xref: /linux/mm/memblock.c (revision 5e4e38446a62a4f50d77b0dd11d4b379dee08988)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25 
26 #include "internal.h"
27 
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33 
34 struct memblock memblock __initdata_memblock = {
35 	.memory.regions		= memblock_memory_init_regions,
36 	.memory.cnt		= 1,	/* empty dummy entry */
37 	.memory.max		= INIT_MEMBLOCK_REGIONS,
38 
39 	.reserved.regions	= memblock_reserved_init_regions,
40 	.reserved.cnt		= 1,	/* empty dummy entry */
41 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
42 
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 	.physmem.regions	= memblock_physmem_init_regions,
45 	.physmem.cnt		= 1,	/* empty dummy entry */
46 	.physmem.max		= INIT_PHYSMEM_REGIONS,
47 #endif
48 
49 	.bottom_up		= false,
50 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
51 };
52 
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61 
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66 
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
70 {
71 	if (type == &memblock.memory)
72 		return "memory";
73 	else if (type == &memblock.reserved)
74 		return "reserved";
75 	else
76 		return "unknown";
77 }
78 
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84 
85 /*
86  * Address comparison utilities
87  */
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 				       phys_addr_t base2, phys_addr_t size2)
90 {
91 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93 
94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 					phys_addr_t base, phys_addr_t size)
96 {
97 	unsigned long i;
98 
99 	for (i = 0; i < type->cnt; i++)
100 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 					   type->regions[i].size))
102 			break;
103 	return i < type->cnt;
104 }
105 
106 /*
107  * __memblock_find_range_bottom_up - find free area utility in bottom-up
108  * @start: start of candidate range
109  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110  * @size: size of free area to find
111  * @align: alignment of free area to find
112  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113  * @flags: pick from blocks based on memory attributes
114  *
115  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116  *
117  * RETURNS:
118  * Found address on success, 0 on failure.
119  */
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122 				phys_addr_t size, phys_addr_t align, int nid,
123 				ulong flags)
124 {
125 	phys_addr_t this_start, this_end, cand;
126 	u64 i;
127 
128 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129 		this_start = clamp(this_start, start, end);
130 		this_end = clamp(this_end, start, end);
131 
132 		cand = round_up(this_start, align);
133 		if (cand < this_end && this_end - cand >= size)
134 			return cand;
135 	}
136 
137 	return 0;
138 }
139 
140 /**
141  * __memblock_find_range_top_down - find free area utility, in top-down
142  * @start: start of candidate range
143  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144  * @size: size of free area to find
145  * @align: alignment of free area to find
146  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147  * @flags: pick from blocks based on memory attributes
148  *
149  * Utility called from memblock_find_in_range_node(), find free area top-down.
150  *
151  * RETURNS:
152  * Found address on success, 0 on failure.
153  */
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156 			       phys_addr_t size, phys_addr_t align, int nid,
157 			       ulong flags)
158 {
159 	phys_addr_t this_start, this_end, cand;
160 	u64 i;
161 
162 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 					NULL) {
164 		this_start = clamp(this_start, start, end);
165 		this_end = clamp(this_end, start, end);
166 
167 		if (this_end < size)
168 			continue;
169 
170 		cand = round_down(this_end - size, align);
171 		if (cand >= this_start)
172 			return cand;
173 	}
174 
175 	return 0;
176 }
177 
178 /**
179  * memblock_find_in_range_node - find free area in given range and node
180  * @size: size of free area to find
181  * @align: alignment of free area to find
182  * @start: start of candidate range
183  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185  * @flags: pick from blocks based on memory attributes
186  *
187  * Find @size free area aligned to @align in the specified range and node.
188  *
189  * When allocation direction is bottom-up, the @start should be greater
190  * than the end of the kernel image. Otherwise, it will be trimmed. The
191  * reason is that we want the bottom-up allocation just near the kernel
192  * image so it is highly likely that the allocated memory and the kernel
193  * will reside in the same node.
194  *
195  * If bottom-up allocation failed, will try to allocate memory top-down.
196  *
197  * RETURNS:
198  * Found address on success, 0 on failure.
199  */
200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 					phys_addr_t align, phys_addr_t start,
202 					phys_addr_t end, int nid, ulong flags)
203 {
204 	phys_addr_t kernel_end, ret;
205 
206 	/* pump up @end */
207 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 		end = memblock.current_limit;
209 
210 	/* avoid allocating the first page */
211 	start = max_t(phys_addr_t, start, PAGE_SIZE);
212 	end = max(start, end);
213 	kernel_end = __pa_symbol(_end);
214 
215 	/*
216 	 * try bottom-up allocation only when bottom-up mode
217 	 * is set and @end is above the kernel image.
218 	 */
219 	if (memblock_bottom_up() && end > kernel_end) {
220 		phys_addr_t bottom_up_start;
221 
222 		/* make sure we will allocate above the kernel */
223 		bottom_up_start = max(start, kernel_end);
224 
225 		/* ok, try bottom-up allocation first */
226 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227 						      size, align, nid, flags);
228 		if (ret)
229 			return ret;
230 
231 		/*
232 		 * we always limit bottom-up allocation above the kernel,
233 		 * but top-down allocation doesn't have the limit, so
234 		 * retrying top-down allocation may succeed when bottom-up
235 		 * allocation failed.
236 		 *
237 		 * bottom-up allocation is expected to be fail very rarely,
238 		 * so we use WARN_ONCE() here to see the stack trace if
239 		 * fail happens.
240 		 */
241 		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
242 			     "memory hotunplug may be affected\n");
243 	}
244 
245 	return __memblock_find_range_top_down(start, end, size, align, nid,
246 					      flags);
247 }
248 
249 /**
250  * memblock_find_in_range - find free area in given range
251  * @start: start of candidate range
252  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
253  * @size: size of free area to find
254  * @align: alignment of free area to find
255  *
256  * Find @size free area aligned to @align in the specified range.
257  *
258  * RETURNS:
259  * Found address on success, 0 on failure.
260  */
261 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
262 					phys_addr_t end, phys_addr_t size,
263 					phys_addr_t align)
264 {
265 	phys_addr_t ret;
266 	ulong flags = choose_memblock_flags();
267 
268 again:
269 	ret = memblock_find_in_range_node(size, align, start, end,
270 					    NUMA_NO_NODE, flags);
271 
272 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
273 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
274 			&size);
275 		flags &= ~MEMBLOCK_MIRROR;
276 		goto again;
277 	}
278 
279 	return ret;
280 }
281 
282 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
283 {
284 	type->total_size -= type->regions[r].size;
285 	memmove(&type->regions[r], &type->regions[r + 1],
286 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
287 	type->cnt--;
288 
289 	/* Special case for empty arrays */
290 	if (type->cnt == 0) {
291 		WARN_ON(type->total_size != 0);
292 		type->cnt = 1;
293 		type->regions[0].base = 0;
294 		type->regions[0].size = 0;
295 		type->regions[0].flags = 0;
296 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
297 	}
298 }
299 
300 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
301 
302 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
303 					phys_addr_t *addr)
304 {
305 	if (memblock.reserved.regions == memblock_reserved_init_regions)
306 		return 0;
307 
308 	*addr = __pa(memblock.reserved.regions);
309 
310 	return PAGE_ALIGN(sizeof(struct memblock_region) *
311 			  memblock.reserved.max);
312 }
313 
314 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
315 					phys_addr_t *addr)
316 {
317 	if (memblock.memory.regions == memblock_memory_init_regions)
318 		return 0;
319 
320 	*addr = __pa(memblock.memory.regions);
321 
322 	return PAGE_ALIGN(sizeof(struct memblock_region) *
323 			  memblock.memory.max);
324 }
325 
326 #endif
327 
328 /**
329  * memblock_double_array - double the size of the memblock regions array
330  * @type: memblock type of the regions array being doubled
331  * @new_area_start: starting address of memory range to avoid overlap with
332  * @new_area_size: size of memory range to avoid overlap with
333  *
334  * Double the size of the @type regions array. If memblock is being used to
335  * allocate memory for a new reserved regions array and there is a previously
336  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
337  * waiting to be reserved, ensure the memory used by the new array does
338  * not overlap.
339  *
340  * RETURNS:
341  * 0 on success, -1 on failure.
342  */
343 static int __init_memblock memblock_double_array(struct memblock_type *type,
344 						phys_addr_t new_area_start,
345 						phys_addr_t new_area_size)
346 {
347 	struct memblock_region *new_array, *old_array;
348 	phys_addr_t old_alloc_size, new_alloc_size;
349 	phys_addr_t old_size, new_size, addr;
350 	int use_slab = slab_is_available();
351 	int *in_slab;
352 
353 	/* We don't allow resizing until we know about the reserved regions
354 	 * of memory that aren't suitable for allocation
355 	 */
356 	if (!memblock_can_resize)
357 		return -1;
358 
359 	/* Calculate new doubled size */
360 	old_size = type->max * sizeof(struct memblock_region);
361 	new_size = old_size << 1;
362 	/*
363 	 * We need to allocated new one align to PAGE_SIZE,
364 	 *   so we can free them completely later.
365 	 */
366 	old_alloc_size = PAGE_ALIGN(old_size);
367 	new_alloc_size = PAGE_ALIGN(new_size);
368 
369 	/* Retrieve the slab flag */
370 	if (type == &memblock.memory)
371 		in_slab = &memblock_memory_in_slab;
372 	else
373 		in_slab = &memblock_reserved_in_slab;
374 
375 	/* Try to find some space for it.
376 	 *
377 	 * WARNING: We assume that either slab_is_available() and we use it or
378 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
379 	 * use when bootmem is currently active (unless bootmem itself is
380 	 * implemented on top of MEMBLOCK which isn't the case yet)
381 	 *
382 	 * This should however not be an issue for now, as we currently only
383 	 * call into MEMBLOCK while it's still active, or much later when slab
384 	 * is active for memory hotplug operations
385 	 */
386 	if (use_slab) {
387 		new_array = kmalloc(new_size, GFP_KERNEL);
388 		addr = new_array ? __pa(new_array) : 0;
389 	} else {
390 		/* only exclude range when trying to double reserved.regions */
391 		if (type != &memblock.reserved)
392 			new_area_start = new_area_size = 0;
393 
394 		addr = memblock_find_in_range(new_area_start + new_area_size,
395 						memblock.current_limit,
396 						new_alloc_size, PAGE_SIZE);
397 		if (!addr && new_area_size)
398 			addr = memblock_find_in_range(0,
399 				min(new_area_start, memblock.current_limit),
400 				new_alloc_size, PAGE_SIZE);
401 
402 		new_array = addr ? __va(addr) : NULL;
403 	}
404 	if (!addr) {
405 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
406 		       memblock_type_name(type), type->max, type->max * 2);
407 		return -1;
408 	}
409 
410 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
411 			memblock_type_name(type), type->max * 2, (u64)addr,
412 			(u64)addr + new_size - 1);
413 
414 	/*
415 	 * Found space, we now need to move the array over before we add the
416 	 * reserved region since it may be our reserved array itself that is
417 	 * full.
418 	 */
419 	memcpy(new_array, type->regions, old_size);
420 	memset(new_array + type->max, 0, old_size);
421 	old_array = type->regions;
422 	type->regions = new_array;
423 	type->max <<= 1;
424 
425 	/* Free old array. We needn't free it if the array is the static one */
426 	if (*in_slab)
427 		kfree(old_array);
428 	else if (old_array != memblock_memory_init_regions &&
429 		 old_array != memblock_reserved_init_regions)
430 		memblock_free(__pa(old_array), old_alloc_size);
431 
432 	/*
433 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
434 	 * needn't do it
435 	 */
436 	if (!use_slab)
437 		BUG_ON(memblock_reserve(addr, new_alloc_size));
438 
439 	/* Update slab flag */
440 	*in_slab = use_slab;
441 
442 	return 0;
443 }
444 
445 /**
446  * memblock_merge_regions - merge neighboring compatible regions
447  * @type: memblock type to scan
448  *
449  * Scan @type and merge neighboring compatible regions.
450  */
451 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
452 {
453 	int i = 0;
454 
455 	/* cnt never goes below 1 */
456 	while (i < type->cnt - 1) {
457 		struct memblock_region *this = &type->regions[i];
458 		struct memblock_region *next = &type->regions[i + 1];
459 
460 		if (this->base + this->size != next->base ||
461 		    memblock_get_region_node(this) !=
462 		    memblock_get_region_node(next) ||
463 		    this->flags != next->flags) {
464 			BUG_ON(this->base + this->size > next->base);
465 			i++;
466 			continue;
467 		}
468 
469 		this->size += next->size;
470 		/* move forward from next + 1, index of which is i + 2 */
471 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
472 		type->cnt--;
473 	}
474 }
475 
476 /**
477  * memblock_insert_region - insert new memblock region
478  * @type:	memblock type to insert into
479  * @idx:	index for the insertion point
480  * @base:	base address of the new region
481  * @size:	size of the new region
482  * @nid:	node id of the new region
483  * @flags:	flags of the new region
484  *
485  * Insert new memblock region [@base,@base+@size) into @type at @idx.
486  * @type must already have extra room to accomodate the new region.
487  */
488 static void __init_memblock memblock_insert_region(struct memblock_type *type,
489 						   int idx, phys_addr_t base,
490 						   phys_addr_t size,
491 						   int nid, unsigned long flags)
492 {
493 	struct memblock_region *rgn = &type->regions[idx];
494 
495 	BUG_ON(type->cnt >= type->max);
496 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
497 	rgn->base = base;
498 	rgn->size = size;
499 	rgn->flags = flags;
500 	memblock_set_region_node(rgn, nid);
501 	type->cnt++;
502 	type->total_size += size;
503 }
504 
505 /**
506  * memblock_add_range - add new memblock region
507  * @type: memblock type to add new region into
508  * @base: base address of the new region
509  * @size: size of the new region
510  * @nid: nid of the new region
511  * @flags: flags of the new region
512  *
513  * Add new memblock region [@base,@base+@size) into @type.  The new region
514  * is allowed to overlap with existing ones - overlaps don't affect already
515  * existing regions.  @type is guaranteed to be minimal (all neighbouring
516  * compatible regions are merged) after the addition.
517  *
518  * RETURNS:
519  * 0 on success, -errno on failure.
520  */
521 int __init_memblock memblock_add_range(struct memblock_type *type,
522 				phys_addr_t base, phys_addr_t size,
523 				int nid, unsigned long flags)
524 {
525 	bool insert = false;
526 	phys_addr_t obase = base;
527 	phys_addr_t end = base + memblock_cap_size(base, &size);
528 	int idx, nr_new;
529 	struct memblock_region *rgn;
530 
531 	if (!size)
532 		return 0;
533 
534 	/* special case for empty array */
535 	if (type->regions[0].size == 0) {
536 		WARN_ON(type->cnt != 1 || type->total_size);
537 		type->regions[0].base = base;
538 		type->regions[0].size = size;
539 		type->regions[0].flags = flags;
540 		memblock_set_region_node(&type->regions[0], nid);
541 		type->total_size = size;
542 		return 0;
543 	}
544 repeat:
545 	/*
546 	 * The following is executed twice.  Once with %false @insert and
547 	 * then with %true.  The first counts the number of regions needed
548 	 * to accomodate the new area.  The second actually inserts them.
549 	 */
550 	base = obase;
551 	nr_new = 0;
552 
553 	for_each_memblock_type(type, rgn) {
554 		phys_addr_t rbase = rgn->base;
555 		phys_addr_t rend = rbase + rgn->size;
556 
557 		if (rbase >= end)
558 			break;
559 		if (rend <= base)
560 			continue;
561 		/*
562 		 * @rgn overlaps.  If it separates the lower part of new
563 		 * area, insert that portion.
564 		 */
565 		if (rbase > base) {
566 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
567 			WARN_ON(nid != memblock_get_region_node(rgn));
568 #endif
569 			WARN_ON(flags != rgn->flags);
570 			nr_new++;
571 			if (insert)
572 				memblock_insert_region(type, idx++, base,
573 						       rbase - base, nid,
574 						       flags);
575 		}
576 		/* area below @rend is dealt with, forget about it */
577 		base = min(rend, end);
578 	}
579 
580 	/* insert the remaining portion */
581 	if (base < end) {
582 		nr_new++;
583 		if (insert)
584 			memblock_insert_region(type, idx, base, end - base,
585 					       nid, flags);
586 	}
587 
588 	/*
589 	 * If this was the first round, resize array and repeat for actual
590 	 * insertions; otherwise, merge and return.
591 	 */
592 	if (!insert) {
593 		while (type->cnt + nr_new > type->max)
594 			if (memblock_double_array(type, obase, size) < 0)
595 				return -ENOMEM;
596 		insert = true;
597 		goto repeat;
598 	} else {
599 		memblock_merge_regions(type);
600 		return 0;
601 	}
602 }
603 
604 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
605 				       int nid)
606 {
607 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
608 }
609 
610 static int __init_memblock memblock_add_region(phys_addr_t base,
611 						phys_addr_t size,
612 						int nid,
613 						unsigned long flags)
614 {
615 	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
616 		     (unsigned long long)base,
617 		     (unsigned long long)base + size - 1,
618 		     flags, (void *)_RET_IP_);
619 
620 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
621 }
622 
623 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
624 {
625 	return memblock_add_region(base, size, MAX_NUMNODES, 0);
626 }
627 
628 /**
629  * memblock_isolate_range - isolate given range into disjoint memblocks
630  * @type: memblock type to isolate range for
631  * @base: base of range to isolate
632  * @size: size of range to isolate
633  * @start_rgn: out parameter for the start of isolated region
634  * @end_rgn: out parameter for the end of isolated region
635  *
636  * Walk @type and ensure that regions don't cross the boundaries defined by
637  * [@base,@base+@size).  Crossing regions are split at the boundaries,
638  * which may create at most two more regions.  The index of the first
639  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
640  *
641  * RETURNS:
642  * 0 on success, -errno on failure.
643  */
644 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
645 					phys_addr_t base, phys_addr_t size,
646 					int *start_rgn, int *end_rgn)
647 {
648 	phys_addr_t end = base + memblock_cap_size(base, &size);
649 	int idx;
650 	struct memblock_region *rgn;
651 
652 	*start_rgn = *end_rgn = 0;
653 
654 	if (!size)
655 		return 0;
656 
657 	/* we'll create at most two more regions */
658 	while (type->cnt + 2 > type->max)
659 		if (memblock_double_array(type, base, size) < 0)
660 			return -ENOMEM;
661 
662 	for_each_memblock_type(type, rgn) {
663 		phys_addr_t rbase = rgn->base;
664 		phys_addr_t rend = rbase + rgn->size;
665 
666 		if (rbase >= end)
667 			break;
668 		if (rend <= base)
669 			continue;
670 
671 		if (rbase < base) {
672 			/*
673 			 * @rgn intersects from below.  Split and continue
674 			 * to process the next region - the new top half.
675 			 */
676 			rgn->base = base;
677 			rgn->size -= base - rbase;
678 			type->total_size -= base - rbase;
679 			memblock_insert_region(type, idx, rbase, base - rbase,
680 					       memblock_get_region_node(rgn),
681 					       rgn->flags);
682 		} else if (rend > end) {
683 			/*
684 			 * @rgn intersects from above.  Split and redo the
685 			 * current region - the new bottom half.
686 			 */
687 			rgn->base = end;
688 			rgn->size -= end - rbase;
689 			type->total_size -= end - rbase;
690 			memblock_insert_region(type, idx--, rbase, end - rbase,
691 					       memblock_get_region_node(rgn),
692 					       rgn->flags);
693 		} else {
694 			/* @rgn is fully contained, record it */
695 			if (!*end_rgn)
696 				*start_rgn = idx;
697 			*end_rgn = idx + 1;
698 		}
699 	}
700 
701 	return 0;
702 }
703 
704 static int __init_memblock memblock_remove_range(struct memblock_type *type,
705 					  phys_addr_t base, phys_addr_t size)
706 {
707 	int start_rgn, end_rgn;
708 	int i, ret;
709 
710 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
711 	if (ret)
712 		return ret;
713 
714 	for (i = end_rgn - 1; i >= start_rgn; i--)
715 		memblock_remove_region(type, i);
716 	return 0;
717 }
718 
719 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
720 {
721 	return memblock_remove_range(&memblock.memory, base, size);
722 }
723 
724 
725 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
726 {
727 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
728 		     (unsigned long long)base,
729 		     (unsigned long long)base + size - 1,
730 		     (void *)_RET_IP_);
731 
732 	kmemleak_free_part(__va(base), size);
733 	return memblock_remove_range(&memblock.reserved, base, size);
734 }
735 
736 static int __init_memblock memblock_reserve_region(phys_addr_t base,
737 						   phys_addr_t size,
738 						   int nid,
739 						   unsigned long flags)
740 {
741 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
742 		     (unsigned long long)base,
743 		     (unsigned long long)base + size - 1,
744 		     flags, (void *)_RET_IP_);
745 
746 	return memblock_add_range(&memblock.reserved, base, size, nid, flags);
747 }
748 
749 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
750 {
751 	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
752 }
753 
754 /**
755  *
756  * This function isolates region [@base, @base + @size), and sets/clears flag
757  *
758  * Return 0 on success, -errno on failure.
759  */
760 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
761 				phys_addr_t size, int set, int flag)
762 {
763 	struct memblock_type *type = &memblock.memory;
764 	int i, ret, start_rgn, end_rgn;
765 
766 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
767 	if (ret)
768 		return ret;
769 
770 	for (i = start_rgn; i < end_rgn; i++)
771 		if (set)
772 			memblock_set_region_flags(&type->regions[i], flag);
773 		else
774 			memblock_clear_region_flags(&type->regions[i], flag);
775 
776 	memblock_merge_regions(type);
777 	return 0;
778 }
779 
780 /**
781  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
782  * @base: the base phys addr of the region
783  * @size: the size of the region
784  *
785  * Return 0 on success, -errno on failure.
786  */
787 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
788 {
789 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
790 }
791 
792 /**
793  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
794  * @base: the base phys addr of the region
795  * @size: the size of the region
796  *
797  * Return 0 on success, -errno on failure.
798  */
799 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
800 {
801 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
802 }
803 
804 /**
805  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
806  * @base: the base phys addr of the region
807  * @size: the size of the region
808  *
809  * Return 0 on success, -errno on failure.
810  */
811 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
812 {
813 	system_has_some_mirror = true;
814 
815 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
816 }
817 
818 /**
819  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
820  * @base: the base phys addr of the region
821  * @size: the size of the region
822  *
823  * Return 0 on success, -errno on failure.
824  */
825 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
826 {
827 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
828 }
829 
830 /**
831  * __next_reserved_mem_region - next function for for_each_reserved_region()
832  * @idx: pointer to u64 loop variable
833  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
834  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
835  *
836  * Iterate over all reserved memory regions.
837  */
838 void __init_memblock __next_reserved_mem_region(u64 *idx,
839 					   phys_addr_t *out_start,
840 					   phys_addr_t *out_end)
841 {
842 	struct memblock_type *type = &memblock.reserved;
843 
844 	if (*idx >= 0 && *idx < type->cnt) {
845 		struct memblock_region *r = &type->regions[*idx];
846 		phys_addr_t base = r->base;
847 		phys_addr_t size = r->size;
848 
849 		if (out_start)
850 			*out_start = base;
851 		if (out_end)
852 			*out_end = base + size - 1;
853 
854 		*idx += 1;
855 		return;
856 	}
857 
858 	/* signal end of iteration */
859 	*idx = ULLONG_MAX;
860 }
861 
862 /**
863  * __next__mem_range - next function for for_each_free_mem_range() etc.
864  * @idx: pointer to u64 loop variable
865  * @nid: node selector, %NUMA_NO_NODE for all nodes
866  * @flags: pick from blocks based on memory attributes
867  * @type_a: pointer to memblock_type from where the range is taken
868  * @type_b: pointer to memblock_type which excludes memory from being taken
869  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
870  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
871  * @out_nid: ptr to int for nid of the range, can be %NULL
872  *
873  * Find the first area from *@idx which matches @nid, fill the out
874  * parameters, and update *@idx for the next iteration.  The lower 32bit of
875  * *@idx contains index into type_a and the upper 32bit indexes the
876  * areas before each region in type_b.	For example, if type_b regions
877  * look like the following,
878  *
879  *	0:[0-16), 1:[32-48), 2:[128-130)
880  *
881  * The upper 32bit indexes the following regions.
882  *
883  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
884  *
885  * As both region arrays are sorted, the function advances the two indices
886  * in lockstep and returns each intersection.
887  */
888 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
889 				      struct memblock_type *type_a,
890 				      struct memblock_type *type_b,
891 				      phys_addr_t *out_start,
892 				      phys_addr_t *out_end, int *out_nid)
893 {
894 	int idx_a = *idx & 0xffffffff;
895 	int idx_b = *idx >> 32;
896 
897 	if (WARN_ONCE(nid == MAX_NUMNODES,
898 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
899 		nid = NUMA_NO_NODE;
900 
901 	for (; idx_a < type_a->cnt; idx_a++) {
902 		struct memblock_region *m = &type_a->regions[idx_a];
903 
904 		phys_addr_t m_start = m->base;
905 		phys_addr_t m_end = m->base + m->size;
906 		int	    m_nid = memblock_get_region_node(m);
907 
908 		/* only memory regions are associated with nodes, check it */
909 		if (nid != NUMA_NO_NODE && nid != m_nid)
910 			continue;
911 
912 		/* skip hotpluggable memory regions if needed */
913 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
914 			continue;
915 
916 		/* if we want mirror memory skip non-mirror memory regions */
917 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
918 			continue;
919 
920 		/* skip nomap memory unless we were asked for it explicitly */
921 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
922 			continue;
923 
924 		if (!type_b) {
925 			if (out_start)
926 				*out_start = m_start;
927 			if (out_end)
928 				*out_end = m_end;
929 			if (out_nid)
930 				*out_nid = m_nid;
931 			idx_a++;
932 			*idx = (u32)idx_a | (u64)idx_b << 32;
933 			return;
934 		}
935 
936 		/* scan areas before each reservation */
937 		for (; idx_b < type_b->cnt + 1; idx_b++) {
938 			struct memblock_region *r;
939 			phys_addr_t r_start;
940 			phys_addr_t r_end;
941 
942 			r = &type_b->regions[idx_b];
943 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
944 			r_end = idx_b < type_b->cnt ?
945 				r->base : ULLONG_MAX;
946 
947 			/*
948 			 * if idx_b advanced past idx_a,
949 			 * break out to advance idx_a
950 			 */
951 			if (r_start >= m_end)
952 				break;
953 			/* if the two regions intersect, we're done */
954 			if (m_start < r_end) {
955 				if (out_start)
956 					*out_start =
957 						max(m_start, r_start);
958 				if (out_end)
959 					*out_end = min(m_end, r_end);
960 				if (out_nid)
961 					*out_nid = m_nid;
962 				/*
963 				 * The region which ends first is
964 				 * advanced for the next iteration.
965 				 */
966 				if (m_end <= r_end)
967 					idx_a++;
968 				else
969 					idx_b++;
970 				*idx = (u32)idx_a | (u64)idx_b << 32;
971 				return;
972 			}
973 		}
974 	}
975 
976 	/* signal end of iteration */
977 	*idx = ULLONG_MAX;
978 }
979 
980 /**
981  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
982  *
983  * Finds the next range from type_a which is not marked as unsuitable
984  * in type_b.
985  *
986  * @idx: pointer to u64 loop variable
987  * @nid: node selector, %NUMA_NO_NODE for all nodes
988  * @flags: pick from blocks based on memory attributes
989  * @type_a: pointer to memblock_type from where the range is taken
990  * @type_b: pointer to memblock_type which excludes memory from being taken
991  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
992  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
993  * @out_nid: ptr to int for nid of the range, can be %NULL
994  *
995  * Reverse of __next_mem_range().
996  */
997 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
998 					  struct memblock_type *type_a,
999 					  struct memblock_type *type_b,
1000 					  phys_addr_t *out_start,
1001 					  phys_addr_t *out_end, int *out_nid)
1002 {
1003 	int idx_a = *idx & 0xffffffff;
1004 	int idx_b = *idx >> 32;
1005 
1006 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1007 		nid = NUMA_NO_NODE;
1008 
1009 	if (*idx == (u64)ULLONG_MAX) {
1010 		idx_a = type_a->cnt - 1;
1011 		idx_b = type_b->cnt;
1012 	}
1013 
1014 	for (; idx_a >= 0; idx_a--) {
1015 		struct memblock_region *m = &type_a->regions[idx_a];
1016 
1017 		phys_addr_t m_start = m->base;
1018 		phys_addr_t m_end = m->base + m->size;
1019 		int m_nid = memblock_get_region_node(m);
1020 
1021 		/* only memory regions are associated with nodes, check it */
1022 		if (nid != NUMA_NO_NODE && nid != m_nid)
1023 			continue;
1024 
1025 		/* skip hotpluggable memory regions if needed */
1026 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1027 			continue;
1028 
1029 		/* if we want mirror memory skip non-mirror memory regions */
1030 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1031 			continue;
1032 
1033 		/* skip nomap memory unless we were asked for it explicitly */
1034 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1035 			continue;
1036 
1037 		if (!type_b) {
1038 			if (out_start)
1039 				*out_start = m_start;
1040 			if (out_end)
1041 				*out_end = m_end;
1042 			if (out_nid)
1043 				*out_nid = m_nid;
1044 			idx_a++;
1045 			*idx = (u32)idx_a | (u64)idx_b << 32;
1046 			return;
1047 		}
1048 
1049 		/* scan areas before each reservation */
1050 		for (; idx_b >= 0; idx_b--) {
1051 			struct memblock_region *r;
1052 			phys_addr_t r_start;
1053 			phys_addr_t r_end;
1054 
1055 			r = &type_b->regions[idx_b];
1056 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1057 			r_end = idx_b < type_b->cnt ?
1058 				r->base : ULLONG_MAX;
1059 			/*
1060 			 * if idx_b advanced past idx_a,
1061 			 * break out to advance idx_a
1062 			 */
1063 
1064 			if (r_end <= m_start)
1065 				break;
1066 			/* if the two regions intersect, we're done */
1067 			if (m_end > r_start) {
1068 				if (out_start)
1069 					*out_start = max(m_start, r_start);
1070 				if (out_end)
1071 					*out_end = min(m_end, r_end);
1072 				if (out_nid)
1073 					*out_nid = m_nid;
1074 				if (m_start >= r_start)
1075 					idx_a--;
1076 				else
1077 					idx_b--;
1078 				*idx = (u32)idx_a | (u64)idx_b << 32;
1079 				return;
1080 			}
1081 		}
1082 	}
1083 	/* signal end of iteration */
1084 	*idx = ULLONG_MAX;
1085 }
1086 
1087 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1088 /*
1089  * Common iterator interface used to define for_each_mem_range().
1090  */
1091 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1092 				unsigned long *out_start_pfn,
1093 				unsigned long *out_end_pfn, int *out_nid)
1094 {
1095 	struct memblock_type *type = &memblock.memory;
1096 	struct memblock_region *r;
1097 
1098 	while (++*idx < type->cnt) {
1099 		r = &type->regions[*idx];
1100 
1101 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1102 			continue;
1103 		if (nid == MAX_NUMNODES || nid == r->nid)
1104 			break;
1105 	}
1106 	if (*idx >= type->cnt) {
1107 		*idx = -1;
1108 		return;
1109 	}
1110 
1111 	if (out_start_pfn)
1112 		*out_start_pfn = PFN_UP(r->base);
1113 	if (out_end_pfn)
1114 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1115 	if (out_nid)
1116 		*out_nid = r->nid;
1117 }
1118 
1119 /**
1120  * memblock_set_node - set node ID on memblock regions
1121  * @base: base of area to set node ID for
1122  * @size: size of area to set node ID for
1123  * @type: memblock type to set node ID for
1124  * @nid: node ID to set
1125  *
1126  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1127  * Regions which cross the area boundaries are split as necessary.
1128  *
1129  * RETURNS:
1130  * 0 on success, -errno on failure.
1131  */
1132 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1133 				      struct memblock_type *type, int nid)
1134 {
1135 	int start_rgn, end_rgn;
1136 	int i, ret;
1137 
1138 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1139 	if (ret)
1140 		return ret;
1141 
1142 	for (i = start_rgn; i < end_rgn; i++)
1143 		memblock_set_region_node(&type->regions[i], nid);
1144 
1145 	memblock_merge_regions(type);
1146 	return 0;
1147 }
1148 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1149 
1150 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1151 					phys_addr_t align, phys_addr_t start,
1152 					phys_addr_t end, int nid, ulong flags)
1153 {
1154 	phys_addr_t found;
1155 
1156 	if (!align)
1157 		align = SMP_CACHE_BYTES;
1158 
1159 	found = memblock_find_in_range_node(size, align, start, end, nid,
1160 					    flags);
1161 	if (found && !memblock_reserve(found, size)) {
1162 		/*
1163 		 * The min_count is set to 0 so that memblock allocations are
1164 		 * never reported as leaks.
1165 		 */
1166 		kmemleak_alloc(__va(found), size, 0, 0);
1167 		return found;
1168 	}
1169 	return 0;
1170 }
1171 
1172 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1173 					phys_addr_t start, phys_addr_t end,
1174 					ulong flags)
1175 {
1176 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1177 					flags);
1178 }
1179 
1180 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1181 					phys_addr_t align, phys_addr_t max_addr,
1182 					int nid, ulong flags)
1183 {
1184 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1185 }
1186 
1187 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1188 {
1189 	ulong flags = choose_memblock_flags();
1190 	phys_addr_t ret;
1191 
1192 again:
1193 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1194 				      nid, flags);
1195 
1196 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1197 		flags &= ~MEMBLOCK_MIRROR;
1198 		goto again;
1199 	}
1200 	return ret;
1201 }
1202 
1203 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1204 {
1205 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1206 				       MEMBLOCK_NONE);
1207 }
1208 
1209 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1210 {
1211 	phys_addr_t alloc;
1212 
1213 	alloc = __memblock_alloc_base(size, align, max_addr);
1214 
1215 	if (alloc == 0)
1216 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1217 		      (unsigned long long) size, (unsigned long long) max_addr);
1218 
1219 	return alloc;
1220 }
1221 
1222 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1223 {
1224 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1225 }
1226 
1227 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1228 {
1229 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1230 
1231 	if (res)
1232 		return res;
1233 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1234 }
1235 
1236 /**
1237  * memblock_virt_alloc_internal - allocate boot memory block
1238  * @size: size of memory block to be allocated in bytes
1239  * @align: alignment of the region and block's size
1240  * @min_addr: the lower bound of the memory region to allocate (phys address)
1241  * @max_addr: the upper bound of the memory region to allocate (phys address)
1242  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1243  *
1244  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1245  * will fall back to memory below @min_addr. Also, allocation may fall back
1246  * to any node in the system if the specified node can not
1247  * hold the requested memory.
1248  *
1249  * The allocation is performed from memory region limited by
1250  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1251  *
1252  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1253  *
1254  * The phys address of allocated boot memory block is converted to virtual and
1255  * allocated memory is reset to 0.
1256  *
1257  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1258  * allocated boot memory block, so that it is never reported as leaks.
1259  *
1260  * RETURNS:
1261  * Virtual address of allocated memory block on success, NULL on failure.
1262  */
1263 static void * __init memblock_virt_alloc_internal(
1264 				phys_addr_t size, phys_addr_t align,
1265 				phys_addr_t min_addr, phys_addr_t max_addr,
1266 				int nid)
1267 {
1268 	phys_addr_t alloc;
1269 	void *ptr;
1270 	ulong flags = choose_memblock_flags();
1271 
1272 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1273 		nid = NUMA_NO_NODE;
1274 
1275 	/*
1276 	 * Detect any accidental use of these APIs after slab is ready, as at
1277 	 * this moment memblock may be deinitialized already and its
1278 	 * internal data may be destroyed (after execution of free_all_bootmem)
1279 	 */
1280 	if (WARN_ON_ONCE(slab_is_available()))
1281 		return kzalloc_node(size, GFP_NOWAIT, nid);
1282 
1283 	if (!align)
1284 		align = SMP_CACHE_BYTES;
1285 
1286 	if (max_addr > memblock.current_limit)
1287 		max_addr = memblock.current_limit;
1288 
1289 again:
1290 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1291 					    nid, flags);
1292 	if (alloc)
1293 		goto done;
1294 
1295 	if (nid != NUMA_NO_NODE) {
1296 		alloc = memblock_find_in_range_node(size, align, min_addr,
1297 						    max_addr, NUMA_NO_NODE,
1298 						    flags);
1299 		if (alloc)
1300 			goto done;
1301 	}
1302 
1303 	if (min_addr) {
1304 		min_addr = 0;
1305 		goto again;
1306 	}
1307 
1308 	if (flags & MEMBLOCK_MIRROR) {
1309 		flags &= ~MEMBLOCK_MIRROR;
1310 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1311 			&size);
1312 		goto again;
1313 	}
1314 
1315 	return NULL;
1316 done:
1317 	memblock_reserve(alloc, size);
1318 	ptr = phys_to_virt(alloc);
1319 	memset(ptr, 0, size);
1320 
1321 	/*
1322 	 * The min_count is set to 0 so that bootmem allocated blocks
1323 	 * are never reported as leaks. This is because many of these blocks
1324 	 * are only referred via the physical address which is not
1325 	 * looked up by kmemleak.
1326 	 */
1327 	kmemleak_alloc(ptr, size, 0, 0);
1328 
1329 	return ptr;
1330 }
1331 
1332 /**
1333  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1334  * @size: size of memory block to be allocated in bytes
1335  * @align: alignment of the region and block's size
1336  * @min_addr: the lower bound of the memory region from where the allocation
1337  *	  is preferred (phys address)
1338  * @max_addr: the upper bound of the memory region from where the allocation
1339  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1340  *	      allocate only from memory limited by memblock.current_limit value
1341  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1342  *
1343  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1344  * additional debug information (including caller info), if enabled.
1345  *
1346  * RETURNS:
1347  * Virtual address of allocated memory block on success, NULL on failure.
1348  */
1349 void * __init memblock_virt_alloc_try_nid_nopanic(
1350 				phys_addr_t size, phys_addr_t align,
1351 				phys_addr_t min_addr, phys_addr_t max_addr,
1352 				int nid)
1353 {
1354 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1355 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1356 		     (u64)max_addr, (void *)_RET_IP_);
1357 	return memblock_virt_alloc_internal(size, align, min_addr,
1358 					     max_addr, nid);
1359 }
1360 
1361 /**
1362  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1363  * @size: size of memory block to be allocated in bytes
1364  * @align: alignment of the region and block's size
1365  * @min_addr: the lower bound of the memory region from where the allocation
1366  *	  is preferred (phys address)
1367  * @max_addr: the upper bound of the memory region from where the allocation
1368  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1369  *	      allocate only from memory limited by memblock.current_limit value
1370  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1371  *
1372  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1373  * which provides debug information (including caller info), if enabled,
1374  * and panics if the request can not be satisfied.
1375  *
1376  * RETURNS:
1377  * Virtual address of allocated memory block on success, NULL on failure.
1378  */
1379 void * __init memblock_virt_alloc_try_nid(
1380 			phys_addr_t size, phys_addr_t align,
1381 			phys_addr_t min_addr, phys_addr_t max_addr,
1382 			int nid)
1383 {
1384 	void *ptr;
1385 
1386 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1387 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1388 		     (u64)max_addr, (void *)_RET_IP_);
1389 	ptr = memblock_virt_alloc_internal(size, align,
1390 					   min_addr, max_addr, nid);
1391 	if (ptr)
1392 		return ptr;
1393 
1394 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1395 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1396 	      (u64)max_addr);
1397 	return NULL;
1398 }
1399 
1400 /**
1401  * __memblock_free_early - free boot memory block
1402  * @base: phys starting address of the  boot memory block
1403  * @size: size of the boot memory block in bytes
1404  *
1405  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1406  * The freeing memory will not be released to the buddy allocator.
1407  */
1408 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1409 {
1410 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1411 		     __func__, (u64)base, (u64)base + size - 1,
1412 		     (void *)_RET_IP_);
1413 	kmemleak_free_part(__va(base), size);
1414 	memblock_remove_range(&memblock.reserved, base, size);
1415 }
1416 
1417 /*
1418  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1419  * @addr: phys starting address of the  boot memory block
1420  * @size: size of the boot memory block in bytes
1421  *
1422  * This is only useful when the bootmem allocator has already been torn
1423  * down, but we are still initializing the system.  Pages are released directly
1424  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1425  */
1426 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1427 {
1428 	u64 cursor, end;
1429 
1430 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1431 		     __func__, (u64)base, (u64)base + size - 1,
1432 		     (void *)_RET_IP_);
1433 	kmemleak_free_part(__va(base), size);
1434 	cursor = PFN_UP(base);
1435 	end = PFN_DOWN(base + size);
1436 
1437 	for (; cursor < end; cursor++) {
1438 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1439 		totalram_pages++;
1440 	}
1441 }
1442 
1443 /*
1444  * Remaining API functions
1445  */
1446 
1447 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1448 {
1449 	return memblock.memory.total_size;
1450 }
1451 
1452 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1453 {
1454 	unsigned long pages = 0;
1455 	struct memblock_region *r;
1456 	unsigned long start_pfn, end_pfn;
1457 
1458 	for_each_memblock(memory, r) {
1459 		start_pfn = memblock_region_memory_base_pfn(r);
1460 		end_pfn = memblock_region_memory_end_pfn(r);
1461 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1462 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1463 		pages += end_pfn - start_pfn;
1464 	}
1465 
1466 	return PFN_PHYS(pages);
1467 }
1468 
1469 /* lowest address */
1470 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1471 {
1472 	return memblock.memory.regions[0].base;
1473 }
1474 
1475 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1476 {
1477 	int idx = memblock.memory.cnt - 1;
1478 
1479 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1480 }
1481 
1482 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1483 {
1484 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1485 	struct memblock_region *r;
1486 
1487 	if (!limit)
1488 		return;
1489 
1490 	/* find out max address */
1491 	for_each_memblock(memory, r) {
1492 		if (limit <= r->size) {
1493 			max_addr = r->base + limit;
1494 			break;
1495 		}
1496 		limit -= r->size;
1497 	}
1498 
1499 	/* truncate both memory and reserved regions */
1500 	memblock_remove_range(&memblock.memory, max_addr,
1501 			      (phys_addr_t)ULLONG_MAX);
1502 	memblock_remove_range(&memblock.reserved, max_addr,
1503 			      (phys_addr_t)ULLONG_MAX);
1504 }
1505 
1506 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1507 {
1508 	unsigned int left = 0, right = type->cnt;
1509 
1510 	do {
1511 		unsigned int mid = (right + left) / 2;
1512 
1513 		if (addr < type->regions[mid].base)
1514 			right = mid;
1515 		else if (addr >= (type->regions[mid].base +
1516 				  type->regions[mid].size))
1517 			left = mid + 1;
1518 		else
1519 			return mid;
1520 	} while (left < right);
1521 	return -1;
1522 }
1523 
1524 bool __init memblock_is_reserved(phys_addr_t addr)
1525 {
1526 	return memblock_search(&memblock.reserved, addr) != -1;
1527 }
1528 
1529 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1530 {
1531 	return memblock_search(&memblock.memory, addr) != -1;
1532 }
1533 
1534 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1535 {
1536 	int i = memblock_search(&memblock.memory, addr);
1537 
1538 	if (i == -1)
1539 		return false;
1540 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1541 }
1542 
1543 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1544 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1545 			 unsigned long *start_pfn, unsigned long *end_pfn)
1546 {
1547 	struct memblock_type *type = &memblock.memory;
1548 	int mid = memblock_search(type, PFN_PHYS(pfn));
1549 
1550 	if (mid == -1)
1551 		return -1;
1552 
1553 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1554 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1555 
1556 	return type->regions[mid].nid;
1557 }
1558 #endif
1559 
1560 /**
1561  * memblock_is_region_memory - check if a region is a subset of memory
1562  * @base: base of region to check
1563  * @size: size of region to check
1564  *
1565  * Check if the region [@base, @base+@size) is a subset of a memory block.
1566  *
1567  * RETURNS:
1568  * 0 if false, non-zero if true
1569  */
1570 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1571 {
1572 	int idx = memblock_search(&memblock.memory, base);
1573 	phys_addr_t end = base + memblock_cap_size(base, &size);
1574 
1575 	if (idx == -1)
1576 		return 0;
1577 	return memblock.memory.regions[idx].base <= base &&
1578 		(memblock.memory.regions[idx].base +
1579 		 memblock.memory.regions[idx].size) >= end;
1580 }
1581 
1582 /**
1583  * memblock_is_region_reserved - check if a region intersects reserved memory
1584  * @base: base of region to check
1585  * @size: size of region to check
1586  *
1587  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1588  *
1589  * RETURNS:
1590  * True if they intersect, false if not.
1591  */
1592 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1593 {
1594 	memblock_cap_size(base, &size);
1595 	return memblock_overlaps_region(&memblock.reserved, base, size);
1596 }
1597 
1598 void __init_memblock memblock_trim_memory(phys_addr_t align)
1599 {
1600 	phys_addr_t start, end, orig_start, orig_end;
1601 	struct memblock_region *r;
1602 
1603 	for_each_memblock(memory, r) {
1604 		orig_start = r->base;
1605 		orig_end = r->base + r->size;
1606 		start = round_up(orig_start, align);
1607 		end = round_down(orig_end, align);
1608 
1609 		if (start == orig_start && end == orig_end)
1610 			continue;
1611 
1612 		if (start < end) {
1613 			r->base = start;
1614 			r->size = end - start;
1615 		} else {
1616 			memblock_remove_region(&memblock.memory,
1617 					       r - memblock.memory.regions);
1618 			r--;
1619 		}
1620 	}
1621 }
1622 
1623 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1624 {
1625 	memblock.current_limit = limit;
1626 }
1627 
1628 phys_addr_t __init_memblock memblock_get_current_limit(void)
1629 {
1630 	return memblock.current_limit;
1631 }
1632 
1633 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1634 {
1635 	unsigned long long base, size;
1636 	unsigned long flags;
1637 	int idx;
1638 	struct memblock_region *rgn;
1639 
1640 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1641 
1642 	for_each_memblock_type(type, rgn) {
1643 		char nid_buf[32] = "";
1644 
1645 		base = rgn->base;
1646 		size = rgn->size;
1647 		flags = rgn->flags;
1648 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1649 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1650 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1651 				 memblock_get_region_node(rgn));
1652 #endif
1653 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1654 			name, idx, base, base + size - 1, size, nid_buf, flags);
1655 	}
1656 }
1657 
1658 void __init_memblock __memblock_dump_all(void)
1659 {
1660 	pr_info("MEMBLOCK configuration:\n");
1661 	pr_info(" memory size = %#llx reserved size = %#llx\n",
1662 		(unsigned long long)memblock.memory.total_size,
1663 		(unsigned long long)memblock.reserved.total_size);
1664 
1665 	memblock_dump(&memblock.memory, "memory");
1666 	memblock_dump(&memblock.reserved, "reserved");
1667 }
1668 
1669 void __init memblock_allow_resize(void)
1670 {
1671 	memblock_can_resize = 1;
1672 }
1673 
1674 static int __init early_memblock(char *p)
1675 {
1676 	if (p && strstr(p, "debug"))
1677 		memblock_debug = 1;
1678 	return 0;
1679 }
1680 early_param("memblock", early_memblock);
1681 
1682 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1683 
1684 static int memblock_debug_show(struct seq_file *m, void *private)
1685 {
1686 	struct memblock_type *type = m->private;
1687 	struct memblock_region *reg;
1688 	int i;
1689 
1690 	for (i = 0; i < type->cnt; i++) {
1691 		reg = &type->regions[i];
1692 		seq_printf(m, "%4d: ", i);
1693 		if (sizeof(phys_addr_t) == 4)
1694 			seq_printf(m, "0x%08lx..0x%08lx\n",
1695 				   (unsigned long)reg->base,
1696 				   (unsigned long)(reg->base + reg->size - 1));
1697 		else
1698 			seq_printf(m, "0x%016llx..0x%016llx\n",
1699 				   (unsigned long long)reg->base,
1700 				   (unsigned long long)(reg->base + reg->size - 1));
1701 
1702 	}
1703 	return 0;
1704 }
1705 
1706 static int memblock_debug_open(struct inode *inode, struct file *file)
1707 {
1708 	return single_open(file, memblock_debug_show, inode->i_private);
1709 }
1710 
1711 static const struct file_operations memblock_debug_fops = {
1712 	.open = memblock_debug_open,
1713 	.read = seq_read,
1714 	.llseek = seq_lseek,
1715 	.release = single_release,
1716 };
1717 
1718 static int __init memblock_init_debugfs(void)
1719 {
1720 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1721 	if (!root)
1722 		return -ENXIO;
1723 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1724 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1725 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1726 	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1727 #endif
1728 
1729 	return 0;
1730 }
1731 __initcall(memblock_init_debugfs);
1732 
1733 #endif /* CONFIG_DEBUG_FS */
1734