1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/export.h> 37 #include <linux/mutex.h> 38 #include <linux/rbtree.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swapops.h> 42 #include <linux/spinlock.h> 43 #include <linux/eventfd.h> 44 #include <linux/sort.h> 45 #include <linux/fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/vmalloc.h> 48 #include <linux/mm_inline.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/cpu.h> 51 #include <linux/oom.h> 52 #include "internal.h" 53 #include <net/sock.h> 54 #include <net/tcp_memcontrol.h> 55 56 #include <asm/uaccess.h> 57 58 #include <trace/events/vmscan.h> 59 60 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 61 #define MEM_CGROUP_RECLAIM_RETRIES 5 62 struct mem_cgroup *root_mem_cgroup __read_mostly; 63 64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 66 int do_swap_account __read_mostly; 67 68 /* for remember boot option*/ 69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED 70 static int really_do_swap_account __initdata = 1; 71 #else 72 static int really_do_swap_account __initdata = 0; 73 #endif 74 75 #else 76 #define do_swap_account (0) 77 #endif 78 79 80 /* 81 * Statistics for memory cgroup. 82 */ 83 enum mem_cgroup_stat_index { 84 /* 85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 86 */ 87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */ 93 MEM_CGROUP_STAT_NSTATS, 94 }; 95 96 enum mem_cgroup_events_index { 97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */ 100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 102 MEM_CGROUP_EVENTS_NSTATS, 103 }; 104 /* 105 * Per memcg event counter is incremented at every pagein/pageout. With THP, 106 * it will be incremated by the number of pages. This counter is used for 107 * for trigger some periodic events. This is straightforward and better 108 * than using jiffies etc. to handle periodic memcg event. 109 */ 110 enum mem_cgroup_events_target { 111 MEM_CGROUP_TARGET_THRESH, 112 MEM_CGROUP_TARGET_SOFTLIMIT, 113 MEM_CGROUP_TARGET_NUMAINFO, 114 MEM_CGROUP_NTARGETS, 115 }; 116 #define THRESHOLDS_EVENTS_TARGET (128) 117 #define SOFTLIMIT_EVENTS_TARGET (1024) 118 #define NUMAINFO_EVENTS_TARGET (1024) 119 120 struct mem_cgroup_stat_cpu { 121 long count[MEM_CGROUP_STAT_NSTATS]; 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 123 unsigned long targets[MEM_CGROUP_NTARGETS]; 124 }; 125 126 struct mem_cgroup_reclaim_iter { 127 /* css_id of the last scanned hierarchy member */ 128 int position; 129 /* scan generation, increased every round-trip */ 130 unsigned int generation; 131 }; 132 133 /* 134 * per-zone information in memory controller. 135 */ 136 struct mem_cgroup_per_zone { 137 struct lruvec lruvec; 138 unsigned long count[NR_LRU_LISTS]; 139 140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 141 142 struct zone_reclaim_stat reclaim_stat; 143 struct rb_node tree_node; /* RB tree node */ 144 unsigned long long usage_in_excess;/* Set to the value by which */ 145 /* the soft limit is exceeded*/ 146 bool on_tree; 147 struct mem_cgroup *mem; /* Back pointer, we cannot */ 148 /* use container_of */ 149 }; 150 /* Macro for accessing counter */ 151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 152 153 struct mem_cgroup_per_node { 154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 155 }; 156 157 struct mem_cgroup_lru_info { 158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 159 }; 160 161 /* 162 * Cgroups above their limits are maintained in a RB-Tree, independent of 163 * their hierarchy representation 164 */ 165 166 struct mem_cgroup_tree_per_zone { 167 struct rb_root rb_root; 168 spinlock_t lock; 169 }; 170 171 struct mem_cgroup_tree_per_node { 172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 173 }; 174 175 struct mem_cgroup_tree { 176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 177 }; 178 179 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 180 181 struct mem_cgroup_threshold { 182 struct eventfd_ctx *eventfd; 183 u64 threshold; 184 }; 185 186 /* For threshold */ 187 struct mem_cgroup_threshold_ary { 188 /* An array index points to threshold just below usage. */ 189 int current_threshold; 190 /* Size of entries[] */ 191 unsigned int size; 192 /* Array of thresholds */ 193 struct mem_cgroup_threshold entries[0]; 194 }; 195 196 struct mem_cgroup_thresholds { 197 /* Primary thresholds array */ 198 struct mem_cgroup_threshold_ary *primary; 199 /* 200 * Spare threshold array. 201 * This is needed to make mem_cgroup_unregister_event() "never fail". 202 * It must be able to store at least primary->size - 1 entries. 203 */ 204 struct mem_cgroup_threshold_ary *spare; 205 }; 206 207 /* for OOM */ 208 struct mem_cgroup_eventfd_list { 209 struct list_head list; 210 struct eventfd_ctx *eventfd; 211 }; 212 213 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 215 216 /* 217 * The memory controller data structure. The memory controller controls both 218 * page cache and RSS per cgroup. We would eventually like to provide 219 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 220 * to help the administrator determine what knobs to tune. 221 * 222 * TODO: Add a water mark for the memory controller. Reclaim will begin when 223 * we hit the water mark. May be even add a low water mark, such that 224 * no reclaim occurs from a cgroup at it's low water mark, this is 225 * a feature that will be implemented much later in the future. 226 */ 227 struct mem_cgroup { 228 struct cgroup_subsys_state css; 229 /* 230 * the counter to account for memory usage 231 */ 232 struct res_counter res; 233 234 union { 235 /* 236 * the counter to account for mem+swap usage. 237 */ 238 struct res_counter memsw; 239 240 /* 241 * rcu_freeing is used only when freeing struct mem_cgroup, 242 * so put it into a union to avoid wasting more memory. 243 * It must be disjoint from the css field. It could be 244 * in a union with the res field, but res plays a much 245 * larger part in mem_cgroup life than memsw, and might 246 * be of interest, even at time of free, when debugging. 247 * So share rcu_head with the less interesting memsw. 248 */ 249 struct rcu_head rcu_freeing; 250 /* 251 * But when using vfree(), that cannot be done at 252 * interrupt time, so we must then queue the work. 253 */ 254 struct work_struct work_freeing; 255 }; 256 257 /* 258 * Per cgroup active and inactive list, similar to the 259 * per zone LRU lists. 260 */ 261 struct mem_cgroup_lru_info info; 262 int last_scanned_node; 263 #if MAX_NUMNODES > 1 264 nodemask_t scan_nodes; 265 atomic_t numainfo_events; 266 atomic_t numainfo_updating; 267 #endif 268 /* 269 * Should the accounting and control be hierarchical, per subtree? 270 */ 271 bool use_hierarchy; 272 273 bool oom_lock; 274 atomic_t under_oom; 275 276 atomic_t refcnt; 277 278 int swappiness; 279 /* OOM-Killer disable */ 280 int oom_kill_disable; 281 282 /* set when res.limit == memsw.limit */ 283 bool memsw_is_minimum; 284 285 /* protect arrays of thresholds */ 286 struct mutex thresholds_lock; 287 288 /* thresholds for memory usage. RCU-protected */ 289 struct mem_cgroup_thresholds thresholds; 290 291 /* thresholds for mem+swap usage. RCU-protected */ 292 struct mem_cgroup_thresholds memsw_thresholds; 293 294 /* For oom notifier event fd */ 295 struct list_head oom_notify; 296 297 /* 298 * Should we move charges of a task when a task is moved into this 299 * mem_cgroup ? And what type of charges should we move ? 300 */ 301 unsigned long move_charge_at_immigrate; 302 /* 303 * percpu counter. 304 */ 305 struct mem_cgroup_stat_cpu *stat; 306 /* 307 * used when a cpu is offlined or other synchronizations 308 * See mem_cgroup_read_stat(). 309 */ 310 struct mem_cgroup_stat_cpu nocpu_base; 311 spinlock_t pcp_counter_lock; 312 313 #ifdef CONFIG_INET 314 struct tcp_memcontrol tcp_mem; 315 #endif 316 }; 317 318 /* Stuffs for move charges at task migration. */ 319 /* 320 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 321 * left-shifted bitmap of these types. 322 */ 323 enum move_type { 324 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 325 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 326 NR_MOVE_TYPE, 327 }; 328 329 /* "mc" and its members are protected by cgroup_mutex */ 330 static struct move_charge_struct { 331 spinlock_t lock; /* for from, to */ 332 struct mem_cgroup *from; 333 struct mem_cgroup *to; 334 unsigned long precharge; 335 unsigned long moved_charge; 336 unsigned long moved_swap; 337 struct task_struct *moving_task; /* a task moving charges */ 338 wait_queue_head_t waitq; /* a waitq for other context */ 339 } mc = { 340 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 341 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 342 }; 343 344 static bool move_anon(void) 345 { 346 return test_bit(MOVE_CHARGE_TYPE_ANON, 347 &mc.to->move_charge_at_immigrate); 348 } 349 350 static bool move_file(void) 351 { 352 return test_bit(MOVE_CHARGE_TYPE_FILE, 353 &mc.to->move_charge_at_immigrate); 354 } 355 356 /* 357 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 358 * limit reclaim to prevent infinite loops, if they ever occur. 359 */ 360 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100) 361 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2) 362 363 enum charge_type { 364 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 365 MEM_CGROUP_CHARGE_TYPE_MAPPED, 366 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 367 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 368 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 369 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 370 NR_CHARGE_TYPE, 371 }; 372 373 /* for encoding cft->private value on file */ 374 #define _MEM (0) 375 #define _MEMSWAP (1) 376 #define _OOM_TYPE (2) 377 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 378 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 379 #define MEMFILE_ATTR(val) ((val) & 0xffff) 380 /* Used for OOM nofiier */ 381 #define OOM_CONTROL (0) 382 383 /* 384 * Reclaim flags for mem_cgroup_hierarchical_reclaim 385 */ 386 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 387 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 388 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 389 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 390 391 static void mem_cgroup_get(struct mem_cgroup *memcg); 392 static void mem_cgroup_put(struct mem_cgroup *memcg); 393 394 /* Writing them here to avoid exposing memcg's inner layout */ 395 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 396 #include <net/sock.h> 397 #include <net/ip.h> 398 399 static bool mem_cgroup_is_root(struct mem_cgroup *memcg); 400 void sock_update_memcg(struct sock *sk) 401 { 402 if (mem_cgroup_sockets_enabled) { 403 struct mem_cgroup *memcg; 404 405 BUG_ON(!sk->sk_prot->proto_cgroup); 406 407 /* Socket cloning can throw us here with sk_cgrp already 408 * filled. It won't however, necessarily happen from 409 * process context. So the test for root memcg given 410 * the current task's memcg won't help us in this case. 411 * 412 * Respecting the original socket's memcg is a better 413 * decision in this case. 414 */ 415 if (sk->sk_cgrp) { 416 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 417 mem_cgroup_get(sk->sk_cgrp->memcg); 418 return; 419 } 420 421 rcu_read_lock(); 422 memcg = mem_cgroup_from_task(current); 423 if (!mem_cgroup_is_root(memcg)) { 424 mem_cgroup_get(memcg); 425 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg); 426 } 427 rcu_read_unlock(); 428 } 429 } 430 EXPORT_SYMBOL(sock_update_memcg); 431 432 void sock_release_memcg(struct sock *sk) 433 { 434 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 435 struct mem_cgroup *memcg; 436 WARN_ON(!sk->sk_cgrp->memcg); 437 memcg = sk->sk_cgrp->memcg; 438 mem_cgroup_put(memcg); 439 } 440 } 441 442 #ifdef CONFIG_INET 443 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 444 { 445 if (!memcg || mem_cgroup_is_root(memcg)) 446 return NULL; 447 448 return &memcg->tcp_mem.cg_proto; 449 } 450 EXPORT_SYMBOL(tcp_proto_cgroup); 451 #endif /* CONFIG_INET */ 452 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */ 453 454 static void drain_all_stock_async(struct mem_cgroup *memcg); 455 456 static struct mem_cgroup_per_zone * 457 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 458 { 459 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 460 } 461 462 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 463 { 464 return &memcg->css; 465 } 466 467 static struct mem_cgroup_per_zone * 468 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 469 { 470 int nid = page_to_nid(page); 471 int zid = page_zonenum(page); 472 473 return mem_cgroup_zoneinfo(memcg, nid, zid); 474 } 475 476 static struct mem_cgroup_tree_per_zone * 477 soft_limit_tree_node_zone(int nid, int zid) 478 { 479 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 480 } 481 482 static struct mem_cgroup_tree_per_zone * 483 soft_limit_tree_from_page(struct page *page) 484 { 485 int nid = page_to_nid(page); 486 int zid = page_zonenum(page); 487 488 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 489 } 490 491 static void 492 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 493 struct mem_cgroup_per_zone *mz, 494 struct mem_cgroup_tree_per_zone *mctz, 495 unsigned long long new_usage_in_excess) 496 { 497 struct rb_node **p = &mctz->rb_root.rb_node; 498 struct rb_node *parent = NULL; 499 struct mem_cgroup_per_zone *mz_node; 500 501 if (mz->on_tree) 502 return; 503 504 mz->usage_in_excess = new_usage_in_excess; 505 if (!mz->usage_in_excess) 506 return; 507 while (*p) { 508 parent = *p; 509 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 510 tree_node); 511 if (mz->usage_in_excess < mz_node->usage_in_excess) 512 p = &(*p)->rb_left; 513 /* 514 * We can't avoid mem cgroups that are over their soft 515 * limit by the same amount 516 */ 517 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 518 p = &(*p)->rb_right; 519 } 520 rb_link_node(&mz->tree_node, parent, p); 521 rb_insert_color(&mz->tree_node, &mctz->rb_root); 522 mz->on_tree = true; 523 } 524 525 static void 526 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 527 struct mem_cgroup_per_zone *mz, 528 struct mem_cgroup_tree_per_zone *mctz) 529 { 530 if (!mz->on_tree) 531 return; 532 rb_erase(&mz->tree_node, &mctz->rb_root); 533 mz->on_tree = false; 534 } 535 536 static void 537 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 538 struct mem_cgroup_per_zone *mz, 539 struct mem_cgroup_tree_per_zone *mctz) 540 { 541 spin_lock(&mctz->lock); 542 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 543 spin_unlock(&mctz->lock); 544 } 545 546 547 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 548 { 549 unsigned long long excess; 550 struct mem_cgroup_per_zone *mz; 551 struct mem_cgroup_tree_per_zone *mctz; 552 int nid = page_to_nid(page); 553 int zid = page_zonenum(page); 554 mctz = soft_limit_tree_from_page(page); 555 556 /* 557 * Necessary to update all ancestors when hierarchy is used. 558 * because their event counter is not touched. 559 */ 560 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 561 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 562 excess = res_counter_soft_limit_excess(&memcg->res); 563 /* 564 * We have to update the tree if mz is on RB-tree or 565 * mem is over its softlimit. 566 */ 567 if (excess || mz->on_tree) { 568 spin_lock(&mctz->lock); 569 /* if on-tree, remove it */ 570 if (mz->on_tree) 571 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 572 /* 573 * Insert again. mz->usage_in_excess will be updated. 574 * If excess is 0, no tree ops. 575 */ 576 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 577 spin_unlock(&mctz->lock); 578 } 579 } 580 } 581 582 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 583 { 584 int node, zone; 585 struct mem_cgroup_per_zone *mz; 586 struct mem_cgroup_tree_per_zone *mctz; 587 588 for_each_node(node) { 589 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 590 mz = mem_cgroup_zoneinfo(memcg, node, zone); 591 mctz = soft_limit_tree_node_zone(node, zone); 592 mem_cgroup_remove_exceeded(memcg, mz, mctz); 593 } 594 } 595 } 596 597 static struct mem_cgroup_per_zone * 598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 599 { 600 struct rb_node *rightmost = NULL; 601 struct mem_cgroup_per_zone *mz; 602 603 retry: 604 mz = NULL; 605 rightmost = rb_last(&mctz->rb_root); 606 if (!rightmost) 607 goto done; /* Nothing to reclaim from */ 608 609 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 610 /* 611 * Remove the node now but someone else can add it back, 612 * we will to add it back at the end of reclaim to its correct 613 * position in the tree. 614 */ 615 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 616 if (!res_counter_soft_limit_excess(&mz->mem->res) || 617 !css_tryget(&mz->mem->css)) 618 goto retry; 619 done: 620 return mz; 621 } 622 623 static struct mem_cgroup_per_zone * 624 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 625 { 626 struct mem_cgroup_per_zone *mz; 627 628 spin_lock(&mctz->lock); 629 mz = __mem_cgroup_largest_soft_limit_node(mctz); 630 spin_unlock(&mctz->lock); 631 return mz; 632 } 633 634 /* 635 * Implementation Note: reading percpu statistics for memcg. 636 * 637 * Both of vmstat[] and percpu_counter has threshold and do periodic 638 * synchronization to implement "quick" read. There are trade-off between 639 * reading cost and precision of value. Then, we may have a chance to implement 640 * a periodic synchronizion of counter in memcg's counter. 641 * 642 * But this _read() function is used for user interface now. The user accounts 643 * memory usage by memory cgroup and he _always_ requires exact value because 644 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 645 * have to visit all online cpus and make sum. So, for now, unnecessary 646 * synchronization is not implemented. (just implemented for cpu hotplug) 647 * 648 * If there are kernel internal actions which can make use of some not-exact 649 * value, and reading all cpu value can be performance bottleneck in some 650 * common workload, threashold and synchonization as vmstat[] should be 651 * implemented. 652 */ 653 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 654 enum mem_cgroup_stat_index idx) 655 { 656 long val = 0; 657 int cpu; 658 659 get_online_cpus(); 660 for_each_online_cpu(cpu) 661 val += per_cpu(memcg->stat->count[idx], cpu); 662 #ifdef CONFIG_HOTPLUG_CPU 663 spin_lock(&memcg->pcp_counter_lock); 664 val += memcg->nocpu_base.count[idx]; 665 spin_unlock(&memcg->pcp_counter_lock); 666 #endif 667 put_online_cpus(); 668 return val; 669 } 670 671 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 672 bool charge) 673 { 674 int val = (charge) ? 1 : -1; 675 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); 676 } 677 678 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 679 enum mem_cgroup_events_index idx) 680 { 681 unsigned long val = 0; 682 int cpu; 683 684 for_each_online_cpu(cpu) 685 val += per_cpu(memcg->stat->events[idx], cpu); 686 #ifdef CONFIG_HOTPLUG_CPU 687 spin_lock(&memcg->pcp_counter_lock); 688 val += memcg->nocpu_base.events[idx]; 689 spin_unlock(&memcg->pcp_counter_lock); 690 #endif 691 return val; 692 } 693 694 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 695 bool file, int nr_pages) 696 { 697 preempt_disable(); 698 699 if (file) 700 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 701 nr_pages); 702 else 703 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 704 nr_pages); 705 706 /* pagein of a big page is an event. So, ignore page size */ 707 if (nr_pages > 0) 708 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 709 else { 710 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 711 nr_pages = -nr_pages; /* for event */ 712 } 713 714 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages); 715 716 preempt_enable(); 717 } 718 719 unsigned long 720 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 721 unsigned int lru_mask) 722 { 723 struct mem_cgroup_per_zone *mz; 724 enum lru_list l; 725 unsigned long ret = 0; 726 727 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 728 729 for_each_lru(l) { 730 if (BIT(l) & lru_mask) 731 ret += MEM_CGROUP_ZSTAT(mz, l); 732 } 733 return ret; 734 } 735 736 static unsigned long 737 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 738 int nid, unsigned int lru_mask) 739 { 740 u64 total = 0; 741 int zid; 742 743 for (zid = 0; zid < MAX_NR_ZONES; zid++) 744 total += mem_cgroup_zone_nr_lru_pages(memcg, 745 nid, zid, lru_mask); 746 747 return total; 748 } 749 750 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 751 unsigned int lru_mask) 752 { 753 int nid; 754 u64 total = 0; 755 756 for_each_node_state(nid, N_HIGH_MEMORY) 757 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 758 return total; 759 } 760 761 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 762 enum mem_cgroup_events_target target) 763 { 764 unsigned long val, next; 765 766 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]); 767 next = __this_cpu_read(memcg->stat->targets[target]); 768 /* from time_after() in jiffies.h */ 769 if ((long)next - (long)val < 0) { 770 switch (target) { 771 case MEM_CGROUP_TARGET_THRESH: 772 next = val + THRESHOLDS_EVENTS_TARGET; 773 break; 774 case MEM_CGROUP_TARGET_SOFTLIMIT: 775 next = val + SOFTLIMIT_EVENTS_TARGET; 776 break; 777 case MEM_CGROUP_TARGET_NUMAINFO: 778 next = val + NUMAINFO_EVENTS_TARGET; 779 break; 780 default: 781 break; 782 } 783 __this_cpu_write(memcg->stat->targets[target], next); 784 return true; 785 } 786 return false; 787 } 788 789 /* 790 * Check events in order. 791 * 792 */ 793 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 794 { 795 preempt_disable(); 796 /* threshold event is triggered in finer grain than soft limit */ 797 if (unlikely(mem_cgroup_event_ratelimit(memcg, 798 MEM_CGROUP_TARGET_THRESH))) { 799 bool do_softlimit; 800 bool do_numainfo __maybe_unused; 801 802 do_softlimit = mem_cgroup_event_ratelimit(memcg, 803 MEM_CGROUP_TARGET_SOFTLIMIT); 804 #if MAX_NUMNODES > 1 805 do_numainfo = mem_cgroup_event_ratelimit(memcg, 806 MEM_CGROUP_TARGET_NUMAINFO); 807 #endif 808 preempt_enable(); 809 810 mem_cgroup_threshold(memcg); 811 if (unlikely(do_softlimit)) 812 mem_cgroup_update_tree(memcg, page); 813 #if MAX_NUMNODES > 1 814 if (unlikely(do_numainfo)) 815 atomic_inc(&memcg->numainfo_events); 816 #endif 817 } else 818 preempt_enable(); 819 } 820 821 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 822 { 823 return container_of(cgroup_subsys_state(cont, 824 mem_cgroup_subsys_id), struct mem_cgroup, 825 css); 826 } 827 828 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 829 { 830 /* 831 * mm_update_next_owner() may clear mm->owner to NULL 832 * if it races with swapoff, page migration, etc. 833 * So this can be called with p == NULL. 834 */ 835 if (unlikely(!p)) 836 return NULL; 837 838 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 839 struct mem_cgroup, css); 840 } 841 842 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 843 { 844 struct mem_cgroup *memcg = NULL; 845 846 if (!mm) 847 return NULL; 848 /* 849 * Because we have no locks, mm->owner's may be being moved to other 850 * cgroup. We use css_tryget() here even if this looks 851 * pessimistic (rather than adding locks here). 852 */ 853 rcu_read_lock(); 854 do { 855 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 856 if (unlikely(!memcg)) 857 break; 858 } while (!css_tryget(&memcg->css)); 859 rcu_read_unlock(); 860 return memcg; 861 } 862 863 /** 864 * mem_cgroup_iter - iterate over memory cgroup hierarchy 865 * @root: hierarchy root 866 * @prev: previously returned memcg, NULL on first invocation 867 * @reclaim: cookie for shared reclaim walks, NULL for full walks 868 * 869 * Returns references to children of the hierarchy below @root, or 870 * @root itself, or %NULL after a full round-trip. 871 * 872 * Caller must pass the return value in @prev on subsequent 873 * invocations for reference counting, or use mem_cgroup_iter_break() 874 * to cancel a hierarchy walk before the round-trip is complete. 875 * 876 * Reclaimers can specify a zone and a priority level in @reclaim to 877 * divide up the memcgs in the hierarchy among all concurrent 878 * reclaimers operating on the same zone and priority. 879 */ 880 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 881 struct mem_cgroup *prev, 882 struct mem_cgroup_reclaim_cookie *reclaim) 883 { 884 struct mem_cgroup *memcg = NULL; 885 int id = 0; 886 887 if (mem_cgroup_disabled()) 888 return NULL; 889 890 if (!root) 891 root = root_mem_cgroup; 892 893 if (prev && !reclaim) 894 id = css_id(&prev->css); 895 896 if (prev && prev != root) 897 css_put(&prev->css); 898 899 if (!root->use_hierarchy && root != root_mem_cgroup) { 900 if (prev) 901 return NULL; 902 return root; 903 } 904 905 while (!memcg) { 906 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 907 struct cgroup_subsys_state *css; 908 909 if (reclaim) { 910 int nid = zone_to_nid(reclaim->zone); 911 int zid = zone_idx(reclaim->zone); 912 struct mem_cgroup_per_zone *mz; 913 914 mz = mem_cgroup_zoneinfo(root, nid, zid); 915 iter = &mz->reclaim_iter[reclaim->priority]; 916 if (prev && reclaim->generation != iter->generation) 917 return NULL; 918 id = iter->position; 919 } 920 921 rcu_read_lock(); 922 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 923 if (css) { 924 if (css == &root->css || css_tryget(css)) 925 memcg = container_of(css, 926 struct mem_cgroup, css); 927 } else 928 id = 0; 929 rcu_read_unlock(); 930 931 if (reclaim) { 932 iter->position = id; 933 if (!css) 934 iter->generation++; 935 else if (!prev && memcg) 936 reclaim->generation = iter->generation; 937 } 938 939 if (prev && !css) 940 return NULL; 941 } 942 return memcg; 943 } 944 945 /** 946 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 947 * @root: hierarchy root 948 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 949 */ 950 void mem_cgroup_iter_break(struct mem_cgroup *root, 951 struct mem_cgroup *prev) 952 { 953 if (!root) 954 root = root_mem_cgroup; 955 if (prev && prev != root) 956 css_put(&prev->css); 957 } 958 959 /* 960 * Iteration constructs for visiting all cgroups (under a tree). If 961 * loops are exited prematurely (break), mem_cgroup_iter_break() must 962 * be used for reference counting. 963 */ 964 #define for_each_mem_cgroup_tree(iter, root) \ 965 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 966 iter != NULL; \ 967 iter = mem_cgroup_iter(root, iter, NULL)) 968 969 #define for_each_mem_cgroup(iter) \ 970 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 971 iter != NULL; \ 972 iter = mem_cgroup_iter(NULL, iter, NULL)) 973 974 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 975 { 976 return (memcg == root_mem_cgroup); 977 } 978 979 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 980 { 981 struct mem_cgroup *memcg; 982 983 if (!mm) 984 return; 985 986 rcu_read_lock(); 987 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 988 if (unlikely(!memcg)) 989 goto out; 990 991 switch (idx) { 992 case PGFAULT: 993 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 994 break; 995 case PGMAJFAULT: 996 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 997 break; 998 default: 999 BUG(); 1000 } 1001 out: 1002 rcu_read_unlock(); 1003 } 1004 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 1005 1006 /** 1007 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1008 * @zone: zone of the wanted lruvec 1009 * @mem: memcg of the wanted lruvec 1010 * 1011 * Returns the lru list vector holding pages for the given @zone and 1012 * @mem. This can be the global zone lruvec, if the memory controller 1013 * is disabled. 1014 */ 1015 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1016 struct mem_cgroup *memcg) 1017 { 1018 struct mem_cgroup_per_zone *mz; 1019 1020 if (mem_cgroup_disabled()) 1021 return &zone->lruvec; 1022 1023 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1024 return &mz->lruvec; 1025 } 1026 1027 /* 1028 * Following LRU functions are allowed to be used without PCG_LOCK. 1029 * Operations are called by routine of global LRU independently from memcg. 1030 * What we have to take care of here is validness of pc->mem_cgroup. 1031 * 1032 * Changes to pc->mem_cgroup happens when 1033 * 1. charge 1034 * 2. moving account 1035 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1036 * It is added to LRU before charge. 1037 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1038 * When moving account, the page is not on LRU. It's isolated. 1039 */ 1040 1041 /** 1042 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec 1043 * @zone: zone of the page 1044 * @page: the page 1045 * @lru: current lru 1046 * 1047 * This function accounts for @page being added to @lru, and returns 1048 * the lruvec for the given @zone and the memcg @page is charged to. 1049 * 1050 * The callsite is then responsible for physically linking the page to 1051 * the returned lruvec->lists[@lru]. 1052 */ 1053 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page, 1054 enum lru_list lru) 1055 { 1056 struct mem_cgroup_per_zone *mz; 1057 struct mem_cgroup *memcg; 1058 struct page_cgroup *pc; 1059 1060 if (mem_cgroup_disabled()) 1061 return &zone->lruvec; 1062 1063 pc = lookup_page_cgroup(page); 1064 memcg = pc->mem_cgroup; 1065 1066 /* 1067 * Surreptitiously switch any uncharged page to root: 1068 * an uncharged page off lru does nothing to secure 1069 * its former mem_cgroup from sudden removal. 1070 * 1071 * Our caller holds lru_lock, and PageCgroupUsed is updated 1072 * under page_cgroup lock: between them, they make all uses 1073 * of pc->mem_cgroup safe. 1074 */ 1075 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1076 pc->mem_cgroup = memcg = root_mem_cgroup; 1077 1078 mz = page_cgroup_zoneinfo(memcg, page); 1079 /* compound_order() is stabilized through lru_lock */ 1080 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page); 1081 return &mz->lruvec; 1082 } 1083 1084 /** 1085 * mem_cgroup_lru_del_list - account for removing an lru page 1086 * @page: the page 1087 * @lru: target lru 1088 * 1089 * This function accounts for @page being removed from @lru. 1090 * 1091 * The callsite is then responsible for physically unlinking 1092 * @page->lru. 1093 */ 1094 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru) 1095 { 1096 struct mem_cgroup_per_zone *mz; 1097 struct mem_cgroup *memcg; 1098 struct page_cgroup *pc; 1099 1100 if (mem_cgroup_disabled()) 1101 return; 1102 1103 pc = lookup_page_cgroup(page); 1104 memcg = pc->mem_cgroup; 1105 VM_BUG_ON(!memcg); 1106 mz = page_cgroup_zoneinfo(memcg, page); 1107 /* huge page split is done under lru_lock. so, we have no races. */ 1108 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page))); 1109 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page); 1110 } 1111 1112 void mem_cgroup_lru_del(struct page *page) 1113 { 1114 mem_cgroup_lru_del_list(page, page_lru(page)); 1115 } 1116 1117 /** 1118 * mem_cgroup_lru_move_lists - account for moving a page between lrus 1119 * @zone: zone of the page 1120 * @page: the page 1121 * @from: current lru 1122 * @to: target lru 1123 * 1124 * This function accounts for @page being moved between the lrus @from 1125 * and @to, and returns the lruvec for the given @zone and the memcg 1126 * @page is charged to. 1127 * 1128 * The callsite is then responsible for physically relinking 1129 * @page->lru to the returned lruvec->lists[@to]. 1130 */ 1131 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone, 1132 struct page *page, 1133 enum lru_list from, 1134 enum lru_list to) 1135 { 1136 /* XXX: Optimize this, especially for @from == @to */ 1137 mem_cgroup_lru_del_list(page, from); 1138 return mem_cgroup_lru_add_list(zone, page, to); 1139 } 1140 1141 /* 1142 * Checks whether given mem is same or in the root_mem_cgroup's 1143 * hierarchy subtree 1144 */ 1145 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1146 struct mem_cgroup *memcg) 1147 { 1148 if (root_memcg != memcg) { 1149 return (root_memcg->use_hierarchy && 1150 css_is_ancestor(&memcg->css, &root_memcg->css)); 1151 } 1152 1153 return true; 1154 } 1155 1156 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1157 { 1158 int ret; 1159 struct mem_cgroup *curr = NULL; 1160 struct task_struct *p; 1161 1162 p = find_lock_task_mm(task); 1163 if (p) { 1164 curr = try_get_mem_cgroup_from_mm(p->mm); 1165 task_unlock(p); 1166 } else { 1167 /* 1168 * All threads may have already detached their mm's, but the oom 1169 * killer still needs to detect if they have already been oom 1170 * killed to prevent needlessly killing additional tasks. 1171 */ 1172 task_lock(task); 1173 curr = mem_cgroup_from_task(task); 1174 if (curr) 1175 css_get(&curr->css); 1176 task_unlock(task); 1177 } 1178 if (!curr) 1179 return 0; 1180 /* 1181 * We should check use_hierarchy of "memcg" not "curr". Because checking 1182 * use_hierarchy of "curr" here make this function true if hierarchy is 1183 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1184 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1185 */ 1186 ret = mem_cgroup_same_or_subtree(memcg, curr); 1187 css_put(&curr->css); 1188 return ret; 1189 } 1190 1191 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone) 1192 { 1193 unsigned long inactive_ratio; 1194 int nid = zone_to_nid(zone); 1195 int zid = zone_idx(zone); 1196 unsigned long inactive; 1197 unsigned long active; 1198 unsigned long gb; 1199 1200 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1201 BIT(LRU_INACTIVE_ANON)); 1202 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1203 BIT(LRU_ACTIVE_ANON)); 1204 1205 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1206 if (gb) 1207 inactive_ratio = int_sqrt(10 * gb); 1208 else 1209 inactive_ratio = 1; 1210 1211 return inactive * inactive_ratio < active; 1212 } 1213 1214 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone) 1215 { 1216 unsigned long active; 1217 unsigned long inactive; 1218 int zid = zone_idx(zone); 1219 int nid = zone_to_nid(zone); 1220 1221 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1222 BIT(LRU_INACTIVE_FILE)); 1223 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1224 BIT(LRU_ACTIVE_FILE)); 1225 1226 return (active > inactive); 1227 } 1228 1229 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 1230 struct zone *zone) 1231 { 1232 int nid = zone_to_nid(zone); 1233 int zid = zone_idx(zone); 1234 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 1235 1236 return &mz->reclaim_stat; 1237 } 1238 1239 struct zone_reclaim_stat * 1240 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 1241 { 1242 struct page_cgroup *pc; 1243 struct mem_cgroup_per_zone *mz; 1244 1245 if (mem_cgroup_disabled()) 1246 return NULL; 1247 1248 pc = lookup_page_cgroup(page); 1249 if (!PageCgroupUsed(pc)) 1250 return NULL; 1251 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ 1252 smp_rmb(); 1253 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); 1254 return &mz->reclaim_stat; 1255 } 1256 1257 #define mem_cgroup_from_res_counter(counter, member) \ 1258 container_of(counter, struct mem_cgroup, member) 1259 1260 /** 1261 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1262 * @mem: the memory cgroup 1263 * 1264 * Returns the maximum amount of memory @mem can be charged with, in 1265 * pages. 1266 */ 1267 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1268 { 1269 unsigned long long margin; 1270 1271 margin = res_counter_margin(&memcg->res); 1272 if (do_swap_account) 1273 margin = min(margin, res_counter_margin(&memcg->memsw)); 1274 return margin >> PAGE_SHIFT; 1275 } 1276 1277 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1278 { 1279 struct cgroup *cgrp = memcg->css.cgroup; 1280 1281 /* root ? */ 1282 if (cgrp->parent == NULL) 1283 return vm_swappiness; 1284 1285 return memcg->swappiness; 1286 } 1287 1288 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1289 { 1290 int cpu; 1291 1292 get_online_cpus(); 1293 spin_lock(&memcg->pcp_counter_lock); 1294 for_each_online_cpu(cpu) 1295 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; 1296 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; 1297 spin_unlock(&memcg->pcp_counter_lock); 1298 put_online_cpus(); 1299 1300 synchronize_rcu(); 1301 } 1302 1303 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1304 { 1305 int cpu; 1306 1307 if (!memcg) 1308 return; 1309 get_online_cpus(); 1310 spin_lock(&memcg->pcp_counter_lock); 1311 for_each_online_cpu(cpu) 1312 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; 1313 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; 1314 spin_unlock(&memcg->pcp_counter_lock); 1315 put_online_cpus(); 1316 } 1317 /* 1318 * 2 routines for checking "mem" is under move_account() or not. 1319 * 1320 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used 1321 * for avoiding race in accounting. If true, 1322 * pc->mem_cgroup may be overwritten. 1323 * 1324 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1325 * under hierarchy of moving cgroups. This is for 1326 * waiting at hith-memory prressure caused by "move". 1327 */ 1328 1329 static bool mem_cgroup_stealed(struct mem_cgroup *memcg) 1330 { 1331 VM_BUG_ON(!rcu_read_lock_held()); 1332 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0; 1333 } 1334 1335 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1336 { 1337 struct mem_cgroup *from; 1338 struct mem_cgroup *to; 1339 bool ret = false; 1340 /* 1341 * Unlike task_move routines, we access mc.to, mc.from not under 1342 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1343 */ 1344 spin_lock(&mc.lock); 1345 from = mc.from; 1346 to = mc.to; 1347 if (!from) 1348 goto unlock; 1349 1350 ret = mem_cgroup_same_or_subtree(memcg, from) 1351 || mem_cgroup_same_or_subtree(memcg, to); 1352 unlock: 1353 spin_unlock(&mc.lock); 1354 return ret; 1355 } 1356 1357 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1358 { 1359 if (mc.moving_task && current != mc.moving_task) { 1360 if (mem_cgroup_under_move(memcg)) { 1361 DEFINE_WAIT(wait); 1362 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1363 /* moving charge context might have finished. */ 1364 if (mc.moving_task) 1365 schedule(); 1366 finish_wait(&mc.waitq, &wait); 1367 return true; 1368 } 1369 } 1370 return false; 1371 } 1372 1373 /** 1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1375 * @memcg: The memory cgroup that went over limit 1376 * @p: Task that is going to be killed 1377 * 1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1379 * enabled 1380 */ 1381 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1382 { 1383 struct cgroup *task_cgrp; 1384 struct cgroup *mem_cgrp; 1385 /* 1386 * Need a buffer in BSS, can't rely on allocations. The code relies 1387 * on the assumption that OOM is serialized for memory controller. 1388 * If this assumption is broken, revisit this code. 1389 */ 1390 static char memcg_name[PATH_MAX]; 1391 int ret; 1392 1393 if (!memcg || !p) 1394 return; 1395 1396 1397 rcu_read_lock(); 1398 1399 mem_cgrp = memcg->css.cgroup; 1400 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1401 1402 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1403 if (ret < 0) { 1404 /* 1405 * Unfortunately, we are unable to convert to a useful name 1406 * But we'll still print out the usage information 1407 */ 1408 rcu_read_unlock(); 1409 goto done; 1410 } 1411 rcu_read_unlock(); 1412 1413 printk(KERN_INFO "Task in %s killed", memcg_name); 1414 1415 rcu_read_lock(); 1416 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1417 if (ret < 0) { 1418 rcu_read_unlock(); 1419 goto done; 1420 } 1421 rcu_read_unlock(); 1422 1423 /* 1424 * Continues from above, so we don't need an KERN_ level 1425 */ 1426 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1427 done: 1428 1429 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1430 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1431 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1432 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1433 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1434 "failcnt %llu\n", 1435 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1436 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1437 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1438 } 1439 1440 /* 1441 * This function returns the number of memcg under hierarchy tree. Returns 1442 * 1(self count) if no children. 1443 */ 1444 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1445 { 1446 int num = 0; 1447 struct mem_cgroup *iter; 1448 1449 for_each_mem_cgroup_tree(iter, memcg) 1450 num++; 1451 return num; 1452 } 1453 1454 /* 1455 * Return the memory (and swap, if configured) limit for a memcg. 1456 */ 1457 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1458 { 1459 u64 limit; 1460 u64 memsw; 1461 1462 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1463 limit += total_swap_pages << PAGE_SHIFT; 1464 1465 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1466 /* 1467 * If memsw is finite and limits the amount of swap space available 1468 * to this memcg, return that limit. 1469 */ 1470 return min(limit, memsw); 1471 } 1472 1473 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1474 gfp_t gfp_mask, 1475 unsigned long flags) 1476 { 1477 unsigned long total = 0; 1478 bool noswap = false; 1479 int loop; 1480 1481 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1482 noswap = true; 1483 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1484 noswap = true; 1485 1486 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1487 if (loop) 1488 drain_all_stock_async(memcg); 1489 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1490 /* 1491 * Allow limit shrinkers, which are triggered directly 1492 * by userspace, to catch signals and stop reclaim 1493 * after minimal progress, regardless of the margin. 1494 */ 1495 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1496 break; 1497 if (mem_cgroup_margin(memcg)) 1498 break; 1499 /* 1500 * If nothing was reclaimed after two attempts, there 1501 * may be no reclaimable pages in this hierarchy. 1502 */ 1503 if (loop && !total) 1504 break; 1505 } 1506 return total; 1507 } 1508 1509 /** 1510 * test_mem_cgroup_node_reclaimable 1511 * @mem: the target memcg 1512 * @nid: the node ID to be checked. 1513 * @noswap : specify true here if the user wants flle only information. 1514 * 1515 * This function returns whether the specified memcg contains any 1516 * reclaimable pages on a node. Returns true if there are any reclaimable 1517 * pages in the node. 1518 */ 1519 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1520 int nid, bool noswap) 1521 { 1522 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1523 return true; 1524 if (noswap || !total_swap_pages) 1525 return false; 1526 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1527 return true; 1528 return false; 1529 1530 } 1531 #if MAX_NUMNODES > 1 1532 1533 /* 1534 * Always updating the nodemask is not very good - even if we have an empty 1535 * list or the wrong list here, we can start from some node and traverse all 1536 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1537 * 1538 */ 1539 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1540 { 1541 int nid; 1542 /* 1543 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1544 * pagein/pageout changes since the last update. 1545 */ 1546 if (!atomic_read(&memcg->numainfo_events)) 1547 return; 1548 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1549 return; 1550 1551 /* make a nodemask where this memcg uses memory from */ 1552 memcg->scan_nodes = node_states[N_HIGH_MEMORY]; 1553 1554 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1555 1556 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1557 node_clear(nid, memcg->scan_nodes); 1558 } 1559 1560 atomic_set(&memcg->numainfo_events, 0); 1561 atomic_set(&memcg->numainfo_updating, 0); 1562 } 1563 1564 /* 1565 * Selecting a node where we start reclaim from. Because what we need is just 1566 * reducing usage counter, start from anywhere is O,K. Considering 1567 * memory reclaim from current node, there are pros. and cons. 1568 * 1569 * Freeing memory from current node means freeing memory from a node which 1570 * we'll use or we've used. So, it may make LRU bad. And if several threads 1571 * hit limits, it will see a contention on a node. But freeing from remote 1572 * node means more costs for memory reclaim because of memory latency. 1573 * 1574 * Now, we use round-robin. Better algorithm is welcomed. 1575 */ 1576 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1577 { 1578 int node; 1579 1580 mem_cgroup_may_update_nodemask(memcg); 1581 node = memcg->last_scanned_node; 1582 1583 node = next_node(node, memcg->scan_nodes); 1584 if (node == MAX_NUMNODES) 1585 node = first_node(memcg->scan_nodes); 1586 /* 1587 * We call this when we hit limit, not when pages are added to LRU. 1588 * No LRU may hold pages because all pages are UNEVICTABLE or 1589 * memcg is too small and all pages are not on LRU. In that case, 1590 * we use curret node. 1591 */ 1592 if (unlikely(node == MAX_NUMNODES)) 1593 node = numa_node_id(); 1594 1595 memcg->last_scanned_node = node; 1596 return node; 1597 } 1598 1599 /* 1600 * Check all nodes whether it contains reclaimable pages or not. 1601 * For quick scan, we make use of scan_nodes. This will allow us to skip 1602 * unused nodes. But scan_nodes is lazily updated and may not cotain 1603 * enough new information. We need to do double check. 1604 */ 1605 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1606 { 1607 int nid; 1608 1609 /* 1610 * quick check...making use of scan_node. 1611 * We can skip unused nodes. 1612 */ 1613 if (!nodes_empty(memcg->scan_nodes)) { 1614 for (nid = first_node(memcg->scan_nodes); 1615 nid < MAX_NUMNODES; 1616 nid = next_node(nid, memcg->scan_nodes)) { 1617 1618 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1619 return true; 1620 } 1621 } 1622 /* 1623 * Check rest of nodes. 1624 */ 1625 for_each_node_state(nid, N_HIGH_MEMORY) { 1626 if (node_isset(nid, memcg->scan_nodes)) 1627 continue; 1628 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1629 return true; 1630 } 1631 return false; 1632 } 1633 1634 #else 1635 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1636 { 1637 return 0; 1638 } 1639 1640 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1641 { 1642 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1643 } 1644 #endif 1645 1646 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1647 struct zone *zone, 1648 gfp_t gfp_mask, 1649 unsigned long *total_scanned) 1650 { 1651 struct mem_cgroup *victim = NULL; 1652 int total = 0; 1653 int loop = 0; 1654 unsigned long excess; 1655 unsigned long nr_scanned; 1656 struct mem_cgroup_reclaim_cookie reclaim = { 1657 .zone = zone, 1658 .priority = 0, 1659 }; 1660 1661 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1662 1663 while (1) { 1664 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1665 if (!victim) { 1666 loop++; 1667 if (loop >= 2) { 1668 /* 1669 * If we have not been able to reclaim 1670 * anything, it might because there are 1671 * no reclaimable pages under this hierarchy 1672 */ 1673 if (!total) 1674 break; 1675 /* 1676 * We want to do more targeted reclaim. 1677 * excess >> 2 is not to excessive so as to 1678 * reclaim too much, nor too less that we keep 1679 * coming back to reclaim from this cgroup 1680 */ 1681 if (total >= (excess >> 2) || 1682 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1683 break; 1684 } 1685 continue; 1686 } 1687 if (!mem_cgroup_reclaimable(victim, false)) 1688 continue; 1689 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1690 zone, &nr_scanned); 1691 *total_scanned += nr_scanned; 1692 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1693 break; 1694 } 1695 mem_cgroup_iter_break(root_memcg, victim); 1696 return total; 1697 } 1698 1699 /* 1700 * Check OOM-Killer is already running under our hierarchy. 1701 * If someone is running, return false. 1702 * Has to be called with memcg_oom_lock 1703 */ 1704 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1705 { 1706 struct mem_cgroup *iter, *failed = NULL; 1707 1708 for_each_mem_cgroup_tree(iter, memcg) { 1709 if (iter->oom_lock) { 1710 /* 1711 * this subtree of our hierarchy is already locked 1712 * so we cannot give a lock. 1713 */ 1714 failed = iter; 1715 mem_cgroup_iter_break(memcg, iter); 1716 break; 1717 } else 1718 iter->oom_lock = true; 1719 } 1720 1721 if (!failed) 1722 return true; 1723 1724 /* 1725 * OK, we failed to lock the whole subtree so we have to clean up 1726 * what we set up to the failing subtree 1727 */ 1728 for_each_mem_cgroup_tree(iter, memcg) { 1729 if (iter == failed) { 1730 mem_cgroup_iter_break(memcg, iter); 1731 break; 1732 } 1733 iter->oom_lock = false; 1734 } 1735 return false; 1736 } 1737 1738 /* 1739 * Has to be called with memcg_oom_lock 1740 */ 1741 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1742 { 1743 struct mem_cgroup *iter; 1744 1745 for_each_mem_cgroup_tree(iter, memcg) 1746 iter->oom_lock = false; 1747 return 0; 1748 } 1749 1750 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1751 { 1752 struct mem_cgroup *iter; 1753 1754 for_each_mem_cgroup_tree(iter, memcg) 1755 atomic_inc(&iter->under_oom); 1756 } 1757 1758 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1759 { 1760 struct mem_cgroup *iter; 1761 1762 /* 1763 * When a new child is created while the hierarchy is under oom, 1764 * mem_cgroup_oom_lock() may not be called. We have to use 1765 * atomic_add_unless() here. 1766 */ 1767 for_each_mem_cgroup_tree(iter, memcg) 1768 atomic_add_unless(&iter->under_oom, -1, 0); 1769 } 1770 1771 static DEFINE_SPINLOCK(memcg_oom_lock); 1772 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1773 1774 struct oom_wait_info { 1775 struct mem_cgroup *mem; 1776 wait_queue_t wait; 1777 }; 1778 1779 static int memcg_oom_wake_function(wait_queue_t *wait, 1780 unsigned mode, int sync, void *arg) 1781 { 1782 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg, 1783 *oom_wait_memcg; 1784 struct oom_wait_info *oom_wait_info; 1785 1786 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1787 oom_wait_memcg = oom_wait_info->mem; 1788 1789 /* 1790 * Both of oom_wait_info->mem and wake_mem are stable under us. 1791 * Then we can use css_is_ancestor without taking care of RCU. 1792 */ 1793 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 1794 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 1795 return 0; 1796 return autoremove_wake_function(wait, mode, sync, arg); 1797 } 1798 1799 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1800 { 1801 /* for filtering, pass "memcg" as argument. */ 1802 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1803 } 1804 1805 static void memcg_oom_recover(struct mem_cgroup *memcg) 1806 { 1807 if (memcg && atomic_read(&memcg->under_oom)) 1808 memcg_wakeup_oom(memcg); 1809 } 1810 1811 /* 1812 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1813 */ 1814 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask) 1815 { 1816 struct oom_wait_info owait; 1817 bool locked, need_to_kill; 1818 1819 owait.mem = memcg; 1820 owait.wait.flags = 0; 1821 owait.wait.func = memcg_oom_wake_function; 1822 owait.wait.private = current; 1823 INIT_LIST_HEAD(&owait.wait.task_list); 1824 need_to_kill = true; 1825 mem_cgroup_mark_under_oom(memcg); 1826 1827 /* At first, try to OOM lock hierarchy under memcg.*/ 1828 spin_lock(&memcg_oom_lock); 1829 locked = mem_cgroup_oom_lock(memcg); 1830 /* 1831 * Even if signal_pending(), we can't quit charge() loop without 1832 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1833 * under OOM is always welcomed, use TASK_KILLABLE here. 1834 */ 1835 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1836 if (!locked || memcg->oom_kill_disable) 1837 need_to_kill = false; 1838 if (locked) 1839 mem_cgroup_oom_notify(memcg); 1840 spin_unlock(&memcg_oom_lock); 1841 1842 if (need_to_kill) { 1843 finish_wait(&memcg_oom_waitq, &owait.wait); 1844 mem_cgroup_out_of_memory(memcg, mask); 1845 } else { 1846 schedule(); 1847 finish_wait(&memcg_oom_waitq, &owait.wait); 1848 } 1849 spin_lock(&memcg_oom_lock); 1850 if (locked) 1851 mem_cgroup_oom_unlock(memcg); 1852 memcg_wakeup_oom(memcg); 1853 spin_unlock(&memcg_oom_lock); 1854 1855 mem_cgroup_unmark_under_oom(memcg); 1856 1857 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1858 return false; 1859 /* Give chance to dying process */ 1860 schedule_timeout_uninterruptible(1); 1861 return true; 1862 } 1863 1864 /* 1865 * Currently used to update mapped file statistics, but the routine can be 1866 * generalized to update other statistics as well. 1867 * 1868 * Notes: Race condition 1869 * 1870 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1871 * it tends to be costly. But considering some conditions, we doesn't need 1872 * to do so _always_. 1873 * 1874 * Considering "charge", lock_page_cgroup() is not required because all 1875 * file-stat operations happen after a page is attached to radix-tree. There 1876 * are no race with "charge". 1877 * 1878 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1879 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1880 * if there are race with "uncharge". Statistics itself is properly handled 1881 * by flags. 1882 * 1883 * Considering "move", this is an only case we see a race. To make the race 1884 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are 1885 * possibility of race condition. If there is, we take a lock. 1886 */ 1887 1888 void mem_cgroup_update_page_stat(struct page *page, 1889 enum mem_cgroup_page_stat_item idx, int val) 1890 { 1891 struct mem_cgroup *memcg; 1892 struct page_cgroup *pc = lookup_page_cgroup(page); 1893 bool need_unlock = false; 1894 unsigned long uninitialized_var(flags); 1895 1896 if (mem_cgroup_disabled()) 1897 return; 1898 1899 rcu_read_lock(); 1900 memcg = pc->mem_cgroup; 1901 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1902 goto out; 1903 /* pc->mem_cgroup is unstable ? */ 1904 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) { 1905 /* take a lock against to access pc->mem_cgroup */ 1906 move_lock_page_cgroup(pc, &flags); 1907 need_unlock = true; 1908 memcg = pc->mem_cgroup; 1909 if (!memcg || !PageCgroupUsed(pc)) 1910 goto out; 1911 } 1912 1913 switch (idx) { 1914 case MEMCG_NR_FILE_MAPPED: 1915 if (val > 0) 1916 SetPageCgroupFileMapped(pc); 1917 else if (!page_mapped(page)) 1918 ClearPageCgroupFileMapped(pc); 1919 idx = MEM_CGROUP_STAT_FILE_MAPPED; 1920 break; 1921 default: 1922 BUG(); 1923 } 1924 1925 this_cpu_add(memcg->stat->count[idx], val); 1926 1927 out: 1928 if (unlikely(need_unlock)) 1929 move_unlock_page_cgroup(pc, &flags); 1930 rcu_read_unlock(); 1931 return; 1932 } 1933 EXPORT_SYMBOL(mem_cgroup_update_page_stat); 1934 1935 /* 1936 * size of first charge trial. "32" comes from vmscan.c's magic value. 1937 * TODO: maybe necessary to use big numbers in big irons. 1938 */ 1939 #define CHARGE_BATCH 32U 1940 struct memcg_stock_pcp { 1941 struct mem_cgroup *cached; /* this never be root cgroup */ 1942 unsigned int nr_pages; 1943 struct work_struct work; 1944 unsigned long flags; 1945 #define FLUSHING_CACHED_CHARGE (0) 1946 }; 1947 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1948 static DEFINE_MUTEX(percpu_charge_mutex); 1949 1950 /* 1951 * Try to consume stocked charge on this cpu. If success, one page is consumed 1952 * from local stock and true is returned. If the stock is 0 or charges from a 1953 * cgroup which is not current target, returns false. This stock will be 1954 * refilled. 1955 */ 1956 static bool consume_stock(struct mem_cgroup *memcg) 1957 { 1958 struct memcg_stock_pcp *stock; 1959 bool ret = true; 1960 1961 stock = &get_cpu_var(memcg_stock); 1962 if (memcg == stock->cached && stock->nr_pages) 1963 stock->nr_pages--; 1964 else /* need to call res_counter_charge */ 1965 ret = false; 1966 put_cpu_var(memcg_stock); 1967 return ret; 1968 } 1969 1970 /* 1971 * Returns stocks cached in percpu to res_counter and reset cached information. 1972 */ 1973 static void drain_stock(struct memcg_stock_pcp *stock) 1974 { 1975 struct mem_cgroup *old = stock->cached; 1976 1977 if (stock->nr_pages) { 1978 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 1979 1980 res_counter_uncharge(&old->res, bytes); 1981 if (do_swap_account) 1982 res_counter_uncharge(&old->memsw, bytes); 1983 stock->nr_pages = 0; 1984 } 1985 stock->cached = NULL; 1986 } 1987 1988 /* 1989 * This must be called under preempt disabled or must be called by 1990 * a thread which is pinned to local cpu. 1991 */ 1992 static void drain_local_stock(struct work_struct *dummy) 1993 { 1994 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 1995 drain_stock(stock); 1996 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1997 } 1998 1999 /* 2000 * Cache charges(val) which is from res_counter, to local per_cpu area. 2001 * This will be consumed by consume_stock() function, later. 2002 */ 2003 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2004 { 2005 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2006 2007 if (stock->cached != memcg) { /* reset if necessary */ 2008 drain_stock(stock); 2009 stock->cached = memcg; 2010 } 2011 stock->nr_pages += nr_pages; 2012 put_cpu_var(memcg_stock); 2013 } 2014 2015 /* 2016 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2017 * of the hierarchy under it. sync flag says whether we should block 2018 * until the work is done. 2019 */ 2020 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2021 { 2022 int cpu, curcpu; 2023 2024 /* Notify other cpus that system-wide "drain" is running */ 2025 get_online_cpus(); 2026 curcpu = get_cpu(); 2027 for_each_online_cpu(cpu) { 2028 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2029 struct mem_cgroup *memcg; 2030 2031 memcg = stock->cached; 2032 if (!memcg || !stock->nr_pages) 2033 continue; 2034 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2035 continue; 2036 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2037 if (cpu == curcpu) 2038 drain_local_stock(&stock->work); 2039 else 2040 schedule_work_on(cpu, &stock->work); 2041 } 2042 } 2043 put_cpu(); 2044 2045 if (!sync) 2046 goto out; 2047 2048 for_each_online_cpu(cpu) { 2049 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2050 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2051 flush_work(&stock->work); 2052 } 2053 out: 2054 put_online_cpus(); 2055 } 2056 2057 /* 2058 * Tries to drain stocked charges in other cpus. This function is asynchronous 2059 * and just put a work per cpu for draining localy on each cpu. Caller can 2060 * expects some charges will be back to res_counter later but cannot wait for 2061 * it. 2062 */ 2063 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2064 { 2065 /* 2066 * If someone calls draining, avoid adding more kworker runs. 2067 */ 2068 if (!mutex_trylock(&percpu_charge_mutex)) 2069 return; 2070 drain_all_stock(root_memcg, false); 2071 mutex_unlock(&percpu_charge_mutex); 2072 } 2073 2074 /* This is a synchronous drain interface. */ 2075 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2076 { 2077 /* called when force_empty is called */ 2078 mutex_lock(&percpu_charge_mutex); 2079 drain_all_stock(root_memcg, true); 2080 mutex_unlock(&percpu_charge_mutex); 2081 } 2082 2083 /* 2084 * This function drains percpu counter value from DEAD cpu and 2085 * move it to local cpu. Note that this function can be preempted. 2086 */ 2087 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2088 { 2089 int i; 2090 2091 spin_lock(&memcg->pcp_counter_lock); 2092 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { 2093 long x = per_cpu(memcg->stat->count[i], cpu); 2094 2095 per_cpu(memcg->stat->count[i], cpu) = 0; 2096 memcg->nocpu_base.count[i] += x; 2097 } 2098 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2099 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2100 2101 per_cpu(memcg->stat->events[i], cpu) = 0; 2102 memcg->nocpu_base.events[i] += x; 2103 } 2104 /* need to clear ON_MOVE value, works as a kind of lock. */ 2105 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; 2106 spin_unlock(&memcg->pcp_counter_lock); 2107 } 2108 2109 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu) 2110 { 2111 int idx = MEM_CGROUP_ON_MOVE; 2112 2113 spin_lock(&memcg->pcp_counter_lock); 2114 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx]; 2115 spin_unlock(&memcg->pcp_counter_lock); 2116 } 2117 2118 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2119 unsigned long action, 2120 void *hcpu) 2121 { 2122 int cpu = (unsigned long)hcpu; 2123 struct memcg_stock_pcp *stock; 2124 struct mem_cgroup *iter; 2125 2126 if ((action == CPU_ONLINE)) { 2127 for_each_mem_cgroup(iter) 2128 synchronize_mem_cgroup_on_move(iter, cpu); 2129 return NOTIFY_OK; 2130 } 2131 2132 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN) 2133 return NOTIFY_OK; 2134 2135 for_each_mem_cgroup(iter) 2136 mem_cgroup_drain_pcp_counter(iter, cpu); 2137 2138 stock = &per_cpu(memcg_stock, cpu); 2139 drain_stock(stock); 2140 return NOTIFY_OK; 2141 } 2142 2143 2144 /* See __mem_cgroup_try_charge() for details */ 2145 enum { 2146 CHARGE_OK, /* success */ 2147 CHARGE_RETRY, /* need to retry but retry is not bad */ 2148 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2149 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2150 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2151 }; 2152 2153 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2154 unsigned int nr_pages, bool oom_check) 2155 { 2156 unsigned long csize = nr_pages * PAGE_SIZE; 2157 struct mem_cgroup *mem_over_limit; 2158 struct res_counter *fail_res; 2159 unsigned long flags = 0; 2160 int ret; 2161 2162 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2163 2164 if (likely(!ret)) { 2165 if (!do_swap_account) 2166 return CHARGE_OK; 2167 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2168 if (likely(!ret)) 2169 return CHARGE_OK; 2170 2171 res_counter_uncharge(&memcg->res, csize); 2172 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2173 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2174 } else 2175 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2176 /* 2177 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2178 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2179 * 2180 * Never reclaim on behalf of optional batching, retry with a 2181 * single page instead. 2182 */ 2183 if (nr_pages == CHARGE_BATCH) 2184 return CHARGE_RETRY; 2185 2186 if (!(gfp_mask & __GFP_WAIT)) 2187 return CHARGE_WOULDBLOCK; 2188 2189 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2190 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2191 return CHARGE_RETRY; 2192 /* 2193 * Even though the limit is exceeded at this point, reclaim 2194 * may have been able to free some pages. Retry the charge 2195 * before killing the task. 2196 * 2197 * Only for regular pages, though: huge pages are rather 2198 * unlikely to succeed so close to the limit, and we fall back 2199 * to regular pages anyway in case of failure. 2200 */ 2201 if (nr_pages == 1 && ret) 2202 return CHARGE_RETRY; 2203 2204 /* 2205 * At task move, charge accounts can be doubly counted. So, it's 2206 * better to wait until the end of task_move if something is going on. 2207 */ 2208 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2209 return CHARGE_RETRY; 2210 2211 /* If we don't need to call oom-killer at el, return immediately */ 2212 if (!oom_check) 2213 return CHARGE_NOMEM; 2214 /* check OOM */ 2215 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) 2216 return CHARGE_OOM_DIE; 2217 2218 return CHARGE_RETRY; 2219 } 2220 2221 /* 2222 * __mem_cgroup_try_charge() does 2223 * 1. detect memcg to be charged against from passed *mm and *ptr, 2224 * 2. update res_counter 2225 * 3. call memory reclaim if necessary. 2226 * 2227 * In some special case, if the task is fatal, fatal_signal_pending() or 2228 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2229 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2230 * as possible without any hazards. 2: all pages should have a valid 2231 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2232 * pointer, that is treated as a charge to root_mem_cgroup. 2233 * 2234 * So __mem_cgroup_try_charge() will return 2235 * 0 ... on success, filling *ptr with a valid memcg pointer. 2236 * -ENOMEM ... charge failure because of resource limits. 2237 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2238 * 2239 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2240 * the oom-killer can be invoked. 2241 */ 2242 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2243 gfp_t gfp_mask, 2244 unsigned int nr_pages, 2245 struct mem_cgroup **ptr, 2246 bool oom) 2247 { 2248 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2249 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2250 struct mem_cgroup *memcg = NULL; 2251 int ret; 2252 2253 /* 2254 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2255 * in system level. So, allow to go ahead dying process in addition to 2256 * MEMDIE process. 2257 */ 2258 if (unlikely(test_thread_flag(TIF_MEMDIE) 2259 || fatal_signal_pending(current))) 2260 goto bypass; 2261 2262 /* 2263 * We always charge the cgroup the mm_struct belongs to. 2264 * The mm_struct's mem_cgroup changes on task migration if the 2265 * thread group leader migrates. It's possible that mm is not 2266 * set, if so charge the init_mm (happens for pagecache usage). 2267 */ 2268 if (!*ptr && !mm) 2269 *ptr = root_mem_cgroup; 2270 again: 2271 if (*ptr) { /* css should be a valid one */ 2272 memcg = *ptr; 2273 VM_BUG_ON(css_is_removed(&memcg->css)); 2274 if (mem_cgroup_is_root(memcg)) 2275 goto done; 2276 if (nr_pages == 1 && consume_stock(memcg)) 2277 goto done; 2278 css_get(&memcg->css); 2279 } else { 2280 struct task_struct *p; 2281 2282 rcu_read_lock(); 2283 p = rcu_dereference(mm->owner); 2284 /* 2285 * Because we don't have task_lock(), "p" can exit. 2286 * In that case, "memcg" can point to root or p can be NULL with 2287 * race with swapoff. Then, we have small risk of mis-accouning. 2288 * But such kind of mis-account by race always happens because 2289 * we don't have cgroup_mutex(). It's overkill and we allo that 2290 * small race, here. 2291 * (*) swapoff at el will charge against mm-struct not against 2292 * task-struct. So, mm->owner can be NULL. 2293 */ 2294 memcg = mem_cgroup_from_task(p); 2295 if (!memcg) 2296 memcg = root_mem_cgroup; 2297 if (mem_cgroup_is_root(memcg)) { 2298 rcu_read_unlock(); 2299 goto done; 2300 } 2301 if (nr_pages == 1 && consume_stock(memcg)) { 2302 /* 2303 * It seems dagerous to access memcg without css_get(). 2304 * But considering how consume_stok works, it's not 2305 * necessary. If consume_stock success, some charges 2306 * from this memcg are cached on this cpu. So, we 2307 * don't need to call css_get()/css_tryget() before 2308 * calling consume_stock(). 2309 */ 2310 rcu_read_unlock(); 2311 goto done; 2312 } 2313 /* after here, we may be blocked. we need to get refcnt */ 2314 if (!css_tryget(&memcg->css)) { 2315 rcu_read_unlock(); 2316 goto again; 2317 } 2318 rcu_read_unlock(); 2319 } 2320 2321 do { 2322 bool oom_check; 2323 2324 /* If killed, bypass charge */ 2325 if (fatal_signal_pending(current)) { 2326 css_put(&memcg->css); 2327 goto bypass; 2328 } 2329 2330 oom_check = false; 2331 if (oom && !nr_oom_retries) { 2332 oom_check = true; 2333 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2334 } 2335 2336 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); 2337 switch (ret) { 2338 case CHARGE_OK: 2339 break; 2340 case CHARGE_RETRY: /* not in OOM situation but retry */ 2341 batch = nr_pages; 2342 css_put(&memcg->css); 2343 memcg = NULL; 2344 goto again; 2345 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2346 css_put(&memcg->css); 2347 goto nomem; 2348 case CHARGE_NOMEM: /* OOM routine works */ 2349 if (!oom) { 2350 css_put(&memcg->css); 2351 goto nomem; 2352 } 2353 /* If oom, we never return -ENOMEM */ 2354 nr_oom_retries--; 2355 break; 2356 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2357 css_put(&memcg->css); 2358 goto bypass; 2359 } 2360 } while (ret != CHARGE_OK); 2361 2362 if (batch > nr_pages) 2363 refill_stock(memcg, batch - nr_pages); 2364 css_put(&memcg->css); 2365 done: 2366 *ptr = memcg; 2367 return 0; 2368 nomem: 2369 *ptr = NULL; 2370 return -ENOMEM; 2371 bypass: 2372 *ptr = root_mem_cgroup; 2373 return -EINTR; 2374 } 2375 2376 /* 2377 * Somemtimes we have to undo a charge we got by try_charge(). 2378 * This function is for that and do uncharge, put css's refcnt. 2379 * gotten by try_charge(). 2380 */ 2381 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2382 unsigned int nr_pages) 2383 { 2384 if (!mem_cgroup_is_root(memcg)) { 2385 unsigned long bytes = nr_pages * PAGE_SIZE; 2386 2387 res_counter_uncharge(&memcg->res, bytes); 2388 if (do_swap_account) 2389 res_counter_uncharge(&memcg->memsw, bytes); 2390 } 2391 } 2392 2393 /* 2394 * A helper function to get mem_cgroup from ID. must be called under 2395 * rcu_read_lock(). The caller must check css_is_removed() or some if 2396 * it's concern. (dropping refcnt from swap can be called against removed 2397 * memcg.) 2398 */ 2399 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2400 { 2401 struct cgroup_subsys_state *css; 2402 2403 /* ID 0 is unused ID */ 2404 if (!id) 2405 return NULL; 2406 css = css_lookup(&mem_cgroup_subsys, id); 2407 if (!css) 2408 return NULL; 2409 return container_of(css, struct mem_cgroup, css); 2410 } 2411 2412 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2413 { 2414 struct mem_cgroup *memcg = NULL; 2415 struct page_cgroup *pc; 2416 unsigned short id; 2417 swp_entry_t ent; 2418 2419 VM_BUG_ON(!PageLocked(page)); 2420 2421 pc = lookup_page_cgroup(page); 2422 lock_page_cgroup(pc); 2423 if (PageCgroupUsed(pc)) { 2424 memcg = pc->mem_cgroup; 2425 if (memcg && !css_tryget(&memcg->css)) 2426 memcg = NULL; 2427 } else if (PageSwapCache(page)) { 2428 ent.val = page_private(page); 2429 id = lookup_swap_cgroup_id(ent); 2430 rcu_read_lock(); 2431 memcg = mem_cgroup_lookup(id); 2432 if (memcg && !css_tryget(&memcg->css)) 2433 memcg = NULL; 2434 rcu_read_unlock(); 2435 } 2436 unlock_page_cgroup(pc); 2437 return memcg; 2438 } 2439 2440 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2441 struct page *page, 2442 unsigned int nr_pages, 2443 struct page_cgroup *pc, 2444 enum charge_type ctype, 2445 bool lrucare) 2446 { 2447 struct zone *uninitialized_var(zone); 2448 bool was_on_lru = false; 2449 2450 lock_page_cgroup(pc); 2451 if (unlikely(PageCgroupUsed(pc))) { 2452 unlock_page_cgroup(pc); 2453 __mem_cgroup_cancel_charge(memcg, nr_pages); 2454 return; 2455 } 2456 /* 2457 * we don't need page_cgroup_lock about tail pages, becase they are not 2458 * accessed by any other context at this point. 2459 */ 2460 2461 /* 2462 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2463 * may already be on some other mem_cgroup's LRU. Take care of it. 2464 */ 2465 if (lrucare) { 2466 zone = page_zone(page); 2467 spin_lock_irq(&zone->lru_lock); 2468 if (PageLRU(page)) { 2469 ClearPageLRU(page); 2470 del_page_from_lru_list(zone, page, page_lru(page)); 2471 was_on_lru = true; 2472 } 2473 } 2474 2475 pc->mem_cgroup = memcg; 2476 /* 2477 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2478 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2479 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2480 * before USED bit, we need memory barrier here. 2481 * See mem_cgroup_add_lru_list(), etc. 2482 */ 2483 smp_wmb(); 2484 switch (ctype) { 2485 case MEM_CGROUP_CHARGE_TYPE_CACHE: 2486 case MEM_CGROUP_CHARGE_TYPE_SHMEM: 2487 SetPageCgroupCache(pc); 2488 SetPageCgroupUsed(pc); 2489 break; 2490 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2491 ClearPageCgroupCache(pc); 2492 SetPageCgroupUsed(pc); 2493 break; 2494 default: 2495 break; 2496 } 2497 2498 if (lrucare) { 2499 if (was_on_lru) { 2500 VM_BUG_ON(PageLRU(page)); 2501 SetPageLRU(page); 2502 add_page_to_lru_list(zone, page, page_lru(page)); 2503 } 2504 spin_unlock_irq(&zone->lru_lock); 2505 } 2506 2507 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages); 2508 unlock_page_cgroup(pc); 2509 2510 /* 2511 * "charge_statistics" updated event counter. Then, check it. 2512 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2513 * if they exceeds softlimit. 2514 */ 2515 memcg_check_events(memcg, page); 2516 } 2517 2518 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2519 2520 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\ 2521 (1 << PCG_MIGRATION)) 2522 /* 2523 * Because tail pages are not marked as "used", set it. We're under 2524 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2525 * charge/uncharge will be never happen and move_account() is done under 2526 * compound_lock(), so we don't have to take care of races. 2527 */ 2528 void mem_cgroup_split_huge_fixup(struct page *head) 2529 { 2530 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2531 struct page_cgroup *pc; 2532 int i; 2533 2534 if (mem_cgroup_disabled()) 2535 return; 2536 for (i = 1; i < HPAGE_PMD_NR; i++) { 2537 pc = head_pc + i; 2538 pc->mem_cgroup = head_pc->mem_cgroup; 2539 smp_wmb();/* see __commit_charge() */ 2540 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2541 } 2542 } 2543 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2544 2545 /** 2546 * mem_cgroup_move_account - move account of the page 2547 * @page: the page 2548 * @nr_pages: number of regular pages (>1 for huge pages) 2549 * @pc: page_cgroup of the page. 2550 * @from: mem_cgroup which the page is moved from. 2551 * @to: mem_cgroup which the page is moved to. @from != @to. 2552 * @uncharge: whether we should call uncharge and css_put against @from. 2553 * 2554 * The caller must confirm following. 2555 * - page is not on LRU (isolate_page() is useful.) 2556 * - compound_lock is held when nr_pages > 1 2557 * 2558 * This function doesn't do "charge" nor css_get to new cgroup. It should be 2559 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is 2560 * true, this function does "uncharge" from old cgroup, but it doesn't if 2561 * @uncharge is false, so a caller should do "uncharge". 2562 */ 2563 static int mem_cgroup_move_account(struct page *page, 2564 unsigned int nr_pages, 2565 struct page_cgroup *pc, 2566 struct mem_cgroup *from, 2567 struct mem_cgroup *to, 2568 bool uncharge) 2569 { 2570 unsigned long flags; 2571 int ret; 2572 2573 VM_BUG_ON(from == to); 2574 VM_BUG_ON(PageLRU(page)); 2575 /* 2576 * The page is isolated from LRU. So, collapse function 2577 * will not handle this page. But page splitting can happen. 2578 * Do this check under compound_page_lock(). The caller should 2579 * hold it. 2580 */ 2581 ret = -EBUSY; 2582 if (nr_pages > 1 && !PageTransHuge(page)) 2583 goto out; 2584 2585 lock_page_cgroup(pc); 2586 2587 ret = -EINVAL; 2588 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2589 goto unlock; 2590 2591 move_lock_page_cgroup(pc, &flags); 2592 2593 if (PageCgroupFileMapped(pc)) { 2594 /* Update mapped_file data for mem_cgroup */ 2595 preempt_disable(); 2596 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2597 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2598 preempt_enable(); 2599 } 2600 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages); 2601 if (uncharge) 2602 /* This is not "cancel", but cancel_charge does all we need. */ 2603 __mem_cgroup_cancel_charge(from, nr_pages); 2604 2605 /* caller should have done css_get */ 2606 pc->mem_cgroup = to; 2607 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages); 2608 /* 2609 * We charges against "to" which may not have any tasks. Then, "to" 2610 * can be under rmdir(). But in current implementation, caller of 2611 * this function is just force_empty() and move charge, so it's 2612 * guaranteed that "to" is never removed. So, we don't check rmdir 2613 * status here. 2614 */ 2615 move_unlock_page_cgroup(pc, &flags); 2616 ret = 0; 2617 unlock: 2618 unlock_page_cgroup(pc); 2619 /* 2620 * check events 2621 */ 2622 memcg_check_events(to, page); 2623 memcg_check_events(from, page); 2624 out: 2625 return ret; 2626 } 2627 2628 /* 2629 * move charges to its parent. 2630 */ 2631 2632 static int mem_cgroup_move_parent(struct page *page, 2633 struct page_cgroup *pc, 2634 struct mem_cgroup *child, 2635 gfp_t gfp_mask) 2636 { 2637 struct cgroup *cg = child->css.cgroup; 2638 struct cgroup *pcg = cg->parent; 2639 struct mem_cgroup *parent; 2640 unsigned int nr_pages; 2641 unsigned long uninitialized_var(flags); 2642 int ret; 2643 2644 /* Is ROOT ? */ 2645 if (!pcg) 2646 return -EINVAL; 2647 2648 ret = -EBUSY; 2649 if (!get_page_unless_zero(page)) 2650 goto out; 2651 if (isolate_lru_page(page)) 2652 goto put; 2653 2654 nr_pages = hpage_nr_pages(page); 2655 2656 parent = mem_cgroup_from_cont(pcg); 2657 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false); 2658 if (ret) 2659 goto put_back; 2660 2661 if (nr_pages > 1) 2662 flags = compound_lock_irqsave(page); 2663 2664 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true); 2665 if (ret) 2666 __mem_cgroup_cancel_charge(parent, nr_pages); 2667 2668 if (nr_pages > 1) 2669 compound_unlock_irqrestore(page, flags); 2670 put_back: 2671 putback_lru_page(page); 2672 put: 2673 put_page(page); 2674 out: 2675 return ret; 2676 } 2677 2678 /* 2679 * Charge the memory controller for page usage. 2680 * Return 2681 * 0 if the charge was successful 2682 * < 0 if the cgroup is over its limit 2683 */ 2684 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2685 gfp_t gfp_mask, enum charge_type ctype) 2686 { 2687 struct mem_cgroup *memcg = NULL; 2688 unsigned int nr_pages = 1; 2689 struct page_cgroup *pc; 2690 bool oom = true; 2691 int ret; 2692 2693 if (PageTransHuge(page)) { 2694 nr_pages <<= compound_order(page); 2695 VM_BUG_ON(!PageTransHuge(page)); 2696 /* 2697 * Never OOM-kill a process for a huge page. The 2698 * fault handler will fall back to regular pages. 2699 */ 2700 oom = false; 2701 } 2702 2703 pc = lookup_page_cgroup(page); 2704 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 2705 if (ret == -ENOMEM) 2706 return ret; 2707 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false); 2708 return 0; 2709 } 2710 2711 int mem_cgroup_newpage_charge(struct page *page, 2712 struct mm_struct *mm, gfp_t gfp_mask) 2713 { 2714 if (mem_cgroup_disabled()) 2715 return 0; 2716 VM_BUG_ON(page_mapped(page)); 2717 VM_BUG_ON(page->mapping && !PageAnon(page)); 2718 VM_BUG_ON(!mm); 2719 return mem_cgroup_charge_common(page, mm, gfp_mask, 2720 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2721 } 2722 2723 static void 2724 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2725 enum charge_type ctype); 2726 2727 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2728 gfp_t gfp_mask) 2729 { 2730 struct mem_cgroup *memcg = NULL; 2731 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 2732 int ret; 2733 2734 if (mem_cgroup_disabled()) 2735 return 0; 2736 if (PageCompound(page)) 2737 return 0; 2738 2739 if (unlikely(!mm)) 2740 mm = &init_mm; 2741 if (!page_is_file_cache(page)) 2742 type = MEM_CGROUP_CHARGE_TYPE_SHMEM; 2743 2744 if (!PageSwapCache(page)) 2745 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 2746 else { /* page is swapcache/shmem */ 2747 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg); 2748 if (!ret) 2749 __mem_cgroup_commit_charge_swapin(page, memcg, type); 2750 } 2751 return ret; 2752 } 2753 2754 /* 2755 * While swap-in, try_charge -> commit or cancel, the page is locked. 2756 * And when try_charge() successfully returns, one refcnt to memcg without 2757 * struct page_cgroup is acquired. This refcnt will be consumed by 2758 * "commit()" or removed by "cancel()" 2759 */ 2760 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2761 struct page *page, 2762 gfp_t mask, struct mem_cgroup **memcgp) 2763 { 2764 struct mem_cgroup *memcg; 2765 int ret; 2766 2767 *memcgp = NULL; 2768 2769 if (mem_cgroup_disabled()) 2770 return 0; 2771 2772 if (!do_swap_account) 2773 goto charge_cur_mm; 2774 /* 2775 * A racing thread's fault, or swapoff, may have already updated 2776 * the pte, and even removed page from swap cache: in those cases 2777 * do_swap_page()'s pte_same() test will fail; but there's also a 2778 * KSM case which does need to charge the page. 2779 */ 2780 if (!PageSwapCache(page)) 2781 goto charge_cur_mm; 2782 memcg = try_get_mem_cgroup_from_page(page); 2783 if (!memcg) 2784 goto charge_cur_mm; 2785 *memcgp = memcg; 2786 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 2787 css_put(&memcg->css); 2788 if (ret == -EINTR) 2789 ret = 0; 2790 return ret; 2791 charge_cur_mm: 2792 if (unlikely(!mm)) 2793 mm = &init_mm; 2794 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 2795 if (ret == -EINTR) 2796 ret = 0; 2797 return ret; 2798 } 2799 2800 static void 2801 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 2802 enum charge_type ctype) 2803 { 2804 struct page_cgroup *pc; 2805 2806 if (mem_cgroup_disabled()) 2807 return; 2808 if (!memcg) 2809 return; 2810 cgroup_exclude_rmdir(&memcg->css); 2811 2812 pc = lookup_page_cgroup(page); 2813 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true); 2814 /* 2815 * Now swap is on-memory. This means this page may be 2816 * counted both as mem and swap....double count. 2817 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2818 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2819 * may call delete_from_swap_cache() before reach here. 2820 */ 2821 if (do_swap_account && PageSwapCache(page)) { 2822 swp_entry_t ent = {.val = page_private(page)}; 2823 struct mem_cgroup *swap_memcg; 2824 unsigned short id; 2825 2826 id = swap_cgroup_record(ent, 0); 2827 rcu_read_lock(); 2828 swap_memcg = mem_cgroup_lookup(id); 2829 if (swap_memcg) { 2830 /* 2831 * This recorded memcg can be obsolete one. So, avoid 2832 * calling css_tryget 2833 */ 2834 if (!mem_cgroup_is_root(swap_memcg)) 2835 res_counter_uncharge(&swap_memcg->memsw, 2836 PAGE_SIZE); 2837 mem_cgroup_swap_statistics(swap_memcg, false); 2838 mem_cgroup_put(swap_memcg); 2839 } 2840 rcu_read_unlock(); 2841 } 2842 /* 2843 * At swapin, we may charge account against cgroup which has no tasks. 2844 * So, rmdir()->pre_destroy() can be called while we do this charge. 2845 * In that case, we need to call pre_destroy() again. check it here. 2846 */ 2847 cgroup_release_and_wakeup_rmdir(&memcg->css); 2848 } 2849 2850 void mem_cgroup_commit_charge_swapin(struct page *page, 2851 struct mem_cgroup *memcg) 2852 { 2853 __mem_cgroup_commit_charge_swapin(page, memcg, 2854 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2855 } 2856 2857 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 2858 { 2859 if (mem_cgroup_disabled()) 2860 return; 2861 if (!memcg) 2862 return; 2863 __mem_cgroup_cancel_charge(memcg, 1); 2864 } 2865 2866 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 2867 unsigned int nr_pages, 2868 const enum charge_type ctype) 2869 { 2870 struct memcg_batch_info *batch = NULL; 2871 bool uncharge_memsw = true; 2872 2873 /* If swapout, usage of swap doesn't decrease */ 2874 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2875 uncharge_memsw = false; 2876 2877 batch = ¤t->memcg_batch; 2878 /* 2879 * In usual, we do css_get() when we remember memcg pointer. 2880 * But in this case, we keep res->usage until end of a series of 2881 * uncharges. Then, it's ok to ignore memcg's refcnt. 2882 */ 2883 if (!batch->memcg) 2884 batch->memcg = memcg; 2885 /* 2886 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2887 * In those cases, all pages freed continuously can be expected to be in 2888 * the same cgroup and we have chance to coalesce uncharges. 2889 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2890 * because we want to do uncharge as soon as possible. 2891 */ 2892 2893 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2894 goto direct_uncharge; 2895 2896 if (nr_pages > 1) 2897 goto direct_uncharge; 2898 2899 /* 2900 * In typical case, batch->memcg == mem. This means we can 2901 * merge a series of uncharges to an uncharge of res_counter. 2902 * If not, we uncharge res_counter ony by one. 2903 */ 2904 if (batch->memcg != memcg) 2905 goto direct_uncharge; 2906 /* remember freed charge and uncharge it later */ 2907 batch->nr_pages++; 2908 if (uncharge_memsw) 2909 batch->memsw_nr_pages++; 2910 return; 2911 direct_uncharge: 2912 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 2913 if (uncharge_memsw) 2914 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 2915 if (unlikely(batch->memcg != memcg)) 2916 memcg_oom_recover(memcg); 2917 return; 2918 } 2919 2920 /* 2921 * uncharge if !page_mapped(page) 2922 */ 2923 static struct mem_cgroup * 2924 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 2925 { 2926 struct mem_cgroup *memcg = NULL; 2927 unsigned int nr_pages = 1; 2928 struct page_cgroup *pc; 2929 2930 if (mem_cgroup_disabled()) 2931 return NULL; 2932 2933 if (PageSwapCache(page)) 2934 return NULL; 2935 2936 if (PageTransHuge(page)) { 2937 nr_pages <<= compound_order(page); 2938 VM_BUG_ON(!PageTransHuge(page)); 2939 } 2940 /* 2941 * Check if our page_cgroup is valid 2942 */ 2943 pc = lookup_page_cgroup(page); 2944 if (unlikely(!PageCgroupUsed(pc))) 2945 return NULL; 2946 2947 lock_page_cgroup(pc); 2948 2949 memcg = pc->mem_cgroup; 2950 2951 if (!PageCgroupUsed(pc)) 2952 goto unlock_out; 2953 2954 switch (ctype) { 2955 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2956 case MEM_CGROUP_CHARGE_TYPE_DROP: 2957 /* See mem_cgroup_prepare_migration() */ 2958 if (page_mapped(page) || PageCgroupMigration(pc)) 2959 goto unlock_out; 2960 break; 2961 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 2962 if (!PageAnon(page)) { /* Shared memory */ 2963 if (page->mapping && !page_is_file_cache(page)) 2964 goto unlock_out; 2965 } else if (page_mapped(page)) /* Anon */ 2966 goto unlock_out; 2967 break; 2968 default: 2969 break; 2970 } 2971 2972 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages); 2973 2974 ClearPageCgroupUsed(pc); 2975 /* 2976 * pc->mem_cgroup is not cleared here. It will be accessed when it's 2977 * freed from LRU. This is safe because uncharged page is expected not 2978 * to be reused (freed soon). Exception is SwapCache, it's handled by 2979 * special functions. 2980 */ 2981 2982 unlock_page_cgroup(pc); 2983 /* 2984 * even after unlock, we have memcg->res.usage here and this memcg 2985 * will never be freed. 2986 */ 2987 memcg_check_events(memcg, page); 2988 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 2989 mem_cgroup_swap_statistics(memcg, true); 2990 mem_cgroup_get(memcg); 2991 } 2992 if (!mem_cgroup_is_root(memcg)) 2993 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 2994 2995 return memcg; 2996 2997 unlock_out: 2998 unlock_page_cgroup(pc); 2999 return NULL; 3000 } 3001 3002 void mem_cgroup_uncharge_page(struct page *page) 3003 { 3004 /* early check. */ 3005 if (page_mapped(page)) 3006 return; 3007 VM_BUG_ON(page->mapping && !PageAnon(page)); 3008 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 3009 } 3010 3011 void mem_cgroup_uncharge_cache_page(struct page *page) 3012 { 3013 VM_BUG_ON(page_mapped(page)); 3014 VM_BUG_ON(page->mapping); 3015 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 3016 } 3017 3018 /* 3019 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 3020 * In that cases, pages are freed continuously and we can expect pages 3021 * are in the same memcg. All these calls itself limits the number of 3022 * pages freed at once, then uncharge_start/end() is called properly. 3023 * This may be called prural(2) times in a context, 3024 */ 3025 3026 void mem_cgroup_uncharge_start(void) 3027 { 3028 current->memcg_batch.do_batch++; 3029 /* We can do nest. */ 3030 if (current->memcg_batch.do_batch == 1) { 3031 current->memcg_batch.memcg = NULL; 3032 current->memcg_batch.nr_pages = 0; 3033 current->memcg_batch.memsw_nr_pages = 0; 3034 } 3035 } 3036 3037 void mem_cgroup_uncharge_end(void) 3038 { 3039 struct memcg_batch_info *batch = ¤t->memcg_batch; 3040 3041 if (!batch->do_batch) 3042 return; 3043 3044 batch->do_batch--; 3045 if (batch->do_batch) /* If stacked, do nothing. */ 3046 return; 3047 3048 if (!batch->memcg) 3049 return; 3050 /* 3051 * This "batch->memcg" is valid without any css_get/put etc... 3052 * bacause we hide charges behind us. 3053 */ 3054 if (batch->nr_pages) 3055 res_counter_uncharge(&batch->memcg->res, 3056 batch->nr_pages * PAGE_SIZE); 3057 if (batch->memsw_nr_pages) 3058 res_counter_uncharge(&batch->memcg->memsw, 3059 batch->memsw_nr_pages * PAGE_SIZE); 3060 memcg_oom_recover(batch->memcg); 3061 /* forget this pointer (for sanity check) */ 3062 batch->memcg = NULL; 3063 } 3064 3065 #ifdef CONFIG_SWAP 3066 /* 3067 * called after __delete_from_swap_cache() and drop "page" account. 3068 * memcg information is recorded to swap_cgroup of "ent" 3069 */ 3070 void 3071 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3072 { 3073 struct mem_cgroup *memcg; 3074 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3075 3076 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3077 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3078 3079 memcg = __mem_cgroup_uncharge_common(page, ctype); 3080 3081 /* 3082 * record memcg information, if swapout && memcg != NULL, 3083 * mem_cgroup_get() was called in uncharge(). 3084 */ 3085 if (do_swap_account && swapout && memcg) 3086 swap_cgroup_record(ent, css_id(&memcg->css)); 3087 } 3088 #endif 3089 3090 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 3091 /* 3092 * called from swap_entry_free(). remove record in swap_cgroup and 3093 * uncharge "memsw" account. 3094 */ 3095 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3096 { 3097 struct mem_cgroup *memcg; 3098 unsigned short id; 3099 3100 if (!do_swap_account) 3101 return; 3102 3103 id = swap_cgroup_record(ent, 0); 3104 rcu_read_lock(); 3105 memcg = mem_cgroup_lookup(id); 3106 if (memcg) { 3107 /* 3108 * We uncharge this because swap is freed. 3109 * This memcg can be obsolete one. We avoid calling css_tryget 3110 */ 3111 if (!mem_cgroup_is_root(memcg)) 3112 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3113 mem_cgroup_swap_statistics(memcg, false); 3114 mem_cgroup_put(memcg); 3115 } 3116 rcu_read_unlock(); 3117 } 3118 3119 /** 3120 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3121 * @entry: swap entry to be moved 3122 * @from: mem_cgroup which the entry is moved from 3123 * @to: mem_cgroup which the entry is moved to 3124 * @need_fixup: whether we should fixup res_counters and refcounts. 3125 * 3126 * It succeeds only when the swap_cgroup's record for this entry is the same 3127 * as the mem_cgroup's id of @from. 3128 * 3129 * Returns 0 on success, -EINVAL on failure. 3130 * 3131 * The caller must have charged to @to, IOW, called res_counter_charge() about 3132 * both res and memsw, and called css_get(). 3133 */ 3134 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3135 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 3136 { 3137 unsigned short old_id, new_id; 3138 3139 old_id = css_id(&from->css); 3140 new_id = css_id(&to->css); 3141 3142 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3143 mem_cgroup_swap_statistics(from, false); 3144 mem_cgroup_swap_statistics(to, true); 3145 /* 3146 * This function is only called from task migration context now. 3147 * It postpones res_counter and refcount handling till the end 3148 * of task migration(mem_cgroup_clear_mc()) for performance 3149 * improvement. But we cannot postpone mem_cgroup_get(to) 3150 * because if the process that has been moved to @to does 3151 * swap-in, the refcount of @to might be decreased to 0. 3152 */ 3153 mem_cgroup_get(to); 3154 if (need_fixup) { 3155 if (!mem_cgroup_is_root(from)) 3156 res_counter_uncharge(&from->memsw, PAGE_SIZE); 3157 mem_cgroup_put(from); 3158 /* 3159 * we charged both to->res and to->memsw, so we should 3160 * uncharge to->res. 3161 */ 3162 if (!mem_cgroup_is_root(to)) 3163 res_counter_uncharge(&to->res, PAGE_SIZE); 3164 } 3165 return 0; 3166 } 3167 return -EINVAL; 3168 } 3169 #else 3170 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3171 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 3172 { 3173 return -EINVAL; 3174 } 3175 #endif 3176 3177 /* 3178 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3179 * page belongs to. 3180 */ 3181 int mem_cgroup_prepare_migration(struct page *page, 3182 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask) 3183 { 3184 struct mem_cgroup *memcg = NULL; 3185 struct page_cgroup *pc; 3186 enum charge_type ctype; 3187 int ret = 0; 3188 3189 *memcgp = NULL; 3190 3191 VM_BUG_ON(PageTransHuge(page)); 3192 if (mem_cgroup_disabled()) 3193 return 0; 3194 3195 pc = lookup_page_cgroup(page); 3196 lock_page_cgroup(pc); 3197 if (PageCgroupUsed(pc)) { 3198 memcg = pc->mem_cgroup; 3199 css_get(&memcg->css); 3200 /* 3201 * At migrating an anonymous page, its mapcount goes down 3202 * to 0 and uncharge() will be called. But, even if it's fully 3203 * unmapped, migration may fail and this page has to be 3204 * charged again. We set MIGRATION flag here and delay uncharge 3205 * until end_migration() is called 3206 * 3207 * Corner Case Thinking 3208 * A) 3209 * When the old page was mapped as Anon and it's unmap-and-freed 3210 * while migration was ongoing. 3211 * If unmap finds the old page, uncharge() of it will be delayed 3212 * until end_migration(). If unmap finds a new page, it's 3213 * uncharged when it make mapcount to be 1->0. If unmap code 3214 * finds swap_migration_entry, the new page will not be mapped 3215 * and end_migration() will find it(mapcount==0). 3216 * 3217 * B) 3218 * When the old page was mapped but migraion fails, the kernel 3219 * remaps it. A charge for it is kept by MIGRATION flag even 3220 * if mapcount goes down to 0. We can do remap successfully 3221 * without charging it again. 3222 * 3223 * C) 3224 * The "old" page is under lock_page() until the end of 3225 * migration, so, the old page itself will not be swapped-out. 3226 * If the new page is swapped out before end_migraton, our 3227 * hook to usual swap-out path will catch the event. 3228 */ 3229 if (PageAnon(page)) 3230 SetPageCgroupMigration(pc); 3231 } 3232 unlock_page_cgroup(pc); 3233 /* 3234 * If the page is not charged at this point, 3235 * we return here. 3236 */ 3237 if (!memcg) 3238 return 0; 3239 3240 *memcgp = memcg; 3241 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false); 3242 css_put(&memcg->css);/* drop extra refcnt */ 3243 if (ret) { 3244 if (PageAnon(page)) { 3245 lock_page_cgroup(pc); 3246 ClearPageCgroupMigration(pc); 3247 unlock_page_cgroup(pc); 3248 /* 3249 * The old page may be fully unmapped while we kept it. 3250 */ 3251 mem_cgroup_uncharge_page(page); 3252 } 3253 /* we'll need to revisit this error code (we have -EINTR) */ 3254 return -ENOMEM; 3255 } 3256 /* 3257 * We charge new page before it's used/mapped. So, even if unlock_page() 3258 * is called before end_migration, we can catch all events on this new 3259 * page. In the case new page is migrated but not remapped, new page's 3260 * mapcount will be finally 0 and we call uncharge in end_migration(). 3261 */ 3262 pc = lookup_page_cgroup(newpage); 3263 if (PageAnon(page)) 3264 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 3265 else if (page_is_file_cache(page)) 3266 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3267 else 3268 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3269 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false); 3270 return ret; 3271 } 3272 3273 /* remove redundant charge if migration failed*/ 3274 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 3275 struct page *oldpage, struct page *newpage, bool migration_ok) 3276 { 3277 struct page *used, *unused; 3278 struct page_cgroup *pc; 3279 3280 if (!memcg) 3281 return; 3282 /* blocks rmdir() */ 3283 cgroup_exclude_rmdir(&memcg->css); 3284 if (!migration_ok) { 3285 used = oldpage; 3286 unused = newpage; 3287 } else { 3288 used = newpage; 3289 unused = oldpage; 3290 } 3291 /* 3292 * We disallowed uncharge of pages under migration because mapcount 3293 * of the page goes down to zero, temporarly. 3294 * Clear the flag and check the page should be charged. 3295 */ 3296 pc = lookup_page_cgroup(oldpage); 3297 lock_page_cgroup(pc); 3298 ClearPageCgroupMigration(pc); 3299 unlock_page_cgroup(pc); 3300 3301 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); 3302 3303 /* 3304 * If a page is a file cache, radix-tree replacement is very atomic 3305 * and we can skip this check. When it was an Anon page, its mapcount 3306 * goes down to 0. But because we added MIGRATION flage, it's not 3307 * uncharged yet. There are several case but page->mapcount check 3308 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3309 * check. (see prepare_charge() also) 3310 */ 3311 if (PageAnon(used)) 3312 mem_cgroup_uncharge_page(used); 3313 /* 3314 * At migration, we may charge account against cgroup which has no 3315 * tasks. 3316 * So, rmdir()->pre_destroy() can be called while we do this charge. 3317 * In that case, we need to call pre_destroy() again. check it here. 3318 */ 3319 cgroup_release_and_wakeup_rmdir(&memcg->css); 3320 } 3321 3322 /* 3323 * At replace page cache, newpage is not under any memcg but it's on 3324 * LRU. So, this function doesn't touch res_counter but handles LRU 3325 * in correct way. Both pages are locked so we cannot race with uncharge. 3326 */ 3327 void mem_cgroup_replace_page_cache(struct page *oldpage, 3328 struct page *newpage) 3329 { 3330 struct mem_cgroup *memcg; 3331 struct page_cgroup *pc; 3332 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3333 3334 if (mem_cgroup_disabled()) 3335 return; 3336 3337 pc = lookup_page_cgroup(oldpage); 3338 /* fix accounting on old pages */ 3339 lock_page_cgroup(pc); 3340 memcg = pc->mem_cgroup; 3341 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1); 3342 ClearPageCgroupUsed(pc); 3343 unlock_page_cgroup(pc); 3344 3345 if (PageSwapBacked(oldpage)) 3346 type = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3347 3348 /* 3349 * Even if newpage->mapping was NULL before starting replacement, 3350 * the newpage may be on LRU(or pagevec for LRU) already. We lock 3351 * LRU while we overwrite pc->mem_cgroup. 3352 */ 3353 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true); 3354 } 3355 3356 #ifdef CONFIG_DEBUG_VM 3357 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3358 { 3359 struct page_cgroup *pc; 3360 3361 pc = lookup_page_cgroup(page); 3362 /* 3363 * Can be NULL while feeding pages into the page allocator for 3364 * the first time, i.e. during boot or memory hotplug; 3365 * or when mem_cgroup_disabled(). 3366 */ 3367 if (likely(pc) && PageCgroupUsed(pc)) 3368 return pc; 3369 return NULL; 3370 } 3371 3372 bool mem_cgroup_bad_page_check(struct page *page) 3373 { 3374 if (mem_cgroup_disabled()) 3375 return false; 3376 3377 return lookup_page_cgroup_used(page) != NULL; 3378 } 3379 3380 void mem_cgroup_print_bad_page(struct page *page) 3381 { 3382 struct page_cgroup *pc; 3383 3384 pc = lookup_page_cgroup_used(page); 3385 if (pc) { 3386 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3387 pc, pc->flags, pc->mem_cgroup); 3388 } 3389 } 3390 #endif 3391 3392 static DEFINE_MUTEX(set_limit_mutex); 3393 3394 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3395 unsigned long long val) 3396 { 3397 int retry_count; 3398 u64 memswlimit, memlimit; 3399 int ret = 0; 3400 int children = mem_cgroup_count_children(memcg); 3401 u64 curusage, oldusage; 3402 int enlarge; 3403 3404 /* 3405 * For keeping hierarchical_reclaim simple, how long we should retry 3406 * is depends on callers. We set our retry-count to be function 3407 * of # of children which we should visit in this loop. 3408 */ 3409 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3410 3411 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3412 3413 enlarge = 0; 3414 while (retry_count) { 3415 if (signal_pending(current)) { 3416 ret = -EINTR; 3417 break; 3418 } 3419 /* 3420 * Rather than hide all in some function, I do this in 3421 * open coded manner. You see what this really does. 3422 * We have to guarantee memcg->res.limit < memcg->memsw.limit. 3423 */ 3424 mutex_lock(&set_limit_mutex); 3425 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3426 if (memswlimit < val) { 3427 ret = -EINVAL; 3428 mutex_unlock(&set_limit_mutex); 3429 break; 3430 } 3431 3432 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3433 if (memlimit < val) 3434 enlarge = 1; 3435 3436 ret = res_counter_set_limit(&memcg->res, val); 3437 if (!ret) { 3438 if (memswlimit == val) 3439 memcg->memsw_is_minimum = true; 3440 else 3441 memcg->memsw_is_minimum = false; 3442 } 3443 mutex_unlock(&set_limit_mutex); 3444 3445 if (!ret) 3446 break; 3447 3448 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3449 MEM_CGROUP_RECLAIM_SHRINK); 3450 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3451 /* Usage is reduced ? */ 3452 if (curusage >= oldusage) 3453 retry_count--; 3454 else 3455 oldusage = curusage; 3456 } 3457 if (!ret && enlarge) 3458 memcg_oom_recover(memcg); 3459 3460 return ret; 3461 } 3462 3463 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3464 unsigned long long val) 3465 { 3466 int retry_count; 3467 u64 memlimit, memswlimit, oldusage, curusage; 3468 int children = mem_cgroup_count_children(memcg); 3469 int ret = -EBUSY; 3470 int enlarge = 0; 3471 3472 /* see mem_cgroup_resize_res_limit */ 3473 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3474 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3475 while (retry_count) { 3476 if (signal_pending(current)) { 3477 ret = -EINTR; 3478 break; 3479 } 3480 /* 3481 * Rather than hide all in some function, I do this in 3482 * open coded manner. You see what this really does. 3483 * We have to guarantee memcg->res.limit < memcg->memsw.limit. 3484 */ 3485 mutex_lock(&set_limit_mutex); 3486 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3487 if (memlimit > val) { 3488 ret = -EINVAL; 3489 mutex_unlock(&set_limit_mutex); 3490 break; 3491 } 3492 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3493 if (memswlimit < val) 3494 enlarge = 1; 3495 ret = res_counter_set_limit(&memcg->memsw, val); 3496 if (!ret) { 3497 if (memlimit == val) 3498 memcg->memsw_is_minimum = true; 3499 else 3500 memcg->memsw_is_minimum = false; 3501 } 3502 mutex_unlock(&set_limit_mutex); 3503 3504 if (!ret) 3505 break; 3506 3507 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3508 MEM_CGROUP_RECLAIM_NOSWAP | 3509 MEM_CGROUP_RECLAIM_SHRINK); 3510 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3511 /* Usage is reduced ? */ 3512 if (curusage >= oldusage) 3513 retry_count--; 3514 else 3515 oldusage = curusage; 3516 } 3517 if (!ret && enlarge) 3518 memcg_oom_recover(memcg); 3519 return ret; 3520 } 3521 3522 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3523 gfp_t gfp_mask, 3524 unsigned long *total_scanned) 3525 { 3526 unsigned long nr_reclaimed = 0; 3527 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3528 unsigned long reclaimed; 3529 int loop = 0; 3530 struct mem_cgroup_tree_per_zone *mctz; 3531 unsigned long long excess; 3532 unsigned long nr_scanned; 3533 3534 if (order > 0) 3535 return 0; 3536 3537 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3538 /* 3539 * This loop can run a while, specially if mem_cgroup's continuously 3540 * keep exceeding their soft limit and putting the system under 3541 * pressure 3542 */ 3543 do { 3544 if (next_mz) 3545 mz = next_mz; 3546 else 3547 mz = mem_cgroup_largest_soft_limit_node(mctz); 3548 if (!mz) 3549 break; 3550 3551 nr_scanned = 0; 3552 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone, 3553 gfp_mask, &nr_scanned); 3554 nr_reclaimed += reclaimed; 3555 *total_scanned += nr_scanned; 3556 spin_lock(&mctz->lock); 3557 3558 /* 3559 * If we failed to reclaim anything from this memory cgroup 3560 * it is time to move on to the next cgroup 3561 */ 3562 next_mz = NULL; 3563 if (!reclaimed) { 3564 do { 3565 /* 3566 * Loop until we find yet another one. 3567 * 3568 * By the time we get the soft_limit lock 3569 * again, someone might have aded the 3570 * group back on the RB tree. Iterate to 3571 * make sure we get a different mem. 3572 * mem_cgroup_largest_soft_limit_node returns 3573 * NULL if no other cgroup is present on 3574 * the tree 3575 */ 3576 next_mz = 3577 __mem_cgroup_largest_soft_limit_node(mctz); 3578 if (next_mz == mz) 3579 css_put(&next_mz->mem->css); 3580 else /* next_mz == NULL or other memcg */ 3581 break; 3582 } while (1); 3583 } 3584 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 3585 excess = res_counter_soft_limit_excess(&mz->mem->res); 3586 /* 3587 * One school of thought says that we should not add 3588 * back the node to the tree if reclaim returns 0. 3589 * But our reclaim could return 0, simply because due 3590 * to priority we are exposing a smaller subset of 3591 * memory to reclaim from. Consider this as a longer 3592 * term TODO. 3593 */ 3594 /* If excess == 0, no tree ops */ 3595 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); 3596 spin_unlock(&mctz->lock); 3597 css_put(&mz->mem->css); 3598 loop++; 3599 /* 3600 * Could not reclaim anything and there are no more 3601 * mem cgroups to try or we seem to be looping without 3602 * reclaiming anything. 3603 */ 3604 if (!nr_reclaimed && 3605 (next_mz == NULL || 3606 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3607 break; 3608 } while (!nr_reclaimed); 3609 if (next_mz) 3610 css_put(&next_mz->mem->css); 3611 return nr_reclaimed; 3612 } 3613 3614 /* 3615 * This routine traverse page_cgroup in given list and drop them all. 3616 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 3617 */ 3618 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3619 int node, int zid, enum lru_list lru) 3620 { 3621 struct mem_cgroup_per_zone *mz; 3622 unsigned long flags, loop; 3623 struct list_head *list; 3624 struct page *busy; 3625 struct zone *zone; 3626 int ret = 0; 3627 3628 zone = &NODE_DATA(node)->node_zones[zid]; 3629 mz = mem_cgroup_zoneinfo(memcg, node, zid); 3630 list = &mz->lruvec.lists[lru]; 3631 3632 loop = MEM_CGROUP_ZSTAT(mz, lru); 3633 /* give some margin against EBUSY etc...*/ 3634 loop += 256; 3635 busy = NULL; 3636 while (loop--) { 3637 struct page_cgroup *pc; 3638 struct page *page; 3639 3640 ret = 0; 3641 spin_lock_irqsave(&zone->lru_lock, flags); 3642 if (list_empty(list)) { 3643 spin_unlock_irqrestore(&zone->lru_lock, flags); 3644 break; 3645 } 3646 page = list_entry(list->prev, struct page, lru); 3647 if (busy == page) { 3648 list_move(&page->lru, list); 3649 busy = NULL; 3650 spin_unlock_irqrestore(&zone->lru_lock, flags); 3651 continue; 3652 } 3653 spin_unlock_irqrestore(&zone->lru_lock, flags); 3654 3655 pc = lookup_page_cgroup(page); 3656 3657 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL); 3658 if (ret == -ENOMEM || ret == -EINTR) 3659 break; 3660 3661 if (ret == -EBUSY || ret == -EINVAL) { 3662 /* found lock contention or "pc" is obsolete. */ 3663 busy = page; 3664 cond_resched(); 3665 } else 3666 busy = NULL; 3667 } 3668 3669 if (!ret && !list_empty(list)) 3670 return -EBUSY; 3671 return ret; 3672 } 3673 3674 /* 3675 * make mem_cgroup's charge to be 0 if there is no task. 3676 * This enables deleting this mem_cgroup. 3677 */ 3678 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) 3679 { 3680 int ret; 3681 int node, zid, shrink; 3682 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3683 struct cgroup *cgrp = memcg->css.cgroup; 3684 3685 css_get(&memcg->css); 3686 3687 shrink = 0; 3688 /* should free all ? */ 3689 if (free_all) 3690 goto try_to_free; 3691 move_account: 3692 do { 3693 ret = -EBUSY; 3694 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3695 goto out; 3696 ret = -EINTR; 3697 if (signal_pending(current)) 3698 goto out; 3699 /* This is for making all *used* pages to be on LRU. */ 3700 lru_add_drain_all(); 3701 drain_all_stock_sync(memcg); 3702 ret = 0; 3703 mem_cgroup_start_move(memcg); 3704 for_each_node_state(node, N_HIGH_MEMORY) { 3705 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3706 enum lru_list l; 3707 for_each_lru(l) { 3708 ret = mem_cgroup_force_empty_list(memcg, 3709 node, zid, l); 3710 if (ret) 3711 break; 3712 } 3713 } 3714 if (ret) 3715 break; 3716 } 3717 mem_cgroup_end_move(memcg); 3718 memcg_oom_recover(memcg); 3719 /* it seems parent cgroup doesn't have enough mem */ 3720 if (ret == -ENOMEM) 3721 goto try_to_free; 3722 cond_resched(); 3723 /* "ret" should also be checked to ensure all lists are empty. */ 3724 } while (memcg->res.usage > 0 || ret); 3725 out: 3726 css_put(&memcg->css); 3727 return ret; 3728 3729 try_to_free: 3730 /* returns EBUSY if there is a task or if we come here twice. */ 3731 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3732 ret = -EBUSY; 3733 goto out; 3734 } 3735 /* we call try-to-free pages for make this cgroup empty */ 3736 lru_add_drain_all(); 3737 /* try to free all pages in this cgroup */ 3738 shrink = 1; 3739 while (nr_retries && memcg->res.usage > 0) { 3740 int progress; 3741 3742 if (signal_pending(current)) { 3743 ret = -EINTR; 3744 goto out; 3745 } 3746 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 3747 false); 3748 if (!progress) { 3749 nr_retries--; 3750 /* maybe some writeback is necessary */ 3751 congestion_wait(BLK_RW_ASYNC, HZ/10); 3752 } 3753 3754 } 3755 lru_add_drain(); 3756 /* try move_account...there may be some *locked* pages. */ 3757 goto move_account; 3758 } 3759 3760 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3761 { 3762 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3763 } 3764 3765 3766 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3767 { 3768 return mem_cgroup_from_cont(cont)->use_hierarchy; 3769 } 3770 3771 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3772 u64 val) 3773 { 3774 int retval = 0; 3775 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3776 struct cgroup *parent = cont->parent; 3777 struct mem_cgroup *parent_memcg = NULL; 3778 3779 if (parent) 3780 parent_memcg = mem_cgroup_from_cont(parent); 3781 3782 cgroup_lock(); 3783 /* 3784 * If parent's use_hierarchy is set, we can't make any modifications 3785 * in the child subtrees. If it is unset, then the change can 3786 * occur, provided the current cgroup has no children. 3787 * 3788 * For the root cgroup, parent_mem is NULL, we allow value to be 3789 * set if there are no children. 3790 */ 3791 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3792 (val == 1 || val == 0)) { 3793 if (list_empty(&cont->children)) 3794 memcg->use_hierarchy = val; 3795 else 3796 retval = -EBUSY; 3797 } else 3798 retval = -EINVAL; 3799 cgroup_unlock(); 3800 3801 return retval; 3802 } 3803 3804 3805 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 3806 enum mem_cgroup_stat_index idx) 3807 { 3808 struct mem_cgroup *iter; 3809 long val = 0; 3810 3811 /* Per-cpu values can be negative, use a signed accumulator */ 3812 for_each_mem_cgroup_tree(iter, memcg) 3813 val += mem_cgroup_read_stat(iter, idx); 3814 3815 if (val < 0) /* race ? */ 3816 val = 0; 3817 return val; 3818 } 3819 3820 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3821 { 3822 u64 val; 3823 3824 if (!mem_cgroup_is_root(memcg)) { 3825 if (!swap) 3826 return res_counter_read_u64(&memcg->res, RES_USAGE); 3827 else 3828 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 3829 } 3830 3831 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 3832 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 3833 3834 if (swap) 3835 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT); 3836 3837 return val << PAGE_SHIFT; 3838 } 3839 3840 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 3841 { 3842 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3843 u64 val; 3844 int type, name; 3845 3846 type = MEMFILE_TYPE(cft->private); 3847 name = MEMFILE_ATTR(cft->private); 3848 switch (type) { 3849 case _MEM: 3850 if (name == RES_USAGE) 3851 val = mem_cgroup_usage(memcg, false); 3852 else 3853 val = res_counter_read_u64(&memcg->res, name); 3854 break; 3855 case _MEMSWAP: 3856 if (name == RES_USAGE) 3857 val = mem_cgroup_usage(memcg, true); 3858 else 3859 val = res_counter_read_u64(&memcg->memsw, name); 3860 break; 3861 default: 3862 BUG(); 3863 break; 3864 } 3865 return val; 3866 } 3867 /* 3868 * The user of this function is... 3869 * RES_LIMIT. 3870 */ 3871 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3872 const char *buffer) 3873 { 3874 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3875 int type, name; 3876 unsigned long long val; 3877 int ret; 3878 3879 type = MEMFILE_TYPE(cft->private); 3880 name = MEMFILE_ATTR(cft->private); 3881 switch (name) { 3882 case RES_LIMIT: 3883 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3884 ret = -EINVAL; 3885 break; 3886 } 3887 /* This function does all necessary parse...reuse it */ 3888 ret = res_counter_memparse_write_strategy(buffer, &val); 3889 if (ret) 3890 break; 3891 if (type == _MEM) 3892 ret = mem_cgroup_resize_limit(memcg, val); 3893 else 3894 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3895 break; 3896 case RES_SOFT_LIMIT: 3897 ret = res_counter_memparse_write_strategy(buffer, &val); 3898 if (ret) 3899 break; 3900 /* 3901 * For memsw, soft limits are hard to implement in terms 3902 * of semantics, for now, we support soft limits for 3903 * control without swap 3904 */ 3905 if (type == _MEM) 3906 ret = res_counter_set_soft_limit(&memcg->res, val); 3907 else 3908 ret = -EINVAL; 3909 break; 3910 default: 3911 ret = -EINVAL; /* should be BUG() ? */ 3912 break; 3913 } 3914 return ret; 3915 } 3916 3917 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3918 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3919 { 3920 struct cgroup *cgroup; 3921 unsigned long long min_limit, min_memsw_limit, tmp; 3922 3923 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3924 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3925 cgroup = memcg->css.cgroup; 3926 if (!memcg->use_hierarchy) 3927 goto out; 3928 3929 while (cgroup->parent) { 3930 cgroup = cgroup->parent; 3931 memcg = mem_cgroup_from_cont(cgroup); 3932 if (!memcg->use_hierarchy) 3933 break; 3934 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 3935 min_limit = min(min_limit, tmp); 3936 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3937 min_memsw_limit = min(min_memsw_limit, tmp); 3938 } 3939 out: 3940 *mem_limit = min_limit; 3941 *memsw_limit = min_memsw_limit; 3942 return; 3943 } 3944 3945 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 3946 { 3947 struct mem_cgroup *memcg; 3948 int type, name; 3949 3950 memcg = mem_cgroup_from_cont(cont); 3951 type = MEMFILE_TYPE(event); 3952 name = MEMFILE_ATTR(event); 3953 switch (name) { 3954 case RES_MAX_USAGE: 3955 if (type == _MEM) 3956 res_counter_reset_max(&memcg->res); 3957 else 3958 res_counter_reset_max(&memcg->memsw); 3959 break; 3960 case RES_FAILCNT: 3961 if (type == _MEM) 3962 res_counter_reset_failcnt(&memcg->res); 3963 else 3964 res_counter_reset_failcnt(&memcg->memsw); 3965 break; 3966 } 3967 3968 return 0; 3969 } 3970 3971 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 3972 struct cftype *cft) 3973 { 3974 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 3975 } 3976 3977 #ifdef CONFIG_MMU 3978 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3979 struct cftype *cft, u64 val) 3980 { 3981 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3982 3983 if (val >= (1 << NR_MOVE_TYPE)) 3984 return -EINVAL; 3985 /* 3986 * We check this value several times in both in can_attach() and 3987 * attach(), so we need cgroup lock to prevent this value from being 3988 * inconsistent. 3989 */ 3990 cgroup_lock(); 3991 memcg->move_charge_at_immigrate = val; 3992 cgroup_unlock(); 3993 3994 return 0; 3995 } 3996 #else 3997 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3998 struct cftype *cft, u64 val) 3999 { 4000 return -ENOSYS; 4001 } 4002 #endif 4003 4004 4005 /* For read statistics */ 4006 enum { 4007 MCS_CACHE, 4008 MCS_RSS, 4009 MCS_FILE_MAPPED, 4010 MCS_PGPGIN, 4011 MCS_PGPGOUT, 4012 MCS_SWAP, 4013 MCS_PGFAULT, 4014 MCS_PGMAJFAULT, 4015 MCS_INACTIVE_ANON, 4016 MCS_ACTIVE_ANON, 4017 MCS_INACTIVE_FILE, 4018 MCS_ACTIVE_FILE, 4019 MCS_UNEVICTABLE, 4020 NR_MCS_STAT, 4021 }; 4022 4023 struct mcs_total_stat { 4024 s64 stat[NR_MCS_STAT]; 4025 }; 4026 4027 struct { 4028 char *local_name; 4029 char *total_name; 4030 } memcg_stat_strings[NR_MCS_STAT] = { 4031 {"cache", "total_cache"}, 4032 {"rss", "total_rss"}, 4033 {"mapped_file", "total_mapped_file"}, 4034 {"pgpgin", "total_pgpgin"}, 4035 {"pgpgout", "total_pgpgout"}, 4036 {"swap", "total_swap"}, 4037 {"pgfault", "total_pgfault"}, 4038 {"pgmajfault", "total_pgmajfault"}, 4039 {"inactive_anon", "total_inactive_anon"}, 4040 {"active_anon", "total_active_anon"}, 4041 {"inactive_file", "total_inactive_file"}, 4042 {"active_file", "total_active_file"}, 4043 {"unevictable", "total_unevictable"} 4044 }; 4045 4046 4047 static void 4048 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s) 4049 { 4050 s64 val; 4051 4052 /* per cpu stat */ 4053 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE); 4054 s->stat[MCS_CACHE] += val * PAGE_SIZE; 4055 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS); 4056 s->stat[MCS_RSS] += val * PAGE_SIZE; 4057 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 4058 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; 4059 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN); 4060 s->stat[MCS_PGPGIN] += val; 4061 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT); 4062 s->stat[MCS_PGPGOUT] += val; 4063 if (do_swap_account) { 4064 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT); 4065 s->stat[MCS_SWAP] += val * PAGE_SIZE; 4066 } 4067 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT); 4068 s->stat[MCS_PGFAULT] += val; 4069 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT); 4070 s->stat[MCS_PGMAJFAULT] += val; 4071 4072 /* per zone stat */ 4073 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON)); 4074 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 4075 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON)); 4076 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 4077 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE)); 4078 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 4079 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE)); 4080 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 4081 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 4082 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 4083 } 4084 4085 static void 4086 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s) 4087 { 4088 struct mem_cgroup *iter; 4089 4090 for_each_mem_cgroup_tree(iter, memcg) 4091 mem_cgroup_get_local_stat(iter, s); 4092 } 4093 4094 #ifdef CONFIG_NUMA 4095 static int mem_control_numa_stat_show(struct seq_file *m, void *arg) 4096 { 4097 int nid; 4098 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4099 unsigned long node_nr; 4100 struct cgroup *cont = m->private; 4101 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 4102 4103 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL); 4104 seq_printf(m, "total=%lu", total_nr); 4105 for_each_node_state(nid, N_HIGH_MEMORY) { 4106 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL); 4107 seq_printf(m, " N%d=%lu", nid, node_nr); 4108 } 4109 seq_putc(m, '\n'); 4110 4111 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE); 4112 seq_printf(m, "file=%lu", file_nr); 4113 for_each_node_state(nid, N_HIGH_MEMORY) { 4114 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, 4115 LRU_ALL_FILE); 4116 seq_printf(m, " N%d=%lu", nid, node_nr); 4117 } 4118 seq_putc(m, '\n'); 4119 4120 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON); 4121 seq_printf(m, "anon=%lu", anon_nr); 4122 for_each_node_state(nid, N_HIGH_MEMORY) { 4123 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, 4124 LRU_ALL_ANON); 4125 seq_printf(m, " N%d=%lu", nid, node_nr); 4126 } 4127 seq_putc(m, '\n'); 4128 4129 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE)); 4130 seq_printf(m, "unevictable=%lu", unevictable_nr); 4131 for_each_node_state(nid, N_HIGH_MEMORY) { 4132 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, 4133 BIT(LRU_UNEVICTABLE)); 4134 seq_printf(m, " N%d=%lu", nid, node_nr); 4135 } 4136 seq_putc(m, '\n'); 4137 return 0; 4138 } 4139 #endif /* CONFIG_NUMA */ 4140 4141 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 4142 struct cgroup_map_cb *cb) 4143 { 4144 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 4145 struct mcs_total_stat mystat; 4146 int i; 4147 4148 memset(&mystat, 0, sizeof(mystat)); 4149 mem_cgroup_get_local_stat(mem_cont, &mystat); 4150 4151 4152 for (i = 0; i < NR_MCS_STAT; i++) { 4153 if (i == MCS_SWAP && !do_swap_account) 4154 continue; 4155 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 4156 } 4157 4158 /* Hierarchical information */ 4159 { 4160 unsigned long long limit, memsw_limit; 4161 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 4162 cb->fill(cb, "hierarchical_memory_limit", limit); 4163 if (do_swap_account) 4164 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 4165 } 4166 4167 memset(&mystat, 0, sizeof(mystat)); 4168 mem_cgroup_get_total_stat(mem_cont, &mystat); 4169 for (i = 0; i < NR_MCS_STAT; i++) { 4170 if (i == MCS_SWAP && !do_swap_account) 4171 continue; 4172 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 4173 } 4174 4175 #ifdef CONFIG_DEBUG_VM 4176 { 4177 int nid, zid; 4178 struct mem_cgroup_per_zone *mz; 4179 unsigned long recent_rotated[2] = {0, 0}; 4180 unsigned long recent_scanned[2] = {0, 0}; 4181 4182 for_each_online_node(nid) 4183 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4184 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 4185 4186 recent_rotated[0] += 4187 mz->reclaim_stat.recent_rotated[0]; 4188 recent_rotated[1] += 4189 mz->reclaim_stat.recent_rotated[1]; 4190 recent_scanned[0] += 4191 mz->reclaim_stat.recent_scanned[0]; 4192 recent_scanned[1] += 4193 mz->reclaim_stat.recent_scanned[1]; 4194 } 4195 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 4196 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 4197 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 4198 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 4199 } 4200 #endif 4201 4202 return 0; 4203 } 4204 4205 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4206 { 4207 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4208 4209 return mem_cgroup_swappiness(memcg); 4210 } 4211 4212 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4213 u64 val) 4214 { 4215 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4216 struct mem_cgroup *parent; 4217 4218 if (val > 100) 4219 return -EINVAL; 4220 4221 if (cgrp->parent == NULL) 4222 return -EINVAL; 4223 4224 parent = mem_cgroup_from_cont(cgrp->parent); 4225 4226 cgroup_lock(); 4227 4228 /* If under hierarchy, only empty-root can set this value */ 4229 if ((parent->use_hierarchy) || 4230 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4231 cgroup_unlock(); 4232 return -EINVAL; 4233 } 4234 4235 memcg->swappiness = val; 4236 4237 cgroup_unlock(); 4238 4239 return 0; 4240 } 4241 4242 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4243 { 4244 struct mem_cgroup_threshold_ary *t; 4245 u64 usage; 4246 int i; 4247 4248 rcu_read_lock(); 4249 if (!swap) 4250 t = rcu_dereference(memcg->thresholds.primary); 4251 else 4252 t = rcu_dereference(memcg->memsw_thresholds.primary); 4253 4254 if (!t) 4255 goto unlock; 4256 4257 usage = mem_cgroup_usage(memcg, swap); 4258 4259 /* 4260 * current_threshold points to threshold just below usage. 4261 * If it's not true, a threshold was crossed after last 4262 * call of __mem_cgroup_threshold(). 4263 */ 4264 i = t->current_threshold; 4265 4266 /* 4267 * Iterate backward over array of thresholds starting from 4268 * current_threshold and check if a threshold is crossed. 4269 * If none of thresholds below usage is crossed, we read 4270 * only one element of the array here. 4271 */ 4272 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4273 eventfd_signal(t->entries[i].eventfd, 1); 4274 4275 /* i = current_threshold + 1 */ 4276 i++; 4277 4278 /* 4279 * Iterate forward over array of thresholds starting from 4280 * current_threshold+1 and check if a threshold is crossed. 4281 * If none of thresholds above usage is crossed, we read 4282 * only one element of the array here. 4283 */ 4284 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4285 eventfd_signal(t->entries[i].eventfd, 1); 4286 4287 /* Update current_threshold */ 4288 t->current_threshold = i - 1; 4289 unlock: 4290 rcu_read_unlock(); 4291 } 4292 4293 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4294 { 4295 while (memcg) { 4296 __mem_cgroup_threshold(memcg, false); 4297 if (do_swap_account) 4298 __mem_cgroup_threshold(memcg, true); 4299 4300 memcg = parent_mem_cgroup(memcg); 4301 } 4302 } 4303 4304 static int compare_thresholds(const void *a, const void *b) 4305 { 4306 const struct mem_cgroup_threshold *_a = a; 4307 const struct mem_cgroup_threshold *_b = b; 4308 4309 return _a->threshold - _b->threshold; 4310 } 4311 4312 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4313 { 4314 struct mem_cgroup_eventfd_list *ev; 4315 4316 list_for_each_entry(ev, &memcg->oom_notify, list) 4317 eventfd_signal(ev->eventfd, 1); 4318 return 0; 4319 } 4320 4321 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4322 { 4323 struct mem_cgroup *iter; 4324 4325 for_each_mem_cgroup_tree(iter, memcg) 4326 mem_cgroup_oom_notify_cb(iter); 4327 } 4328 4329 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4330 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4331 { 4332 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4333 struct mem_cgroup_thresholds *thresholds; 4334 struct mem_cgroup_threshold_ary *new; 4335 int type = MEMFILE_TYPE(cft->private); 4336 u64 threshold, usage; 4337 int i, size, ret; 4338 4339 ret = res_counter_memparse_write_strategy(args, &threshold); 4340 if (ret) 4341 return ret; 4342 4343 mutex_lock(&memcg->thresholds_lock); 4344 4345 if (type == _MEM) 4346 thresholds = &memcg->thresholds; 4347 else if (type == _MEMSWAP) 4348 thresholds = &memcg->memsw_thresholds; 4349 else 4350 BUG(); 4351 4352 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4353 4354 /* Check if a threshold crossed before adding a new one */ 4355 if (thresholds->primary) 4356 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4357 4358 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4359 4360 /* Allocate memory for new array of thresholds */ 4361 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4362 GFP_KERNEL); 4363 if (!new) { 4364 ret = -ENOMEM; 4365 goto unlock; 4366 } 4367 new->size = size; 4368 4369 /* Copy thresholds (if any) to new array */ 4370 if (thresholds->primary) { 4371 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4372 sizeof(struct mem_cgroup_threshold)); 4373 } 4374 4375 /* Add new threshold */ 4376 new->entries[size - 1].eventfd = eventfd; 4377 new->entries[size - 1].threshold = threshold; 4378 4379 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4380 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4381 compare_thresholds, NULL); 4382 4383 /* Find current threshold */ 4384 new->current_threshold = -1; 4385 for (i = 0; i < size; i++) { 4386 if (new->entries[i].threshold < usage) { 4387 /* 4388 * new->current_threshold will not be used until 4389 * rcu_assign_pointer(), so it's safe to increment 4390 * it here. 4391 */ 4392 ++new->current_threshold; 4393 } 4394 } 4395 4396 /* Free old spare buffer and save old primary buffer as spare */ 4397 kfree(thresholds->spare); 4398 thresholds->spare = thresholds->primary; 4399 4400 rcu_assign_pointer(thresholds->primary, new); 4401 4402 /* To be sure that nobody uses thresholds */ 4403 synchronize_rcu(); 4404 4405 unlock: 4406 mutex_unlock(&memcg->thresholds_lock); 4407 4408 return ret; 4409 } 4410 4411 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4412 struct cftype *cft, struct eventfd_ctx *eventfd) 4413 { 4414 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4415 struct mem_cgroup_thresholds *thresholds; 4416 struct mem_cgroup_threshold_ary *new; 4417 int type = MEMFILE_TYPE(cft->private); 4418 u64 usage; 4419 int i, j, size; 4420 4421 mutex_lock(&memcg->thresholds_lock); 4422 if (type == _MEM) 4423 thresholds = &memcg->thresholds; 4424 else if (type == _MEMSWAP) 4425 thresholds = &memcg->memsw_thresholds; 4426 else 4427 BUG(); 4428 4429 /* 4430 * Something went wrong if we trying to unregister a threshold 4431 * if we don't have thresholds 4432 */ 4433 BUG_ON(!thresholds); 4434 4435 if (!thresholds->primary) 4436 goto unlock; 4437 4438 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4439 4440 /* Check if a threshold crossed before removing */ 4441 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4442 4443 /* Calculate new number of threshold */ 4444 size = 0; 4445 for (i = 0; i < thresholds->primary->size; i++) { 4446 if (thresholds->primary->entries[i].eventfd != eventfd) 4447 size++; 4448 } 4449 4450 new = thresholds->spare; 4451 4452 /* Set thresholds array to NULL if we don't have thresholds */ 4453 if (!size) { 4454 kfree(new); 4455 new = NULL; 4456 goto swap_buffers; 4457 } 4458 4459 new->size = size; 4460 4461 /* Copy thresholds and find current threshold */ 4462 new->current_threshold = -1; 4463 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4464 if (thresholds->primary->entries[i].eventfd == eventfd) 4465 continue; 4466 4467 new->entries[j] = thresholds->primary->entries[i]; 4468 if (new->entries[j].threshold < usage) { 4469 /* 4470 * new->current_threshold will not be used 4471 * until rcu_assign_pointer(), so it's safe to increment 4472 * it here. 4473 */ 4474 ++new->current_threshold; 4475 } 4476 j++; 4477 } 4478 4479 swap_buffers: 4480 /* Swap primary and spare array */ 4481 thresholds->spare = thresholds->primary; 4482 rcu_assign_pointer(thresholds->primary, new); 4483 4484 /* To be sure that nobody uses thresholds */ 4485 synchronize_rcu(); 4486 unlock: 4487 mutex_unlock(&memcg->thresholds_lock); 4488 } 4489 4490 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4491 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4492 { 4493 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4494 struct mem_cgroup_eventfd_list *event; 4495 int type = MEMFILE_TYPE(cft->private); 4496 4497 BUG_ON(type != _OOM_TYPE); 4498 event = kmalloc(sizeof(*event), GFP_KERNEL); 4499 if (!event) 4500 return -ENOMEM; 4501 4502 spin_lock(&memcg_oom_lock); 4503 4504 event->eventfd = eventfd; 4505 list_add(&event->list, &memcg->oom_notify); 4506 4507 /* already in OOM ? */ 4508 if (atomic_read(&memcg->under_oom)) 4509 eventfd_signal(eventfd, 1); 4510 spin_unlock(&memcg_oom_lock); 4511 4512 return 0; 4513 } 4514 4515 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4516 struct cftype *cft, struct eventfd_ctx *eventfd) 4517 { 4518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4519 struct mem_cgroup_eventfd_list *ev, *tmp; 4520 int type = MEMFILE_TYPE(cft->private); 4521 4522 BUG_ON(type != _OOM_TYPE); 4523 4524 spin_lock(&memcg_oom_lock); 4525 4526 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4527 if (ev->eventfd == eventfd) { 4528 list_del(&ev->list); 4529 kfree(ev); 4530 } 4531 } 4532 4533 spin_unlock(&memcg_oom_lock); 4534 } 4535 4536 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4537 struct cftype *cft, struct cgroup_map_cb *cb) 4538 { 4539 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4540 4541 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 4542 4543 if (atomic_read(&memcg->under_oom)) 4544 cb->fill(cb, "under_oom", 1); 4545 else 4546 cb->fill(cb, "under_oom", 0); 4547 return 0; 4548 } 4549 4550 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4551 struct cftype *cft, u64 val) 4552 { 4553 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4554 struct mem_cgroup *parent; 4555 4556 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4557 if (!cgrp->parent || !((val == 0) || (val == 1))) 4558 return -EINVAL; 4559 4560 parent = mem_cgroup_from_cont(cgrp->parent); 4561 4562 cgroup_lock(); 4563 /* oom-kill-disable is a flag for subhierarchy. */ 4564 if ((parent->use_hierarchy) || 4565 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4566 cgroup_unlock(); 4567 return -EINVAL; 4568 } 4569 memcg->oom_kill_disable = val; 4570 if (!val) 4571 memcg_oom_recover(memcg); 4572 cgroup_unlock(); 4573 return 0; 4574 } 4575 4576 #ifdef CONFIG_NUMA 4577 static const struct file_operations mem_control_numa_stat_file_operations = { 4578 .read = seq_read, 4579 .llseek = seq_lseek, 4580 .release = single_release, 4581 }; 4582 4583 static int mem_control_numa_stat_open(struct inode *unused, struct file *file) 4584 { 4585 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata; 4586 4587 file->f_op = &mem_control_numa_stat_file_operations; 4588 return single_open(file, mem_control_numa_stat_show, cont); 4589 } 4590 #endif /* CONFIG_NUMA */ 4591 4592 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 4593 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss) 4594 { 4595 /* 4596 * Part of this would be better living in a separate allocation 4597 * function, leaving us with just the cgroup tree population work. 4598 * We, however, depend on state such as network's proto_list that 4599 * is only initialized after cgroup creation. I found the less 4600 * cumbersome way to deal with it to defer it all to populate time 4601 */ 4602 return mem_cgroup_sockets_init(cont, ss); 4603 }; 4604 4605 static void kmem_cgroup_destroy(struct cgroup_subsys *ss, 4606 struct cgroup *cont) 4607 { 4608 mem_cgroup_sockets_destroy(cont, ss); 4609 } 4610 #else 4611 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss) 4612 { 4613 return 0; 4614 } 4615 4616 static void kmem_cgroup_destroy(struct cgroup_subsys *ss, 4617 struct cgroup *cont) 4618 { 4619 } 4620 #endif 4621 4622 static struct cftype mem_cgroup_files[] = { 4623 { 4624 .name = "usage_in_bytes", 4625 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4626 .read_u64 = mem_cgroup_read, 4627 .register_event = mem_cgroup_usage_register_event, 4628 .unregister_event = mem_cgroup_usage_unregister_event, 4629 }, 4630 { 4631 .name = "max_usage_in_bytes", 4632 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4633 .trigger = mem_cgroup_reset, 4634 .read_u64 = mem_cgroup_read, 4635 }, 4636 { 4637 .name = "limit_in_bytes", 4638 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4639 .write_string = mem_cgroup_write, 4640 .read_u64 = mem_cgroup_read, 4641 }, 4642 { 4643 .name = "soft_limit_in_bytes", 4644 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4645 .write_string = mem_cgroup_write, 4646 .read_u64 = mem_cgroup_read, 4647 }, 4648 { 4649 .name = "failcnt", 4650 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4651 .trigger = mem_cgroup_reset, 4652 .read_u64 = mem_cgroup_read, 4653 }, 4654 { 4655 .name = "stat", 4656 .read_map = mem_control_stat_show, 4657 }, 4658 { 4659 .name = "force_empty", 4660 .trigger = mem_cgroup_force_empty_write, 4661 }, 4662 { 4663 .name = "use_hierarchy", 4664 .write_u64 = mem_cgroup_hierarchy_write, 4665 .read_u64 = mem_cgroup_hierarchy_read, 4666 }, 4667 { 4668 .name = "swappiness", 4669 .read_u64 = mem_cgroup_swappiness_read, 4670 .write_u64 = mem_cgroup_swappiness_write, 4671 }, 4672 { 4673 .name = "move_charge_at_immigrate", 4674 .read_u64 = mem_cgroup_move_charge_read, 4675 .write_u64 = mem_cgroup_move_charge_write, 4676 }, 4677 { 4678 .name = "oom_control", 4679 .read_map = mem_cgroup_oom_control_read, 4680 .write_u64 = mem_cgroup_oom_control_write, 4681 .register_event = mem_cgroup_oom_register_event, 4682 .unregister_event = mem_cgroup_oom_unregister_event, 4683 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4684 }, 4685 #ifdef CONFIG_NUMA 4686 { 4687 .name = "numa_stat", 4688 .open = mem_control_numa_stat_open, 4689 .mode = S_IRUGO, 4690 }, 4691 #endif 4692 }; 4693 4694 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4695 static struct cftype memsw_cgroup_files[] = { 4696 { 4697 .name = "memsw.usage_in_bytes", 4698 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4699 .read_u64 = mem_cgroup_read, 4700 .register_event = mem_cgroup_usage_register_event, 4701 .unregister_event = mem_cgroup_usage_unregister_event, 4702 }, 4703 { 4704 .name = "memsw.max_usage_in_bytes", 4705 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4706 .trigger = mem_cgroup_reset, 4707 .read_u64 = mem_cgroup_read, 4708 }, 4709 { 4710 .name = "memsw.limit_in_bytes", 4711 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4712 .write_string = mem_cgroup_write, 4713 .read_u64 = mem_cgroup_read, 4714 }, 4715 { 4716 .name = "memsw.failcnt", 4717 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4718 .trigger = mem_cgroup_reset, 4719 .read_u64 = mem_cgroup_read, 4720 }, 4721 }; 4722 4723 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4724 { 4725 if (!do_swap_account) 4726 return 0; 4727 return cgroup_add_files(cont, ss, memsw_cgroup_files, 4728 ARRAY_SIZE(memsw_cgroup_files)); 4729 }; 4730 #else 4731 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4732 { 4733 return 0; 4734 } 4735 #endif 4736 4737 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4738 { 4739 struct mem_cgroup_per_node *pn; 4740 struct mem_cgroup_per_zone *mz; 4741 enum lru_list l; 4742 int zone, tmp = node; 4743 /* 4744 * This routine is called against possible nodes. 4745 * But it's BUG to call kmalloc() against offline node. 4746 * 4747 * TODO: this routine can waste much memory for nodes which will 4748 * never be onlined. It's better to use memory hotplug callback 4749 * function. 4750 */ 4751 if (!node_state(node, N_NORMAL_MEMORY)) 4752 tmp = -1; 4753 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4754 if (!pn) 4755 return 1; 4756 4757 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4758 mz = &pn->zoneinfo[zone]; 4759 for_each_lru(l) 4760 INIT_LIST_HEAD(&mz->lruvec.lists[l]); 4761 mz->usage_in_excess = 0; 4762 mz->on_tree = false; 4763 mz->mem = memcg; 4764 } 4765 memcg->info.nodeinfo[node] = pn; 4766 return 0; 4767 } 4768 4769 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4770 { 4771 kfree(memcg->info.nodeinfo[node]); 4772 } 4773 4774 static struct mem_cgroup *mem_cgroup_alloc(void) 4775 { 4776 struct mem_cgroup *mem; 4777 int size = sizeof(struct mem_cgroup); 4778 4779 /* Can be very big if MAX_NUMNODES is very big */ 4780 if (size < PAGE_SIZE) 4781 mem = kzalloc(size, GFP_KERNEL); 4782 else 4783 mem = vzalloc(size); 4784 4785 if (!mem) 4786 return NULL; 4787 4788 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4789 if (!mem->stat) 4790 goto out_free; 4791 spin_lock_init(&mem->pcp_counter_lock); 4792 return mem; 4793 4794 out_free: 4795 if (size < PAGE_SIZE) 4796 kfree(mem); 4797 else 4798 vfree(mem); 4799 return NULL; 4800 } 4801 4802 /* 4803 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU, 4804 * but in process context. The work_freeing structure is overlaid 4805 * on the rcu_freeing structure, which itself is overlaid on memsw. 4806 */ 4807 static void vfree_work(struct work_struct *work) 4808 { 4809 struct mem_cgroup *memcg; 4810 4811 memcg = container_of(work, struct mem_cgroup, work_freeing); 4812 vfree(memcg); 4813 } 4814 static void vfree_rcu(struct rcu_head *rcu_head) 4815 { 4816 struct mem_cgroup *memcg; 4817 4818 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 4819 INIT_WORK(&memcg->work_freeing, vfree_work); 4820 schedule_work(&memcg->work_freeing); 4821 } 4822 4823 /* 4824 * At destroying mem_cgroup, references from swap_cgroup can remain. 4825 * (scanning all at force_empty is too costly...) 4826 * 4827 * Instead of clearing all references at force_empty, we remember 4828 * the number of reference from swap_cgroup and free mem_cgroup when 4829 * it goes down to 0. 4830 * 4831 * Removal of cgroup itself succeeds regardless of refs from swap. 4832 */ 4833 4834 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4835 { 4836 int node; 4837 4838 mem_cgroup_remove_from_trees(memcg); 4839 free_css_id(&mem_cgroup_subsys, &memcg->css); 4840 4841 for_each_node(node) 4842 free_mem_cgroup_per_zone_info(memcg, node); 4843 4844 free_percpu(memcg->stat); 4845 if (sizeof(struct mem_cgroup) < PAGE_SIZE) 4846 kfree_rcu(memcg, rcu_freeing); 4847 else 4848 call_rcu(&memcg->rcu_freeing, vfree_rcu); 4849 } 4850 4851 static void mem_cgroup_get(struct mem_cgroup *memcg) 4852 { 4853 atomic_inc(&memcg->refcnt); 4854 } 4855 4856 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 4857 { 4858 if (atomic_sub_and_test(count, &memcg->refcnt)) { 4859 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4860 __mem_cgroup_free(memcg); 4861 if (parent) 4862 mem_cgroup_put(parent); 4863 } 4864 } 4865 4866 static void mem_cgroup_put(struct mem_cgroup *memcg) 4867 { 4868 __mem_cgroup_put(memcg, 1); 4869 } 4870 4871 /* 4872 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4873 */ 4874 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4875 { 4876 if (!memcg->res.parent) 4877 return NULL; 4878 return mem_cgroup_from_res_counter(memcg->res.parent, res); 4879 } 4880 EXPORT_SYMBOL(parent_mem_cgroup); 4881 4882 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4883 static void __init enable_swap_cgroup(void) 4884 { 4885 if (!mem_cgroup_disabled() && really_do_swap_account) 4886 do_swap_account = 1; 4887 } 4888 #else 4889 static void __init enable_swap_cgroup(void) 4890 { 4891 } 4892 #endif 4893 4894 static int mem_cgroup_soft_limit_tree_init(void) 4895 { 4896 struct mem_cgroup_tree_per_node *rtpn; 4897 struct mem_cgroup_tree_per_zone *rtpz; 4898 int tmp, node, zone; 4899 4900 for_each_node(node) { 4901 tmp = node; 4902 if (!node_state(node, N_NORMAL_MEMORY)) 4903 tmp = -1; 4904 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4905 if (!rtpn) 4906 goto err_cleanup; 4907 4908 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4909 4910 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4911 rtpz = &rtpn->rb_tree_per_zone[zone]; 4912 rtpz->rb_root = RB_ROOT; 4913 spin_lock_init(&rtpz->lock); 4914 } 4915 } 4916 return 0; 4917 4918 err_cleanup: 4919 for_each_node(node) { 4920 if (!soft_limit_tree.rb_tree_per_node[node]) 4921 break; 4922 kfree(soft_limit_tree.rb_tree_per_node[node]); 4923 soft_limit_tree.rb_tree_per_node[node] = NULL; 4924 } 4925 return 1; 4926 4927 } 4928 4929 static struct cgroup_subsys_state * __ref 4930 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 4931 { 4932 struct mem_cgroup *memcg, *parent; 4933 long error = -ENOMEM; 4934 int node; 4935 4936 memcg = mem_cgroup_alloc(); 4937 if (!memcg) 4938 return ERR_PTR(error); 4939 4940 for_each_node(node) 4941 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4942 goto free_out; 4943 4944 /* root ? */ 4945 if (cont->parent == NULL) { 4946 int cpu; 4947 enable_swap_cgroup(); 4948 parent = NULL; 4949 if (mem_cgroup_soft_limit_tree_init()) 4950 goto free_out; 4951 root_mem_cgroup = memcg; 4952 for_each_possible_cpu(cpu) { 4953 struct memcg_stock_pcp *stock = 4954 &per_cpu(memcg_stock, cpu); 4955 INIT_WORK(&stock->work, drain_local_stock); 4956 } 4957 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4958 } else { 4959 parent = mem_cgroup_from_cont(cont->parent); 4960 memcg->use_hierarchy = parent->use_hierarchy; 4961 memcg->oom_kill_disable = parent->oom_kill_disable; 4962 } 4963 4964 if (parent && parent->use_hierarchy) { 4965 res_counter_init(&memcg->res, &parent->res); 4966 res_counter_init(&memcg->memsw, &parent->memsw); 4967 /* 4968 * We increment refcnt of the parent to ensure that we can 4969 * safely access it on res_counter_charge/uncharge. 4970 * This refcnt will be decremented when freeing this 4971 * mem_cgroup(see mem_cgroup_put). 4972 */ 4973 mem_cgroup_get(parent); 4974 } else { 4975 res_counter_init(&memcg->res, NULL); 4976 res_counter_init(&memcg->memsw, NULL); 4977 } 4978 memcg->last_scanned_node = MAX_NUMNODES; 4979 INIT_LIST_HEAD(&memcg->oom_notify); 4980 4981 if (parent) 4982 memcg->swappiness = mem_cgroup_swappiness(parent); 4983 atomic_set(&memcg->refcnt, 1); 4984 memcg->move_charge_at_immigrate = 0; 4985 mutex_init(&memcg->thresholds_lock); 4986 return &memcg->css; 4987 free_out: 4988 __mem_cgroup_free(memcg); 4989 return ERR_PTR(error); 4990 } 4991 4992 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 4993 struct cgroup *cont) 4994 { 4995 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4996 4997 return mem_cgroup_force_empty(memcg, false); 4998 } 4999 5000 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 5001 struct cgroup *cont) 5002 { 5003 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5004 5005 kmem_cgroup_destroy(ss, cont); 5006 5007 mem_cgroup_put(memcg); 5008 } 5009 5010 static int mem_cgroup_populate(struct cgroup_subsys *ss, 5011 struct cgroup *cont) 5012 { 5013 int ret; 5014 5015 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 5016 ARRAY_SIZE(mem_cgroup_files)); 5017 5018 if (!ret) 5019 ret = register_memsw_files(cont, ss); 5020 5021 if (!ret) 5022 ret = register_kmem_files(cont, ss); 5023 5024 return ret; 5025 } 5026 5027 #ifdef CONFIG_MMU 5028 /* Handlers for move charge at task migration. */ 5029 #define PRECHARGE_COUNT_AT_ONCE 256 5030 static int mem_cgroup_do_precharge(unsigned long count) 5031 { 5032 int ret = 0; 5033 int batch_count = PRECHARGE_COUNT_AT_ONCE; 5034 struct mem_cgroup *memcg = mc.to; 5035 5036 if (mem_cgroup_is_root(memcg)) { 5037 mc.precharge += count; 5038 /* we don't need css_get for root */ 5039 return ret; 5040 } 5041 /* try to charge at once */ 5042 if (count > 1) { 5043 struct res_counter *dummy; 5044 /* 5045 * "memcg" cannot be under rmdir() because we've already checked 5046 * by cgroup_lock_live_cgroup() that it is not removed and we 5047 * are still under the same cgroup_mutex. So we can postpone 5048 * css_get(). 5049 */ 5050 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 5051 goto one_by_one; 5052 if (do_swap_account && res_counter_charge(&memcg->memsw, 5053 PAGE_SIZE * count, &dummy)) { 5054 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 5055 goto one_by_one; 5056 } 5057 mc.precharge += count; 5058 return ret; 5059 } 5060 one_by_one: 5061 /* fall back to one by one charge */ 5062 while (count--) { 5063 if (signal_pending(current)) { 5064 ret = -EINTR; 5065 break; 5066 } 5067 if (!batch_count--) { 5068 batch_count = PRECHARGE_COUNT_AT_ONCE; 5069 cond_resched(); 5070 } 5071 ret = __mem_cgroup_try_charge(NULL, 5072 GFP_KERNEL, 1, &memcg, false); 5073 if (ret) 5074 /* mem_cgroup_clear_mc() will do uncharge later */ 5075 return ret; 5076 mc.precharge++; 5077 } 5078 return ret; 5079 } 5080 5081 /** 5082 * is_target_pte_for_mc - check a pte whether it is valid for move charge 5083 * @vma: the vma the pte to be checked belongs 5084 * @addr: the address corresponding to the pte to be checked 5085 * @ptent: the pte to be checked 5086 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5087 * 5088 * Returns 5089 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5090 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5091 * move charge. if @target is not NULL, the page is stored in target->page 5092 * with extra refcnt got(Callers should handle it). 5093 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5094 * target for charge migration. if @target is not NULL, the entry is stored 5095 * in target->ent. 5096 * 5097 * Called with pte lock held. 5098 */ 5099 union mc_target { 5100 struct page *page; 5101 swp_entry_t ent; 5102 }; 5103 5104 enum mc_target_type { 5105 MC_TARGET_NONE, /* not used */ 5106 MC_TARGET_PAGE, 5107 MC_TARGET_SWAP, 5108 }; 5109 5110 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5111 unsigned long addr, pte_t ptent) 5112 { 5113 struct page *page = vm_normal_page(vma, addr, ptent); 5114 5115 if (!page || !page_mapped(page)) 5116 return NULL; 5117 if (PageAnon(page)) { 5118 /* we don't move shared anon */ 5119 if (!move_anon() || page_mapcount(page) > 2) 5120 return NULL; 5121 } else if (!move_file()) 5122 /* we ignore mapcount for file pages */ 5123 return NULL; 5124 if (!get_page_unless_zero(page)) 5125 return NULL; 5126 5127 return page; 5128 } 5129 5130 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5131 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5132 { 5133 int usage_count; 5134 struct page *page = NULL; 5135 swp_entry_t ent = pte_to_swp_entry(ptent); 5136 5137 if (!move_anon() || non_swap_entry(ent)) 5138 return NULL; 5139 usage_count = mem_cgroup_count_swap_user(ent, &page); 5140 if (usage_count > 1) { /* we don't move shared anon */ 5141 if (page) 5142 put_page(page); 5143 return NULL; 5144 } 5145 if (do_swap_account) 5146 entry->val = ent.val; 5147 5148 return page; 5149 } 5150 5151 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5152 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5153 { 5154 struct page *page = NULL; 5155 struct inode *inode; 5156 struct address_space *mapping; 5157 pgoff_t pgoff; 5158 5159 if (!vma->vm_file) /* anonymous vma */ 5160 return NULL; 5161 if (!move_file()) 5162 return NULL; 5163 5164 inode = vma->vm_file->f_path.dentry->d_inode; 5165 mapping = vma->vm_file->f_mapping; 5166 if (pte_none(ptent)) 5167 pgoff = linear_page_index(vma, addr); 5168 else /* pte_file(ptent) is true */ 5169 pgoff = pte_to_pgoff(ptent); 5170 5171 /* page is moved even if it's not RSS of this task(page-faulted). */ 5172 page = find_get_page(mapping, pgoff); 5173 5174 #ifdef CONFIG_SWAP 5175 /* shmem/tmpfs may report page out on swap: account for that too. */ 5176 if (radix_tree_exceptional_entry(page)) { 5177 swp_entry_t swap = radix_to_swp_entry(page); 5178 if (do_swap_account) 5179 *entry = swap; 5180 page = find_get_page(&swapper_space, swap.val); 5181 } 5182 #endif 5183 return page; 5184 } 5185 5186 static int is_target_pte_for_mc(struct vm_area_struct *vma, 5187 unsigned long addr, pte_t ptent, union mc_target *target) 5188 { 5189 struct page *page = NULL; 5190 struct page_cgroup *pc; 5191 int ret = 0; 5192 swp_entry_t ent = { .val = 0 }; 5193 5194 if (pte_present(ptent)) 5195 page = mc_handle_present_pte(vma, addr, ptent); 5196 else if (is_swap_pte(ptent)) 5197 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5198 else if (pte_none(ptent) || pte_file(ptent)) 5199 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5200 5201 if (!page && !ent.val) 5202 return 0; 5203 if (page) { 5204 pc = lookup_page_cgroup(page); 5205 /* 5206 * Do only loose check w/o page_cgroup lock. 5207 * mem_cgroup_move_account() checks the pc is valid or not under 5208 * the lock. 5209 */ 5210 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5211 ret = MC_TARGET_PAGE; 5212 if (target) 5213 target->page = page; 5214 } 5215 if (!ret || !target) 5216 put_page(page); 5217 } 5218 /* There is a swap entry and a page doesn't exist or isn't charged */ 5219 if (ent.val && !ret && 5220 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 5221 ret = MC_TARGET_SWAP; 5222 if (target) 5223 target->ent = ent; 5224 } 5225 return ret; 5226 } 5227 5228 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5229 unsigned long addr, unsigned long end, 5230 struct mm_walk *walk) 5231 { 5232 struct vm_area_struct *vma = walk->private; 5233 pte_t *pte; 5234 spinlock_t *ptl; 5235 5236 split_huge_page_pmd(walk->mm, pmd); 5237 5238 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5239 for (; addr != end; pte++, addr += PAGE_SIZE) 5240 if (is_target_pte_for_mc(vma, addr, *pte, NULL)) 5241 mc.precharge++; /* increment precharge temporarily */ 5242 pte_unmap_unlock(pte - 1, ptl); 5243 cond_resched(); 5244 5245 return 0; 5246 } 5247 5248 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5249 { 5250 unsigned long precharge; 5251 struct vm_area_struct *vma; 5252 5253 down_read(&mm->mmap_sem); 5254 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5255 struct mm_walk mem_cgroup_count_precharge_walk = { 5256 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5257 .mm = mm, 5258 .private = vma, 5259 }; 5260 if (is_vm_hugetlb_page(vma)) 5261 continue; 5262 walk_page_range(vma->vm_start, vma->vm_end, 5263 &mem_cgroup_count_precharge_walk); 5264 } 5265 up_read(&mm->mmap_sem); 5266 5267 precharge = mc.precharge; 5268 mc.precharge = 0; 5269 5270 return precharge; 5271 } 5272 5273 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5274 { 5275 unsigned long precharge = mem_cgroup_count_precharge(mm); 5276 5277 VM_BUG_ON(mc.moving_task); 5278 mc.moving_task = current; 5279 return mem_cgroup_do_precharge(precharge); 5280 } 5281 5282 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5283 static void __mem_cgroup_clear_mc(void) 5284 { 5285 struct mem_cgroup *from = mc.from; 5286 struct mem_cgroup *to = mc.to; 5287 5288 /* we must uncharge all the leftover precharges from mc.to */ 5289 if (mc.precharge) { 5290 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5291 mc.precharge = 0; 5292 } 5293 /* 5294 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5295 * we must uncharge here. 5296 */ 5297 if (mc.moved_charge) { 5298 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5299 mc.moved_charge = 0; 5300 } 5301 /* we must fixup refcnts and charges */ 5302 if (mc.moved_swap) { 5303 /* uncharge swap account from the old cgroup */ 5304 if (!mem_cgroup_is_root(mc.from)) 5305 res_counter_uncharge(&mc.from->memsw, 5306 PAGE_SIZE * mc.moved_swap); 5307 __mem_cgroup_put(mc.from, mc.moved_swap); 5308 5309 if (!mem_cgroup_is_root(mc.to)) { 5310 /* 5311 * we charged both to->res and to->memsw, so we should 5312 * uncharge to->res. 5313 */ 5314 res_counter_uncharge(&mc.to->res, 5315 PAGE_SIZE * mc.moved_swap); 5316 } 5317 /* we've already done mem_cgroup_get(mc.to) */ 5318 mc.moved_swap = 0; 5319 } 5320 memcg_oom_recover(from); 5321 memcg_oom_recover(to); 5322 wake_up_all(&mc.waitq); 5323 } 5324 5325 static void mem_cgroup_clear_mc(void) 5326 { 5327 struct mem_cgroup *from = mc.from; 5328 5329 /* 5330 * we must clear moving_task before waking up waiters at the end of 5331 * task migration. 5332 */ 5333 mc.moving_task = NULL; 5334 __mem_cgroup_clear_mc(); 5335 spin_lock(&mc.lock); 5336 mc.from = NULL; 5337 mc.to = NULL; 5338 spin_unlock(&mc.lock); 5339 mem_cgroup_end_move(from); 5340 } 5341 5342 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 5343 struct cgroup *cgroup, 5344 struct cgroup_taskset *tset) 5345 { 5346 struct task_struct *p = cgroup_taskset_first(tset); 5347 int ret = 0; 5348 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 5349 5350 if (memcg->move_charge_at_immigrate) { 5351 struct mm_struct *mm; 5352 struct mem_cgroup *from = mem_cgroup_from_task(p); 5353 5354 VM_BUG_ON(from == memcg); 5355 5356 mm = get_task_mm(p); 5357 if (!mm) 5358 return 0; 5359 /* We move charges only when we move a owner of the mm */ 5360 if (mm->owner == p) { 5361 VM_BUG_ON(mc.from); 5362 VM_BUG_ON(mc.to); 5363 VM_BUG_ON(mc.precharge); 5364 VM_BUG_ON(mc.moved_charge); 5365 VM_BUG_ON(mc.moved_swap); 5366 mem_cgroup_start_move(from); 5367 spin_lock(&mc.lock); 5368 mc.from = from; 5369 mc.to = memcg; 5370 spin_unlock(&mc.lock); 5371 /* We set mc.moving_task later */ 5372 5373 ret = mem_cgroup_precharge_mc(mm); 5374 if (ret) 5375 mem_cgroup_clear_mc(); 5376 } 5377 mmput(mm); 5378 } 5379 return ret; 5380 } 5381 5382 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 5383 struct cgroup *cgroup, 5384 struct cgroup_taskset *tset) 5385 { 5386 mem_cgroup_clear_mc(); 5387 } 5388 5389 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5390 unsigned long addr, unsigned long end, 5391 struct mm_walk *walk) 5392 { 5393 int ret = 0; 5394 struct vm_area_struct *vma = walk->private; 5395 pte_t *pte; 5396 spinlock_t *ptl; 5397 5398 split_huge_page_pmd(walk->mm, pmd); 5399 retry: 5400 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5401 for (; addr != end; addr += PAGE_SIZE) { 5402 pte_t ptent = *(pte++); 5403 union mc_target target; 5404 int type; 5405 struct page *page; 5406 struct page_cgroup *pc; 5407 swp_entry_t ent; 5408 5409 if (!mc.precharge) 5410 break; 5411 5412 type = is_target_pte_for_mc(vma, addr, ptent, &target); 5413 switch (type) { 5414 case MC_TARGET_PAGE: 5415 page = target.page; 5416 if (isolate_lru_page(page)) 5417 goto put; 5418 pc = lookup_page_cgroup(page); 5419 if (!mem_cgroup_move_account(page, 1, pc, 5420 mc.from, mc.to, false)) { 5421 mc.precharge--; 5422 /* we uncharge from mc.from later. */ 5423 mc.moved_charge++; 5424 } 5425 putback_lru_page(page); 5426 put: /* is_target_pte_for_mc() gets the page */ 5427 put_page(page); 5428 break; 5429 case MC_TARGET_SWAP: 5430 ent = target.ent; 5431 if (!mem_cgroup_move_swap_account(ent, 5432 mc.from, mc.to, false)) { 5433 mc.precharge--; 5434 /* we fixup refcnts and charges later. */ 5435 mc.moved_swap++; 5436 } 5437 break; 5438 default: 5439 break; 5440 } 5441 } 5442 pte_unmap_unlock(pte - 1, ptl); 5443 cond_resched(); 5444 5445 if (addr != end) { 5446 /* 5447 * We have consumed all precharges we got in can_attach(). 5448 * We try charge one by one, but don't do any additional 5449 * charges to mc.to if we have failed in charge once in attach() 5450 * phase. 5451 */ 5452 ret = mem_cgroup_do_precharge(1); 5453 if (!ret) 5454 goto retry; 5455 } 5456 5457 return ret; 5458 } 5459 5460 static void mem_cgroup_move_charge(struct mm_struct *mm) 5461 { 5462 struct vm_area_struct *vma; 5463 5464 lru_add_drain_all(); 5465 retry: 5466 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5467 /* 5468 * Someone who are holding the mmap_sem might be waiting in 5469 * waitq. So we cancel all extra charges, wake up all waiters, 5470 * and retry. Because we cancel precharges, we might not be able 5471 * to move enough charges, but moving charge is a best-effort 5472 * feature anyway, so it wouldn't be a big problem. 5473 */ 5474 __mem_cgroup_clear_mc(); 5475 cond_resched(); 5476 goto retry; 5477 } 5478 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5479 int ret; 5480 struct mm_walk mem_cgroup_move_charge_walk = { 5481 .pmd_entry = mem_cgroup_move_charge_pte_range, 5482 .mm = mm, 5483 .private = vma, 5484 }; 5485 if (is_vm_hugetlb_page(vma)) 5486 continue; 5487 ret = walk_page_range(vma->vm_start, vma->vm_end, 5488 &mem_cgroup_move_charge_walk); 5489 if (ret) 5490 /* 5491 * means we have consumed all precharges and failed in 5492 * doing additional charge. Just abandon here. 5493 */ 5494 break; 5495 } 5496 up_read(&mm->mmap_sem); 5497 } 5498 5499 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 5500 struct cgroup *cont, 5501 struct cgroup_taskset *tset) 5502 { 5503 struct task_struct *p = cgroup_taskset_first(tset); 5504 struct mm_struct *mm = get_task_mm(p); 5505 5506 if (mm) { 5507 if (mc.to) 5508 mem_cgroup_move_charge(mm); 5509 put_swap_token(mm); 5510 mmput(mm); 5511 } 5512 if (mc.to) 5513 mem_cgroup_clear_mc(); 5514 } 5515 #else /* !CONFIG_MMU */ 5516 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 5517 struct cgroup *cgroup, 5518 struct cgroup_taskset *tset) 5519 { 5520 return 0; 5521 } 5522 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 5523 struct cgroup *cgroup, 5524 struct cgroup_taskset *tset) 5525 { 5526 } 5527 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 5528 struct cgroup *cont, 5529 struct cgroup_taskset *tset) 5530 { 5531 } 5532 #endif 5533 5534 struct cgroup_subsys mem_cgroup_subsys = { 5535 .name = "memory", 5536 .subsys_id = mem_cgroup_subsys_id, 5537 .create = mem_cgroup_create, 5538 .pre_destroy = mem_cgroup_pre_destroy, 5539 .destroy = mem_cgroup_destroy, 5540 .populate = mem_cgroup_populate, 5541 .can_attach = mem_cgroup_can_attach, 5542 .cancel_attach = mem_cgroup_cancel_attach, 5543 .attach = mem_cgroup_move_task, 5544 .early_init = 0, 5545 .use_id = 1, 5546 }; 5547 5548 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 5549 static int __init enable_swap_account(char *s) 5550 { 5551 /* consider enabled if no parameter or 1 is given */ 5552 if (!strcmp(s, "1")) 5553 really_do_swap_account = 1; 5554 else if (!strcmp(s, "0")) 5555 really_do_swap_account = 0; 5556 return 1; 5557 } 5558 __setup("swapaccount=", enable_swap_account); 5559 5560 #endif 5561