1589 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1590 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1591 		return 0;
1592 	return autoremove_wake_function(wait, mode, sync, arg);
1593 }
1594 
1595 static void memcg_oom_recover(struct mem_cgroup *memcg)
1596 {
1597 	/*
1598 	 * For the following lockless ->under_oom test, the only required
1599 	 * guarantee is that it must see the state asserted by an OOM when
1600 	 * this function is called as a result of userland actions
1601 	 * triggered by the notification of the OOM.  This is trivially
1602 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1603 	 * triggering notification.
1604 	 */
1605 	if (memcg && memcg->under_oom)
1606 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1607 }
1608 
1609 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1610 {
1611 	if (!current->memcg_may_oom || current->memcg_in_oom)
1612 		return;
1613 	/*
1614 	 * We are in the middle of the charge context here, so we
1615 	 * don't want to block when potentially sitting on a callstack
1616 	 * that holds all kinds of filesystem and mm locks.
1617 	 *
1618 	 * Also, the caller may handle a failed allocation gracefully
1619 	 * (like optional page cache readahead) and so an OOM killer
1620 	 * invocation might not even be necessary.
1621 	 *
1622 	 * That's why we don't do anything here except remember the
1623 	 * OOM context and then deal with it at the end of the page
1624 	 * fault when the stack is unwound, the locks are released,
1625 	 * and when we know whether the fault was overall successful.
1626 	 */
1627 	css_get(&memcg->css);
1628 	current->memcg_in_oom = memcg;
1629 	current->memcg_oom_gfp_mask = mask;
1630 	current->memcg_oom_order = order;
1631 }
1632 
1633 /**
1634  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1635  * @handle: actually kill/wait or just clean up the OOM state
1636  *
1637  * This has to be called at the end of a page fault if the memcg OOM
1638  * handler was enabled.
1639  *
1640  * Memcg supports userspace OOM handling where failed allocations must
1641  * sleep on a waitqueue until the userspace task resolves the
1642  * situation.  Sleeping directly in the charge context with all kinds
1643  * of locks held is not a good idea, instead we remember an OOM state
1644  * in the task and mem_cgroup_oom_synchronize() has to be called at
1645  * the end of the page fault to complete the OOM handling.
1646  *
1647  * Returns %true if an ongoing memcg OOM situation was detected and
1648  * completed, %false otherwise.
1649  */
1650 bool mem_cgroup_oom_synchronize(bool handle)
1651 {
1652 	struct mem_cgroup *memcg = current->memcg_in_oom;
1653 	struct oom_wait_info owait;
1654 	bool locked;
1655 
1656 	/* OOM is global, do not handle */
1657 	if (!memcg)
1658 		return false;
1659 
1660 	if (!handle || oom_killer_disabled)
1661 		goto cleanup;
1662 
1663 	owait.memcg = memcg;
1664 	owait.wait.flags = 0;
1665 	owait.wait.func = memcg_oom_wake_function;
1666 	owait.wait.private = current;
1667 	INIT_LIST_HEAD(&owait.wait.task_list);
1668 
1669 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1670 	mem_cgroup_mark_under_oom(memcg);
1671 
1672 	locked = mem_cgroup_oom_trylock(memcg);
1673 
1674 	if (locked)
1675 		mem_cgroup_oom_notify(memcg);
1676 
1677 	if (locked && !memcg->oom_kill_disable) {
1678 		mem_cgroup_unmark_under_oom(memcg);
1679 		finish_wait(&memcg_oom_waitq, &owait.wait);
1680 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1681 					 current->memcg_oom_order);
1682 	} else {
1683 		schedule();
1684 		mem_cgroup_unmark_under_oom(memcg);
1685 		finish_wait(&memcg_oom_waitq, &owait.wait);
1686 	}
1687 
1688 	if (locked) {
1689 		mem_cgroup_oom_unlock(memcg);
1690 		/*
1691 		 * There is no guarantee that an OOM-lock contender
1692 		 * sees the wakeups triggered by the OOM kill
1693 		 * uncharges.  Wake any sleepers explicitely.
1694 		 */
1695 		memcg_oom_recover(memcg);
1696 	}
1697 cleanup:
1698 	current->memcg_in_oom = NULL;
1699 	css_put(&memcg->css);
1700 	return true;
1701 }
1702 
1703 /**
1704  * lock_page_memcg - lock a page->mem_cgroup binding
1705  * @page: the page
1706  *
1707  * This function protects unlocked LRU pages from being moved to
1708  * another cgroup and stabilizes their page->mem_cgroup binding.
1709  */
1710 void lock_page_memcg(struct page *page)
1711 {
1712 	struct mem_cgroup *memcg;
1713 	unsigned long flags;
1714 
1715 	/*
1716 	 * The RCU lock is held throughout the transaction.  The fast
1717 	 * path can get away without acquiring the memcg->move_lock
1718 	 * because page moving starts with an RCU grace period.
1719 	 */
1720 	rcu_read_lock();
1721 
1722 	if (mem_cgroup_disabled())
1723 		return;
1724 again:
1725 	memcg = page->mem_cgroup;
1726 	if (unlikely(!memcg))
1727 		return;
1728 
1729 	if (atomic_read(&memcg->moving_account) <= 0)
1730 		return;
1731 
1732 	spin_lock_irqsave(&memcg->move_lock, flags);
1733 	if (memcg != page->mem_cgroup) {
1734 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1735 		goto again;
1736 	}
1737 
1738 	/*
1739 	 * When charge migration first begins, we can have locked and
1740 	 * unlocked page stat updates happening concurrently.  Track
1741 	 * the task who has the lock for unlock_page_memcg().
1742 	 */
1743 	memcg->move_lock_task = current;
1744 	memcg->move_lock_flags = flags;
1745 
1746 	return;
1747 }
1748 EXPORT_SYMBOL(lock_page_memcg);
1749 
1750 /**
1751  * unlock_page_memcg - unlock a page->mem_cgroup binding
1752  * @page: the page
1753  */
1754 void unlock_page_memcg(struct page *page)
1755 {
1756 	struct mem_cgroup *memcg = page->mem_cgroup;
1757 
1758 	if (memcg && memcg->move_lock_task == current) {
1759 		unsigned long flags = memcg->move_lock_flags;
1760 
1761 		memcg->move_lock_task = NULL;
1762 		memcg->move_lock_flags = 0;
1763 
1764 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1765 	}
1766 
1767 	rcu_read_unlock();
1768 }
1769 EXPORT_SYMBOL(unlock_page_memcg);
1770 
1771 /*
1772  * size of first charge trial. "32" comes from vmscan.c's magic value.
1773  * TODO: maybe necessary to use big numbers in big irons.
1774  */
1775 #define CHARGE_BATCH	32U
1776 struct memcg_stock_pcp {
1777 	struct mem_cgroup *cached; /* this never be root cgroup */
1778 	unsigned int nr_pages;
1779 	struct work_struct work;
1780 	unsigned long flags;
1781 #define FLUSHING_CACHED_CHARGE	0
1782 };
1783 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1784 static DEFINE_MUTEX(percpu_charge_mutex);
1785 
1786 /**
1787  * consume_stock: Try to consume stocked charge on this cpu.
1788  * @memcg: memcg to consume from.
1789  * @nr_pages: how many pages to charge.
1790  *
1791  * The charges will only happen if @memcg matches the current cpu's memcg
1792  * stock, and at least @nr_pages are available in that stock.  Failure to
1793  * service an allocation will refill the stock.
1794  *
1795  * returns true if successful, false otherwise.
1796  */
1797 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1798 {
1799 	struct memcg_stock_pcp *stock;
1800 	bool ret = false;
1801 
1802 	if (nr_pages > CHARGE_BATCH)
1803 		return ret;
1804 
1805 	stock = &get_cpu_var(memcg_stock);
1806 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1807 		stock->nr_pages -= nr_pages;
1808 		ret = true;
1809 	}
1810 	put_cpu_var(memcg_stock);
1811 	return ret;
1812 }
1813 
1814 /*
1815  * Returns stocks cached in percpu and reset cached information.
1816  */
1817 static void drain_stock(struct memcg_stock_pcp *stock)
1818 {
1819 	struct mem_cgroup *old = stock->cached;
1820 
1821 	if (stock->nr_pages) {
1822 		page_counter_uncharge(&old->memory, stock->nr_pages);
1823 		if (do_memsw_account())
1824 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1825 		css_put_many(&old->css, stock->nr_pages);
1826 		stock->nr_pages = 0;
1827 	}
1828 	stock->cached = NULL;
1829 }
1830 
1831 /*
1832  * This must be called under preempt disabled or must be called by
1833  * a thread which is pinned to local cpu.
1834  */
1835 static void drain_local_stock(struct work_struct *dummy)
1836 {
1837 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1838 	drain_stock(stock);
1839 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1840 }
1841 
1842 /*
1843  * Cache charges(val) to local per_cpu area.
1844  * This will be consumed by consume_stock() function, later.
1845  */
1846 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1847 {
1848 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1849 
1850 	if (stock->cached != memcg) { /* reset if necessary */
1851 		drain_stock(stock);
1852 		stock->cached = memcg;
1853 	}
1854 	stock->nr_pages += nr_pages;
1855 	put_cpu_var(memcg_stock);
1856 }
1857 
1858 /*
1859  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1860  * of the hierarchy under it.
1861  */
1862 static void drain_all_stock(struct mem_cgroup *root_memcg)
1863 {
1864 	int cpu, curcpu;
1865 
1866 	/* If someone's already draining, avoid adding running more workers. */
1867 	if (!mutex_trylock(&percpu_charge_mutex))
1868 		return;
1869 	/* Notify other cpus that system-wide "drain" is running */
1870 	get_online_cpus();
1871 	curcpu = get_cpu();
1872 	for_each_online_cpu(cpu) {
1873 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1874 		struct mem_cgroup *memcg;
1875 
1876 		memcg = stock->cached;
1877 		if (!memcg || !stock->nr_pages)
1878 			continue;
1879 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1880 			continue;
1881 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1882 			if (cpu == curcpu)
1883 				drain_local_stock(&stock->work);
1884 			else
1885 				schedule_work_on(cpu, &stock->work);
1886 		}
1887 	}
1888 	put_cpu();
1889 	put_online_cpus();
1890 	mutex_unlock(&percpu_charge_mutex);
1891 }
1892 
1893 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1894 					unsigned long action,
1895 					void *hcpu)
1896 {
1897 	int cpu = (unsigned long)hcpu;
1898 	struct memcg_stock_pcp *stock;
1899 
1900 	if (action == CPU_ONLINE)
1901 		return NOTIFY_OK;
1902 
1903 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1904 		return NOTIFY_OK;
1905 
1906 	stock = &per_cpu(memcg_stock, cpu);
1907 	drain_stock(stock);
1908 	return NOTIFY_OK;
1909 }
1910 
1911 static void reclaim_high(struct mem_cgroup *memcg,
1912 			 unsigned int nr_pages,
1913 			 gfp_t gfp_mask)
1914 {
1915 	do {
1916 		if (page_counter_read(&memcg->memory) <= memcg->high)
1917 			continue;
1918 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1919 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1920 	} while ((memcg = parent_mem_cgroup(memcg)));
1921 }
1922 
1923 static void high_work_func(struct work_struct *work)
1924 {
1925 	struct mem_cgroup *memcg;
1926 
1927 	memcg = container_of(work, struct mem_cgroup, high_work);
1928 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1929 }
1930 
1931 /*
1932  * Scheduled by try_charge() to be executed from the userland return path
1933  * and reclaims memory over the high limit.
1934  */
1935 void mem_cgroup_handle_over_high(void)
1936 {
1937 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1938 	struct mem_cgroup *memcg;
1939 
1940 	if (likely(!nr_pages))
1941 		return;
1942 
1943 	memcg = get_mem_cgroup_from_mm(current->mm);
1944 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1945 	css_put(&memcg->css);
1946 	current->memcg_nr_pages_over_high = 0;
1947 }
1948 
1949 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1950 		      unsigned int nr_pages)
1951 {
1952 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1953 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1954 	struct mem_cgroup *mem_over_limit;
1955 	struct page_counter *counter;
1956 	unsigned long nr_reclaimed;
1957 	bool may_swap = true;
1958 	bool drained = false;
1959 
1960 	if (mem_cgroup_is_root(memcg))
1961 		return 0;
1962 retry:
1963 	if (consume_stock(memcg, nr_pages))
1964 		return 0;
1965 
1966 	if (!do_memsw_account() ||
1967 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1968 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1969 			goto done_restock;
1970 		if (do_memsw_account())
1971 			page_counter_uncharge(&memcg->memsw, batch);
1972 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1973 	} else {
1974 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1975 		may_swap = false;
1976 	}
1977 
1978 	if (batch > nr_pages) {
1979 		batch = nr_pages;
1980 		goto retry;
1981 	}
1982 
1983 	/*
1984 	 * Unlike in global OOM situations, memcg is not in a physical
1985 	 * memory shortage.  Allow dying and OOM-killed tasks to
1986 	 * bypass the last charges so that they can exit quickly and
1987 	 * free their memory.
1988 	 */
1989 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1990 		     fatal_signal_pending(current) ||
1991 		     current->flags & PF_EXITING))
1992 		goto force;
1993 
1994 	if (unlikely(task_in_memcg_oom(current)))
1995 		goto nomem;
1996 
1997 	if (!gfpflags_allow_blocking(gfp_mask))
1998 		goto nomem;
1999 
2000 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2001 
2002 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2003 						    gfp_mask, may_swap);
2004 
2005 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2006 		goto retry;
2007 
2008 	if (!drained) {
2009 		drain_all_stock(mem_over_limit);
2010 		drained = true;
2011 		goto retry;
2012 	}
2013 
2014 	if (gfp_mask & __GFP_NORETRY)
2015 		goto nomem;
2016 	/*
2017 	 * Even though the limit is exceeded at this point, reclaim
2018 	 * may have been able to free some pages.  Retry the charge
2019 	 * before killing the task.
2020 	 *
2021 	 * Only for regular pages, though: huge pages are rather
2022 	 * unlikely to succeed so close to the limit, and we fall back
2023 	 * to regular pages anyway in case of failure.
2024 	 */
2025 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2026 		goto retry;
2027 	/*
2028 	 * At task move, charge accounts can be doubly counted. So, it's
2029 	 * better to wait until the end of task_move if something is going on.
2030 	 */
2031 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2032 		goto retry;
2033 
2034 	if (nr_retries--)
2035 		goto retry;
2036 
2037 	if (gfp_mask & __GFP_NOFAIL)
2038 		goto force;
2039 
2040 	if (fatal_signal_pending(current))
2041 		goto force;
2042 
2043 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2044 
2045 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2046 		       get_order(nr_pages * PAGE_SIZE));
2047 nomem:
2048 	if (!(gfp_mask & __GFP_NOFAIL))
2049 		return -ENOMEM;
2050 force:
2051 	/*
2052 	 * The allocation either can't fail or will lead to more memory
2053 	 * being freed very soon.  Allow memory usage go over the limit
2054 	 * temporarily by force charging it.
2055 	 */
2056 	page_counter_charge(&memcg->memory, nr_pages);
2057 	if (do_memsw_account())
2058 		page_counter_charge(&memcg->memsw, nr_pages);
2059 	css_get_many(&memcg->css, nr_pages);
2060 
2061 	return 0;
2062 
2063 done_restock:
2064 	css_get_many(&memcg->css, batch);
2065 	if (batch > nr_pages)
2066 		refill_stock(memcg, batch - nr_pages);
2067 
2068 	/*
2069 	 * If the hierarchy is above the normal consumption range, schedule
2070 	 * reclaim on returning to userland.  We can perform reclaim here
2071 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2072 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2073 	 * not recorded as it most likely matches current's and won't
2074 	 * change in the meantime.  As high limit is checked again before
2075 	 * reclaim, the cost of mismatch is negligible.
2076 	 */
2077 	do {
2078 		if (page_counter_read(&memcg->memory) > memcg->high) {
2079 			/* Don't bother a random interrupted task */
2080 			if (in_interrupt()) {
2081 				schedule_work(&memcg->high_work);
2082 				break;
2083 			}
2084 			current->memcg_nr_pages_over_high += batch;
2085 			set_notify_resume(current);
2086 			break;
2087 		}
2088 	} while ((memcg = parent_mem_cgroup(memcg)));
2089 
2090 	return 0;
2091 }
2092 
2093 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2094 {
2095 	if (mem_cgroup_is_root(memcg))
2096 		return;
2097 
2098 	page_counter_uncharge(&memcg->memory, nr_pages);
2099 	if (do_memsw_account())
2100 		page_counter_uncharge(&memcg->memsw, nr_pages);
2101 
2102 	css_put_many(&memcg->css, nr_pages);
2103 }
2104 
2105 static void lock_page_lru(struct page *page, int *isolated)
2106 {
2107 	struct zone *zone = page_zone(page);
2108 
2109 	spin_lock_irq(&zone->lru_lock);
2110 	if (PageLRU(page)) {
2111 		struct lruvec *lruvec;
2112 
2113 		lruvec = mem_cgroup_page_lruvec(page, zone);
2114 		ClearPageLRU(page);
2115 		del_page_from_lru_list(page, lruvec, page_lru(page));
2116 		*isolated = 1;
2117 	} else
2118 		*isolated = 0;
2119 }
2120 
2121 static void unlock_page_lru(struct page *page, int isolated)
2122 {
2123 	struct zone *zone = page_zone(page);
2124 
2125 	if (isolated) {
2126 		struct lruvec *lruvec;
2127 
2128 		lruvec = mem_cgroup_page_lruvec(page, zone);
2129 		VM_BUG_ON_PAGE(PageLRU(page), page);
2130 		SetPageLRU(page);
2131 		add_page_to_lru_list(page, lruvec, page_lru(page));
2132 	}
2133 	spin_unlock_irq(&zone->lru_lock);
2134 }
2135 
2136 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2137 			  bool lrucare)
2138 {
2139 	int isolated;
2140 
2141 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2142 
2143 	/*
2144 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2145 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2146 	 */
2147 	if (lrucare)
2148 		lock_page_lru(page, &isolated);
2149 
2150 	/*
2151 	 * Nobody should be changing or seriously looking at
2152 	 * page->mem_cgroup at this point:
2153 	 *
2154 	 * - the page is uncharged
2155 	 *
2156 	 * - the page is off-LRU
2157 	 *
2158 	 * - an anonymous fault has exclusive page access, except for
2159 	 *   a locked page table
2160 	 *
2161 	 * - a page cache insertion, a swapin fault, or a migration
2162 	 *   have the page locked
2163 	 */
2164 	page->mem_cgroup = memcg;
2165 
2166 	if (lrucare)
2167 		unlock_page_lru(page, isolated);
2168 }
2169 
2170 #ifndef CONFIG_SLOB
2171 static int memcg_alloc_cache_id(void)
2172 {
2173 	int id, size;
2174 	int err;
2175 
2176 	id = ida_simple_get(&memcg_cache_ida,
2177 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2178 	if (id < 0)
2179 		return id;
2180 
2181 	if (id < memcg_nr_cache_ids)
2182 		return id;
2183 
2184 	/*
2185 	 * There's no space for the new id in memcg_caches arrays,
2186 	 * so we have to grow them.
2187 	 */
2188 	down_write(&memcg_cache_ids_sem);
2189 
2190 	size = 2 * (id + 1);
2191 	if (size < MEMCG_CACHES_MIN_SIZE)
2192 		size = MEMCG_CACHES_MIN_SIZE;
2193 	else if (size > MEMCG_CACHES_MAX_SIZE)
2194 		size = MEMCG_CACHES_MAX_SIZE;
2195 
2196 	err = memcg_update_all_caches(size);
2197 	if (!err)
2198 		err = memcg_update_all_list_lrus(size);
2199 	if (!err)
2200 		memcg_nr_cache_ids = size;
2201 
2202 	up_write(&memcg_cache_ids_sem);
2203 
2204 	if (err) {
2205 		ida_simple_remove(&memcg_cache_ida, id);
2206 		return err;
2207 	}
2208 	return id;
2209 }
2210 
2211 static void memcg_free_cache_id(int id)
2212 {
2213 	ida_simple_remove(&memcg_cache_ida, id);
2214 }
2215 
2216 struct memcg_kmem_cache_create_work {
2217 	struct mem_cgroup *memcg;
2218 	struct kmem_cache *cachep;
2219 	struct work_struct work;
2220 };
2221 
2222 static void memcg_kmem_cache_create_func(struct work_struct *w)
2223 {
2224 	struct memcg_kmem_cache_create_work *cw =
2225 		container_of(w, struct memcg_kmem_cache_create_work, work);
2226 	struct mem_cgroup *memcg = cw->memcg;
2227 	struct kmem_cache *cachep = cw->cachep;
2228 
2229 	memcg_create_kmem_cache(memcg, cachep);
2230 
2231 	css_put(&memcg->css);
2232 	kfree(cw);
2233 }
2234 
2235 /*
2236  * Enqueue the creation of a per-memcg kmem_cache.
2237  */
2238 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2239 					       struct kmem_cache *cachep)
2240 {
2241 	struct memcg_kmem_cache_create_work *cw;
2242 
2243 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2244 	if (!cw)
2245 		return;
2246 
2247 	css_get(&memcg->css);
2248 
2249 	cw->memcg = memcg;
2250 	cw->cachep = cachep;
2251 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2252 
2253 	schedule_work(&cw->work);
2254 }
2255 
2256 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2257 					     struct kmem_cache *cachep)
2258 {
2259 	/*
2260 	 * We need to stop accounting when we kmalloc, because if the
2261 	 * corresponding kmalloc cache is not yet created, the first allocation
2262 	 * in __memcg_schedule_kmem_cache_create will recurse.
2263 	 *
2264 	 * However, it is better to enclose the whole function. Depending on
2265 	 * the debugging options enabled, INIT_WORK(), for instance, can
2266 	 * trigger an allocation. This too, will make us recurse. Because at
2267 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2268 	 * the safest choice is to do it like this, wrapping the whole function.
2269 	 */
2270 	current->memcg_kmem_skip_account = 1;
2271 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2272 	current->memcg_kmem_skip_account = 0;
2273 }
2274 
2275 /*
2276  * Return the kmem_cache we're supposed to use for a slab allocation.
2277  * We try to use the current memcg's version of the cache.
2278  *
2279  * If the cache does not exist yet, if we are the first user of it,
2280  * we either create it immediately, if possible, or create it asynchronously
2281  * in a workqueue.
2282  * In the latter case, we will let the current allocation go through with
2283  * the original cache.
2284  *
2285  * Can't be called in interrupt context or from kernel threads.
2286  * This function needs to be called with rcu_read_lock() held.
2287  */
2288 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2289 {
2290 	struct mem_cgroup *memcg;
2291 	struct kmem_cache *memcg_cachep;
2292 	int kmemcg_id;
2293 
2294 	VM_BUG_ON(!is_root_cache(cachep));
2295 
2296 	if (cachep->flags & SLAB_ACCOUNT)
2297 		gfp |= __GFP_ACCOUNT;
2298 
2299 	if (!(gfp & __GFP_ACCOUNT))
2300 		return cachep;
2301 
2302 	if (current->memcg_kmem_skip_account)
2303 		return cachep;
2304 
2305 	memcg = get_mem_cgroup_from_mm(current->mm);
2306 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2307 	if (kmemcg_id < 0)
2308 		goto out;
2309 
2310 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2311 	if (likely(memcg_cachep))
2312 		return memcg_cachep;
2313 
2314 	/*
2315 	 * If we are in a safe context (can wait, and not in interrupt
2316 	 * context), we could be be predictable and return right away.
2317 	 * This would guarantee that the allocation being performed
2318 	 * already belongs in the new cache.
2319 	 *
2320 	 * However, there are some clashes that can arrive from locking.
2321 	 * For instance, because we acquire the slab_mutex while doing
2322 	 * memcg_create_kmem_cache, this means no further allocation
2323 	 * could happen with the slab_mutex held. So it's better to
2324 	 * defer everything.
2325 	 */
2326 	memcg_schedule_kmem_cache_create(memcg, cachep);
2327 out:
2328 	css_put(&memcg->css);
2329 	return cachep;
2330 }
2331 
2332 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2333 {
2334 	if (!is_root_cache(cachep))
2335 		css_put(&cachep->memcg_params.memcg->css);
2336 }
2337 
2338 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2339 			      struct mem_cgroup *memcg)
2340 {
2341 	unsigned int nr_pages = 1 << order;
2342 	struct page_counter *counter;
2343 	int ret;
2344 
2345 	ret = try_charge(memcg, gfp, nr_pages);
2346 	if (ret)
2347 		return ret;
2348 
2349 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2350 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2351 		cancel_charge(memcg, nr_pages);
2352 		return -ENOMEM;
2353 	}
2354 
2355 	page->mem_cgroup = memcg;
2356 
2357 	return 0;
2358 }
2359 
2360 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2361 {
2362 	struct mem_cgroup *memcg;
2363 	int ret = 0;
2364 
2365 	memcg = get_mem_cgroup_from_mm(current->mm);
2366 	if (!mem_cgroup_is_root(memcg))
2367 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2368 	css_put(&memcg->css);
2369 	return ret;
2370 }
2371 
2372 void __memcg_kmem_uncharge(struct page *page, int order)
2373 {
2374 	struct mem_cgroup *memcg = page->mem_cgroup;
2375 	unsigned int nr_pages = 1 << order;
2376 
2377 	if (!memcg)
2378 		return;
2379 
2380 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2381 
2382 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2383 		page_counter_uncharge(&memcg->kmem, nr_pages);
2384 
2385 	page_counter_uncharge(&memcg->memory, nr_pages);
2386 	if (do_memsw_account())
2387 		page_counter_uncharge(&memcg->memsw, nr_pages);
2388 
2389 	page->mem_cgroup = NULL;
2390 	css_put_many(&memcg->css, nr_pages);
2391 }
2392 #endif /* !CONFIG_SLOB */
2393 
2394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2395 
2396 /*
2397  * Because tail pages are not marked as "used", set it. We're under
2398  * zone->lru_lock and migration entries setup in all page mappings.
2399  */
2400 void mem_cgroup_split_huge_fixup(struct page *head)
2401 {
2402 	int i;
2403 
2404 	if (mem_cgroup_disabled())
2405 		return;
2406 
2407 	for (i = 1; i < HPAGE_PMD_NR; i++)
2408 		head[i].mem_cgroup = head->mem_cgroup;
2409 
2410 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2411 		       HPAGE_PMD_NR);
2412 }
2413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2414 
2415 #ifdef CONFIG_MEMCG_SWAP
2416 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2417 					 bool charge)
2418 {
2419 	int val = (charge) ? 1 : -1;
2420 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2421 }
2422 
2423 /**
2424  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2425  * @entry: swap entry to be moved
2426  * @from:  mem_cgroup which the entry is moved from
2427  * @to:  mem_cgroup which the entry is moved to
2428  *
2429  * It succeeds only when the swap_cgroup's record for this entry is the same
2430  * as the mem_cgroup's id of @from.
2431  *
2432  * Returns 0 on success, -EINVAL on failure.
2433  *
2434  * The caller must have charged to @to, IOW, called page_counter_charge() about
2435  * both res and memsw, and called css_get().
2436  */
2437 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2438 				struct mem_cgroup *from, struct mem_cgroup *to)
2439 {
2440 	unsigned short old_id, new_id;
2441 
2442 	old_id = mem_cgroup_id(from);
2443 	new_id = mem_cgroup_id(to);
2444 
2445 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2446 		mem_cgroup_swap_statistics(from, false);
2447 		mem_cgroup_swap_statistics(to, true);
2448 		return 0;
2449 	}
2450 	return -EINVAL;
2451 }
2452 #else
2453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2454 				struct mem_cgroup *from, struct mem_cgroup *to)
2455 {
2456 	return -EINVAL;
2457 }
2458 #endif
2459 
2460 static DEFINE_MUTEX(memcg_limit_mutex);
2461 
2462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2463 				   unsigned long limit)
2464 {
2465 	unsigned long curusage;
2466 	unsigned long oldusage;
2467 	bool enlarge = false;
2468 	int retry_count;
2469 	int ret;
2470 
2471 	/*
2472 	 * For keeping hierarchical_reclaim simple, how long we should retry
2473 	 * is depends on callers. We set our retry-count to be function
2474 	 * of # of children which we should visit in this loop.
2475 	 */
2476 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2477 		      mem_cgroup_count_children(memcg);
2478 
2479 	oldusage = page_counter_read(&memcg->memory);
2480 
2481 	do {
2482 		if (signal_pending(current)) {
2483 			ret = -EINTR;
2484 			break;
2485 		}
2486 
2487 		mutex_lock(&memcg_limit_mutex);
2488 		if (limit > memcg->memsw.limit) {
2489 			mutex_unlock(&memcg_limit_mutex);
2490 			ret = -EINVAL;
2491 			break;
2492 		}
2493 		if (limit > memcg->memory.limit)
2494 			enlarge = true;
2495 		ret = page_counter_limit(&memcg->memory, limit);
2496 		mutex_unlock(&memcg_limit_mutex);
2497 
2498 		if (!ret)
2499 			break;
2500 
2501 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2502 
2503 		curusage = page_counter_read(&memcg->memory);
2504 		/* Usage is reduced ? */
2505 		if (curusage >= oldusage)
2506 			retry_count--;
2507 		else
2508 			oldusage = curusage;
2509 	} while (retry_count);
2510 
2511 	if (!ret && enlarge)
2512 		memcg_oom_recover(memcg);
2513 
2514 	return ret;
2515 }
2516 
2517 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2518 					 unsigned long limit)
2519 {
2520 	unsigned long curusage;
2521 	unsigned long oldusage;
2522 	bool enlarge = false;
2523 	int retry_count;
2524 	int ret;
2525 
2526 	/* see mem_cgroup_resize_res_limit */
2527 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2528 		      mem_cgroup_count_children(memcg);
2529 
2530 	oldusage = page_counter_read(&memcg->memsw);
2531 
2532 	do {
2533 		if (signal_pending(current)) {
2534 			ret = -EINTR;
2535 			break;
2536 		}
2537 
2538 		mutex_lock(&memcg_limit_mutex);
2539 		if (limit < memcg->memory.limit) {
2540 			mutex_unlock(&memcg_limit_mutex);
2541 			ret = -EINVAL;
2542 			break;
2543 		}
2544 		if (limit > memcg->memsw.limit)
2545 			enlarge = true;
2546 		ret = page_counter_limit(&memcg->memsw, limit);
2547 		mutex_unlock(&memcg_limit_mutex);
2548 
2549 		if (!ret)
2550 			break;
2551 
2552 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2553 
2554 		curusage = page_counter_read(&memcg->memsw);
2555 		/* Usage is reduced ? */
2556 		if (curusage >= oldusage)
2557 			retry_count--;
2558 		else
2559 			oldusage = curusage;
2560 	} while (retry_count);
2561 
2562 	if (!ret && enlarge)
2563 		memcg_oom_recover(memcg);
2564 
2565 	return ret;
2566 }
2567 
2568 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2569 					    gfp_t gfp_mask,
2570 					    unsigned long *total_scanned)
2571 {
2572 	unsigned long nr_reclaimed = 0;
2573 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2574 	unsigned long reclaimed;
2575 	int loop = 0;
2576 	struct mem_cgroup_tree_per_zone *mctz;
2577 	unsigned long excess;
2578 	unsigned long nr_scanned;
2579 
2580 	if (order > 0)
2581 		return 0;
2582 
2583 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2584 	/*
2585 	 * This loop can run a while, specially if mem_cgroup's continuously
2586 	 * keep exceeding their soft limit and putting the system under
2587 	 * pressure
2588 	 */
2589 	do {
2590 		if (next_mz)
2591 			mz = next_mz;
2592 		else
2593 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2594 		if (!mz)
2595 			break;
2596 
2597 		nr_scanned = 0;
2598 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2599 						    gfp_mask, &nr_scanned);
2600 		nr_reclaimed += reclaimed;
2601 		*total_scanned += nr_scanned;
2602 		spin_lock_irq(&mctz->lock);
2603 		__mem_cgroup_remove_exceeded(mz, mctz);
2604 
2605 		/*
2606 		 * If we failed to reclaim anything from this memory cgroup
2607 		 * it is time to move on to the next cgroup
2608 		 */
2609 		next_mz = NULL;
2610 		if (!reclaimed)
2611 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2612 
2613 		excess = soft_limit_excess(mz->memcg);
2614 		/*
2615 		 * One school of thought says that we should not add
2616 		 * back the node to the tree if reclaim returns 0.
2617 		 * But our reclaim could return 0, simply because due
2618 		 * to priority we are exposing a smaller subset of
2619 		 * memory to reclaim from. Consider this as a longer
2620 		 * term TODO.
2621 		 */
2622 		/* If excess == 0, no tree ops */
2623 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2624 		spin_unlock_irq(&mctz->lock);
2625 		css_put(&mz->memcg->css);
2626 		loop++;
2627 		/*
2628 		 * Could not reclaim anything and there are no more
2629 		 * mem cgroups to try or we seem to be looping without
2630 		 * reclaiming anything.
2631 		 */
2632 		if (!nr_reclaimed &&
2633 			(next_mz == NULL ||
2634 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2635 			break;
2636 	} while (!nr_reclaimed);
2637 	if (next_mz)
2638 		css_put(&next_mz->memcg->css);
2639 	return nr_reclaimed;
2640 }
2641 
2642 /*
2643  * Test whether @memcg has children, dead or alive.  Note that this
2644  * function doesn't care whether @memcg has use_hierarchy enabled and
2645  * returns %true if there are child csses according to the cgroup
2646  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2647  */
2648 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2649 {
2650 	bool ret;
2651 
2652 	rcu_read_lock();
2653 	ret = css_next_child(NULL, &memcg->css);
2654 	rcu_read_unlock();
2655 	return ret;
2656 }
2657 
2658 /*
2659  * Reclaims as many pages from the given memcg as possible.
2660  *
2661  * Caller is responsible for holding css reference for memcg.
2662  */
2663 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2664 {
2665 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2666 
2667 	/* we call try-to-free pages for make this cgroup empty */
2668 	lru_add_drain_all();
2669 	/* try to free all pages in this cgroup */
2670 	while (nr_retries && page_counter_read(&memcg->memory)) {
2671 		int progress;
2672 
2673 		if (signal_pending(current))
2674 			return -EINTR;
2675 
2676 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2677 							GFP_KERNEL, true);
2678 		if (!progress) {
2679 			nr_retries--;
2680 			/* maybe some writeback is necessary */
2681 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2682 		}
2683 
2684 	}
2685 
2686 	return 0;
2687 }
2688 
2689 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2690 					    char *buf, size_t nbytes,
2691 					    loff_t off)
2692 {
2693 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2694 
2695 	if (mem_cgroup_is_root(memcg))
2696 		return -EINVAL;
2697 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2698 }
2699 
2700 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2701 				     struct cftype *cft)
2702 {
2703 	return mem_cgroup_from_css(css)->use_hierarchy;
2704 }
2705 
2706 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2707 				      struct cftype *cft, u64 val)
2708 {
2709 	int retval = 0;
2710 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2711 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2712 
2713 	if (memcg->use_hierarchy == val)
2714 		return 0;
2715 
2716 	/*
2717 	 * If parent's use_hierarchy is set, we can't make any modifications
2718 	 * in the child subtrees. If it is unset, then the change can
2719 	 * occur, provided the current cgroup has no children.
2720 	 *
2721 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2722 	 * set if there are no children.
2723 	 */
2724 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2725 				(val == 1 || val == 0)) {
2726 		if (!memcg_has_children(memcg))
2727 			memcg->use_hierarchy = val;
2728 		else
2729 			retval = -EBUSY;
2730 	} else
2731 		retval = -EINVAL;
2732 
2733 	return retval;
2734 }
2735 
2736 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2737 {
2738 	struct mem_cgroup *iter;
2739 	int i;
2740 
2741 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2742 
2743 	for_each_mem_cgroup_tree(iter, memcg) {
2744 		for (i = 0; i < MEMCG_NR_STAT; i++)
2745 			stat[i] += mem_cgroup_read_stat(iter, i);
2746 	}
2747 }
2748 
2749 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2750 {
2751 	struct mem_cgroup *iter;
2752 	int i;
2753 
2754 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2755 
2756 	for_each_mem_cgroup_tree(iter, memcg) {
2757 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2758 			events[i] += mem_cgroup_read_events(iter, i);
2759 	}
2760 }
2761 
2762 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2763 {
2764 	unsigned long val = 0;
2765 
2766 	if (mem_cgroup_is_root(memcg)) {
2767 		struct mem_cgroup *iter;
2768 
2769 		for_each_mem_cgroup_tree(iter, memcg) {
2770 			val += mem_cgroup_read_stat(iter,
2771 					MEM_CGROUP_STAT_CACHE);
2772 			val += mem_cgroup_read_stat(iter,
2773 					MEM_CGROUP_STAT_RSS);
2774 			if (swap)
2775 				val += mem_cgroup_read_stat(iter,
2776 						MEM_CGROUP_STAT_SWAP);
2777 		}
2778 	} else {
2779 		if (!swap)
2780 			val = page_counter_read(&memcg->memory);
2781 		else
2782 			val = page_counter_read(&memcg->memsw);
2783 	}
2784 	return val;
2785 }
2786 
2787 enum {
2788 	RES_USAGE,
2789 	RES_LIMIT,
2790 	RES_MAX_USAGE,
2791 	RES_FAILCNT,
2792 	RES_SOFT_LIMIT,
2793 };
2794 
2795 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2796 			       struct cftype *cft)
2797 {
2798 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2799 	struct page_counter *counter;
2800 
2801 	switch (MEMFILE_TYPE(cft->private)) {
2802 	case _MEM:
2803 		counter = &memcg->memory;
2804 		break;
2805 	case _MEMSWAP:
2806 		counter = &memcg->memsw;
2807 		break;
2808 	case _KMEM:
2809 		counter = &memcg->kmem;
2810 		break;
2811 	case _TCP:
2812 		counter = &memcg->tcpmem;
2813 		break;
2814 	default:
2815 		BUG();
2816 	}
2817 
2818 	switch (MEMFILE_ATTR(cft->private)) {
2819 	case RES_USAGE:
2820 		if (counter == &memcg->memory)
2821 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2822 		if (counter == &memcg->memsw)
2823 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2824 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2825 	case RES_LIMIT:
2826 		return (u64)counter->limit * PAGE_SIZE;
2827 	case RES_MAX_USAGE:
2828 		return (u64)counter->watermark * PAGE_SIZE;
2829 	case RES_FAILCNT:
2830 		return counter->failcnt;
2831 	case RES_SOFT_LIMIT:
2832 		return (u64)memcg->soft_limit * PAGE_SIZE;
2833 	default:
2834 		BUG();
2835 	}
2836 }
2837 
2838 #ifndef CONFIG_SLOB
2839 static int memcg_online_kmem(struct mem_cgroup *memcg)
2840 {
2841 	int memcg_id;
2842 
2843 	if (cgroup_memory_nokmem)
2844 		return 0;
2845 
2846 	BUG_ON(memcg->kmemcg_id >= 0);
2847 	BUG_ON(memcg->kmem_state);
2848 
2849 	memcg_id = memcg_alloc_cache_id();
2850 	if (memcg_id < 0)
2851 		return memcg_id;
2852 
2853 	static_branch_inc(&memcg_kmem_enabled_key);
2854 	/*
2855 	 * A memory cgroup is considered kmem-online as soon as it gets
2856 	 * kmemcg_id. Setting the id after enabling static branching will
2857 	 * guarantee no one starts accounting before all call sites are
2858 	 * patched.
2859 	 */
2860 	memcg->kmemcg_id = memcg_id;
2861 	memcg->kmem_state = KMEM_ONLINE;
2862 
2863 	return 0;
2864 }
2865 
2866 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867 {
2868 	struct cgroup_subsys_state *css;
2869 	struct mem_cgroup *parent, *child;
2870 	int kmemcg_id;
2871 
2872 	if (memcg->kmem_state != KMEM_ONLINE)
2873 		return;
2874 	/*
2875 	 * Clear the online state before clearing memcg_caches array
2876 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2877 	 * guarantees that no cache will be created for this cgroup
2878 	 * after we are done (see memcg_create_kmem_cache()).
2879 	 */
2880 	memcg->kmem_state = KMEM_ALLOCATED;
2881 
2882 	memcg_deactivate_kmem_caches(memcg);
2883 
2884 	kmemcg_id = memcg->kmemcg_id;
2885 	BUG_ON(kmemcg_id < 0);
2886 
2887 	parent = parent_mem_cgroup(memcg);
2888 	if (!parent)
2889 		parent = root_mem_cgroup;
2890 
2891 	/*
2892 	 * Change kmemcg_id of this cgroup and all its descendants to the
2893 	 * parent's id, and then move all entries from this cgroup's list_lrus
2894 	 * to ones of the parent. After we have finished, all list_lrus
2895 	 * corresponding to this cgroup are guaranteed to remain empty. The
2896 	 * ordering is imposed by list_lru_node->lock taken by
2897 	 * memcg_drain_all_list_lrus().
2898 	 */
2899 	css_for_each_descendant_pre(css, &memcg->css) {
2900 		child = mem_cgroup_from_css(css);
2901 		BUG_ON(child->kmemcg_id != kmemcg_id);
2902 		child->kmemcg_id = parent->kmemcg_id;
2903 		if (!memcg->use_hierarchy)
2904 			break;
2905 	}
2906 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2907 
2908 	memcg_free_cache_id(kmemcg_id);
2909 }
2910 
2911 static void memcg_free_kmem(struct mem_cgroup *memcg)
2912 {
2913 	/* css_alloc() failed, offlining didn't happen */
2914 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2915 		memcg_offline_kmem(memcg);
2916 
2917 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2918 		memcg_destroy_kmem_caches(memcg);
2919 		static_branch_dec(&memcg_kmem_enabled_key);
2920 		WARN_ON(page_counter_read(&memcg->kmem));
2921 	}
2922 }
2923 #else
2924 static int memcg_online_kmem(struct mem_cgroup *memcg)
2925 {
2926 	return 0;
2927 }
2928 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2929 {
2930 }
2931 static void memcg_free_kmem(struct mem_cgroup *memcg)
2932 {
2933 }
2934 #endif /* !CONFIG_SLOB */
2935 
2936 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2937 				   unsigned long limit)
2938 {
2939 	int ret;
2940 
2941 	mutex_lock(&memcg_limit_mutex);
2942 	ret = page_counter_limit(&memcg->kmem, limit);
2943 	mutex_unlock(&memcg_limit_mutex);
2944 	return ret;
2945 }
2946 
2947 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2948 {
2949 	int ret;
2950 
2951 	mutex_lock(&memcg_limit_mutex);
2952 
2953 	ret = page_counter_limit(&memcg->tcpmem, limit);
2954 	if (ret)
2955 		goto out;
2956 
2957 	if (!memcg->tcpmem_active) {
2958 		/*
2959 		 * The active flag needs to be written after the static_key
2960 		 * update. This is what guarantees that the socket activation
2961 		 * function is the last one to run. See sock_update_memcg() for
2962 		 * details, and note that we don't mark any socket as belonging
2963 		 * to this memcg until that flag is up.
2964 		 *
2965 		 * We need to do this, because static_keys will span multiple
2966 		 * sites, but we can't control their order. If we mark a socket
2967 		 * as accounted, but the accounting functions are not patched in
2968 		 * yet, we'll lose accounting.
2969 		 *
2970 		 * We never race with the readers in sock_update_memcg(),
2971 		 * because when this value change, the code to process it is not
2972 		 * patched in yet.
2973 		 */
2974 		static_branch_inc(&memcg_sockets_enabled_key);
2975 		memcg->tcpmem_active = true;
2976 	}
2977 out:
2978 	mutex_unlock(&memcg_limit_mutex);
2979 	return ret;
2980 }
2981 
2982 /*
2983  * The user of this function is...
2984  * RES_LIMIT.
2985  */
2986 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2987 				char *buf, size_t nbytes, loff_t off)
2988 {
2989 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2990 	unsigned long nr_pages;
2991 	int ret;
2992 
2993 	buf = strstrip(buf);
2994 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2995 	if (ret)
2996 		return ret;
2997 
2998 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2999 	case RES_LIMIT:
3000 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3001 			ret = -EINVAL;
3002 			break;
3003 		}
3004 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3005 		case _MEM:
3006 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3007 			break;
3008 		case _MEMSWAP:
3009 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3010 			break;
3011 		case _KMEM:
3012 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3013 			break;
3014 		case _TCP:
3015 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3016 			break;
3017 		}
3018 		break;
3019 	case RES_SOFT_LIMIT:
3020 		memcg->soft_limit = nr_pages;
3021 		ret = 0;
3022 		break;
3023 	}
3024 	return ret ?: nbytes;
3025 }
3026 
3027 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3028 				size_t nbytes, loff_t off)
3029 {
3030 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3031 	struct page_counter *counter;
3032 
3033 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3034 	case _MEM:
3035 		counter = &memcg->memory;
3036 		break;
3037 	case _MEMSWAP:
3038 		counter = &memcg->memsw;
3039 		break;
3040 	case _KMEM:
3041 		counter = &memcg->kmem;
3042 		break;
3043 	case _TCP:
3044 		counter = &memcg->tcpmem;
3045 		break;
3046 	default:
3047 		BUG();
3048 	}
3049 
3050 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3051 	case RES_MAX_USAGE:
3052 		page_counter_reset_watermark(counter);
3053 		break;
3054 	case RES_FAILCNT:
3055 		counter->failcnt = 0;
3056 		break;
3057 	default:
3058 		BUG();
3059 	}
3060 
3061 	return nbytes;
3062 }
3063 
3064 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3065 					struct cftype *cft)
3066 {
3067 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3068 }
3069 
3070 #ifdef CONFIG_MMU
3071 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3072 					struct cftype *cft, u64 val)
3073 {
3074 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3075 
3076 	if (val & ~MOVE_MASK)
3077 		return -EINVAL;
3078 
3079 	/*
3080 	 * No kind of locking is needed in here, because ->can_attach() will
3081 	 * check this value once in the beginning of the process, and then carry
3082 	 * on with stale data. This means that changes to this value will only
3083 	 * affect task migrations starting after the change.
3084 	 */
3085 	memcg->move_charge_at_immigrate = val;
3086 	return 0;
3087 }
3088 #else
3089 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3090 					struct cftype *cft, u64 val)
3091 {
3092 	return -ENOSYS;
3093 }
3094 #endif
3095 
3096 #ifdef CONFIG_NUMA
3097 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3098 {
3099 	struct numa_stat {
3100 		const char *name;
3101 		unsigned int lru_mask;
3102 	};
3103 
3104 	static const struct numa_stat stats[] = {
3105 		{ "total", LRU_ALL },
3106 		{ "file", LRU_ALL_FILE },
3107 		{ "anon", LRU_ALL_ANON },
3108 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3109 	};
3110 	const struct numa_stat *stat;
3111 	int nid;
3112 	unsigned long nr;
3113 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3114 
3115 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3116 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3117 		seq_printf(m, "%s=%lu", stat->name, nr);
3118 		for_each_node_state(nid, N_MEMORY) {
3119 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3120 							  stat->lru_mask);
3121 			seq_printf(m, " N%d=%lu", nid, nr);
3122 		}
3123 		seq_putc(m, '\n');
3124 	}
3125 
3126 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3127 		struct mem_cgroup *iter;
3128 
3129 		nr = 0;
3130 		for_each_mem_cgroup_tree(iter, memcg)
3131 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3132 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3133 		for_each_node_state(nid, N_MEMORY) {
3134 			nr = 0;
3135 			for_each_mem_cgroup_tree(iter, memcg)
3136 				nr += mem_cgroup_node_nr_lru_pages(
3137 					iter, nid, stat->lru_mask);
3138 			seq_printf(m, " N%d=%lu", nid, nr);
3139 		}
3140 		seq_putc(m, '\n');
3141 	}
3142 
3143 	return 0;
3144 }
3145 #endif /* CONFIG_NUMA */
3146 
3147 static int memcg_stat_show(struct seq_file *m, void *v)
3148 {
3149 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3150 	unsigned long memory, memsw;
3151 	struct mem_cgroup *mi;
3152 	unsigned int i;
3153 
3154 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3155 		     MEM_CGROUP_STAT_NSTATS);
3156 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3157 		     MEM_CGROUP_EVENTS_NSTATS);
3158 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3159 
3160 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3161 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3162 			continue;
3163 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3164 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3165 	}
3166 
3167 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3168 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3169 			   mem_cgroup_read_events(memcg, i));
3170 
3171 	for (i = 0; i < NR_LRU_LISTS; i++)
3172 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3173 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3174 
3175 	/* Hierarchical information */
3176 	memory = memsw = PAGE_COUNTER_MAX;
3177 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3178 		memory = min(memory, mi->memory.limit);
3179 		memsw = min(memsw, mi->memsw.limit);
3180 	}
3181 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3182 		   (u64)memory * PAGE_SIZE);
3183 	if (do_memsw_account())
3184 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3185 			   (u64)memsw * PAGE_SIZE);
3186 
3187 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3188 		unsigned long long val = 0;
3189 
3190 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3191 			continue;
3192 		for_each_mem_cgroup_tree(mi, memcg)
3193 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3194 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3195 	}
3196 
3197 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3198 		unsigned long long val = 0;
3199 
3200 		for_each_mem_cgroup_tree(mi, memcg)
3201 			val += mem_cgroup_read_events(mi, i);
3202 		seq_printf(m, "total_%s %llu\n",
3203 			   mem_cgroup_events_names[i], val);
3204 	}
3205 
3206 	for (i = 0; i < NR_LRU_LISTS; i++) {
3207 		unsigned long long val = 0;
3208 
3209 		for_each_mem_cgroup_tree(mi, memcg)
3210 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3211 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3212 	}
3213 
3214 #ifdef CONFIG_DEBUG_VM
3215 	{
3216 		int nid, zid;
3217 		struct mem_cgroup_per_zone *mz;
3218 		struct zone_reclaim_stat *rstat;
3219 		unsigned long recent_rotated[2] = {0, 0};
3220 		unsigned long recent_scanned[2] = {0, 0};
3221 
3222 		for_each_online_node(nid)
3223 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3224 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3225 				rstat = &mz->lruvec.reclaim_stat;
3226 
3227 				recent_rotated[0] += rstat->recent_rotated[0];
3228 				recent_rotated[1] += rstat->recent_rotated[1];
3229 				recent_scanned[0] += rstat->recent_scanned[0];
3230 				recent_scanned[1] += rstat->recent_scanned[1];
3231 			}
3232 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3233 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3234 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3235 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3236 	}
3237 #endif
3238 
3239 	return 0;
3240 }
3241 
3242 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3243 				      struct cftype *cft)
3244 {
3245 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3246 
3247 	return mem_cgroup_swappiness(memcg);
3248 }
3249 
3250 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3251 				       struct cftype *cft, u64 val)
3252 {
3253 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3254 
3255 	if (val > 100)
3256 		return -EINVAL;
3257 
3258 	if (css->parent)
3259 		memcg->swappiness = val;
3260 	else
3261 		vm_swappiness = val;
3262 
3263 	return 0;
3264 }
3265 
3266 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3267 {
3268 	struct mem_cgroup_threshold_ary *t;
3269 	unsigned long usage;
3270 	int i;
3271 
3272 	rcu_read_lock();
3273 	if (!swap)
3274 		t = rcu_dereference(memcg->thresholds.primary);
3275 	else
3276 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3277 
3278 	if (!t)
3279 		goto unlock;
3280 
3281 	usage = mem_cgroup_usage(memcg, swap);
3282 
3283 	/*
3284 	 * current_threshold points to threshold just below or equal to usage.
3285 	 * If it's not true, a threshold was crossed after last
3286 	 * call of __mem_cgroup_threshold().
3287 	 */
3288 	i = t->current_threshold;
3289 
3290 	/*
3291 	 * Iterate backward over array of thresholds starting from
3292 	 * current_threshold and check if a threshold is crossed.
3293 	 * If none of thresholds below usage is crossed, we read
3294 	 * only one element of the array here.
3295 	 */
3296 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3297 		eventfd_signal(t->entries[i].eventfd, 1);
3298 
3299 	/* i = current_threshold + 1 */
3300 	i++;
3301 
3302 	/*
3303 	 * Iterate forward over array of thresholds starting from
3304 	 * current_threshold+1 and check if a threshold is crossed.
3305 	 * If none of thresholds above usage is crossed, we read
3306 	 * only one element of the array here.
3307 	 */
3308 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3309 		eventfd_signal(t->entries[i].eventfd, 1);
3310 
3311 	/* Update current_threshold */
3312 	t->current_threshold = i - 1;
3313 unlock:
3314 	rcu_read_unlock();
3315 }
3316 
3317 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3318 {
3319 	while (memcg) {
3320 		__mem_cgroup_threshold(memcg, false);
3321 		if (do_memsw_account())
3322 			__mem_cgroup_threshold(memcg, true);
3323 
3324 		memcg = parent_mem_cgroup(memcg);
3325 	}
3326 }
3327 
3328 static int compare_thresholds(const void *a, const void *b)
3329 {
3330 	const struct mem_cgroup_threshold *_a = a;
3331 	const struct mem_cgroup_threshold *_b = b;
3332 
3333 	if (_a->threshold > _b->threshold)
3334 		return 1;
3335 
3336 	if (_a->threshold < _b->threshold)
3337 		return -1;
3338 
3339 	return 0;
3340 }
3341 
3342 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3343 {
3344 	struct mem_cgroup_eventfd_list *ev;
3345 
3346 	spin_lock(&memcg_oom_lock);
3347 
3348 	list_for_each_entry(ev, &memcg->oom_notify, list)
3349 		eventfd_signal(ev->eventfd, 1);
3350 
3351 	spin_unlock(&memcg_oom_lock);
3352 	return 0;
3353 }
3354 
3355 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3356 {
3357 	struct mem_cgroup *iter;
3358 
3359 	for_each_mem_cgroup_tree(iter, memcg)
3360 		mem_cgroup_oom_notify_cb(iter);
3361 }
3362 
3363 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3364 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3365 {
3366 	struct mem_cgroup_thresholds *thresholds;
3367 	struct mem_cgroup_threshold_ary *new;
3368 	unsigned long threshold;
3369 	unsigned long usage;
3370 	int i, size, ret;
3371 
3372 	ret = page_counter_memparse(args, "-1", &threshold);
3373 	if (ret)
3374 		return ret;
3375 
3376 	mutex_lock(&memcg->thresholds_lock);
3377 
3378 	if (type == _MEM) {
3379 		thresholds = &memcg->thresholds;
3380 		usage = mem_cgroup_usage(memcg, false);
3381 	} else if (type == _MEMSWAP) {
3382 		thresholds = &memcg->memsw_thresholds;
3383 		usage = mem_cgroup_usage(memcg, true);
3384 	} else
3385 		BUG();
3386 
3387 	/* Check if a threshold crossed before adding a new one */
3388 	if (thresholds->primary)
3389 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3390 
3391 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3392 
3393 	/* Allocate memory for new array of thresholds */
3394 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3395 			GFP_KERNEL);
3396 	if (!new) {
3397 		ret = -ENOMEM;
3398 		goto unlock;
3399 	}
3400 	new->size = size;
3401 
3402 	/* Copy thresholds (if any) to new array */
3403 	if (thresholds->primary) {
3404 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3405 				sizeof(struct mem_cgroup_threshold));
3406 	}
3407 
3408 	/* Add new threshold */
3409 	new->entries[size - 1].eventfd = eventfd;
3410 	new->entries[size - 1].threshold = threshold;
3411 
3412 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3413 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3414 			compare_thresholds, NULL);
3415 
3416 	/* Find current threshold */
3417 	new->current_threshold = -1;
3418 	for (i = 0; i < size; i++) {
3419 		if (new->entries[i].threshold <= usage) {
3420 			/*
3421 			 * new->current_threshold will not be used until
3422 			 * rcu_assign_pointer(), so it's safe to increment
3423 			 * it here.
3424 			 */
3425 			++new->current_threshold;
3426 		} else
3427 			break;
3428 	}
3429 
3430 	/* Free old spare buffer and save old primary buffer as spare */
3431 	kfree(thresholds->spare);
3432 	thresholds->spare = thresholds->primary;
3433 
3434 	rcu_assign_pointer(thresholds->primary, new);
3435 
3436 	/* To be sure that nobody uses thresholds */
3437 	synchronize_rcu();
3438 
3439 unlock:
3440 	mutex_unlock(&memcg->thresholds_lock);
3441 
3442 	return ret;
3443 }
3444 
3445 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3446 	struct eventfd_ctx *eventfd, const char *args)
3447 {
3448 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3449 }
3450 
3451 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3452 	struct eventfd_ctx *eventfd, const char *args)
3453 {
3454 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3455 }
3456 
3457 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3458 	struct eventfd_ctx *eventfd, enum res_type type)
3459 {
3460 	struct mem_cgroup_thresholds *thresholds;
3461 	struct mem_cgroup_threshold_ary *new;
3462 	unsigned long usage;
3463 	int i, j, size;
3464 
3465 	mutex_lock(&memcg->thresholds_lock);
3466 
3467 	if (type == _MEM) {
3468 		thresholds = &memcg->thresholds;
3469 		usage = mem_cgroup_usage(memcg, false);
3470 	} else if (type == _MEMSWAP) {
3471 		thresholds = &memcg->memsw_thresholds;
3472 		usage = mem_cgroup_usage(memcg, true);
3473 	} else
3474 		BUG();
3475 
3476 	if (!thresholds->primary)
3477 		goto unlock;
3478 
3479 	/* Check if a threshold crossed before removing */
3480 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3481 
3482 	/* Calculate new number of threshold */
3483 	size = 0;
3484 	for (i = 0; i < thresholds->primary->size; i++) {
3485 		if (thresholds->primary->entries[i].eventfd != eventfd)
3486 			size++;
3487 	}
3488 
3489 	new = thresholds->spare;
3490 
3491 	/* Set thresholds array to NULL if we don't have thresholds */
3492 	if (!size) {
3493 		kfree(new);
3494 		new = NULL;
3495 		goto swap_buffers;
3496 	}
3497 
3498 	new->size = size;
3499 
3500 	/* Copy thresholds and find current threshold */
3501 	new->current_threshold = -1;
3502 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3503 		if (thresholds->primary->entries[i].eventfd == eventfd)
3504 			continue;
3505 
3506 		new->entries[j] = thresholds->primary->entries[i];
3507 		if (new->entries[j].threshold <= usage) {
3508 			/*
3509 			 * new->current_threshold will not be used
3510 			 * until rcu_assign_pointer(), so it's safe to increment
3511 			 * it here.
3512 			 */
3513 			++new->current_threshold;
3514 		}
3515 		j++;
3516 	}
3517 
3518 swap_buffers:
3519 	/* Swap primary and spare array */
3520 	thresholds->spare = thresholds->primary;
3521 
3522 	rcu_assign_pointer(thresholds->primary, new);
3523 
3524 	/* To be sure that nobody uses thresholds */
3525 	synchronize_rcu();
3526 
3527 	/* If all events are unregistered, free the spare array */
3528 	if (!new) {
3529 		kfree(thresholds->spare);
3530 		thresholds->spare = NULL;
3531 	}
3532 unlock:
3533 	mutex_unlock(&memcg->thresholds_lock);
3534 }
3535 
3536 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3537 	struct eventfd_ctx *eventfd)
3538 {
3539 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3540 }
3541 
3542 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3543 	struct eventfd_ctx *eventfd)
3544 {
3545 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3546 }
3547 
3548 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3549 	struct eventfd_ctx *eventfd, const char *args)
3550 {
3551 	struct mem_cgroup_eventfd_list *event;
3552 
3553 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3554 	if (!event)
3555 		return -ENOMEM;
3556 
3557 	spin_lock(&memcg_oom_lock);
3558 
3559 	event->eventfd = eventfd;
3560 	list_add(&event->list, &memcg->oom_notify);
3561 
3562 	/* already in OOM ? */
3563 	if (memcg->under_oom)
3564 		eventfd_signal(eventfd, 1);
3565 	spin_unlock(&memcg_oom_lock);
3566 
3567 	return 0;
3568 }
3569 
3570 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3571 	struct eventfd_ctx *eventfd)
3572 {
3573 	struct mem_cgroup_eventfd_list *ev, *tmp;
3574 
3575 	spin_lock(&memcg_oom_lock);
3576 
3577 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3578 		if (ev->eventfd == eventfd) {
3579 			list_del(&ev->list);
3580 			kfree(ev);
3581 		}
3582 	}
3583 
3584 	spin_unlock(&memcg_oom_lock);
3585 }
3586 
3587 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3588 {
3589 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3590 
3591 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3592 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3593 	return 0;
3594 }
3595 
3596 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3597 	struct cftype *cft, u64 val)
3598 {
3599 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3600 
3601 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3602 	if (!css->parent || !((val == 0) || (val == 1)))
3603 		return -EINVAL;
3604 
3605 	memcg->oom_kill_disable = val;
3606 	if (!val)
3607 		memcg_oom_recover(memcg);
3608 
3609 	return 0;
3610 }
3611 
3612 #ifdef CONFIG_CGROUP_WRITEBACK
3613 
3614 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3615 {
3616 	return &memcg->cgwb_list;
3617 }
3618 
3619 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3620 {
3621 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3622 }
3623 
3624 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3625 {
3626 	wb_domain_exit(&memcg->cgwb_domain);
3627 }
3628 
3629 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3630 {
3631 	wb_domain_size_changed(&memcg->cgwb_domain);
3632 }
3633 
3634 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3635 {
3636 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3637 
3638 	if (!memcg->css.parent)
3639 		return NULL;
3640 
3641 	return &memcg->cgwb_domain;
3642 }
3643 
3644 /**
3645  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3646  * @wb: bdi_writeback in question
3647  * @pfilepages: out parameter for number of file pages
3648  * @pheadroom: out parameter for number of allocatable pages according to memcg
3649  * @pdirty: out parameter for number of dirty pages
3650  * @pwriteback: out parameter for number of pages under writeback
3651  *
3652  * Determine the numbers of file, headroom, dirty, and writeback pages in
3653  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3654  * is a bit more involved.
3655  *
3656  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3657  * headroom is calculated as the lowest headroom of itself and the
3658  * ancestors.  Note that this doesn't consider the actual amount of
3659  * available memory in the system.  The caller should further cap
3660  * *@pheadroom accordingly.
3661  */
3662 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3663 			 unsigned long *pheadroom, unsigned long *pdirty,
3664 			 unsigned long *pwriteback)
3665 {
3666 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3667 	struct mem_cgroup *parent;
3668 
3669 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3670 
3671 	/* this should eventually include NR_UNSTABLE_NFS */
3672 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3673 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3674 						     (1 << LRU_ACTIVE_FILE));
3675 	*pheadroom = PAGE_COUNTER_MAX;
3676 
3677 	while ((parent = parent_mem_cgroup(memcg))) {
3678 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3679 		unsigned long used = page_counter_read(&memcg->memory);
3680 
3681 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3682 		memcg = parent;
3683 	}
3684 }
3685 
3686 #else	/* CONFIG_CGROUP_WRITEBACK */
3687 
3688 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3689 {
3690 	return 0;
3691 }
3692 
3693 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3694 {
3695 }
3696 
3697 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3698 {
3699 }
3700 
3701 #endif	/* CONFIG_CGROUP_WRITEBACK */
3702 
3703 /*
3704  * DO NOT USE IN NEW FILES.
3705  *
3706  * "cgroup.event_control" implementation.
3707  *
3708  * This is way over-engineered.  It tries to support fully configurable
3709  * events for each user.  Such level of flexibility is completely
3710  * unnecessary especially in the light of the planned unified hierarchy.
3711  *
3712  * Please deprecate this and replace with something simpler if at all
3713  * possible.
3714  */
3715 
3716 /*
3717  * Unregister event and free resources.
3718  *
3719  * Gets called from workqueue.
3720  */
3721 static void memcg_event_remove(struct work_struct *work)
3722 {
3723 	struct mem_cgroup_event *event =
3724 		container_of(work, struct mem_cgroup_event, remove);
3725 	struct mem_cgroup *memcg = event->memcg;
3726 
3727 	remove_wait_queue(event->wqh, &event->wait);
3728 
3729 	event->unregister_event(memcg, event->eventfd);
3730 
3731 	/* Notify userspace the event is going away. */
3732 	eventfd_signal(event->eventfd, 1);
3733 
3734 	eventfd_ctx_put(event->eventfd);
3735 	kfree(event);
3736 	css_put(&memcg->css);
3737 }
3738 
3739 /*
3740  * Gets called on POLLHUP on eventfd when user closes it.
3741  *
3742  * Called with wqh->lock held and interrupts disabled.
3743  */
3744 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3745 			    int sync, void *key)
3746 {
3747 	struct mem_cgroup_event *event =
3748 		container_of(wait, struct mem_cgroup_event, wait);
3749 	struct mem_cgroup *memcg = event->memcg;
3750 	unsigned long flags = (unsigned long)key;
3751 
3752 	if (flags & POLLHUP) {
3753 		/*
3754 		 * If the event has been detached at cgroup removal, we
3755 		 * can simply return knowing the other side will cleanup
3756 		 * for us.
3757 		 *
3758 		 * We can't race against event freeing since the other
3759 		 * side will require wqh->lock via remove_wait_queue(),
3760 		 * which we hold.
3761 		 */
3762 		spin_lock(&memcg->event_list_lock);
3763 		if (!list_empty(&event->list)) {
3764 			list_del_init(&event->list);
3765 			/*
3766 			 * We are in atomic context, but cgroup_event_remove()
3767 			 * may sleep, so we have to call it in workqueue.
3768 			 */
3769 			schedule_work(&event->remove);
3770 		}
3771 		spin_unlock(&memcg->event_list_lock);
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 static void memcg_event_ptable_queue_proc(struct file *file,
3778 		wait_queue_head_t *wqh, poll_table *pt)
3779 {
3780 	struct mem_cgroup_event *event =
3781 		container_of(pt, struct mem_cgroup_event, pt);
3782 
3783 	event->wqh = wqh;
3784 	add_wait_queue(wqh, &event->wait);
3785 }
3786 
3787 /*
3788  * DO NOT USE IN NEW FILES.
3789  *
3790  * Parse input and register new cgroup event handler.
3791  *
3792  * Input must be in format '<event_fd> <control_fd> <args>'.
3793  * Interpretation of args is defined by control file implementation.
3794  */
3795 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3796 					 char *buf, size_t nbytes, loff_t off)
3797 {
3798 	struct cgroup_subsys_state *css = of_css(of);
3799 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3800 	struct mem_cgroup_event *event;
3801 	struct cgroup_subsys_state *cfile_css;
3802 	unsigned int efd, cfd;
3803 	struct fd efile;
3804 	struct fd cfile;
3805 	const char *name;
3806 	char *endp;
3807 	int ret;
3808 
3809 	buf = strstrip(buf);
3810 
3811 	efd = simple_strtoul(buf, &endp, 10);
3812 	if (*endp != ' ')
3813 		return -EINVAL;
3814 	buf = endp + 1;
3815 
3816 	cfd = simple_strtoul(buf, &endp, 10);
3817 	if ((*endp != ' ') && (*endp != '\0'))
3818 		return -EINVAL;
3819 	buf = endp + 1;
3820 
3821 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3822 	if (!event)
3823 		return -ENOMEM;
3824 
3825 	event->memcg = memcg;
3826 	INIT_LIST_HEAD(&event->list);
3827 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3828 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3829 	INIT_WORK(&event->remove, memcg_event_remove);
3830 
3831 	efile = fdget(efd);
3832 	if (!efile.file) {
3833 		ret = -EBADF;
3834 		goto out_kfree;
3835 	}
3836 
3837 	event->eventfd = eventfd_ctx_fileget(efile.file);
3838 	if (IS_ERR(event->eventfd)) {
3839 		ret = PTR_ERR(event->eventfd);
3840 		goto out_put_efile;
3841 	}
3842 
3843 	cfile = fdget(cfd);
3844 	if (!cfile.file) {
3845 		ret = -EBADF;
3846 		goto out_put_eventfd;
3847 	}
3848 
3849 	/* the process need read permission on control file */
3850 	/* AV: shouldn't we check that it's been opened for read instead? */
3851 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3852 	if (ret < 0)
3853 		goto out_put_cfile;
3854 
3855 	/*
3856 	 * Determine the event callbacks and set them in @event.  This used
3857 	 * to be done via struct cftype but cgroup core no longer knows
3858 	 * about these events.  The following is crude but the whole thing
3859 	 * is for compatibility anyway.
3860 	 *
3861 	 * DO NOT ADD NEW FILES.
3862 	 */
3863 	name = cfile.file->f_path.dentry->d_name.name;
3864 
3865 	if (!strcmp(name, "memory.usage_in_bytes")) {
3866 		event->register_event = mem_cgroup_usage_register_event;
3867 		event->unregister_event = mem_cgroup_usage_unregister_event;
3868 	} else if (!strcmp(name, "memory.oom_control")) {
3869 		event->register_event = mem_cgroup_oom_register_event;
3870 		event->unregister_event = mem_cgroup_oom_unregister_event;
3871 	} else if (!strcmp(name, "memory.pressure_level")) {
3872 		event->register_event = vmpressure_register_event;
3873 		event->unregister_event = vmpressure_unregister_event;
3874 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3875 		event->register_event = memsw_cgroup_usage_register_event;
3876 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3877 	} else {
3878 		ret = -EINVAL;
3879 		goto out_put_cfile;
3880 	}
3881 
3882 	/*
3883 	 * Verify @cfile should belong to @css.  Also, remaining events are
3884 	 * automatically removed on cgroup destruction but the removal is
3885 	 * asynchronous, so take an extra ref on @css.
3886 	 */
3887 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3888 					       &memory_cgrp_subsys);
3889 	ret = -EINVAL;
3890 	if (IS_ERR(cfile_css))
3891 		goto out_put_cfile;
3892 	if (cfile_css != css) {
3893 		css_put(cfile_css);
3894 		goto out_put_cfile;
3895 	}
3896 
3897 	ret = event->register_event(memcg, event->eventfd, buf);
3898 	if (ret)
3899 		goto out_put_css;
3900 
3901 	efile.file->f_op->poll(efile.file, &event->pt);
3902 
3903 	spin_lock(&memcg->event_list_lock);
3904 	list_add(&event->list, &memcg->event_list);
3905 	spin_unlock(&memcg->event_list_lock);
3906 
3907 	fdput(cfile);
3908 	fdput(efile);
3909 
3910 	return nbytes;
3911 
3912 out_put_css:
3913 	css_put(css);
3914 out_put_cfile:
3915 	fdput(cfile);
3916 out_put_eventfd:
3917 	eventfd_ctx_put(event->eventfd);
3918 out_put_efile:
3919 	fdput(efile);
3920 out_kfree:
3921 	kfree(event);
3922 
3923 	return ret;
3924 }
3925 
3926 static struct cftype mem_cgroup_legacy_files[] = {
3927 	{
3928 		.name = "usage_in_bytes",
3929 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3930 		.read_u64 = mem_cgroup_read_u64,
3931 	},
3932 	{
3933 		.name = "max_usage_in_bytes",
3934 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3935 		.write = mem_cgroup_reset,
3936 		.read_u64 = mem_cgroup_read_u64,
3937 	},
3938 	{
3939 		.name = "limit_in_bytes",
3940 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3941 		.write = mem_cgroup_write,
3942 		.read_u64 = mem_cgroup_read_u64,
3943 	},
3944 	{
3945 		.name = "soft_limit_in_bytes",
3946 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3947 		.write = mem_cgroup_write,
3948 		.read_u64 = mem_cgroup_read_u64,
3949 	},
3950 	{
3951 		.name = "failcnt",
3952 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3953 		.write = mem_cgroup_reset,
3954 		.read_u64 = mem_cgroup_read_u64,
3955 	},
3956 	{
3957 		.name = "stat",
3958 		.seq_show = memcg_stat_show,
3959 	},
3960 	{
3961 		.name = "force_empty",
3962 		.write = mem_cgroup_force_empty_write,
3963 	},
3964 	{
3965 		.name = "use_hierarchy",
3966 		.write_u64 = mem_cgroup_hierarchy_write,
3967 		.read_u64 = mem_cgroup_hierarchy_read,
3968 	},
3969 	{
3970 		.name = "cgroup.event_control",		/* XXX: for compat */
3971 		.write = memcg_write_event_control,
3972 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3973 	},
3974 	{
3975 		.name = "swappiness",
3976 		.read_u64 = mem_cgroup_swappiness_read,
3977 		.write_u64 = mem_cgroup_swappiness_write,
3978 	},
3979 	{
3980 		.name = "move_charge_at_immigrate",
3981 		.read_u64 = mem_cgroup_move_charge_read,
3982 		.write_u64 = mem_cgroup_move_charge_write,
3983 	},
3984 	{
3985 		.name = "oom_control",
3986 		.seq_show = mem_cgroup_oom_control_read,
3987 		.write_u64 = mem_cgroup_oom_control_write,
3988 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3989 	},
3990 	{
3991 		.name = "pressure_level",
3992 	},
3993 #ifdef CONFIG_NUMA
3994 	{
3995 		.name = "numa_stat",
3996 		.seq_show = memcg_numa_stat_show,
3997 	},
3998 #endif
3999 	{
4000 		.name = "kmem.limit_in_bytes",
4001 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4002 		.write = mem_cgroup_write,
4003 		.read_u64 = mem_cgroup_read_u64,
4004 	},
4005 	{
4006 		.name = "kmem.usage_in_bytes",
4007 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4008 		.read_u64 = mem_cgroup_read_u64,
4009 	},
4010 	{
4011 		.name = "kmem.failcnt",
4012 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4013 		.write = mem_cgroup_reset,
4014 		.read_u64 = mem_cgroup_read_u64,
4015 	},
4016 	{
4017 		.name = "kmem.max_usage_in_bytes",
4018 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4019 		.write = mem_cgroup_reset,
4020 		.read_u64 = mem_cgroup_read_u64,
4021 	},
4022 #ifdef CONFIG_SLABINFO
4023 	{
4024 		.name = "kmem.slabinfo",
4025 		.seq_start = slab_start,
4026 		.seq_next = slab_next,
4027 		.seq_stop = slab_stop,
4028 		.seq_show = memcg_slab_show,
4029 	},
4030 #endif
4031 	{
4032 		.name = "kmem.tcp.limit_in_bytes",
4033 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4034 		.write = mem_cgroup_write,
4035 		.read_u64 = mem_cgroup_read_u64,
4036 	},
4037 	{
4038 		.name = "kmem.tcp.usage_in_bytes",
4039 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4040 		.read_u64 = mem_cgroup_read_u64,
4041 	},
4042 	{
4043 		.name = "kmem.tcp.failcnt",
4044 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4045 		.write = mem_cgroup_reset,
4046 		.read_u64 = mem_cgroup_read_u64,
4047 	},
4048 	{
4049 		.name = "kmem.tcp.max_usage_in_bytes",
4050 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4051 		.write = mem_cgroup_reset,
4052 		.read_u64 = mem_cgroup_read_u64,
4053 	},
4054 	{ },	/* terminate */
4055 };
4056 
4057 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4058 {
4059 	struct mem_cgroup_per_node *pn;
4060 	struct mem_cgroup_per_zone *mz;
4061 	int zone, tmp = node;
4062 	/*
4063 	 * This routine is called against possible nodes.
4064 	 * But it's BUG to call kmalloc() against offline node.
4065 	 *
4066 	 * TODO: this routine can waste much memory for nodes which will
4067 	 *       never be onlined. It's better to use memory hotplug callback
4068 	 *       function.
4069 	 */
4070 	if (!node_state(node, N_NORMAL_MEMORY))
4071 		tmp = -1;
4072 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4073 	if (!pn)
4074 		return 1;
4075 
4076 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4077 		mz = &pn->zoneinfo[zone];
4078 		lruvec_init(&mz->lruvec);
4079 		mz->usage_in_excess = 0;
4080 		mz->on_tree = false;
4081 		mz->memcg = memcg;
4082 	}
4083 	memcg->nodeinfo[node] = pn;
4084 	return 0;
4085 }
4086 
4087 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4088 {
4089 	kfree(memcg->nodeinfo[node]);
4090 }
4091 
4092 static void mem_cgroup_free(struct mem_cgroup *memcg)
4093 {
4094 	int node;
4095 
4096 	memcg_wb_domain_exit(memcg);
4097 	for_each_node(node)
4098 		free_mem_cgroup_per_zone_info(memcg, node);
4099 	free_percpu(memcg->stat);
4100 	kfree(memcg);
4101 }
4102 
4103 static struct mem_cgroup *mem_cgroup_alloc(void)
4104 {
4105 	struct mem_cgroup *memcg;
4106 	size_t size;
4107 	int node;
4108 
4109 	size = sizeof(struct mem_cgroup);
4110 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4111 
4112 	memcg = kzalloc(size, GFP_KERNEL);
4113 	if (!memcg)
4114 		return NULL;
4115 
4116 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4117 	if (!memcg->stat)
4118 		goto fail;
4119 
4120 	for_each_node(node)
4121 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4122 			goto fail;
4123 
4124 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4125 		goto fail;
4126 
4127 	INIT_WORK(&memcg->high_work, high_work_func);
4128 	memcg->last_scanned_node = MAX_NUMNODES;
4129 	INIT_LIST_HEAD(&memcg->oom_notify);
4130 	mutex_init(&memcg->thresholds_lock);
4131 	spin_lock_init(&memcg->move_lock);
4132 	vmpressure_init(&memcg->vmpressure);
4133 	INIT_LIST_HEAD(&memcg->event_list);
4134 	spin_lock_init(&memcg->event_list_lock);
4135 	memcg->socket_pressure = jiffies;
4136 #ifndef CONFIG_SLOB
4137 	memcg->kmemcg_id = -1;
4138 #endif
4139 #ifdef CONFIG_CGROUP_WRITEBACK
4140 	INIT_LIST_HEAD(&memcg->cgwb_list);
4141 #endif
4142 	return memcg;
4143 fail:
4144 	mem_cgroup_free(memcg);
4145 	return NULL;
4146 }
4147 
4148 static struct cgroup_subsys_state * __ref
4149 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4150 {
4151 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4152 	struct mem_cgroup *memcg;
4153 	long error = -ENOMEM;
4154 
4155 	memcg = mem_cgroup_alloc();
4156 	if (!memcg)
4157 		return ERR_PTR(error);
4158 
4159 	memcg->high = PAGE_COUNTER_MAX;
4160 	memcg->soft_limit = PAGE_COUNTER_MAX;
4161 	if (parent) {
4162 		memcg->swappiness = mem_cgroup_swappiness(parent);
4163 		memcg->oom_kill_disable = parent->oom_kill_disable;
4164 	}
4165 	if (parent && parent->use_hierarchy) {
4166 		memcg->use_hierarchy = true;
4167 		page_counter_init(&memcg->memory, &parent->memory);
4168 		page_counter_init(&memcg->swap, &parent->swap);
4169 		page_counter_init(&memcg->memsw, &parent->memsw);
4170 		page_counter_init(&memcg->kmem, &parent->kmem);
4171 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4172 	} else {
4173 		page_counter_init(&memcg->memory, NULL);
4174 		page_counter_init(&memcg->swap, NULL);
4175 		page_counter_init(&memcg->memsw, NULL);
4176 		page_counter_init(&memcg->kmem, NULL);
4177 		page_counter_init(&memcg->tcpmem, NULL);
4178 		/*
4179 		 * Deeper hierachy with use_hierarchy == false doesn't make
4180 		 * much sense so let cgroup subsystem know about this
4181 		 * unfortunate state in our controller.
4182 		 */
4183 		if (parent != root_mem_cgroup)
4184 			memory_cgrp_subsys.broken_hierarchy = true;
4185 	}
4186 
4187 	/* The following stuff does not apply to the root */
4188 	if (!parent) {
4189 		root_mem_cgroup = memcg;
4190 		return &memcg->css;
4191 	}
4192 
4193 	error = memcg_online_kmem(memcg);
4194 	if (error)
4195 		goto fail;
4196 
4197 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4198 		static_branch_inc(&memcg_sockets_enabled_key);
4199 
4200 	return &memcg->css;
4201 fail:
4202 	mem_cgroup_free(memcg);
4203 	return NULL;
4204 }
4205 
4206 static int
4207 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4208 {
4209 	if (css->id > MEM_CGROUP_ID_MAX)
4210 		return -ENOSPC;
4211 
4212 	return 0;
4213 }
4214 
4215 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4216 {
4217 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4218 	struct mem_cgroup_event *event, *tmp;
4219 
4220 	/*
4221 	 * Unregister events and notify userspace.
4222 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4223 	 * directory to avoid race between userspace and kernelspace.
4224 	 */
4225 	spin_lock(&memcg->event_list_lock);
4226 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4227 		list_del_init(&event->list);
4228 		schedule_work(&event->remove);
4229 	}
4230 	spin_unlock(&memcg->event_list_lock);
4231 
4232 	memcg_offline_kmem(memcg);
4233 	wb_memcg_offline(memcg);
4234 }
4235 
4236 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4237 {
4238 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4239 
4240 	invalidate_reclaim_iterators(memcg);
4241 }
4242 
4243 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4244 {
4245 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4246 
4247 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4248 		static_branch_dec(&memcg_sockets_enabled_key);
4249 
4250 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4251 		static_branch_dec(&memcg_sockets_enabled_key);
4252 
4253 	vmpressure_cleanup(&memcg->vmpressure);
4254 	cancel_work_sync(&memcg->high_work);
4255 	mem_cgroup_remove_from_trees(memcg);
4256 	memcg_free_kmem(memcg);
4257 	mem_cgroup_free(memcg);
4258 }
4259 
4260 /**
4261  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4262  * @css: the target css
4263  *
4264  * Reset the states of the mem_cgroup associated with @css.  This is
4265  * invoked when the userland requests disabling on the default hierarchy
4266  * but the memcg is pinned through dependency.  The memcg should stop
4267  * applying policies and should revert to the vanilla state as it may be
4268  * made visible again.
4269  *
4270  * The current implementation only resets the essential configurations.
4271  * This needs to be expanded to cover all the visible parts.
4272  */
4273 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4274 {
4275 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4276 
4277 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4278 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4279 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4280 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4281 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4282 	memcg->low = 0;
4283 	memcg->high = PAGE_COUNTER_MAX;
4284 	memcg->soft_limit = PAGE_COUNTER_MAX;
4285 	memcg_wb_domain_size_changed(memcg);
4286 }
4287 
4288 #ifdef CONFIG_MMU
4289 /* Handlers for move charge at task migration. */
4290 static int mem_cgroup_do_precharge(unsigned long count)
4291 {
4292 	int ret;
4293 
4294 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4295 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4296 	if (!ret) {
4297 		mc.precharge += count;
4298 		return ret;
4299 	}
4300 
4301 	/* Try charges one by one with reclaim */
4302 	while (count--) {
4303 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4304 		if (ret)
4305 			return ret;
4306 		mc.precharge++;
4307 		cond_resched();
4308 	}
4309 	return 0;
4310 }
4311 
4312 union mc_target {
4313 	struct page	*page;
4314 	swp_entry_t	ent;
4315 };
4316 
4317 enum mc_target_type {
4318 	MC_TARGET_NONE = 0,
4319 	MC_TARGET_PAGE,
4320 	MC_TARGET_SWAP,
4321 };
4322 
4323 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4324 						unsigned long addr, pte_t ptent)
4325 {
4326 	struct page *page = vm_normal_page(vma, addr, ptent);
4327 
4328 	if (!page || !page_mapped(page))
4329 		return NULL;
4330 	if (PageAnon(page)) {
4331 		if (!(mc.flags & MOVE_ANON))
4332 			return NULL;
4333 	} else {
4334 		if (!(mc.flags & MOVE_FILE))
4335 			return NULL;
4336 	}
4337 	if (!get_page_unless_zero(page))
4338 		return NULL;
4339 
4340 	return page;
4341 }
4342 
4343 #ifdef CONFIG_SWAP
4344 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4345 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4346 {
4347 	struct page *page = NULL;
4348 	swp_entry_t ent = pte_to_swp_entry(ptent);
4349 
4350 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4351 		return NULL;
4352 	/*
4353 	 * Because lookup_swap_cache() updates some statistics counter,
4354 	 * we call find_get_page() with swapper_space directly.
4355 	 */
4356 	page = find_get_page(swap_address_space(ent), ent.val);
4357 	if (do_memsw_account())
4358 		entry->val = ent.val;
4359 
4360 	return page;
4361 }
4362 #else
4363 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4364 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4365 {
4366 	return NULL;
4367 }
4368 #endif
4369 
4370 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4371 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4372 {
4373 	struct page *page = NULL;
4374 	struct address_space *mapping;
4375 	pgoff_t pgoff;
4376 
4377 	if (!vma->vm_file) /* anonymous vma */
4378 		return NULL;
4379 	if (!(mc.flags & MOVE_FILE))
4380 		return NULL;
4381 
4382 	mapping = vma->vm_file->f_mapping;
4383 	pgoff = linear_page_index(vma, addr);
4384 
4385 	/* page is moved even if it's not RSS of this task(page-faulted). */
4386 #ifdef CONFIG_SWAP
4387 	/* shmem/tmpfs may report page out on swap: account for that too. */
4388 	if (shmem_mapping(mapping)) {
4389 		page = find_get_entry(mapping, pgoff);
4390 		if (radix_tree_exceptional_entry(page)) {
4391 			swp_entry_t swp = radix_to_swp_entry(page);
4392 			if (do_memsw_account())
4393 				*entry = swp;
4394 			page = find_get_page(swap_address_space(swp), swp.val);
4395 		}
4396 	} else
4397 		page = find_get_page(mapping, pgoff);
4398 #else
4399 	page = find_get_page(mapping, pgoff);
4400 #endif
4401 	return page;
4402 }
4403 
4404 /**
4405  * mem_cgroup_move_account - move account of the page
4406  * @page: the page
4407  * @nr_pages: number of regular pages (>1 for huge pages)
4408  * @from: mem_cgroup which the page is moved from.
4409  * @to:	mem_cgroup which the page is moved to. @from != @to.
4410  *
4411  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4412  *
4413  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4414  * from old cgroup.
4415  */
4416 static int mem_cgroup_move_account(struct page *page,
4417 				   bool compound,
4418 				   struct mem_cgroup *from,
4419 				   struct mem_cgroup *to)
4420 {
4421 	unsigned long flags;
4422 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4423 	int ret;
4424 	bool anon;
4425 
4426 	VM_BUG_ON(from == to);
4427 	VM_BUG_ON_PAGE(PageLRU(page), page);
4428 	VM_BUG_ON(compound && !PageTransHuge(page));
4429 
4430 	/*
4431 	 * Prevent mem_cgroup_migrate() from looking at
4432 	 * page->mem_cgroup of its source page while we change it.
4433 	 */
4434 	ret = -EBUSY;
4435 	if (!trylock_page(page))
4436 		goto out;
4437 
4438 	ret = -EINVAL;
4439 	if (page->mem_cgroup != from)
4440 		goto out_unlock;
4441 
4442 	anon = PageAnon(page);
4443 
4444 	spin_lock_irqsave(&from->move_lock, flags);
4445 
4446 	if (!anon && page_mapped(page)) {
4447 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4448 			       nr_pages);
4449 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4450 			       nr_pages);
4451 	}
4452 
4453 	/*
4454 	 * move_lock grabbed above and caller set from->moving_account, so
4455 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4456 	 * So mapping should be stable for dirty pages.
4457 	 */
4458 	if (!anon && PageDirty(page)) {
4459 		struct address_space *mapping = page_mapping(page);
4460 
4461 		if (mapping_cap_account_dirty(mapping)) {
4462 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4463 				       nr_pages);
4464 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4465 				       nr_pages);
4466 		}
4467 	}
4468 
4469 	if (PageWriteback(page)) {
4470 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4471 			       nr_pages);
4472 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4473 			       nr_pages);
4474 	}
4475 
4476 	/*
4477 	 * It is safe to change page->mem_cgroup here because the page
4478 	 * is referenced, charged, and isolated - we can't race with
4479 	 * uncharging, charging, migration, or LRU putback.
4480 	 */
4481 
4482 	/* caller should have done css_get */
4483 	page->mem_cgroup = to;
4484 	spin_unlock_irqrestore(&from->move_lock, flags);
4485 
4486 	ret = 0;
4487 
4488 	local_irq_disable();
4489 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4490 	memcg_check_events(to, page);
4491 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4492 	memcg_check_events(from, page);
4493 	local_irq_enable();
4494 out_unlock:
4495 	unlock_page(page);
4496 out:
4497 	return ret;
4498 }
4499 
4500 /**
4501  * get_mctgt_type - get target type of moving charge
4502  * @vma: the vma the pte to be checked belongs
4503  * @addr: the address corresponding to the pte to be checked
4504  * @ptent: the pte to be checked
4505  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4506  *
4507  * Returns
4508  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4509  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4510  *     move charge. if @target is not NULL, the page is stored in target->page
4511  *     with extra refcnt got(Callers should handle it).
4512  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4513  *     target for charge migration. if @target is not NULL, the entry is stored
4514  *     in target->ent.
4515  *
4516  * Called with pte lock held.
4517  */
4518 
4519 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4520 		unsigned long addr, pte_t ptent, union mc_target *target)
4521 {
4522 	struct page *page = NULL;
4523 	enum mc_target_type ret = MC_TARGET_NONE;
4524 	swp_entry_t ent = { .val = 0 };
4525 
4526 	if (pte_present(ptent))
4527 		page = mc_handle_present_pte(vma, addr, ptent);
4528 	else if (is_swap_pte(ptent))
4529 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4530 	else if (pte_none(ptent))
4531 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4532 
4533 	if (!page && !ent.val)
4534 		return ret;
4535 	if (page) {
4536 		/*
4537 		 * Do only loose check w/o serialization.
4538 		 * mem_cgroup_move_account() checks the page is valid or
4539 		 * not under LRU exclusion.
4540 		 */
4541 		if (page->mem_cgroup == mc.from) {
4542 			ret = MC_TARGET_PAGE;
4543 			if (target)
4544 				target->page = page;
4545 		}
4546 		if (!ret || !target)
4547 			put_page(page);
4548 	}
4549 	/* There is a swap entry and a page doesn't exist or isn't charged */
4550 	if (ent.val && !ret &&
4551 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4552 		ret = MC_TARGET_SWAP;
4553 		if (target)
4554 			target->ent = ent;
4555 	}
4556 	return ret;
4557 }
4558 
4559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4560 /*
4561  * We don't consider swapping or file mapped pages because THP does not
4562  * support them for now.
4563  * Caller should make sure that pmd_trans_huge(pmd) is true.
4564  */
4565 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 		unsigned long addr, pmd_t pmd, union mc_target *target)
4567 {
4568 	struct page *page = NULL;
4569 	enum mc_target_type ret = MC_TARGET_NONE;
4570 
4571 	page = pmd_page(pmd);
4572 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4573 	if (!(mc.flags & MOVE_ANON))
4574 		return ret;
4575 	if (page->mem_cgroup == mc.from) {
4576 		ret = MC_TARGET_PAGE;
4577 		if (target) {
4578 			get_page(page);
4579 			target->page = page;
4580 		}
4581 	}
4582 	return ret;
4583 }
4584 #else
4585 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4586 		unsigned long addr, pmd_t pmd, union mc_target *target)
4587 {
4588 	return MC_TARGET_NONE;
4589 }
4590 #endif
4591 
4592 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4593 					unsigned long addr, unsigned long end,
4594 					struct mm_walk *walk)
4595 {
4596 	struct vm_area_struct *vma = walk->vma;
4597 	pte_t *pte;
4598 	spinlock_t *ptl;
4599 
4600 	ptl = pmd_trans_huge_lock(pmd, vma);
4601 	if (ptl) {
4602 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4603 			mc.precharge += HPAGE_PMD_NR;
4604 		spin_unlock(ptl);
4605 		return 0;
4606 	}
4607 
4608 	if (pmd_trans_unstable(pmd))
4609 		return 0;
4610 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4611 	for (; addr != end; pte++, addr += PAGE_SIZE)
4612 		if (get_mctgt_type(vma, addr, *pte, NULL))
4613 			mc.precharge++;	/* increment precharge temporarily */
4614 	pte_unmap_unlock(pte - 1, ptl);
4615 	cond_resched();
4616 
4617 	return 0;
4618 }
4619 
4620 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4621 {
4622 	unsigned long precharge;
4623 
4624 	struct mm_walk mem_cgroup_count_precharge_walk = {
4625 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4626 		.mm = mm,
4627 	};
4628 	down_read(&mm->mmap_sem);
4629 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4630 	up_read(&mm->mmap_sem);
4631 
4632 	precharge = mc.precharge;
4633 	mc.precharge = 0;
4634 
4635 	return precharge;
4636 }
4637 
4638 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4639 {
4640 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4641 
4642 	VM_BUG_ON(mc.moving_task);
4643 	mc.moving_task = current;
4644 	return mem_cgroup_do_precharge(precharge);
4645 }
4646 
4647 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4648 static void __mem_cgroup_clear_mc(void)
4649 {
4650 	struct mem_cgroup *from = mc.from;
4651 	struct mem_cgroup *to = mc.to;
4652 
4653 	/* we must uncharge all the leftover precharges from mc.to */
4654 	if (mc.precharge) {
4655 		cancel_charge(mc.to, mc.precharge);
4656 		mc.precharge = 0;
4657 	}
4658 	/*
4659 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4660 	 * we must uncharge here.
4661 	 */
4662 	if (mc.moved_charge) {
4663 		cancel_charge(mc.from, mc.moved_charge);
4664 		mc.moved_charge = 0;
4665 	}
4666 	/* we must fixup refcnts and charges */
4667 	if (mc.moved_swap) {
4668 		/* uncharge swap account from the old cgroup */
4669 		if (!mem_cgroup_is_root(mc.from))
4670 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4671 
4672 		/*
4673 		 * we charged both to->memory and to->memsw, so we
4674 		 * should uncharge to->memory.
4675 		 */
4676 		if (!mem_cgroup_is_root(mc.to))
4677 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4678 
4679 		css_put_many(&mc.from->css, mc.moved_swap);
4680 
4681 		/* we've already done css_get(mc.to) */
4682 		mc.moved_swap = 0;
4683 	}
4684 	memcg_oom_recover(from);
4685 	memcg_oom_recover(to);
4686 	wake_up_all(&mc.waitq);
4687 }
4688 
4689 static void mem_cgroup_clear_mc(void)
4690 {
4691 	struct mm_struct *mm = mc.mm;
4692 
4693 	/*
4694 	 * we must clear moving_task before waking up waiters at the end of
4695 	 * task migration.
4696 	 */
4697 	mc.moving_task = NULL;
4698 	__mem_cgroup_clear_mc();
4699 	spin_lock(&mc.lock);
4700 	mc.from = NULL;
4701 	mc.to = NULL;
4702 	mc.mm = NULL;
4703 	spin_unlock(&mc.lock);
4704 
4705 	mmput(mm);
4706 }
4707 
4708 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4709 {
4710 	struct cgroup_subsys_state *css;
4711 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4712 	struct mem_cgroup *from;
4713 	struct task_struct *leader, *p;
4714 	struct mm_struct *mm;
4715 	unsigned long move_flags;
4716 	int ret = 0;
4717 
4718 	/* charge immigration isn't supported on the default hierarchy */
4719 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4720 		return 0;
4721 
4722 	/*
4723 	 * Multi-process migrations only happen on the default hierarchy
4724 	 * where charge immigration is not used.  Perform charge
4725 	 * immigration if @tset contains a leader and whine if there are
4726 	 * multiple.
4727 	 */
4728 	p = NULL;
4729 	cgroup_taskset_for_each_leader(leader, css, tset) {
4730 		WARN_ON_ONCE(p);
4731 		p = leader;
4732 		memcg = mem_cgroup_from_css(css);
4733 	}
4734 	if (!p)
4735 		return 0;
4736 
4737 	/*
4738 	 * We are now commited to this value whatever it is. Changes in this
4739 	 * tunable will only affect upcoming migrations, not the current one.
4740 	 * So we need to save it, and keep it going.
4741 	 */
4742 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4743 	if (!move_flags)
4744 		return 0;
4745 
4746 	from = mem_cgroup_from_task(p);
4747 
4748 	VM_BUG_ON(from == memcg);
4749 
4750 	mm = get_task_mm(p);
4751 	if (!mm)
4752 		return 0;
4753 	/* We move charges only when we move a owner of the mm */
4754 	if (mm->owner == p) {
4755 		VM_BUG_ON(mc.from);
4756 		VM_BUG_ON(mc.to);
4757 		VM_BUG_ON(mc.precharge);
4758 		VM_BUG_ON(mc.moved_charge);
4759 		VM_BUG_ON(mc.moved_swap);
4760 
4761 		spin_lock(&mc.lock);
4762 		mc.mm = mm;
4763 		mc.from = from;
4764 		mc.to = memcg;
4765 		mc.flags = move_flags;
4766 		spin_unlock(&mc.lock);
4767 		/* We set mc.moving_task later */
4768 
4769 		ret = mem_cgroup_precharge_mc(mm);
4770 		if (ret)
4771 			mem_cgroup_clear_mc();
4772 	} else {
4773 		mmput(mm);
4774 	}
4775 	return ret;
4776 }
4777 
4778 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4779 {
4780 	if (mc.to)
4781 		mem_cgroup_clear_mc();
4782 }
4783 
4784 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4785 				unsigned long addr, unsigned long end,
4786 				struct mm_walk *walk)
4787 {
4788 	int ret = 0;
4789 	struct vm_area_struct *vma = walk->vma;
4790 	pte_t *pte;
4791 	spinlock_t *ptl;
4792 	enum mc_target_type target_type;
4793 	union mc_target target;
4794 	struct page *page;
4795 
4796 	ptl = pmd_trans_huge_lock(pmd, vma);
4797 	if (ptl) {
4798 		if (mc.precharge < HPAGE_PMD_NR) {
4799 			spin_unlock(ptl);
4800 			return 0;
4801 		}
4802 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4803 		if (target_type == MC_TARGET_PAGE) {
4804 			page = target.page;
4805 			if (!isolate_lru_page(page)) {
4806 				if (!mem_cgroup_move_account(page, true,
4807 							     mc.from, mc.to)) {
4808 					mc.precharge -= HPAGE_PMD_NR;
4809 					mc.moved_charge += HPAGE_PMD_NR;
4810 				}
4811 				putback_lru_page(page);
4812 			}
4813 			put_page(page);
4814 		}
4815 		spin_unlock(ptl);
4816 		return 0;
4817 	}
4818 
4819 	if (pmd_trans_unstable(pmd))
4820 		return 0;
4821 retry:
4822 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4823 	for (; addr != end; addr += PAGE_SIZE) {
4824 		pte_t ptent = *(pte++);
4825 		swp_entry_t ent;
4826 
4827 		if (!mc.precharge)
4828 			break;
4829 
4830 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4831 		case MC_TARGET_PAGE:
4832 			page = target.page;
4833 			/*
4834 			 * We can have a part of the split pmd here. Moving it
4835 			 * can be done but it would be too convoluted so simply
4836 			 * ignore such a partial THP and keep it in original
4837 			 * memcg. There should be somebody mapping the head.
4838 			 */
4839 			if (PageTransCompound(page))
4840 				goto put;
4841 			if (isolate_lru_page(page))
4842 				goto put;
4843 			if (!mem_cgroup_move_account(page, false,
4844 						mc.from, mc.to)) {
4845 				mc.precharge--;
4846 				/* we uncharge from mc.from later. */
4847 				mc.moved_charge++;
4848 			}
4849 			putback_lru_page(page);
4850 put:			/* get_mctgt_type() gets the page */
4851 			put_page(page);
4852 			break;
4853 		case MC_TARGET_SWAP:
4854 			ent = target.ent;
4855 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4856 				mc.precharge--;
4857 				/* we fixup refcnts and charges later. */
4858 				mc.moved_swap++;
4859 			}
4860 			break;
4861 		default:
4862 			break;
4863 		}
4864 	}
4865 	pte_unmap_unlock(pte - 1, ptl);
4866 	cond_resched();
4867 
4868 	if (addr != end) {
4869 		/*
4870 		 * We have consumed all precharges we got in can_attach().
4871 		 * We try charge one by one, but don't do any additional
4872 		 * charges to mc.to if we have failed in charge once in attach()
4873 		 * phase.
4874 		 */
4875 		ret = mem_cgroup_do_precharge(1);
4876 		if (!ret)
4877 			goto retry;
4878 	}
4879 
4880 	return ret;
4881 }
4882 
4883 static void mem_cgroup_move_charge(void)
4884 {
4885 	struct mm_walk mem_cgroup_move_charge_walk = {
4886 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4887 		.mm = mc.mm,
4888 	};
4889 
4890 	lru_add_drain_all();
4891 	/*
4892 	 * Signal lock_page_memcg() to take the memcg's move_lock
4893 	 * while we're moving its pages to another memcg. Then wait
4894 	 * for already started RCU-only updates to finish.
4895 	 */
4896 	atomic_inc(&mc.from->moving_account);
4897 	synchronize_rcu();
4898 retry:
4899 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4900 		/*
4901 		 * Someone who are holding the mmap_sem might be waiting in
4902 		 * waitq. So we cancel all extra charges, wake up all waiters,
4903 		 * and retry. Because we cancel precharges, we might not be able
4904 		 * to move enough charges, but moving charge is a best-effort
4905 		 * feature anyway, so it wouldn't be a big problem.
4906 		 */
4907 		__mem_cgroup_clear_mc();
4908 		cond_resched();
4909 		goto retry;
4910 	}
4911 	/*
4912 	 * When we have consumed all precharges and failed in doing
4913 	 * additional charge, the page walk just aborts.
4914 	 */
4915 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4916 	up_read(&mc.mm->mmap_sem);
4917 	atomic_dec(&mc.from->moving_account);
4918 }
4919 
4920 static void mem_cgroup_move_task(void)
4921 {
4922 	if (mc.to) {
4923 		mem_cgroup_move_charge();
4924 		mem_cgroup_clear_mc();
4925 	}
4926 }
4927 #else	/* !CONFIG_MMU */
4928 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4929 {
4930 	return 0;
4931 }
4932 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4933 {
4934 }
4935 static void mem_cgroup_move_task(void)
4936 {
4937 }
4938 #endif
4939 
4940 /*
4941  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4942  * to verify whether we're attached to the default hierarchy on each mount
4943  * attempt.
4944  */
4945 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4946 {
4947 	/*
4948 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4949 	 * guarantees that @root doesn't have any children, so turning it
4950 	 * on for the root memcg is enough.
4951 	 */
4952 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4953 		root_mem_cgroup->use_hierarchy = true;
4954 	else
4955 		root_mem_cgroup->use_hierarchy = false;
4956 }
4957 
4958 static u64 memory_current_read(struct cgroup_subsys_state *css,
4959 			       struct cftype *cft)
4960 {
4961 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4962 
4963 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4964 }
4965 
4966 static int memory_low_show(struct seq_file *m, void *v)
4967 {
4968 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4969 	unsigned long low = READ_ONCE(memcg->low);
4970 
4971 	if (low == PAGE_COUNTER_MAX)
4972 		seq_puts(m, "max\n");
4973 	else
4974 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4975 
4976 	return 0;
4977 }
4978 
4979 static ssize_t memory_low_write(struct kernfs_open_file *of,
4980 				char *buf, size_t nbytes, loff_t off)
4981 {
4982 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4983 	unsigned long low;
4984 	int err;
4985 
4986 	buf = strstrip(buf);
4987 	err = page_counter_memparse(buf, "max", &low);
4988 	if (err)
4989 		return err;
4990 
4991 	memcg->low = low;
4992 
4993 	return nbytes;
4994 }
4995 
4996 static int memory_high_show(struct seq_file *m, void *v)
4997 {
4998 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4999 	unsigned long high = READ_ONCE(memcg->high);
5000 
5001 	if (high == PAGE_COUNTER_MAX)
5002 		seq_puts(m, "max\n");
5003 	else
5004 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5005 
5006 	return 0;
5007 }
5008 
5009 static ssize_t memory_high_write(struct kernfs_open_file *of,
5010 				 char *buf, size_t nbytes, loff_t off)
5011 {
5012 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5013 	unsigned long nr_pages;
5014 	unsigned long high;
5015 	int err;
5016 
5017 	buf = strstrip(buf);
5018 	err = page_counter_memparse(buf, "max", &high);
5019 	if (err)
5020 		return err;
5021 
5022 	memcg->high = high;
5023 
5024 	nr_pages = page_counter_read(&memcg->memory);
5025 	if (nr_pages > high)
5026 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5027 					     GFP_KERNEL, true);
5028 
5029 	memcg_wb_domain_size_changed(memcg);
5030 	return nbytes;
5031 }
5032 
5033 static int memory_max_show(struct seq_file *m, void *v)
5034 {
5035 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5036 	unsigned long max = READ_ONCE(memcg->memory.limit);
5037 
5038 	if (max == PAGE_COUNTER_MAX)
5039 		seq_puts(m, "max\n");
5040 	else
5041 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5042 
5043 	return 0;
5044 }
5045 
5046 static ssize_t memory_max_write(struct kernfs_open_file *of,
5047 				char *buf, size_t nbytes, loff_t off)
5048 {
5049 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5050 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5051 	bool drained = false;
5052 	unsigned long max;
5053 	int err;
5054 
5055 	buf = strstrip(buf);
5056 	err = page_counter_memparse(buf, "max", &max);
5057 	if (err)
5058 		return err;
5059 
5060 	xchg(&memcg->memory.limit, max);
5061 
5062 	for (;;) {
5063 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5064 
5065 		if (nr_pages <= max)
5066 			break;
5067 
5068 		if (signal_pending(current)) {
5069 			err = -EINTR;
5070 			break;
5071 		}
5072 
5073 		if (!drained) {
5074 			drain_all_stock(memcg);
5075 			drained = true;
5076 			continue;
5077 		}
5078 
5079 		if (nr_reclaims) {
5080 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5081 							  GFP_KERNEL, true))
5082 				nr_reclaims--;
5083 			continue;
5084 		}
5085 
5086 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5087 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5088 			break;
5089 	}
5090 
5091 	memcg_wb_domain_size_changed(memcg);
5092 	return nbytes;
5093 }
5094 
5095 static int memory_events_show(struct seq_file *m, void *v)
5096 {
5097 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098 
5099 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5100 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5101 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5102 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5103 
5104 	return 0;
5105 }
5106 
5107 static int memory_stat_show(struct seq_file *m, void *v)
5108 {
5109 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5110 	unsigned long stat[MEMCG_NR_STAT];
5111 	unsigned long events[MEMCG_NR_EVENTS];
5112 	int i;
5113 
5114 	/*
5115 	 * Provide statistics on the state of the memory subsystem as
5116 	 * well as cumulative event counters that show past behavior.
5117 	 *
5118 	 * This list is ordered following a combination of these gradients:
5119 	 * 1) generic big picture -> specifics and details
5120 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5121 	 *
5122 	 * Current memory state:
5123 	 */
5124 
5125 	tree_stat(memcg, stat);
5126 	tree_events(memcg, events);
5127 
5128 	seq_printf(m, "anon %llu\n",
5129 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5130 	seq_printf(m, "file %llu\n",
5131 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5132 	seq_printf(m, "kernel_stack %llu\n",
5133 		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5134 	seq_printf(m, "slab %llu\n",
5135 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5136 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5137 	seq_printf(m, "sock %llu\n",
5138 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5139 
5140 	seq_printf(m, "file_mapped %llu\n",
5141 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5142 	seq_printf(m, "file_dirty %llu\n",
5143 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5144 	seq_printf(m, "file_writeback %llu\n",
5145 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5146 
5147 	for (i = 0; i < NR_LRU_LISTS; i++) {
5148 		struct mem_cgroup *mi;
5149 		unsigned long val = 0;
5150 
5151 		for_each_mem_cgroup_tree(mi, memcg)
5152 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5153 		seq_printf(m, "%s %llu\n",
5154 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5155 	}
5156 
5157 	seq_printf(m, "slab_reclaimable %llu\n",
5158 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5159 	seq_printf(m, "slab_unreclaimable %llu\n",
5160 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5161 
5162 	/* Accumulated memory events */
5163 
5164 	seq_printf(m, "pgfault %lu\n",
5165 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5166 	seq_printf(m, "pgmajfault %lu\n",
5167 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5168 
5169 	return 0;
5170 }
5171 
5172 static struct cftype memory_files[] = {
5173 	{
5174 		.name = "current",
5175 		.flags = CFTYPE_NOT_ON_ROOT,
5176 		.read_u64 = memory_current_read,
5177 	},
5178 	{
5179 		.name = "low",
5180 		.flags = CFTYPE_NOT_ON_ROOT,
5181 		.seq_show = memory_low_show,
5182 		.write = memory_low_write,
5183 	},
5184 	{
5185 		.name = "high",
5186 		.flags = CFTYPE_NOT_ON_ROOT,
5187 		.seq_show = memory_high_show,
5188 		.write = memory_high_write,
5189 	},
5190 	{
5191 		.name = "max",
5192 		.flags = CFTYPE_NOT_ON_ROOT,
5193 		.seq_show = memory_max_show,
5194 		.write = memory_max_write,
5195 	},
5196 	{
5197 		.name = "events",
5198 		.flags = CFTYPE_NOT_ON_ROOT,
5199 		.file_offset = offsetof(struct mem_cgroup, events_file),
5200 		.seq_show = memory_events_show,
5201 	},
5202 	{
5203 		.name = "stat",
5204 		.flags = CFTYPE_NOT_ON_ROOT,
5205 		.seq_show = memory_stat_show,
5206 	},
5207 	{ }	/* terminate */
5208 };
5209 
5210 struct cgroup_subsys memory_cgrp_subsys = {
5211 	.css_alloc = mem_cgroup_css_alloc,
5212 	.css_online = mem_cgroup_css_online,
5213 	.css_offline = mem_cgroup_css_offline,
5214 	.css_released = mem_cgroup_css_released,
5215 	.css_free = mem_cgroup_css_free,
5216 	.css_reset = mem_cgroup_css_reset,
5217 	.can_attach = mem_cgroup_can_attach,
5218 	.cancel_attach = mem_cgroup_cancel_attach,
5219 	.post_attach = mem_cgroup_move_task,
5220 	.bind = mem_cgroup_bind,
5221 	.dfl_cftypes = memory_files,
5222 	.legacy_cftypes = mem_cgroup_legacy_files,
5223 	.early_init = 0,
5224 };
5225 
5226 /**
5227  * mem_cgroup_low - check if memory consumption is below the normal range
5228  * @root: the highest ancestor to consider
5229  * @memcg: the memory cgroup to check
5230  *
5231  * Returns %true if memory consumption of @memcg, and that of all
5232  * configurable ancestors up to @root, is below the normal range.
5233  */
5234 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5235 {
5236 	if (mem_cgroup_disabled())
5237 		return false;
5238 
5239 	/*
5240 	 * The toplevel group doesn't have a configurable range, so
5241 	 * it's never low when looked at directly, and it is not
5242 	 * considered an ancestor when assessing the hierarchy.
5243 	 */
5244 
5245 	if (memcg == root_mem_cgroup)
5246 		return false;
5247 
5248 	if (page_counter_read(&memcg->memory) >= memcg->low)
5249 		return false;
5250 
5251 	while (memcg != root) {
5252 		memcg = parent_mem_cgroup(memcg);
5253 
5254 		if (memcg == root_mem_cgroup)
5255 			break;
5256 
5257 		if (page_counter_read(&memcg->memory) >= memcg->low)
5258 			return false;
5259 	}
5260 	return true;
5261 }
5262 
5263 /**
5264  * mem_cgroup_try_charge - try charging a page
5265  * @page: page to charge
5266  * @mm: mm context of the victim
5267  * @gfp_mask: reclaim mode
5268  * @memcgp: charged memcg return
5269  *
5270  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5271  * pages according to @gfp_mask if necessary.
5272  *
5273  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5274  * Otherwise, an error code is returned.
5275  *
5276  * After page->mapping has been set up, the caller must finalize the
5277  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5278  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5279  */
5280 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5281 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5282 			  bool compound)
5283 {
5284 	struct mem_cgroup *memcg = NULL;
5285 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5286 	int ret = 0;
5287 
5288 	if (mem_cgroup_disabled())
5289 		goto out;
5290 
5291 	if (PageSwapCache(page)) {
5292 		/*
5293 		 * Every swap fault against a single page tries to charge the
5294 		 * page, bail as early as possible.  shmem_unuse() encounters
5295 		 * already charged pages, too.  The USED bit is protected by
5296 		 * the page lock, which serializes swap cache removal, which
5297 		 * in turn serializes uncharging.
5298 		 */
5299 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5300 		if (page->mem_cgroup)
5301 			goto out;
5302 
5303 		if (do_swap_account) {
5304 			swp_entry_t ent = { .val = page_private(page), };
5305 			unsigned short id = lookup_swap_cgroup_id(ent);
5306 
5307 			rcu_read_lock();
5308 			memcg = mem_cgroup_from_id(id);
5309 			if (memcg && !css_tryget_online(&memcg->css))
5310 				memcg = NULL;
5311 			rcu_read_unlock();
5312 		}
5313 	}
5314 
5315 	if (!memcg)
5316 		memcg = get_mem_cgroup_from_mm(mm);
5317 
5318 	ret = try_charge(memcg, gfp_mask, nr_pages);
5319 
5320 	css_put(&memcg->css);
5321 out:
5322 	*memcgp = memcg;
5323 	return ret;
5324 }
5325 
5326 /**
5327  * mem_cgroup_commit_charge - commit a page charge
5328  * @page: page to charge
5329  * @memcg: memcg to charge the page to
5330  * @lrucare: page might be on LRU already
5331  *
5332  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5333  * after page->mapping has been set up.  This must happen atomically
5334  * as part of the page instantiation, i.e. under the page table lock
5335  * for anonymous pages, under the page lock for page and swap cache.
5336  *
5337  * In addition, the page must not be on the LRU during the commit, to
5338  * prevent racing with task migration.  If it might be, use @lrucare.
5339  *
5340  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5341  */
5342 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5343 			      bool lrucare, bool compound)
5344 {
5345 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5346 
5347 	VM_BUG_ON_PAGE(!page->mapping, page);
5348 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5349 
5350 	if (mem_cgroup_disabled())
5351 		return;
5352 	/*
5353 	 * Swap faults will attempt to charge the same page multiple
5354 	 * times.  But reuse_swap_page() might have removed the page
5355 	 * from swapcache already, so we can't check PageSwapCache().
5356 	 */
5357 	if (!memcg)
5358 		return;
5359 
5360 	commit_charge(page, memcg, lrucare);
5361 
5362 	local_irq_disable();
5363 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5364 	memcg_check_events(memcg, page);
5365 	local_irq_enable();
5366 
5367 	if (do_memsw_account() && PageSwapCache(page)) {
5368 		swp_entry_t entry = { .val = page_private(page) };
5369 		/*
5370 		 * The swap entry might not get freed for a long time,
5371 		 * let's not wait for it.  The page already received a
5372 		 * memory+swap charge, drop the swap entry duplicate.
5373 		 */
5374 		mem_cgroup_uncharge_swap(entry);
5375 	}
5376 }
5377 
5378 /**
5379  * mem_cgroup_cancel_charge - cancel a page charge
5380  * @page: page to charge
5381  * @memcg: memcg to charge the page to
5382  *
5383  * Cancel a charge transaction started by mem_cgroup_try_charge().
5384  */
5385 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5386 		bool compound)
5387 {
5388 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5389 
5390 	if (mem_cgroup_disabled())
5391 		return;
5392 	/*
5393 	 * Swap faults will attempt to charge the same page multiple
5394 	 * times.  But reuse_swap_page() might have removed the page
5395 	 * from swapcache already, so we can't check PageSwapCache().
5396 	 */
5397 	if (!memcg)
5398 		return;
5399 
5400 	cancel_charge(memcg, nr_pages);
5401 }
5402 
5403 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5404 			   unsigned long nr_anon, unsigned long nr_file,
5405 			   unsigned long nr_huge, struct page *dummy_page)
5406 {
5407 	unsigned long nr_pages = nr_anon + nr_file;
5408 	unsigned long flags;
5409 
5410 	if (!mem_cgroup_is_root(memcg)) {
5411 		page_counter_uncharge(&memcg->memory, nr_pages);
5412 		if (do_memsw_account())
5413 			page_counter_uncharge(&memcg->memsw, nr_pages);
5414 		memcg_oom_recover(memcg);
5415 	}
5416 
5417 	local_irq_save(flags);
5418 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5419 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5420 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5421 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5422 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5423 	memcg_check_events(memcg, dummy_page);
5424 	local_irq_restore(flags);
5425 
5426 	if (!mem_cgroup_is_root(memcg))
5427 		css_put_many(&memcg->css, nr_pages);
5428 }
5429 
5430 static void uncharge_list(struct list_head *page_list)
5431 {
5432 	struct mem_cgroup *memcg = NULL;
5433 	unsigned long nr_anon = 0;
5434 	unsigned long nr_file = 0;
5435 	unsigned long nr_huge = 0;
5436 	unsigned long pgpgout = 0;
5437 	struct list_head *next;
5438 	struct page *page;
5439 
5440 	/*
5441 	 * Note that the list can be a single page->lru; hence the
5442 	 * do-while loop instead of a simple list_for_each_entry().
5443 	 */
5444 	next = page_list->next;
5445 	do {
5446 		unsigned int nr_pages = 1;
5447 
5448 		page = list_entry(next, struct page, lru);
5449 		next = page->lru.next;
5450 
5451 		VM_BUG_ON_PAGE(PageLRU(page), page);
5452 		VM_BUG_ON_PAGE(page_count(page), page);
5453 
5454 		if (!page->mem_cgroup)
5455 			continue;
5456 
5457 		/*
5458 		 * Nobody should be changing or seriously looking at
5459 		 * page->mem_cgroup at this point, we have fully
5460 		 * exclusive access to the page.
5461 		 */
5462 
5463 		if (memcg != page->mem_cgroup) {
5464 			if (memcg) {
5465 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5466 					       nr_huge, page);
5467 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5468 			}
5469 			memcg = page->mem_cgroup;
5470 		}
5471 
5472 		if (PageTransHuge(page)) {
5473 			nr_pages <<= compound_order(page);
5474 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5475 			nr_huge += nr_pages;
5476 		}
5477 
5478 		if (PageAnon(page))
5479 			nr_anon += nr_pages;
5480 		else
5481 			nr_file += nr_pages;
5482 
5483 		page->mem_cgroup = NULL;
5484 
5485 		pgpgout++;
5486 	} while (next != page_list);
5487 
5488 	if (memcg)
5489 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5490 			       nr_huge, page);
5491 }
5492 
5493 /**
5494  * mem_cgroup_uncharge - uncharge a page
5495  * @page: page to uncharge
5496  *
5497  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5498  * mem_cgroup_commit_charge().
5499  */
5500 void mem_cgroup_uncharge(struct page *page)
5501 {
5502 	if (mem_cgroup_disabled())
5503 		return;
5504 
5505 	/* Don't touch page->lru of any random page, pre-check: */
5506 	if (!page->mem_cgroup)
5507 		return;
5508 
5509 	INIT_LIST_HEAD(&page->lru);
5510 	uncharge_list(&page->lru);
5511 }
5512 
5513 /**
5514  * mem_cgroup_uncharge_list - uncharge a list of page
5515  * @page_list: list of pages to uncharge
5516  *
5517  * Uncharge a list of pages previously charged with
5518  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5519  */
5520 void mem_cgroup_uncharge_list(struct list_head *page_list)
5521 {
5522 	if (mem_cgroup_disabled())
5523 		return;
5524 
5525 	if (!list_empty(page_list))
5526 		uncharge_list(page_list);
5527 }
5528 
5529 /**
5530  * mem_cgroup_migrate - charge a page's replacement
5531  * @oldpage: currently circulating page
5532  * @newpage: replacement page
5533  *
5534  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5535  * be uncharged upon free.
5536  *
5537  * Both pages must be locked, @newpage->mapping must be set up.
5538  */
5539 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5540 {
5541 	struct mem_cgroup *memcg;
5542 	unsigned int nr_pages;
5543 	bool compound;
5544 
5545 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5546 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5547 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5548 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5549 		       newpage);
5550 
5551 	if (mem_cgroup_disabled())
5552 		return;
5553 
5554 	/* Page cache replacement: new page already charged? */
5555 	if (newpage->mem_cgroup)
5556 		return;
5557 
5558 	/* Swapcache readahead pages can get replaced before being charged */
5559 	memcg = oldpage->mem_cgroup;
5560 	if (!memcg)
5561 		return;
5562 
5563 	/* Force-charge the new page. The old one will be freed soon */
5564 	compound = PageTransHuge(newpage);
5565 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5566 
5567 	page_counter_charge(&memcg->memory, nr_pages);
5568 	if (do_memsw_account())
5569 		page_counter_charge(&memcg->memsw, nr_pages);
5570 	css_get_many(&memcg->css, nr_pages);
5571 
5572 	commit_charge(newpage, memcg, false);
5573 
5574 	local_irq_disable();
5575 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5576 	memcg_check_events(memcg, newpage);
5577 	local_irq_enable();
5578 }
5579 
5580 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5581 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5582 
5583 void sock_update_memcg(struct sock *sk)
5584 {
5585 	struct mem_cgroup *memcg;
5586 
5587 	/* Socket cloning can throw us here with sk_cgrp already
5588 	 * filled. It won't however, necessarily happen from
5589 	 * process context. So the test for root memcg given
5590 	 * the current task's memcg won't help us in this case.
5591 	 *
5592 	 * Respecting the original socket's memcg is a better
5593 	 * decision in this case.
5594 	 */
5595 	if (sk->sk_memcg) {
5596 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5597 		css_get(&sk->sk_memcg->css);
5598 		return;
5599 	}
5600 
5601 	rcu_read_lock();
5602 	memcg = mem_cgroup_from_task(current);
5603 	if (memcg == root_mem_cgroup)
5604 		goto out;
5605 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5606 		goto out;
5607 	if (css_tryget_online(&memcg->css))
5608 		sk->sk_memcg = memcg;
5609 out:
5610 	rcu_read_unlock();
5611 }
5612 EXPORT_SYMBOL(sock_update_memcg);
5613 
5614 void sock_release_memcg(struct sock *sk)
5615 {
5616 	WARN_ON(!sk->sk_memcg);
5617 	css_put(&sk->sk_memcg->css);
5618 }
5619 
5620 /**
5621  * mem_cgroup_charge_skmem - charge socket memory
5622  * @memcg: memcg to charge
5623  * @nr_pages: number of pages to charge
5624  *
5625  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5626  * @memcg's configured limit, %false if the charge had to be forced.
5627  */
5628 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5629 {
5630 	gfp_t gfp_mask = GFP_KERNEL;
5631 
5632 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5633 		struct page_counter *fail;
5634 
5635 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5636 			memcg->tcpmem_pressure = 0;
5637 			return true;
5638 		}
5639 		page_counter_charge(&memcg->tcpmem, nr_pages);
5640 		memcg->tcpmem_pressure = 1;
5641 		return false;
5642 	}
5643 
5644 	/* Don't block in the packet receive path */
5645 	if (in_softirq())
5646 		gfp_mask = GFP_NOWAIT;
5647 
5648 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5649 
5650 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5651 		return true;
5652 
5653 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5654 	return false;
5655 }
5656 
5657 /**
5658  * mem_cgroup_uncharge_skmem - uncharge socket memory
5659  * @memcg - memcg to uncharge
5660  * @nr_pages - number of pages to uncharge
5661  */
5662 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5663 {
5664 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5665 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5666 		return;
5667 	}
5668 
5669 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5670 
5671 	page_counter_uncharge(&memcg->memory, nr_pages);
5672 	css_put_many(&memcg->css, nr_pages);
5673 }
5674 
5675 static int __init cgroup_memory(char *s)
5676 {
5677 	char *token;
5678 
5679 	while ((token = strsep(&s, ",")) != NULL) {
5680 		if (!*token)
5681 			continue;
5682 		if (!strcmp(token, "nosocket"))
5683 			cgroup_memory_nosocket = true;
5684 		if (!strcmp(token, "nokmem"))
5685 			cgroup_memory_nokmem = true;
5686 	}
5687 	return 0;
5688 }
5689 __setup("cgroup.memory=", cgroup_memory);
5690 
5691 /*
5692  * subsys_initcall() for memory controller.
5693  *
5694  * Some parts like hotcpu_notifier() have to be initialized from this context
5695  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5696  * everything that doesn't depend on a specific mem_cgroup structure should
5697  * be initialized from here.
5698  */
5699 static int __init mem_cgroup_init(void)
5700 {
5701 	int cpu, node;
5702 
5703 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5704 
5705 	for_each_possible_cpu(cpu)
5706 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5707 			  drain_local_stock);
5708 
5709 	for_each_node(node) {
5710 		struct mem_cgroup_tree_per_node *rtpn;
5711 		int zone;
5712 
5713 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5714 				    node_online(node) ? node : NUMA_NO_NODE);
5715 
5716 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5717 			struct mem_cgroup_tree_per_zone *rtpz;
5718 
5719 			rtpz = &rtpn->rb_tree_per_zone[zone];
5720 			rtpz->rb_root = RB_ROOT;
5721 			spin_lock_init(&rtpz->lock);
5722 		}
5723 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5724 	}
5725 
5726 	return 0;
5727 }
5728 subsys_initcall(mem_cgroup_init);
5729 
5730 #ifdef CONFIG_MEMCG_SWAP
5731 /**
5732  * mem_cgroup_swapout - transfer a memsw charge to swap
5733  * @page: page whose memsw charge to transfer
5734  * @entry: swap entry to move the charge to
5735  *
5736  * Transfer the memsw charge of @page to @entry.
5737  */
5738 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5739 {
5740 	struct mem_cgroup *memcg;
5741 	unsigned short oldid;
5742 
5743 	VM_BUG_ON_PAGE(PageLRU(page), page);
5744 	VM_BUG_ON_PAGE(page_count(page), page);
5745 
5746 	if (!do_memsw_account())
5747 		return;
5748 
5749 	memcg = page->mem_cgroup;
5750 
5751 	/* Readahead page, never charged */
5752 	if (!memcg)
5753 		return;
5754 
5755 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5756 	VM_BUG_ON_PAGE(oldid, page);
5757 	mem_cgroup_swap_statistics(memcg, true);
5758 
5759 	page->mem_cgroup = NULL;
5760 
5761 	if (!mem_cgroup_is_root(memcg))
5762 		page_counter_uncharge(&memcg->memory, 1);
5763 
5764 	/*
5765 	 * Interrupts should be disabled here because the caller holds the
5766 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5767 	 * important here to have the interrupts disabled because it is the
5768 	 * only synchronisation we have for udpating the per-CPU variables.
5769 	 */
5770 	VM_BUG_ON(!irqs_disabled());
5771 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5772 	memcg_check_events(memcg, page);
5773 }
5774 
5775 /*
5776  * mem_cgroup_try_charge_swap - try charging a swap entry
5777  * @page: page being added to swap
5778  * @entry: swap entry to charge
5779  *
5780  * Try to charge @entry to the memcg that @page belongs to.
5781  *
5782  * Returns 0 on success, -ENOMEM on failure.
5783  */
5784 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5785 {
5786 	struct mem_cgroup *memcg;
5787 	struct page_counter *counter;
5788 	unsigned short oldid;
5789 
5790 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5791 		return 0;
5792 
5793 	memcg = page->mem_cgroup;
5794 
5795 	/* Readahead page, never charged */
5796 	if (!memcg)
5797 		return 0;
5798 
5799 	if (!mem_cgroup_is_root(memcg) &&
5800 	    !page_counter_try_charge(&memcg->swap, 1, &counter))
5801 		return -ENOMEM;
5802 
5803 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5804 	VM_BUG_ON_PAGE(oldid, page);
5805 	mem_cgroup_swap_statistics(memcg, true);
5806 
5807 	css_get(&memcg->css);
5808 	return 0;
5809 }
5810 
5811 /**
5812  * mem_cgroup_uncharge_swap - uncharge a swap entry
5813  * @entry: swap entry to uncharge
5814  *
5815  * Drop the swap charge associated with @entry.
5816  */
5817 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5818 {
5819 	struct mem_cgroup *memcg;
5820 	unsigned short id;
5821 
5822 	if (!do_swap_account)
5823 		return;
5824 
5825 	id = swap_cgroup_record(entry, 0);
5826 	rcu_read_lock();
5827 	memcg = mem_cgroup_from_id(id);
5828 	if (memcg) {
5829 		if (!mem_cgroup_is_root(memcg)) {
5830 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5831 				page_counter_uncharge(&memcg->swap, 1);
5832 			else
5833 				page_counter_uncharge(&memcg->memsw, 1);
5834 		}
5835 		mem_cgroup_swap_statistics(memcg, false);
5836 		css_put(&memcg->css);
5837 	}
5838 	rcu_read_unlock();
5839 }
5840 
5841 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5842 {
5843 	long nr_swap_pages = get_nr_swap_pages();
5844 
5845 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5846 		return nr_swap_pages;
5847 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5848 		nr_swap_pages = min_t(long, nr_swap_pages,
5849 				      READ_ONCE(memcg->swap.limit) -
5850 				      page_counter_read(&memcg->swap));
5851 	return nr_swap_pages;
5852 }
5853 
5854 bool mem_cgroup_swap_full(struct page *page)
5855 {
5856 	struct mem_cgroup *memcg;
5857 
5858 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5859 
5860 	if (vm_swap_full())
5861 		return true;
5862 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5863 		return false;
5864 
5865 	memcg = page->mem_cgroup;
5866 	if (!memcg)
5867 		return false;
5868 
5869 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5870 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5871 			return true;
5872 
5873 	return false;
5874 }
5875 
5876 /* for remember boot option*/
5877 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5878 static int really_do_swap_account __initdata = 1;
5879 #else
5880 static int really_do_swap_account __initdata;
5881 #endif
5882 
5883 static int __init enable_swap_account(char *s)
5884 {
5885 	if (!strcmp(s, "1"))
5886 		really_do_swap_account = 1;
5887 	else if (!strcmp(s, "0"))
5888 		really_do_swap_account = 0;
5889 	return 1;
5890 }
5891 __setup("swapaccount=", enable_swap_account);
5892 
5893 static u64 swap_current_read(struct cgroup_subsys_state *css,
5894 			     struct cftype *cft)
5895 {
5896 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5897 
5898 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5899 }
5900 
5901 static int swap_max_show(struct seq_file *m, void *v)
5902 {
5903 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5904 	unsigned long max = READ_ONCE(memcg->swap.limit);
5905 
5906 	if (max == PAGE_COUNTER_MAX)
5907 		seq_puts(m, "max\n");
5908 	else
5909 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5910 
5911 	return 0;
5912 }
5913 
5914 static ssize_t swap_max_write(struct kernfs_open_file *of,
5915 			      char *buf, size_t nbytes, loff_t off)
5916 {
5917 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5918 	unsigned long max;
5919 	int err;
5920 
5921 	buf = strstrip(buf);
5922 	err = page_counter_memparse(buf, "max", &max);
5923 	if (err)
5924 		return err;
5925 
5926 	mutex_lock(&memcg_limit_mutex);
5927 	err = page_counter_limit(&memcg->swap, max);
5928 	mutex_unlock(&memcg_limit_mutex);
5929 	if (err)
5930 		return err;
5931 
5932 	return nbytes;
5933 }
5934 
5935 static struct cftype swap_files[] = {
5936 	{
5937 		.name = "swap.current",
5938 		.flags = CFTYPE_NOT_ON_ROOT,
5939 		.read_u64 = swap_current_read,
5940 	},
5941 	{
5942 		.name = "swap.max",
5943 		.flags = CFTYPE_NOT_ON_ROOT,
5944 		.seq_show = swap_max_show,
5945 		.write = swap_max_write,
5946 	},
5947 	{ }	/* terminate */
5948 };
5949 
5950 static struct cftype memsw_cgroup_files[] = {
5951 	{
5952 		.name = "memsw.usage_in_bytes",
5953 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5954 		.read_u64 = mem_cgroup_read_u64,
5955 	},
5956 	{
5957 		.name = "memsw.max_usage_in_bytes",
5958 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5959 		.write = mem_cgroup_reset,
5960 		.read_u64 = mem_cgroup_read_u64,
5961 	},
5962 	{
5963 		.name = "memsw.limit_in_bytes",
5964 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5965 		.write = mem_cgroup_write,
5966 		.read_u64 = mem_cgroup_read_u64,
5967 	},
5968 	{
5969 		.name = "memsw.failcnt",
5970 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5971 		.write = mem_cgroup_reset,
5972 		.read_u64 = mem_cgroup_read_u64,
5973 	},
5974 	{ },	/* terminate */
5975 };
5976 
5977 static int __init mem_cgroup_swap_init(void)
5978 {
5979 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5980 		do_swap_account = 1;
5981 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5982 					       swap_files));
5983 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5984 						  memsw_cgroup_files));
5985 	}
5986 	return 0;
5987 }
5988 subsys_initcall(mem_cgroup_swap_init);
5989 
5990 #endif /* CONFIG_MEMCG_SWAP */
5991