1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/hugetlb.h> 39 #include <linux/pagemap.h> 40 #include <linux/smp.h> 41 #include <linux/page-flags.h> 42 #include <linux/backing-dev.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/limits.h> 46 #include <linux/export.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/spinlock.h> 53 #include <linux/eventfd.h> 54 #include <linux/poll.h> 55 #include <linux/sort.h> 56 #include <linux/fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/vmpressure.h> 59 #include <linux/mm_inline.h> 60 #include <linux/swap_cgroup.h> 61 #include <linux/cpu.h> 62 #include <linux/oom.h> 63 #include <linux/lockdep.h> 64 #include <linux/file.h> 65 #include <linux/tracehook.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <asm/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 #define MEM_CGROUP_RECLAIM_RETRIES 5 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 int do_swap_account __read_mostly; 91 #else 92 #define do_swap_account 0 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "rss_huge", 105 "mapped_file", 106 "dirty", 107 "writeback", 108 "swap", 109 }; 110 111 static const char * const mem_cgroup_events_names[] = { 112 "pgpgin", 113 "pgpgout", 114 "pgfault", 115 "pgmajfault", 116 }; 117 118 static const char * const mem_cgroup_lru_names[] = { 119 "inactive_anon", 120 "active_anon", 121 "inactive_file", 122 "active_file", 123 "unevictable", 124 }; 125 126 #define THRESHOLDS_EVENTS_TARGET 128 127 #define SOFTLIMIT_EVENTS_TARGET 1024 128 #define NUMAINFO_EVENTS_TARGET 1024 129 130 /* 131 * Cgroups above their limits are maintained in a RB-Tree, independent of 132 * their hierarchy representation 133 */ 134 135 struct mem_cgroup_tree_per_zone { 136 struct rb_root rb_root; 137 spinlock_t lock; 138 }; 139 140 struct mem_cgroup_tree_per_node { 141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 142 }; 143 144 struct mem_cgroup_tree { 145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 146 }; 147 148 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 149 150 /* for OOM */ 151 struct mem_cgroup_eventfd_list { 152 struct list_head list; 153 struct eventfd_ctx *eventfd; 154 }; 155 156 /* 157 * cgroup_event represents events which userspace want to receive. 158 */ 159 struct mem_cgroup_event { 160 /* 161 * memcg which the event belongs to. 162 */ 163 struct mem_cgroup *memcg; 164 /* 165 * eventfd to signal userspace about the event. 166 */ 167 struct eventfd_ctx *eventfd; 168 /* 169 * Each of these stored in a list by the cgroup. 170 */ 171 struct list_head list; 172 /* 173 * register_event() callback will be used to add new userspace 174 * waiter for changes related to this event. Use eventfd_signal() 175 * on eventfd to send notification to userspace. 176 */ 177 int (*register_event)(struct mem_cgroup *memcg, 178 struct eventfd_ctx *eventfd, const char *args); 179 /* 180 * unregister_event() callback will be called when userspace closes 181 * the eventfd or on cgroup removing. This callback must be set, 182 * if you want provide notification functionality. 183 */ 184 void (*unregister_event)(struct mem_cgroup *memcg, 185 struct eventfd_ctx *eventfd); 186 /* 187 * All fields below needed to unregister event when 188 * userspace closes eventfd. 189 */ 190 poll_table pt; 191 wait_queue_head_t *wqh; 192 wait_queue_t wait; 193 struct work_struct remove; 194 }; 195 196 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 198 199 /* Stuffs for move charges at task migration. */ 200 /* 201 * Types of charges to be moved. 202 */ 203 #define MOVE_ANON 0x1U 204 #define MOVE_FILE 0x2U 205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 206 207 /* "mc" and its members are protected by cgroup_mutex */ 208 static struct move_charge_struct { 209 spinlock_t lock; /* for from, to */ 210 struct mem_cgroup *from; 211 struct mem_cgroup *to; 212 unsigned long flags; 213 unsigned long precharge; 214 unsigned long moved_charge; 215 unsigned long moved_swap; 216 struct task_struct *moving_task; /* a task moving charges */ 217 wait_queue_head_t waitq; /* a waitq for other context */ 218 } mc = { 219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 221 }; 222 223 /* 224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 225 * limit reclaim to prevent infinite loops, if they ever occur. 226 */ 227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 229 230 enum charge_type { 231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 232 MEM_CGROUP_CHARGE_TYPE_ANON, 233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 235 NR_CHARGE_TYPE, 236 }; 237 238 /* for encoding cft->private value on file */ 239 enum res_type { 240 _MEM, 241 _MEMSWAP, 242 _OOM_TYPE, 243 _KMEM, 244 _TCP, 245 }; 246 247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 249 #define MEMFILE_ATTR(val) ((val) & 0xffff) 250 /* Used for OOM nofiier */ 251 #define OOM_CONTROL (0) 252 253 /* Some nice accessors for the vmpressure. */ 254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 255 { 256 if (!memcg) 257 memcg = root_mem_cgroup; 258 return &memcg->vmpressure; 259 } 260 261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 262 { 263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 264 } 265 266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 267 { 268 return (memcg == root_mem_cgroup); 269 } 270 271 #ifndef CONFIG_SLOB 272 /* 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 274 * The main reason for not using cgroup id for this: 275 * this works better in sparse environments, where we have a lot of memcgs, 276 * but only a few kmem-limited. Or also, if we have, for instance, 200 277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 278 * 200 entry array for that. 279 * 280 * The current size of the caches array is stored in memcg_nr_cache_ids. It 281 * will double each time we have to increase it. 282 */ 283 static DEFINE_IDA(memcg_cache_ida); 284 int memcg_nr_cache_ids; 285 286 /* Protects memcg_nr_cache_ids */ 287 static DECLARE_RWSEM(memcg_cache_ids_sem); 288 289 void memcg_get_cache_ids(void) 290 { 291 down_read(&memcg_cache_ids_sem); 292 } 293 294 void memcg_put_cache_ids(void) 295 { 296 up_read(&memcg_cache_ids_sem); 297 } 298 299 /* 300 * MIN_SIZE is different than 1, because we would like to avoid going through 301 * the alloc/free process all the time. In a small machine, 4 kmem-limited 302 * cgroups is a reasonable guess. In the future, it could be a parameter or 303 * tunable, but that is strictly not necessary. 304 * 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 306 * this constant directly from cgroup, but it is understandable that this is 307 * better kept as an internal representation in cgroup.c. In any case, the 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily 309 * increase ours as well if it increases. 310 */ 311 #define MEMCG_CACHES_MIN_SIZE 4 312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 313 314 /* 315 * A lot of the calls to the cache allocation functions are expected to be 316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 317 * conditional to this static branch, we'll have to allow modules that does 318 * kmem_cache_alloc and the such to see this symbol as well 319 */ 320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 321 EXPORT_SYMBOL(memcg_kmem_enabled_key); 322 323 #endif /* !CONFIG_SLOB */ 324 325 static struct mem_cgroup_per_zone * 326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) 327 { 328 int nid = zone_to_nid(zone); 329 int zid = zone_idx(zone); 330 331 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 332 } 333 334 /** 335 * mem_cgroup_css_from_page - css of the memcg associated with a page 336 * @page: page of interest 337 * 338 * If memcg is bound to the default hierarchy, css of the memcg associated 339 * with @page is returned. The returned css remains associated with @page 340 * until it is released. 341 * 342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 343 * is returned. 344 */ 345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 346 { 347 struct mem_cgroup *memcg; 348 349 memcg = page->mem_cgroup; 350 351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 352 memcg = root_mem_cgroup; 353 354 return &memcg->css; 355 } 356 357 /** 358 * page_cgroup_ino - return inode number of the memcg a page is charged to 359 * @page: the page 360 * 361 * Look up the closest online ancestor of the memory cgroup @page is charged to 362 * and return its inode number or 0 if @page is not charged to any cgroup. It 363 * is safe to call this function without holding a reference to @page. 364 * 365 * Note, this function is inherently racy, because there is nothing to prevent 366 * the cgroup inode from getting torn down and potentially reallocated a moment 367 * after page_cgroup_ino() returns, so it only should be used by callers that 368 * do not care (such as procfs interfaces). 369 */ 370 ino_t page_cgroup_ino(struct page *page) 371 { 372 struct mem_cgroup *memcg; 373 unsigned long ino = 0; 374 375 rcu_read_lock(); 376 memcg = READ_ONCE(page->mem_cgroup); 377 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 378 memcg = parent_mem_cgroup(memcg); 379 if (memcg) 380 ino = cgroup_ino(memcg->css.cgroup); 381 rcu_read_unlock(); 382 return ino; 383 } 384 385 static struct mem_cgroup_per_zone * 386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 387 { 388 int nid = page_to_nid(page); 389 int zid = page_zonenum(page); 390 391 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 392 } 393 394 static struct mem_cgroup_tree_per_zone * 395 soft_limit_tree_node_zone(int nid, int zid) 396 { 397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 398 } 399 400 static struct mem_cgroup_tree_per_zone * 401 soft_limit_tree_from_page(struct page *page) 402 { 403 int nid = page_to_nid(page); 404 int zid = page_zonenum(page); 405 406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 407 } 408 409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 410 struct mem_cgroup_tree_per_zone *mctz, 411 unsigned long new_usage_in_excess) 412 { 413 struct rb_node **p = &mctz->rb_root.rb_node; 414 struct rb_node *parent = NULL; 415 struct mem_cgroup_per_zone *mz_node; 416 417 if (mz->on_tree) 418 return; 419 420 mz->usage_in_excess = new_usage_in_excess; 421 if (!mz->usage_in_excess) 422 return; 423 while (*p) { 424 parent = *p; 425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 426 tree_node); 427 if (mz->usage_in_excess < mz_node->usage_in_excess) 428 p = &(*p)->rb_left; 429 /* 430 * We can't avoid mem cgroups that are over their soft 431 * limit by the same amount 432 */ 433 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 434 p = &(*p)->rb_right; 435 } 436 rb_link_node(&mz->tree_node, parent, p); 437 rb_insert_color(&mz->tree_node, &mctz->rb_root); 438 mz->on_tree = true; 439 } 440 441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 442 struct mem_cgroup_tree_per_zone *mctz) 443 { 444 if (!mz->on_tree) 445 return; 446 rb_erase(&mz->tree_node, &mctz->rb_root); 447 mz->on_tree = false; 448 } 449 450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 451 struct mem_cgroup_tree_per_zone *mctz) 452 { 453 unsigned long flags; 454 455 spin_lock_irqsave(&mctz->lock, flags); 456 __mem_cgroup_remove_exceeded(mz, mctz); 457 spin_unlock_irqrestore(&mctz->lock, flags); 458 } 459 460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 461 { 462 unsigned long nr_pages = page_counter_read(&memcg->memory); 463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 464 unsigned long excess = 0; 465 466 if (nr_pages > soft_limit) 467 excess = nr_pages - soft_limit; 468 469 return excess; 470 } 471 472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 473 { 474 unsigned long excess; 475 struct mem_cgroup_per_zone *mz; 476 struct mem_cgroup_tree_per_zone *mctz; 477 478 mctz = soft_limit_tree_from_page(page); 479 /* 480 * Necessary to update all ancestors when hierarchy is used. 481 * because their event counter is not touched. 482 */ 483 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 484 mz = mem_cgroup_page_zoneinfo(memcg, page); 485 excess = soft_limit_excess(memcg); 486 /* 487 * We have to update the tree if mz is on RB-tree or 488 * mem is over its softlimit. 489 */ 490 if (excess || mz->on_tree) { 491 unsigned long flags; 492 493 spin_lock_irqsave(&mctz->lock, flags); 494 /* if on-tree, remove it */ 495 if (mz->on_tree) 496 __mem_cgroup_remove_exceeded(mz, mctz); 497 /* 498 * Insert again. mz->usage_in_excess will be updated. 499 * If excess is 0, no tree ops. 500 */ 501 __mem_cgroup_insert_exceeded(mz, mctz, excess); 502 spin_unlock_irqrestore(&mctz->lock, flags); 503 } 504 } 505 } 506 507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 508 { 509 struct mem_cgroup_tree_per_zone *mctz; 510 struct mem_cgroup_per_zone *mz; 511 int nid, zid; 512 513 for_each_node(nid) { 514 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 516 mctz = soft_limit_tree_node_zone(nid, zid); 517 mem_cgroup_remove_exceeded(mz, mctz); 518 } 519 } 520 } 521 522 static struct mem_cgroup_per_zone * 523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 524 { 525 struct rb_node *rightmost = NULL; 526 struct mem_cgroup_per_zone *mz; 527 528 retry: 529 mz = NULL; 530 rightmost = rb_last(&mctz->rb_root); 531 if (!rightmost) 532 goto done; /* Nothing to reclaim from */ 533 534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 535 /* 536 * Remove the node now but someone else can add it back, 537 * we will to add it back at the end of reclaim to its correct 538 * position in the tree. 539 */ 540 __mem_cgroup_remove_exceeded(mz, mctz); 541 if (!soft_limit_excess(mz->memcg) || 542 !css_tryget_online(&mz->memcg->css)) 543 goto retry; 544 done: 545 return mz; 546 } 547 548 static struct mem_cgroup_per_zone * 549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 550 { 551 struct mem_cgroup_per_zone *mz; 552 553 spin_lock_irq(&mctz->lock); 554 mz = __mem_cgroup_largest_soft_limit_node(mctz); 555 spin_unlock_irq(&mctz->lock); 556 return mz; 557 } 558 559 /* 560 * Return page count for single (non recursive) @memcg. 561 * 562 * Implementation Note: reading percpu statistics for memcg. 563 * 564 * Both of vmstat[] and percpu_counter has threshold and do periodic 565 * synchronization to implement "quick" read. There are trade-off between 566 * reading cost and precision of value. Then, we may have a chance to implement 567 * a periodic synchronization of counter in memcg's counter. 568 * 569 * But this _read() function is used for user interface now. The user accounts 570 * memory usage by memory cgroup and he _always_ requires exact value because 571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 572 * have to visit all online cpus and make sum. So, for now, unnecessary 573 * synchronization is not implemented. (just implemented for cpu hotplug) 574 * 575 * If there are kernel internal actions which can make use of some not-exact 576 * value, and reading all cpu value can be performance bottleneck in some 577 * common workload, threshold and synchronization as vmstat[] should be 578 * implemented. 579 */ 580 static unsigned long 581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 582 { 583 long val = 0; 584 int cpu; 585 586 /* Per-cpu values can be negative, use a signed accumulator */ 587 for_each_possible_cpu(cpu) 588 val += per_cpu(memcg->stat->count[idx], cpu); 589 /* 590 * Summing races with updates, so val may be negative. Avoid exposing 591 * transient negative values. 592 */ 593 if (val < 0) 594 val = 0; 595 return val; 596 } 597 598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 599 enum mem_cgroup_events_index idx) 600 { 601 unsigned long val = 0; 602 int cpu; 603 604 for_each_possible_cpu(cpu) 605 val += per_cpu(memcg->stat->events[idx], cpu); 606 return val; 607 } 608 609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 610 struct page *page, 611 bool compound, int nr_pages) 612 { 613 /* 614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 615 * counted as CACHE even if it's on ANON LRU. 616 */ 617 if (PageAnon(page)) 618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 619 nr_pages); 620 else 621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 622 nr_pages); 623 624 if (compound) { 625 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 627 nr_pages); 628 } 629 630 /* pagein of a big page is an event. So, ignore page size */ 631 if (nr_pages > 0) 632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 633 else { 634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 635 nr_pages = -nr_pages; /* for event */ 636 } 637 638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 639 } 640 641 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 642 int nid, 643 unsigned int lru_mask) 644 { 645 unsigned long nr = 0; 646 int zid; 647 648 VM_BUG_ON((unsigned)nid >= nr_node_ids); 649 650 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 651 struct mem_cgroup_per_zone *mz; 652 enum lru_list lru; 653 654 for_each_lru(lru) { 655 if (!(BIT(lru) & lru_mask)) 656 continue; 657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 658 nr += mz->lru_size[lru]; 659 } 660 } 661 return nr; 662 } 663 664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 665 unsigned int lru_mask) 666 { 667 unsigned long nr = 0; 668 int nid; 669 670 for_each_node_state(nid, N_MEMORY) 671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 672 return nr; 673 } 674 675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 676 enum mem_cgroup_events_target target) 677 { 678 unsigned long val, next; 679 680 val = __this_cpu_read(memcg->stat->nr_page_events); 681 next = __this_cpu_read(memcg->stat->targets[target]); 682 /* from time_after() in jiffies.h */ 683 if ((long)next - (long)val < 0) { 684 switch (target) { 685 case MEM_CGROUP_TARGET_THRESH: 686 next = val + THRESHOLDS_EVENTS_TARGET; 687 break; 688 case MEM_CGROUP_TARGET_SOFTLIMIT: 689 next = val + SOFTLIMIT_EVENTS_TARGET; 690 break; 691 case MEM_CGROUP_TARGET_NUMAINFO: 692 next = val + NUMAINFO_EVENTS_TARGET; 693 break; 694 default: 695 break; 696 } 697 __this_cpu_write(memcg->stat->targets[target], next); 698 return true; 699 } 700 return false; 701 } 702 703 /* 704 * Check events in order. 705 * 706 */ 707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 708 { 709 /* threshold event is triggered in finer grain than soft limit */ 710 if (unlikely(mem_cgroup_event_ratelimit(memcg, 711 MEM_CGROUP_TARGET_THRESH))) { 712 bool do_softlimit; 713 bool do_numainfo __maybe_unused; 714 715 do_softlimit = mem_cgroup_event_ratelimit(memcg, 716 MEM_CGROUP_TARGET_SOFTLIMIT); 717 #if MAX_NUMNODES > 1 718 do_numainfo = mem_cgroup_event_ratelimit(memcg, 719 MEM_CGROUP_TARGET_NUMAINFO); 720 #endif 721 mem_cgroup_threshold(memcg); 722 if (unlikely(do_softlimit)) 723 mem_cgroup_update_tree(memcg, page); 724 #if MAX_NUMNODES > 1 725 if (unlikely(do_numainfo)) 726 atomic_inc(&memcg->numainfo_events); 727 #endif 728 } 729 } 730 731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 732 { 733 /* 734 * mm_update_next_owner() may clear mm->owner to NULL 735 * if it races with swapoff, page migration, etc. 736 * So this can be called with p == NULL. 737 */ 738 if (unlikely(!p)) 739 return NULL; 740 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 742 } 743 EXPORT_SYMBOL(mem_cgroup_from_task); 744 745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 746 { 747 struct mem_cgroup *memcg = NULL; 748 749 rcu_read_lock(); 750 do { 751 /* 752 * Page cache insertions can happen withou an 753 * actual mm context, e.g. during disk probing 754 * on boot, loopback IO, acct() writes etc. 755 */ 756 if (unlikely(!mm)) 757 memcg = root_mem_cgroup; 758 else { 759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 760 if (unlikely(!memcg)) 761 memcg = root_mem_cgroup; 762 } 763 } while (!css_tryget_online(&memcg->css)); 764 rcu_read_unlock(); 765 return memcg; 766 } 767 768 /** 769 * mem_cgroup_iter - iterate over memory cgroup hierarchy 770 * @root: hierarchy root 771 * @prev: previously returned memcg, NULL on first invocation 772 * @reclaim: cookie for shared reclaim walks, NULL for full walks 773 * 774 * Returns references to children of the hierarchy below @root, or 775 * @root itself, or %NULL after a full round-trip. 776 * 777 * Caller must pass the return value in @prev on subsequent 778 * invocations for reference counting, or use mem_cgroup_iter_break() 779 * to cancel a hierarchy walk before the round-trip is complete. 780 * 781 * Reclaimers can specify a zone and a priority level in @reclaim to 782 * divide up the memcgs in the hierarchy among all concurrent 783 * reclaimers operating on the same zone and priority. 784 */ 785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 786 struct mem_cgroup *prev, 787 struct mem_cgroup_reclaim_cookie *reclaim) 788 { 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 790 struct cgroup_subsys_state *css = NULL; 791 struct mem_cgroup *memcg = NULL; 792 struct mem_cgroup *pos = NULL; 793 794 if (mem_cgroup_disabled()) 795 return NULL; 796 797 if (!root) 798 root = root_mem_cgroup; 799 800 if (prev && !reclaim) 801 pos = prev; 802 803 if (!root->use_hierarchy && root != root_mem_cgroup) { 804 if (prev) 805 goto out; 806 return root; 807 } 808 809 rcu_read_lock(); 810 811 if (reclaim) { 812 struct mem_cgroup_per_zone *mz; 813 814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 815 iter = &mz->iter[reclaim->priority]; 816 817 if (prev && reclaim->generation != iter->generation) 818 goto out_unlock; 819 820 while (1) { 821 pos = READ_ONCE(iter->position); 822 if (!pos || css_tryget(&pos->css)) 823 break; 824 /* 825 * css reference reached zero, so iter->position will 826 * be cleared by ->css_released. However, we should not 827 * rely on this happening soon, because ->css_released 828 * is called from a work queue, and by busy-waiting we 829 * might block it. So we clear iter->position right 830 * away. 831 */ 832 (void)cmpxchg(&iter->position, pos, NULL); 833 } 834 } 835 836 if (pos) 837 css = &pos->css; 838 839 for (;;) { 840 css = css_next_descendant_pre(css, &root->css); 841 if (!css) { 842 /* 843 * Reclaimers share the hierarchy walk, and a 844 * new one might jump in right at the end of 845 * the hierarchy - make sure they see at least 846 * one group and restart from the beginning. 847 */ 848 if (!prev) 849 continue; 850 break; 851 } 852 853 /* 854 * Verify the css and acquire a reference. The root 855 * is provided by the caller, so we know it's alive 856 * and kicking, and don't take an extra reference. 857 */ 858 memcg = mem_cgroup_from_css(css); 859 860 if (css == &root->css) 861 break; 862 863 if (css_tryget(css)) 864 break; 865 866 memcg = NULL; 867 } 868 869 if (reclaim) { 870 /* 871 * The position could have already been updated by a competing 872 * thread, so check that the value hasn't changed since we read 873 * it to avoid reclaiming from the same cgroup twice. 874 */ 875 (void)cmpxchg(&iter->position, pos, memcg); 876 877 if (pos) 878 css_put(&pos->css); 879 880 if (!memcg) 881 iter->generation++; 882 else if (!prev) 883 reclaim->generation = iter->generation; 884 } 885 886 out_unlock: 887 rcu_read_unlock(); 888 out: 889 if (prev && prev != root) 890 css_put(&prev->css); 891 892 return memcg; 893 } 894 895 /** 896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 897 * @root: hierarchy root 898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 899 */ 900 void mem_cgroup_iter_break(struct mem_cgroup *root, 901 struct mem_cgroup *prev) 902 { 903 if (!root) 904 root = root_mem_cgroup; 905 if (prev && prev != root) 906 css_put(&prev->css); 907 } 908 909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 910 { 911 struct mem_cgroup *memcg = dead_memcg; 912 struct mem_cgroup_reclaim_iter *iter; 913 struct mem_cgroup_per_zone *mz; 914 int nid, zid; 915 int i; 916 917 while ((memcg = parent_mem_cgroup(memcg))) { 918 for_each_node(nid) { 919 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 921 for (i = 0; i <= DEF_PRIORITY; i++) { 922 iter = &mz->iter[i]; 923 cmpxchg(&iter->position, 924 dead_memcg, NULL); 925 } 926 } 927 } 928 } 929 } 930 931 /* 932 * Iteration constructs for visiting all cgroups (under a tree). If 933 * loops are exited prematurely (break), mem_cgroup_iter_break() must 934 * be used for reference counting. 935 */ 936 #define for_each_mem_cgroup_tree(iter, root) \ 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 938 iter != NULL; \ 939 iter = mem_cgroup_iter(root, iter, NULL)) 940 941 #define for_each_mem_cgroup(iter) \ 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 943 iter != NULL; \ 944 iter = mem_cgroup_iter(NULL, iter, NULL)) 945 946 /** 947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 948 * @zone: zone of the wanted lruvec 949 * @memcg: memcg of the wanted lruvec 950 * 951 * Returns the lru list vector holding pages for the given @zone and 952 * @mem. This can be the global zone lruvec, if the memory controller 953 * is disabled. 954 */ 955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 956 struct mem_cgroup *memcg) 957 { 958 struct mem_cgroup_per_zone *mz; 959 struct lruvec *lruvec; 960 961 if (mem_cgroup_disabled()) { 962 lruvec = &zone->lruvec; 963 goto out; 964 } 965 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone); 967 lruvec = &mz->lruvec; 968 out: 969 /* 970 * Since a node can be onlined after the mem_cgroup was created, 971 * we have to be prepared to initialize lruvec->zone here; 972 * and if offlined then reonlined, we need to reinitialize it. 973 */ 974 if (unlikely(lruvec->zone != zone)) 975 lruvec->zone = zone; 976 return lruvec; 977 } 978 979 /** 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 981 * @page: the page 982 * @zone: zone of the page 983 * 984 * This function is only safe when following the LRU page isolation 985 * and putback protocol: the LRU lock must be held, and the page must 986 * either be PageLRU() or the caller must have isolated/allocated it. 987 */ 988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 989 { 990 struct mem_cgroup_per_zone *mz; 991 struct mem_cgroup *memcg; 992 struct lruvec *lruvec; 993 994 if (mem_cgroup_disabled()) { 995 lruvec = &zone->lruvec; 996 goto out; 997 } 998 999 memcg = page->mem_cgroup; 1000 /* 1001 * Swapcache readahead pages are added to the LRU - and 1002 * possibly migrated - before they are charged. 1003 */ 1004 if (!memcg) 1005 memcg = root_mem_cgroup; 1006 1007 mz = mem_cgroup_page_zoneinfo(memcg, page); 1008 lruvec = &mz->lruvec; 1009 out: 1010 /* 1011 * Since a node can be onlined after the mem_cgroup was created, 1012 * we have to be prepared to initialize lruvec->zone here; 1013 * and if offlined then reonlined, we need to reinitialize it. 1014 */ 1015 if (unlikely(lruvec->zone != zone)) 1016 lruvec->zone = zone; 1017 return lruvec; 1018 } 1019 1020 /** 1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1022 * @lruvec: mem_cgroup per zone lru vector 1023 * @lru: index of lru list the page is sitting on 1024 * @nr_pages: positive when adding or negative when removing 1025 * 1026 * This function must be called when a page is added to or removed from an 1027 * lru list. 1028 */ 1029 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1030 int nr_pages) 1031 { 1032 struct mem_cgroup_per_zone *mz; 1033 unsigned long *lru_size; 1034 1035 if (mem_cgroup_disabled()) 1036 return; 1037 1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1039 lru_size = mz->lru_size + lru; 1040 *lru_size += nr_pages; 1041 VM_BUG_ON((long)(*lru_size) < 0); 1042 } 1043 1044 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1045 { 1046 struct mem_cgroup *task_memcg; 1047 struct task_struct *p; 1048 bool ret; 1049 1050 p = find_lock_task_mm(task); 1051 if (p) { 1052 task_memcg = get_mem_cgroup_from_mm(p->mm); 1053 task_unlock(p); 1054 } else { 1055 /* 1056 * All threads may have already detached their mm's, but the oom 1057 * killer still needs to detect if they have already been oom 1058 * killed to prevent needlessly killing additional tasks. 1059 */ 1060 rcu_read_lock(); 1061 task_memcg = mem_cgroup_from_task(task); 1062 css_get(&task_memcg->css); 1063 rcu_read_unlock(); 1064 } 1065 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1066 css_put(&task_memcg->css); 1067 return ret; 1068 } 1069 1070 /** 1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1072 * @memcg: the memory cgroup 1073 * 1074 * Returns the maximum amount of memory @mem can be charged with, in 1075 * pages. 1076 */ 1077 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1078 { 1079 unsigned long margin = 0; 1080 unsigned long count; 1081 unsigned long limit; 1082 1083 count = page_counter_read(&memcg->memory); 1084 limit = READ_ONCE(memcg->memory.limit); 1085 if (count < limit) 1086 margin = limit - count; 1087 1088 if (do_memsw_account()) { 1089 count = page_counter_read(&memcg->memsw); 1090 limit = READ_ONCE(memcg->memsw.limit); 1091 if (count <= limit) 1092 margin = min(margin, limit - count); 1093 } 1094 1095 return margin; 1096 } 1097 1098 /* 1099 * A routine for checking "mem" is under move_account() or not. 1100 * 1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1102 * moving cgroups. This is for waiting at high-memory pressure 1103 * caused by "move". 1104 */ 1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1106 { 1107 struct mem_cgroup *from; 1108 struct mem_cgroup *to; 1109 bool ret = false; 1110 /* 1111 * Unlike task_move routines, we access mc.to, mc.from not under 1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1113 */ 1114 spin_lock(&mc.lock); 1115 from = mc.from; 1116 to = mc.to; 1117 if (!from) 1118 goto unlock; 1119 1120 ret = mem_cgroup_is_descendant(from, memcg) || 1121 mem_cgroup_is_descendant(to, memcg); 1122 unlock: 1123 spin_unlock(&mc.lock); 1124 return ret; 1125 } 1126 1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1128 { 1129 if (mc.moving_task && current != mc.moving_task) { 1130 if (mem_cgroup_under_move(memcg)) { 1131 DEFINE_WAIT(wait); 1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1133 /* moving charge context might have finished. */ 1134 if (mc.moving_task) 1135 schedule(); 1136 finish_wait(&mc.waitq, &wait); 1137 return true; 1138 } 1139 } 1140 return false; 1141 } 1142 1143 #define K(x) ((x) << (PAGE_SHIFT-10)) 1144 /** 1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1146 * @memcg: The memory cgroup that went over limit 1147 * @p: Task that is going to be killed 1148 * 1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1150 * enabled 1151 */ 1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1153 { 1154 /* oom_info_lock ensures that parallel ooms do not interleave */ 1155 static DEFINE_MUTEX(oom_info_lock); 1156 struct mem_cgroup *iter; 1157 unsigned int i; 1158 1159 mutex_lock(&oom_info_lock); 1160 rcu_read_lock(); 1161 1162 if (p) { 1163 pr_info("Task in "); 1164 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1165 pr_cont(" killed as a result of limit of "); 1166 } else { 1167 pr_info("Memory limit reached of cgroup "); 1168 } 1169 1170 pr_cont_cgroup_path(memcg->css.cgroup); 1171 pr_cont("\n"); 1172 1173 rcu_read_unlock(); 1174 1175 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1176 K((u64)page_counter_read(&memcg->memory)), 1177 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1178 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1179 K((u64)page_counter_read(&memcg->memsw)), 1180 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1181 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1182 K((u64)page_counter_read(&memcg->kmem)), 1183 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1184 1185 for_each_mem_cgroup_tree(iter, memcg) { 1186 pr_info("Memory cgroup stats for "); 1187 pr_cont_cgroup_path(iter->css.cgroup); 1188 pr_cont(":"); 1189 1190 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1191 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1192 continue; 1193 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1194 K(mem_cgroup_read_stat(iter, i))); 1195 } 1196 1197 for (i = 0; i < NR_LRU_LISTS; i++) 1198 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1199 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1200 1201 pr_cont("\n"); 1202 } 1203 mutex_unlock(&oom_info_lock); 1204 } 1205 1206 /* 1207 * This function returns the number of memcg under hierarchy tree. Returns 1208 * 1(self count) if no children. 1209 */ 1210 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1211 { 1212 int num = 0; 1213 struct mem_cgroup *iter; 1214 1215 for_each_mem_cgroup_tree(iter, memcg) 1216 num++; 1217 return num; 1218 } 1219 1220 /* 1221 * Return the memory (and swap, if configured) limit for a memcg. 1222 */ 1223 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1224 { 1225 unsigned long limit; 1226 1227 limit = memcg->memory.limit; 1228 if (mem_cgroup_swappiness(memcg)) { 1229 unsigned long memsw_limit; 1230 unsigned long swap_limit; 1231 1232 memsw_limit = memcg->memsw.limit; 1233 swap_limit = memcg->swap.limit; 1234 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1235 limit = min(limit + swap_limit, memsw_limit); 1236 } 1237 return limit; 1238 } 1239 1240 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1241 int order) 1242 { 1243 struct oom_control oc = { 1244 .zonelist = NULL, 1245 .nodemask = NULL, 1246 .gfp_mask = gfp_mask, 1247 .order = order, 1248 }; 1249 struct mem_cgroup *iter; 1250 unsigned long chosen_points = 0; 1251 unsigned long totalpages; 1252 unsigned int points = 0; 1253 struct task_struct *chosen = NULL; 1254 1255 mutex_lock(&oom_lock); 1256 1257 /* 1258 * If current has a pending SIGKILL or is exiting, then automatically 1259 * select it. The goal is to allow it to allocate so that it may 1260 * quickly exit and free its memory. 1261 */ 1262 if (fatal_signal_pending(current) || task_will_free_mem(current)) { 1263 mark_oom_victim(current); 1264 goto unlock; 1265 } 1266 1267 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg); 1268 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1269 for_each_mem_cgroup_tree(iter, memcg) { 1270 struct css_task_iter it; 1271 struct task_struct *task; 1272 1273 css_task_iter_start(&iter->css, &it); 1274 while ((task = css_task_iter_next(&it))) { 1275 switch (oom_scan_process_thread(&oc, task, totalpages)) { 1276 case OOM_SCAN_SELECT: 1277 if (chosen) 1278 put_task_struct(chosen); 1279 chosen = task; 1280 chosen_points = ULONG_MAX; 1281 get_task_struct(chosen); 1282 /* fall through */ 1283 case OOM_SCAN_CONTINUE: 1284 continue; 1285 case OOM_SCAN_ABORT: 1286 css_task_iter_end(&it); 1287 mem_cgroup_iter_break(memcg, iter); 1288 if (chosen) 1289 put_task_struct(chosen); 1290 goto unlock; 1291 case OOM_SCAN_OK: 1292 break; 1293 }; 1294 points = oom_badness(task, memcg, NULL, totalpages); 1295 if (!points || points < chosen_points) 1296 continue; 1297 /* Prefer thread group leaders for display purposes */ 1298 if (points == chosen_points && 1299 thread_group_leader(chosen)) 1300 continue; 1301 1302 if (chosen) 1303 put_task_struct(chosen); 1304 chosen = task; 1305 chosen_points = points; 1306 get_task_struct(chosen); 1307 } 1308 css_task_iter_end(&it); 1309 } 1310 1311 if (chosen) { 1312 points = chosen_points * 1000 / totalpages; 1313 oom_kill_process(&oc, chosen, points, totalpages, memcg, 1314 "Memory cgroup out of memory"); 1315 } 1316 unlock: 1317 mutex_unlock(&oom_lock); 1318 } 1319 1320 #if MAX_NUMNODES > 1 1321 1322 /** 1323 * test_mem_cgroup_node_reclaimable 1324 * @memcg: the target memcg 1325 * @nid: the node ID to be checked. 1326 * @noswap : specify true here if the user wants flle only information. 1327 * 1328 * This function returns whether the specified memcg contains any 1329 * reclaimable pages on a node. Returns true if there are any reclaimable 1330 * pages in the node. 1331 */ 1332 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1333 int nid, bool noswap) 1334 { 1335 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1336 return true; 1337 if (noswap || !total_swap_pages) 1338 return false; 1339 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1340 return true; 1341 return false; 1342 1343 } 1344 1345 /* 1346 * Always updating the nodemask is not very good - even if we have an empty 1347 * list or the wrong list here, we can start from some node and traverse all 1348 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1349 * 1350 */ 1351 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1352 { 1353 int nid; 1354 /* 1355 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1356 * pagein/pageout changes since the last update. 1357 */ 1358 if (!atomic_read(&memcg->numainfo_events)) 1359 return; 1360 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1361 return; 1362 1363 /* make a nodemask where this memcg uses memory from */ 1364 memcg->scan_nodes = node_states[N_MEMORY]; 1365 1366 for_each_node_mask(nid, node_states[N_MEMORY]) { 1367 1368 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1369 node_clear(nid, memcg->scan_nodes); 1370 } 1371 1372 atomic_set(&memcg->numainfo_events, 0); 1373 atomic_set(&memcg->numainfo_updating, 0); 1374 } 1375 1376 /* 1377 * Selecting a node where we start reclaim from. Because what we need is just 1378 * reducing usage counter, start from anywhere is O,K. Considering 1379 * memory reclaim from current node, there are pros. and cons. 1380 * 1381 * Freeing memory from current node means freeing memory from a node which 1382 * we'll use or we've used. So, it may make LRU bad. And if several threads 1383 * hit limits, it will see a contention on a node. But freeing from remote 1384 * node means more costs for memory reclaim because of memory latency. 1385 * 1386 * Now, we use round-robin. Better algorithm is welcomed. 1387 */ 1388 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1389 { 1390 int node; 1391 1392 mem_cgroup_may_update_nodemask(memcg); 1393 node = memcg->last_scanned_node; 1394 1395 node = next_node(node, memcg->scan_nodes); 1396 if (node == MAX_NUMNODES) 1397 node = first_node(memcg->scan_nodes); 1398 /* 1399 * We call this when we hit limit, not when pages are added to LRU. 1400 * No LRU may hold pages because all pages are UNEVICTABLE or 1401 * memcg is too small and all pages are not on LRU. In that case, 1402 * we use curret node. 1403 */ 1404 if (unlikely(node == MAX_NUMNODES)) 1405 node = numa_node_id(); 1406 1407 memcg->last_scanned_node = node; 1408 return node; 1409 } 1410 #else 1411 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1412 { 1413 return 0; 1414 } 1415 #endif 1416 1417 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1418 struct zone *zone, 1419 gfp_t gfp_mask, 1420 unsigned long *total_scanned) 1421 { 1422 struct mem_cgroup *victim = NULL; 1423 int total = 0; 1424 int loop = 0; 1425 unsigned long excess; 1426 unsigned long nr_scanned; 1427 struct mem_cgroup_reclaim_cookie reclaim = { 1428 .zone = zone, 1429 .priority = 0, 1430 }; 1431 1432 excess = soft_limit_excess(root_memcg); 1433 1434 while (1) { 1435 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1436 if (!victim) { 1437 loop++; 1438 if (loop >= 2) { 1439 /* 1440 * If we have not been able to reclaim 1441 * anything, it might because there are 1442 * no reclaimable pages under this hierarchy 1443 */ 1444 if (!total) 1445 break; 1446 /* 1447 * We want to do more targeted reclaim. 1448 * excess >> 2 is not to excessive so as to 1449 * reclaim too much, nor too less that we keep 1450 * coming back to reclaim from this cgroup 1451 */ 1452 if (total >= (excess >> 2) || 1453 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1454 break; 1455 } 1456 continue; 1457 } 1458 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1459 zone, &nr_scanned); 1460 *total_scanned += nr_scanned; 1461 if (!soft_limit_excess(root_memcg)) 1462 break; 1463 } 1464 mem_cgroup_iter_break(root_memcg, victim); 1465 return total; 1466 } 1467 1468 #ifdef CONFIG_LOCKDEP 1469 static struct lockdep_map memcg_oom_lock_dep_map = { 1470 .name = "memcg_oom_lock", 1471 }; 1472 #endif 1473 1474 static DEFINE_SPINLOCK(memcg_oom_lock); 1475 1476 /* 1477 * Check OOM-Killer is already running under our hierarchy. 1478 * If someone is running, return false. 1479 */ 1480 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1481 { 1482 struct mem_cgroup *iter, *failed = NULL; 1483 1484 spin_lock(&memcg_oom_lock); 1485 1486 for_each_mem_cgroup_tree(iter, memcg) { 1487 if (iter->oom_lock) { 1488 /* 1489 * this subtree of our hierarchy is already locked 1490 * so we cannot give a lock. 1491 */ 1492 failed = iter; 1493 mem_cgroup_iter_break(memcg, iter); 1494 break; 1495 } else 1496 iter->oom_lock = true; 1497 } 1498 1499 if (failed) { 1500 /* 1501 * OK, we failed to lock the whole subtree so we have 1502 * to clean up what we set up to the failing subtree 1503 */ 1504 for_each_mem_cgroup_tree(iter, memcg) { 1505 if (iter == failed) { 1506 mem_cgroup_iter_break(memcg, iter); 1507 break; 1508 } 1509 iter->oom_lock = false; 1510 } 1511 } else 1512 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1513 1514 spin_unlock(&memcg_oom_lock); 1515 1516 return !failed; 1517 } 1518 1519 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1520 { 1521 struct mem_cgroup *iter; 1522 1523 spin_lock(&memcg_oom_lock); 1524 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1525 for_each_mem_cgroup_tree(iter, memcg) 1526 iter->oom_lock = false; 1527 spin_unlock(&memcg_oom_lock); 1528 } 1529 1530 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1531 { 1532 struct mem_cgroup *iter; 1533 1534 spin_lock(&memcg_oom_lock); 1535 for_each_mem_cgroup_tree(iter, memcg) 1536 iter->under_oom++; 1537 spin_unlock(&memcg_oom_lock); 1538 } 1539 1540 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1541 { 1542 struct mem_cgroup *iter; 1543 1544 /* 1545 * When a new child is created while the hierarchy is under oom, 1546 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1547 */ 1548 spin_lock(&memcg_oom_lock); 1549 for_each_mem_cgroup_tree(iter, memcg) 1550 if (iter->under_oom > 0) 1551 iter->under_oom--; 1552 spin_unlock(&memcg_oom_lock); 1553 } 1554 1555 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1556 1557 struct oom_wait_info { 1558 struct mem_cgroup *memcg; 1559 wait_queue_t wait; 1560 }; 1561 1562 static int memcg_oom_wake_function(wait_queue_t *wait, 1563 unsigned mode, int sync, void *arg) 1564 { 1565 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1566 struct mem_cgroup *oom_wait_memcg; 1567 struct oom_wait_info *oom_wait_info; 1568 1569 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1570 oom_wait_memcg = oom_wait_info->memcg; 1571 1572 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1573 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1574 return 0; 1575 return autoremove_wake_function(wait, mode, sync, arg); 1576 } 1577 1578 static void memcg_oom_recover(struct mem_cgroup *memcg) 1579 { 1580 /* 1581 * For the following lockless ->under_oom test, the only required 1582 * guarantee is that it must see the state asserted by an OOM when 1583 * this function is called as a result of userland actions 1584 * triggered by the notification of the OOM. This is trivially 1585 * achieved by invoking mem_cgroup_mark_under_oom() before 1586 * triggering notification. 1587 */ 1588 if (memcg && memcg->under_oom) 1589 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1590 } 1591 1592 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1593 { 1594 if (!current->memcg_may_oom) 1595 return; 1596 /* 1597 * We are in the middle of the charge context here, so we 1598 * don't want to block when potentially sitting on a callstack 1599 * that holds all kinds of filesystem and mm locks. 1600 * 1601 * Also, the caller may handle a failed allocation gracefully 1602 * (like optional page cache readahead) and so an OOM killer 1603 * invocation might not even be necessary. 1604 * 1605 * That's why we don't do anything here except remember the 1606 * OOM context and then deal with it at the end of the page 1607 * fault when the stack is unwound, the locks are released, 1608 * and when we know whether the fault was overall successful. 1609 */ 1610 css_get(&memcg->css); 1611 current->memcg_in_oom = memcg; 1612 current->memcg_oom_gfp_mask = mask; 1613 current->memcg_oom_order = order; 1614 } 1615 1616 /** 1617 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1618 * @handle: actually kill/wait or just clean up the OOM state 1619 * 1620 * This has to be called at the end of a page fault if the memcg OOM 1621 * handler was enabled. 1622 * 1623 * Memcg supports userspace OOM handling where failed allocations must 1624 * sleep on a waitqueue until the userspace task resolves the 1625 * situation. Sleeping directly in the charge context with all kinds 1626 * of locks held is not a good idea, instead we remember an OOM state 1627 * in the task and mem_cgroup_oom_synchronize() has to be called at 1628 * the end of the page fault to complete the OOM handling. 1629 * 1630 * Returns %true if an ongoing memcg OOM situation was detected and 1631 * completed, %false otherwise. 1632 */ 1633 bool mem_cgroup_oom_synchronize(bool handle) 1634 { 1635 struct mem_cgroup *memcg = current->memcg_in_oom; 1636 struct oom_wait_info owait; 1637 bool locked; 1638 1639 /* OOM is global, do not handle */ 1640 if (!memcg) 1641 return false; 1642 1643 if (!handle || oom_killer_disabled) 1644 goto cleanup; 1645 1646 owait.memcg = memcg; 1647 owait.wait.flags = 0; 1648 owait.wait.func = memcg_oom_wake_function; 1649 owait.wait.private = current; 1650 INIT_LIST_HEAD(&owait.wait.task_list); 1651 1652 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1653 mem_cgroup_mark_under_oom(memcg); 1654 1655 locked = mem_cgroup_oom_trylock(memcg); 1656 1657 if (locked) 1658 mem_cgroup_oom_notify(memcg); 1659 1660 if (locked && !memcg->oom_kill_disable) { 1661 mem_cgroup_unmark_under_oom(memcg); 1662 finish_wait(&memcg_oom_waitq, &owait.wait); 1663 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1664 current->memcg_oom_order); 1665 } else { 1666 schedule(); 1667 mem_cgroup_unmark_under_oom(memcg); 1668 finish_wait(&memcg_oom_waitq, &owait.wait); 1669 } 1670 1671 if (locked) { 1672 mem_cgroup_oom_unlock(memcg); 1673 /* 1674 * There is no guarantee that an OOM-lock contender 1675 * sees the wakeups triggered by the OOM kill 1676 * uncharges. Wake any sleepers explicitely. 1677 */ 1678 memcg_oom_recover(memcg); 1679 } 1680 cleanup: 1681 current->memcg_in_oom = NULL; 1682 css_put(&memcg->css); 1683 return true; 1684 } 1685 1686 /** 1687 * lock_page_memcg - lock a page->mem_cgroup binding 1688 * @page: the page 1689 * 1690 * This function protects unlocked LRU pages from being moved to 1691 * another cgroup and stabilizes their page->mem_cgroup binding. 1692 */ 1693 void lock_page_memcg(struct page *page) 1694 { 1695 struct mem_cgroup *memcg; 1696 unsigned long flags; 1697 1698 /* 1699 * The RCU lock is held throughout the transaction. The fast 1700 * path can get away without acquiring the memcg->move_lock 1701 * because page moving starts with an RCU grace period. 1702 */ 1703 rcu_read_lock(); 1704 1705 if (mem_cgroup_disabled()) 1706 return; 1707 again: 1708 memcg = page->mem_cgroup; 1709 if (unlikely(!memcg)) 1710 return; 1711 1712 if (atomic_read(&memcg->moving_account) <= 0) 1713 return; 1714 1715 spin_lock_irqsave(&memcg->move_lock, flags); 1716 if (memcg != page->mem_cgroup) { 1717 spin_unlock_irqrestore(&memcg->move_lock, flags); 1718 goto again; 1719 } 1720 1721 /* 1722 * When charge migration first begins, we can have locked and 1723 * unlocked page stat updates happening concurrently. Track 1724 * the task who has the lock for unlock_page_memcg(). 1725 */ 1726 memcg->move_lock_task = current; 1727 memcg->move_lock_flags = flags; 1728 1729 return; 1730 } 1731 EXPORT_SYMBOL(lock_page_memcg); 1732 1733 /** 1734 * unlock_page_memcg - unlock a page->mem_cgroup binding 1735 * @page: the page 1736 */ 1737 void unlock_page_memcg(struct page *page) 1738 { 1739 struct mem_cgroup *memcg = page->mem_cgroup; 1740 1741 if (memcg && memcg->move_lock_task == current) { 1742 unsigned long flags = memcg->move_lock_flags; 1743 1744 memcg->move_lock_task = NULL; 1745 memcg->move_lock_flags = 0; 1746 1747 spin_unlock_irqrestore(&memcg->move_lock, flags); 1748 } 1749 1750 rcu_read_unlock(); 1751 } 1752 EXPORT_SYMBOL(unlock_page_memcg); 1753 1754 /* 1755 * size of first charge trial. "32" comes from vmscan.c's magic value. 1756 * TODO: maybe necessary to use big numbers in big irons. 1757 */ 1758 #define CHARGE_BATCH 32U 1759 struct memcg_stock_pcp { 1760 struct mem_cgroup *cached; /* this never be root cgroup */ 1761 unsigned int nr_pages; 1762 struct work_struct work; 1763 unsigned long flags; 1764 #define FLUSHING_CACHED_CHARGE 0 1765 }; 1766 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1767 static DEFINE_MUTEX(percpu_charge_mutex); 1768 1769 /** 1770 * consume_stock: Try to consume stocked charge on this cpu. 1771 * @memcg: memcg to consume from. 1772 * @nr_pages: how many pages to charge. 1773 * 1774 * The charges will only happen if @memcg matches the current cpu's memcg 1775 * stock, and at least @nr_pages are available in that stock. Failure to 1776 * service an allocation will refill the stock. 1777 * 1778 * returns true if successful, false otherwise. 1779 */ 1780 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1781 { 1782 struct memcg_stock_pcp *stock; 1783 bool ret = false; 1784 1785 if (nr_pages > CHARGE_BATCH) 1786 return ret; 1787 1788 stock = &get_cpu_var(memcg_stock); 1789 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1790 stock->nr_pages -= nr_pages; 1791 ret = true; 1792 } 1793 put_cpu_var(memcg_stock); 1794 return ret; 1795 } 1796 1797 /* 1798 * Returns stocks cached in percpu and reset cached information. 1799 */ 1800 static void drain_stock(struct memcg_stock_pcp *stock) 1801 { 1802 struct mem_cgroup *old = stock->cached; 1803 1804 if (stock->nr_pages) { 1805 page_counter_uncharge(&old->memory, stock->nr_pages); 1806 if (do_memsw_account()) 1807 page_counter_uncharge(&old->memsw, stock->nr_pages); 1808 css_put_many(&old->css, stock->nr_pages); 1809 stock->nr_pages = 0; 1810 } 1811 stock->cached = NULL; 1812 } 1813 1814 /* 1815 * This must be called under preempt disabled or must be called by 1816 * a thread which is pinned to local cpu. 1817 */ 1818 static void drain_local_stock(struct work_struct *dummy) 1819 { 1820 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 1821 drain_stock(stock); 1822 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1823 } 1824 1825 /* 1826 * Cache charges(val) to local per_cpu area. 1827 * This will be consumed by consume_stock() function, later. 1828 */ 1829 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1830 { 1831 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1832 1833 if (stock->cached != memcg) { /* reset if necessary */ 1834 drain_stock(stock); 1835 stock->cached = memcg; 1836 } 1837 stock->nr_pages += nr_pages; 1838 put_cpu_var(memcg_stock); 1839 } 1840 1841 /* 1842 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1843 * of the hierarchy under it. 1844 */ 1845 static void drain_all_stock(struct mem_cgroup *root_memcg) 1846 { 1847 int cpu, curcpu; 1848 1849 /* If someone's already draining, avoid adding running more workers. */ 1850 if (!mutex_trylock(&percpu_charge_mutex)) 1851 return; 1852 /* Notify other cpus that system-wide "drain" is running */ 1853 get_online_cpus(); 1854 curcpu = get_cpu(); 1855 for_each_online_cpu(cpu) { 1856 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1857 struct mem_cgroup *memcg; 1858 1859 memcg = stock->cached; 1860 if (!memcg || !stock->nr_pages) 1861 continue; 1862 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1863 continue; 1864 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1865 if (cpu == curcpu) 1866 drain_local_stock(&stock->work); 1867 else 1868 schedule_work_on(cpu, &stock->work); 1869 } 1870 } 1871 put_cpu(); 1872 put_online_cpus(); 1873 mutex_unlock(&percpu_charge_mutex); 1874 } 1875 1876 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 1877 unsigned long action, 1878 void *hcpu) 1879 { 1880 int cpu = (unsigned long)hcpu; 1881 struct memcg_stock_pcp *stock; 1882 1883 if (action == CPU_ONLINE) 1884 return NOTIFY_OK; 1885 1886 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 1887 return NOTIFY_OK; 1888 1889 stock = &per_cpu(memcg_stock, cpu); 1890 drain_stock(stock); 1891 return NOTIFY_OK; 1892 } 1893 1894 static void reclaim_high(struct mem_cgroup *memcg, 1895 unsigned int nr_pages, 1896 gfp_t gfp_mask) 1897 { 1898 do { 1899 if (page_counter_read(&memcg->memory) <= memcg->high) 1900 continue; 1901 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1902 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1903 } while ((memcg = parent_mem_cgroup(memcg))); 1904 } 1905 1906 static void high_work_func(struct work_struct *work) 1907 { 1908 struct mem_cgroup *memcg; 1909 1910 memcg = container_of(work, struct mem_cgroup, high_work); 1911 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1912 } 1913 1914 /* 1915 * Scheduled by try_charge() to be executed from the userland return path 1916 * and reclaims memory over the high limit. 1917 */ 1918 void mem_cgroup_handle_over_high(void) 1919 { 1920 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1921 struct mem_cgroup *memcg; 1922 1923 if (likely(!nr_pages)) 1924 return; 1925 1926 memcg = get_mem_cgroup_from_mm(current->mm); 1927 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1928 css_put(&memcg->css); 1929 current->memcg_nr_pages_over_high = 0; 1930 } 1931 1932 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1933 unsigned int nr_pages) 1934 { 1935 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1936 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1937 struct mem_cgroup *mem_over_limit; 1938 struct page_counter *counter; 1939 unsigned long nr_reclaimed; 1940 bool may_swap = true; 1941 bool drained = false; 1942 1943 if (mem_cgroup_is_root(memcg)) 1944 return 0; 1945 retry: 1946 if (consume_stock(memcg, nr_pages)) 1947 return 0; 1948 1949 if (!do_memsw_account() || 1950 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1951 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1952 goto done_restock; 1953 if (do_memsw_account()) 1954 page_counter_uncharge(&memcg->memsw, batch); 1955 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1956 } else { 1957 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1958 may_swap = false; 1959 } 1960 1961 if (batch > nr_pages) { 1962 batch = nr_pages; 1963 goto retry; 1964 } 1965 1966 /* 1967 * Unlike in global OOM situations, memcg is not in a physical 1968 * memory shortage. Allow dying and OOM-killed tasks to 1969 * bypass the last charges so that they can exit quickly and 1970 * free their memory. 1971 */ 1972 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1973 fatal_signal_pending(current) || 1974 current->flags & PF_EXITING)) 1975 goto force; 1976 1977 if (unlikely(task_in_memcg_oom(current))) 1978 goto nomem; 1979 1980 if (!gfpflags_allow_blocking(gfp_mask)) 1981 goto nomem; 1982 1983 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 1984 1985 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1986 gfp_mask, may_swap); 1987 1988 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1989 goto retry; 1990 1991 if (!drained) { 1992 drain_all_stock(mem_over_limit); 1993 drained = true; 1994 goto retry; 1995 } 1996 1997 if (gfp_mask & __GFP_NORETRY) 1998 goto nomem; 1999 /* 2000 * Even though the limit is exceeded at this point, reclaim 2001 * may have been able to free some pages. Retry the charge 2002 * before killing the task. 2003 * 2004 * Only for regular pages, though: huge pages are rather 2005 * unlikely to succeed so close to the limit, and we fall back 2006 * to regular pages anyway in case of failure. 2007 */ 2008 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2009 goto retry; 2010 /* 2011 * At task move, charge accounts can be doubly counted. So, it's 2012 * better to wait until the end of task_move if something is going on. 2013 */ 2014 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2015 goto retry; 2016 2017 if (nr_retries--) 2018 goto retry; 2019 2020 if (gfp_mask & __GFP_NOFAIL) 2021 goto force; 2022 2023 if (fatal_signal_pending(current)) 2024 goto force; 2025 2026 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 2027 2028 mem_cgroup_oom(mem_over_limit, gfp_mask, 2029 get_order(nr_pages * PAGE_SIZE)); 2030 nomem: 2031 if (!(gfp_mask & __GFP_NOFAIL)) 2032 return -ENOMEM; 2033 force: 2034 /* 2035 * The allocation either can't fail or will lead to more memory 2036 * being freed very soon. Allow memory usage go over the limit 2037 * temporarily by force charging it. 2038 */ 2039 page_counter_charge(&memcg->memory, nr_pages); 2040 if (do_memsw_account()) 2041 page_counter_charge(&memcg->memsw, nr_pages); 2042 css_get_many(&memcg->css, nr_pages); 2043 2044 return 0; 2045 2046 done_restock: 2047 css_get_many(&memcg->css, batch); 2048 if (batch > nr_pages) 2049 refill_stock(memcg, batch - nr_pages); 2050 2051 /* 2052 * If the hierarchy is above the normal consumption range, schedule 2053 * reclaim on returning to userland. We can perform reclaim here 2054 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2055 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2056 * not recorded as it most likely matches current's and won't 2057 * change in the meantime. As high limit is checked again before 2058 * reclaim, the cost of mismatch is negligible. 2059 */ 2060 do { 2061 if (page_counter_read(&memcg->memory) > memcg->high) { 2062 /* Don't bother a random interrupted task */ 2063 if (in_interrupt()) { 2064 schedule_work(&memcg->high_work); 2065 break; 2066 } 2067 current->memcg_nr_pages_over_high += batch; 2068 set_notify_resume(current); 2069 break; 2070 } 2071 } while ((memcg = parent_mem_cgroup(memcg))); 2072 2073 return 0; 2074 } 2075 2076 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2077 { 2078 if (mem_cgroup_is_root(memcg)) 2079 return; 2080 2081 page_counter_uncharge(&memcg->memory, nr_pages); 2082 if (do_memsw_account()) 2083 page_counter_uncharge(&memcg->memsw, nr_pages); 2084 2085 css_put_many(&memcg->css, nr_pages); 2086 } 2087 2088 static void lock_page_lru(struct page *page, int *isolated) 2089 { 2090 struct zone *zone = page_zone(page); 2091 2092 spin_lock_irq(&zone->lru_lock); 2093 if (PageLRU(page)) { 2094 struct lruvec *lruvec; 2095 2096 lruvec = mem_cgroup_page_lruvec(page, zone); 2097 ClearPageLRU(page); 2098 del_page_from_lru_list(page, lruvec, page_lru(page)); 2099 *isolated = 1; 2100 } else 2101 *isolated = 0; 2102 } 2103 2104 static void unlock_page_lru(struct page *page, int isolated) 2105 { 2106 struct zone *zone = page_zone(page); 2107 2108 if (isolated) { 2109 struct lruvec *lruvec; 2110 2111 lruvec = mem_cgroup_page_lruvec(page, zone); 2112 VM_BUG_ON_PAGE(PageLRU(page), page); 2113 SetPageLRU(page); 2114 add_page_to_lru_list(page, lruvec, page_lru(page)); 2115 } 2116 spin_unlock_irq(&zone->lru_lock); 2117 } 2118 2119 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2120 bool lrucare) 2121 { 2122 int isolated; 2123 2124 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2125 2126 /* 2127 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2128 * may already be on some other mem_cgroup's LRU. Take care of it. 2129 */ 2130 if (lrucare) 2131 lock_page_lru(page, &isolated); 2132 2133 /* 2134 * Nobody should be changing or seriously looking at 2135 * page->mem_cgroup at this point: 2136 * 2137 * - the page is uncharged 2138 * 2139 * - the page is off-LRU 2140 * 2141 * - an anonymous fault has exclusive page access, except for 2142 * a locked page table 2143 * 2144 * - a page cache insertion, a swapin fault, or a migration 2145 * have the page locked 2146 */ 2147 page->mem_cgroup = memcg; 2148 2149 if (lrucare) 2150 unlock_page_lru(page, isolated); 2151 } 2152 2153 #ifndef CONFIG_SLOB 2154 static int memcg_alloc_cache_id(void) 2155 { 2156 int id, size; 2157 int err; 2158 2159 id = ida_simple_get(&memcg_cache_ida, 2160 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2161 if (id < 0) 2162 return id; 2163 2164 if (id < memcg_nr_cache_ids) 2165 return id; 2166 2167 /* 2168 * There's no space for the new id in memcg_caches arrays, 2169 * so we have to grow them. 2170 */ 2171 down_write(&memcg_cache_ids_sem); 2172 2173 size = 2 * (id + 1); 2174 if (size < MEMCG_CACHES_MIN_SIZE) 2175 size = MEMCG_CACHES_MIN_SIZE; 2176 else if (size > MEMCG_CACHES_MAX_SIZE) 2177 size = MEMCG_CACHES_MAX_SIZE; 2178 2179 err = memcg_update_all_caches(size); 2180 if (!err) 2181 err = memcg_update_all_list_lrus(size); 2182 if (!err) 2183 memcg_nr_cache_ids = size; 2184 2185 up_write(&memcg_cache_ids_sem); 2186 2187 if (err) { 2188 ida_simple_remove(&memcg_cache_ida, id); 2189 return err; 2190 } 2191 return id; 2192 } 2193 2194 static void memcg_free_cache_id(int id) 2195 { 2196 ida_simple_remove(&memcg_cache_ida, id); 2197 } 2198 2199 struct memcg_kmem_cache_create_work { 2200 struct mem_cgroup *memcg; 2201 struct kmem_cache *cachep; 2202 struct work_struct work; 2203 }; 2204 2205 static void memcg_kmem_cache_create_func(struct work_struct *w) 2206 { 2207 struct memcg_kmem_cache_create_work *cw = 2208 container_of(w, struct memcg_kmem_cache_create_work, work); 2209 struct mem_cgroup *memcg = cw->memcg; 2210 struct kmem_cache *cachep = cw->cachep; 2211 2212 memcg_create_kmem_cache(memcg, cachep); 2213 2214 css_put(&memcg->css); 2215 kfree(cw); 2216 } 2217 2218 /* 2219 * Enqueue the creation of a per-memcg kmem_cache. 2220 */ 2221 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2222 struct kmem_cache *cachep) 2223 { 2224 struct memcg_kmem_cache_create_work *cw; 2225 2226 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2227 if (!cw) 2228 return; 2229 2230 css_get(&memcg->css); 2231 2232 cw->memcg = memcg; 2233 cw->cachep = cachep; 2234 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2235 2236 schedule_work(&cw->work); 2237 } 2238 2239 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2240 struct kmem_cache *cachep) 2241 { 2242 /* 2243 * We need to stop accounting when we kmalloc, because if the 2244 * corresponding kmalloc cache is not yet created, the first allocation 2245 * in __memcg_schedule_kmem_cache_create will recurse. 2246 * 2247 * However, it is better to enclose the whole function. Depending on 2248 * the debugging options enabled, INIT_WORK(), for instance, can 2249 * trigger an allocation. This too, will make us recurse. Because at 2250 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2251 * the safest choice is to do it like this, wrapping the whole function. 2252 */ 2253 current->memcg_kmem_skip_account = 1; 2254 __memcg_schedule_kmem_cache_create(memcg, cachep); 2255 current->memcg_kmem_skip_account = 0; 2256 } 2257 2258 /* 2259 * Return the kmem_cache we're supposed to use for a slab allocation. 2260 * We try to use the current memcg's version of the cache. 2261 * 2262 * If the cache does not exist yet, if we are the first user of it, 2263 * we either create it immediately, if possible, or create it asynchronously 2264 * in a workqueue. 2265 * In the latter case, we will let the current allocation go through with 2266 * the original cache. 2267 * 2268 * Can't be called in interrupt context or from kernel threads. 2269 * This function needs to be called with rcu_read_lock() held. 2270 */ 2271 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 2272 { 2273 struct mem_cgroup *memcg; 2274 struct kmem_cache *memcg_cachep; 2275 int kmemcg_id; 2276 2277 VM_BUG_ON(!is_root_cache(cachep)); 2278 2279 if (cachep->flags & SLAB_ACCOUNT) 2280 gfp |= __GFP_ACCOUNT; 2281 2282 if (!(gfp & __GFP_ACCOUNT)) 2283 return cachep; 2284 2285 if (current->memcg_kmem_skip_account) 2286 return cachep; 2287 2288 memcg = get_mem_cgroup_from_mm(current->mm); 2289 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2290 if (kmemcg_id < 0) 2291 goto out; 2292 2293 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2294 if (likely(memcg_cachep)) 2295 return memcg_cachep; 2296 2297 /* 2298 * If we are in a safe context (can wait, and not in interrupt 2299 * context), we could be be predictable and return right away. 2300 * This would guarantee that the allocation being performed 2301 * already belongs in the new cache. 2302 * 2303 * However, there are some clashes that can arrive from locking. 2304 * For instance, because we acquire the slab_mutex while doing 2305 * memcg_create_kmem_cache, this means no further allocation 2306 * could happen with the slab_mutex held. So it's better to 2307 * defer everything. 2308 */ 2309 memcg_schedule_kmem_cache_create(memcg, cachep); 2310 out: 2311 css_put(&memcg->css); 2312 return cachep; 2313 } 2314 2315 void __memcg_kmem_put_cache(struct kmem_cache *cachep) 2316 { 2317 if (!is_root_cache(cachep)) 2318 css_put(&cachep->memcg_params.memcg->css); 2319 } 2320 2321 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2322 struct mem_cgroup *memcg) 2323 { 2324 unsigned int nr_pages = 1 << order; 2325 struct page_counter *counter; 2326 int ret; 2327 2328 if (!memcg_kmem_online(memcg)) 2329 return 0; 2330 2331 ret = try_charge(memcg, gfp, nr_pages); 2332 if (ret) 2333 return ret; 2334 2335 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2336 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2337 cancel_charge(memcg, nr_pages); 2338 return -ENOMEM; 2339 } 2340 2341 page->mem_cgroup = memcg; 2342 2343 return 0; 2344 } 2345 2346 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2347 { 2348 struct mem_cgroup *memcg; 2349 int ret; 2350 2351 memcg = get_mem_cgroup_from_mm(current->mm); 2352 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2353 css_put(&memcg->css); 2354 return ret; 2355 } 2356 2357 void __memcg_kmem_uncharge(struct page *page, int order) 2358 { 2359 struct mem_cgroup *memcg = page->mem_cgroup; 2360 unsigned int nr_pages = 1 << order; 2361 2362 if (!memcg) 2363 return; 2364 2365 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2366 2367 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2368 page_counter_uncharge(&memcg->kmem, nr_pages); 2369 2370 page_counter_uncharge(&memcg->memory, nr_pages); 2371 if (do_memsw_account()) 2372 page_counter_uncharge(&memcg->memsw, nr_pages); 2373 2374 page->mem_cgroup = NULL; 2375 css_put_many(&memcg->css, nr_pages); 2376 } 2377 #endif /* !CONFIG_SLOB */ 2378 2379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2380 2381 /* 2382 * Because tail pages are not marked as "used", set it. We're under 2383 * zone->lru_lock and migration entries setup in all page mappings. 2384 */ 2385 void mem_cgroup_split_huge_fixup(struct page *head) 2386 { 2387 int i; 2388 2389 if (mem_cgroup_disabled()) 2390 return; 2391 2392 for (i = 1; i < HPAGE_PMD_NR; i++) 2393 head[i].mem_cgroup = head->mem_cgroup; 2394 2395 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2396 HPAGE_PMD_NR); 2397 } 2398 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2399 2400 #ifdef CONFIG_MEMCG_SWAP 2401 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2402 bool charge) 2403 { 2404 int val = (charge) ? 1 : -1; 2405 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2406 } 2407 2408 /** 2409 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2410 * @entry: swap entry to be moved 2411 * @from: mem_cgroup which the entry is moved from 2412 * @to: mem_cgroup which the entry is moved to 2413 * 2414 * It succeeds only when the swap_cgroup's record for this entry is the same 2415 * as the mem_cgroup's id of @from. 2416 * 2417 * Returns 0 on success, -EINVAL on failure. 2418 * 2419 * The caller must have charged to @to, IOW, called page_counter_charge() about 2420 * both res and memsw, and called css_get(). 2421 */ 2422 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2423 struct mem_cgroup *from, struct mem_cgroup *to) 2424 { 2425 unsigned short old_id, new_id; 2426 2427 old_id = mem_cgroup_id(from); 2428 new_id = mem_cgroup_id(to); 2429 2430 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2431 mem_cgroup_swap_statistics(from, false); 2432 mem_cgroup_swap_statistics(to, true); 2433 return 0; 2434 } 2435 return -EINVAL; 2436 } 2437 #else 2438 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2439 struct mem_cgroup *from, struct mem_cgroup *to) 2440 { 2441 return -EINVAL; 2442 } 2443 #endif 2444 2445 static DEFINE_MUTEX(memcg_limit_mutex); 2446 2447 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2448 unsigned long limit) 2449 { 2450 unsigned long curusage; 2451 unsigned long oldusage; 2452 bool enlarge = false; 2453 int retry_count; 2454 int ret; 2455 2456 /* 2457 * For keeping hierarchical_reclaim simple, how long we should retry 2458 * is depends on callers. We set our retry-count to be function 2459 * of # of children which we should visit in this loop. 2460 */ 2461 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2462 mem_cgroup_count_children(memcg); 2463 2464 oldusage = page_counter_read(&memcg->memory); 2465 2466 do { 2467 if (signal_pending(current)) { 2468 ret = -EINTR; 2469 break; 2470 } 2471 2472 mutex_lock(&memcg_limit_mutex); 2473 if (limit > memcg->memsw.limit) { 2474 mutex_unlock(&memcg_limit_mutex); 2475 ret = -EINVAL; 2476 break; 2477 } 2478 if (limit > memcg->memory.limit) 2479 enlarge = true; 2480 ret = page_counter_limit(&memcg->memory, limit); 2481 mutex_unlock(&memcg_limit_mutex); 2482 2483 if (!ret) 2484 break; 2485 2486 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2487 2488 curusage = page_counter_read(&memcg->memory); 2489 /* Usage is reduced ? */ 2490 if (curusage >= oldusage) 2491 retry_count--; 2492 else 2493 oldusage = curusage; 2494 } while (retry_count); 2495 2496 if (!ret && enlarge) 2497 memcg_oom_recover(memcg); 2498 2499 return ret; 2500 } 2501 2502 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2503 unsigned long limit) 2504 { 2505 unsigned long curusage; 2506 unsigned long oldusage; 2507 bool enlarge = false; 2508 int retry_count; 2509 int ret; 2510 2511 /* see mem_cgroup_resize_res_limit */ 2512 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2513 mem_cgroup_count_children(memcg); 2514 2515 oldusage = page_counter_read(&memcg->memsw); 2516 2517 do { 2518 if (signal_pending(current)) { 2519 ret = -EINTR; 2520 break; 2521 } 2522 2523 mutex_lock(&memcg_limit_mutex); 2524 if (limit < memcg->memory.limit) { 2525 mutex_unlock(&memcg_limit_mutex); 2526 ret = -EINVAL; 2527 break; 2528 } 2529 if (limit > memcg->memsw.limit) 2530 enlarge = true; 2531 ret = page_counter_limit(&memcg->memsw, limit); 2532 mutex_unlock(&memcg_limit_mutex); 2533 2534 if (!ret) 2535 break; 2536 2537 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2538 2539 curusage = page_counter_read(&memcg->memsw); 2540 /* Usage is reduced ? */ 2541 if (curusage >= oldusage) 2542 retry_count--; 2543 else 2544 oldusage = curusage; 2545 } while (retry_count); 2546 2547 if (!ret && enlarge) 2548 memcg_oom_recover(memcg); 2549 2550 return ret; 2551 } 2552 2553 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 2554 gfp_t gfp_mask, 2555 unsigned long *total_scanned) 2556 { 2557 unsigned long nr_reclaimed = 0; 2558 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 2559 unsigned long reclaimed; 2560 int loop = 0; 2561 struct mem_cgroup_tree_per_zone *mctz; 2562 unsigned long excess; 2563 unsigned long nr_scanned; 2564 2565 if (order > 0) 2566 return 0; 2567 2568 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 2569 /* 2570 * This loop can run a while, specially if mem_cgroup's continuously 2571 * keep exceeding their soft limit and putting the system under 2572 * pressure 2573 */ 2574 do { 2575 if (next_mz) 2576 mz = next_mz; 2577 else 2578 mz = mem_cgroup_largest_soft_limit_node(mctz); 2579 if (!mz) 2580 break; 2581 2582 nr_scanned = 0; 2583 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 2584 gfp_mask, &nr_scanned); 2585 nr_reclaimed += reclaimed; 2586 *total_scanned += nr_scanned; 2587 spin_lock_irq(&mctz->lock); 2588 __mem_cgroup_remove_exceeded(mz, mctz); 2589 2590 /* 2591 * If we failed to reclaim anything from this memory cgroup 2592 * it is time to move on to the next cgroup 2593 */ 2594 next_mz = NULL; 2595 if (!reclaimed) 2596 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2597 2598 excess = soft_limit_excess(mz->memcg); 2599 /* 2600 * One school of thought says that we should not add 2601 * back the node to the tree if reclaim returns 0. 2602 * But our reclaim could return 0, simply because due 2603 * to priority we are exposing a smaller subset of 2604 * memory to reclaim from. Consider this as a longer 2605 * term TODO. 2606 */ 2607 /* If excess == 0, no tree ops */ 2608 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2609 spin_unlock_irq(&mctz->lock); 2610 css_put(&mz->memcg->css); 2611 loop++; 2612 /* 2613 * Could not reclaim anything and there are no more 2614 * mem cgroups to try or we seem to be looping without 2615 * reclaiming anything. 2616 */ 2617 if (!nr_reclaimed && 2618 (next_mz == NULL || 2619 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2620 break; 2621 } while (!nr_reclaimed); 2622 if (next_mz) 2623 css_put(&next_mz->memcg->css); 2624 return nr_reclaimed; 2625 } 2626 2627 /* 2628 * Test whether @memcg has children, dead or alive. Note that this 2629 * function doesn't care whether @memcg has use_hierarchy enabled and 2630 * returns %true if there are child csses according to the cgroup 2631 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2632 */ 2633 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2634 { 2635 bool ret; 2636 2637 rcu_read_lock(); 2638 ret = css_next_child(NULL, &memcg->css); 2639 rcu_read_unlock(); 2640 return ret; 2641 } 2642 2643 /* 2644 * Reclaims as many pages from the given memcg as possible and moves 2645 * the rest to the parent. 2646 * 2647 * Caller is responsible for holding css reference for memcg. 2648 */ 2649 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2650 { 2651 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2652 2653 /* we call try-to-free pages for make this cgroup empty */ 2654 lru_add_drain_all(); 2655 /* try to free all pages in this cgroup */ 2656 while (nr_retries && page_counter_read(&memcg->memory)) { 2657 int progress; 2658 2659 if (signal_pending(current)) 2660 return -EINTR; 2661 2662 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2663 GFP_KERNEL, true); 2664 if (!progress) { 2665 nr_retries--; 2666 /* maybe some writeback is necessary */ 2667 congestion_wait(BLK_RW_ASYNC, HZ/10); 2668 } 2669 2670 } 2671 2672 return 0; 2673 } 2674 2675 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2676 char *buf, size_t nbytes, 2677 loff_t off) 2678 { 2679 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2680 2681 if (mem_cgroup_is_root(memcg)) 2682 return -EINVAL; 2683 return mem_cgroup_force_empty(memcg) ?: nbytes; 2684 } 2685 2686 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2687 struct cftype *cft) 2688 { 2689 return mem_cgroup_from_css(css)->use_hierarchy; 2690 } 2691 2692 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2693 struct cftype *cft, u64 val) 2694 { 2695 int retval = 0; 2696 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2697 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2698 2699 if (memcg->use_hierarchy == val) 2700 return 0; 2701 2702 /* 2703 * If parent's use_hierarchy is set, we can't make any modifications 2704 * in the child subtrees. If it is unset, then the change can 2705 * occur, provided the current cgroup has no children. 2706 * 2707 * For the root cgroup, parent_mem is NULL, we allow value to be 2708 * set if there are no children. 2709 */ 2710 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2711 (val == 1 || val == 0)) { 2712 if (!memcg_has_children(memcg)) 2713 memcg->use_hierarchy = val; 2714 else 2715 retval = -EBUSY; 2716 } else 2717 retval = -EINVAL; 2718 2719 return retval; 2720 } 2721 2722 static unsigned long tree_stat(struct mem_cgroup *memcg, 2723 enum mem_cgroup_stat_index idx) 2724 { 2725 struct mem_cgroup *iter; 2726 unsigned long val = 0; 2727 2728 for_each_mem_cgroup_tree(iter, memcg) 2729 val += mem_cgroup_read_stat(iter, idx); 2730 2731 return val; 2732 } 2733 2734 static unsigned long tree_events(struct mem_cgroup *memcg, 2735 enum mem_cgroup_events_index idx) 2736 { 2737 struct mem_cgroup *iter; 2738 unsigned long val = 0; 2739 2740 for_each_mem_cgroup_tree(iter, memcg) 2741 val += mem_cgroup_read_events(iter, idx); 2742 2743 return val; 2744 } 2745 2746 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2747 { 2748 unsigned long val; 2749 2750 if (mem_cgroup_is_root(memcg)) { 2751 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE); 2752 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS); 2753 if (swap) 2754 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP); 2755 } else { 2756 if (!swap) 2757 val = page_counter_read(&memcg->memory); 2758 else 2759 val = page_counter_read(&memcg->memsw); 2760 } 2761 return val; 2762 } 2763 2764 enum { 2765 RES_USAGE, 2766 RES_LIMIT, 2767 RES_MAX_USAGE, 2768 RES_FAILCNT, 2769 RES_SOFT_LIMIT, 2770 }; 2771 2772 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2773 struct cftype *cft) 2774 { 2775 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2776 struct page_counter *counter; 2777 2778 switch (MEMFILE_TYPE(cft->private)) { 2779 case _MEM: 2780 counter = &memcg->memory; 2781 break; 2782 case _MEMSWAP: 2783 counter = &memcg->memsw; 2784 break; 2785 case _KMEM: 2786 counter = &memcg->kmem; 2787 break; 2788 case _TCP: 2789 counter = &memcg->tcpmem; 2790 break; 2791 default: 2792 BUG(); 2793 } 2794 2795 switch (MEMFILE_ATTR(cft->private)) { 2796 case RES_USAGE: 2797 if (counter == &memcg->memory) 2798 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2799 if (counter == &memcg->memsw) 2800 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2801 return (u64)page_counter_read(counter) * PAGE_SIZE; 2802 case RES_LIMIT: 2803 return (u64)counter->limit * PAGE_SIZE; 2804 case RES_MAX_USAGE: 2805 return (u64)counter->watermark * PAGE_SIZE; 2806 case RES_FAILCNT: 2807 return counter->failcnt; 2808 case RES_SOFT_LIMIT: 2809 return (u64)memcg->soft_limit * PAGE_SIZE; 2810 default: 2811 BUG(); 2812 } 2813 } 2814 2815 #ifndef CONFIG_SLOB 2816 static int memcg_online_kmem(struct mem_cgroup *memcg) 2817 { 2818 int memcg_id; 2819 2820 BUG_ON(memcg->kmemcg_id >= 0); 2821 BUG_ON(memcg->kmem_state); 2822 2823 memcg_id = memcg_alloc_cache_id(); 2824 if (memcg_id < 0) 2825 return memcg_id; 2826 2827 static_branch_inc(&memcg_kmem_enabled_key); 2828 /* 2829 * A memory cgroup is considered kmem-online as soon as it gets 2830 * kmemcg_id. Setting the id after enabling static branching will 2831 * guarantee no one starts accounting before all call sites are 2832 * patched. 2833 */ 2834 memcg->kmemcg_id = memcg_id; 2835 memcg->kmem_state = KMEM_ONLINE; 2836 2837 return 0; 2838 } 2839 2840 static int memcg_propagate_kmem(struct mem_cgroup *parent, 2841 struct mem_cgroup *memcg) 2842 { 2843 int ret = 0; 2844 2845 mutex_lock(&memcg_limit_mutex); 2846 /* 2847 * If the parent cgroup is not kmem-online now, it cannot be 2848 * onlined after this point, because it has at least one child 2849 * already. 2850 */ 2851 if (memcg_kmem_online(parent) || 2852 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem)) 2853 ret = memcg_online_kmem(memcg); 2854 mutex_unlock(&memcg_limit_mutex); 2855 return ret; 2856 } 2857 2858 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2859 { 2860 struct cgroup_subsys_state *css; 2861 struct mem_cgroup *parent, *child; 2862 int kmemcg_id; 2863 2864 if (memcg->kmem_state != KMEM_ONLINE) 2865 return; 2866 /* 2867 * Clear the online state before clearing memcg_caches array 2868 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2869 * guarantees that no cache will be created for this cgroup 2870 * after we are done (see memcg_create_kmem_cache()). 2871 */ 2872 memcg->kmem_state = KMEM_ALLOCATED; 2873 2874 memcg_deactivate_kmem_caches(memcg); 2875 2876 kmemcg_id = memcg->kmemcg_id; 2877 BUG_ON(kmemcg_id < 0); 2878 2879 parent = parent_mem_cgroup(memcg); 2880 if (!parent) 2881 parent = root_mem_cgroup; 2882 2883 /* 2884 * Change kmemcg_id of this cgroup and all its descendants to the 2885 * parent's id, and then move all entries from this cgroup's list_lrus 2886 * to ones of the parent. After we have finished, all list_lrus 2887 * corresponding to this cgroup are guaranteed to remain empty. The 2888 * ordering is imposed by list_lru_node->lock taken by 2889 * memcg_drain_all_list_lrus(). 2890 */ 2891 css_for_each_descendant_pre(css, &memcg->css) { 2892 child = mem_cgroup_from_css(css); 2893 BUG_ON(child->kmemcg_id != kmemcg_id); 2894 child->kmemcg_id = parent->kmemcg_id; 2895 if (!memcg->use_hierarchy) 2896 break; 2897 } 2898 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2899 2900 memcg_free_cache_id(kmemcg_id); 2901 } 2902 2903 static void memcg_free_kmem(struct mem_cgroup *memcg) 2904 { 2905 /* css_alloc() failed, offlining didn't happen */ 2906 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2907 memcg_offline_kmem(memcg); 2908 2909 if (memcg->kmem_state == KMEM_ALLOCATED) { 2910 memcg_destroy_kmem_caches(memcg); 2911 static_branch_dec(&memcg_kmem_enabled_key); 2912 WARN_ON(page_counter_read(&memcg->kmem)); 2913 } 2914 } 2915 #else 2916 static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg) 2917 { 2918 return 0; 2919 } 2920 static int memcg_online_kmem(struct mem_cgroup *memcg) 2921 { 2922 return 0; 2923 } 2924 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2925 { 2926 } 2927 static void memcg_free_kmem(struct mem_cgroup *memcg) 2928 { 2929 } 2930 #endif /* !CONFIG_SLOB */ 2931 2932 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2933 unsigned long limit) 2934 { 2935 int ret = 0; 2936 2937 mutex_lock(&memcg_limit_mutex); 2938 /* Top-level cgroup doesn't propagate from root */ 2939 if (!memcg_kmem_online(memcg)) { 2940 if (cgroup_is_populated(memcg->css.cgroup) || 2941 (memcg->use_hierarchy && memcg_has_children(memcg))) 2942 ret = -EBUSY; 2943 if (ret) 2944 goto out; 2945 ret = memcg_online_kmem(memcg); 2946 if (ret) 2947 goto out; 2948 } 2949 ret = page_counter_limit(&memcg->kmem, limit); 2950 out: 2951 mutex_unlock(&memcg_limit_mutex); 2952 return ret; 2953 } 2954 2955 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2956 { 2957 int ret; 2958 2959 mutex_lock(&memcg_limit_mutex); 2960 2961 ret = page_counter_limit(&memcg->tcpmem, limit); 2962 if (ret) 2963 goto out; 2964 2965 if (!memcg->tcpmem_active) { 2966 /* 2967 * The active flag needs to be written after the static_key 2968 * update. This is what guarantees that the socket activation 2969 * function is the last one to run. See sock_update_memcg() for 2970 * details, and note that we don't mark any socket as belonging 2971 * to this memcg until that flag is up. 2972 * 2973 * We need to do this, because static_keys will span multiple 2974 * sites, but we can't control their order. If we mark a socket 2975 * as accounted, but the accounting functions are not patched in 2976 * yet, we'll lose accounting. 2977 * 2978 * We never race with the readers in sock_update_memcg(), 2979 * because when this value change, the code to process it is not 2980 * patched in yet. 2981 */ 2982 static_branch_inc(&memcg_sockets_enabled_key); 2983 memcg->tcpmem_active = true; 2984 } 2985 out: 2986 mutex_unlock(&memcg_limit_mutex); 2987 return ret; 2988 } 2989 2990 /* 2991 * The user of this function is... 2992 * RES_LIMIT. 2993 */ 2994 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2995 char *buf, size_t nbytes, loff_t off) 2996 { 2997 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2998 unsigned long nr_pages; 2999 int ret; 3000 3001 buf = strstrip(buf); 3002 ret = page_counter_memparse(buf, "-1", &nr_pages); 3003 if (ret) 3004 return ret; 3005 3006 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3007 case RES_LIMIT: 3008 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3009 ret = -EINVAL; 3010 break; 3011 } 3012 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3013 case _MEM: 3014 ret = mem_cgroup_resize_limit(memcg, nr_pages); 3015 break; 3016 case _MEMSWAP: 3017 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3018 break; 3019 case _KMEM: 3020 ret = memcg_update_kmem_limit(memcg, nr_pages); 3021 break; 3022 case _TCP: 3023 ret = memcg_update_tcp_limit(memcg, nr_pages); 3024 break; 3025 } 3026 break; 3027 case RES_SOFT_LIMIT: 3028 memcg->soft_limit = nr_pages; 3029 ret = 0; 3030 break; 3031 } 3032 return ret ?: nbytes; 3033 } 3034 3035 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3036 size_t nbytes, loff_t off) 3037 { 3038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3039 struct page_counter *counter; 3040 3041 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3042 case _MEM: 3043 counter = &memcg->memory; 3044 break; 3045 case _MEMSWAP: 3046 counter = &memcg->memsw; 3047 break; 3048 case _KMEM: 3049 counter = &memcg->kmem; 3050 break; 3051 case _TCP: 3052 counter = &memcg->tcpmem; 3053 break; 3054 default: 3055 BUG(); 3056 } 3057 3058 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3059 case RES_MAX_USAGE: 3060 page_counter_reset_watermark(counter); 3061 break; 3062 case RES_FAILCNT: 3063 counter->failcnt = 0; 3064 break; 3065 default: 3066 BUG(); 3067 } 3068 3069 return nbytes; 3070 } 3071 3072 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3073 struct cftype *cft) 3074 { 3075 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3076 } 3077 3078 #ifdef CONFIG_MMU 3079 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3080 struct cftype *cft, u64 val) 3081 { 3082 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3083 3084 if (val & ~MOVE_MASK) 3085 return -EINVAL; 3086 3087 /* 3088 * No kind of locking is needed in here, because ->can_attach() will 3089 * check this value once in the beginning of the process, and then carry 3090 * on with stale data. This means that changes to this value will only 3091 * affect task migrations starting after the change. 3092 */ 3093 memcg->move_charge_at_immigrate = val; 3094 return 0; 3095 } 3096 #else 3097 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3098 struct cftype *cft, u64 val) 3099 { 3100 return -ENOSYS; 3101 } 3102 #endif 3103 3104 #ifdef CONFIG_NUMA 3105 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3106 { 3107 struct numa_stat { 3108 const char *name; 3109 unsigned int lru_mask; 3110 }; 3111 3112 static const struct numa_stat stats[] = { 3113 { "total", LRU_ALL }, 3114 { "file", LRU_ALL_FILE }, 3115 { "anon", LRU_ALL_ANON }, 3116 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3117 }; 3118 const struct numa_stat *stat; 3119 int nid; 3120 unsigned long nr; 3121 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3122 3123 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3124 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3125 seq_printf(m, "%s=%lu", stat->name, nr); 3126 for_each_node_state(nid, N_MEMORY) { 3127 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3128 stat->lru_mask); 3129 seq_printf(m, " N%d=%lu", nid, nr); 3130 } 3131 seq_putc(m, '\n'); 3132 } 3133 3134 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3135 struct mem_cgroup *iter; 3136 3137 nr = 0; 3138 for_each_mem_cgroup_tree(iter, memcg) 3139 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3140 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3141 for_each_node_state(nid, N_MEMORY) { 3142 nr = 0; 3143 for_each_mem_cgroup_tree(iter, memcg) 3144 nr += mem_cgroup_node_nr_lru_pages( 3145 iter, nid, stat->lru_mask); 3146 seq_printf(m, " N%d=%lu", nid, nr); 3147 } 3148 seq_putc(m, '\n'); 3149 } 3150 3151 return 0; 3152 } 3153 #endif /* CONFIG_NUMA */ 3154 3155 static int memcg_stat_show(struct seq_file *m, void *v) 3156 { 3157 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3158 unsigned long memory, memsw; 3159 struct mem_cgroup *mi; 3160 unsigned int i; 3161 3162 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3163 MEM_CGROUP_STAT_NSTATS); 3164 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3165 MEM_CGROUP_EVENTS_NSTATS); 3166 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3167 3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3169 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3170 continue; 3171 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3172 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3173 } 3174 3175 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3176 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3177 mem_cgroup_read_events(memcg, i)); 3178 3179 for (i = 0; i < NR_LRU_LISTS; i++) 3180 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3181 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3182 3183 /* Hierarchical information */ 3184 memory = memsw = PAGE_COUNTER_MAX; 3185 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3186 memory = min(memory, mi->memory.limit); 3187 memsw = min(memsw, mi->memsw.limit); 3188 } 3189 seq_printf(m, "hierarchical_memory_limit %llu\n", 3190 (u64)memory * PAGE_SIZE); 3191 if (do_memsw_account()) 3192 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3193 (u64)memsw * PAGE_SIZE); 3194 3195 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3196 unsigned long long val = 0; 3197 3198 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3199 continue; 3200 for_each_mem_cgroup_tree(mi, memcg) 3201 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3202 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3203 } 3204 3205 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3206 unsigned long long val = 0; 3207 3208 for_each_mem_cgroup_tree(mi, memcg) 3209 val += mem_cgroup_read_events(mi, i); 3210 seq_printf(m, "total_%s %llu\n", 3211 mem_cgroup_events_names[i], val); 3212 } 3213 3214 for (i = 0; i < NR_LRU_LISTS; i++) { 3215 unsigned long long val = 0; 3216 3217 for_each_mem_cgroup_tree(mi, memcg) 3218 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3219 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3220 } 3221 3222 #ifdef CONFIG_DEBUG_VM 3223 { 3224 int nid, zid; 3225 struct mem_cgroup_per_zone *mz; 3226 struct zone_reclaim_stat *rstat; 3227 unsigned long recent_rotated[2] = {0, 0}; 3228 unsigned long recent_scanned[2] = {0, 0}; 3229 3230 for_each_online_node(nid) 3231 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3232 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 3233 rstat = &mz->lruvec.reclaim_stat; 3234 3235 recent_rotated[0] += rstat->recent_rotated[0]; 3236 recent_rotated[1] += rstat->recent_rotated[1]; 3237 recent_scanned[0] += rstat->recent_scanned[0]; 3238 recent_scanned[1] += rstat->recent_scanned[1]; 3239 } 3240 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3241 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3242 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3243 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3244 } 3245 #endif 3246 3247 return 0; 3248 } 3249 3250 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3251 struct cftype *cft) 3252 { 3253 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3254 3255 return mem_cgroup_swappiness(memcg); 3256 } 3257 3258 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3259 struct cftype *cft, u64 val) 3260 { 3261 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3262 3263 if (val > 100) 3264 return -EINVAL; 3265 3266 if (css->parent) 3267 memcg->swappiness = val; 3268 else 3269 vm_swappiness = val; 3270 3271 return 0; 3272 } 3273 3274 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3275 { 3276 struct mem_cgroup_threshold_ary *t; 3277 unsigned long usage; 3278 int i; 3279 3280 rcu_read_lock(); 3281 if (!swap) 3282 t = rcu_dereference(memcg->thresholds.primary); 3283 else 3284 t = rcu_dereference(memcg->memsw_thresholds.primary); 3285 3286 if (!t) 3287 goto unlock; 3288 3289 usage = mem_cgroup_usage(memcg, swap); 3290 3291 /* 3292 * current_threshold points to threshold just below or equal to usage. 3293 * If it's not true, a threshold was crossed after last 3294 * call of __mem_cgroup_threshold(). 3295 */ 3296 i = t->current_threshold; 3297 3298 /* 3299 * Iterate backward over array of thresholds starting from 3300 * current_threshold and check if a threshold is crossed. 3301 * If none of thresholds below usage is crossed, we read 3302 * only one element of the array here. 3303 */ 3304 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3305 eventfd_signal(t->entries[i].eventfd, 1); 3306 3307 /* i = current_threshold + 1 */ 3308 i++; 3309 3310 /* 3311 * Iterate forward over array of thresholds starting from 3312 * current_threshold+1 and check if a threshold is crossed. 3313 * If none of thresholds above usage is crossed, we read 3314 * only one element of the array here. 3315 */ 3316 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3317 eventfd_signal(t->entries[i].eventfd, 1); 3318 3319 /* Update current_threshold */ 3320 t->current_threshold = i - 1; 3321 unlock: 3322 rcu_read_unlock(); 3323 } 3324 3325 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3326 { 3327 while (memcg) { 3328 __mem_cgroup_threshold(memcg, false); 3329 if (do_memsw_account()) 3330 __mem_cgroup_threshold(memcg, true); 3331 3332 memcg = parent_mem_cgroup(memcg); 3333 } 3334 } 3335 3336 static int compare_thresholds(const void *a, const void *b) 3337 { 3338 const struct mem_cgroup_threshold *_a = a; 3339 const struct mem_cgroup_threshold *_b = b; 3340 3341 if (_a->threshold > _b->threshold) 3342 return 1; 3343 3344 if (_a->threshold < _b->threshold) 3345 return -1; 3346 3347 return 0; 3348 } 3349 3350 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3351 { 3352 struct mem_cgroup_eventfd_list *ev; 3353 3354 spin_lock(&memcg_oom_lock); 3355 3356 list_for_each_entry(ev, &memcg->oom_notify, list) 3357 eventfd_signal(ev->eventfd, 1); 3358 3359 spin_unlock(&memcg_oom_lock); 3360 return 0; 3361 } 3362 3363 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3364 { 3365 struct mem_cgroup *iter; 3366 3367 for_each_mem_cgroup_tree(iter, memcg) 3368 mem_cgroup_oom_notify_cb(iter); 3369 } 3370 3371 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3372 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3373 { 3374 struct mem_cgroup_thresholds *thresholds; 3375 struct mem_cgroup_threshold_ary *new; 3376 unsigned long threshold; 3377 unsigned long usage; 3378 int i, size, ret; 3379 3380 ret = page_counter_memparse(args, "-1", &threshold); 3381 if (ret) 3382 return ret; 3383 3384 mutex_lock(&memcg->thresholds_lock); 3385 3386 if (type == _MEM) { 3387 thresholds = &memcg->thresholds; 3388 usage = mem_cgroup_usage(memcg, false); 3389 } else if (type == _MEMSWAP) { 3390 thresholds = &memcg->memsw_thresholds; 3391 usage = mem_cgroup_usage(memcg, true); 3392 } else 3393 BUG(); 3394 3395 /* Check if a threshold crossed before adding a new one */ 3396 if (thresholds->primary) 3397 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3398 3399 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3400 3401 /* Allocate memory for new array of thresholds */ 3402 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3403 GFP_KERNEL); 3404 if (!new) { 3405 ret = -ENOMEM; 3406 goto unlock; 3407 } 3408 new->size = size; 3409 3410 /* Copy thresholds (if any) to new array */ 3411 if (thresholds->primary) { 3412 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3413 sizeof(struct mem_cgroup_threshold)); 3414 } 3415 3416 /* Add new threshold */ 3417 new->entries[size - 1].eventfd = eventfd; 3418 new->entries[size - 1].threshold = threshold; 3419 3420 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3421 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3422 compare_thresholds, NULL); 3423 3424 /* Find current threshold */ 3425 new->current_threshold = -1; 3426 for (i = 0; i < size; i++) { 3427 if (new->entries[i].threshold <= usage) { 3428 /* 3429 * new->current_threshold will not be used until 3430 * rcu_assign_pointer(), so it's safe to increment 3431 * it here. 3432 */ 3433 ++new->current_threshold; 3434 } else 3435 break; 3436 } 3437 3438 /* Free old spare buffer and save old primary buffer as spare */ 3439 kfree(thresholds->spare); 3440 thresholds->spare = thresholds->primary; 3441 3442 rcu_assign_pointer(thresholds->primary, new); 3443 3444 /* To be sure that nobody uses thresholds */ 3445 synchronize_rcu(); 3446 3447 unlock: 3448 mutex_unlock(&memcg->thresholds_lock); 3449 3450 return ret; 3451 } 3452 3453 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3454 struct eventfd_ctx *eventfd, const char *args) 3455 { 3456 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3457 } 3458 3459 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3460 struct eventfd_ctx *eventfd, const char *args) 3461 { 3462 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3463 } 3464 3465 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3466 struct eventfd_ctx *eventfd, enum res_type type) 3467 { 3468 struct mem_cgroup_thresholds *thresholds; 3469 struct mem_cgroup_threshold_ary *new; 3470 unsigned long usage; 3471 int i, j, size; 3472 3473 mutex_lock(&memcg->thresholds_lock); 3474 3475 if (type == _MEM) { 3476 thresholds = &memcg->thresholds; 3477 usage = mem_cgroup_usage(memcg, false); 3478 } else if (type == _MEMSWAP) { 3479 thresholds = &memcg->memsw_thresholds; 3480 usage = mem_cgroup_usage(memcg, true); 3481 } else 3482 BUG(); 3483 3484 if (!thresholds->primary) 3485 goto unlock; 3486 3487 /* Check if a threshold crossed before removing */ 3488 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3489 3490 /* Calculate new number of threshold */ 3491 size = 0; 3492 for (i = 0; i < thresholds->primary->size; i++) { 3493 if (thresholds->primary->entries[i].eventfd != eventfd) 3494 size++; 3495 } 3496 3497 new = thresholds->spare; 3498 3499 /* Set thresholds array to NULL if we don't have thresholds */ 3500 if (!size) { 3501 kfree(new); 3502 new = NULL; 3503 goto swap_buffers; 3504 } 3505 3506 new->size = size; 3507 3508 /* Copy thresholds and find current threshold */ 3509 new->current_threshold = -1; 3510 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3511 if (thresholds->primary->entries[i].eventfd == eventfd) 3512 continue; 3513 3514 new->entries[j] = thresholds->primary->entries[i]; 3515 if (new->entries[j].threshold <= usage) { 3516 /* 3517 * new->current_threshold will not be used 3518 * until rcu_assign_pointer(), so it's safe to increment 3519 * it here. 3520 */ 3521 ++new->current_threshold; 3522 } 3523 j++; 3524 } 3525 3526 swap_buffers: 3527 /* Swap primary and spare array */ 3528 thresholds->spare = thresholds->primary; 3529 3530 rcu_assign_pointer(thresholds->primary, new); 3531 3532 /* To be sure that nobody uses thresholds */ 3533 synchronize_rcu(); 3534 3535 /* If all events are unregistered, free the spare array */ 3536 if (!new) { 3537 kfree(thresholds->spare); 3538 thresholds->spare = NULL; 3539 } 3540 unlock: 3541 mutex_unlock(&memcg->thresholds_lock); 3542 } 3543 3544 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3545 struct eventfd_ctx *eventfd) 3546 { 3547 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3548 } 3549 3550 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3551 struct eventfd_ctx *eventfd) 3552 { 3553 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3554 } 3555 3556 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3557 struct eventfd_ctx *eventfd, const char *args) 3558 { 3559 struct mem_cgroup_eventfd_list *event; 3560 3561 event = kmalloc(sizeof(*event), GFP_KERNEL); 3562 if (!event) 3563 return -ENOMEM; 3564 3565 spin_lock(&memcg_oom_lock); 3566 3567 event->eventfd = eventfd; 3568 list_add(&event->list, &memcg->oom_notify); 3569 3570 /* already in OOM ? */ 3571 if (memcg->under_oom) 3572 eventfd_signal(eventfd, 1); 3573 spin_unlock(&memcg_oom_lock); 3574 3575 return 0; 3576 } 3577 3578 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3579 struct eventfd_ctx *eventfd) 3580 { 3581 struct mem_cgroup_eventfd_list *ev, *tmp; 3582 3583 spin_lock(&memcg_oom_lock); 3584 3585 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3586 if (ev->eventfd == eventfd) { 3587 list_del(&ev->list); 3588 kfree(ev); 3589 } 3590 } 3591 3592 spin_unlock(&memcg_oom_lock); 3593 } 3594 3595 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3596 { 3597 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3598 3599 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3600 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3601 return 0; 3602 } 3603 3604 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3605 struct cftype *cft, u64 val) 3606 { 3607 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3608 3609 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3610 if (!css->parent || !((val == 0) || (val == 1))) 3611 return -EINVAL; 3612 3613 memcg->oom_kill_disable = val; 3614 if (!val) 3615 memcg_oom_recover(memcg); 3616 3617 return 0; 3618 } 3619 3620 #ifdef CONFIG_CGROUP_WRITEBACK 3621 3622 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3623 { 3624 return &memcg->cgwb_list; 3625 } 3626 3627 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3628 { 3629 return wb_domain_init(&memcg->cgwb_domain, gfp); 3630 } 3631 3632 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3633 { 3634 wb_domain_exit(&memcg->cgwb_domain); 3635 } 3636 3637 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3638 { 3639 wb_domain_size_changed(&memcg->cgwb_domain); 3640 } 3641 3642 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3643 { 3644 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3645 3646 if (!memcg->css.parent) 3647 return NULL; 3648 3649 return &memcg->cgwb_domain; 3650 } 3651 3652 /** 3653 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3654 * @wb: bdi_writeback in question 3655 * @pfilepages: out parameter for number of file pages 3656 * @pheadroom: out parameter for number of allocatable pages according to memcg 3657 * @pdirty: out parameter for number of dirty pages 3658 * @pwriteback: out parameter for number of pages under writeback 3659 * 3660 * Determine the numbers of file, headroom, dirty, and writeback pages in 3661 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3662 * is a bit more involved. 3663 * 3664 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3665 * headroom is calculated as the lowest headroom of itself and the 3666 * ancestors. Note that this doesn't consider the actual amount of 3667 * available memory in the system. The caller should further cap 3668 * *@pheadroom accordingly. 3669 */ 3670 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3671 unsigned long *pheadroom, unsigned long *pdirty, 3672 unsigned long *pwriteback) 3673 { 3674 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3675 struct mem_cgroup *parent; 3676 3677 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3678 3679 /* this should eventually include NR_UNSTABLE_NFS */ 3680 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3681 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3682 (1 << LRU_ACTIVE_FILE)); 3683 *pheadroom = PAGE_COUNTER_MAX; 3684 3685 while ((parent = parent_mem_cgroup(memcg))) { 3686 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3687 unsigned long used = page_counter_read(&memcg->memory); 3688 3689 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3690 memcg = parent; 3691 } 3692 } 3693 3694 #else /* CONFIG_CGROUP_WRITEBACK */ 3695 3696 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3697 { 3698 return 0; 3699 } 3700 3701 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3702 { 3703 } 3704 3705 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3706 { 3707 } 3708 3709 #endif /* CONFIG_CGROUP_WRITEBACK */ 3710 3711 /* 3712 * DO NOT USE IN NEW FILES. 3713 * 3714 * "cgroup.event_control" implementation. 3715 * 3716 * This is way over-engineered. It tries to support fully configurable 3717 * events for each user. Such level of flexibility is completely 3718 * unnecessary especially in the light of the planned unified hierarchy. 3719 * 3720 * Please deprecate this and replace with something simpler if at all 3721 * possible. 3722 */ 3723 3724 /* 3725 * Unregister event and free resources. 3726 * 3727 * Gets called from workqueue. 3728 */ 3729 static void memcg_event_remove(struct work_struct *work) 3730 { 3731 struct mem_cgroup_event *event = 3732 container_of(work, struct mem_cgroup_event, remove); 3733 struct mem_cgroup *memcg = event->memcg; 3734 3735 remove_wait_queue(event->wqh, &event->wait); 3736 3737 event->unregister_event(memcg, event->eventfd); 3738 3739 /* Notify userspace the event is going away. */ 3740 eventfd_signal(event->eventfd, 1); 3741 3742 eventfd_ctx_put(event->eventfd); 3743 kfree(event); 3744 css_put(&memcg->css); 3745 } 3746 3747 /* 3748 * Gets called on POLLHUP on eventfd when user closes it. 3749 * 3750 * Called with wqh->lock held and interrupts disabled. 3751 */ 3752 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3753 int sync, void *key) 3754 { 3755 struct mem_cgroup_event *event = 3756 container_of(wait, struct mem_cgroup_event, wait); 3757 struct mem_cgroup *memcg = event->memcg; 3758 unsigned long flags = (unsigned long)key; 3759 3760 if (flags & POLLHUP) { 3761 /* 3762 * If the event has been detached at cgroup removal, we 3763 * can simply return knowing the other side will cleanup 3764 * for us. 3765 * 3766 * We can't race against event freeing since the other 3767 * side will require wqh->lock via remove_wait_queue(), 3768 * which we hold. 3769 */ 3770 spin_lock(&memcg->event_list_lock); 3771 if (!list_empty(&event->list)) { 3772 list_del_init(&event->list); 3773 /* 3774 * We are in atomic context, but cgroup_event_remove() 3775 * may sleep, so we have to call it in workqueue. 3776 */ 3777 schedule_work(&event->remove); 3778 } 3779 spin_unlock(&memcg->event_list_lock); 3780 } 3781 3782 return 0; 3783 } 3784 3785 static void memcg_event_ptable_queue_proc(struct file *file, 3786 wait_queue_head_t *wqh, poll_table *pt) 3787 { 3788 struct mem_cgroup_event *event = 3789 container_of(pt, struct mem_cgroup_event, pt); 3790 3791 event->wqh = wqh; 3792 add_wait_queue(wqh, &event->wait); 3793 } 3794 3795 /* 3796 * DO NOT USE IN NEW FILES. 3797 * 3798 * Parse input and register new cgroup event handler. 3799 * 3800 * Input must be in format '<event_fd> <control_fd> <args>'. 3801 * Interpretation of args is defined by control file implementation. 3802 */ 3803 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3804 char *buf, size_t nbytes, loff_t off) 3805 { 3806 struct cgroup_subsys_state *css = of_css(of); 3807 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3808 struct mem_cgroup_event *event; 3809 struct cgroup_subsys_state *cfile_css; 3810 unsigned int efd, cfd; 3811 struct fd efile; 3812 struct fd cfile; 3813 const char *name; 3814 char *endp; 3815 int ret; 3816 3817 buf = strstrip(buf); 3818 3819 efd = simple_strtoul(buf, &endp, 10); 3820 if (*endp != ' ') 3821 return -EINVAL; 3822 buf = endp + 1; 3823 3824 cfd = simple_strtoul(buf, &endp, 10); 3825 if ((*endp != ' ') && (*endp != '\0')) 3826 return -EINVAL; 3827 buf = endp + 1; 3828 3829 event = kzalloc(sizeof(*event), GFP_KERNEL); 3830 if (!event) 3831 return -ENOMEM; 3832 3833 event->memcg = memcg; 3834 INIT_LIST_HEAD(&event->list); 3835 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3836 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3837 INIT_WORK(&event->remove, memcg_event_remove); 3838 3839 efile = fdget(efd); 3840 if (!efile.file) { 3841 ret = -EBADF; 3842 goto out_kfree; 3843 } 3844 3845 event->eventfd = eventfd_ctx_fileget(efile.file); 3846 if (IS_ERR(event->eventfd)) { 3847 ret = PTR_ERR(event->eventfd); 3848 goto out_put_efile; 3849 } 3850 3851 cfile = fdget(cfd); 3852 if (!cfile.file) { 3853 ret = -EBADF; 3854 goto out_put_eventfd; 3855 } 3856 3857 /* the process need read permission on control file */ 3858 /* AV: shouldn't we check that it's been opened for read instead? */ 3859 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3860 if (ret < 0) 3861 goto out_put_cfile; 3862 3863 /* 3864 * Determine the event callbacks and set them in @event. This used 3865 * to be done via struct cftype but cgroup core no longer knows 3866 * about these events. The following is crude but the whole thing 3867 * is for compatibility anyway. 3868 * 3869 * DO NOT ADD NEW FILES. 3870 */ 3871 name = cfile.file->f_path.dentry->d_name.name; 3872 3873 if (!strcmp(name, "memory.usage_in_bytes")) { 3874 event->register_event = mem_cgroup_usage_register_event; 3875 event->unregister_event = mem_cgroup_usage_unregister_event; 3876 } else if (!strcmp(name, "memory.oom_control")) { 3877 event->register_event = mem_cgroup_oom_register_event; 3878 event->unregister_event = mem_cgroup_oom_unregister_event; 3879 } else if (!strcmp(name, "memory.pressure_level")) { 3880 event->register_event = vmpressure_register_event; 3881 event->unregister_event = vmpressure_unregister_event; 3882 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3883 event->register_event = memsw_cgroup_usage_register_event; 3884 event->unregister_event = memsw_cgroup_usage_unregister_event; 3885 } else { 3886 ret = -EINVAL; 3887 goto out_put_cfile; 3888 } 3889 3890 /* 3891 * Verify @cfile should belong to @css. Also, remaining events are 3892 * automatically removed on cgroup destruction but the removal is 3893 * asynchronous, so take an extra ref on @css. 3894 */ 3895 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3896 &memory_cgrp_subsys); 3897 ret = -EINVAL; 3898 if (IS_ERR(cfile_css)) 3899 goto out_put_cfile; 3900 if (cfile_css != css) { 3901 css_put(cfile_css); 3902 goto out_put_cfile; 3903 } 3904 3905 ret = event->register_event(memcg, event->eventfd, buf); 3906 if (ret) 3907 goto out_put_css; 3908 3909 efile.file->f_op->poll(efile.file, &event->pt); 3910 3911 spin_lock(&memcg->event_list_lock); 3912 list_add(&event->list, &memcg->event_list); 3913 spin_unlock(&memcg->event_list_lock); 3914 3915 fdput(cfile); 3916 fdput(efile); 3917 3918 return nbytes; 3919 3920 out_put_css: 3921 css_put(css); 3922 out_put_cfile: 3923 fdput(cfile); 3924 out_put_eventfd: 3925 eventfd_ctx_put(event->eventfd); 3926 out_put_efile: 3927 fdput(efile); 3928 out_kfree: 3929 kfree(event); 3930 3931 return ret; 3932 } 3933 3934 static struct cftype mem_cgroup_legacy_files[] = { 3935 { 3936 .name = "usage_in_bytes", 3937 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3938 .read_u64 = mem_cgroup_read_u64, 3939 }, 3940 { 3941 .name = "max_usage_in_bytes", 3942 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3943 .write = mem_cgroup_reset, 3944 .read_u64 = mem_cgroup_read_u64, 3945 }, 3946 { 3947 .name = "limit_in_bytes", 3948 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3949 .write = mem_cgroup_write, 3950 .read_u64 = mem_cgroup_read_u64, 3951 }, 3952 { 3953 .name = "soft_limit_in_bytes", 3954 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3955 .write = mem_cgroup_write, 3956 .read_u64 = mem_cgroup_read_u64, 3957 }, 3958 { 3959 .name = "failcnt", 3960 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3961 .write = mem_cgroup_reset, 3962 .read_u64 = mem_cgroup_read_u64, 3963 }, 3964 { 3965 .name = "stat", 3966 .seq_show = memcg_stat_show, 3967 }, 3968 { 3969 .name = "force_empty", 3970 .write = mem_cgroup_force_empty_write, 3971 }, 3972 { 3973 .name = "use_hierarchy", 3974 .write_u64 = mem_cgroup_hierarchy_write, 3975 .read_u64 = mem_cgroup_hierarchy_read, 3976 }, 3977 { 3978 .name = "cgroup.event_control", /* XXX: for compat */ 3979 .write = memcg_write_event_control, 3980 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3981 }, 3982 { 3983 .name = "swappiness", 3984 .read_u64 = mem_cgroup_swappiness_read, 3985 .write_u64 = mem_cgroup_swappiness_write, 3986 }, 3987 { 3988 .name = "move_charge_at_immigrate", 3989 .read_u64 = mem_cgroup_move_charge_read, 3990 .write_u64 = mem_cgroup_move_charge_write, 3991 }, 3992 { 3993 .name = "oom_control", 3994 .seq_show = mem_cgroup_oom_control_read, 3995 .write_u64 = mem_cgroup_oom_control_write, 3996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3997 }, 3998 { 3999 .name = "pressure_level", 4000 }, 4001 #ifdef CONFIG_NUMA 4002 { 4003 .name = "numa_stat", 4004 .seq_show = memcg_numa_stat_show, 4005 }, 4006 #endif 4007 { 4008 .name = "kmem.limit_in_bytes", 4009 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4010 .write = mem_cgroup_write, 4011 .read_u64 = mem_cgroup_read_u64, 4012 }, 4013 { 4014 .name = "kmem.usage_in_bytes", 4015 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4016 .read_u64 = mem_cgroup_read_u64, 4017 }, 4018 { 4019 .name = "kmem.failcnt", 4020 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4021 .write = mem_cgroup_reset, 4022 .read_u64 = mem_cgroup_read_u64, 4023 }, 4024 { 4025 .name = "kmem.max_usage_in_bytes", 4026 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4027 .write = mem_cgroup_reset, 4028 .read_u64 = mem_cgroup_read_u64, 4029 }, 4030 #ifdef CONFIG_SLABINFO 4031 { 4032 .name = "kmem.slabinfo", 4033 .seq_start = slab_start, 4034 .seq_next = slab_next, 4035 .seq_stop = slab_stop, 4036 .seq_show = memcg_slab_show, 4037 }, 4038 #endif 4039 { 4040 .name = "kmem.tcp.limit_in_bytes", 4041 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4042 .write = mem_cgroup_write, 4043 .read_u64 = mem_cgroup_read_u64, 4044 }, 4045 { 4046 .name = "kmem.tcp.usage_in_bytes", 4047 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4048 .read_u64 = mem_cgroup_read_u64, 4049 }, 4050 { 4051 .name = "kmem.tcp.failcnt", 4052 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4053 .write = mem_cgroup_reset, 4054 .read_u64 = mem_cgroup_read_u64, 4055 }, 4056 { 4057 .name = "kmem.tcp.max_usage_in_bytes", 4058 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4059 .write = mem_cgroup_reset, 4060 .read_u64 = mem_cgroup_read_u64, 4061 }, 4062 { }, /* terminate */ 4063 }; 4064 4065 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4066 { 4067 struct mem_cgroup_per_node *pn; 4068 struct mem_cgroup_per_zone *mz; 4069 int zone, tmp = node; 4070 /* 4071 * This routine is called against possible nodes. 4072 * But it's BUG to call kmalloc() against offline node. 4073 * 4074 * TODO: this routine can waste much memory for nodes which will 4075 * never be onlined. It's better to use memory hotplug callback 4076 * function. 4077 */ 4078 if (!node_state(node, N_NORMAL_MEMORY)) 4079 tmp = -1; 4080 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4081 if (!pn) 4082 return 1; 4083 4084 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4085 mz = &pn->zoneinfo[zone]; 4086 lruvec_init(&mz->lruvec); 4087 mz->usage_in_excess = 0; 4088 mz->on_tree = false; 4089 mz->memcg = memcg; 4090 } 4091 memcg->nodeinfo[node] = pn; 4092 return 0; 4093 } 4094 4095 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4096 { 4097 kfree(memcg->nodeinfo[node]); 4098 } 4099 4100 static void mem_cgroup_free(struct mem_cgroup *memcg) 4101 { 4102 int node; 4103 4104 memcg_wb_domain_exit(memcg); 4105 for_each_node(node) 4106 free_mem_cgroup_per_zone_info(memcg, node); 4107 free_percpu(memcg->stat); 4108 kfree(memcg); 4109 } 4110 4111 static struct mem_cgroup *mem_cgroup_alloc(void) 4112 { 4113 struct mem_cgroup *memcg; 4114 size_t size; 4115 int node; 4116 4117 size = sizeof(struct mem_cgroup); 4118 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4119 4120 memcg = kzalloc(size, GFP_KERNEL); 4121 if (!memcg) 4122 return NULL; 4123 4124 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4125 if (!memcg->stat) 4126 goto fail; 4127 4128 for_each_node(node) 4129 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4130 goto fail; 4131 4132 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4133 goto fail; 4134 4135 INIT_WORK(&memcg->high_work, high_work_func); 4136 memcg->last_scanned_node = MAX_NUMNODES; 4137 INIT_LIST_HEAD(&memcg->oom_notify); 4138 mutex_init(&memcg->thresholds_lock); 4139 spin_lock_init(&memcg->move_lock); 4140 vmpressure_init(&memcg->vmpressure); 4141 INIT_LIST_HEAD(&memcg->event_list); 4142 spin_lock_init(&memcg->event_list_lock); 4143 memcg->socket_pressure = jiffies; 4144 #ifndef CONFIG_SLOB 4145 memcg->kmemcg_id = -1; 4146 #endif 4147 #ifdef CONFIG_CGROUP_WRITEBACK 4148 INIT_LIST_HEAD(&memcg->cgwb_list); 4149 #endif 4150 return memcg; 4151 fail: 4152 mem_cgroup_free(memcg); 4153 return NULL; 4154 } 4155 4156 static struct cgroup_subsys_state * __ref 4157 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4158 { 4159 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4160 struct mem_cgroup *memcg; 4161 long error = -ENOMEM; 4162 4163 memcg = mem_cgroup_alloc(); 4164 if (!memcg) 4165 return ERR_PTR(error); 4166 4167 memcg->high = PAGE_COUNTER_MAX; 4168 memcg->soft_limit = PAGE_COUNTER_MAX; 4169 if (parent) { 4170 memcg->swappiness = mem_cgroup_swappiness(parent); 4171 memcg->oom_kill_disable = parent->oom_kill_disable; 4172 } 4173 if (parent && parent->use_hierarchy) { 4174 memcg->use_hierarchy = true; 4175 page_counter_init(&memcg->memory, &parent->memory); 4176 page_counter_init(&memcg->swap, &parent->swap); 4177 page_counter_init(&memcg->memsw, &parent->memsw); 4178 page_counter_init(&memcg->kmem, &parent->kmem); 4179 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4180 } else { 4181 page_counter_init(&memcg->memory, NULL); 4182 page_counter_init(&memcg->swap, NULL); 4183 page_counter_init(&memcg->memsw, NULL); 4184 page_counter_init(&memcg->kmem, NULL); 4185 page_counter_init(&memcg->tcpmem, NULL); 4186 /* 4187 * Deeper hierachy with use_hierarchy == false doesn't make 4188 * much sense so let cgroup subsystem know about this 4189 * unfortunate state in our controller. 4190 */ 4191 if (parent != root_mem_cgroup) 4192 memory_cgrp_subsys.broken_hierarchy = true; 4193 } 4194 4195 /* The following stuff does not apply to the root */ 4196 if (!parent) { 4197 root_mem_cgroup = memcg; 4198 return &memcg->css; 4199 } 4200 4201 error = memcg_propagate_kmem(parent, memcg); 4202 if (error) 4203 goto fail; 4204 4205 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4206 static_branch_inc(&memcg_sockets_enabled_key); 4207 4208 return &memcg->css; 4209 fail: 4210 mem_cgroup_free(memcg); 4211 return NULL; 4212 } 4213 4214 static int 4215 mem_cgroup_css_online(struct cgroup_subsys_state *css) 4216 { 4217 if (css->id > MEM_CGROUP_ID_MAX) 4218 return -ENOSPC; 4219 4220 return 0; 4221 } 4222 4223 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4224 { 4225 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4226 struct mem_cgroup_event *event, *tmp; 4227 4228 /* 4229 * Unregister events and notify userspace. 4230 * Notify userspace about cgroup removing only after rmdir of cgroup 4231 * directory to avoid race between userspace and kernelspace. 4232 */ 4233 spin_lock(&memcg->event_list_lock); 4234 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4235 list_del_init(&event->list); 4236 schedule_work(&event->remove); 4237 } 4238 spin_unlock(&memcg->event_list_lock); 4239 4240 memcg_offline_kmem(memcg); 4241 wb_memcg_offline(memcg); 4242 } 4243 4244 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4245 { 4246 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4247 4248 invalidate_reclaim_iterators(memcg); 4249 } 4250 4251 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4252 { 4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4254 4255 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4256 static_branch_dec(&memcg_sockets_enabled_key); 4257 4258 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4259 static_branch_dec(&memcg_sockets_enabled_key); 4260 4261 vmpressure_cleanup(&memcg->vmpressure); 4262 cancel_work_sync(&memcg->high_work); 4263 mem_cgroup_remove_from_trees(memcg); 4264 memcg_free_kmem(memcg); 4265 mem_cgroup_free(memcg); 4266 } 4267 4268 /** 4269 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4270 * @css: the target css 4271 * 4272 * Reset the states of the mem_cgroup associated with @css. This is 4273 * invoked when the userland requests disabling on the default hierarchy 4274 * but the memcg is pinned through dependency. The memcg should stop 4275 * applying policies and should revert to the vanilla state as it may be 4276 * made visible again. 4277 * 4278 * The current implementation only resets the essential configurations. 4279 * This needs to be expanded to cover all the visible parts. 4280 */ 4281 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4282 { 4283 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4284 4285 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX); 4286 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX); 4287 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX); 4288 memcg->low = 0; 4289 memcg->high = PAGE_COUNTER_MAX; 4290 memcg->soft_limit = PAGE_COUNTER_MAX; 4291 memcg_wb_domain_size_changed(memcg); 4292 } 4293 4294 #ifdef CONFIG_MMU 4295 /* Handlers for move charge at task migration. */ 4296 static int mem_cgroup_do_precharge(unsigned long count) 4297 { 4298 int ret; 4299 4300 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4301 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4302 if (!ret) { 4303 mc.precharge += count; 4304 return ret; 4305 } 4306 4307 /* Try charges one by one with reclaim */ 4308 while (count--) { 4309 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4310 if (ret) 4311 return ret; 4312 mc.precharge++; 4313 cond_resched(); 4314 } 4315 return 0; 4316 } 4317 4318 /** 4319 * get_mctgt_type - get target type of moving charge 4320 * @vma: the vma the pte to be checked belongs 4321 * @addr: the address corresponding to the pte to be checked 4322 * @ptent: the pte to be checked 4323 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4324 * 4325 * Returns 4326 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4327 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4328 * move charge. if @target is not NULL, the page is stored in target->page 4329 * with extra refcnt got(Callers should handle it). 4330 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4331 * target for charge migration. if @target is not NULL, the entry is stored 4332 * in target->ent. 4333 * 4334 * Called with pte lock held. 4335 */ 4336 union mc_target { 4337 struct page *page; 4338 swp_entry_t ent; 4339 }; 4340 4341 enum mc_target_type { 4342 MC_TARGET_NONE = 0, 4343 MC_TARGET_PAGE, 4344 MC_TARGET_SWAP, 4345 }; 4346 4347 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4348 unsigned long addr, pte_t ptent) 4349 { 4350 struct page *page = vm_normal_page(vma, addr, ptent); 4351 4352 if (!page || !page_mapped(page)) 4353 return NULL; 4354 if (PageAnon(page)) { 4355 if (!(mc.flags & MOVE_ANON)) 4356 return NULL; 4357 } else { 4358 if (!(mc.flags & MOVE_FILE)) 4359 return NULL; 4360 } 4361 if (!get_page_unless_zero(page)) 4362 return NULL; 4363 4364 return page; 4365 } 4366 4367 #ifdef CONFIG_SWAP 4368 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4369 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4370 { 4371 struct page *page = NULL; 4372 swp_entry_t ent = pte_to_swp_entry(ptent); 4373 4374 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4375 return NULL; 4376 /* 4377 * Because lookup_swap_cache() updates some statistics counter, 4378 * we call find_get_page() with swapper_space directly. 4379 */ 4380 page = find_get_page(swap_address_space(ent), ent.val); 4381 if (do_memsw_account()) 4382 entry->val = ent.val; 4383 4384 return page; 4385 } 4386 #else 4387 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4388 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4389 { 4390 return NULL; 4391 } 4392 #endif 4393 4394 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4395 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4396 { 4397 struct page *page = NULL; 4398 struct address_space *mapping; 4399 pgoff_t pgoff; 4400 4401 if (!vma->vm_file) /* anonymous vma */ 4402 return NULL; 4403 if (!(mc.flags & MOVE_FILE)) 4404 return NULL; 4405 4406 mapping = vma->vm_file->f_mapping; 4407 pgoff = linear_page_index(vma, addr); 4408 4409 /* page is moved even if it's not RSS of this task(page-faulted). */ 4410 #ifdef CONFIG_SWAP 4411 /* shmem/tmpfs may report page out on swap: account for that too. */ 4412 if (shmem_mapping(mapping)) { 4413 page = find_get_entry(mapping, pgoff); 4414 if (radix_tree_exceptional_entry(page)) { 4415 swp_entry_t swp = radix_to_swp_entry(page); 4416 if (do_memsw_account()) 4417 *entry = swp; 4418 page = find_get_page(swap_address_space(swp), swp.val); 4419 } 4420 } else 4421 page = find_get_page(mapping, pgoff); 4422 #else 4423 page = find_get_page(mapping, pgoff); 4424 #endif 4425 return page; 4426 } 4427 4428 /** 4429 * mem_cgroup_move_account - move account of the page 4430 * @page: the page 4431 * @nr_pages: number of regular pages (>1 for huge pages) 4432 * @from: mem_cgroup which the page is moved from. 4433 * @to: mem_cgroup which the page is moved to. @from != @to. 4434 * 4435 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4436 * 4437 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4438 * from old cgroup. 4439 */ 4440 static int mem_cgroup_move_account(struct page *page, 4441 bool compound, 4442 struct mem_cgroup *from, 4443 struct mem_cgroup *to) 4444 { 4445 unsigned long flags; 4446 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4447 int ret; 4448 bool anon; 4449 4450 VM_BUG_ON(from == to); 4451 VM_BUG_ON_PAGE(PageLRU(page), page); 4452 VM_BUG_ON(compound && !PageTransHuge(page)); 4453 4454 /* 4455 * Prevent mem_cgroup_migrate() from looking at 4456 * page->mem_cgroup of its source page while we change it. 4457 */ 4458 ret = -EBUSY; 4459 if (!trylock_page(page)) 4460 goto out; 4461 4462 ret = -EINVAL; 4463 if (page->mem_cgroup != from) 4464 goto out_unlock; 4465 4466 anon = PageAnon(page); 4467 4468 spin_lock_irqsave(&from->move_lock, flags); 4469 4470 if (!anon && page_mapped(page)) { 4471 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4472 nr_pages); 4473 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4474 nr_pages); 4475 } 4476 4477 /* 4478 * move_lock grabbed above and caller set from->moving_account, so 4479 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4480 * So mapping should be stable for dirty pages. 4481 */ 4482 if (!anon && PageDirty(page)) { 4483 struct address_space *mapping = page_mapping(page); 4484 4485 if (mapping_cap_account_dirty(mapping)) { 4486 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4487 nr_pages); 4488 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4489 nr_pages); 4490 } 4491 } 4492 4493 if (PageWriteback(page)) { 4494 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4495 nr_pages); 4496 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4497 nr_pages); 4498 } 4499 4500 /* 4501 * It is safe to change page->mem_cgroup here because the page 4502 * is referenced, charged, and isolated - we can't race with 4503 * uncharging, charging, migration, or LRU putback. 4504 */ 4505 4506 /* caller should have done css_get */ 4507 page->mem_cgroup = to; 4508 spin_unlock_irqrestore(&from->move_lock, flags); 4509 4510 ret = 0; 4511 4512 local_irq_disable(); 4513 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4514 memcg_check_events(to, page); 4515 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4516 memcg_check_events(from, page); 4517 local_irq_enable(); 4518 out_unlock: 4519 unlock_page(page); 4520 out: 4521 return ret; 4522 } 4523 4524 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4525 unsigned long addr, pte_t ptent, union mc_target *target) 4526 { 4527 struct page *page = NULL; 4528 enum mc_target_type ret = MC_TARGET_NONE; 4529 swp_entry_t ent = { .val = 0 }; 4530 4531 if (pte_present(ptent)) 4532 page = mc_handle_present_pte(vma, addr, ptent); 4533 else if (is_swap_pte(ptent)) 4534 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 4535 else if (pte_none(ptent)) 4536 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4537 4538 if (!page && !ent.val) 4539 return ret; 4540 if (page) { 4541 /* 4542 * Do only loose check w/o serialization. 4543 * mem_cgroup_move_account() checks the page is valid or 4544 * not under LRU exclusion. 4545 */ 4546 if (page->mem_cgroup == mc.from) { 4547 ret = MC_TARGET_PAGE; 4548 if (target) 4549 target->page = page; 4550 } 4551 if (!ret || !target) 4552 put_page(page); 4553 } 4554 /* There is a swap entry and a page doesn't exist or isn't charged */ 4555 if (ent.val && !ret && 4556 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4557 ret = MC_TARGET_SWAP; 4558 if (target) 4559 target->ent = ent; 4560 } 4561 return ret; 4562 } 4563 4564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4565 /* 4566 * We don't consider swapping or file mapped pages because THP does not 4567 * support them for now. 4568 * Caller should make sure that pmd_trans_huge(pmd) is true. 4569 */ 4570 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4571 unsigned long addr, pmd_t pmd, union mc_target *target) 4572 { 4573 struct page *page = NULL; 4574 enum mc_target_type ret = MC_TARGET_NONE; 4575 4576 page = pmd_page(pmd); 4577 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4578 if (!(mc.flags & MOVE_ANON)) 4579 return ret; 4580 if (page->mem_cgroup == mc.from) { 4581 ret = MC_TARGET_PAGE; 4582 if (target) { 4583 get_page(page); 4584 target->page = page; 4585 } 4586 } 4587 return ret; 4588 } 4589 #else 4590 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4591 unsigned long addr, pmd_t pmd, union mc_target *target) 4592 { 4593 return MC_TARGET_NONE; 4594 } 4595 #endif 4596 4597 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4598 unsigned long addr, unsigned long end, 4599 struct mm_walk *walk) 4600 { 4601 struct vm_area_struct *vma = walk->vma; 4602 pte_t *pte; 4603 spinlock_t *ptl; 4604 4605 ptl = pmd_trans_huge_lock(pmd, vma); 4606 if (ptl) { 4607 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4608 mc.precharge += HPAGE_PMD_NR; 4609 spin_unlock(ptl); 4610 return 0; 4611 } 4612 4613 if (pmd_trans_unstable(pmd)) 4614 return 0; 4615 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4616 for (; addr != end; pte++, addr += PAGE_SIZE) 4617 if (get_mctgt_type(vma, addr, *pte, NULL)) 4618 mc.precharge++; /* increment precharge temporarily */ 4619 pte_unmap_unlock(pte - 1, ptl); 4620 cond_resched(); 4621 4622 return 0; 4623 } 4624 4625 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4626 { 4627 unsigned long precharge; 4628 4629 struct mm_walk mem_cgroup_count_precharge_walk = { 4630 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4631 .mm = mm, 4632 }; 4633 down_read(&mm->mmap_sem); 4634 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4635 up_read(&mm->mmap_sem); 4636 4637 precharge = mc.precharge; 4638 mc.precharge = 0; 4639 4640 return precharge; 4641 } 4642 4643 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4644 { 4645 unsigned long precharge = mem_cgroup_count_precharge(mm); 4646 4647 VM_BUG_ON(mc.moving_task); 4648 mc.moving_task = current; 4649 return mem_cgroup_do_precharge(precharge); 4650 } 4651 4652 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4653 static void __mem_cgroup_clear_mc(void) 4654 { 4655 struct mem_cgroup *from = mc.from; 4656 struct mem_cgroup *to = mc.to; 4657 4658 /* we must uncharge all the leftover precharges from mc.to */ 4659 if (mc.precharge) { 4660 cancel_charge(mc.to, mc.precharge); 4661 mc.precharge = 0; 4662 } 4663 /* 4664 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4665 * we must uncharge here. 4666 */ 4667 if (mc.moved_charge) { 4668 cancel_charge(mc.from, mc.moved_charge); 4669 mc.moved_charge = 0; 4670 } 4671 /* we must fixup refcnts and charges */ 4672 if (mc.moved_swap) { 4673 /* uncharge swap account from the old cgroup */ 4674 if (!mem_cgroup_is_root(mc.from)) 4675 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4676 4677 /* 4678 * we charged both to->memory and to->memsw, so we 4679 * should uncharge to->memory. 4680 */ 4681 if (!mem_cgroup_is_root(mc.to)) 4682 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4683 4684 css_put_many(&mc.from->css, mc.moved_swap); 4685 4686 /* we've already done css_get(mc.to) */ 4687 mc.moved_swap = 0; 4688 } 4689 memcg_oom_recover(from); 4690 memcg_oom_recover(to); 4691 wake_up_all(&mc.waitq); 4692 } 4693 4694 static void mem_cgroup_clear_mc(void) 4695 { 4696 /* 4697 * we must clear moving_task before waking up waiters at the end of 4698 * task migration. 4699 */ 4700 mc.moving_task = NULL; 4701 __mem_cgroup_clear_mc(); 4702 spin_lock(&mc.lock); 4703 mc.from = NULL; 4704 mc.to = NULL; 4705 spin_unlock(&mc.lock); 4706 } 4707 4708 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4709 { 4710 struct cgroup_subsys_state *css; 4711 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4712 struct mem_cgroup *from; 4713 struct task_struct *leader, *p; 4714 struct mm_struct *mm; 4715 unsigned long move_flags; 4716 int ret = 0; 4717 4718 /* charge immigration isn't supported on the default hierarchy */ 4719 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4720 return 0; 4721 4722 /* 4723 * Multi-process migrations only happen on the default hierarchy 4724 * where charge immigration is not used. Perform charge 4725 * immigration if @tset contains a leader and whine if there are 4726 * multiple. 4727 */ 4728 p = NULL; 4729 cgroup_taskset_for_each_leader(leader, css, tset) { 4730 WARN_ON_ONCE(p); 4731 p = leader; 4732 memcg = mem_cgroup_from_css(css); 4733 } 4734 if (!p) 4735 return 0; 4736 4737 /* 4738 * We are now commited to this value whatever it is. Changes in this 4739 * tunable will only affect upcoming migrations, not the current one. 4740 * So we need to save it, and keep it going. 4741 */ 4742 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4743 if (!move_flags) 4744 return 0; 4745 4746 from = mem_cgroup_from_task(p); 4747 4748 VM_BUG_ON(from == memcg); 4749 4750 mm = get_task_mm(p); 4751 if (!mm) 4752 return 0; 4753 /* We move charges only when we move a owner of the mm */ 4754 if (mm->owner == p) { 4755 VM_BUG_ON(mc.from); 4756 VM_BUG_ON(mc.to); 4757 VM_BUG_ON(mc.precharge); 4758 VM_BUG_ON(mc.moved_charge); 4759 VM_BUG_ON(mc.moved_swap); 4760 4761 spin_lock(&mc.lock); 4762 mc.from = from; 4763 mc.to = memcg; 4764 mc.flags = move_flags; 4765 spin_unlock(&mc.lock); 4766 /* We set mc.moving_task later */ 4767 4768 ret = mem_cgroup_precharge_mc(mm); 4769 if (ret) 4770 mem_cgroup_clear_mc(); 4771 } 4772 mmput(mm); 4773 return ret; 4774 } 4775 4776 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4777 { 4778 if (mc.to) 4779 mem_cgroup_clear_mc(); 4780 } 4781 4782 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4783 unsigned long addr, unsigned long end, 4784 struct mm_walk *walk) 4785 { 4786 int ret = 0; 4787 struct vm_area_struct *vma = walk->vma; 4788 pte_t *pte; 4789 spinlock_t *ptl; 4790 enum mc_target_type target_type; 4791 union mc_target target; 4792 struct page *page; 4793 4794 ptl = pmd_trans_huge_lock(pmd, vma); 4795 if (ptl) { 4796 if (mc.precharge < HPAGE_PMD_NR) { 4797 spin_unlock(ptl); 4798 return 0; 4799 } 4800 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4801 if (target_type == MC_TARGET_PAGE) { 4802 page = target.page; 4803 if (!isolate_lru_page(page)) { 4804 if (!mem_cgroup_move_account(page, true, 4805 mc.from, mc.to)) { 4806 mc.precharge -= HPAGE_PMD_NR; 4807 mc.moved_charge += HPAGE_PMD_NR; 4808 } 4809 putback_lru_page(page); 4810 } 4811 put_page(page); 4812 } 4813 spin_unlock(ptl); 4814 return 0; 4815 } 4816 4817 if (pmd_trans_unstable(pmd)) 4818 return 0; 4819 retry: 4820 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4821 for (; addr != end; addr += PAGE_SIZE) { 4822 pte_t ptent = *(pte++); 4823 swp_entry_t ent; 4824 4825 if (!mc.precharge) 4826 break; 4827 4828 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4829 case MC_TARGET_PAGE: 4830 page = target.page; 4831 /* 4832 * We can have a part of the split pmd here. Moving it 4833 * can be done but it would be too convoluted so simply 4834 * ignore such a partial THP and keep it in original 4835 * memcg. There should be somebody mapping the head. 4836 */ 4837 if (PageTransCompound(page)) 4838 goto put; 4839 if (isolate_lru_page(page)) 4840 goto put; 4841 if (!mem_cgroup_move_account(page, false, 4842 mc.from, mc.to)) { 4843 mc.precharge--; 4844 /* we uncharge from mc.from later. */ 4845 mc.moved_charge++; 4846 } 4847 putback_lru_page(page); 4848 put: /* get_mctgt_type() gets the page */ 4849 put_page(page); 4850 break; 4851 case MC_TARGET_SWAP: 4852 ent = target.ent; 4853 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4854 mc.precharge--; 4855 /* we fixup refcnts and charges later. */ 4856 mc.moved_swap++; 4857 } 4858 break; 4859 default: 4860 break; 4861 } 4862 } 4863 pte_unmap_unlock(pte - 1, ptl); 4864 cond_resched(); 4865 4866 if (addr != end) { 4867 /* 4868 * We have consumed all precharges we got in can_attach(). 4869 * We try charge one by one, but don't do any additional 4870 * charges to mc.to if we have failed in charge once in attach() 4871 * phase. 4872 */ 4873 ret = mem_cgroup_do_precharge(1); 4874 if (!ret) 4875 goto retry; 4876 } 4877 4878 return ret; 4879 } 4880 4881 static void mem_cgroup_move_charge(struct mm_struct *mm) 4882 { 4883 struct mm_walk mem_cgroup_move_charge_walk = { 4884 .pmd_entry = mem_cgroup_move_charge_pte_range, 4885 .mm = mm, 4886 }; 4887 4888 lru_add_drain_all(); 4889 /* 4890 * Signal lock_page_memcg() to take the memcg's move_lock 4891 * while we're moving its pages to another memcg. Then wait 4892 * for already started RCU-only updates to finish. 4893 */ 4894 atomic_inc(&mc.from->moving_account); 4895 synchronize_rcu(); 4896 retry: 4897 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 4898 /* 4899 * Someone who are holding the mmap_sem might be waiting in 4900 * waitq. So we cancel all extra charges, wake up all waiters, 4901 * and retry. Because we cancel precharges, we might not be able 4902 * to move enough charges, but moving charge is a best-effort 4903 * feature anyway, so it wouldn't be a big problem. 4904 */ 4905 __mem_cgroup_clear_mc(); 4906 cond_resched(); 4907 goto retry; 4908 } 4909 /* 4910 * When we have consumed all precharges and failed in doing 4911 * additional charge, the page walk just aborts. 4912 */ 4913 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 4914 up_read(&mm->mmap_sem); 4915 atomic_dec(&mc.from->moving_account); 4916 } 4917 4918 static void mem_cgroup_move_task(struct cgroup_taskset *tset) 4919 { 4920 struct cgroup_subsys_state *css; 4921 struct task_struct *p = cgroup_taskset_first(tset, &css); 4922 struct mm_struct *mm = get_task_mm(p); 4923 4924 if (mm) { 4925 if (mc.to) 4926 mem_cgroup_move_charge(mm); 4927 mmput(mm); 4928 } 4929 if (mc.to) 4930 mem_cgroup_clear_mc(); 4931 } 4932 #else /* !CONFIG_MMU */ 4933 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4934 { 4935 return 0; 4936 } 4937 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4938 { 4939 } 4940 static void mem_cgroup_move_task(struct cgroup_taskset *tset) 4941 { 4942 } 4943 #endif 4944 4945 /* 4946 * Cgroup retains root cgroups across [un]mount cycles making it necessary 4947 * to verify whether we're attached to the default hierarchy on each mount 4948 * attempt. 4949 */ 4950 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 4951 { 4952 /* 4953 * use_hierarchy is forced on the default hierarchy. cgroup core 4954 * guarantees that @root doesn't have any children, so turning it 4955 * on for the root memcg is enough. 4956 */ 4957 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4958 root_mem_cgroup->use_hierarchy = true; 4959 else 4960 root_mem_cgroup->use_hierarchy = false; 4961 } 4962 4963 static u64 memory_current_read(struct cgroup_subsys_state *css, 4964 struct cftype *cft) 4965 { 4966 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4967 4968 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4969 } 4970 4971 static int memory_low_show(struct seq_file *m, void *v) 4972 { 4973 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 4974 unsigned long low = READ_ONCE(memcg->low); 4975 4976 if (low == PAGE_COUNTER_MAX) 4977 seq_puts(m, "max\n"); 4978 else 4979 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 4980 4981 return 0; 4982 } 4983 4984 static ssize_t memory_low_write(struct kernfs_open_file *of, 4985 char *buf, size_t nbytes, loff_t off) 4986 { 4987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4988 unsigned long low; 4989 int err; 4990 4991 buf = strstrip(buf); 4992 err = page_counter_memparse(buf, "max", &low); 4993 if (err) 4994 return err; 4995 4996 memcg->low = low; 4997 4998 return nbytes; 4999 } 5000 5001 static int memory_high_show(struct seq_file *m, void *v) 5002 { 5003 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5004 unsigned long high = READ_ONCE(memcg->high); 5005 5006 if (high == PAGE_COUNTER_MAX) 5007 seq_puts(m, "max\n"); 5008 else 5009 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5010 5011 return 0; 5012 } 5013 5014 static ssize_t memory_high_write(struct kernfs_open_file *of, 5015 char *buf, size_t nbytes, loff_t off) 5016 { 5017 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5018 unsigned long high; 5019 int err; 5020 5021 buf = strstrip(buf); 5022 err = page_counter_memparse(buf, "max", &high); 5023 if (err) 5024 return err; 5025 5026 memcg->high = high; 5027 5028 memcg_wb_domain_size_changed(memcg); 5029 return nbytes; 5030 } 5031 5032 static int memory_max_show(struct seq_file *m, void *v) 5033 { 5034 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5035 unsigned long max = READ_ONCE(memcg->memory.limit); 5036 5037 if (max == PAGE_COUNTER_MAX) 5038 seq_puts(m, "max\n"); 5039 else 5040 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5041 5042 return 0; 5043 } 5044 5045 static ssize_t memory_max_write(struct kernfs_open_file *of, 5046 char *buf, size_t nbytes, loff_t off) 5047 { 5048 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5049 unsigned long max; 5050 int err; 5051 5052 buf = strstrip(buf); 5053 err = page_counter_memparse(buf, "max", &max); 5054 if (err) 5055 return err; 5056 5057 err = mem_cgroup_resize_limit(memcg, max); 5058 if (err) 5059 return err; 5060 5061 memcg_wb_domain_size_changed(memcg); 5062 return nbytes; 5063 } 5064 5065 static int memory_events_show(struct seq_file *m, void *v) 5066 { 5067 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5068 5069 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5070 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5071 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5072 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5073 5074 return 0; 5075 } 5076 5077 static int memory_stat_show(struct seq_file *m, void *v) 5078 { 5079 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5080 int i; 5081 5082 /* 5083 * Provide statistics on the state of the memory subsystem as 5084 * well as cumulative event counters that show past behavior. 5085 * 5086 * This list is ordered following a combination of these gradients: 5087 * 1) generic big picture -> specifics and details 5088 * 2) reflecting userspace activity -> reflecting kernel heuristics 5089 * 5090 * Current memory state: 5091 */ 5092 5093 seq_printf(m, "anon %llu\n", 5094 (u64)tree_stat(memcg, MEM_CGROUP_STAT_RSS) * PAGE_SIZE); 5095 seq_printf(m, "file %llu\n", 5096 (u64)tree_stat(memcg, MEM_CGROUP_STAT_CACHE) * PAGE_SIZE); 5097 seq_printf(m, "sock %llu\n", 5098 (u64)tree_stat(memcg, MEMCG_SOCK) * PAGE_SIZE); 5099 5100 seq_printf(m, "file_mapped %llu\n", 5101 (u64)tree_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED) * 5102 PAGE_SIZE); 5103 seq_printf(m, "file_dirty %llu\n", 5104 (u64)tree_stat(memcg, MEM_CGROUP_STAT_DIRTY) * 5105 PAGE_SIZE); 5106 seq_printf(m, "file_writeback %llu\n", 5107 (u64)tree_stat(memcg, MEM_CGROUP_STAT_WRITEBACK) * 5108 PAGE_SIZE); 5109 5110 for (i = 0; i < NR_LRU_LISTS; i++) { 5111 struct mem_cgroup *mi; 5112 unsigned long val = 0; 5113 5114 for_each_mem_cgroup_tree(mi, memcg) 5115 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5116 seq_printf(m, "%s %llu\n", 5117 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5118 } 5119 5120 /* Accumulated memory events */ 5121 5122 seq_printf(m, "pgfault %lu\n", 5123 tree_events(memcg, MEM_CGROUP_EVENTS_PGFAULT)); 5124 seq_printf(m, "pgmajfault %lu\n", 5125 tree_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT)); 5126 5127 return 0; 5128 } 5129 5130 static struct cftype memory_files[] = { 5131 { 5132 .name = "current", 5133 .flags = CFTYPE_NOT_ON_ROOT, 5134 .read_u64 = memory_current_read, 5135 }, 5136 { 5137 .name = "low", 5138 .flags = CFTYPE_NOT_ON_ROOT, 5139 .seq_show = memory_low_show, 5140 .write = memory_low_write, 5141 }, 5142 { 5143 .name = "high", 5144 .flags = CFTYPE_NOT_ON_ROOT, 5145 .seq_show = memory_high_show, 5146 .write = memory_high_write, 5147 }, 5148 { 5149 .name = "max", 5150 .flags = CFTYPE_NOT_ON_ROOT, 5151 .seq_show = memory_max_show, 5152 .write = memory_max_write, 5153 }, 5154 { 5155 .name = "events", 5156 .flags = CFTYPE_NOT_ON_ROOT, 5157 .file_offset = offsetof(struct mem_cgroup, events_file), 5158 .seq_show = memory_events_show, 5159 }, 5160 { 5161 .name = "stat", 5162 .flags = CFTYPE_NOT_ON_ROOT, 5163 .seq_show = memory_stat_show, 5164 }, 5165 { } /* terminate */ 5166 }; 5167 5168 struct cgroup_subsys memory_cgrp_subsys = { 5169 .css_alloc = mem_cgroup_css_alloc, 5170 .css_online = mem_cgroup_css_online, 5171 .css_offline = mem_cgroup_css_offline, 5172 .css_released = mem_cgroup_css_released, 5173 .css_free = mem_cgroup_css_free, 5174 .css_reset = mem_cgroup_css_reset, 5175 .can_attach = mem_cgroup_can_attach, 5176 .cancel_attach = mem_cgroup_cancel_attach, 5177 .attach = mem_cgroup_move_task, 5178 .bind = mem_cgroup_bind, 5179 .dfl_cftypes = memory_files, 5180 .legacy_cftypes = mem_cgroup_legacy_files, 5181 .early_init = 0, 5182 }; 5183 5184 /** 5185 * mem_cgroup_low - check if memory consumption is below the normal range 5186 * @root: the highest ancestor to consider 5187 * @memcg: the memory cgroup to check 5188 * 5189 * Returns %true if memory consumption of @memcg, and that of all 5190 * configurable ancestors up to @root, is below the normal range. 5191 */ 5192 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5193 { 5194 if (mem_cgroup_disabled()) 5195 return false; 5196 5197 /* 5198 * The toplevel group doesn't have a configurable range, so 5199 * it's never low when looked at directly, and it is not 5200 * considered an ancestor when assessing the hierarchy. 5201 */ 5202 5203 if (memcg == root_mem_cgroup) 5204 return false; 5205 5206 if (page_counter_read(&memcg->memory) >= memcg->low) 5207 return false; 5208 5209 while (memcg != root) { 5210 memcg = parent_mem_cgroup(memcg); 5211 5212 if (memcg == root_mem_cgroup) 5213 break; 5214 5215 if (page_counter_read(&memcg->memory) >= memcg->low) 5216 return false; 5217 } 5218 return true; 5219 } 5220 5221 /** 5222 * mem_cgroup_try_charge - try charging a page 5223 * @page: page to charge 5224 * @mm: mm context of the victim 5225 * @gfp_mask: reclaim mode 5226 * @memcgp: charged memcg return 5227 * 5228 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5229 * pages according to @gfp_mask if necessary. 5230 * 5231 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5232 * Otherwise, an error code is returned. 5233 * 5234 * After page->mapping has been set up, the caller must finalize the 5235 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5236 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5237 */ 5238 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5239 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5240 bool compound) 5241 { 5242 struct mem_cgroup *memcg = NULL; 5243 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5244 int ret = 0; 5245 5246 if (mem_cgroup_disabled()) 5247 goto out; 5248 5249 if (PageSwapCache(page)) { 5250 /* 5251 * Every swap fault against a single page tries to charge the 5252 * page, bail as early as possible. shmem_unuse() encounters 5253 * already charged pages, too. The USED bit is protected by 5254 * the page lock, which serializes swap cache removal, which 5255 * in turn serializes uncharging. 5256 */ 5257 VM_BUG_ON_PAGE(!PageLocked(page), page); 5258 if (page->mem_cgroup) 5259 goto out; 5260 5261 if (do_swap_account) { 5262 swp_entry_t ent = { .val = page_private(page), }; 5263 unsigned short id = lookup_swap_cgroup_id(ent); 5264 5265 rcu_read_lock(); 5266 memcg = mem_cgroup_from_id(id); 5267 if (memcg && !css_tryget_online(&memcg->css)) 5268 memcg = NULL; 5269 rcu_read_unlock(); 5270 } 5271 } 5272 5273 if (!memcg) 5274 memcg = get_mem_cgroup_from_mm(mm); 5275 5276 ret = try_charge(memcg, gfp_mask, nr_pages); 5277 5278 css_put(&memcg->css); 5279 out: 5280 *memcgp = memcg; 5281 return ret; 5282 } 5283 5284 /** 5285 * mem_cgroup_commit_charge - commit a page charge 5286 * @page: page to charge 5287 * @memcg: memcg to charge the page to 5288 * @lrucare: page might be on LRU already 5289 * 5290 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5291 * after page->mapping has been set up. This must happen atomically 5292 * as part of the page instantiation, i.e. under the page table lock 5293 * for anonymous pages, under the page lock for page and swap cache. 5294 * 5295 * In addition, the page must not be on the LRU during the commit, to 5296 * prevent racing with task migration. If it might be, use @lrucare. 5297 * 5298 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5299 */ 5300 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5301 bool lrucare, bool compound) 5302 { 5303 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5304 5305 VM_BUG_ON_PAGE(!page->mapping, page); 5306 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5307 5308 if (mem_cgroup_disabled()) 5309 return; 5310 /* 5311 * Swap faults will attempt to charge the same page multiple 5312 * times. But reuse_swap_page() might have removed the page 5313 * from swapcache already, so we can't check PageSwapCache(). 5314 */ 5315 if (!memcg) 5316 return; 5317 5318 commit_charge(page, memcg, lrucare); 5319 5320 local_irq_disable(); 5321 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5322 memcg_check_events(memcg, page); 5323 local_irq_enable(); 5324 5325 if (do_memsw_account() && PageSwapCache(page)) { 5326 swp_entry_t entry = { .val = page_private(page) }; 5327 /* 5328 * The swap entry might not get freed for a long time, 5329 * let's not wait for it. The page already received a 5330 * memory+swap charge, drop the swap entry duplicate. 5331 */ 5332 mem_cgroup_uncharge_swap(entry); 5333 } 5334 } 5335 5336 /** 5337 * mem_cgroup_cancel_charge - cancel a page charge 5338 * @page: page to charge 5339 * @memcg: memcg to charge the page to 5340 * 5341 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5342 */ 5343 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5344 bool compound) 5345 { 5346 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5347 5348 if (mem_cgroup_disabled()) 5349 return; 5350 /* 5351 * Swap faults will attempt to charge the same page multiple 5352 * times. But reuse_swap_page() might have removed the page 5353 * from swapcache already, so we can't check PageSwapCache(). 5354 */ 5355 if (!memcg) 5356 return; 5357 5358 cancel_charge(memcg, nr_pages); 5359 } 5360 5361 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5362 unsigned long nr_anon, unsigned long nr_file, 5363 unsigned long nr_huge, struct page *dummy_page) 5364 { 5365 unsigned long nr_pages = nr_anon + nr_file; 5366 unsigned long flags; 5367 5368 if (!mem_cgroup_is_root(memcg)) { 5369 page_counter_uncharge(&memcg->memory, nr_pages); 5370 if (do_memsw_account()) 5371 page_counter_uncharge(&memcg->memsw, nr_pages); 5372 memcg_oom_recover(memcg); 5373 } 5374 5375 local_irq_save(flags); 5376 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5377 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5378 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5379 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5380 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5381 memcg_check_events(memcg, dummy_page); 5382 local_irq_restore(flags); 5383 5384 if (!mem_cgroup_is_root(memcg)) 5385 css_put_many(&memcg->css, nr_pages); 5386 } 5387 5388 static void uncharge_list(struct list_head *page_list) 5389 { 5390 struct mem_cgroup *memcg = NULL; 5391 unsigned long nr_anon = 0; 5392 unsigned long nr_file = 0; 5393 unsigned long nr_huge = 0; 5394 unsigned long pgpgout = 0; 5395 struct list_head *next; 5396 struct page *page; 5397 5398 next = page_list->next; 5399 do { 5400 unsigned int nr_pages = 1; 5401 5402 page = list_entry(next, struct page, lru); 5403 next = page->lru.next; 5404 5405 VM_BUG_ON_PAGE(PageLRU(page), page); 5406 VM_BUG_ON_PAGE(page_count(page), page); 5407 5408 if (!page->mem_cgroup) 5409 continue; 5410 5411 /* 5412 * Nobody should be changing or seriously looking at 5413 * page->mem_cgroup at this point, we have fully 5414 * exclusive access to the page. 5415 */ 5416 5417 if (memcg != page->mem_cgroup) { 5418 if (memcg) { 5419 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5420 nr_huge, page); 5421 pgpgout = nr_anon = nr_file = nr_huge = 0; 5422 } 5423 memcg = page->mem_cgroup; 5424 } 5425 5426 if (PageTransHuge(page)) { 5427 nr_pages <<= compound_order(page); 5428 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5429 nr_huge += nr_pages; 5430 } 5431 5432 if (PageAnon(page)) 5433 nr_anon += nr_pages; 5434 else 5435 nr_file += nr_pages; 5436 5437 page->mem_cgroup = NULL; 5438 5439 pgpgout++; 5440 } while (next != page_list); 5441 5442 if (memcg) 5443 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5444 nr_huge, page); 5445 } 5446 5447 /** 5448 * mem_cgroup_uncharge - uncharge a page 5449 * @page: page to uncharge 5450 * 5451 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5452 * mem_cgroup_commit_charge(). 5453 */ 5454 void mem_cgroup_uncharge(struct page *page) 5455 { 5456 if (mem_cgroup_disabled()) 5457 return; 5458 5459 /* Don't touch page->lru of any random page, pre-check: */ 5460 if (!page->mem_cgroup) 5461 return; 5462 5463 INIT_LIST_HEAD(&page->lru); 5464 uncharge_list(&page->lru); 5465 } 5466 5467 /** 5468 * mem_cgroup_uncharge_list - uncharge a list of page 5469 * @page_list: list of pages to uncharge 5470 * 5471 * Uncharge a list of pages previously charged with 5472 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5473 */ 5474 void mem_cgroup_uncharge_list(struct list_head *page_list) 5475 { 5476 if (mem_cgroup_disabled()) 5477 return; 5478 5479 if (!list_empty(page_list)) 5480 uncharge_list(page_list); 5481 } 5482 5483 /** 5484 * mem_cgroup_migrate - charge a page's replacement 5485 * @oldpage: currently circulating page 5486 * @newpage: replacement page 5487 * 5488 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5489 * be uncharged upon free. 5490 * 5491 * Both pages must be locked, @newpage->mapping must be set up. 5492 */ 5493 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5494 { 5495 struct mem_cgroup *memcg; 5496 unsigned int nr_pages; 5497 bool compound; 5498 5499 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5500 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5501 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5502 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5503 newpage); 5504 5505 if (mem_cgroup_disabled()) 5506 return; 5507 5508 /* Page cache replacement: new page already charged? */ 5509 if (newpage->mem_cgroup) 5510 return; 5511 5512 /* Swapcache readahead pages can get replaced before being charged */ 5513 memcg = oldpage->mem_cgroup; 5514 if (!memcg) 5515 return; 5516 5517 /* Force-charge the new page. The old one will be freed soon */ 5518 compound = PageTransHuge(newpage); 5519 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5520 5521 page_counter_charge(&memcg->memory, nr_pages); 5522 if (do_memsw_account()) 5523 page_counter_charge(&memcg->memsw, nr_pages); 5524 css_get_many(&memcg->css, nr_pages); 5525 5526 commit_charge(newpage, memcg, false); 5527 5528 local_irq_disable(); 5529 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5530 memcg_check_events(memcg, newpage); 5531 local_irq_enable(); 5532 } 5533 5534 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5535 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5536 5537 void sock_update_memcg(struct sock *sk) 5538 { 5539 struct mem_cgroup *memcg; 5540 5541 /* Socket cloning can throw us here with sk_cgrp already 5542 * filled. It won't however, necessarily happen from 5543 * process context. So the test for root memcg given 5544 * the current task's memcg won't help us in this case. 5545 * 5546 * Respecting the original socket's memcg is a better 5547 * decision in this case. 5548 */ 5549 if (sk->sk_memcg) { 5550 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5551 css_get(&sk->sk_memcg->css); 5552 return; 5553 } 5554 5555 rcu_read_lock(); 5556 memcg = mem_cgroup_from_task(current); 5557 if (memcg == root_mem_cgroup) 5558 goto out; 5559 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5560 goto out; 5561 if (css_tryget_online(&memcg->css)) 5562 sk->sk_memcg = memcg; 5563 out: 5564 rcu_read_unlock(); 5565 } 5566 EXPORT_SYMBOL(sock_update_memcg); 5567 5568 void sock_release_memcg(struct sock *sk) 5569 { 5570 WARN_ON(!sk->sk_memcg); 5571 css_put(&sk->sk_memcg->css); 5572 } 5573 5574 /** 5575 * mem_cgroup_charge_skmem - charge socket memory 5576 * @memcg: memcg to charge 5577 * @nr_pages: number of pages to charge 5578 * 5579 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5580 * @memcg's configured limit, %false if the charge had to be forced. 5581 */ 5582 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5583 { 5584 gfp_t gfp_mask = GFP_KERNEL; 5585 5586 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5587 struct page_counter *fail; 5588 5589 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5590 memcg->tcpmem_pressure = 0; 5591 return true; 5592 } 5593 page_counter_charge(&memcg->tcpmem, nr_pages); 5594 memcg->tcpmem_pressure = 1; 5595 return false; 5596 } 5597 5598 /* Don't block in the packet receive path */ 5599 if (in_softirq()) 5600 gfp_mask = GFP_NOWAIT; 5601 5602 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5603 5604 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5605 return true; 5606 5607 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5608 return false; 5609 } 5610 5611 /** 5612 * mem_cgroup_uncharge_skmem - uncharge socket memory 5613 * @memcg - memcg to uncharge 5614 * @nr_pages - number of pages to uncharge 5615 */ 5616 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5617 { 5618 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5619 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5620 return; 5621 } 5622 5623 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5624 5625 page_counter_uncharge(&memcg->memory, nr_pages); 5626 css_put_many(&memcg->css, nr_pages); 5627 } 5628 5629 static int __init cgroup_memory(char *s) 5630 { 5631 char *token; 5632 5633 while ((token = strsep(&s, ",")) != NULL) { 5634 if (!*token) 5635 continue; 5636 if (!strcmp(token, "nosocket")) 5637 cgroup_memory_nosocket = true; 5638 if (!strcmp(token, "nokmem")) 5639 cgroup_memory_nokmem = true; 5640 } 5641 return 0; 5642 } 5643 __setup("cgroup.memory=", cgroup_memory); 5644 5645 /* 5646 * subsys_initcall() for memory controller. 5647 * 5648 * Some parts like hotcpu_notifier() have to be initialized from this context 5649 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5650 * everything that doesn't depend on a specific mem_cgroup structure should 5651 * be initialized from here. 5652 */ 5653 static int __init mem_cgroup_init(void) 5654 { 5655 int cpu, node; 5656 5657 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5658 5659 for_each_possible_cpu(cpu) 5660 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5661 drain_local_stock); 5662 5663 for_each_node(node) { 5664 struct mem_cgroup_tree_per_node *rtpn; 5665 int zone; 5666 5667 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5668 node_online(node) ? node : NUMA_NO_NODE); 5669 5670 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5671 struct mem_cgroup_tree_per_zone *rtpz; 5672 5673 rtpz = &rtpn->rb_tree_per_zone[zone]; 5674 rtpz->rb_root = RB_ROOT; 5675 spin_lock_init(&rtpz->lock); 5676 } 5677 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5678 } 5679 5680 return 0; 5681 } 5682 subsys_initcall(mem_cgroup_init); 5683 5684 #ifdef CONFIG_MEMCG_SWAP 5685 /** 5686 * mem_cgroup_swapout - transfer a memsw charge to swap 5687 * @page: page whose memsw charge to transfer 5688 * @entry: swap entry to move the charge to 5689 * 5690 * Transfer the memsw charge of @page to @entry. 5691 */ 5692 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5693 { 5694 struct mem_cgroup *memcg; 5695 unsigned short oldid; 5696 5697 VM_BUG_ON_PAGE(PageLRU(page), page); 5698 VM_BUG_ON_PAGE(page_count(page), page); 5699 5700 if (!do_memsw_account()) 5701 return; 5702 5703 memcg = page->mem_cgroup; 5704 5705 /* Readahead page, never charged */ 5706 if (!memcg) 5707 return; 5708 5709 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5710 VM_BUG_ON_PAGE(oldid, page); 5711 mem_cgroup_swap_statistics(memcg, true); 5712 5713 page->mem_cgroup = NULL; 5714 5715 if (!mem_cgroup_is_root(memcg)) 5716 page_counter_uncharge(&memcg->memory, 1); 5717 5718 /* 5719 * Interrupts should be disabled here because the caller holds the 5720 * mapping->tree_lock lock which is taken with interrupts-off. It is 5721 * important here to have the interrupts disabled because it is the 5722 * only synchronisation we have for udpating the per-CPU variables. 5723 */ 5724 VM_BUG_ON(!irqs_disabled()); 5725 mem_cgroup_charge_statistics(memcg, page, false, -1); 5726 memcg_check_events(memcg, page); 5727 } 5728 5729 /* 5730 * mem_cgroup_try_charge_swap - try charging a swap entry 5731 * @page: page being added to swap 5732 * @entry: swap entry to charge 5733 * 5734 * Try to charge @entry to the memcg that @page belongs to. 5735 * 5736 * Returns 0 on success, -ENOMEM on failure. 5737 */ 5738 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5739 { 5740 struct mem_cgroup *memcg; 5741 struct page_counter *counter; 5742 unsigned short oldid; 5743 5744 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5745 return 0; 5746 5747 memcg = page->mem_cgroup; 5748 5749 /* Readahead page, never charged */ 5750 if (!memcg) 5751 return 0; 5752 5753 if (!mem_cgroup_is_root(memcg) && 5754 !page_counter_try_charge(&memcg->swap, 1, &counter)) 5755 return -ENOMEM; 5756 5757 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5758 VM_BUG_ON_PAGE(oldid, page); 5759 mem_cgroup_swap_statistics(memcg, true); 5760 5761 css_get(&memcg->css); 5762 return 0; 5763 } 5764 5765 /** 5766 * mem_cgroup_uncharge_swap - uncharge a swap entry 5767 * @entry: swap entry to uncharge 5768 * 5769 * Drop the swap charge associated with @entry. 5770 */ 5771 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5772 { 5773 struct mem_cgroup *memcg; 5774 unsigned short id; 5775 5776 if (!do_swap_account) 5777 return; 5778 5779 id = swap_cgroup_record(entry, 0); 5780 rcu_read_lock(); 5781 memcg = mem_cgroup_from_id(id); 5782 if (memcg) { 5783 if (!mem_cgroup_is_root(memcg)) { 5784 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5785 page_counter_uncharge(&memcg->swap, 1); 5786 else 5787 page_counter_uncharge(&memcg->memsw, 1); 5788 } 5789 mem_cgroup_swap_statistics(memcg, false); 5790 css_put(&memcg->css); 5791 } 5792 rcu_read_unlock(); 5793 } 5794 5795 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5796 { 5797 long nr_swap_pages = get_nr_swap_pages(); 5798 5799 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5800 return nr_swap_pages; 5801 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5802 nr_swap_pages = min_t(long, nr_swap_pages, 5803 READ_ONCE(memcg->swap.limit) - 5804 page_counter_read(&memcg->swap)); 5805 return nr_swap_pages; 5806 } 5807 5808 bool mem_cgroup_swap_full(struct page *page) 5809 { 5810 struct mem_cgroup *memcg; 5811 5812 VM_BUG_ON_PAGE(!PageLocked(page), page); 5813 5814 if (vm_swap_full()) 5815 return true; 5816 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5817 return false; 5818 5819 memcg = page->mem_cgroup; 5820 if (!memcg) 5821 return false; 5822 5823 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5824 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5825 return true; 5826 5827 return false; 5828 } 5829 5830 /* for remember boot option*/ 5831 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5832 static int really_do_swap_account __initdata = 1; 5833 #else 5834 static int really_do_swap_account __initdata; 5835 #endif 5836 5837 static int __init enable_swap_account(char *s) 5838 { 5839 if (!strcmp(s, "1")) 5840 really_do_swap_account = 1; 5841 else if (!strcmp(s, "0")) 5842 really_do_swap_account = 0; 5843 return 1; 5844 } 5845 __setup("swapaccount=", enable_swap_account); 5846 5847 static u64 swap_current_read(struct cgroup_subsys_state *css, 5848 struct cftype *cft) 5849 { 5850 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5851 5852 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5853 } 5854 5855 static int swap_max_show(struct seq_file *m, void *v) 5856 { 5857 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5858 unsigned long max = READ_ONCE(memcg->swap.limit); 5859 5860 if (max == PAGE_COUNTER_MAX) 5861 seq_puts(m, "max\n"); 5862 else 5863 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5864 5865 return 0; 5866 } 5867 5868 static ssize_t swap_max_write(struct kernfs_open_file *of, 5869 char *buf, size_t nbytes, loff_t off) 5870 { 5871 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5872 unsigned long max; 5873 int err; 5874 5875 buf = strstrip(buf); 5876 err = page_counter_memparse(buf, "max", &max); 5877 if (err) 5878 return err; 5879 5880 mutex_lock(&memcg_limit_mutex); 5881 err = page_counter_limit(&memcg->swap, max); 5882 mutex_unlock(&memcg_limit_mutex); 5883 if (err) 5884 return err; 5885 5886 return nbytes; 5887 } 5888 5889 static struct cftype swap_files[] = { 5890 { 5891 .name = "swap.current", 5892 .flags = CFTYPE_NOT_ON_ROOT, 5893 .read_u64 = swap_current_read, 5894 }, 5895 { 5896 .name = "swap.max", 5897 .flags = CFTYPE_NOT_ON_ROOT, 5898 .seq_show = swap_max_show, 5899 .write = swap_max_write, 5900 }, 5901 { } /* terminate */ 5902 }; 5903 5904 static struct cftype memsw_cgroup_files[] = { 5905 { 5906 .name = "memsw.usage_in_bytes", 5907 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5908 .read_u64 = mem_cgroup_read_u64, 5909 }, 5910 { 5911 .name = "memsw.max_usage_in_bytes", 5912 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5913 .write = mem_cgroup_reset, 5914 .read_u64 = mem_cgroup_read_u64, 5915 }, 5916 { 5917 .name = "memsw.limit_in_bytes", 5918 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5919 .write = mem_cgroup_write, 5920 .read_u64 = mem_cgroup_read_u64, 5921 }, 5922 { 5923 .name = "memsw.failcnt", 5924 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5925 .write = mem_cgroup_reset, 5926 .read_u64 = mem_cgroup_read_u64, 5927 }, 5928 { }, /* terminate */ 5929 }; 5930 5931 static int __init mem_cgroup_swap_init(void) 5932 { 5933 if (!mem_cgroup_disabled() && really_do_swap_account) { 5934 do_swap_account = 1; 5935 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 5936 swap_files)); 5937 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 5938 memsw_cgroup_files)); 5939 } 5940 return 0; 5941 } 5942 subsys_initcall(mem_cgroup_swap_init); 5943 5944 #endif /* CONFIG_MEMCG_SWAP */ 5945