xref: /linux/mm/memcontrol.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_zone {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree_per_node {
141 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143 
144 struct mem_cgroup_tree {
145 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147 
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149 
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 	struct list_head list;
153 	struct eventfd_ctx *eventfd;
154 };
155 
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160 	/*
161 	 * memcg which the event belongs to.
162 	 */
163 	struct mem_cgroup *memcg;
164 	/*
165 	 * eventfd to signal userspace about the event.
166 	 */
167 	struct eventfd_ctx *eventfd;
168 	/*
169 	 * Each of these stored in a list by the cgroup.
170 	 */
171 	struct list_head list;
172 	/*
173 	 * register_event() callback will be used to add new userspace
174 	 * waiter for changes related to this event.  Use eventfd_signal()
175 	 * on eventfd to send notification to userspace.
176 	 */
177 	int (*register_event)(struct mem_cgroup *memcg,
178 			      struct eventfd_ctx *eventfd, const char *args);
179 	/*
180 	 * unregister_event() callback will be called when userspace closes
181 	 * the eventfd or on cgroup removing.  This callback must be set,
182 	 * if you want provide notification functionality.
183 	 */
184 	void (*unregister_event)(struct mem_cgroup *memcg,
185 				 struct eventfd_ctx *eventfd);
186 	/*
187 	 * All fields below needed to unregister event when
188 	 * userspace closes eventfd.
189 	 */
190 	poll_table pt;
191 	wait_queue_head_t *wqh;
192 	wait_queue_t wait;
193 	struct work_struct remove;
194 };
195 
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198 
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON	0x1U
204 #define MOVE_FILE	0x2U
205 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206 
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 	spinlock_t	  lock; /* for from, to */
210 	struct mem_cgroup *from;
211 	struct mem_cgroup *to;
212 	unsigned long flags;
213 	unsigned long precharge;
214 	unsigned long moved_charge;
215 	unsigned long moved_swap;
216 	struct task_struct *moving_task;	/* a task moving charges */
217 	wait_queue_head_t waitq;		/* a waitq for other context */
218 } mc = {
219 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222 
223 /*
224  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225  * limit reclaim to prevent infinite loops, if they ever occur.
226  */
227 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229 
230 enum charge_type {
231 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 	MEM_CGROUP_CHARGE_TYPE_ANON,
233 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
234 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 	NR_CHARGE_TYPE,
236 };
237 
238 /* for encoding cft->private value on file */
239 enum res_type {
240 	_MEM,
241 	_MEMSWAP,
242 	_OOM_TYPE,
243 	_KMEM,
244 	_TCP,
245 };
246 
247 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
248 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val)	((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL		(0)
252 
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256 	if (!memcg)
257 		memcg = root_mem_cgroup;
258 	return &memcg->vmpressure;
259 }
260 
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265 
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268 	return (memcg == root_mem_cgroup);
269 }
270 
271 #ifndef CONFIG_SLOB
272 /*
273  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274  * The main reason for not using cgroup id for this:
275  *  this works better in sparse environments, where we have a lot of memcgs,
276  *  but only a few kmem-limited. Or also, if we have, for instance, 200
277  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
278  *  200 entry array for that.
279  *
280  * The current size of the caches array is stored in memcg_nr_cache_ids. It
281  * will double each time we have to increase it.
282  */
283 static DEFINE_IDA(memcg_cache_ida);
284 int memcg_nr_cache_ids;
285 
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem);
288 
289 void memcg_get_cache_ids(void)
290 {
291 	down_read(&memcg_cache_ids_sem);
292 }
293 
294 void memcg_put_cache_ids(void)
295 {
296 	up_read(&memcg_cache_ids_sem);
297 }
298 
299 /*
300  * MIN_SIZE is different than 1, because we would like to avoid going through
301  * the alloc/free process all the time. In a small machine, 4 kmem-limited
302  * cgroups is a reasonable guess. In the future, it could be a parameter or
303  * tunable, but that is strictly not necessary.
304  *
305  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306  * this constant directly from cgroup, but it is understandable that this is
307  * better kept as an internal representation in cgroup.c. In any case, the
308  * cgrp_id space is not getting any smaller, and we don't have to necessarily
309  * increase ours as well if it increases.
310  */
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313 
314 /*
315  * A lot of the calls to the cache allocation functions are expected to be
316  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317  * conditional to this static branch, we'll have to allow modules that does
318  * kmem_cache_alloc and the such to see this symbol as well
319  */
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322 
323 #endif /* !CONFIG_SLOB */
324 
325 static struct mem_cgroup_per_zone *
326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327 {
328 	int nid = zone_to_nid(zone);
329 	int zid = zone_idx(zone);
330 
331 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 }
333 
334 /**
335  * mem_cgroup_css_from_page - css of the memcg associated with a page
336  * @page: page of interest
337  *
338  * If memcg is bound to the default hierarchy, css of the memcg associated
339  * with @page is returned.  The returned css remains associated with @page
340  * until it is released.
341  *
342  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343  * is returned.
344  */
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346 {
347 	struct mem_cgroup *memcg;
348 
349 	memcg = page->mem_cgroup;
350 
351 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352 		memcg = root_mem_cgroup;
353 
354 	return &memcg->css;
355 }
356 
357 /**
358  * page_cgroup_ino - return inode number of the memcg a page is charged to
359  * @page: the page
360  *
361  * Look up the closest online ancestor of the memory cgroup @page is charged to
362  * and return its inode number or 0 if @page is not charged to any cgroup. It
363  * is safe to call this function without holding a reference to @page.
364  *
365  * Note, this function is inherently racy, because there is nothing to prevent
366  * the cgroup inode from getting torn down and potentially reallocated a moment
367  * after page_cgroup_ino() returns, so it only should be used by callers that
368  * do not care (such as procfs interfaces).
369  */
370 ino_t page_cgroup_ino(struct page *page)
371 {
372 	struct mem_cgroup *memcg;
373 	unsigned long ino = 0;
374 
375 	rcu_read_lock();
376 	memcg = READ_ONCE(page->mem_cgroup);
377 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 		memcg = parent_mem_cgroup(memcg);
379 	if (memcg)
380 		ino = cgroup_ino(memcg->css.cgroup);
381 	rcu_read_unlock();
382 	return ino;
383 }
384 
385 static struct mem_cgroup_per_zone *
386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387 {
388 	int nid = page_to_nid(page);
389 	int zid = page_zonenum(page);
390 
391 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 }
393 
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_node_zone(int nid, int zid)
396 {
397 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398 }
399 
400 static struct mem_cgroup_tree_per_zone *
401 soft_limit_tree_from_page(struct page *page)
402 {
403 	int nid = page_to_nid(page);
404 	int zid = page_zonenum(page);
405 
406 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407 }
408 
409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 					 struct mem_cgroup_tree_per_zone *mctz,
411 					 unsigned long new_usage_in_excess)
412 {
413 	struct rb_node **p = &mctz->rb_root.rb_node;
414 	struct rb_node *parent = NULL;
415 	struct mem_cgroup_per_zone *mz_node;
416 
417 	if (mz->on_tree)
418 		return;
419 
420 	mz->usage_in_excess = new_usage_in_excess;
421 	if (!mz->usage_in_excess)
422 		return;
423 	while (*p) {
424 		parent = *p;
425 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 					tree_node);
427 		if (mz->usage_in_excess < mz_node->usage_in_excess)
428 			p = &(*p)->rb_left;
429 		/*
430 		 * We can't avoid mem cgroups that are over their soft
431 		 * limit by the same amount
432 		 */
433 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 			p = &(*p)->rb_right;
435 	}
436 	rb_link_node(&mz->tree_node, parent, p);
437 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 	mz->on_tree = true;
439 }
440 
441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 					 struct mem_cgroup_tree_per_zone *mctz)
443 {
444 	if (!mz->on_tree)
445 		return;
446 	rb_erase(&mz->tree_node, &mctz->rb_root);
447 	mz->on_tree = false;
448 }
449 
450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 				       struct mem_cgroup_tree_per_zone *mctz)
452 {
453 	unsigned long flags;
454 
455 	spin_lock_irqsave(&mctz->lock, flags);
456 	__mem_cgroup_remove_exceeded(mz, mctz);
457 	spin_unlock_irqrestore(&mctz->lock, flags);
458 }
459 
460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461 {
462 	unsigned long nr_pages = page_counter_read(&memcg->memory);
463 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464 	unsigned long excess = 0;
465 
466 	if (nr_pages > soft_limit)
467 		excess = nr_pages - soft_limit;
468 
469 	return excess;
470 }
471 
472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473 {
474 	unsigned long excess;
475 	struct mem_cgroup_per_zone *mz;
476 	struct mem_cgroup_tree_per_zone *mctz;
477 
478 	mctz = soft_limit_tree_from_page(page);
479 	/*
480 	 * Necessary to update all ancestors when hierarchy is used.
481 	 * because their event counter is not touched.
482 	 */
483 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484 		mz = mem_cgroup_page_zoneinfo(memcg, page);
485 		excess = soft_limit_excess(memcg);
486 		/*
487 		 * We have to update the tree if mz is on RB-tree or
488 		 * mem is over its softlimit.
489 		 */
490 		if (excess || mz->on_tree) {
491 			unsigned long flags;
492 
493 			spin_lock_irqsave(&mctz->lock, flags);
494 			/* if on-tree, remove it */
495 			if (mz->on_tree)
496 				__mem_cgroup_remove_exceeded(mz, mctz);
497 			/*
498 			 * Insert again. mz->usage_in_excess will be updated.
499 			 * If excess is 0, no tree ops.
500 			 */
501 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
502 			spin_unlock_irqrestore(&mctz->lock, flags);
503 		}
504 	}
505 }
506 
507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508 {
509 	struct mem_cgroup_tree_per_zone *mctz;
510 	struct mem_cgroup_per_zone *mz;
511 	int nid, zid;
512 
513 	for_each_node(nid) {
514 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 			mctz = soft_limit_tree_node_zone(nid, zid);
517 			mem_cgroup_remove_exceeded(mz, mctz);
518 		}
519 	}
520 }
521 
522 static struct mem_cgroup_per_zone *
523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525 	struct rb_node *rightmost = NULL;
526 	struct mem_cgroup_per_zone *mz;
527 
528 retry:
529 	mz = NULL;
530 	rightmost = rb_last(&mctz->rb_root);
531 	if (!rightmost)
532 		goto done;		/* Nothing to reclaim from */
533 
534 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 	/*
536 	 * Remove the node now but someone else can add it back,
537 	 * we will to add it back at the end of reclaim to its correct
538 	 * position in the tree.
539 	 */
540 	__mem_cgroup_remove_exceeded(mz, mctz);
541 	if (!soft_limit_excess(mz->memcg) ||
542 	    !css_tryget_online(&mz->memcg->css))
543 		goto retry;
544 done:
545 	return mz;
546 }
547 
548 static struct mem_cgroup_per_zone *
549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550 {
551 	struct mem_cgroup_per_zone *mz;
552 
553 	spin_lock_irq(&mctz->lock);
554 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
555 	spin_unlock_irq(&mctz->lock);
556 	return mz;
557 }
558 
559 /*
560  * Return page count for single (non recursive) @memcg.
561  *
562  * Implementation Note: reading percpu statistics for memcg.
563  *
564  * Both of vmstat[] and percpu_counter has threshold and do periodic
565  * synchronization to implement "quick" read. There are trade-off between
566  * reading cost and precision of value. Then, we may have a chance to implement
567  * a periodic synchronization of counter in memcg's counter.
568  *
569  * But this _read() function is used for user interface now. The user accounts
570  * memory usage by memory cgroup and he _always_ requires exact value because
571  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572  * have to visit all online cpus and make sum. So, for now, unnecessary
573  * synchronization is not implemented. (just implemented for cpu hotplug)
574  *
575  * If there are kernel internal actions which can make use of some not-exact
576  * value, and reading all cpu value can be performance bottleneck in some
577  * common workload, threshold and synchronization as vmstat[] should be
578  * implemented.
579  */
580 static unsigned long
581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582 {
583 	long val = 0;
584 	int cpu;
585 
586 	/* Per-cpu values can be negative, use a signed accumulator */
587 	for_each_possible_cpu(cpu)
588 		val += per_cpu(memcg->stat->count[idx], cpu);
589 	/*
590 	 * Summing races with updates, so val may be negative.  Avoid exposing
591 	 * transient negative values.
592 	 */
593 	if (val < 0)
594 		val = 0;
595 	return val;
596 }
597 
598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599 					    enum mem_cgroup_events_index idx)
600 {
601 	unsigned long val = 0;
602 	int cpu;
603 
604 	for_each_possible_cpu(cpu)
605 		val += per_cpu(memcg->stat->events[idx], cpu);
606 	return val;
607 }
608 
609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610 					 struct page *page,
611 					 bool compound, int nr_pages)
612 {
613 	/*
614 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 	 * counted as CACHE even if it's on ANON LRU.
616 	 */
617 	if (PageAnon(page))
618 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619 				nr_pages);
620 	else
621 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622 				nr_pages);
623 
624 	if (compound) {
625 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 				nr_pages);
628 	}
629 
630 	/* pagein of a big page is an event. So, ignore page size */
631 	if (nr_pages > 0)
632 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633 	else {
634 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 		nr_pages = -nr_pages; /* for event */
636 	}
637 
638 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 }
640 
641 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 						  int nid,
643 						  unsigned int lru_mask)
644 {
645 	unsigned long nr = 0;
646 	int zid;
647 
648 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649 
650 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 		struct mem_cgroup_per_zone *mz;
652 		enum lru_list lru;
653 
654 		for_each_lru(lru) {
655 			if (!(BIT(lru) & lru_mask))
656 				continue;
657 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 			nr += mz->lru_size[lru];
659 		}
660 	}
661 	return nr;
662 }
663 
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 			unsigned int lru_mask)
666 {
667 	unsigned long nr = 0;
668 	int nid;
669 
670 	for_each_node_state(nid, N_MEMORY)
671 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 	return nr;
673 }
674 
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 				       enum mem_cgroup_events_target target)
677 {
678 	unsigned long val, next;
679 
680 	val = __this_cpu_read(memcg->stat->nr_page_events);
681 	next = __this_cpu_read(memcg->stat->targets[target]);
682 	/* from time_after() in jiffies.h */
683 	if ((long)next - (long)val < 0) {
684 		switch (target) {
685 		case MEM_CGROUP_TARGET_THRESH:
686 			next = val + THRESHOLDS_EVENTS_TARGET;
687 			break;
688 		case MEM_CGROUP_TARGET_SOFTLIMIT:
689 			next = val + SOFTLIMIT_EVENTS_TARGET;
690 			break;
691 		case MEM_CGROUP_TARGET_NUMAINFO:
692 			next = val + NUMAINFO_EVENTS_TARGET;
693 			break;
694 		default:
695 			break;
696 		}
697 		__this_cpu_write(memcg->stat->targets[target], next);
698 		return true;
699 	}
700 	return false;
701 }
702 
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 	/* threshold event is triggered in finer grain than soft limit */
710 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 						MEM_CGROUP_TARGET_THRESH))) {
712 		bool do_softlimit;
713 		bool do_numainfo __maybe_unused;
714 
715 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 						MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 						MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 		mem_cgroup_threshold(memcg);
722 		if (unlikely(do_softlimit))
723 			mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 		if (unlikely(do_numainfo))
726 			atomic_inc(&memcg->numainfo_events);
727 #endif
728 	}
729 }
730 
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 	/*
734 	 * mm_update_next_owner() may clear mm->owner to NULL
735 	 * if it races with swapoff, page migration, etc.
736 	 * So this can be called with p == NULL.
737 	 */
738 	if (unlikely(!p))
739 		return NULL;
740 
741 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744 
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 	struct mem_cgroup *memcg = NULL;
748 
749 	rcu_read_lock();
750 	do {
751 		/*
752 		 * Page cache insertions can happen withou an
753 		 * actual mm context, e.g. during disk probing
754 		 * on boot, loopback IO, acct() writes etc.
755 		 */
756 		if (unlikely(!mm))
757 			memcg = root_mem_cgroup;
758 		else {
759 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 			if (unlikely(!memcg))
761 				memcg = root_mem_cgroup;
762 		}
763 	} while (!css_tryget_online(&memcg->css));
764 	rcu_read_unlock();
765 	return memcg;
766 }
767 
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 				   struct mem_cgroup *prev,
787 				   struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 	struct cgroup_subsys_state *css = NULL;
791 	struct mem_cgroup *memcg = NULL;
792 	struct mem_cgroup *pos = NULL;
793 
794 	if (mem_cgroup_disabled())
795 		return NULL;
796 
797 	if (!root)
798 		root = root_mem_cgroup;
799 
800 	if (prev && !reclaim)
801 		pos = prev;
802 
803 	if (!root->use_hierarchy && root != root_mem_cgroup) {
804 		if (prev)
805 			goto out;
806 		return root;
807 	}
808 
809 	rcu_read_lock();
810 
811 	if (reclaim) {
812 		struct mem_cgroup_per_zone *mz;
813 
814 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 		iter = &mz->iter[reclaim->priority];
816 
817 		if (prev && reclaim->generation != iter->generation)
818 			goto out_unlock;
819 
820 		while (1) {
821 			pos = READ_ONCE(iter->position);
822 			if (!pos || css_tryget(&pos->css))
823 				break;
824 			/*
825 			 * css reference reached zero, so iter->position will
826 			 * be cleared by ->css_released. However, we should not
827 			 * rely on this happening soon, because ->css_released
828 			 * is called from a work queue, and by busy-waiting we
829 			 * might block it. So we clear iter->position right
830 			 * away.
831 			 */
832 			(void)cmpxchg(&iter->position, pos, NULL);
833 		}
834 	}
835 
836 	if (pos)
837 		css = &pos->css;
838 
839 	for (;;) {
840 		css = css_next_descendant_pre(css, &root->css);
841 		if (!css) {
842 			/*
843 			 * Reclaimers share the hierarchy walk, and a
844 			 * new one might jump in right at the end of
845 			 * the hierarchy - make sure they see at least
846 			 * one group and restart from the beginning.
847 			 */
848 			if (!prev)
849 				continue;
850 			break;
851 		}
852 
853 		/*
854 		 * Verify the css and acquire a reference.  The root
855 		 * is provided by the caller, so we know it's alive
856 		 * and kicking, and don't take an extra reference.
857 		 */
858 		memcg = mem_cgroup_from_css(css);
859 
860 		if (css == &root->css)
861 			break;
862 
863 		if (css_tryget(css))
864 			break;
865 
866 		memcg = NULL;
867 	}
868 
869 	if (reclaim) {
870 		/*
871 		 * The position could have already been updated by a competing
872 		 * thread, so check that the value hasn't changed since we read
873 		 * it to avoid reclaiming from the same cgroup twice.
874 		 */
875 		(void)cmpxchg(&iter->position, pos, memcg);
876 
877 		if (pos)
878 			css_put(&pos->css);
879 
880 		if (!memcg)
881 			iter->generation++;
882 		else if (!prev)
883 			reclaim->generation = iter->generation;
884 	}
885 
886 out_unlock:
887 	rcu_read_unlock();
888 out:
889 	if (prev && prev != root)
890 		css_put(&prev->css);
891 
892 	return memcg;
893 }
894 
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 			   struct mem_cgroup *prev)
902 {
903 	if (!root)
904 		root = root_mem_cgroup;
905 	if (prev && prev != root)
906 		css_put(&prev->css);
907 }
908 
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 	struct mem_cgroup *memcg = dead_memcg;
912 	struct mem_cgroup_reclaim_iter *iter;
913 	struct mem_cgroup_per_zone *mz;
914 	int nid, zid;
915 	int i;
916 
917 	while ((memcg = parent_mem_cgroup(memcg))) {
918 		for_each_node(nid) {
919 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 				for (i = 0; i <= DEF_PRIORITY; i++) {
922 					iter = &mz->iter[i];
923 					cmpxchg(&iter->position,
924 						dead_memcg, NULL);
925 				}
926 			}
927 		}
928 	}
929 }
930 
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)		\
937 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938 	     iter != NULL;				\
939 	     iter = mem_cgroup_iter(root, iter, NULL))
940 
941 #define for_each_mem_cgroup(iter)			\
942 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943 	     iter != NULL;				\
944 	     iter = mem_cgroup_iter(NULL, iter, NULL))
945 
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 				      struct mem_cgroup *memcg)
957 {
958 	struct mem_cgroup_per_zone *mz;
959 	struct lruvec *lruvec;
960 
961 	if (mem_cgroup_disabled()) {
962 		lruvec = &zone->lruvec;
963 		goto out;
964 	}
965 
966 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 	lruvec = &mz->lruvec;
968 out:
969 	/*
970 	 * Since a node can be onlined after the mem_cgroup was created,
971 	 * we have to be prepared to initialize lruvec->zone here;
972 	 * and if offlined then reonlined, we need to reinitialize it.
973 	 */
974 	if (unlikely(lruvec->zone != zone))
975 		lruvec->zone = zone;
976 	return lruvec;
977 }
978 
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 	struct mem_cgroup_per_zone *mz;
991 	struct mem_cgroup *memcg;
992 	struct lruvec *lruvec;
993 
994 	if (mem_cgroup_disabled()) {
995 		lruvec = &zone->lruvec;
996 		goto out;
997 	}
998 
999 	memcg = page->mem_cgroup;
1000 	/*
1001 	 * Swapcache readahead pages are added to the LRU - and
1002 	 * possibly migrated - before they are charged.
1003 	 */
1004 	if (!memcg)
1005 		memcg = root_mem_cgroup;
1006 
1007 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 	lruvec = &mz->lruvec;
1009 out:
1010 	/*
1011 	 * Since a node can be onlined after the mem_cgroup was created,
1012 	 * we have to be prepared to initialize lruvec->zone here;
1013 	 * and if offlined then reonlined, we need to reinitialize it.
1014 	 */
1015 	if (unlikely(lruvec->zone != zone))
1016 		lruvec->zone = zone;
1017 	return lruvec;
1018 }
1019 
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called when a page is added to or removed from an
1027  * lru list.
1028  */
1029 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 				int nr_pages)
1031 {
1032 	struct mem_cgroup_per_zone *mz;
1033 	unsigned long *lru_size;
1034 
1035 	if (mem_cgroup_disabled())
1036 		return;
1037 
1038 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 	lru_size = mz->lru_size + lru;
1040 	*lru_size += nr_pages;
1041 	VM_BUG_ON((long)(*lru_size) < 0);
1042 }
1043 
1044 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045 {
1046 	struct mem_cgroup *task_memcg;
1047 	struct task_struct *p;
1048 	bool ret;
1049 
1050 	p = find_lock_task_mm(task);
1051 	if (p) {
1052 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 		task_unlock(p);
1054 	} else {
1055 		/*
1056 		 * All threads may have already detached their mm's, but the oom
1057 		 * killer still needs to detect if they have already been oom
1058 		 * killed to prevent needlessly killing additional tasks.
1059 		 */
1060 		rcu_read_lock();
1061 		task_memcg = mem_cgroup_from_task(task);
1062 		css_get(&task_memcg->css);
1063 		rcu_read_unlock();
1064 	}
1065 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 	css_put(&task_memcg->css);
1067 	return ret;
1068 }
1069 
1070 /**
1071  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072  * @memcg: the memory cgroup
1073  *
1074  * Returns the maximum amount of memory @mem can be charged with, in
1075  * pages.
1076  */
1077 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078 {
1079 	unsigned long margin = 0;
1080 	unsigned long count;
1081 	unsigned long limit;
1082 
1083 	count = page_counter_read(&memcg->memory);
1084 	limit = READ_ONCE(memcg->memory.limit);
1085 	if (count < limit)
1086 		margin = limit - count;
1087 
1088 	if (do_memsw_account()) {
1089 		count = page_counter_read(&memcg->memsw);
1090 		limit = READ_ONCE(memcg->memsw.limit);
1091 		if (count <= limit)
1092 			margin = min(margin, limit - count);
1093 	}
1094 
1095 	return margin;
1096 }
1097 
1098 /*
1099  * A routine for checking "mem" is under move_account() or not.
1100  *
1101  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102  * moving cgroups. This is for waiting at high-memory pressure
1103  * caused by "move".
1104  */
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106 {
1107 	struct mem_cgroup *from;
1108 	struct mem_cgroup *to;
1109 	bool ret = false;
1110 	/*
1111 	 * Unlike task_move routines, we access mc.to, mc.from not under
1112 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 	 */
1114 	spin_lock(&mc.lock);
1115 	from = mc.from;
1116 	to = mc.to;
1117 	if (!from)
1118 		goto unlock;
1119 
1120 	ret = mem_cgroup_is_descendant(from, memcg) ||
1121 		mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123 	spin_unlock(&mc.lock);
1124 	return ret;
1125 }
1126 
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 {
1129 	if (mc.moving_task && current != mc.moving_task) {
1130 		if (mem_cgroup_under_move(memcg)) {
1131 			DEFINE_WAIT(wait);
1132 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 			/* moving charge context might have finished. */
1134 			if (mc.moving_task)
1135 				schedule();
1136 			finish_wait(&mc.waitq, &wait);
1137 			return true;
1138 		}
1139 	}
1140 	return false;
1141 }
1142 
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 /**
1145  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146  * @memcg: The memory cgroup that went over limit
1147  * @p: Task that is going to be killed
1148  *
1149  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150  * enabled
1151  */
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153 {
1154 	/* oom_info_lock ensures that parallel ooms do not interleave */
1155 	static DEFINE_MUTEX(oom_info_lock);
1156 	struct mem_cgroup *iter;
1157 	unsigned int i;
1158 
1159 	mutex_lock(&oom_info_lock);
1160 	rcu_read_lock();
1161 
1162 	if (p) {
1163 		pr_info("Task in ");
1164 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1165 		pr_cont(" killed as a result of limit of ");
1166 	} else {
1167 		pr_info("Memory limit reached of cgroup ");
1168 	}
1169 
1170 	pr_cont_cgroup_path(memcg->css.cgroup);
1171 	pr_cont("\n");
1172 
1173 	rcu_read_unlock();
1174 
1175 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1176 		K((u64)page_counter_read(&memcg->memory)),
1177 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1178 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1179 		K((u64)page_counter_read(&memcg->memsw)),
1180 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1181 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1182 		K((u64)page_counter_read(&memcg->kmem)),
1183 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1184 
1185 	for_each_mem_cgroup_tree(iter, memcg) {
1186 		pr_info("Memory cgroup stats for ");
1187 		pr_cont_cgroup_path(iter->css.cgroup);
1188 		pr_cont(":");
1189 
1190 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1191 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1192 				continue;
1193 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1194 				K(mem_cgroup_read_stat(iter, i)));
1195 		}
1196 
1197 		for (i = 0; i < NR_LRU_LISTS; i++)
1198 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1199 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1200 
1201 		pr_cont("\n");
1202 	}
1203 	mutex_unlock(&oom_info_lock);
1204 }
1205 
1206 /*
1207  * This function returns the number of memcg under hierarchy tree. Returns
1208  * 1(self count) if no children.
1209  */
1210 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1211 {
1212 	int num = 0;
1213 	struct mem_cgroup *iter;
1214 
1215 	for_each_mem_cgroup_tree(iter, memcg)
1216 		num++;
1217 	return num;
1218 }
1219 
1220 /*
1221  * Return the memory (and swap, if configured) limit for a memcg.
1222  */
1223 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1224 {
1225 	unsigned long limit;
1226 
1227 	limit = memcg->memory.limit;
1228 	if (mem_cgroup_swappiness(memcg)) {
1229 		unsigned long memsw_limit;
1230 		unsigned long swap_limit;
1231 
1232 		memsw_limit = memcg->memsw.limit;
1233 		swap_limit = memcg->swap.limit;
1234 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 		limit = min(limit + swap_limit, memsw_limit);
1236 	}
1237 	return limit;
1238 }
1239 
1240 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241 				     int order)
1242 {
1243 	struct oom_control oc = {
1244 		.zonelist = NULL,
1245 		.nodemask = NULL,
1246 		.gfp_mask = gfp_mask,
1247 		.order = order,
1248 	};
1249 	struct mem_cgroup *iter;
1250 	unsigned long chosen_points = 0;
1251 	unsigned long totalpages;
1252 	unsigned int points = 0;
1253 	struct task_struct *chosen = NULL;
1254 
1255 	mutex_lock(&oom_lock);
1256 
1257 	/*
1258 	 * If current has a pending SIGKILL or is exiting, then automatically
1259 	 * select it.  The goal is to allow it to allocate so that it may
1260 	 * quickly exit and free its memory.
1261 	 */
1262 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1263 		mark_oom_victim(current);
1264 		goto unlock;
1265 	}
1266 
1267 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1268 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1269 	for_each_mem_cgroup_tree(iter, memcg) {
1270 		struct css_task_iter it;
1271 		struct task_struct *task;
1272 
1273 		css_task_iter_start(&iter->css, &it);
1274 		while ((task = css_task_iter_next(&it))) {
1275 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1276 			case OOM_SCAN_SELECT:
1277 				if (chosen)
1278 					put_task_struct(chosen);
1279 				chosen = task;
1280 				chosen_points = ULONG_MAX;
1281 				get_task_struct(chosen);
1282 				/* fall through */
1283 			case OOM_SCAN_CONTINUE:
1284 				continue;
1285 			case OOM_SCAN_ABORT:
1286 				css_task_iter_end(&it);
1287 				mem_cgroup_iter_break(memcg, iter);
1288 				if (chosen)
1289 					put_task_struct(chosen);
1290 				goto unlock;
1291 			case OOM_SCAN_OK:
1292 				break;
1293 			};
1294 			points = oom_badness(task, memcg, NULL, totalpages);
1295 			if (!points || points < chosen_points)
1296 				continue;
1297 			/* Prefer thread group leaders for display purposes */
1298 			if (points == chosen_points &&
1299 			    thread_group_leader(chosen))
1300 				continue;
1301 
1302 			if (chosen)
1303 				put_task_struct(chosen);
1304 			chosen = task;
1305 			chosen_points = points;
1306 			get_task_struct(chosen);
1307 		}
1308 		css_task_iter_end(&it);
1309 	}
1310 
1311 	if (chosen) {
1312 		points = chosen_points * 1000 / totalpages;
1313 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1314 				 "Memory cgroup out of memory");
1315 	}
1316 unlock:
1317 	mutex_unlock(&oom_lock);
1318 }
1319 
1320 #if MAX_NUMNODES > 1
1321 
1322 /**
1323  * test_mem_cgroup_node_reclaimable
1324  * @memcg: the target memcg
1325  * @nid: the node ID to be checked.
1326  * @noswap : specify true here if the user wants flle only information.
1327  *
1328  * This function returns whether the specified memcg contains any
1329  * reclaimable pages on a node. Returns true if there are any reclaimable
1330  * pages in the node.
1331  */
1332 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1333 		int nid, bool noswap)
1334 {
1335 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1336 		return true;
1337 	if (noswap || !total_swap_pages)
1338 		return false;
1339 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1340 		return true;
1341 	return false;
1342 
1343 }
1344 
1345 /*
1346  * Always updating the nodemask is not very good - even if we have an empty
1347  * list or the wrong list here, we can start from some node and traverse all
1348  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1349  *
1350  */
1351 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1352 {
1353 	int nid;
1354 	/*
1355 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1356 	 * pagein/pageout changes since the last update.
1357 	 */
1358 	if (!atomic_read(&memcg->numainfo_events))
1359 		return;
1360 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1361 		return;
1362 
1363 	/* make a nodemask where this memcg uses memory from */
1364 	memcg->scan_nodes = node_states[N_MEMORY];
1365 
1366 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1367 
1368 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1369 			node_clear(nid, memcg->scan_nodes);
1370 	}
1371 
1372 	atomic_set(&memcg->numainfo_events, 0);
1373 	atomic_set(&memcg->numainfo_updating, 0);
1374 }
1375 
1376 /*
1377  * Selecting a node where we start reclaim from. Because what we need is just
1378  * reducing usage counter, start from anywhere is O,K. Considering
1379  * memory reclaim from current node, there are pros. and cons.
1380  *
1381  * Freeing memory from current node means freeing memory from a node which
1382  * we'll use or we've used. So, it may make LRU bad. And if several threads
1383  * hit limits, it will see a contention on a node. But freeing from remote
1384  * node means more costs for memory reclaim because of memory latency.
1385  *
1386  * Now, we use round-robin. Better algorithm is welcomed.
1387  */
1388 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389 {
1390 	int node;
1391 
1392 	mem_cgroup_may_update_nodemask(memcg);
1393 	node = memcg->last_scanned_node;
1394 
1395 	node = next_node(node, memcg->scan_nodes);
1396 	if (node == MAX_NUMNODES)
1397 		node = first_node(memcg->scan_nodes);
1398 	/*
1399 	 * We call this when we hit limit, not when pages are added to LRU.
1400 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1401 	 * memcg is too small and all pages are not on LRU. In that case,
1402 	 * we use curret node.
1403 	 */
1404 	if (unlikely(node == MAX_NUMNODES))
1405 		node = numa_node_id();
1406 
1407 	memcg->last_scanned_node = node;
1408 	return node;
1409 }
1410 #else
1411 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1412 {
1413 	return 0;
1414 }
1415 #endif
1416 
1417 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1418 				   struct zone *zone,
1419 				   gfp_t gfp_mask,
1420 				   unsigned long *total_scanned)
1421 {
1422 	struct mem_cgroup *victim = NULL;
1423 	int total = 0;
1424 	int loop = 0;
1425 	unsigned long excess;
1426 	unsigned long nr_scanned;
1427 	struct mem_cgroup_reclaim_cookie reclaim = {
1428 		.zone = zone,
1429 		.priority = 0,
1430 	};
1431 
1432 	excess = soft_limit_excess(root_memcg);
1433 
1434 	while (1) {
1435 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1436 		if (!victim) {
1437 			loop++;
1438 			if (loop >= 2) {
1439 				/*
1440 				 * If we have not been able to reclaim
1441 				 * anything, it might because there are
1442 				 * no reclaimable pages under this hierarchy
1443 				 */
1444 				if (!total)
1445 					break;
1446 				/*
1447 				 * We want to do more targeted reclaim.
1448 				 * excess >> 2 is not to excessive so as to
1449 				 * reclaim too much, nor too less that we keep
1450 				 * coming back to reclaim from this cgroup
1451 				 */
1452 				if (total >= (excess >> 2) ||
1453 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1454 					break;
1455 			}
1456 			continue;
1457 		}
1458 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1459 						     zone, &nr_scanned);
1460 		*total_scanned += nr_scanned;
1461 		if (!soft_limit_excess(root_memcg))
1462 			break;
1463 	}
1464 	mem_cgroup_iter_break(root_memcg, victim);
1465 	return total;
1466 }
1467 
1468 #ifdef CONFIG_LOCKDEP
1469 static struct lockdep_map memcg_oom_lock_dep_map = {
1470 	.name = "memcg_oom_lock",
1471 };
1472 #endif
1473 
1474 static DEFINE_SPINLOCK(memcg_oom_lock);
1475 
1476 /*
1477  * Check OOM-Killer is already running under our hierarchy.
1478  * If someone is running, return false.
1479  */
1480 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1481 {
1482 	struct mem_cgroup *iter, *failed = NULL;
1483 
1484 	spin_lock(&memcg_oom_lock);
1485 
1486 	for_each_mem_cgroup_tree(iter, memcg) {
1487 		if (iter->oom_lock) {
1488 			/*
1489 			 * this subtree of our hierarchy is already locked
1490 			 * so we cannot give a lock.
1491 			 */
1492 			failed = iter;
1493 			mem_cgroup_iter_break(memcg, iter);
1494 			break;
1495 		} else
1496 			iter->oom_lock = true;
1497 	}
1498 
1499 	if (failed) {
1500 		/*
1501 		 * OK, we failed to lock the whole subtree so we have
1502 		 * to clean up what we set up to the failing subtree
1503 		 */
1504 		for_each_mem_cgroup_tree(iter, memcg) {
1505 			if (iter == failed) {
1506 				mem_cgroup_iter_break(memcg, iter);
1507 				break;
1508 			}
1509 			iter->oom_lock = false;
1510 		}
1511 	} else
1512 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1513 
1514 	spin_unlock(&memcg_oom_lock);
1515 
1516 	return !failed;
1517 }
1518 
1519 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1520 {
1521 	struct mem_cgroup *iter;
1522 
1523 	spin_lock(&memcg_oom_lock);
1524 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1525 	for_each_mem_cgroup_tree(iter, memcg)
1526 		iter->oom_lock = false;
1527 	spin_unlock(&memcg_oom_lock);
1528 }
1529 
1530 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1531 {
1532 	struct mem_cgroup *iter;
1533 
1534 	spin_lock(&memcg_oom_lock);
1535 	for_each_mem_cgroup_tree(iter, memcg)
1536 		iter->under_oom++;
1537 	spin_unlock(&memcg_oom_lock);
1538 }
1539 
1540 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1541 {
1542 	struct mem_cgroup *iter;
1543 
1544 	/*
1545 	 * When a new child is created while the hierarchy is under oom,
1546 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1547 	 */
1548 	spin_lock(&memcg_oom_lock);
1549 	for_each_mem_cgroup_tree(iter, memcg)
1550 		if (iter->under_oom > 0)
1551 			iter->under_oom--;
1552 	spin_unlock(&memcg_oom_lock);
1553 }
1554 
1555 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1556 
1557 struct oom_wait_info {
1558 	struct mem_cgroup *memcg;
1559 	wait_queue_t	wait;
1560 };
1561 
1562 static int memcg_oom_wake_function(wait_queue_t *wait,
1563 	unsigned mode, int sync, void *arg)
1564 {
1565 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1566 	struct mem_cgroup *oom_wait_memcg;
1567 	struct oom_wait_info *oom_wait_info;
1568 
1569 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1570 	oom_wait_memcg = oom_wait_info->memcg;
1571 
1572 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1573 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1574 		return 0;
1575 	return autoremove_wake_function(wait, mode, sync, arg);
1576 }
1577 
1578 static void memcg_oom_recover(struct mem_cgroup *memcg)
1579 {
1580 	/*
1581 	 * For the following lockless ->under_oom test, the only required
1582 	 * guarantee is that it must see the state asserted by an OOM when
1583 	 * this function is called as a result of userland actions
1584 	 * triggered by the notification of the OOM.  This is trivially
1585 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1586 	 * triggering notification.
1587 	 */
1588 	if (memcg && memcg->under_oom)
1589 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1590 }
1591 
1592 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1593 {
1594 	if (!current->memcg_may_oom)
1595 		return;
1596 	/*
1597 	 * We are in the middle of the charge context here, so we
1598 	 * don't want to block when potentially sitting on a callstack
1599 	 * that holds all kinds of filesystem and mm locks.
1600 	 *
1601 	 * Also, the caller may handle a failed allocation gracefully
1602 	 * (like optional page cache readahead) and so an OOM killer
1603 	 * invocation might not even be necessary.
1604 	 *
1605 	 * That's why we don't do anything here except remember the
1606 	 * OOM context and then deal with it at the end of the page
1607 	 * fault when the stack is unwound, the locks are released,
1608 	 * and when we know whether the fault was overall successful.
1609 	 */
1610 	css_get(&memcg->css);
1611 	current->memcg_in_oom = memcg;
1612 	current->memcg_oom_gfp_mask = mask;
1613 	current->memcg_oom_order = order;
1614 }
1615 
1616 /**
1617  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1618  * @handle: actually kill/wait or just clean up the OOM state
1619  *
1620  * This has to be called at the end of a page fault if the memcg OOM
1621  * handler was enabled.
1622  *
1623  * Memcg supports userspace OOM handling where failed allocations must
1624  * sleep on a waitqueue until the userspace task resolves the
1625  * situation.  Sleeping directly in the charge context with all kinds
1626  * of locks held is not a good idea, instead we remember an OOM state
1627  * in the task and mem_cgroup_oom_synchronize() has to be called at
1628  * the end of the page fault to complete the OOM handling.
1629  *
1630  * Returns %true if an ongoing memcg OOM situation was detected and
1631  * completed, %false otherwise.
1632  */
1633 bool mem_cgroup_oom_synchronize(bool handle)
1634 {
1635 	struct mem_cgroup *memcg = current->memcg_in_oom;
1636 	struct oom_wait_info owait;
1637 	bool locked;
1638 
1639 	/* OOM is global, do not handle */
1640 	if (!memcg)
1641 		return false;
1642 
1643 	if (!handle || oom_killer_disabled)
1644 		goto cleanup;
1645 
1646 	owait.memcg = memcg;
1647 	owait.wait.flags = 0;
1648 	owait.wait.func = memcg_oom_wake_function;
1649 	owait.wait.private = current;
1650 	INIT_LIST_HEAD(&owait.wait.task_list);
1651 
1652 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1653 	mem_cgroup_mark_under_oom(memcg);
1654 
1655 	locked = mem_cgroup_oom_trylock(memcg);
1656 
1657 	if (locked)
1658 		mem_cgroup_oom_notify(memcg);
1659 
1660 	if (locked && !memcg->oom_kill_disable) {
1661 		mem_cgroup_unmark_under_oom(memcg);
1662 		finish_wait(&memcg_oom_waitq, &owait.wait);
1663 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1664 					 current->memcg_oom_order);
1665 	} else {
1666 		schedule();
1667 		mem_cgroup_unmark_under_oom(memcg);
1668 		finish_wait(&memcg_oom_waitq, &owait.wait);
1669 	}
1670 
1671 	if (locked) {
1672 		mem_cgroup_oom_unlock(memcg);
1673 		/*
1674 		 * There is no guarantee that an OOM-lock contender
1675 		 * sees the wakeups triggered by the OOM kill
1676 		 * uncharges.  Wake any sleepers explicitely.
1677 		 */
1678 		memcg_oom_recover(memcg);
1679 	}
1680 cleanup:
1681 	current->memcg_in_oom = NULL;
1682 	css_put(&memcg->css);
1683 	return true;
1684 }
1685 
1686 /**
1687  * lock_page_memcg - lock a page->mem_cgroup binding
1688  * @page: the page
1689  *
1690  * This function protects unlocked LRU pages from being moved to
1691  * another cgroup and stabilizes their page->mem_cgroup binding.
1692  */
1693 void lock_page_memcg(struct page *page)
1694 {
1695 	struct mem_cgroup *memcg;
1696 	unsigned long flags;
1697 
1698 	/*
1699 	 * The RCU lock is held throughout the transaction.  The fast
1700 	 * path can get away without acquiring the memcg->move_lock
1701 	 * because page moving starts with an RCU grace period.
1702 	 */
1703 	rcu_read_lock();
1704 
1705 	if (mem_cgroup_disabled())
1706 		return;
1707 again:
1708 	memcg = page->mem_cgroup;
1709 	if (unlikely(!memcg))
1710 		return;
1711 
1712 	if (atomic_read(&memcg->moving_account) <= 0)
1713 		return;
1714 
1715 	spin_lock_irqsave(&memcg->move_lock, flags);
1716 	if (memcg != page->mem_cgroup) {
1717 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1718 		goto again;
1719 	}
1720 
1721 	/*
1722 	 * When charge migration first begins, we can have locked and
1723 	 * unlocked page stat updates happening concurrently.  Track
1724 	 * the task who has the lock for unlock_page_memcg().
1725 	 */
1726 	memcg->move_lock_task = current;
1727 	memcg->move_lock_flags = flags;
1728 
1729 	return;
1730 }
1731 EXPORT_SYMBOL(lock_page_memcg);
1732 
1733 /**
1734  * unlock_page_memcg - unlock a page->mem_cgroup binding
1735  * @page: the page
1736  */
1737 void unlock_page_memcg(struct page *page)
1738 {
1739 	struct mem_cgroup *memcg = page->mem_cgroup;
1740 
1741 	if (memcg && memcg->move_lock_task == current) {
1742 		unsigned long flags = memcg->move_lock_flags;
1743 
1744 		memcg->move_lock_task = NULL;
1745 		memcg->move_lock_flags = 0;
1746 
1747 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1748 	}
1749 
1750 	rcu_read_unlock();
1751 }
1752 EXPORT_SYMBOL(unlock_page_memcg);
1753 
1754 /*
1755  * size of first charge trial. "32" comes from vmscan.c's magic value.
1756  * TODO: maybe necessary to use big numbers in big irons.
1757  */
1758 #define CHARGE_BATCH	32U
1759 struct memcg_stock_pcp {
1760 	struct mem_cgroup *cached; /* this never be root cgroup */
1761 	unsigned int nr_pages;
1762 	struct work_struct work;
1763 	unsigned long flags;
1764 #define FLUSHING_CACHED_CHARGE	0
1765 };
1766 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1767 static DEFINE_MUTEX(percpu_charge_mutex);
1768 
1769 /**
1770  * consume_stock: Try to consume stocked charge on this cpu.
1771  * @memcg: memcg to consume from.
1772  * @nr_pages: how many pages to charge.
1773  *
1774  * The charges will only happen if @memcg matches the current cpu's memcg
1775  * stock, and at least @nr_pages are available in that stock.  Failure to
1776  * service an allocation will refill the stock.
1777  *
1778  * returns true if successful, false otherwise.
1779  */
1780 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1781 {
1782 	struct memcg_stock_pcp *stock;
1783 	bool ret = false;
1784 
1785 	if (nr_pages > CHARGE_BATCH)
1786 		return ret;
1787 
1788 	stock = &get_cpu_var(memcg_stock);
1789 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1790 		stock->nr_pages -= nr_pages;
1791 		ret = true;
1792 	}
1793 	put_cpu_var(memcg_stock);
1794 	return ret;
1795 }
1796 
1797 /*
1798  * Returns stocks cached in percpu and reset cached information.
1799  */
1800 static void drain_stock(struct memcg_stock_pcp *stock)
1801 {
1802 	struct mem_cgroup *old = stock->cached;
1803 
1804 	if (stock->nr_pages) {
1805 		page_counter_uncharge(&old->memory, stock->nr_pages);
1806 		if (do_memsw_account())
1807 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1808 		css_put_many(&old->css, stock->nr_pages);
1809 		stock->nr_pages = 0;
1810 	}
1811 	stock->cached = NULL;
1812 }
1813 
1814 /*
1815  * This must be called under preempt disabled or must be called by
1816  * a thread which is pinned to local cpu.
1817  */
1818 static void drain_local_stock(struct work_struct *dummy)
1819 {
1820 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1821 	drain_stock(stock);
1822 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1823 }
1824 
1825 /*
1826  * Cache charges(val) to local per_cpu area.
1827  * This will be consumed by consume_stock() function, later.
1828  */
1829 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1830 {
1831 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1832 
1833 	if (stock->cached != memcg) { /* reset if necessary */
1834 		drain_stock(stock);
1835 		stock->cached = memcg;
1836 	}
1837 	stock->nr_pages += nr_pages;
1838 	put_cpu_var(memcg_stock);
1839 }
1840 
1841 /*
1842  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1843  * of the hierarchy under it.
1844  */
1845 static void drain_all_stock(struct mem_cgroup *root_memcg)
1846 {
1847 	int cpu, curcpu;
1848 
1849 	/* If someone's already draining, avoid adding running more workers. */
1850 	if (!mutex_trylock(&percpu_charge_mutex))
1851 		return;
1852 	/* Notify other cpus that system-wide "drain" is running */
1853 	get_online_cpus();
1854 	curcpu = get_cpu();
1855 	for_each_online_cpu(cpu) {
1856 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1857 		struct mem_cgroup *memcg;
1858 
1859 		memcg = stock->cached;
1860 		if (!memcg || !stock->nr_pages)
1861 			continue;
1862 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1863 			continue;
1864 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1865 			if (cpu == curcpu)
1866 				drain_local_stock(&stock->work);
1867 			else
1868 				schedule_work_on(cpu, &stock->work);
1869 		}
1870 	}
1871 	put_cpu();
1872 	put_online_cpus();
1873 	mutex_unlock(&percpu_charge_mutex);
1874 }
1875 
1876 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1877 					unsigned long action,
1878 					void *hcpu)
1879 {
1880 	int cpu = (unsigned long)hcpu;
1881 	struct memcg_stock_pcp *stock;
1882 
1883 	if (action == CPU_ONLINE)
1884 		return NOTIFY_OK;
1885 
1886 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1887 		return NOTIFY_OK;
1888 
1889 	stock = &per_cpu(memcg_stock, cpu);
1890 	drain_stock(stock);
1891 	return NOTIFY_OK;
1892 }
1893 
1894 static void reclaim_high(struct mem_cgroup *memcg,
1895 			 unsigned int nr_pages,
1896 			 gfp_t gfp_mask)
1897 {
1898 	do {
1899 		if (page_counter_read(&memcg->memory) <= memcg->high)
1900 			continue;
1901 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1902 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1903 	} while ((memcg = parent_mem_cgroup(memcg)));
1904 }
1905 
1906 static void high_work_func(struct work_struct *work)
1907 {
1908 	struct mem_cgroup *memcg;
1909 
1910 	memcg = container_of(work, struct mem_cgroup, high_work);
1911 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1912 }
1913 
1914 /*
1915  * Scheduled by try_charge() to be executed from the userland return path
1916  * and reclaims memory over the high limit.
1917  */
1918 void mem_cgroup_handle_over_high(void)
1919 {
1920 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1921 	struct mem_cgroup *memcg;
1922 
1923 	if (likely(!nr_pages))
1924 		return;
1925 
1926 	memcg = get_mem_cgroup_from_mm(current->mm);
1927 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1928 	css_put(&memcg->css);
1929 	current->memcg_nr_pages_over_high = 0;
1930 }
1931 
1932 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1933 		      unsigned int nr_pages)
1934 {
1935 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1936 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1937 	struct mem_cgroup *mem_over_limit;
1938 	struct page_counter *counter;
1939 	unsigned long nr_reclaimed;
1940 	bool may_swap = true;
1941 	bool drained = false;
1942 
1943 	if (mem_cgroup_is_root(memcg))
1944 		return 0;
1945 retry:
1946 	if (consume_stock(memcg, nr_pages))
1947 		return 0;
1948 
1949 	if (!do_memsw_account() ||
1950 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1951 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1952 			goto done_restock;
1953 		if (do_memsw_account())
1954 			page_counter_uncharge(&memcg->memsw, batch);
1955 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1956 	} else {
1957 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1958 		may_swap = false;
1959 	}
1960 
1961 	if (batch > nr_pages) {
1962 		batch = nr_pages;
1963 		goto retry;
1964 	}
1965 
1966 	/*
1967 	 * Unlike in global OOM situations, memcg is not in a physical
1968 	 * memory shortage.  Allow dying and OOM-killed tasks to
1969 	 * bypass the last charges so that they can exit quickly and
1970 	 * free their memory.
1971 	 */
1972 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1973 		     fatal_signal_pending(current) ||
1974 		     current->flags & PF_EXITING))
1975 		goto force;
1976 
1977 	if (unlikely(task_in_memcg_oom(current)))
1978 		goto nomem;
1979 
1980 	if (!gfpflags_allow_blocking(gfp_mask))
1981 		goto nomem;
1982 
1983 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1984 
1985 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1986 						    gfp_mask, may_swap);
1987 
1988 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1989 		goto retry;
1990 
1991 	if (!drained) {
1992 		drain_all_stock(mem_over_limit);
1993 		drained = true;
1994 		goto retry;
1995 	}
1996 
1997 	if (gfp_mask & __GFP_NORETRY)
1998 		goto nomem;
1999 	/*
2000 	 * Even though the limit is exceeded at this point, reclaim
2001 	 * may have been able to free some pages.  Retry the charge
2002 	 * before killing the task.
2003 	 *
2004 	 * Only for regular pages, though: huge pages are rather
2005 	 * unlikely to succeed so close to the limit, and we fall back
2006 	 * to regular pages anyway in case of failure.
2007 	 */
2008 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2009 		goto retry;
2010 	/*
2011 	 * At task move, charge accounts can be doubly counted. So, it's
2012 	 * better to wait until the end of task_move if something is going on.
2013 	 */
2014 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2015 		goto retry;
2016 
2017 	if (nr_retries--)
2018 		goto retry;
2019 
2020 	if (gfp_mask & __GFP_NOFAIL)
2021 		goto force;
2022 
2023 	if (fatal_signal_pending(current))
2024 		goto force;
2025 
2026 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2027 
2028 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2029 		       get_order(nr_pages * PAGE_SIZE));
2030 nomem:
2031 	if (!(gfp_mask & __GFP_NOFAIL))
2032 		return -ENOMEM;
2033 force:
2034 	/*
2035 	 * The allocation either can't fail or will lead to more memory
2036 	 * being freed very soon.  Allow memory usage go over the limit
2037 	 * temporarily by force charging it.
2038 	 */
2039 	page_counter_charge(&memcg->memory, nr_pages);
2040 	if (do_memsw_account())
2041 		page_counter_charge(&memcg->memsw, nr_pages);
2042 	css_get_many(&memcg->css, nr_pages);
2043 
2044 	return 0;
2045 
2046 done_restock:
2047 	css_get_many(&memcg->css, batch);
2048 	if (batch > nr_pages)
2049 		refill_stock(memcg, batch - nr_pages);
2050 
2051 	/*
2052 	 * If the hierarchy is above the normal consumption range, schedule
2053 	 * reclaim on returning to userland.  We can perform reclaim here
2054 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2055 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2056 	 * not recorded as it most likely matches current's and won't
2057 	 * change in the meantime.  As high limit is checked again before
2058 	 * reclaim, the cost of mismatch is negligible.
2059 	 */
2060 	do {
2061 		if (page_counter_read(&memcg->memory) > memcg->high) {
2062 			/* Don't bother a random interrupted task */
2063 			if (in_interrupt()) {
2064 				schedule_work(&memcg->high_work);
2065 				break;
2066 			}
2067 			current->memcg_nr_pages_over_high += batch;
2068 			set_notify_resume(current);
2069 			break;
2070 		}
2071 	} while ((memcg = parent_mem_cgroup(memcg)));
2072 
2073 	return 0;
2074 }
2075 
2076 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2077 {
2078 	if (mem_cgroup_is_root(memcg))
2079 		return;
2080 
2081 	page_counter_uncharge(&memcg->memory, nr_pages);
2082 	if (do_memsw_account())
2083 		page_counter_uncharge(&memcg->memsw, nr_pages);
2084 
2085 	css_put_many(&memcg->css, nr_pages);
2086 }
2087 
2088 static void lock_page_lru(struct page *page, int *isolated)
2089 {
2090 	struct zone *zone = page_zone(page);
2091 
2092 	spin_lock_irq(&zone->lru_lock);
2093 	if (PageLRU(page)) {
2094 		struct lruvec *lruvec;
2095 
2096 		lruvec = mem_cgroup_page_lruvec(page, zone);
2097 		ClearPageLRU(page);
2098 		del_page_from_lru_list(page, lruvec, page_lru(page));
2099 		*isolated = 1;
2100 	} else
2101 		*isolated = 0;
2102 }
2103 
2104 static void unlock_page_lru(struct page *page, int isolated)
2105 {
2106 	struct zone *zone = page_zone(page);
2107 
2108 	if (isolated) {
2109 		struct lruvec *lruvec;
2110 
2111 		lruvec = mem_cgroup_page_lruvec(page, zone);
2112 		VM_BUG_ON_PAGE(PageLRU(page), page);
2113 		SetPageLRU(page);
2114 		add_page_to_lru_list(page, lruvec, page_lru(page));
2115 	}
2116 	spin_unlock_irq(&zone->lru_lock);
2117 }
2118 
2119 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2120 			  bool lrucare)
2121 {
2122 	int isolated;
2123 
2124 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2125 
2126 	/*
2127 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2128 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2129 	 */
2130 	if (lrucare)
2131 		lock_page_lru(page, &isolated);
2132 
2133 	/*
2134 	 * Nobody should be changing or seriously looking at
2135 	 * page->mem_cgroup at this point:
2136 	 *
2137 	 * - the page is uncharged
2138 	 *
2139 	 * - the page is off-LRU
2140 	 *
2141 	 * - an anonymous fault has exclusive page access, except for
2142 	 *   a locked page table
2143 	 *
2144 	 * - a page cache insertion, a swapin fault, or a migration
2145 	 *   have the page locked
2146 	 */
2147 	page->mem_cgroup = memcg;
2148 
2149 	if (lrucare)
2150 		unlock_page_lru(page, isolated);
2151 }
2152 
2153 #ifndef CONFIG_SLOB
2154 static int memcg_alloc_cache_id(void)
2155 {
2156 	int id, size;
2157 	int err;
2158 
2159 	id = ida_simple_get(&memcg_cache_ida,
2160 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2161 	if (id < 0)
2162 		return id;
2163 
2164 	if (id < memcg_nr_cache_ids)
2165 		return id;
2166 
2167 	/*
2168 	 * There's no space for the new id in memcg_caches arrays,
2169 	 * so we have to grow them.
2170 	 */
2171 	down_write(&memcg_cache_ids_sem);
2172 
2173 	size = 2 * (id + 1);
2174 	if (size < MEMCG_CACHES_MIN_SIZE)
2175 		size = MEMCG_CACHES_MIN_SIZE;
2176 	else if (size > MEMCG_CACHES_MAX_SIZE)
2177 		size = MEMCG_CACHES_MAX_SIZE;
2178 
2179 	err = memcg_update_all_caches(size);
2180 	if (!err)
2181 		err = memcg_update_all_list_lrus(size);
2182 	if (!err)
2183 		memcg_nr_cache_ids = size;
2184 
2185 	up_write(&memcg_cache_ids_sem);
2186 
2187 	if (err) {
2188 		ida_simple_remove(&memcg_cache_ida, id);
2189 		return err;
2190 	}
2191 	return id;
2192 }
2193 
2194 static void memcg_free_cache_id(int id)
2195 {
2196 	ida_simple_remove(&memcg_cache_ida, id);
2197 }
2198 
2199 struct memcg_kmem_cache_create_work {
2200 	struct mem_cgroup *memcg;
2201 	struct kmem_cache *cachep;
2202 	struct work_struct work;
2203 };
2204 
2205 static void memcg_kmem_cache_create_func(struct work_struct *w)
2206 {
2207 	struct memcg_kmem_cache_create_work *cw =
2208 		container_of(w, struct memcg_kmem_cache_create_work, work);
2209 	struct mem_cgroup *memcg = cw->memcg;
2210 	struct kmem_cache *cachep = cw->cachep;
2211 
2212 	memcg_create_kmem_cache(memcg, cachep);
2213 
2214 	css_put(&memcg->css);
2215 	kfree(cw);
2216 }
2217 
2218 /*
2219  * Enqueue the creation of a per-memcg kmem_cache.
2220  */
2221 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2222 					       struct kmem_cache *cachep)
2223 {
2224 	struct memcg_kmem_cache_create_work *cw;
2225 
2226 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2227 	if (!cw)
2228 		return;
2229 
2230 	css_get(&memcg->css);
2231 
2232 	cw->memcg = memcg;
2233 	cw->cachep = cachep;
2234 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2235 
2236 	schedule_work(&cw->work);
2237 }
2238 
2239 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2240 					     struct kmem_cache *cachep)
2241 {
2242 	/*
2243 	 * We need to stop accounting when we kmalloc, because if the
2244 	 * corresponding kmalloc cache is not yet created, the first allocation
2245 	 * in __memcg_schedule_kmem_cache_create will recurse.
2246 	 *
2247 	 * However, it is better to enclose the whole function. Depending on
2248 	 * the debugging options enabled, INIT_WORK(), for instance, can
2249 	 * trigger an allocation. This too, will make us recurse. Because at
2250 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2251 	 * the safest choice is to do it like this, wrapping the whole function.
2252 	 */
2253 	current->memcg_kmem_skip_account = 1;
2254 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2255 	current->memcg_kmem_skip_account = 0;
2256 }
2257 
2258 /*
2259  * Return the kmem_cache we're supposed to use for a slab allocation.
2260  * We try to use the current memcg's version of the cache.
2261  *
2262  * If the cache does not exist yet, if we are the first user of it,
2263  * we either create it immediately, if possible, or create it asynchronously
2264  * in a workqueue.
2265  * In the latter case, we will let the current allocation go through with
2266  * the original cache.
2267  *
2268  * Can't be called in interrupt context or from kernel threads.
2269  * This function needs to be called with rcu_read_lock() held.
2270  */
2271 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2272 {
2273 	struct mem_cgroup *memcg;
2274 	struct kmem_cache *memcg_cachep;
2275 	int kmemcg_id;
2276 
2277 	VM_BUG_ON(!is_root_cache(cachep));
2278 
2279 	if (cachep->flags & SLAB_ACCOUNT)
2280 		gfp |= __GFP_ACCOUNT;
2281 
2282 	if (!(gfp & __GFP_ACCOUNT))
2283 		return cachep;
2284 
2285 	if (current->memcg_kmem_skip_account)
2286 		return cachep;
2287 
2288 	memcg = get_mem_cgroup_from_mm(current->mm);
2289 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2290 	if (kmemcg_id < 0)
2291 		goto out;
2292 
2293 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2294 	if (likely(memcg_cachep))
2295 		return memcg_cachep;
2296 
2297 	/*
2298 	 * If we are in a safe context (can wait, and not in interrupt
2299 	 * context), we could be be predictable and return right away.
2300 	 * This would guarantee that the allocation being performed
2301 	 * already belongs in the new cache.
2302 	 *
2303 	 * However, there are some clashes that can arrive from locking.
2304 	 * For instance, because we acquire the slab_mutex while doing
2305 	 * memcg_create_kmem_cache, this means no further allocation
2306 	 * could happen with the slab_mutex held. So it's better to
2307 	 * defer everything.
2308 	 */
2309 	memcg_schedule_kmem_cache_create(memcg, cachep);
2310 out:
2311 	css_put(&memcg->css);
2312 	return cachep;
2313 }
2314 
2315 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2316 {
2317 	if (!is_root_cache(cachep))
2318 		css_put(&cachep->memcg_params.memcg->css);
2319 }
2320 
2321 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2322 			      struct mem_cgroup *memcg)
2323 {
2324 	unsigned int nr_pages = 1 << order;
2325 	struct page_counter *counter;
2326 	int ret;
2327 
2328 	if (!memcg_kmem_online(memcg))
2329 		return 0;
2330 
2331 	ret = try_charge(memcg, gfp, nr_pages);
2332 	if (ret)
2333 		return ret;
2334 
2335 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2336 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2337 		cancel_charge(memcg, nr_pages);
2338 		return -ENOMEM;
2339 	}
2340 
2341 	page->mem_cgroup = memcg;
2342 
2343 	return 0;
2344 }
2345 
2346 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2347 {
2348 	struct mem_cgroup *memcg;
2349 	int ret;
2350 
2351 	memcg = get_mem_cgroup_from_mm(current->mm);
2352 	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2353 	css_put(&memcg->css);
2354 	return ret;
2355 }
2356 
2357 void __memcg_kmem_uncharge(struct page *page, int order)
2358 {
2359 	struct mem_cgroup *memcg = page->mem_cgroup;
2360 	unsigned int nr_pages = 1 << order;
2361 
2362 	if (!memcg)
2363 		return;
2364 
2365 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2366 
2367 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2368 		page_counter_uncharge(&memcg->kmem, nr_pages);
2369 
2370 	page_counter_uncharge(&memcg->memory, nr_pages);
2371 	if (do_memsw_account())
2372 		page_counter_uncharge(&memcg->memsw, nr_pages);
2373 
2374 	page->mem_cgroup = NULL;
2375 	css_put_many(&memcg->css, nr_pages);
2376 }
2377 #endif /* !CONFIG_SLOB */
2378 
2379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2380 
2381 /*
2382  * Because tail pages are not marked as "used", set it. We're under
2383  * zone->lru_lock and migration entries setup in all page mappings.
2384  */
2385 void mem_cgroup_split_huge_fixup(struct page *head)
2386 {
2387 	int i;
2388 
2389 	if (mem_cgroup_disabled())
2390 		return;
2391 
2392 	for (i = 1; i < HPAGE_PMD_NR; i++)
2393 		head[i].mem_cgroup = head->mem_cgroup;
2394 
2395 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2396 		       HPAGE_PMD_NR);
2397 }
2398 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2399 
2400 #ifdef CONFIG_MEMCG_SWAP
2401 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2402 					 bool charge)
2403 {
2404 	int val = (charge) ? 1 : -1;
2405 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2406 }
2407 
2408 /**
2409  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2410  * @entry: swap entry to be moved
2411  * @from:  mem_cgroup which the entry is moved from
2412  * @to:  mem_cgroup which the entry is moved to
2413  *
2414  * It succeeds only when the swap_cgroup's record for this entry is the same
2415  * as the mem_cgroup's id of @from.
2416  *
2417  * Returns 0 on success, -EINVAL on failure.
2418  *
2419  * The caller must have charged to @to, IOW, called page_counter_charge() about
2420  * both res and memsw, and called css_get().
2421  */
2422 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2423 				struct mem_cgroup *from, struct mem_cgroup *to)
2424 {
2425 	unsigned short old_id, new_id;
2426 
2427 	old_id = mem_cgroup_id(from);
2428 	new_id = mem_cgroup_id(to);
2429 
2430 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2431 		mem_cgroup_swap_statistics(from, false);
2432 		mem_cgroup_swap_statistics(to, true);
2433 		return 0;
2434 	}
2435 	return -EINVAL;
2436 }
2437 #else
2438 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2439 				struct mem_cgroup *from, struct mem_cgroup *to)
2440 {
2441 	return -EINVAL;
2442 }
2443 #endif
2444 
2445 static DEFINE_MUTEX(memcg_limit_mutex);
2446 
2447 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2448 				   unsigned long limit)
2449 {
2450 	unsigned long curusage;
2451 	unsigned long oldusage;
2452 	bool enlarge = false;
2453 	int retry_count;
2454 	int ret;
2455 
2456 	/*
2457 	 * For keeping hierarchical_reclaim simple, how long we should retry
2458 	 * is depends on callers. We set our retry-count to be function
2459 	 * of # of children which we should visit in this loop.
2460 	 */
2461 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2462 		      mem_cgroup_count_children(memcg);
2463 
2464 	oldusage = page_counter_read(&memcg->memory);
2465 
2466 	do {
2467 		if (signal_pending(current)) {
2468 			ret = -EINTR;
2469 			break;
2470 		}
2471 
2472 		mutex_lock(&memcg_limit_mutex);
2473 		if (limit > memcg->memsw.limit) {
2474 			mutex_unlock(&memcg_limit_mutex);
2475 			ret = -EINVAL;
2476 			break;
2477 		}
2478 		if (limit > memcg->memory.limit)
2479 			enlarge = true;
2480 		ret = page_counter_limit(&memcg->memory, limit);
2481 		mutex_unlock(&memcg_limit_mutex);
2482 
2483 		if (!ret)
2484 			break;
2485 
2486 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2487 
2488 		curusage = page_counter_read(&memcg->memory);
2489 		/* Usage is reduced ? */
2490 		if (curusage >= oldusage)
2491 			retry_count--;
2492 		else
2493 			oldusage = curusage;
2494 	} while (retry_count);
2495 
2496 	if (!ret && enlarge)
2497 		memcg_oom_recover(memcg);
2498 
2499 	return ret;
2500 }
2501 
2502 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2503 					 unsigned long limit)
2504 {
2505 	unsigned long curusage;
2506 	unsigned long oldusage;
2507 	bool enlarge = false;
2508 	int retry_count;
2509 	int ret;
2510 
2511 	/* see mem_cgroup_resize_res_limit */
2512 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2513 		      mem_cgroup_count_children(memcg);
2514 
2515 	oldusage = page_counter_read(&memcg->memsw);
2516 
2517 	do {
2518 		if (signal_pending(current)) {
2519 			ret = -EINTR;
2520 			break;
2521 		}
2522 
2523 		mutex_lock(&memcg_limit_mutex);
2524 		if (limit < memcg->memory.limit) {
2525 			mutex_unlock(&memcg_limit_mutex);
2526 			ret = -EINVAL;
2527 			break;
2528 		}
2529 		if (limit > memcg->memsw.limit)
2530 			enlarge = true;
2531 		ret = page_counter_limit(&memcg->memsw, limit);
2532 		mutex_unlock(&memcg_limit_mutex);
2533 
2534 		if (!ret)
2535 			break;
2536 
2537 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2538 
2539 		curusage = page_counter_read(&memcg->memsw);
2540 		/* Usage is reduced ? */
2541 		if (curusage >= oldusage)
2542 			retry_count--;
2543 		else
2544 			oldusage = curusage;
2545 	} while (retry_count);
2546 
2547 	if (!ret && enlarge)
2548 		memcg_oom_recover(memcg);
2549 
2550 	return ret;
2551 }
2552 
2553 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2554 					    gfp_t gfp_mask,
2555 					    unsigned long *total_scanned)
2556 {
2557 	unsigned long nr_reclaimed = 0;
2558 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2559 	unsigned long reclaimed;
2560 	int loop = 0;
2561 	struct mem_cgroup_tree_per_zone *mctz;
2562 	unsigned long excess;
2563 	unsigned long nr_scanned;
2564 
2565 	if (order > 0)
2566 		return 0;
2567 
2568 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2569 	/*
2570 	 * This loop can run a while, specially if mem_cgroup's continuously
2571 	 * keep exceeding their soft limit and putting the system under
2572 	 * pressure
2573 	 */
2574 	do {
2575 		if (next_mz)
2576 			mz = next_mz;
2577 		else
2578 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2579 		if (!mz)
2580 			break;
2581 
2582 		nr_scanned = 0;
2583 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2584 						    gfp_mask, &nr_scanned);
2585 		nr_reclaimed += reclaimed;
2586 		*total_scanned += nr_scanned;
2587 		spin_lock_irq(&mctz->lock);
2588 		__mem_cgroup_remove_exceeded(mz, mctz);
2589 
2590 		/*
2591 		 * If we failed to reclaim anything from this memory cgroup
2592 		 * it is time to move on to the next cgroup
2593 		 */
2594 		next_mz = NULL;
2595 		if (!reclaimed)
2596 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2597 
2598 		excess = soft_limit_excess(mz->memcg);
2599 		/*
2600 		 * One school of thought says that we should not add
2601 		 * back the node to the tree if reclaim returns 0.
2602 		 * But our reclaim could return 0, simply because due
2603 		 * to priority we are exposing a smaller subset of
2604 		 * memory to reclaim from. Consider this as a longer
2605 		 * term TODO.
2606 		 */
2607 		/* If excess == 0, no tree ops */
2608 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2609 		spin_unlock_irq(&mctz->lock);
2610 		css_put(&mz->memcg->css);
2611 		loop++;
2612 		/*
2613 		 * Could not reclaim anything and there are no more
2614 		 * mem cgroups to try or we seem to be looping without
2615 		 * reclaiming anything.
2616 		 */
2617 		if (!nr_reclaimed &&
2618 			(next_mz == NULL ||
2619 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2620 			break;
2621 	} while (!nr_reclaimed);
2622 	if (next_mz)
2623 		css_put(&next_mz->memcg->css);
2624 	return nr_reclaimed;
2625 }
2626 
2627 /*
2628  * Test whether @memcg has children, dead or alive.  Note that this
2629  * function doesn't care whether @memcg has use_hierarchy enabled and
2630  * returns %true if there are child csses according to the cgroup
2631  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2632  */
2633 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2634 {
2635 	bool ret;
2636 
2637 	rcu_read_lock();
2638 	ret = css_next_child(NULL, &memcg->css);
2639 	rcu_read_unlock();
2640 	return ret;
2641 }
2642 
2643 /*
2644  * Reclaims as many pages from the given memcg as possible and moves
2645  * the rest to the parent.
2646  *
2647  * Caller is responsible for holding css reference for memcg.
2648  */
2649 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2650 {
2651 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2652 
2653 	/* we call try-to-free pages for make this cgroup empty */
2654 	lru_add_drain_all();
2655 	/* try to free all pages in this cgroup */
2656 	while (nr_retries && page_counter_read(&memcg->memory)) {
2657 		int progress;
2658 
2659 		if (signal_pending(current))
2660 			return -EINTR;
2661 
2662 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2663 							GFP_KERNEL, true);
2664 		if (!progress) {
2665 			nr_retries--;
2666 			/* maybe some writeback is necessary */
2667 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2668 		}
2669 
2670 	}
2671 
2672 	return 0;
2673 }
2674 
2675 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2676 					    char *buf, size_t nbytes,
2677 					    loff_t off)
2678 {
2679 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2680 
2681 	if (mem_cgroup_is_root(memcg))
2682 		return -EINVAL;
2683 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2684 }
2685 
2686 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2687 				     struct cftype *cft)
2688 {
2689 	return mem_cgroup_from_css(css)->use_hierarchy;
2690 }
2691 
2692 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2693 				      struct cftype *cft, u64 val)
2694 {
2695 	int retval = 0;
2696 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2697 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2698 
2699 	if (memcg->use_hierarchy == val)
2700 		return 0;
2701 
2702 	/*
2703 	 * If parent's use_hierarchy is set, we can't make any modifications
2704 	 * in the child subtrees. If it is unset, then the change can
2705 	 * occur, provided the current cgroup has no children.
2706 	 *
2707 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2708 	 * set if there are no children.
2709 	 */
2710 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2711 				(val == 1 || val == 0)) {
2712 		if (!memcg_has_children(memcg))
2713 			memcg->use_hierarchy = val;
2714 		else
2715 			retval = -EBUSY;
2716 	} else
2717 		retval = -EINVAL;
2718 
2719 	return retval;
2720 }
2721 
2722 static unsigned long tree_stat(struct mem_cgroup *memcg,
2723 			       enum mem_cgroup_stat_index idx)
2724 {
2725 	struct mem_cgroup *iter;
2726 	unsigned long val = 0;
2727 
2728 	for_each_mem_cgroup_tree(iter, memcg)
2729 		val += mem_cgroup_read_stat(iter, idx);
2730 
2731 	return val;
2732 }
2733 
2734 static unsigned long tree_events(struct mem_cgroup *memcg,
2735 				 enum mem_cgroup_events_index idx)
2736 {
2737 	struct mem_cgroup *iter;
2738 	unsigned long val = 0;
2739 
2740 	for_each_mem_cgroup_tree(iter, memcg)
2741 		val += mem_cgroup_read_events(iter, idx);
2742 
2743 	return val;
2744 }
2745 
2746 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2747 {
2748 	unsigned long val;
2749 
2750 	if (mem_cgroup_is_root(memcg)) {
2751 		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2752 		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2753 		if (swap)
2754 			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2755 	} else {
2756 		if (!swap)
2757 			val = page_counter_read(&memcg->memory);
2758 		else
2759 			val = page_counter_read(&memcg->memsw);
2760 	}
2761 	return val;
2762 }
2763 
2764 enum {
2765 	RES_USAGE,
2766 	RES_LIMIT,
2767 	RES_MAX_USAGE,
2768 	RES_FAILCNT,
2769 	RES_SOFT_LIMIT,
2770 };
2771 
2772 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2773 			       struct cftype *cft)
2774 {
2775 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2776 	struct page_counter *counter;
2777 
2778 	switch (MEMFILE_TYPE(cft->private)) {
2779 	case _MEM:
2780 		counter = &memcg->memory;
2781 		break;
2782 	case _MEMSWAP:
2783 		counter = &memcg->memsw;
2784 		break;
2785 	case _KMEM:
2786 		counter = &memcg->kmem;
2787 		break;
2788 	case _TCP:
2789 		counter = &memcg->tcpmem;
2790 		break;
2791 	default:
2792 		BUG();
2793 	}
2794 
2795 	switch (MEMFILE_ATTR(cft->private)) {
2796 	case RES_USAGE:
2797 		if (counter == &memcg->memory)
2798 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2799 		if (counter == &memcg->memsw)
2800 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2801 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2802 	case RES_LIMIT:
2803 		return (u64)counter->limit * PAGE_SIZE;
2804 	case RES_MAX_USAGE:
2805 		return (u64)counter->watermark * PAGE_SIZE;
2806 	case RES_FAILCNT:
2807 		return counter->failcnt;
2808 	case RES_SOFT_LIMIT:
2809 		return (u64)memcg->soft_limit * PAGE_SIZE;
2810 	default:
2811 		BUG();
2812 	}
2813 }
2814 
2815 #ifndef CONFIG_SLOB
2816 static int memcg_online_kmem(struct mem_cgroup *memcg)
2817 {
2818 	int memcg_id;
2819 
2820 	BUG_ON(memcg->kmemcg_id >= 0);
2821 	BUG_ON(memcg->kmem_state);
2822 
2823 	memcg_id = memcg_alloc_cache_id();
2824 	if (memcg_id < 0)
2825 		return memcg_id;
2826 
2827 	static_branch_inc(&memcg_kmem_enabled_key);
2828 	/*
2829 	 * A memory cgroup is considered kmem-online as soon as it gets
2830 	 * kmemcg_id. Setting the id after enabling static branching will
2831 	 * guarantee no one starts accounting before all call sites are
2832 	 * patched.
2833 	 */
2834 	memcg->kmemcg_id = memcg_id;
2835 	memcg->kmem_state = KMEM_ONLINE;
2836 
2837 	return 0;
2838 }
2839 
2840 static int memcg_propagate_kmem(struct mem_cgroup *parent,
2841 				struct mem_cgroup *memcg)
2842 {
2843 	int ret = 0;
2844 
2845 	mutex_lock(&memcg_limit_mutex);
2846 	/*
2847 	 * If the parent cgroup is not kmem-online now, it cannot be
2848 	 * onlined after this point, because it has at least one child
2849 	 * already.
2850 	 */
2851 	if (memcg_kmem_online(parent) ||
2852 	    (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2853 		ret = memcg_online_kmem(memcg);
2854 	mutex_unlock(&memcg_limit_mutex);
2855 	return ret;
2856 }
2857 
2858 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2859 {
2860 	struct cgroup_subsys_state *css;
2861 	struct mem_cgroup *parent, *child;
2862 	int kmemcg_id;
2863 
2864 	if (memcg->kmem_state != KMEM_ONLINE)
2865 		return;
2866 	/*
2867 	 * Clear the online state before clearing memcg_caches array
2868 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2869 	 * guarantees that no cache will be created for this cgroup
2870 	 * after we are done (see memcg_create_kmem_cache()).
2871 	 */
2872 	memcg->kmem_state = KMEM_ALLOCATED;
2873 
2874 	memcg_deactivate_kmem_caches(memcg);
2875 
2876 	kmemcg_id = memcg->kmemcg_id;
2877 	BUG_ON(kmemcg_id < 0);
2878 
2879 	parent = parent_mem_cgroup(memcg);
2880 	if (!parent)
2881 		parent = root_mem_cgroup;
2882 
2883 	/*
2884 	 * Change kmemcg_id of this cgroup and all its descendants to the
2885 	 * parent's id, and then move all entries from this cgroup's list_lrus
2886 	 * to ones of the parent. After we have finished, all list_lrus
2887 	 * corresponding to this cgroup are guaranteed to remain empty. The
2888 	 * ordering is imposed by list_lru_node->lock taken by
2889 	 * memcg_drain_all_list_lrus().
2890 	 */
2891 	css_for_each_descendant_pre(css, &memcg->css) {
2892 		child = mem_cgroup_from_css(css);
2893 		BUG_ON(child->kmemcg_id != kmemcg_id);
2894 		child->kmemcg_id = parent->kmemcg_id;
2895 		if (!memcg->use_hierarchy)
2896 			break;
2897 	}
2898 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2899 
2900 	memcg_free_cache_id(kmemcg_id);
2901 }
2902 
2903 static void memcg_free_kmem(struct mem_cgroup *memcg)
2904 {
2905 	/* css_alloc() failed, offlining didn't happen */
2906 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2907 		memcg_offline_kmem(memcg);
2908 
2909 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2910 		memcg_destroy_kmem_caches(memcg);
2911 		static_branch_dec(&memcg_kmem_enabled_key);
2912 		WARN_ON(page_counter_read(&memcg->kmem));
2913 	}
2914 }
2915 #else
2916 static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2917 {
2918 	return 0;
2919 }
2920 static int memcg_online_kmem(struct mem_cgroup *memcg)
2921 {
2922 	return 0;
2923 }
2924 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2925 {
2926 }
2927 static void memcg_free_kmem(struct mem_cgroup *memcg)
2928 {
2929 }
2930 #endif /* !CONFIG_SLOB */
2931 
2932 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2933 				   unsigned long limit)
2934 {
2935 	int ret = 0;
2936 
2937 	mutex_lock(&memcg_limit_mutex);
2938 	/* Top-level cgroup doesn't propagate from root */
2939 	if (!memcg_kmem_online(memcg)) {
2940 		if (cgroup_is_populated(memcg->css.cgroup) ||
2941 		    (memcg->use_hierarchy && memcg_has_children(memcg)))
2942 			ret = -EBUSY;
2943 		if (ret)
2944 			goto out;
2945 		ret = memcg_online_kmem(memcg);
2946 		if (ret)
2947 			goto out;
2948 	}
2949 	ret = page_counter_limit(&memcg->kmem, limit);
2950 out:
2951 	mutex_unlock(&memcg_limit_mutex);
2952 	return ret;
2953 }
2954 
2955 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2956 {
2957 	int ret;
2958 
2959 	mutex_lock(&memcg_limit_mutex);
2960 
2961 	ret = page_counter_limit(&memcg->tcpmem, limit);
2962 	if (ret)
2963 		goto out;
2964 
2965 	if (!memcg->tcpmem_active) {
2966 		/*
2967 		 * The active flag needs to be written after the static_key
2968 		 * update. This is what guarantees that the socket activation
2969 		 * function is the last one to run. See sock_update_memcg() for
2970 		 * details, and note that we don't mark any socket as belonging
2971 		 * to this memcg until that flag is up.
2972 		 *
2973 		 * We need to do this, because static_keys will span multiple
2974 		 * sites, but we can't control their order. If we mark a socket
2975 		 * as accounted, but the accounting functions are not patched in
2976 		 * yet, we'll lose accounting.
2977 		 *
2978 		 * We never race with the readers in sock_update_memcg(),
2979 		 * because when this value change, the code to process it is not
2980 		 * patched in yet.
2981 		 */
2982 		static_branch_inc(&memcg_sockets_enabled_key);
2983 		memcg->tcpmem_active = true;
2984 	}
2985 out:
2986 	mutex_unlock(&memcg_limit_mutex);
2987 	return ret;
2988 }
2989 
2990 /*
2991  * The user of this function is...
2992  * RES_LIMIT.
2993  */
2994 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2995 				char *buf, size_t nbytes, loff_t off)
2996 {
2997 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2998 	unsigned long nr_pages;
2999 	int ret;
3000 
3001 	buf = strstrip(buf);
3002 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3003 	if (ret)
3004 		return ret;
3005 
3006 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3007 	case RES_LIMIT:
3008 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3009 			ret = -EINVAL;
3010 			break;
3011 		}
3012 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3013 		case _MEM:
3014 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3015 			break;
3016 		case _MEMSWAP:
3017 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3018 			break;
3019 		case _KMEM:
3020 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3021 			break;
3022 		case _TCP:
3023 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3024 			break;
3025 		}
3026 		break;
3027 	case RES_SOFT_LIMIT:
3028 		memcg->soft_limit = nr_pages;
3029 		ret = 0;
3030 		break;
3031 	}
3032 	return ret ?: nbytes;
3033 }
3034 
3035 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3036 				size_t nbytes, loff_t off)
3037 {
3038 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3039 	struct page_counter *counter;
3040 
3041 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3042 	case _MEM:
3043 		counter = &memcg->memory;
3044 		break;
3045 	case _MEMSWAP:
3046 		counter = &memcg->memsw;
3047 		break;
3048 	case _KMEM:
3049 		counter = &memcg->kmem;
3050 		break;
3051 	case _TCP:
3052 		counter = &memcg->tcpmem;
3053 		break;
3054 	default:
3055 		BUG();
3056 	}
3057 
3058 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3059 	case RES_MAX_USAGE:
3060 		page_counter_reset_watermark(counter);
3061 		break;
3062 	case RES_FAILCNT:
3063 		counter->failcnt = 0;
3064 		break;
3065 	default:
3066 		BUG();
3067 	}
3068 
3069 	return nbytes;
3070 }
3071 
3072 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3073 					struct cftype *cft)
3074 {
3075 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3076 }
3077 
3078 #ifdef CONFIG_MMU
3079 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3080 					struct cftype *cft, u64 val)
3081 {
3082 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3083 
3084 	if (val & ~MOVE_MASK)
3085 		return -EINVAL;
3086 
3087 	/*
3088 	 * No kind of locking is needed in here, because ->can_attach() will
3089 	 * check this value once in the beginning of the process, and then carry
3090 	 * on with stale data. This means that changes to this value will only
3091 	 * affect task migrations starting after the change.
3092 	 */
3093 	memcg->move_charge_at_immigrate = val;
3094 	return 0;
3095 }
3096 #else
3097 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3098 					struct cftype *cft, u64 val)
3099 {
3100 	return -ENOSYS;
3101 }
3102 #endif
3103 
3104 #ifdef CONFIG_NUMA
3105 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3106 {
3107 	struct numa_stat {
3108 		const char *name;
3109 		unsigned int lru_mask;
3110 	};
3111 
3112 	static const struct numa_stat stats[] = {
3113 		{ "total", LRU_ALL },
3114 		{ "file", LRU_ALL_FILE },
3115 		{ "anon", LRU_ALL_ANON },
3116 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3117 	};
3118 	const struct numa_stat *stat;
3119 	int nid;
3120 	unsigned long nr;
3121 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3122 
3123 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3124 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3125 		seq_printf(m, "%s=%lu", stat->name, nr);
3126 		for_each_node_state(nid, N_MEMORY) {
3127 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3128 							  stat->lru_mask);
3129 			seq_printf(m, " N%d=%lu", nid, nr);
3130 		}
3131 		seq_putc(m, '\n');
3132 	}
3133 
3134 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3135 		struct mem_cgroup *iter;
3136 
3137 		nr = 0;
3138 		for_each_mem_cgroup_tree(iter, memcg)
3139 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3140 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3141 		for_each_node_state(nid, N_MEMORY) {
3142 			nr = 0;
3143 			for_each_mem_cgroup_tree(iter, memcg)
3144 				nr += mem_cgroup_node_nr_lru_pages(
3145 					iter, nid, stat->lru_mask);
3146 			seq_printf(m, " N%d=%lu", nid, nr);
3147 		}
3148 		seq_putc(m, '\n');
3149 	}
3150 
3151 	return 0;
3152 }
3153 #endif /* CONFIG_NUMA */
3154 
3155 static int memcg_stat_show(struct seq_file *m, void *v)
3156 {
3157 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3158 	unsigned long memory, memsw;
3159 	struct mem_cgroup *mi;
3160 	unsigned int i;
3161 
3162 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3163 		     MEM_CGROUP_STAT_NSTATS);
3164 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3165 		     MEM_CGROUP_EVENTS_NSTATS);
3166 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3167 
3168 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3170 			continue;
3171 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3172 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3173 	}
3174 
3175 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3176 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3177 			   mem_cgroup_read_events(memcg, i));
3178 
3179 	for (i = 0; i < NR_LRU_LISTS; i++)
3180 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3181 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3182 
3183 	/* Hierarchical information */
3184 	memory = memsw = PAGE_COUNTER_MAX;
3185 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3186 		memory = min(memory, mi->memory.limit);
3187 		memsw = min(memsw, mi->memsw.limit);
3188 	}
3189 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3190 		   (u64)memory * PAGE_SIZE);
3191 	if (do_memsw_account())
3192 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3193 			   (u64)memsw * PAGE_SIZE);
3194 
3195 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3196 		unsigned long long val = 0;
3197 
3198 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3199 			continue;
3200 		for_each_mem_cgroup_tree(mi, memcg)
3201 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3202 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3203 	}
3204 
3205 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3206 		unsigned long long val = 0;
3207 
3208 		for_each_mem_cgroup_tree(mi, memcg)
3209 			val += mem_cgroup_read_events(mi, i);
3210 		seq_printf(m, "total_%s %llu\n",
3211 			   mem_cgroup_events_names[i], val);
3212 	}
3213 
3214 	for (i = 0; i < NR_LRU_LISTS; i++) {
3215 		unsigned long long val = 0;
3216 
3217 		for_each_mem_cgroup_tree(mi, memcg)
3218 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3219 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3220 	}
3221 
3222 #ifdef CONFIG_DEBUG_VM
3223 	{
3224 		int nid, zid;
3225 		struct mem_cgroup_per_zone *mz;
3226 		struct zone_reclaim_stat *rstat;
3227 		unsigned long recent_rotated[2] = {0, 0};
3228 		unsigned long recent_scanned[2] = {0, 0};
3229 
3230 		for_each_online_node(nid)
3231 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3232 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3233 				rstat = &mz->lruvec.reclaim_stat;
3234 
3235 				recent_rotated[0] += rstat->recent_rotated[0];
3236 				recent_rotated[1] += rstat->recent_rotated[1];
3237 				recent_scanned[0] += rstat->recent_scanned[0];
3238 				recent_scanned[1] += rstat->recent_scanned[1];
3239 			}
3240 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3241 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3242 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3243 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3244 	}
3245 #endif
3246 
3247 	return 0;
3248 }
3249 
3250 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3251 				      struct cftype *cft)
3252 {
3253 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3254 
3255 	return mem_cgroup_swappiness(memcg);
3256 }
3257 
3258 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3259 				       struct cftype *cft, u64 val)
3260 {
3261 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3262 
3263 	if (val > 100)
3264 		return -EINVAL;
3265 
3266 	if (css->parent)
3267 		memcg->swappiness = val;
3268 	else
3269 		vm_swappiness = val;
3270 
3271 	return 0;
3272 }
3273 
3274 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3275 {
3276 	struct mem_cgroup_threshold_ary *t;
3277 	unsigned long usage;
3278 	int i;
3279 
3280 	rcu_read_lock();
3281 	if (!swap)
3282 		t = rcu_dereference(memcg->thresholds.primary);
3283 	else
3284 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3285 
3286 	if (!t)
3287 		goto unlock;
3288 
3289 	usage = mem_cgroup_usage(memcg, swap);
3290 
3291 	/*
3292 	 * current_threshold points to threshold just below or equal to usage.
3293 	 * If it's not true, a threshold was crossed after last
3294 	 * call of __mem_cgroup_threshold().
3295 	 */
3296 	i = t->current_threshold;
3297 
3298 	/*
3299 	 * Iterate backward over array of thresholds starting from
3300 	 * current_threshold and check if a threshold is crossed.
3301 	 * If none of thresholds below usage is crossed, we read
3302 	 * only one element of the array here.
3303 	 */
3304 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3305 		eventfd_signal(t->entries[i].eventfd, 1);
3306 
3307 	/* i = current_threshold + 1 */
3308 	i++;
3309 
3310 	/*
3311 	 * Iterate forward over array of thresholds starting from
3312 	 * current_threshold+1 and check if a threshold is crossed.
3313 	 * If none of thresholds above usage is crossed, we read
3314 	 * only one element of the array here.
3315 	 */
3316 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3317 		eventfd_signal(t->entries[i].eventfd, 1);
3318 
3319 	/* Update current_threshold */
3320 	t->current_threshold = i - 1;
3321 unlock:
3322 	rcu_read_unlock();
3323 }
3324 
3325 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3326 {
3327 	while (memcg) {
3328 		__mem_cgroup_threshold(memcg, false);
3329 		if (do_memsw_account())
3330 			__mem_cgroup_threshold(memcg, true);
3331 
3332 		memcg = parent_mem_cgroup(memcg);
3333 	}
3334 }
3335 
3336 static int compare_thresholds(const void *a, const void *b)
3337 {
3338 	const struct mem_cgroup_threshold *_a = a;
3339 	const struct mem_cgroup_threshold *_b = b;
3340 
3341 	if (_a->threshold > _b->threshold)
3342 		return 1;
3343 
3344 	if (_a->threshold < _b->threshold)
3345 		return -1;
3346 
3347 	return 0;
3348 }
3349 
3350 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3351 {
3352 	struct mem_cgroup_eventfd_list *ev;
3353 
3354 	spin_lock(&memcg_oom_lock);
3355 
3356 	list_for_each_entry(ev, &memcg->oom_notify, list)
3357 		eventfd_signal(ev->eventfd, 1);
3358 
3359 	spin_unlock(&memcg_oom_lock);
3360 	return 0;
3361 }
3362 
3363 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3364 {
3365 	struct mem_cgroup *iter;
3366 
3367 	for_each_mem_cgroup_tree(iter, memcg)
3368 		mem_cgroup_oom_notify_cb(iter);
3369 }
3370 
3371 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3372 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3373 {
3374 	struct mem_cgroup_thresholds *thresholds;
3375 	struct mem_cgroup_threshold_ary *new;
3376 	unsigned long threshold;
3377 	unsigned long usage;
3378 	int i, size, ret;
3379 
3380 	ret = page_counter_memparse(args, "-1", &threshold);
3381 	if (ret)
3382 		return ret;
3383 
3384 	mutex_lock(&memcg->thresholds_lock);
3385 
3386 	if (type == _MEM) {
3387 		thresholds = &memcg->thresholds;
3388 		usage = mem_cgroup_usage(memcg, false);
3389 	} else if (type == _MEMSWAP) {
3390 		thresholds = &memcg->memsw_thresholds;
3391 		usage = mem_cgroup_usage(memcg, true);
3392 	} else
3393 		BUG();
3394 
3395 	/* Check if a threshold crossed before adding a new one */
3396 	if (thresholds->primary)
3397 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3398 
3399 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3400 
3401 	/* Allocate memory for new array of thresholds */
3402 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3403 			GFP_KERNEL);
3404 	if (!new) {
3405 		ret = -ENOMEM;
3406 		goto unlock;
3407 	}
3408 	new->size = size;
3409 
3410 	/* Copy thresholds (if any) to new array */
3411 	if (thresholds->primary) {
3412 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3413 				sizeof(struct mem_cgroup_threshold));
3414 	}
3415 
3416 	/* Add new threshold */
3417 	new->entries[size - 1].eventfd = eventfd;
3418 	new->entries[size - 1].threshold = threshold;
3419 
3420 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3421 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3422 			compare_thresholds, NULL);
3423 
3424 	/* Find current threshold */
3425 	new->current_threshold = -1;
3426 	for (i = 0; i < size; i++) {
3427 		if (new->entries[i].threshold <= usage) {
3428 			/*
3429 			 * new->current_threshold will not be used until
3430 			 * rcu_assign_pointer(), so it's safe to increment
3431 			 * it here.
3432 			 */
3433 			++new->current_threshold;
3434 		} else
3435 			break;
3436 	}
3437 
3438 	/* Free old spare buffer and save old primary buffer as spare */
3439 	kfree(thresholds->spare);
3440 	thresholds->spare = thresholds->primary;
3441 
3442 	rcu_assign_pointer(thresholds->primary, new);
3443 
3444 	/* To be sure that nobody uses thresholds */
3445 	synchronize_rcu();
3446 
3447 unlock:
3448 	mutex_unlock(&memcg->thresholds_lock);
3449 
3450 	return ret;
3451 }
3452 
3453 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3454 	struct eventfd_ctx *eventfd, const char *args)
3455 {
3456 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3457 }
3458 
3459 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3460 	struct eventfd_ctx *eventfd, const char *args)
3461 {
3462 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3463 }
3464 
3465 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3466 	struct eventfd_ctx *eventfd, enum res_type type)
3467 {
3468 	struct mem_cgroup_thresholds *thresholds;
3469 	struct mem_cgroup_threshold_ary *new;
3470 	unsigned long usage;
3471 	int i, j, size;
3472 
3473 	mutex_lock(&memcg->thresholds_lock);
3474 
3475 	if (type == _MEM) {
3476 		thresholds = &memcg->thresholds;
3477 		usage = mem_cgroup_usage(memcg, false);
3478 	} else if (type == _MEMSWAP) {
3479 		thresholds = &memcg->memsw_thresholds;
3480 		usage = mem_cgroup_usage(memcg, true);
3481 	} else
3482 		BUG();
3483 
3484 	if (!thresholds->primary)
3485 		goto unlock;
3486 
3487 	/* Check if a threshold crossed before removing */
3488 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3489 
3490 	/* Calculate new number of threshold */
3491 	size = 0;
3492 	for (i = 0; i < thresholds->primary->size; i++) {
3493 		if (thresholds->primary->entries[i].eventfd != eventfd)
3494 			size++;
3495 	}
3496 
3497 	new = thresholds->spare;
3498 
3499 	/* Set thresholds array to NULL if we don't have thresholds */
3500 	if (!size) {
3501 		kfree(new);
3502 		new = NULL;
3503 		goto swap_buffers;
3504 	}
3505 
3506 	new->size = size;
3507 
3508 	/* Copy thresholds and find current threshold */
3509 	new->current_threshold = -1;
3510 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3511 		if (thresholds->primary->entries[i].eventfd == eventfd)
3512 			continue;
3513 
3514 		new->entries[j] = thresholds->primary->entries[i];
3515 		if (new->entries[j].threshold <= usage) {
3516 			/*
3517 			 * new->current_threshold will not be used
3518 			 * until rcu_assign_pointer(), so it's safe to increment
3519 			 * it here.
3520 			 */
3521 			++new->current_threshold;
3522 		}
3523 		j++;
3524 	}
3525 
3526 swap_buffers:
3527 	/* Swap primary and spare array */
3528 	thresholds->spare = thresholds->primary;
3529 
3530 	rcu_assign_pointer(thresholds->primary, new);
3531 
3532 	/* To be sure that nobody uses thresholds */
3533 	synchronize_rcu();
3534 
3535 	/* If all events are unregistered, free the spare array */
3536 	if (!new) {
3537 		kfree(thresholds->spare);
3538 		thresholds->spare = NULL;
3539 	}
3540 unlock:
3541 	mutex_unlock(&memcg->thresholds_lock);
3542 }
3543 
3544 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3545 	struct eventfd_ctx *eventfd)
3546 {
3547 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3548 }
3549 
3550 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3551 	struct eventfd_ctx *eventfd)
3552 {
3553 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3554 }
3555 
3556 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3557 	struct eventfd_ctx *eventfd, const char *args)
3558 {
3559 	struct mem_cgroup_eventfd_list *event;
3560 
3561 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3562 	if (!event)
3563 		return -ENOMEM;
3564 
3565 	spin_lock(&memcg_oom_lock);
3566 
3567 	event->eventfd = eventfd;
3568 	list_add(&event->list, &memcg->oom_notify);
3569 
3570 	/* already in OOM ? */
3571 	if (memcg->under_oom)
3572 		eventfd_signal(eventfd, 1);
3573 	spin_unlock(&memcg_oom_lock);
3574 
3575 	return 0;
3576 }
3577 
3578 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3579 	struct eventfd_ctx *eventfd)
3580 {
3581 	struct mem_cgroup_eventfd_list *ev, *tmp;
3582 
3583 	spin_lock(&memcg_oom_lock);
3584 
3585 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3586 		if (ev->eventfd == eventfd) {
3587 			list_del(&ev->list);
3588 			kfree(ev);
3589 		}
3590 	}
3591 
3592 	spin_unlock(&memcg_oom_lock);
3593 }
3594 
3595 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3596 {
3597 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3598 
3599 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3600 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3601 	return 0;
3602 }
3603 
3604 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3605 	struct cftype *cft, u64 val)
3606 {
3607 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3608 
3609 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3610 	if (!css->parent || !((val == 0) || (val == 1)))
3611 		return -EINVAL;
3612 
3613 	memcg->oom_kill_disable = val;
3614 	if (!val)
3615 		memcg_oom_recover(memcg);
3616 
3617 	return 0;
3618 }
3619 
3620 #ifdef CONFIG_CGROUP_WRITEBACK
3621 
3622 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3623 {
3624 	return &memcg->cgwb_list;
3625 }
3626 
3627 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3628 {
3629 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3630 }
3631 
3632 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3633 {
3634 	wb_domain_exit(&memcg->cgwb_domain);
3635 }
3636 
3637 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3638 {
3639 	wb_domain_size_changed(&memcg->cgwb_domain);
3640 }
3641 
3642 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3643 {
3644 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3645 
3646 	if (!memcg->css.parent)
3647 		return NULL;
3648 
3649 	return &memcg->cgwb_domain;
3650 }
3651 
3652 /**
3653  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3654  * @wb: bdi_writeback in question
3655  * @pfilepages: out parameter for number of file pages
3656  * @pheadroom: out parameter for number of allocatable pages according to memcg
3657  * @pdirty: out parameter for number of dirty pages
3658  * @pwriteback: out parameter for number of pages under writeback
3659  *
3660  * Determine the numbers of file, headroom, dirty, and writeback pages in
3661  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3662  * is a bit more involved.
3663  *
3664  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3665  * headroom is calculated as the lowest headroom of itself and the
3666  * ancestors.  Note that this doesn't consider the actual amount of
3667  * available memory in the system.  The caller should further cap
3668  * *@pheadroom accordingly.
3669  */
3670 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3671 			 unsigned long *pheadroom, unsigned long *pdirty,
3672 			 unsigned long *pwriteback)
3673 {
3674 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3675 	struct mem_cgroup *parent;
3676 
3677 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3678 
3679 	/* this should eventually include NR_UNSTABLE_NFS */
3680 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3681 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3682 						     (1 << LRU_ACTIVE_FILE));
3683 	*pheadroom = PAGE_COUNTER_MAX;
3684 
3685 	while ((parent = parent_mem_cgroup(memcg))) {
3686 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3687 		unsigned long used = page_counter_read(&memcg->memory);
3688 
3689 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3690 		memcg = parent;
3691 	}
3692 }
3693 
3694 #else	/* CONFIG_CGROUP_WRITEBACK */
3695 
3696 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3697 {
3698 	return 0;
3699 }
3700 
3701 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3702 {
3703 }
3704 
3705 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3706 {
3707 }
3708 
3709 #endif	/* CONFIG_CGROUP_WRITEBACK */
3710 
3711 /*
3712  * DO NOT USE IN NEW FILES.
3713  *
3714  * "cgroup.event_control" implementation.
3715  *
3716  * This is way over-engineered.  It tries to support fully configurable
3717  * events for each user.  Such level of flexibility is completely
3718  * unnecessary especially in the light of the planned unified hierarchy.
3719  *
3720  * Please deprecate this and replace with something simpler if at all
3721  * possible.
3722  */
3723 
3724 /*
3725  * Unregister event and free resources.
3726  *
3727  * Gets called from workqueue.
3728  */
3729 static void memcg_event_remove(struct work_struct *work)
3730 {
3731 	struct mem_cgroup_event *event =
3732 		container_of(work, struct mem_cgroup_event, remove);
3733 	struct mem_cgroup *memcg = event->memcg;
3734 
3735 	remove_wait_queue(event->wqh, &event->wait);
3736 
3737 	event->unregister_event(memcg, event->eventfd);
3738 
3739 	/* Notify userspace the event is going away. */
3740 	eventfd_signal(event->eventfd, 1);
3741 
3742 	eventfd_ctx_put(event->eventfd);
3743 	kfree(event);
3744 	css_put(&memcg->css);
3745 }
3746 
3747 /*
3748  * Gets called on POLLHUP on eventfd when user closes it.
3749  *
3750  * Called with wqh->lock held and interrupts disabled.
3751  */
3752 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3753 			    int sync, void *key)
3754 {
3755 	struct mem_cgroup_event *event =
3756 		container_of(wait, struct mem_cgroup_event, wait);
3757 	struct mem_cgroup *memcg = event->memcg;
3758 	unsigned long flags = (unsigned long)key;
3759 
3760 	if (flags & POLLHUP) {
3761 		/*
3762 		 * If the event has been detached at cgroup removal, we
3763 		 * can simply return knowing the other side will cleanup
3764 		 * for us.
3765 		 *
3766 		 * We can't race against event freeing since the other
3767 		 * side will require wqh->lock via remove_wait_queue(),
3768 		 * which we hold.
3769 		 */
3770 		spin_lock(&memcg->event_list_lock);
3771 		if (!list_empty(&event->list)) {
3772 			list_del_init(&event->list);
3773 			/*
3774 			 * We are in atomic context, but cgroup_event_remove()
3775 			 * may sleep, so we have to call it in workqueue.
3776 			 */
3777 			schedule_work(&event->remove);
3778 		}
3779 		spin_unlock(&memcg->event_list_lock);
3780 	}
3781 
3782 	return 0;
3783 }
3784 
3785 static void memcg_event_ptable_queue_proc(struct file *file,
3786 		wait_queue_head_t *wqh, poll_table *pt)
3787 {
3788 	struct mem_cgroup_event *event =
3789 		container_of(pt, struct mem_cgroup_event, pt);
3790 
3791 	event->wqh = wqh;
3792 	add_wait_queue(wqh, &event->wait);
3793 }
3794 
3795 /*
3796  * DO NOT USE IN NEW FILES.
3797  *
3798  * Parse input and register new cgroup event handler.
3799  *
3800  * Input must be in format '<event_fd> <control_fd> <args>'.
3801  * Interpretation of args is defined by control file implementation.
3802  */
3803 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3804 					 char *buf, size_t nbytes, loff_t off)
3805 {
3806 	struct cgroup_subsys_state *css = of_css(of);
3807 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3808 	struct mem_cgroup_event *event;
3809 	struct cgroup_subsys_state *cfile_css;
3810 	unsigned int efd, cfd;
3811 	struct fd efile;
3812 	struct fd cfile;
3813 	const char *name;
3814 	char *endp;
3815 	int ret;
3816 
3817 	buf = strstrip(buf);
3818 
3819 	efd = simple_strtoul(buf, &endp, 10);
3820 	if (*endp != ' ')
3821 		return -EINVAL;
3822 	buf = endp + 1;
3823 
3824 	cfd = simple_strtoul(buf, &endp, 10);
3825 	if ((*endp != ' ') && (*endp != '\0'))
3826 		return -EINVAL;
3827 	buf = endp + 1;
3828 
3829 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3830 	if (!event)
3831 		return -ENOMEM;
3832 
3833 	event->memcg = memcg;
3834 	INIT_LIST_HEAD(&event->list);
3835 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3836 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3837 	INIT_WORK(&event->remove, memcg_event_remove);
3838 
3839 	efile = fdget(efd);
3840 	if (!efile.file) {
3841 		ret = -EBADF;
3842 		goto out_kfree;
3843 	}
3844 
3845 	event->eventfd = eventfd_ctx_fileget(efile.file);
3846 	if (IS_ERR(event->eventfd)) {
3847 		ret = PTR_ERR(event->eventfd);
3848 		goto out_put_efile;
3849 	}
3850 
3851 	cfile = fdget(cfd);
3852 	if (!cfile.file) {
3853 		ret = -EBADF;
3854 		goto out_put_eventfd;
3855 	}
3856 
3857 	/* the process need read permission on control file */
3858 	/* AV: shouldn't we check that it's been opened for read instead? */
3859 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3860 	if (ret < 0)
3861 		goto out_put_cfile;
3862 
3863 	/*
3864 	 * Determine the event callbacks and set them in @event.  This used
3865 	 * to be done via struct cftype but cgroup core no longer knows
3866 	 * about these events.  The following is crude but the whole thing
3867 	 * is for compatibility anyway.
3868 	 *
3869 	 * DO NOT ADD NEW FILES.
3870 	 */
3871 	name = cfile.file->f_path.dentry->d_name.name;
3872 
3873 	if (!strcmp(name, "memory.usage_in_bytes")) {
3874 		event->register_event = mem_cgroup_usage_register_event;
3875 		event->unregister_event = mem_cgroup_usage_unregister_event;
3876 	} else if (!strcmp(name, "memory.oom_control")) {
3877 		event->register_event = mem_cgroup_oom_register_event;
3878 		event->unregister_event = mem_cgroup_oom_unregister_event;
3879 	} else if (!strcmp(name, "memory.pressure_level")) {
3880 		event->register_event = vmpressure_register_event;
3881 		event->unregister_event = vmpressure_unregister_event;
3882 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3883 		event->register_event = memsw_cgroup_usage_register_event;
3884 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3885 	} else {
3886 		ret = -EINVAL;
3887 		goto out_put_cfile;
3888 	}
3889 
3890 	/*
3891 	 * Verify @cfile should belong to @css.  Also, remaining events are
3892 	 * automatically removed on cgroup destruction but the removal is
3893 	 * asynchronous, so take an extra ref on @css.
3894 	 */
3895 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3896 					       &memory_cgrp_subsys);
3897 	ret = -EINVAL;
3898 	if (IS_ERR(cfile_css))
3899 		goto out_put_cfile;
3900 	if (cfile_css != css) {
3901 		css_put(cfile_css);
3902 		goto out_put_cfile;
3903 	}
3904 
3905 	ret = event->register_event(memcg, event->eventfd, buf);
3906 	if (ret)
3907 		goto out_put_css;
3908 
3909 	efile.file->f_op->poll(efile.file, &event->pt);
3910 
3911 	spin_lock(&memcg->event_list_lock);
3912 	list_add(&event->list, &memcg->event_list);
3913 	spin_unlock(&memcg->event_list_lock);
3914 
3915 	fdput(cfile);
3916 	fdput(efile);
3917 
3918 	return nbytes;
3919 
3920 out_put_css:
3921 	css_put(css);
3922 out_put_cfile:
3923 	fdput(cfile);
3924 out_put_eventfd:
3925 	eventfd_ctx_put(event->eventfd);
3926 out_put_efile:
3927 	fdput(efile);
3928 out_kfree:
3929 	kfree(event);
3930 
3931 	return ret;
3932 }
3933 
3934 static struct cftype mem_cgroup_legacy_files[] = {
3935 	{
3936 		.name = "usage_in_bytes",
3937 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3938 		.read_u64 = mem_cgroup_read_u64,
3939 	},
3940 	{
3941 		.name = "max_usage_in_bytes",
3942 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3943 		.write = mem_cgroup_reset,
3944 		.read_u64 = mem_cgroup_read_u64,
3945 	},
3946 	{
3947 		.name = "limit_in_bytes",
3948 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3949 		.write = mem_cgroup_write,
3950 		.read_u64 = mem_cgroup_read_u64,
3951 	},
3952 	{
3953 		.name = "soft_limit_in_bytes",
3954 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3955 		.write = mem_cgroup_write,
3956 		.read_u64 = mem_cgroup_read_u64,
3957 	},
3958 	{
3959 		.name = "failcnt",
3960 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3961 		.write = mem_cgroup_reset,
3962 		.read_u64 = mem_cgroup_read_u64,
3963 	},
3964 	{
3965 		.name = "stat",
3966 		.seq_show = memcg_stat_show,
3967 	},
3968 	{
3969 		.name = "force_empty",
3970 		.write = mem_cgroup_force_empty_write,
3971 	},
3972 	{
3973 		.name = "use_hierarchy",
3974 		.write_u64 = mem_cgroup_hierarchy_write,
3975 		.read_u64 = mem_cgroup_hierarchy_read,
3976 	},
3977 	{
3978 		.name = "cgroup.event_control",		/* XXX: for compat */
3979 		.write = memcg_write_event_control,
3980 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3981 	},
3982 	{
3983 		.name = "swappiness",
3984 		.read_u64 = mem_cgroup_swappiness_read,
3985 		.write_u64 = mem_cgroup_swappiness_write,
3986 	},
3987 	{
3988 		.name = "move_charge_at_immigrate",
3989 		.read_u64 = mem_cgroup_move_charge_read,
3990 		.write_u64 = mem_cgroup_move_charge_write,
3991 	},
3992 	{
3993 		.name = "oom_control",
3994 		.seq_show = mem_cgroup_oom_control_read,
3995 		.write_u64 = mem_cgroup_oom_control_write,
3996 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3997 	},
3998 	{
3999 		.name = "pressure_level",
4000 	},
4001 #ifdef CONFIG_NUMA
4002 	{
4003 		.name = "numa_stat",
4004 		.seq_show = memcg_numa_stat_show,
4005 	},
4006 #endif
4007 	{
4008 		.name = "kmem.limit_in_bytes",
4009 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4010 		.write = mem_cgroup_write,
4011 		.read_u64 = mem_cgroup_read_u64,
4012 	},
4013 	{
4014 		.name = "kmem.usage_in_bytes",
4015 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4016 		.read_u64 = mem_cgroup_read_u64,
4017 	},
4018 	{
4019 		.name = "kmem.failcnt",
4020 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4021 		.write = mem_cgroup_reset,
4022 		.read_u64 = mem_cgroup_read_u64,
4023 	},
4024 	{
4025 		.name = "kmem.max_usage_in_bytes",
4026 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4027 		.write = mem_cgroup_reset,
4028 		.read_u64 = mem_cgroup_read_u64,
4029 	},
4030 #ifdef CONFIG_SLABINFO
4031 	{
4032 		.name = "kmem.slabinfo",
4033 		.seq_start = slab_start,
4034 		.seq_next = slab_next,
4035 		.seq_stop = slab_stop,
4036 		.seq_show = memcg_slab_show,
4037 	},
4038 #endif
4039 	{
4040 		.name = "kmem.tcp.limit_in_bytes",
4041 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4042 		.write = mem_cgroup_write,
4043 		.read_u64 = mem_cgroup_read_u64,
4044 	},
4045 	{
4046 		.name = "kmem.tcp.usage_in_bytes",
4047 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4048 		.read_u64 = mem_cgroup_read_u64,
4049 	},
4050 	{
4051 		.name = "kmem.tcp.failcnt",
4052 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4053 		.write = mem_cgroup_reset,
4054 		.read_u64 = mem_cgroup_read_u64,
4055 	},
4056 	{
4057 		.name = "kmem.tcp.max_usage_in_bytes",
4058 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4059 		.write = mem_cgroup_reset,
4060 		.read_u64 = mem_cgroup_read_u64,
4061 	},
4062 	{ },	/* terminate */
4063 };
4064 
4065 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4066 {
4067 	struct mem_cgroup_per_node *pn;
4068 	struct mem_cgroup_per_zone *mz;
4069 	int zone, tmp = node;
4070 	/*
4071 	 * This routine is called against possible nodes.
4072 	 * But it's BUG to call kmalloc() against offline node.
4073 	 *
4074 	 * TODO: this routine can waste much memory for nodes which will
4075 	 *       never be onlined. It's better to use memory hotplug callback
4076 	 *       function.
4077 	 */
4078 	if (!node_state(node, N_NORMAL_MEMORY))
4079 		tmp = -1;
4080 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4081 	if (!pn)
4082 		return 1;
4083 
4084 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4085 		mz = &pn->zoneinfo[zone];
4086 		lruvec_init(&mz->lruvec);
4087 		mz->usage_in_excess = 0;
4088 		mz->on_tree = false;
4089 		mz->memcg = memcg;
4090 	}
4091 	memcg->nodeinfo[node] = pn;
4092 	return 0;
4093 }
4094 
4095 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4096 {
4097 	kfree(memcg->nodeinfo[node]);
4098 }
4099 
4100 static void mem_cgroup_free(struct mem_cgroup *memcg)
4101 {
4102 	int node;
4103 
4104 	memcg_wb_domain_exit(memcg);
4105 	for_each_node(node)
4106 		free_mem_cgroup_per_zone_info(memcg, node);
4107 	free_percpu(memcg->stat);
4108 	kfree(memcg);
4109 }
4110 
4111 static struct mem_cgroup *mem_cgroup_alloc(void)
4112 {
4113 	struct mem_cgroup *memcg;
4114 	size_t size;
4115 	int node;
4116 
4117 	size = sizeof(struct mem_cgroup);
4118 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4119 
4120 	memcg = kzalloc(size, GFP_KERNEL);
4121 	if (!memcg)
4122 		return NULL;
4123 
4124 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4125 	if (!memcg->stat)
4126 		goto fail;
4127 
4128 	for_each_node(node)
4129 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4130 			goto fail;
4131 
4132 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4133 		goto fail;
4134 
4135 	INIT_WORK(&memcg->high_work, high_work_func);
4136 	memcg->last_scanned_node = MAX_NUMNODES;
4137 	INIT_LIST_HEAD(&memcg->oom_notify);
4138 	mutex_init(&memcg->thresholds_lock);
4139 	spin_lock_init(&memcg->move_lock);
4140 	vmpressure_init(&memcg->vmpressure);
4141 	INIT_LIST_HEAD(&memcg->event_list);
4142 	spin_lock_init(&memcg->event_list_lock);
4143 	memcg->socket_pressure = jiffies;
4144 #ifndef CONFIG_SLOB
4145 	memcg->kmemcg_id = -1;
4146 #endif
4147 #ifdef CONFIG_CGROUP_WRITEBACK
4148 	INIT_LIST_HEAD(&memcg->cgwb_list);
4149 #endif
4150 	return memcg;
4151 fail:
4152 	mem_cgroup_free(memcg);
4153 	return NULL;
4154 }
4155 
4156 static struct cgroup_subsys_state * __ref
4157 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4158 {
4159 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4160 	struct mem_cgroup *memcg;
4161 	long error = -ENOMEM;
4162 
4163 	memcg = mem_cgroup_alloc();
4164 	if (!memcg)
4165 		return ERR_PTR(error);
4166 
4167 	memcg->high = PAGE_COUNTER_MAX;
4168 	memcg->soft_limit = PAGE_COUNTER_MAX;
4169 	if (parent) {
4170 		memcg->swappiness = mem_cgroup_swappiness(parent);
4171 		memcg->oom_kill_disable = parent->oom_kill_disable;
4172 	}
4173 	if (parent && parent->use_hierarchy) {
4174 		memcg->use_hierarchy = true;
4175 		page_counter_init(&memcg->memory, &parent->memory);
4176 		page_counter_init(&memcg->swap, &parent->swap);
4177 		page_counter_init(&memcg->memsw, &parent->memsw);
4178 		page_counter_init(&memcg->kmem, &parent->kmem);
4179 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4180 	} else {
4181 		page_counter_init(&memcg->memory, NULL);
4182 		page_counter_init(&memcg->swap, NULL);
4183 		page_counter_init(&memcg->memsw, NULL);
4184 		page_counter_init(&memcg->kmem, NULL);
4185 		page_counter_init(&memcg->tcpmem, NULL);
4186 		/*
4187 		 * Deeper hierachy with use_hierarchy == false doesn't make
4188 		 * much sense so let cgroup subsystem know about this
4189 		 * unfortunate state in our controller.
4190 		 */
4191 		if (parent != root_mem_cgroup)
4192 			memory_cgrp_subsys.broken_hierarchy = true;
4193 	}
4194 
4195 	/* The following stuff does not apply to the root */
4196 	if (!parent) {
4197 		root_mem_cgroup = memcg;
4198 		return &memcg->css;
4199 	}
4200 
4201 	error = memcg_propagate_kmem(parent, memcg);
4202 	if (error)
4203 		goto fail;
4204 
4205 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4206 		static_branch_inc(&memcg_sockets_enabled_key);
4207 
4208 	return &memcg->css;
4209 fail:
4210 	mem_cgroup_free(memcg);
4211 	return NULL;
4212 }
4213 
4214 static int
4215 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4216 {
4217 	if (css->id > MEM_CGROUP_ID_MAX)
4218 		return -ENOSPC;
4219 
4220 	return 0;
4221 }
4222 
4223 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4224 {
4225 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4226 	struct mem_cgroup_event *event, *tmp;
4227 
4228 	/*
4229 	 * Unregister events and notify userspace.
4230 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4231 	 * directory to avoid race between userspace and kernelspace.
4232 	 */
4233 	spin_lock(&memcg->event_list_lock);
4234 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4235 		list_del_init(&event->list);
4236 		schedule_work(&event->remove);
4237 	}
4238 	spin_unlock(&memcg->event_list_lock);
4239 
4240 	memcg_offline_kmem(memcg);
4241 	wb_memcg_offline(memcg);
4242 }
4243 
4244 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4245 {
4246 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4247 
4248 	invalidate_reclaim_iterators(memcg);
4249 }
4250 
4251 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4252 {
4253 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4254 
4255 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4256 		static_branch_dec(&memcg_sockets_enabled_key);
4257 
4258 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4259 		static_branch_dec(&memcg_sockets_enabled_key);
4260 
4261 	vmpressure_cleanup(&memcg->vmpressure);
4262 	cancel_work_sync(&memcg->high_work);
4263 	mem_cgroup_remove_from_trees(memcg);
4264 	memcg_free_kmem(memcg);
4265 	mem_cgroup_free(memcg);
4266 }
4267 
4268 /**
4269  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4270  * @css: the target css
4271  *
4272  * Reset the states of the mem_cgroup associated with @css.  This is
4273  * invoked when the userland requests disabling on the default hierarchy
4274  * but the memcg is pinned through dependency.  The memcg should stop
4275  * applying policies and should revert to the vanilla state as it may be
4276  * made visible again.
4277  *
4278  * The current implementation only resets the essential configurations.
4279  * This needs to be expanded to cover all the visible parts.
4280  */
4281 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4282 {
4283 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284 
4285 	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4286 	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4287 	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4288 	memcg->low = 0;
4289 	memcg->high = PAGE_COUNTER_MAX;
4290 	memcg->soft_limit = PAGE_COUNTER_MAX;
4291 	memcg_wb_domain_size_changed(memcg);
4292 }
4293 
4294 #ifdef CONFIG_MMU
4295 /* Handlers for move charge at task migration. */
4296 static int mem_cgroup_do_precharge(unsigned long count)
4297 {
4298 	int ret;
4299 
4300 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4301 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4302 	if (!ret) {
4303 		mc.precharge += count;
4304 		return ret;
4305 	}
4306 
4307 	/* Try charges one by one with reclaim */
4308 	while (count--) {
4309 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4310 		if (ret)
4311 			return ret;
4312 		mc.precharge++;
4313 		cond_resched();
4314 	}
4315 	return 0;
4316 }
4317 
4318 /**
4319  * get_mctgt_type - get target type of moving charge
4320  * @vma: the vma the pte to be checked belongs
4321  * @addr: the address corresponding to the pte to be checked
4322  * @ptent: the pte to be checked
4323  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4324  *
4325  * Returns
4326  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4327  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4328  *     move charge. if @target is not NULL, the page is stored in target->page
4329  *     with extra refcnt got(Callers should handle it).
4330  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4331  *     target for charge migration. if @target is not NULL, the entry is stored
4332  *     in target->ent.
4333  *
4334  * Called with pte lock held.
4335  */
4336 union mc_target {
4337 	struct page	*page;
4338 	swp_entry_t	ent;
4339 };
4340 
4341 enum mc_target_type {
4342 	MC_TARGET_NONE = 0,
4343 	MC_TARGET_PAGE,
4344 	MC_TARGET_SWAP,
4345 };
4346 
4347 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4348 						unsigned long addr, pte_t ptent)
4349 {
4350 	struct page *page = vm_normal_page(vma, addr, ptent);
4351 
4352 	if (!page || !page_mapped(page))
4353 		return NULL;
4354 	if (PageAnon(page)) {
4355 		if (!(mc.flags & MOVE_ANON))
4356 			return NULL;
4357 	} else {
4358 		if (!(mc.flags & MOVE_FILE))
4359 			return NULL;
4360 	}
4361 	if (!get_page_unless_zero(page))
4362 		return NULL;
4363 
4364 	return page;
4365 }
4366 
4367 #ifdef CONFIG_SWAP
4368 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4369 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4370 {
4371 	struct page *page = NULL;
4372 	swp_entry_t ent = pte_to_swp_entry(ptent);
4373 
4374 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4375 		return NULL;
4376 	/*
4377 	 * Because lookup_swap_cache() updates some statistics counter,
4378 	 * we call find_get_page() with swapper_space directly.
4379 	 */
4380 	page = find_get_page(swap_address_space(ent), ent.val);
4381 	if (do_memsw_account())
4382 		entry->val = ent.val;
4383 
4384 	return page;
4385 }
4386 #else
4387 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4388 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4389 {
4390 	return NULL;
4391 }
4392 #endif
4393 
4394 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4395 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4396 {
4397 	struct page *page = NULL;
4398 	struct address_space *mapping;
4399 	pgoff_t pgoff;
4400 
4401 	if (!vma->vm_file) /* anonymous vma */
4402 		return NULL;
4403 	if (!(mc.flags & MOVE_FILE))
4404 		return NULL;
4405 
4406 	mapping = vma->vm_file->f_mapping;
4407 	pgoff = linear_page_index(vma, addr);
4408 
4409 	/* page is moved even if it's not RSS of this task(page-faulted). */
4410 #ifdef CONFIG_SWAP
4411 	/* shmem/tmpfs may report page out on swap: account for that too. */
4412 	if (shmem_mapping(mapping)) {
4413 		page = find_get_entry(mapping, pgoff);
4414 		if (radix_tree_exceptional_entry(page)) {
4415 			swp_entry_t swp = radix_to_swp_entry(page);
4416 			if (do_memsw_account())
4417 				*entry = swp;
4418 			page = find_get_page(swap_address_space(swp), swp.val);
4419 		}
4420 	} else
4421 		page = find_get_page(mapping, pgoff);
4422 #else
4423 	page = find_get_page(mapping, pgoff);
4424 #endif
4425 	return page;
4426 }
4427 
4428 /**
4429  * mem_cgroup_move_account - move account of the page
4430  * @page: the page
4431  * @nr_pages: number of regular pages (>1 for huge pages)
4432  * @from: mem_cgroup which the page is moved from.
4433  * @to:	mem_cgroup which the page is moved to. @from != @to.
4434  *
4435  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4436  *
4437  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4438  * from old cgroup.
4439  */
4440 static int mem_cgroup_move_account(struct page *page,
4441 				   bool compound,
4442 				   struct mem_cgroup *from,
4443 				   struct mem_cgroup *to)
4444 {
4445 	unsigned long flags;
4446 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4447 	int ret;
4448 	bool anon;
4449 
4450 	VM_BUG_ON(from == to);
4451 	VM_BUG_ON_PAGE(PageLRU(page), page);
4452 	VM_BUG_ON(compound && !PageTransHuge(page));
4453 
4454 	/*
4455 	 * Prevent mem_cgroup_migrate() from looking at
4456 	 * page->mem_cgroup of its source page while we change it.
4457 	 */
4458 	ret = -EBUSY;
4459 	if (!trylock_page(page))
4460 		goto out;
4461 
4462 	ret = -EINVAL;
4463 	if (page->mem_cgroup != from)
4464 		goto out_unlock;
4465 
4466 	anon = PageAnon(page);
4467 
4468 	spin_lock_irqsave(&from->move_lock, flags);
4469 
4470 	if (!anon && page_mapped(page)) {
4471 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4472 			       nr_pages);
4473 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4474 			       nr_pages);
4475 	}
4476 
4477 	/*
4478 	 * move_lock grabbed above and caller set from->moving_account, so
4479 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4480 	 * So mapping should be stable for dirty pages.
4481 	 */
4482 	if (!anon && PageDirty(page)) {
4483 		struct address_space *mapping = page_mapping(page);
4484 
4485 		if (mapping_cap_account_dirty(mapping)) {
4486 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4487 				       nr_pages);
4488 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4489 				       nr_pages);
4490 		}
4491 	}
4492 
4493 	if (PageWriteback(page)) {
4494 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4495 			       nr_pages);
4496 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4497 			       nr_pages);
4498 	}
4499 
4500 	/*
4501 	 * It is safe to change page->mem_cgroup here because the page
4502 	 * is referenced, charged, and isolated - we can't race with
4503 	 * uncharging, charging, migration, or LRU putback.
4504 	 */
4505 
4506 	/* caller should have done css_get */
4507 	page->mem_cgroup = to;
4508 	spin_unlock_irqrestore(&from->move_lock, flags);
4509 
4510 	ret = 0;
4511 
4512 	local_irq_disable();
4513 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4514 	memcg_check_events(to, page);
4515 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4516 	memcg_check_events(from, page);
4517 	local_irq_enable();
4518 out_unlock:
4519 	unlock_page(page);
4520 out:
4521 	return ret;
4522 }
4523 
4524 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4525 		unsigned long addr, pte_t ptent, union mc_target *target)
4526 {
4527 	struct page *page = NULL;
4528 	enum mc_target_type ret = MC_TARGET_NONE;
4529 	swp_entry_t ent = { .val = 0 };
4530 
4531 	if (pte_present(ptent))
4532 		page = mc_handle_present_pte(vma, addr, ptent);
4533 	else if (is_swap_pte(ptent))
4534 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4535 	else if (pte_none(ptent))
4536 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4537 
4538 	if (!page && !ent.val)
4539 		return ret;
4540 	if (page) {
4541 		/*
4542 		 * Do only loose check w/o serialization.
4543 		 * mem_cgroup_move_account() checks the page is valid or
4544 		 * not under LRU exclusion.
4545 		 */
4546 		if (page->mem_cgroup == mc.from) {
4547 			ret = MC_TARGET_PAGE;
4548 			if (target)
4549 				target->page = page;
4550 		}
4551 		if (!ret || !target)
4552 			put_page(page);
4553 	}
4554 	/* There is a swap entry and a page doesn't exist or isn't charged */
4555 	if (ent.val && !ret &&
4556 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4557 		ret = MC_TARGET_SWAP;
4558 		if (target)
4559 			target->ent = ent;
4560 	}
4561 	return ret;
4562 }
4563 
4564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4565 /*
4566  * We don't consider swapping or file mapped pages because THP does not
4567  * support them for now.
4568  * Caller should make sure that pmd_trans_huge(pmd) is true.
4569  */
4570 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4571 		unsigned long addr, pmd_t pmd, union mc_target *target)
4572 {
4573 	struct page *page = NULL;
4574 	enum mc_target_type ret = MC_TARGET_NONE;
4575 
4576 	page = pmd_page(pmd);
4577 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4578 	if (!(mc.flags & MOVE_ANON))
4579 		return ret;
4580 	if (page->mem_cgroup == mc.from) {
4581 		ret = MC_TARGET_PAGE;
4582 		if (target) {
4583 			get_page(page);
4584 			target->page = page;
4585 		}
4586 	}
4587 	return ret;
4588 }
4589 #else
4590 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4591 		unsigned long addr, pmd_t pmd, union mc_target *target)
4592 {
4593 	return MC_TARGET_NONE;
4594 }
4595 #endif
4596 
4597 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4598 					unsigned long addr, unsigned long end,
4599 					struct mm_walk *walk)
4600 {
4601 	struct vm_area_struct *vma = walk->vma;
4602 	pte_t *pte;
4603 	spinlock_t *ptl;
4604 
4605 	ptl = pmd_trans_huge_lock(pmd, vma);
4606 	if (ptl) {
4607 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4608 			mc.precharge += HPAGE_PMD_NR;
4609 		spin_unlock(ptl);
4610 		return 0;
4611 	}
4612 
4613 	if (pmd_trans_unstable(pmd))
4614 		return 0;
4615 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4616 	for (; addr != end; pte++, addr += PAGE_SIZE)
4617 		if (get_mctgt_type(vma, addr, *pte, NULL))
4618 			mc.precharge++;	/* increment precharge temporarily */
4619 	pte_unmap_unlock(pte - 1, ptl);
4620 	cond_resched();
4621 
4622 	return 0;
4623 }
4624 
4625 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4626 {
4627 	unsigned long precharge;
4628 
4629 	struct mm_walk mem_cgroup_count_precharge_walk = {
4630 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4631 		.mm = mm,
4632 	};
4633 	down_read(&mm->mmap_sem);
4634 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4635 	up_read(&mm->mmap_sem);
4636 
4637 	precharge = mc.precharge;
4638 	mc.precharge = 0;
4639 
4640 	return precharge;
4641 }
4642 
4643 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4644 {
4645 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4646 
4647 	VM_BUG_ON(mc.moving_task);
4648 	mc.moving_task = current;
4649 	return mem_cgroup_do_precharge(precharge);
4650 }
4651 
4652 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4653 static void __mem_cgroup_clear_mc(void)
4654 {
4655 	struct mem_cgroup *from = mc.from;
4656 	struct mem_cgroup *to = mc.to;
4657 
4658 	/* we must uncharge all the leftover precharges from mc.to */
4659 	if (mc.precharge) {
4660 		cancel_charge(mc.to, mc.precharge);
4661 		mc.precharge = 0;
4662 	}
4663 	/*
4664 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4665 	 * we must uncharge here.
4666 	 */
4667 	if (mc.moved_charge) {
4668 		cancel_charge(mc.from, mc.moved_charge);
4669 		mc.moved_charge = 0;
4670 	}
4671 	/* we must fixup refcnts and charges */
4672 	if (mc.moved_swap) {
4673 		/* uncharge swap account from the old cgroup */
4674 		if (!mem_cgroup_is_root(mc.from))
4675 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4676 
4677 		/*
4678 		 * we charged both to->memory and to->memsw, so we
4679 		 * should uncharge to->memory.
4680 		 */
4681 		if (!mem_cgroup_is_root(mc.to))
4682 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4683 
4684 		css_put_many(&mc.from->css, mc.moved_swap);
4685 
4686 		/* we've already done css_get(mc.to) */
4687 		mc.moved_swap = 0;
4688 	}
4689 	memcg_oom_recover(from);
4690 	memcg_oom_recover(to);
4691 	wake_up_all(&mc.waitq);
4692 }
4693 
4694 static void mem_cgroup_clear_mc(void)
4695 {
4696 	/*
4697 	 * we must clear moving_task before waking up waiters at the end of
4698 	 * task migration.
4699 	 */
4700 	mc.moving_task = NULL;
4701 	__mem_cgroup_clear_mc();
4702 	spin_lock(&mc.lock);
4703 	mc.from = NULL;
4704 	mc.to = NULL;
4705 	spin_unlock(&mc.lock);
4706 }
4707 
4708 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4709 {
4710 	struct cgroup_subsys_state *css;
4711 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4712 	struct mem_cgroup *from;
4713 	struct task_struct *leader, *p;
4714 	struct mm_struct *mm;
4715 	unsigned long move_flags;
4716 	int ret = 0;
4717 
4718 	/* charge immigration isn't supported on the default hierarchy */
4719 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4720 		return 0;
4721 
4722 	/*
4723 	 * Multi-process migrations only happen on the default hierarchy
4724 	 * where charge immigration is not used.  Perform charge
4725 	 * immigration if @tset contains a leader and whine if there are
4726 	 * multiple.
4727 	 */
4728 	p = NULL;
4729 	cgroup_taskset_for_each_leader(leader, css, tset) {
4730 		WARN_ON_ONCE(p);
4731 		p = leader;
4732 		memcg = mem_cgroup_from_css(css);
4733 	}
4734 	if (!p)
4735 		return 0;
4736 
4737 	/*
4738 	 * We are now commited to this value whatever it is. Changes in this
4739 	 * tunable will only affect upcoming migrations, not the current one.
4740 	 * So we need to save it, and keep it going.
4741 	 */
4742 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4743 	if (!move_flags)
4744 		return 0;
4745 
4746 	from = mem_cgroup_from_task(p);
4747 
4748 	VM_BUG_ON(from == memcg);
4749 
4750 	mm = get_task_mm(p);
4751 	if (!mm)
4752 		return 0;
4753 	/* We move charges only when we move a owner of the mm */
4754 	if (mm->owner == p) {
4755 		VM_BUG_ON(mc.from);
4756 		VM_BUG_ON(mc.to);
4757 		VM_BUG_ON(mc.precharge);
4758 		VM_BUG_ON(mc.moved_charge);
4759 		VM_BUG_ON(mc.moved_swap);
4760 
4761 		spin_lock(&mc.lock);
4762 		mc.from = from;
4763 		mc.to = memcg;
4764 		mc.flags = move_flags;
4765 		spin_unlock(&mc.lock);
4766 		/* We set mc.moving_task later */
4767 
4768 		ret = mem_cgroup_precharge_mc(mm);
4769 		if (ret)
4770 			mem_cgroup_clear_mc();
4771 	}
4772 	mmput(mm);
4773 	return ret;
4774 }
4775 
4776 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4777 {
4778 	if (mc.to)
4779 		mem_cgroup_clear_mc();
4780 }
4781 
4782 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4783 				unsigned long addr, unsigned long end,
4784 				struct mm_walk *walk)
4785 {
4786 	int ret = 0;
4787 	struct vm_area_struct *vma = walk->vma;
4788 	pte_t *pte;
4789 	spinlock_t *ptl;
4790 	enum mc_target_type target_type;
4791 	union mc_target target;
4792 	struct page *page;
4793 
4794 	ptl = pmd_trans_huge_lock(pmd, vma);
4795 	if (ptl) {
4796 		if (mc.precharge < HPAGE_PMD_NR) {
4797 			spin_unlock(ptl);
4798 			return 0;
4799 		}
4800 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4801 		if (target_type == MC_TARGET_PAGE) {
4802 			page = target.page;
4803 			if (!isolate_lru_page(page)) {
4804 				if (!mem_cgroup_move_account(page, true,
4805 							     mc.from, mc.to)) {
4806 					mc.precharge -= HPAGE_PMD_NR;
4807 					mc.moved_charge += HPAGE_PMD_NR;
4808 				}
4809 				putback_lru_page(page);
4810 			}
4811 			put_page(page);
4812 		}
4813 		spin_unlock(ptl);
4814 		return 0;
4815 	}
4816 
4817 	if (pmd_trans_unstable(pmd))
4818 		return 0;
4819 retry:
4820 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4821 	for (; addr != end; addr += PAGE_SIZE) {
4822 		pte_t ptent = *(pte++);
4823 		swp_entry_t ent;
4824 
4825 		if (!mc.precharge)
4826 			break;
4827 
4828 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4829 		case MC_TARGET_PAGE:
4830 			page = target.page;
4831 			/*
4832 			 * We can have a part of the split pmd here. Moving it
4833 			 * can be done but it would be too convoluted so simply
4834 			 * ignore such a partial THP and keep it in original
4835 			 * memcg. There should be somebody mapping the head.
4836 			 */
4837 			if (PageTransCompound(page))
4838 				goto put;
4839 			if (isolate_lru_page(page))
4840 				goto put;
4841 			if (!mem_cgroup_move_account(page, false,
4842 						mc.from, mc.to)) {
4843 				mc.precharge--;
4844 				/* we uncharge from mc.from later. */
4845 				mc.moved_charge++;
4846 			}
4847 			putback_lru_page(page);
4848 put:			/* get_mctgt_type() gets the page */
4849 			put_page(page);
4850 			break;
4851 		case MC_TARGET_SWAP:
4852 			ent = target.ent;
4853 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4854 				mc.precharge--;
4855 				/* we fixup refcnts and charges later. */
4856 				mc.moved_swap++;
4857 			}
4858 			break;
4859 		default:
4860 			break;
4861 		}
4862 	}
4863 	pte_unmap_unlock(pte - 1, ptl);
4864 	cond_resched();
4865 
4866 	if (addr != end) {
4867 		/*
4868 		 * We have consumed all precharges we got in can_attach().
4869 		 * We try charge one by one, but don't do any additional
4870 		 * charges to mc.to if we have failed in charge once in attach()
4871 		 * phase.
4872 		 */
4873 		ret = mem_cgroup_do_precharge(1);
4874 		if (!ret)
4875 			goto retry;
4876 	}
4877 
4878 	return ret;
4879 }
4880 
4881 static void mem_cgroup_move_charge(struct mm_struct *mm)
4882 {
4883 	struct mm_walk mem_cgroup_move_charge_walk = {
4884 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4885 		.mm = mm,
4886 	};
4887 
4888 	lru_add_drain_all();
4889 	/*
4890 	 * Signal lock_page_memcg() to take the memcg's move_lock
4891 	 * while we're moving its pages to another memcg. Then wait
4892 	 * for already started RCU-only updates to finish.
4893 	 */
4894 	atomic_inc(&mc.from->moving_account);
4895 	synchronize_rcu();
4896 retry:
4897 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4898 		/*
4899 		 * Someone who are holding the mmap_sem might be waiting in
4900 		 * waitq. So we cancel all extra charges, wake up all waiters,
4901 		 * and retry. Because we cancel precharges, we might not be able
4902 		 * to move enough charges, but moving charge is a best-effort
4903 		 * feature anyway, so it wouldn't be a big problem.
4904 		 */
4905 		__mem_cgroup_clear_mc();
4906 		cond_resched();
4907 		goto retry;
4908 	}
4909 	/*
4910 	 * When we have consumed all precharges and failed in doing
4911 	 * additional charge, the page walk just aborts.
4912 	 */
4913 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4914 	up_read(&mm->mmap_sem);
4915 	atomic_dec(&mc.from->moving_account);
4916 }
4917 
4918 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4919 {
4920 	struct cgroup_subsys_state *css;
4921 	struct task_struct *p = cgroup_taskset_first(tset, &css);
4922 	struct mm_struct *mm = get_task_mm(p);
4923 
4924 	if (mm) {
4925 		if (mc.to)
4926 			mem_cgroup_move_charge(mm);
4927 		mmput(mm);
4928 	}
4929 	if (mc.to)
4930 		mem_cgroup_clear_mc();
4931 }
4932 #else	/* !CONFIG_MMU */
4933 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4934 {
4935 	return 0;
4936 }
4937 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4938 {
4939 }
4940 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4941 {
4942 }
4943 #endif
4944 
4945 /*
4946  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4947  * to verify whether we're attached to the default hierarchy on each mount
4948  * attempt.
4949  */
4950 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4951 {
4952 	/*
4953 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4954 	 * guarantees that @root doesn't have any children, so turning it
4955 	 * on for the root memcg is enough.
4956 	 */
4957 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4958 		root_mem_cgroup->use_hierarchy = true;
4959 	else
4960 		root_mem_cgroup->use_hierarchy = false;
4961 }
4962 
4963 static u64 memory_current_read(struct cgroup_subsys_state *css,
4964 			       struct cftype *cft)
4965 {
4966 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4967 
4968 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4969 }
4970 
4971 static int memory_low_show(struct seq_file *m, void *v)
4972 {
4973 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4974 	unsigned long low = READ_ONCE(memcg->low);
4975 
4976 	if (low == PAGE_COUNTER_MAX)
4977 		seq_puts(m, "max\n");
4978 	else
4979 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4980 
4981 	return 0;
4982 }
4983 
4984 static ssize_t memory_low_write(struct kernfs_open_file *of,
4985 				char *buf, size_t nbytes, loff_t off)
4986 {
4987 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4988 	unsigned long low;
4989 	int err;
4990 
4991 	buf = strstrip(buf);
4992 	err = page_counter_memparse(buf, "max", &low);
4993 	if (err)
4994 		return err;
4995 
4996 	memcg->low = low;
4997 
4998 	return nbytes;
4999 }
5000 
5001 static int memory_high_show(struct seq_file *m, void *v)
5002 {
5003 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5004 	unsigned long high = READ_ONCE(memcg->high);
5005 
5006 	if (high == PAGE_COUNTER_MAX)
5007 		seq_puts(m, "max\n");
5008 	else
5009 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5010 
5011 	return 0;
5012 }
5013 
5014 static ssize_t memory_high_write(struct kernfs_open_file *of,
5015 				 char *buf, size_t nbytes, loff_t off)
5016 {
5017 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5018 	unsigned long high;
5019 	int err;
5020 
5021 	buf = strstrip(buf);
5022 	err = page_counter_memparse(buf, "max", &high);
5023 	if (err)
5024 		return err;
5025 
5026 	memcg->high = high;
5027 
5028 	memcg_wb_domain_size_changed(memcg);
5029 	return nbytes;
5030 }
5031 
5032 static int memory_max_show(struct seq_file *m, void *v)
5033 {
5034 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5035 	unsigned long max = READ_ONCE(memcg->memory.limit);
5036 
5037 	if (max == PAGE_COUNTER_MAX)
5038 		seq_puts(m, "max\n");
5039 	else
5040 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5041 
5042 	return 0;
5043 }
5044 
5045 static ssize_t memory_max_write(struct kernfs_open_file *of,
5046 				char *buf, size_t nbytes, loff_t off)
5047 {
5048 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5049 	unsigned long max;
5050 	int err;
5051 
5052 	buf = strstrip(buf);
5053 	err = page_counter_memparse(buf, "max", &max);
5054 	if (err)
5055 		return err;
5056 
5057 	err = mem_cgroup_resize_limit(memcg, max);
5058 	if (err)
5059 		return err;
5060 
5061 	memcg_wb_domain_size_changed(memcg);
5062 	return nbytes;
5063 }
5064 
5065 static int memory_events_show(struct seq_file *m, void *v)
5066 {
5067 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5068 
5069 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5070 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5071 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5072 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5073 
5074 	return 0;
5075 }
5076 
5077 static int memory_stat_show(struct seq_file *m, void *v)
5078 {
5079 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5080 	int i;
5081 
5082 	/*
5083 	 * Provide statistics on the state of the memory subsystem as
5084 	 * well as cumulative event counters that show past behavior.
5085 	 *
5086 	 * This list is ordered following a combination of these gradients:
5087 	 * 1) generic big picture -> specifics and details
5088 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5089 	 *
5090 	 * Current memory state:
5091 	 */
5092 
5093 	seq_printf(m, "anon %llu\n",
5094 		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_RSS) * PAGE_SIZE);
5095 	seq_printf(m, "file %llu\n",
5096 		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_CACHE) * PAGE_SIZE);
5097 	seq_printf(m, "sock %llu\n",
5098 		   (u64)tree_stat(memcg, MEMCG_SOCK) * PAGE_SIZE);
5099 
5100 	seq_printf(m, "file_mapped %llu\n",
5101 		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED) *
5102 		   PAGE_SIZE);
5103 	seq_printf(m, "file_dirty %llu\n",
5104 		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_DIRTY) *
5105 		   PAGE_SIZE);
5106 	seq_printf(m, "file_writeback %llu\n",
5107 		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_WRITEBACK) *
5108 		   PAGE_SIZE);
5109 
5110 	for (i = 0; i < NR_LRU_LISTS; i++) {
5111 		struct mem_cgroup *mi;
5112 		unsigned long val = 0;
5113 
5114 		for_each_mem_cgroup_tree(mi, memcg)
5115 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5116 		seq_printf(m, "%s %llu\n",
5117 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5118 	}
5119 
5120 	/* Accumulated memory events */
5121 
5122 	seq_printf(m, "pgfault %lu\n",
5123 		   tree_events(memcg, MEM_CGROUP_EVENTS_PGFAULT));
5124 	seq_printf(m, "pgmajfault %lu\n",
5125 		   tree_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT));
5126 
5127 	return 0;
5128 }
5129 
5130 static struct cftype memory_files[] = {
5131 	{
5132 		.name = "current",
5133 		.flags = CFTYPE_NOT_ON_ROOT,
5134 		.read_u64 = memory_current_read,
5135 	},
5136 	{
5137 		.name = "low",
5138 		.flags = CFTYPE_NOT_ON_ROOT,
5139 		.seq_show = memory_low_show,
5140 		.write = memory_low_write,
5141 	},
5142 	{
5143 		.name = "high",
5144 		.flags = CFTYPE_NOT_ON_ROOT,
5145 		.seq_show = memory_high_show,
5146 		.write = memory_high_write,
5147 	},
5148 	{
5149 		.name = "max",
5150 		.flags = CFTYPE_NOT_ON_ROOT,
5151 		.seq_show = memory_max_show,
5152 		.write = memory_max_write,
5153 	},
5154 	{
5155 		.name = "events",
5156 		.flags = CFTYPE_NOT_ON_ROOT,
5157 		.file_offset = offsetof(struct mem_cgroup, events_file),
5158 		.seq_show = memory_events_show,
5159 	},
5160 	{
5161 		.name = "stat",
5162 		.flags = CFTYPE_NOT_ON_ROOT,
5163 		.seq_show = memory_stat_show,
5164 	},
5165 	{ }	/* terminate */
5166 };
5167 
5168 struct cgroup_subsys memory_cgrp_subsys = {
5169 	.css_alloc = mem_cgroup_css_alloc,
5170 	.css_online = mem_cgroup_css_online,
5171 	.css_offline = mem_cgroup_css_offline,
5172 	.css_released = mem_cgroup_css_released,
5173 	.css_free = mem_cgroup_css_free,
5174 	.css_reset = mem_cgroup_css_reset,
5175 	.can_attach = mem_cgroup_can_attach,
5176 	.cancel_attach = mem_cgroup_cancel_attach,
5177 	.attach = mem_cgroup_move_task,
5178 	.bind = mem_cgroup_bind,
5179 	.dfl_cftypes = memory_files,
5180 	.legacy_cftypes = mem_cgroup_legacy_files,
5181 	.early_init = 0,
5182 };
5183 
5184 /**
5185  * mem_cgroup_low - check if memory consumption is below the normal range
5186  * @root: the highest ancestor to consider
5187  * @memcg: the memory cgroup to check
5188  *
5189  * Returns %true if memory consumption of @memcg, and that of all
5190  * configurable ancestors up to @root, is below the normal range.
5191  */
5192 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5193 {
5194 	if (mem_cgroup_disabled())
5195 		return false;
5196 
5197 	/*
5198 	 * The toplevel group doesn't have a configurable range, so
5199 	 * it's never low when looked at directly, and it is not
5200 	 * considered an ancestor when assessing the hierarchy.
5201 	 */
5202 
5203 	if (memcg == root_mem_cgroup)
5204 		return false;
5205 
5206 	if (page_counter_read(&memcg->memory) >= memcg->low)
5207 		return false;
5208 
5209 	while (memcg != root) {
5210 		memcg = parent_mem_cgroup(memcg);
5211 
5212 		if (memcg == root_mem_cgroup)
5213 			break;
5214 
5215 		if (page_counter_read(&memcg->memory) >= memcg->low)
5216 			return false;
5217 	}
5218 	return true;
5219 }
5220 
5221 /**
5222  * mem_cgroup_try_charge - try charging a page
5223  * @page: page to charge
5224  * @mm: mm context of the victim
5225  * @gfp_mask: reclaim mode
5226  * @memcgp: charged memcg return
5227  *
5228  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5229  * pages according to @gfp_mask if necessary.
5230  *
5231  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5232  * Otherwise, an error code is returned.
5233  *
5234  * After page->mapping has been set up, the caller must finalize the
5235  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5236  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5237  */
5238 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5239 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5240 			  bool compound)
5241 {
5242 	struct mem_cgroup *memcg = NULL;
5243 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5244 	int ret = 0;
5245 
5246 	if (mem_cgroup_disabled())
5247 		goto out;
5248 
5249 	if (PageSwapCache(page)) {
5250 		/*
5251 		 * Every swap fault against a single page tries to charge the
5252 		 * page, bail as early as possible.  shmem_unuse() encounters
5253 		 * already charged pages, too.  The USED bit is protected by
5254 		 * the page lock, which serializes swap cache removal, which
5255 		 * in turn serializes uncharging.
5256 		 */
5257 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5258 		if (page->mem_cgroup)
5259 			goto out;
5260 
5261 		if (do_swap_account) {
5262 			swp_entry_t ent = { .val = page_private(page), };
5263 			unsigned short id = lookup_swap_cgroup_id(ent);
5264 
5265 			rcu_read_lock();
5266 			memcg = mem_cgroup_from_id(id);
5267 			if (memcg && !css_tryget_online(&memcg->css))
5268 				memcg = NULL;
5269 			rcu_read_unlock();
5270 		}
5271 	}
5272 
5273 	if (!memcg)
5274 		memcg = get_mem_cgroup_from_mm(mm);
5275 
5276 	ret = try_charge(memcg, gfp_mask, nr_pages);
5277 
5278 	css_put(&memcg->css);
5279 out:
5280 	*memcgp = memcg;
5281 	return ret;
5282 }
5283 
5284 /**
5285  * mem_cgroup_commit_charge - commit a page charge
5286  * @page: page to charge
5287  * @memcg: memcg to charge the page to
5288  * @lrucare: page might be on LRU already
5289  *
5290  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5291  * after page->mapping has been set up.  This must happen atomically
5292  * as part of the page instantiation, i.e. under the page table lock
5293  * for anonymous pages, under the page lock for page and swap cache.
5294  *
5295  * In addition, the page must not be on the LRU during the commit, to
5296  * prevent racing with task migration.  If it might be, use @lrucare.
5297  *
5298  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5299  */
5300 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5301 			      bool lrucare, bool compound)
5302 {
5303 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5304 
5305 	VM_BUG_ON_PAGE(!page->mapping, page);
5306 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5307 
5308 	if (mem_cgroup_disabled())
5309 		return;
5310 	/*
5311 	 * Swap faults will attempt to charge the same page multiple
5312 	 * times.  But reuse_swap_page() might have removed the page
5313 	 * from swapcache already, so we can't check PageSwapCache().
5314 	 */
5315 	if (!memcg)
5316 		return;
5317 
5318 	commit_charge(page, memcg, lrucare);
5319 
5320 	local_irq_disable();
5321 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5322 	memcg_check_events(memcg, page);
5323 	local_irq_enable();
5324 
5325 	if (do_memsw_account() && PageSwapCache(page)) {
5326 		swp_entry_t entry = { .val = page_private(page) };
5327 		/*
5328 		 * The swap entry might not get freed for a long time,
5329 		 * let's not wait for it.  The page already received a
5330 		 * memory+swap charge, drop the swap entry duplicate.
5331 		 */
5332 		mem_cgroup_uncharge_swap(entry);
5333 	}
5334 }
5335 
5336 /**
5337  * mem_cgroup_cancel_charge - cancel a page charge
5338  * @page: page to charge
5339  * @memcg: memcg to charge the page to
5340  *
5341  * Cancel a charge transaction started by mem_cgroup_try_charge().
5342  */
5343 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5344 		bool compound)
5345 {
5346 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5347 
5348 	if (mem_cgroup_disabled())
5349 		return;
5350 	/*
5351 	 * Swap faults will attempt to charge the same page multiple
5352 	 * times.  But reuse_swap_page() might have removed the page
5353 	 * from swapcache already, so we can't check PageSwapCache().
5354 	 */
5355 	if (!memcg)
5356 		return;
5357 
5358 	cancel_charge(memcg, nr_pages);
5359 }
5360 
5361 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5362 			   unsigned long nr_anon, unsigned long nr_file,
5363 			   unsigned long nr_huge, struct page *dummy_page)
5364 {
5365 	unsigned long nr_pages = nr_anon + nr_file;
5366 	unsigned long flags;
5367 
5368 	if (!mem_cgroup_is_root(memcg)) {
5369 		page_counter_uncharge(&memcg->memory, nr_pages);
5370 		if (do_memsw_account())
5371 			page_counter_uncharge(&memcg->memsw, nr_pages);
5372 		memcg_oom_recover(memcg);
5373 	}
5374 
5375 	local_irq_save(flags);
5376 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5377 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5378 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5379 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5380 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5381 	memcg_check_events(memcg, dummy_page);
5382 	local_irq_restore(flags);
5383 
5384 	if (!mem_cgroup_is_root(memcg))
5385 		css_put_many(&memcg->css, nr_pages);
5386 }
5387 
5388 static void uncharge_list(struct list_head *page_list)
5389 {
5390 	struct mem_cgroup *memcg = NULL;
5391 	unsigned long nr_anon = 0;
5392 	unsigned long nr_file = 0;
5393 	unsigned long nr_huge = 0;
5394 	unsigned long pgpgout = 0;
5395 	struct list_head *next;
5396 	struct page *page;
5397 
5398 	next = page_list->next;
5399 	do {
5400 		unsigned int nr_pages = 1;
5401 
5402 		page = list_entry(next, struct page, lru);
5403 		next = page->lru.next;
5404 
5405 		VM_BUG_ON_PAGE(PageLRU(page), page);
5406 		VM_BUG_ON_PAGE(page_count(page), page);
5407 
5408 		if (!page->mem_cgroup)
5409 			continue;
5410 
5411 		/*
5412 		 * Nobody should be changing or seriously looking at
5413 		 * page->mem_cgroup at this point, we have fully
5414 		 * exclusive access to the page.
5415 		 */
5416 
5417 		if (memcg != page->mem_cgroup) {
5418 			if (memcg) {
5419 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5420 					       nr_huge, page);
5421 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5422 			}
5423 			memcg = page->mem_cgroup;
5424 		}
5425 
5426 		if (PageTransHuge(page)) {
5427 			nr_pages <<= compound_order(page);
5428 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5429 			nr_huge += nr_pages;
5430 		}
5431 
5432 		if (PageAnon(page))
5433 			nr_anon += nr_pages;
5434 		else
5435 			nr_file += nr_pages;
5436 
5437 		page->mem_cgroup = NULL;
5438 
5439 		pgpgout++;
5440 	} while (next != page_list);
5441 
5442 	if (memcg)
5443 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5444 			       nr_huge, page);
5445 }
5446 
5447 /**
5448  * mem_cgroup_uncharge - uncharge a page
5449  * @page: page to uncharge
5450  *
5451  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5452  * mem_cgroup_commit_charge().
5453  */
5454 void mem_cgroup_uncharge(struct page *page)
5455 {
5456 	if (mem_cgroup_disabled())
5457 		return;
5458 
5459 	/* Don't touch page->lru of any random page, pre-check: */
5460 	if (!page->mem_cgroup)
5461 		return;
5462 
5463 	INIT_LIST_HEAD(&page->lru);
5464 	uncharge_list(&page->lru);
5465 }
5466 
5467 /**
5468  * mem_cgroup_uncharge_list - uncharge a list of page
5469  * @page_list: list of pages to uncharge
5470  *
5471  * Uncharge a list of pages previously charged with
5472  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5473  */
5474 void mem_cgroup_uncharge_list(struct list_head *page_list)
5475 {
5476 	if (mem_cgroup_disabled())
5477 		return;
5478 
5479 	if (!list_empty(page_list))
5480 		uncharge_list(page_list);
5481 }
5482 
5483 /**
5484  * mem_cgroup_migrate - charge a page's replacement
5485  * @oldpage: currently circulating page
5486  * @newpage: replacement page
5487  *
5488  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5489  * be uncharged upon free.
5490  *
5491  * Both pages must be locked, @newpage->mapping must be set up.
5492  */
5493 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5494 {
5495 	struct mem_cgroup *memcg;
5496 	unsigned int nr_pages;
5497 	bool compound;
5498 
5499 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5500 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5501 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5502 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5503 		       newpage);
5504 
5505 	if (mem_cgroup_disabled())
5506 		return;
5507 
5508 	/* Page cache replacement: new page already charged? */
5509 	if (newpage->mem_cgroup)
5510 		return;
5511 
5512 	/* Swapcache readahead pages can get replaced before being charged */
5513 	memcg = oldpage->mem_cgroup;
5514 	if (!memcg)
5515 		return;
5516 
5517 	/* Force-charge the new page. The old one will be freed soon */
5518 	compound = PageTransHuge(newpage);
5519 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5520 
5521 	page_counter_charge(&memcg->memory, nr_pages);
5522 	if (do_memsw_account())
5523 		page_counter_charge(&memcg->memsw, nr_pages);
5524 	css_get_many(&memcg->css, nr_pages);
5525 
5526 	commit_charge(newpage, memcg, false);
5527 
5528 	local_irq_disable();
5529 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5530 	memcg_check_events(memcg, newpage);
5531 	local_irq_enable();
5532 }
5533 
5534 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5535 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5536 
5537 void sock_update_memcg(struct sock *sk)
5538 {
5539 	struct mem_cgroup *memcg;
5540 
5541 	/* Socket cloning can throw us here with sk_cgrp already
5542 	 * filled. It won't however, necessarily happen from
5543 	 * process context. So the test for root memcg given
5544 	 * the current task's memcg won't help us in this case.
5545 	 *
5546 	 * Respecting the original socket's memcg is a better
5547 	 * decision in this case.
5548 	 */
5549 	if (sk->sk_memcg) {
5550 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5551 		css_get(&sk->sk_memcg->css);
5552 		return;
5553 	}
5554 
5555 	rcu_read_lock();
5556 	memcg = mem_cgroup_from_task(current);
5557 	if (memcg == root_mem_cgroup)
5558 		goto out;
5559 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5560 		goto out;
5561 	if (css_tryget_online(&memcg->css))
5562 		sk->sk_memcg = memcg;
5563 out:
5564 	rcu_read_unlock();
5565 }
5566 EXPORT_SYMBOL(sock_update_memcg);
5567 
5568 void sock_release_memcg(struct sock *sk)
5569 {
5570 	WARN_ON(!sk->sk_memcg);
5571 	css_put(&sk->sk_memcg->css);
5572 }
5573 
5574 /**
5575  * mem_cgroup_charge_skmem - charge socket memory
5576  * @memcg: memcg to charge
5577  * @nr_pages: number of pages to charge
5578  *
5579  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5580  * @memcg's configured limit, %false if the charge had to be forced.
5581  */
5582 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5583 {
5584 	gfp_t gfp_mask = GFP_KERNEL;
5585 
5586 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5587 		struct page_counter *fail;
5588 
5589 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5590 			memcg->tcpmem_pressure = 0;
5591 			return true;
5592 		}
5593 		page_counter_charge(&memcg->tcpmem, nr_pages);
5594 		memcg->tcpmem_pressure = 1;
5595 		return false;
5596 	}
5597 
5598 	/* Don't block in the packet receive path */
5599 	if (in_softirq())
5600 		gfp_mask = GFP_NOWAIT;
5601 
5602 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5603 
5604 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5605 		return true;
5606 
5607 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5608 	return false;
5609 }
5610 
5611 /**
5612  * mem_cgroup_uncharge_skmem - uncharge socket memory
5613  * @memcg - memcg to uncharge
5614  * @nr_pages - number of pages to uncharge
5615  */
5616 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5617 {
5618 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5619 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5620 		return;
5621 	}
5622 
5623 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5624 
5625 	page_counter_uncharge(&memcg->memory, nr_pages);
5626 	css_put_many(&memcg->css, nr_pages);
5627 }
5628 
5629 static int __init cgroup_memory(char *s)
5630 {
5631 	char *token;
5632 
5633 	while ((token = strsep(&s, ",")) != NULL) {
5634 		if (!*token)
5635 			continue;
5636 		if (!strcmp(token, "nosocket"))
5637 			cgroup_memory_nosocket = true;
5638 		if (!strcmp(token, "nokmem"))
5639 			cgroup_memory_nokmem = true;
5640 	}
5641 	return 0;
5642 }
5643 __setup("cgroup.memory=", cgroup_memory);
5644 
5645 /*
5646  * subsys_initcall() for memory controller.
5647  *
5648  * Some parts like hotcpu_notifier() have to be initialized from this context
5649  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5650  * everything that doesn't depend on a specific mem_cgroup structure should
5651  * be initialized from here.
5652  */
5653 static int __init mem_cgroup_init(void)
5654 {
5655 	int cpu, node;
5656 
5657 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5658 
5659 	for_each_possible_cpu(cpu)
5660 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5661 			  drain_local_stock);
5662 
5663 	for_each_node(node) {
5664 		struct mem_cgroup_tree_per_node *rtpn;
5665 		int zone;
5666 
5667 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5668 				    node_online(node) ? node : NUMA_NO_NODE);
5669 
5670 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5671 			struct mem_cgroup_tree_per_zone *rtpz;
5672 
5673 			rtpz = &rtpn->rb_tree_per_zone[zone];
5674 			rtpz->rb_root = RB_ROOT;
5675 			spin_lock_init(&rtpz->lock);
5676 		}
5677 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5678 	}
5679 
5680 	return 0;
5681 }
5682 subsys_initcall(mem_cgroup_init);
5683 
5684 #ifdef CONFIG_MEMCG_SWAP
5685 /**
5686  * mem_cgroup_swapout - transfer a memsw charge to swap
5687  * @page: page whose memsw charge to transfer
5688  * @entry: swap entry to move the charge to
5689  *
5690  * Transfer the memsw charge of @page to @entry.
5691  */
5692 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5693 {
5694 	struct mem_cgroup *memcg;
5695 	unsigned short oldid;
5696 
5697 	VM_BUG_ON_PAGE(PageLRU(page), page);
5698 	VM_BUG_ON_PAGE(page_count(page), page);
5699 
5700 	if (!do_memsw_account())
5701 		return;
5702 
5703 	memcg = page->mem_cgroup;
5704 
5705 	/* Readahead page, never charged */
5706 	if (!memcg)
5707 		return;
5708 
5709 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5710 	VM_BUG_ON_PAGE(oldid, page);
5711 	mem_cgroup_swap_statistics(memcg, true);
5712 
5713 	page->mem_cgroup = NULL;
5714 
5715 	if (!mem_cgroup_is_root(memcg))
5716 		page_counter_uncharge(&memcg->memory, 1);
5717 
5718 	/*
5719 	 * Interrupts should be disabled here because the caller holds the
5720 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5721 	 * important here to have the interrupts disabled because it is the
5722 	 * only synchronisation we have for udpating the per-CPU variables.
5723 	 */
5724 	VM_BUG_ON(!irqs_disabled());
5725 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5726 	memcg_check_events(memcg, page);
5727 }
5728 
5729 /*
5730  * mem_cgroup_try_charge_swap - try charging a swap entry
5731  * @page: page being added to swap
5732  * @entry: swap entry to charge
5733  *
5734  * Try to charge @entry to the memcg that @page belongs to.
5735  *
5736  * Returns 0 on success, -ENOMEM on failure.
5737  */
5738 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5739 {
5740 	struct mem_cgroup *memcg;
5741 	struct page_counter *counter;
5742 	unsigned short oldid;
5743 
5744 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5745 		return 0;
5746 
5747 	memcg = page->mem_cgroup;
5748 
5749 	/* Readahead page, never charged */
5750 	if (!memcg)
5751 		return 0;
5752 
5753 	if (!mem_cgroup_is_root(memcg) &&
5754 	    !page_counter_try_charge(&memcg->swap, 1, &counter))
5755 		return -ENOMEM;
5756 
5757 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5758 	VM_BUG_ON_PAGE(oldid, page);
5759 	mem_cgroup_swap_statistics(memcg, true);
5760 
5761 	css_get(&memcg->css);
5762 	return 0;
5763 }
5764 
5765 /**
5766  * mem_cgroup_uncharge_swap - uncharge a swap entry
5767  * @entry: swap entry to uncharge
5768  *
5769  * Drop the swap charge associated with @entry.
5770  */
5771 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5772 {
5773 	struct mem_cgroup *memcg;
5774 	unsigned short id;
5775 
5776 	if (!do_swap_account)
5777 		return;
5778 
5779 	id = swap_cgroup_record(entry, 0);
5780 	rcu_read_lock();
5781 	memcg = mem_cgroup_from_id(id);
5782 	if (memcg) {
5783 		if (!mem_cgroup_is_root(memcg)) {
5784 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5785 				page_counter_uncharge(&memcg->swap, 1);
5786 			else
5787 				page_counter_uncharge(&memcg->memsw, 1);
5788 		}
5789 		mem_cgroup_swap_statistics(memcg, false);
5790 		css_put(&memcg->css);
5791 	}
5792 	rcu_read_unlock();
5793 }
5794 
5795 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5796 {
5797 	long nr_swap_pages = get_nr_swap_pages();
5798 
5799 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5800 		return nr_swap_pages;
5801 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5802 		nr_swap_pages = min_t(long, nr_swap_pages,
5803 				      READ_ONCE(memcg->swap.limit) -
5804 				      page_counter_read(&memcg->swap));
5805 	return nr_swap_pages;
5806 }
5807 
5808 bool mem_cgroup_swap_full(struct page *page)
5809 {
5810 	struct mem_cgroup *memcg;
5811 
5812 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5813 
5814 	if (vm_swap_full())
5815 		return true;
5816 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5817 		return false;
5818 
5819 	memcg = page->mem_cgroup;
5820 	if (!memcg)
5821 		return false;
5822 
5823 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5824 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5825 			return true;
5826 
5827 	return false;
5828 }
5829 
5830 /* for remember boot option*/
5831 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5832 static int really_do_swap_account __initdata = 1;
5833 #else
5834 static int really_do_swap_account __initdata;
5835 #endif
5836 
5837 static int __init enable_swap_account(char *s)
5838 {
5839 	if (!strcmp(s, "1"))
5840 		really_do_swap_account = 1;
5841 	else if (!strcmp(s, "0"))
5842 		really_do_swap_account = 0;
5843 	return 1;
5844 }
5845 __setup("swapaccount=", enable_swap_account);
5846 
5847 static u64 swap_current_read(struct cgroup_subsys_state *css,
5848 			     struct cftype *cft)
5849 {
5850 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5851 
5852 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5853 }
5854 
5855 static int swap_max_show(struct seq_file *m, void *v)
5856 {
5857 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5858 	unsigned long max = READ_ONCE(memcg->swap.limit);
5859 
5860 	if (max == PAGE_COUNTER_MAX)
5861 		seq_puts(m, "max\n");
5862 	else
5863 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5864 
5865 	return 0;
5866 }
5867 
5868 static ssize_t swap_max_write(struct kernfs_open_file *of,
5869 			      char *buf, size_t nbytes, loff_t off)
5870 {
5871 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5872 	unsigned long max;
5873 	int err;
5874 
5875 	buf = strstrip(buf);
5876 	err = page_counter_memparse(buf, "max", &max);
5877 	if (err)
5878 		return err;
5879 
5880 	mutex_lock(&memcg_limit_mutex);
5881 	err = page_counter_limit(&memcg->swap, max);
5882 	mutex_unlock(&memcg_limit_mutex);
5883 	if (err)
5884 		return err;
5885 
5886 	return nbytes;
5887 }
5888 
5889 static struct cftype swap_files[] = {
5890 	{
5891 		.name = "swap.current",
5892 		.flags = CFTYPE_NOT_ON_ROOT,
5893 		.read_u64 = swap_current_read,
5894 	},
5895 	{
5896 		.name = "swap.max",
5897 		.flags = CFTYPE_NOT_ON_ROOT,
5898 		.seq_show = swap_max_show,
5899 		.write = swap_max_write,
5900 	},
5901 	{ }	/* terminate */
5902 };
5903 
5904 static struct cftype memsw_cgroup_files[] = {
5905 	{
5906 		.name = "memsw.usage_in_bytes",
5907 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5908 		.read_u64 = mem_cgroup_read_u64,
5909 	},
5910 	{
5911 		.name = "memsw.max_usage_in_bytes",
5912 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5913 		.write = mem_cgroup_reset,
5914 		.read_u64 = mem_cgroup_read_u64,
5915 	},
5916 	{
5917 		.name = "memsw.limit_in_bytes",
5918 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5919 		.write = mem_cgroup_write,
5920 		.read_u64 = mem_cgroup_read_u64,
5921 	},
5922 	{
5923 		.name = "memsw.failcnt",
5924 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5925 		.write = mem_cgroup_reset,
5926 		.read_u64 = mem_cgroup_read_u64,
5927 	},
5928 	{ },	/* terminate */
5929 };
5930 
5931 static int __init mem_cgroup_swap_init(void)
5932 {
5933 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5934 		do_swap_account = 1;
5935 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5936 					       swap_files));
5937 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5938 						  memsw_cgroup_files));
5939 	}
5940 	return 0;
5941 }
5942 subsys_initcall(mem_cgroup_swap_init);
5943 
5944 #endif /* CONFIG_MEMCG_SWAP */
5945