1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 #include <asm-generic/sections.h> 24 #include <linux/io.h> 25 26 #include "internal.h" 27 28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 32 #endif 33 34 struct memblock memblock __initdata_memblock = { 35 .memory.regions = memblock_memory_init_regions, 36 .memory.cnt = 1, /* empty dummy entry */ 37 .memory.max = INIT_MEMBLOCK_REGIONS, 38 39 .reserved.regions = memblock_reserved_init_regions, 40 .reserved.cnt = 1, /* empty dummy entry */ 41 .reserved.max = INIT_MEMBLOCK_REGIONS, 42 43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 44 .physmem.regions = memblock_physmem_init_regions, 45 .physmem.cnt = 1, /* empty dummy entry */ 46 .physmem.max = INIT_PHYSMEM_REGIONS, 47 #endif 48 49 .bottom_up = false, 50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 51 }; 52 53 int memblock_debug __initdata_memblock; 54 #ifdef CONFIG_MOVABLE_NODE 55 bool movable_node_enabled __initdata_memblock = false; 56 #endif 57 static bool system_has_some_mirror __initdata_memblock = false; 58 static int memblock_can_resize __initdata_memblock; 59 static int memblock_memory_in_slab __initdata_memblock = 0; 60 static int memblock_reserved_in_slab __initdata_memblock = 0; 61 62 ulong __init_memblock choose_memblock_flags(void) 63 { 64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 65 } 66 67 /* inline so we don't get a warning when pr_debug is compiled out */ 68 static __init_memblock const char * 69 memblock_type_name(struct memblock_type *type) 70 { 71 if (type == &memblock.memory) 72 return "memory"; 73 else if (type == &memblock.reserved) 74 return "reserved"; 75 else 76 return "unknown"; 77 } 78 79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 81 { 82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 83 } 84 85 /* 86 * Address comparison utilities 87 */ 88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 89 phys_addr_t base2, phys_addr_t size2) 90 { 91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 92 } 93 94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 95 phys_addr_t base, phys_addr_t size) 96 { 97 unsigned long i; 98 99 for (i = 0; i < type->cnt; i++) 100 if (memblock_addrs_overlap(base, size, type->regions[i].base, 101 type->regions[i].size)) 102 break; 103 return i < type->cnt; 104 } 105 106 /* 107 * __memblock_find_range_bottom_up - find free area utility in bottom-up 108 * @start: start of candidate range 109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 110 * @size: size of free area to find 111 * @align: alignment of free area to find 112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 113 * @flags: pick from blocks based on memory attributes 114 * 115 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 116 * 117 * RETURNS: 118 * Found address on success, 0 on failure. 119 */ 120 static phys_addr_t __init_memblock 121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 122 phys_addr_t size, phys_addr_t align, int nid, 123 ulong flags) 124 { 125 phys_addr_t this_start, this_end, cand; 126 u64 i; 127 128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 129 this_start = clamp(this_start, start, end); 130 this_end = clamp(this_end, start, end); 131 132 cand = round_up(this_start, align); 133 if (cand < this_end && this_end - cand >= size) 134 return cand; 135 } 136 137 return 0; 138 } 139 140 /** 141 * __memblock_find_range_top_down - find free area utility, in top-down 142 * @start: start of candidate range 143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 144 * @size: size of free area to find 145 * @align: alignment of free area to find 146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 147 * @flags: pick from blocks based on memory attributes 148 * 149 * Utility called from memblock_find_in_range_node(), find free area top-down. 150 * 151 * RETURNS: 152 * Found address on success, 0 on failure. 153 */ 154 static phys_addr_t __init_memblock 155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 156 phys_addr_t size, phys_addr_t align, int nid, 157 ulong flags) 158 { 159 phys_addr_t this_start, this_end, cand; 160 u64 i; 161 162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 163 NULL) { 164 this_start = clamp(this_start, start, end); 165 this_end = clamp(this_end, start, end); 166 167 if (this_end < size) 168 continue; 169 170 cand = round_down(this_end - size, align); 171 if (cand >= this_start) 172 return cand; 173 } 174 175 return 0; 176 } 177 178 /** 179 * memblock_find_in_range_node - find free area in given range and node 180 * @size: size of free area to find 181 * @align: alignment of free area to find 182 * @start: start of candidate range 183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 185 * @flags: pick from blocks based on memory attributes 186 * 187 * Find @size free area aligned to @align in the specified range and node. 188 * 189 * When allocation direction is bottom-up, the @start should be greater 190 * than the end of the kernel image. Otherwise, it will be trimmed. The 191 * reason is that we want the bottom-up allocation just near the kernel 192 * image so it is highly likely that the allocated memory and the kernel 193 * will reside in the same node. 194 * 195 * If bottom-up allocation failed, will try to allocate memory top-down. 196 * 197 * RETURNS: 198 * Found address on success, 0 on failure. 199 */ 200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 201 phys_addr_t align, phys_addr_t start, 202 phys_addr_t end, int nid, ulong flags) 203 { 204 phys_addr_t kernel_end, ret; 205 206 /* pump up @end */ 207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 208 end = memblock.current_limit; 209 210 /* avoid allocating the first page */ 211 start = max_t(phys_addr_t, start, PAGE_SIZE); 212 end = max(start, end); 213 kernel_end = __pa_symbol(_end); 214 215 /* 216 * try bottom-up allocation only when bottom-up mode 217 * is set and @end is above the kernel image. 218 */ 219 if (memblock_bottom_up() && end > kernel_end) { 220 phys_addr_t bottom_up_start; 221 222 /* make sure we will allocate above the kernel */ 223 bottom_up_start = max(start, kernel_end); 224 225 /* ok, try bottom-up allocation first */ 226 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 227 size, align, nid, flags); 228 if (ret) 229 return ret; 230 231 /* 232 * we always limit bottom-up allocation above the kernel, 233 * but top-down allocation doesn't have the limit, so 234 * retrying top-down allocation may succeed when bottom-up 235 * allocation failed. 236 * 237 * bottom-up allocation is expected to be fail very rarely, 238 * so we use WARN_ONCE() here to see the stack trace if 239 * fail happens. 240 */ 241 WARN_ONCE(1, "memblock: bottom-up allocation failed, " 242 "memory hotunplug may be affected\n"); 243 } 244 245 return __memblock_find_range_top_down(start, end, size, align, nid, 246 flags); 247 } 248 249 /** 250 * memblock_find_in_range - find free area in given range 251 * @start: start of candidate range 252 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 253 * @size: size of free area to find 254 * @align: alignment of free area to find 255 * 256 * Find @size free area aligned to @align in the specified range. 257 * 258 * RETURNS: 259 * Found address on success, 0 on failure. 260 */ 261 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 262 phys_addr_t end, phys_addr_t size, 263 phys_addr_t align) 264 { 265 phys_addr_t ret; 266 ulong flags = choose_memblock_flags(); 267 268 again: 269 ret = memblock_find_in_range_node(size, align, start, end, 270 NUMA_NO_NODE, flags); 271 272 if (!ret && (flags & MEMBLOCK_MIRROR)) { 273 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 274 &size); 275 flags &= ~MEMBLOCK_MIRROR; 276 goto again; 277 } 278 279 return ret; 280 } 281 282 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 283 { 284 type->total_size -= type->regions[r].size; 285 memmove(&type->regions[r], &type->regions[r + 1], 286 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 287 type->cnt--; 288 289 /* Special case for empty arrays */ 290 if (type->cnt == 0) { 291 WARN_ON(type->total_size != 0); 292 type->cnt = 1; 293 type->regions[0].base = 0; 294 type->regions[0].size = 0; 295 type->regions[0].flags = 0; 296 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 297 } 298 } 299 300 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 301 302 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 303 phys_addr_t *addr) 304 { 305 if (memblock.reserved.regions == memblock_reserved_init_regions) 306 return 0; 307 308 *addr = __pa(memblock.reserved.regions); 309 310 return PAGE_ALIGN(sizeof(struct memblock_region) * 311 memblock.reserved.max); 312 } 313 314 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info( 315 phys_addr_t *addr) 316 { 317 if (memblock.memory.regions == memblock_memory_init_regions) 318 return 0; 319 320 *addr = __pa(memblock.memory.regions); 321 322 return PAGE_ALIGN(sizeof(struct memblock_region) * 323 memblock.memory.max); 324 } 325 326 #endif 327 328 /** 329 * memblock_double_array - double the size of the memblock regions array 330 * @type: memblock type of the regions array being doubled 331 * @new_area_start: starting address of memory range to avoid overlap with 332 * @new_area_size: size of memory range to avoid overlap with 333 * 334 * Double the size of the @type regions array. If memblock is being used to 335 * allocate memory for a new reserved regions array and there is a previously 336 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 337 * waiting to be reserved, ensure the memory used by the new array does 338 * not overlap. 339 * 340 * RETURNS: 341 * 0 on success, -1 on failure. 342 */ 343 static int __init_memblock memblock_double_array(struct memblock_type *type, 344 phys_addr_t new_area_start, 345 phys_addr_t new_area_size) 346 { 347 struct memblock_region *new_array, *old_array; 348 phys_addr_t old_alloc_size, new_alloc_size; 349 phys_addr_t old_size, new_size, addr; 350 int use_slab = slab_is_available(); 351 int *in_slab; 352 353 /* We don't allow resizing until we know about the reserved regions 354 * of memory that aren't suitable for allocation 355 */ 356 if (!memblock_can_resize) 357 return -1; 358 359 /* Calculate new doubled size */ 360 old_size = type->max * sizeof(struct memblock_region); 361 new_size = old_size << 1; 362 /* 363 * We need to allocated new one align to PAGE_SIZE, 364 * so we can free them completely later. 365 */ 366 old_alloc_size = PAGE_ALIGN(old_size); 367 new_alloc_size = PAGE_ALIGN(new_size); 368 369 /* Retrieve the slab flag */ 370 if (type == &memblock.memory) 371 in_slab = &memblock_memory_in_slab; 372 else 373 in_slab = &memblock_reserved_in_slab; 374 375 /* Try to find some space for it. 376 * 377 * WARNING: We assume that either slab_is_available() and we use it or 378 * we use MEMBLOCK for allocations. That means that this is unsafe to 379 * use when bootmem is currently active (unless bootmem itself is 380 * implemented on top of MEMBLOCK which isn't the case yet) 381 * 382 * This should however not be an issue for now, as we currently only 383 * call into MEMBLOCK while it's still active, or much later when slab 384 * is active for memory hotplug operations 385 */ 386 if (use_slab) { 387 new_array = kmalloc(new_size, GFP_KERNEL); 388 addr = new_array ? __pa(new_array) : 0; 389 } else { 390 /* only exclude range when trying to double reserved.regions */ 391 if (type != &memblock.reserved) 392 new_area_start = new_area_size = 0; 393 394 addr = memblock_find_in_range(new_area_start + new_area_size, 395 memblock.current_limit, 396 new_alloc_size, PAGE_SIZE); 397 if (!addr && new_area_size) 398 addr = memblock_find_in_range(0, 399 min(new_area_start, memblock.current_limit), 400 new_alloc_size, PAGE_SIZE); 401 402 new_array = addr ? __va(addr) : NULL; 403 } 404 if (!addr) { 405 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 406 memblock_type_name(type), type->max, type->max * 2); 407 return -1; 408 } 409 410 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 411 memblock_type_name(type), type->max * 2, (u64)addr, 412 (u64)addr + new_size - 1); 413 414 /* 415 * Found space, we now need to move the array over before we add the 416 * reserved region since it may be our reserved array itself that is 417 * full. 418 */ 419 memcpy(new_array, type->regions, old_size); 420 memset(new_array + type->max, 0, old_size); 421 old_array = type->regions; 422 type->regions = new_array; 423 type->max <<= 1; 424 425 /* Free old array. We needn't free it if the array is the static one */ 426 if (*in_slab) 427 kfree(old_array); 428 else if (old_array != memblock_memory_init_regions && 429 old_array != memblock_reserved_init_regions) 430 memblock_free(__pa(old_array), old_alloc_size); 431 432 /* 433 * Reserve the new array if that comes from the memblock. Otherwise, we 434 * needn't do it 435 */ 436 if (!use_slab) 437 BUG_ON(memblock_reserve(addr, new_alloc_size)); 438 439 /* Update slab flag */ 440 *in_slab = use_slab; 441 442 return 0; 443 } 444 445 /** 446 * memblock_merge_regions - merge neighboring compatible regions 447 * @type: memblock type to scan 448 * 449 * Scan @type and merge neighboring compatible regions. 450 */ 451 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 452 { 453 int i = 0; 454 455 /* cnt never goes below 1 */ 456 while (i < type->cnt - 1) { 457 struct memblock_region *this = &type->regions[i]; 458 struct memblock_region *next = &type->regions[i + 1]; 459 460 if (this->base + this->size != next->base || 461 memblock_get_region_node(this) != 462 memblock_get_region_node(next) || 463 this->flags != next->flags) { 464 BUG_ON(this->base + this->size > next->base); 465 i++; 466 continue; 467 } 468 469 this->size += next->size; 470 /* move forward from next + 1, index of which is i + 2 */ 471 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 472 type->cnt--; 473 } 474 } 475 476 /** 477 * memblock_insert_region - insert new memblock region 478 * @type: memblock type to insert into 479 * @idx: index for the insertion point 480 * @base: base address of the new region 481 * @size: size of the new region 482 * @nid: node id of the new region 483 * @flags: flags of the new region 484 * 485 * Insert new memblock region [@base,@base+@size) into @type at @idx. 486 * @type must already have extra room to accomodate the new region. 487 */ 488 static void __init_memblock memblock_insert_region(struct memblock_type *type, 489 int idx, phys_addr_t base, 490 phys_addr_t size, 491 int nid, unsigned long flags) 492 { 493 struct memblock_region *rgn = &type->regions[idx]; 494 495 BUG_ON(type->cnt >= type->max); 496 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 497 rgn->base = base; 498 rgn->size = size; 499 rgn->flags = flags; 500 memblock_set_region_node(rgn, nid); 501 type->cnt++; 502 type->total_size += size; 503 } 504 505 /** 506 * memblock_add_range - add new memblock region 507 * @type: memblock type to add new region into 508 * @base: base address of the new region 509 * @size: size of the new region 510 * @nid: nid of the new region 511 * @flags: flags of the new region 512 * 513 * Add new memblock region [@base,@base+@size) into @type. The new region 514 * is allowed to overlap with existing ones - overlaps don't affect already 515 * existing regions. @type is guaranteed to be minimal (all neighbouring 516 * compatible regions are merged) after the addition. 517 * 518 * RETURNS: 519 * 0 on success, -errno on failure. 520 */ 521 int __init_memblock memblock_add_range(struct memblock_type *type, 522 phys_addr_t base, phys_addr_t size, 523 int nid, unsigned long flags) 524 { 525 bool insert = false; 526 phys_addr_t obase = base; 527 phys_addr_t end = base + memblock_cap_size(base, &size); 528 int idx, nr_new; 529 struct memblock_region *rgn; 530 531 if (!size) 532 return 0; 533 534 /* special case for empty array */ 535 if (type->regions[0].size == 0) { 536 WARN_ON(type->cnt != 1 || type->total_size); 537 type->regions[0].base = base; 538 type->regions[0].size = size; 539 type->regions[0].flags = flags; 540 memblock_set_region_node(&type->regions[0], nid); 541 type->total_size = size; 542 return 0; 543 } 544 repeat: 545 /* 546 * The following is executed twice. Once with %false @insert and 547 * then with %true. The first counts the number of regions needed 548 * to accomodate the new area. The second actually inserts them. 549 */ 550 base = obase; 551 nr_new = 0; 552 553 for_each_memblock_type(type, rgn) { 554 phys_addr_t rbase = rgn->base; 555 phys_addr_t rend = rbase + rgn->size; 556 557 if (rbase >= end) 558 break; 559 if (rend <= base) 560 continue; 561 /* 562 * @rgn overlaps. If it separates the lower part of new 563 * area, insert that portion. 564 */ 565 if (rbase > base) { 566 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 567 WARN_ON(nid != memblock_get_region_node(rgn)); 568 #endif 569 WARN_ON(flags != rgn->flags); 570 nr_new++; 571 if (insert) 572 memblock_insert_region(type, idx++, base, 573 rbase - base, nid, 574 flags); 575 } 576 /* area below @rend is dealt with, forget about it */ 577 base = min(rend, end); 578 } 579 580 /* insert the remaining portion */ 581 if (base < end) { 582 nr_new++; 583 if (insert) 584 memblock_insert_region(type, idx, base, end - base, 585 nid, flags); 586 } 587 588 /* 589 * If this was the first round, resize array and repeat for actual 590 * insertions; otherwise, merge and return. 591 */ 592 if (!insert) { 593 while (type->cnt + nr_new > type->max) 594 if (memblock_double_array(type, obase, size) < 0) 595 return -ENOMEM; 596 insert = true; 597 goto repeat; 598 } else { 599 memblock_merge_regions(type); 600 return 0; 601 } 602 } 603 604 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 605 int nid) 606 { 607 return memblock_add_range(&memblock.memory, base, size, nid, 0); 608 } 609 610 static int __init_memblock memblock_add_region(phys_addr_t base, 611 phys_addr_t size, 612 int nid, 613 unsigned long flags) 614 { 615 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n", 616 (unsigned long long)base, 617 (unsigned long long)base + size - 1, 618 flags, (void *)_RET_IP_); 619 620 return memblock_add_range(&memblock.memory, base, size, nid, flags); 621 } 622 623 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 624 { 625 return memblock_add_region(base, size, MAX_NUMNODES, 0); 626 } 627 628 /** 629 * memblock_isolate_range - isolate given range into disjoint memblocks 630 * @type: memblock type to isolate range for 631 * @base: base of range to isolate 632 * @size: size of range to isolate 633 * @start_rgn: out parameter for the start of isolated region 634 * @end_rgn: out parameter for the end of isolated region 635 * 636 * Walk @type and ensure that regions don't cross the boundaries defined by 637 * [@base,@base+@size). Crossing regions are split at the boundaries, 638 * which may create at most two more regions. The index of the first 639 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 640 * 641 * RETURNS: 642 * 0 on success, -errno on failure. 643 */ 644 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 645 phys_addr_t base, phys_addr_t size, 646 int *start_rgn, int *end_rgn) 647 { 648 phys_addr_t end = base + memblock_cap_size(base, &size); 649 int idx; 650 struct memblock_region *rgn; 651 652 *start_rgn = *end_rgn = 0; 653 654 if (!size) 655 return 0; 656 657 /* we'll create at most two more regions */ 658 while (type->cnt + 2 > type->max) 659 if (memblock_double_array(type, base, size) < 0) 660 return -ENOMEM; 661 662 for_each_memblock_type(type, rgn) { 663 phys_addr_t rbase = rgn->base; 664 phys_addr_t rend = rbase + rgn->size; 665 666 if (rbase >= end) 667 break; 668 if (rend <= base) 669 continue; 670 671 if (rbase < base) { 672 /* 673 * @rgn intersects from below. Split and continue 674 * to process the next region - the new top half. 675 */ 676 rgn->base = base; 677 rgn->size -= base - rbase; 678 type->total_size -= base - rbase; 679 memblock_insert_region(type, idx, rbase, base - rbase, 680 memblock_get_region_node(rgn), 681 rgn->flags); 682 } else if (rend > end) { 683 /* 684 * @rgn intersects from above. Split and redo the 685 * current region - the new bottom half. 686 */ 687 rgn->base = end; 688 rgn->size -= end - rbase; 689 type->total_size -= end - rbase; 690 memblock_insert_region(type, idx--, rbase, end - rbase, 691 memblock_get_region_node(rgn), 692 rgn->flags); 693 } else { 694 /* @rgn is fully contained, record it */ 695 if (!*end_rgn) 696 *start_rgn = idx; 697 *end_rgn = idx + 1; 698 } 699 } 700 701 return 0; 702 } 703 704 static int __init_memblock memblock_remove_range(struct memblock_type *type, 705 phys_addr_t base, phys_addr_t size) 706 { 707 int start_rgn, end_rgn; 708 int i, ret; 709 710 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 711 if (ret) 712 return ret; 713 714 for (i = end_rgn - 1; i >= start_rgn; i--) 715 memblock_remove_region(type, i); 716 return 0; 717 } 718 719 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 720 { 721 return memblock_remove_range(&memblock.memory, base, size); 722 } 723 724 725 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 726 { 727 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 728 (unsigned long long)base, 729 (unsigned long long)base + size - 1, 730 (void *)_RET_IP_); 731 732 kmemleak_free_part(__va(base), size); 733 return memblock_remove_range(&memblock.reserved, base, size); 734 } 735 736 static int __init_memblock memblock_reserve_region(phys_addr_t base, 737 phys_addr_t size, 738 int nid, 739 unsigned long flags) 740 { 741 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n", 742 (unsigned long long)base, 743 (unsigned long long)base + size - 1, 744 flags, (void *)_RET_IP_); 745 746 return memblock_add_range(&memblock.reserved, base, size, nid, flags); 747 } 748 749 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 750 { 751 return memblock_reserve_region(base, size, MAX_NUMNODES, 0); 752 } 753 754 /** 755 * 756 * This function isolates region [@base, @base + @size), and sets/clears flag 757 * 758 * Return 0 on success, -errno on failure. 759 */ 760 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 761 phys_addr_t size, int set, int flag) 762 { 763 struct memblock_type *type = &memblock.memory; 764 int i, ret, start_rgn, end_rgn; 765 766 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 767 if (ret) 768 return ret; 769 770 for (i = start_rgn; i < end_rgn; i++) 771 if (set) 772 memblock_set_region_flags(&type->regions[i], flag); 773 else 774 memblock_clear_region_flags(&type->regions[i], flag); 775 776 memblock_merge_regions(type); 777 return 0; 778 } 779 780 /** 781 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 782 * @base: the base phys addr of the region 783 * @size: the size of the region 784 * 785 * Return 0 on success, -errno on failure. 786 */ 787 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 788 { 789 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 790 } 791 792 /** 793 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 794 * @base: the base phys addr of the region 795 * @size: the size of the region 796 * 797 * Return 0 on success, -errno on failure. 798 */ 799 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 800 { 801 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 802 } 803 804 /** 805 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 806 * @base: the base phys addr of the region 807 * @size: the size of the region 808 * 809 * Return 0 on success, -errno on failure. 810 */ 811 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 812 { 813 system_has_some_mirror = true; 814 815 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 816 } 817 818 /** 819 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 820 * @base: the base phys addr of the region 821 * @size: the size of the region 822 * 823 * Return 0 on success, -errno on failure. 824 */ 825 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 826 { 827 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 828 } 829 830 /** 831 * __next_reserved_mem_region - next function for for_each_reserved_region() 832 * @idx: pointer to u64 loop variable 833 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 834 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 835 * 836 * Iterate over all reserved memory regions. 837 */ 838 void __init_memblock __next_reserved_mem_region(u64 *idx, 839 phys_addr_t *out_start, 840 phys_addr_t *out_end) 841 { 842 struct memblock_type *type = &memblock.reserved; 843 844 if (*idx >= 0 && *idx < type->cnt) { 845 struct memblock_region *r = &type->regions[*idx]; 846 phys_addr_t base = r->base; 847 phys_addr_t size = r->size; 848 849 if (out_start) 850 *out_start = base; 851 if (out_end) 852 *out_end = base + size - 1; 853 854 *idx += 1; 855 return; 856 } 857 858 /* signal end of iteration */ 859 *idx = ULLONG_MAX; 860 } 861 862 /** 863 * __next__mem_range - next function for for_each_free_mem_range() etc. 864 * @idx: pointer to u64 loop variable 865 * @nid: node selector, %NUMA_NO_NODE for all nodes 866 * @flags: pick from blocks based on memory attributes 867 * @type_a: pointer to memblock_type from where the range is taken 868 * @type_b: pointer to memblock_type which excludes memory from being taken 869 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 870 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 871 * @out_nid: ptr to int for nid of the range, can be %NULL 872 * 873 * Find the first area from *@idx which matches @nid, fill the out 874 * parameters, and update *@idx for the next iteration. The lower 32bit of 875 * *@idx contains index into type_a and the upper 32bit indexes the 876 * areas before each region in type_b. For example, if type_b regions 877 * look like the following, 878 * 879 * 0:[0-16), 1:[32-48), 2:[128-130) 880 * 881 * The upper 32bit indexes the following regions. 882 * 883 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 884 * 885 * As both region arrays are sorted, the function advances the two indices 886 * in lockstep and returns each intersection. 887 */ 888 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags, 889 struct memblock_type *type_a, 890 struct memblock_type *type_b, 891 phys_addr_t *out_start, 892 phys_addr_t *out_end, int *out_nid) 893 { 894 int idx_a = *idx & 0xffffffff; 895 int idx_b = *idx >> 32; 896 897 if (WARN_ONCE(nid == MAX_NUMNODES, 898 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 899 nid = NUMA_NO_NODE; 900 901 for (; idx_a < type_a->cnt; idx_a++) { 902 struct memblock_region *m = &type_a->regions[idx_a]; 903 904 phys_addr_t m_start = m->base; 905 phys_addr_t m_end = m->base + m->size; 906 int m_nid = memblock_get_region_node(m); 907 908 /* only memory regions are associated with nodes, check it */ 909 if (nid != NUMA_NO_NODE && nid != m_nid) 910 continue; 911 912 /* skip hotpluggable memory regions if needed */ 913 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 914 continue; 915 916 /* if we want mirror memory skip non-mirror memory regions */ 917 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 918 continue; 919 920 /* skip nomap memory unless we were asked for it explicitly */ 921 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 922 continue; 923 924 if (!type_b) { 925 if (out_start) 926 *out_start = m_start; 927 if (out_end) 928 *out_end = m_end; 929 if (out_nid) 930 *out_nid = m_nid; 931 idx_a++; 932 *idx = (u32)idx_a | (u64)idx_b << 32; 933 return; 934 } 935 936 /* scan areas before each reservation */ 937 for (; idx_b < type_b->cnt + 1; idx_b++) { 938 struct memblock_region *r; 939 phys_addr_t r_start; 940 phys_addr_t r_end; 941 942 r = &type_b->regions[idx_b]; 943 r_start = idx_b ? r[-1].base + r[-1].size : 0; 944 r_end = idx_b < type_b->cnt ? 945 r->base : ULLONG_MAX; 946 947 /* 948 * if idx_b advanced past idx_a, 949 * break out to advance idx_a 950 */ 951 if (r_start >= m_end) 952 break; 953 /* if the two regions intersect, we're done */ 954 if (m_start < r_end) { 955 if (out_start) 956 *out_start = 957 max(m_start, r_start); 958 if (out_end) 959 *out_end = min(m_end, r_end); 960 if (out_nid) 961 *out_nid = m_nid; 962 /* 963 * The region which ends first is 964 * advanced for the next iteration. 965 */ 966 if (m_end <= r_end) 967 idx_a++; 968 else 969 idx_b++; 970 *idx = (u32)idx_a | (u64)idx_b << 32; 971 return; 972 } 973 } 974 } 975 976 /* signal end of iteration */ 977 *idx = ULLONG_MAX; 978 } 979 980 /** 981 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 982 * 983 * Finds the next range from type_a which is not marked as unsuitable 984 * in type_b. 985 * 986 * @idx: pointer to u64 loop variable 987 * @nid: node selector, %NUMA_NO_NODE for all nodes 988 * @flags: pick from blocks based on memory attributes 989 * @type_a: pointer to memblock_type from where the range is taken 990 * @type_b: pointer to memblock_type which excludes memory from being taken 991 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 992 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 993 * @out_nid: ptr to int for nid of the range, can be %NULL 994 * 995 * Reverse of __next_mem_range(). 996 */ 997 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags, 998 struct memblock_type *type_a, 999 struct memblock_type *type_b, 1000 phys_addr_t *out_start, 1001 phys_addr_t *out_end, int *out_nid) 1002 { 1003 int idx_a = *idx & 0xffffffff; 1004 int idx_b = *idx >> 32; 1005 1006 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1007 nid = NUMA_NO_NODE; 1008 1009 if (*idx == (u64)ULLONG_MAX) { 1010 idx_a = type_a->cnt - 1; 1011 idx_b = type_b->cnt; 1012 } 1013 1014 for (; idx_a >= 0; idx_a--) { 1015 struct memblock_region *m = &type_a->regions[idx_a]; 1016 1017 phys_addr_t m_start = m->base; 1018 phys_addr_t m_end = m->base + m->size; 1019 int m_nid = memblock_get_region_node(m); 1020 1021 /* only memory regions are associated with nodes, check it */ 1022 if (nid != NUMA_NO_NODE && nid != m_nid) 1023 continue; 1024 1025 /* skip hotpluggable memory regions if needed */ 1026 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 1027 continue; 1028 1029 /* if we want mirror memory skip non-mirror memory regions */ 1030 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1031 continue; 1032 1033 /* skip nomap memory unless we were asked for it explicitly */ 1034 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1035 continue; 1036 1037 if (!type_b) { 1038 if (out_start) 1039 *out_start = m_start; 1040 if (out_end) 1041 *out_end = m_end; 1042 if (out_nid) 1043 *out_nid = m_nid; 1044 idx_a++; 1045 *idx = (u32)idx_a | (u64)idx_b << 32; 1046 return; 1047 } 1048 1049 /* scan areas before each reservation */ 1050 for (; idx_b >= 0; idx_b--) { 1051 struct memblock_region *r; 1052 phys_addr_t r_start; 1053 phys_addr_t r_end; 1054 1055 r = &type_b->regions[idx_b]; 1056 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1057 r_end = idx_b < type_b->cnt ? 1058 r->base : ULLONG_MAX; 1059 /* 1060 * if idx_b advanced past idx_a, 1061 * break out to advance idx_a 1062 */ 1063 1064 if (r_end <= m_start) 1065 break; 1066 /* if the two regions intersect, we're done */ 1067 if (m_end > r_start) { 1068 if (out_start) 1069 *out_start = max(m_start, r_start); 1070 if (out_end) 1071 *out_end = min(m_end, r_end); 1072 if (out_nid) 1073 *out_nid = m_nid; 1074 if (m_start >= r_start) 1075 idx_a--; 1076 else 1077 idx_b--; 1078 *idx = (u32)idx_a | (u64)idx_b << 32; 1079 return; 1080 } 1081 } 1082 } 1083 /* signal end of iteration */ 1084 *idx = ULLONG_MAX; 1085 } 1086 1087 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1088 /* 1089 * Common iterator interface used to define for_each_mem_range(). 1090 */ 1091 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1092 unsigned long *out_start_pfn, 1093 unsigned long *out_end_pfn, int *out_nid) 1094 { 1095 struct memblock_type *type = &memblock.memory; 1096 struct memblock_region *r; 1097 1098 while (++*idx < type->cnt) { 1099 r = &type->regions[*idx]; 1100 1101 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1102 continue; 1103 if (nid == MAX_NUMNODES || nid == r->nid) 1104 break; 1105 } 1106 if (*idx >= type->cnt) { 1107 *idx = -1; 1108 return; 1109 } 1110 1111 if (out_start_pfn) 1112 *out_start_pfn = PFN_UP(r->base); 1113 if (out_end_pfn) 1114 *out_end_pfn = PFN_DOWN(r->base + r->size); 1115 if (out_nid) 1116 *out_nid = r->nid; 1117 } 1118 1119 /** 1120 * memblock_set_node - set node ID on memblock regions 1121 * @base: base of area to set node ID for 1122 * @size: size of area to set node ID for 1123 * @type: memblock type to set node ID for 1124 * @nid: node ID to set 1125 * 1126 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. 1127 * Regions which cross the area boundaries are split as necessary. 1128 * 1129 * RETURNS: 1130 * 0 on success, -errno on failure. 1131 */ 1132 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1133 struct memblock_type *type, int nid) 1134 { 1135 int start_rgn, end_rgn; 1136 int i, ret; 1137 1138 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1139 if (ret) 1140 return ret; 1141 1142 for (i = start_rgn; i < end_rgn; i++) 1143 memblock_set_region_node(&type->regions[i], nid); 1144 1145 memblock_merge_regions(type); 1146 return 0; 1147 } 1148 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1149 1150 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1151 phys_addr_t align, phys_addr_t start, 1152 phys_addr_t end, int nid, ulong flags) 1153 { 1154 phys_addr_t found; 1155 1156 if (!align) 1157 align = SMP_CACHE_BYTES; 1158 1159 found = memblock_find_in_range_node(size, align, start, end, nid, 1160 flags); 1161 if (found && !memblock_reserve(found, size)) { 1162 /* 1163 * The min_count is set to 0 so that memblock allocations are 1164 * never reported as leaks. 1165 */ 1166 kmemleak_alloc(__va(found), size, 0, 0); 1167 return found; 1168 } 1169 return 0; 1170 } 1171 1172 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1173 phys_addr_t start, phys_addr_t end, 1174 ulong flags) 1175 { 1176 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1177 flags); 1178 } 1179 1180 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1181 phys_addr_t align, phys_addr_t max_addr, 1182 int nid, ulong flags) 1183 { 1184 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags); 1185 } 1186 1187 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1188 { 1189 ulong flags = choose_memblock_flags(); 1190 phys_addr_t ret; 1191 1192 again: 1193 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, 1194 nid, flags); 1195 1196 if (!ret && (flags & MEMBLOCK_MIRROR)) { 1197 flags &= ~MEMBLOCK_MIRROR; 1198 goto again; 1199 } 1200 return ret; 1201 } 1202 1203 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1204 { 1205 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE, 1206 MEMBLOCK_NONE); 1207 } 1208 1209 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1210 { 1211 phys_addr_t alloc; 1212 1213 alloc = __memblock_alloc_base(size, align, max_addr); 1214 1215 if (alloc == 0) 1216 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 1217 (unsigned long long) size, (unsigned long long) max_addr); 1218 1219 return alloc; 1220 } 1221 1222 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 1223 { 1224 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1225 } 1226 1227 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1228 { 1229 phys_addr_t res = memblock_alloc_nid(size, align, nid); 1230 1231 if (res) 1232 return res; 1233 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1234 } 1235 1236 /** 1237 * memblock_virt_alloc_internal - allocate boot memory block 1238 * @size: size of memory block to be allocated in bytes 1239 * @align: alignment of the region and block's size 1240 * @min_addr: the lower bound of the memory region to allocate (phys address) 1241 * @max_addr: the upper bound of the memory region to allocate (phys address) 1242 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1243 * 1244 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1245 * will fall back to memory below @min_addr. Also, allocation may fall back 1246 * to any node in the system if the specified node can not 1247 * hold the requested memory. 1248 * 1249 * The allocation is performed from memory region limited by 1250 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. 1251 * 1252 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. 1253 * 1254 * The phys address of allocated boot memory block is converted to virtual and 1255 * allocated memory is reset to 0. 1256 * 1257 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1258 * allocated boot memory block, so that it is never reported as leaks. 1259 * 1260 * RETURNS: 1261 * Virtual address of allocated memory block on success, NULL on failure. 1262 */ 1263 static void * __init memblock_virt_alloc_internal( 1264 phys_addr_t size, phys_addr_t align, 1265 phys_addr_t min_addr, phys_addr_t max_addr, 1266 int nid) 1267 { 1268 phys_addr_t alloc; 1269 void *ptr; 1270 ulong flags = choose_memblock_flags(); 1271 1272 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1273 nid = NUMA_NO_NODE; 1274 1275 /* 1276 * Detect any accidental use of these APIs after slab is ready, as at 1277 * this moment memblock may be deinitialized already and its 1278 * internal data may be destroyed (after execution of free_all_bootmem) 1279 */ 1280 if (WARN_ON_ONCE(slab_is_available())) 1281 return kzalloc_node(size, GFP_NOWAIT, nid); 1282 1283 if (!align) 1284 align = SMP_CACHE_BYTES; 1285 1286 if (max_addr > memblock.current_limit) 1287 max_addr = memblock.current_limit; 1288 1289 again: 1290 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1291 nid, flags); 1292 if (alloc) 1293 goto done; 1294 1295 if (nid != NUMA_NO_NODE) { 1296 alloc = memblock_find_in_range_node(size, align, min_addr, 1297 max_addr, NUMA_NO_NODE, 1298 flags); 1299 if (alloc) 1300 goto done; 1301 } 1302 1303 if (min_addr) { 1304 min_addr = 0; 1305 goto again; 1306 } 1307 1308 if (flags & MEMBLOCK_MIRROR) { 1309 flags &= ~MEMBLOCK_MIRROR; 1310 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1311 &size); 1312 goto again; 1313 } 1314 1315 return NULL; 1316 done: 1317 memblock_reserve(alloc, size); 1318 ptr = phys_to_virt(alloc); 1319 memset(ptr, 0, size); 1320 1321 /* 1322 * The min_count is set to 0 so that bootmem allocated blocks 1323 * are never reported as leaks. This is because many of these blocks 1324 * are only referred via the physical address which is not 1325 * looked up by kmemleak. 1326 */ 1327 kmemleak_alloc(ptr, size, 0, 0); 1328 1329 return ptr; 1330 } 1331 1332 /** 1333 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block 1334 * @size: size of memory block to be allocated in bytes 1335 * @align: alignment of the region and block's size 1336 * @min_addr: the lower bound of the memory region from where the allocation 1337 * is preferred (phys address) 1338 * @max_addr: the upper bound of the memory region from where the allocation 1339 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1340 * allocate only from memory limited by memblock.current_limit value 1341 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1342 * 1343 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides 1344 * additional debug information (including caller info), if enabled. 1345 * 1346 * RETURNS: 1347 * Virtual address of allocated memory block on success, NULL on failure. 1348 */ 1349 void * __init memblock_virt_alloc_try_nid_nopanic( 1350 phys_addr_t size, phys_addr_t align, 1351 phys_addr_t min_addr, phys_addr_t max_addr, 1352 int nid) 1353 { 1354 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1355 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1356 (u64)max_addr, (void *)_RET_IP_); 1357 return memblock_virt_alloc_internal(size, align, min_addr, 1358 max_addr, nid); 1359 } 1360 1361 /** 1362 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking 1363 * @size: size of memory block to be allocated in bytes 1364 * @align: alignment of the region and block's size 1365 * @min_addr: the lower bound of the memory region from where the allocation 1366 * is preferred (phys address) 1367 * @max_addr: the upper bound of the memory region from where the allocation 1368 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1369 * allocate only from memory limited by memblock.current_limit value 1370 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1371 * 1372 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic() 1373 * which provides debug information (including caller info), if enabled, 1374 * and panics if the request can not be satisfied. 1375 * 1376 * RETURNS: 1377 * Virtual address of allocated memory block on success, NULL on failure. 1378 */ 1379 void * __init memblock_virt_alloc_try_nid( 1380 phys_addr_t size, phys_addr_t align, 1381 phys_addr_t min_addr, phys_addr_t max_addr, 1382 int nid) 1383 { 1384 void *ptr; 1385 1386 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1387 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1388 (u64)max_addr, (void *)_RET_IP_); 1389 ptr = memblock_virt_alloc_internal(size, align, 1390 min_addr, max_addr, nid); 1391 if (ptr) 1392 return ptr; 1393 1394 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", 1395 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1396 (u64)max_addr); 1397 return NULL; 1398 } 1399 1400 /** 1401 * __memblock_free_early - free boot memory block 1402 * @base: phys starting address of the boot memory block 1403 * @size: size of the boot memory block in bytes 1404 * 1405 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. 1406 * The freeing memory will not be released to the buddy allocator. 1407 */ 1408 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) 1409 { 1410 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1411 __func__, (u64)base, (u64)base + size - 1, 1412 (void *)_RET_IP_); 1413 kmemleak_free_part(__va(base), size); 1414 memblock_remove_range(&memblock.reserved, base, size); 1415 } 1416 1417 /* 1418 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1419 * @addr: phys starting address of the boot memory block 1420 * @size: size of the boot memory block in bytes 1421 * 1422 * This is only useful when the bootmem allocator has already been torn 1423 * down, but we are still initializing the system. Pages are released directly 1424 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1425 */ 1426 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1427 { 1428 u64 cursor, end; 1429 1430 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1431 __func__, (u64)base, (u64)base + size - 1, 1432 (void *)_RET_IP_); 1433 kmemleak_free_part(__va(base), size); 1434 cursor = PFN_UP(base); 1435 end = PFN_DOWN(base + size); 1436 1437 for (; cursor < end; cursor++) { 1438 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0); 1439 totalram_pages++; 1440 } 1441 } 1442 1443 /* 1444 * Remaining API functions 1445 */ 1446 1447 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1448 { 1449 return memblock.memory.total_size; 1450 } 1451 1452 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1453 { 1454 unsigned long pages = 0; 1455 struct memblock_region *r; 1456 unsigned long start_pfn, end_pfn; 1457 1458 for_each_memblock(memory, r) { 1459 start_pfn = memblock_region_memory_base_pfn(r); 1460 end_pfn = memblock_region_memory_end_pfn(r); 1461 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1462 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1463 pages += end_pfn - start_pfn; 1464 } 1465 1466 return PFN_PHYS(pages); 1467 } 1468 1469 /* lowest address */ 1470 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1471 { 1472 return memblock.memory.regions[0].base; 1473 } 1474 1475 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1476 { 1477 int idx = memblock.memory.cnt - 1; 1478 1479 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1480 } 1481 1482 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1483 { 1484 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1485 struct memblock_region *r; 1486 1487 if (!limit) 1488 return; 1489 1490 /* find out max address */ 1491 for_each_memblock(memory, r) { 1492 if (limit <= r->size) { 1493 max_addr = r->base + limit; 1494 break; 1495 } 1496 limit -= r->size; 1497 } 1498 1499 /* truncate both memory and reserved regions */ 1500 memblock_remove_range(&memblock.memory, max_addr, 1501 (phys_addr_t)ULLONG_MAX); 1502 memblock_remove_range(&memblock.reserved, max_addr, 1503 (phys_addr_t)ULLONG_MAX); 1504 } 1505 1506 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1507 { 1508 unsigned int left = 0, right = type->cnt; 1509 1510 do { 1511 unsigned int mid = (right + left) / 2; 1512 1513 if (addr < type->regions[mid].base) 1514 right = mid; 1515 else if (addr >= (type->regions[mid].base + 1516 type->regions[mid].size)) 1517 left = mid + 1; 1518 else 1519 return mid; 1520 } while (left < right); 1521 return -1; 1522 } 1523 1524 bool __init memblock_is_reserved(phys_addr_t addr) 1525 { 1526 return memblock_search(&memblock.reserved, addr) != -1; 1527 } 1528 1529 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1530 { 1531 return memblock_search(&memblock.memory, addr) != -1; 1532 } 1533 1534 int __init_memblock memblock_is_map_memory(phys_addr_t addr) 1535 { 1536 int i = memblock_search(&memblock.memory, addr); 1537 1538 if (i == -1) 1539 return false; 1540 return !memblock_is_nomap(&memblock.memory.regions[i]); 1541 } 1542 1543 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1544 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1545 unsigned long *start_pfn, unsigned long *end_pfn) 1546 { 1547 struct memblock_type *type = &memblock.memory; 1548 int mid = memblock_search(type, PFN_PHYS(pfn)); 1549 1550 if (mid == -1) 1551 return -1; 1552 1553 *start_pfn = PFN_DOWN(type->regions[mid].base); 1554 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1555 1556 return type->regions[mid].nid; 1557 } 1558 #endif 1559 1560 /** 1561 * memblock_is_region_memory - check if a region is a subset of memory 1562 * @base: base of region to check 1563 * @size: size of region to check 1564 * 1565 * Check if the region [@base, @base+@size) is a subset of a memory block. 1566 * 1567 * RETURNS: 1568 * 0 if false, non-zero if true 1569 */ 1570 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1571 { 1572 int idx = memblock_search(&memblock.memory, base); 1573 phys_addr_t end = base + memblock_cap_size(base, &size); 1574 1575 if (idx == -1) 1576 return 0; 1577 return memblock.memory.regions[idx].base <= base && 1578 (memblock.memory.regions[idx].base + 1579 memblock.memory.regions[idx].size) >= end; 1580 } 1581 1582 /** 1583 * memblock_is_region_reserved - check if a region intersects reserved memory 1584 * @base: base of region to check 1585 * @size: size of region to check 1586 * 1587 * Check if the region [@base, @base+@size) intersects a reserved memory block. 1588 * 1589 * RETURNS: 1590 * True if they intersect, false if not. 1591 */ 1592 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1593 { 1594 memblock_cap_size(base, &size); 1595 return memblock_overlaps_region(&memblock.reserved, base, size); 1596 } 1597 1598 void __init_memblock memblock_trim_memory(phys_addr_t align) 1599 { 1600 phys_addr_t start, end, orig_start, orig_end; 1601 struct memblock_region *r; 1602 1603 for_each_memblock(memory, r) { 1604 orig_start = r->base; 1605 orig_end = r->base + r->size; 1606 start = round_up(orig_start, align); 1607 end = round_down(orig_end, align); 1608 1609 if (start == orig_start && end == orig_end) 1610 continue; 1611 1612 if (start < end) { 1613 r->base = start; 1614 r->size = end - start; 1615 } else { 1616 memblock_remove_region(&memblock.memory, 1617 r - memblock.memory.regions); 1618 r--; 1619 } 1620 } 1621 } 1622 1623 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1624 { 1625 memblock.current_limit = limit; 1626 } 1627 1628 phys_addr_t __init_memblock memblock_get_current_limit(void) 1629 { 1630 return memblock.current_limit; 1631 } 1632 1633 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 1634 { 1635 unsigned long long base, size; 1636 unsigned long flags; 1637 int idx; 1638 struct memblock_region *rgn; 1639 1640 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 1641 1642 for_each_memblock_type(type, rgn) { 1643 char nid_buf[32] = ""; 1644 1645 base = rgn->base; 1646 size = rgn->size; 1647 flags = rgn->flags; 1648 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1649 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1650 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1651 memblock_get_region_node(rgn)); 1652 #endif 1653 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n", 1654 name, idx, base, base + size - 1, size, nid_buf, flags); 1655 } 1656 } 1657 1658 void __init_memblock __memblock_dump_all(void) 1659 { 1660 pr_info("MEMBLOCK configuration:\n"); 1661 pr_info(" memory size = %#llx reserved size = %#llx\n", 1662 (unsigned long long)memblock.memory.total_size, 1663 (unsigned long long)memblock.reserved.total_size); 1664 1665 memblock_dump(&memblock.memory, "memory"); 1666 memblock_dump(&memblock.reserved, "reserved"); 1667 } 1668 1669 void __init memblock_allow_resize(void) 1670 { 1671 memblock_can_resize = 1; 1672 } 1673 1674 static int __init early_memblock(char *p) 1675 { 1676 if (p && strstr(p, "debug")) 1677 memblock_debug = 1; 1678 return 0; 1679 } 1680 early_param("memblock", early_memblock); 1681 1682 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1683 1684 static int memblock_debug_show(struct seq_file *m, void *private) 1685 { 1686 struct memblock_type *type = m->private; 1687 struct memblock_region *reg; 1688 int i; 1689 1690 for (i = 0; i < type->cnt; i++) { 1691 reg = &type->regions[i]; 1692 seq_printf(m, "%4d: ", i); 1693 if (sizeof(phys_addr_t) == 4) 1694 seq_printf(m, "0x%08lx..0x%08lx\n", 1695 (unsigned long)reg->base, 1696 (unsigned long)(reg->base + reg->size - 1)); 1697 else 1698 seq_printf(m, "0x%016llx..0x%016llx\n", 1699 (unsigned long long)reg->base, 1700 (unsigned long long)(reg->base + reg->size - 1)); 1701 1702 } 1703 return 0; 1704 } 1705 1706 static int memblock_debug_open(struct inode *inode, struct file *file) 1707 { 1708 return single_open(file, memblock_debug_show, inode->i_private); 1709 } 1710 1711 static const struct file_operations memblock_debug_fops = { 1712 .open = memblock_debug_open, 1713 .read = seq_read, 1714 .llseek = seq_lseek, 1715 .release = single_release, 1716 }; 1717 1718 static int __init memblock_init_debugfs(void) 1719 { 1720 struct dentry *root = debugfs_create_dir("memblock", NULL); 1721 if (!root) 1722 return -ENXIO; 1723 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1724 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1725 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1726 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops); 1727 #endif 1728 1729 return 0; 1730 } 1731 __initcall(memblock_init_debugfs); 1732 1733 #endif /* CONFIG_DEBUG_FS */ 1734