xref: /linux/mm/huge_memory.c (revision eb3d3ec567e868c8a3bfbfdfc9465ffd52983d11)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
26 
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30 
31 /*
32  * By default transparent hugepage support is disabled in order that avoid
33  * to risk increase the memory footprint of applications without a guaranteed
34  * benefit. When transparent hugepage support is enabled, is for all mappings,
35  * and khugepaged scans all mappings.
36  * Defrag is invoked by khugepaged hugepage allocations and by page faults
37  * for all hugepage allocations.
38  */
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49 
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61 /*
62  * default collapse hugepages if there is at least one pte mapped like
63  * it would have happened if the vma was large enough during page
64  * fault.
65  */
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67 
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
70 
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73 
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75 
76 /**
77  * struct mm_slot - hash lookup from mm to mm_slot
78  * @hash: hash collision list
79  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80  * @mm: the mm that this information is valid for
81  */
82 struct mm_slot {
83 	struct hlist_node hash;
84 	struct list_head mm_node;
85 	struct mm_struct *mm;
86 };
87 
88 /**
89  * struct khugepaged_scan - cursor for scanning
90  * @mm_head: the head of the mm list to scan
91  * @mm_slot: the current mm_slot we are scanning
92  * @address: the next address inside that to be scanned
93  *
94  * There is only the one khugepaged_scan instance of this cursor structure.
95  */
96 struct khugepaged_scan {
97 	struct list_head mm_head;
98 	struct mm_slot *mm_slot;
99 	unsigned long address;
100 };
101 static struct khugepaged_scan khugepaged_scan = {
102 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 };
104 
105 
106 static int set_recommended_min_free_kbytes(void)
107 {
108 	struct zone *zone;
109 	int nr_zones = 0;
110 	unsigned long recommended_min;
111 
112 	if (!khugepaged_enabled())
113 		return 0;
114 
115 	for_each_populated_zone(zone)
116 		nr_zones++;
117 
118 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 	recommended_min = pageblock_nr_pages * nr_zones * 2;
120 
121 	/*
122 	 * Make sure that on average at least two pageblocks are almost free
123 	 * of another type, one for a migratetype to fall back to and a
124 	 * second to avoid subsequent fallbacks of other types There are 3
125 	 * MIGRATE_TYPES we care about.
126 	 */
127 	recommended_min += pageblock_nr_pages * nr_zones *
128 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129 
130 	/* don't ever allow to reserve more than 5% of the lowmem */
131 	recommended_min = min(recommended_min,
132 			      (unsigned long) nr_free_buffer_pages() / 20);
133 	recommended_min <<= (PAGE_SHIFT-10);
134 
135 	if (recommended_min > min_free_kbytes) {
136 		if (user_min_free_kbytes >= 0)
137 			pr_info("raising min_free_kbytes from %d to %lu "
138 				"to help transparent hugepage allocations\n",
139 				min_free_kbytes, recommended_min);
140 
141 		min_free_kbytes = recommended_min;
142 	}
143 	setup_per_zone_wmarks();
144 	return 0;
145 }
146 late_initcall(set_recommended_min_free_kbytes);
147 
148 static int start_khugepaged(void)
149 {
150 	int err = 0;
151 	if (khugepaged_enabled()) {
152 		if (!khugepaged_thread)
153 			khugepaged_thread = kthread_run(khugepaged, NULL,
154 							"khugepaged");
155 		if (unlikely(IS_ERR(khugepaged_thread))) {
156 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 			err = PTR_ERR(khugepaged_thread);
158 			khugepaged_thread = NULL;
159 		}
160 
161 		if (!list_empty(&khugepaged_scan.mm_head))
162 			wake_up_interruptible(&khugepaged_wait);
163 
164 		set_recommended_min_free_kbytes();
165 	} else if (khugepaged_thread) {
166 		kthread_stop(khugepaged_thread);
167 		khugepaged_thread = NULL;
168 	}
169 
170 	return err;
171 }
172 
173 static atomic_t huge_zero_refcount;
174 static struct page *huge_zero_page __read_mostly;
175 
176 static inline bool is_huge_zero_page(struct page *page)
177 {
178 	return ACCESS_ONCE(huge_zero_page) == page;
179 }
180 
181 static inline bool is_huge_zero_pmd(pmd_t pmd)
182 {
183 	return is_huge_zero_page(pmd_page(pmd));
184 }
185 
186 static struct page *get_huge_zero_page(void)
187 {
188 	struct page *zero_page;
189 retry:
190 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
191 		return ACCESS_ONCE(huge_zero_page);
192 
193 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
194 			HPAGE_PMD_ORDER);
195 	if (!zero_page) {
196 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
197 		return NULL;
198 	}
199 	count_vm_event(THP_ZERO_PAGE_ALLOC);
200 	preempt_disable();
201 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
202 		preempt_enable();
203 		__free_page(zero_page);
204 		goto retry;
205 	}
206 
207 	/* We take additional reference here. It will be put back by shrinker */
208 	atomic_set(&huge_zero_refcount, 2);
209 	preempt_enable();
210 	return ACCESS_ONCE(huge_zero_page);
211 }
212 
213 static void put_huge_zero_page(void)
214 {
215 	/*
216 	 * Counter should never go to zero here. Only shrinker can put
217 	 * last reference.
218 	 */
219 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
220 }
221 
222 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
223 					struct shrink_control *sc)
224 {
225 	/* we can free zero page only if last reference remains */
226 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
227 }
228 
229 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
230 				       struct shrink_control *sc)
231 {
232 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
233 		struct page *zero_page = xchg(&huge_zero_page, NULL);
234 		BUG_ON(zero_page == NULL);
235 		__free_page(zero_page);
236 		return HPAGE_PMD_NR;
237 	}
238 
239 	return 0;
240 }
241 
242 static struct shrinker huge_zero_page_shrinker = {
243 	.count_objects = shrink_huge_zero_page_count,
244 	.scan_objects = shrink_huge_zero_page_scan,
245 	.seeks = DEFAULT_SEEKS,
246 };
247 
248 #ifdef CONFIG_SYSFS
249 
250 static ssize_t double_flag_show(struct kobject *kobj,
251 				struct kobj_attribute *attr, char *buf,
252 				enum transparent_hugepage_flag enabled,
253 				enum transparent_hugepage_flag req_madv)
254 {
255 	if (test_bit(enabled, &transparent_hugepage_flags)) {
256 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
257 		return sprintf(buf, "[always] madvise never\n");
258 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
259 		return sprintf(buf, "always [madvise] never\n");
260 	else
261 		return sprintf(buf, "always madvise [never]\n");
262 }
263 static ssize_t double_flag_store(struct kobject *kobj,
264 				 struct kobj_attribute *attr,
265 				 const char *buf, size_t count,
266 				 enum transparent_hugepage_flag enabled,
267 				 enum transparent_hugepage_flag req_madv)
268 {
269 	if (!memcmp("always", buf,
270 		    min(sizeof("always")-1, count))) {
271 		set_bit(enabled, &transparent_hugepage_flags);
272 		clear_bit(req_madv, &transparent_hugepage_flags);
273 	} else if (!memcmp("madvise", buf,
274 			   min(sizeof("madvise")-1, count))) {
275 		clear_bit(enabled, &transparent_hugepage_flags);
276 		set_bit(req_madv, &transparent_hugepage_flags);
277 	} else if (!memcmp("never", buf,
278 			   min(sizeof("never")-1, count))) {
279 		clear_bit(enabled, &transparent_hugepage_flags);
280 		clear_bit(req_madv, &transparent_hugepage_flags);
281 	} else
282 		return -EINVAL;
283 
284 	return count;
285 }
286 
287 static ssize_t enabled_show(struct kobject *kobj,
288 			    struct kobj_attribute *attr, char *buf)
289 {
290 	return double_flag_show(kobj, attr, buf,
291 				TRANSPARENT_HUGEPAGE_FLAG,
292 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293 }
294 static ssize_t enabled_store(struct kobject *kobj,
295 			     struct kobj_attribute *attr,
296 			     const char *buf, size_t count)
297 {
298 	ssize_t ret;
299 
300 	ret = double_flag_store(kobj, attr, buf, count,
301 				TRANSPARENT_HUGEPAGE_FLAG,
302 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
303 
304 	if (ret > 0) {
305 		int err;
306 
307 		mutex_lock(&khugepaged_mutex);
308 		err = start_khugepaged();
309 		mutex_unlock(&khugepaged_mutex);
310 
311 		if (err)
312 			ret = err;
313 	}
314 
315 	return ret;
316 }
317 static struct kobj_attribute enabled_attr =
318 	__ATTR(enabled, 0644, enabled_show, enabled_store);
319 
320 static ssize_t single_flag_show(struct kobject *kobj,
321 				struct kobj_attribute *attr, char *buf,
322 				enum transparent_hugepage_flag flag)
323 {
324 	return sprintf(buf, "%d\n",
325 		       !!test_bit(flag, &transparent_hugepage_flags));
326 }
327 
328 static ssize_t single_flag_store(struct kobject *kobj,
329 				 struct kobj_attribute *attr,
330 				 const char *buf, size_t count,
331 				 enum transparent_hugepage_flag flag)
332 {
333 	unsigned long value;
334 	int ret;
335 
336 	ret = kstrtoul(buf, 10, &value);
337 	if (ret < 0)
338 		return ret;
339 	if (value > 1)
340 		return -EINVAL;
341 
342 	if (value)
343 		set_bit(flag, &transparent_hugepage_flags);
344 	else
345 		clear_bit(flag, &transparent_hugepage_flags);
346 
347 	return count;
348 }
349 
350 /*
351  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
352  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
353  * memory just to allocate one more hugepage.
354  */
355 static ssize_t defrag_show(struct kobject *kobj,
356 			   struct kobj_attribute *attr, char *buf)
357 {
358 	return double_flag_show(kobj, attr, buf,
359 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 }
362 static ssize_t defrag_store(struct kobject *kobj,
363 			    struct kobj_attribute *attr,
364 			    const char *buf, size_t count)
365 {
366 	return double_flag_store(kobj, attr, buf, count,
367 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
368 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
369 }
370 static struct kobj_attribute defrag_attr =
371 	__ATTR(defrag, 0644, defrag_show, defrag_store);
372 
373 static ssize_t use_zero_page_show(struct kobject *kobj,
374 		struct kobj_attribute *attr, char *buf)
375 {
376 	return single_flag_show(kobj, attr, buf,
377 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 }
379 static ssize_t use_zero_page_store(struct kobject *kobj,
380 		struct kobj_attribute *attr, const char *buf, size_t count)
381 {
382 	return single_flag_store(kobj, attr, buf, count,
383 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 }
385 static struct kobj_attribute use_zero_page_attr =
386 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
387 #ifdef CONFIG_DEBUG_VM
388 static ssize_t debug_cow_show(struct kobject *kobj,
389 				struct kobj_attribute *attr, char *buf)
390 {
391 	return single_flag_show(kobj, attr, buf,
392 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 }
394 static ssize_t debug_cow_store(struct kobject *kobj,
395 			       struct kobj_attribute *attr,
396 			       const char *buf, size_t count)
397 {
398 	return single_flag_store(kobj, attr, buf, count,
399 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
400 }
401 static struct kobj_attribute debug_cow_attr =
402 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
403 #endif /* CONFIG_DEBUG_VM */
404 
405 static struct attribute *hugepage_attr[] = {
406 	&enabled_attr.attr,
407 	&defrag_attr.attr,
408 	&use_zero_page_attr.attr,
409 #ifdef CONFIG_DEBUG_VM
410 	&debug_cow_attr.attr,
411 #endif
412 	NULL,
413 };
414 
415 static struct attribute_group hugepage_attr_group = {
416 	.attrs = hugepage_attr,
417 };
418 
419 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
420 					 struct kobj_attribute *attr,
421 					 char *buf)
422 {
423 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
424 }
425 
426 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
427 					  struct kobj_attribute *attr,
428 					  const char *buf, size_t count)
429 {
430 	unsigned long msecs;
431 	int err;
432 
433 	err = kstrtoul(buf, 10, &msecs);
434 	if (err || msecs > UINT_MAX)
435 		return -EINVAL;
436 
437 	khugepaged_scan_sleep_millisecs = msecs;
438 	wake_up_interruptible(&khugepaged_wait);
439 
440 	return count;
441 }
442 static struct kobj_attribute scan_sleep_millisecs_attr =
443 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
444 	       scan_sleep_millisecs_store);
445 
446 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
447 					  struct kobj_attribute *attr,
448 					  char *buf)
449 {
450 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
451 }
452 
453 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
454 					   struct kobj_attribute *attr,
455 					   const char *buf, size_t count)
456 {
457 	unsigned long msecs;
458 	int err;
459 
460 	err = kstrtoul(buf, 10, &msecs);
461 	if (err || msecs > UINT_MAX)
462 		return -EINVAL;
463 
464 	khugepaged_alloc_sleep_millisecs = msecs;
465 	wake_up_interruptible(&khugepaged_wait);
466 
467 	return count;
468 }
469 static struct kobj_attribute alloc_sleep_millisecs_attr =
470 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
471 	       alloc_sleep_millisecs_store);
472 
473 static ssize_t pages_to_scan_show(struct kobject *kobj,
474 				  struct kobj_attribute *attr,
475 				  char *buf)
476 {
477 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
478 }
479 static ssize_t pages_to_scan_store(struct kobject *kobj,
480 				   struct kobj_attribute *attr,
481 				   const char *buf, size_t count)
482 {
483 	int err;
484 	unsigned long pages;
485 
486 	err = kstrtoul(buf, 10, &pages);
487 	if (err || !pages || pages > UINT_MAX)
488 		return -EINVAL;
489 
490 	khugepaged_pages_to_scan = pages;
491 
492 	return count;
493 }
494 static struct kobj_attribute pages_to_scan_attr =
495 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
496 	       pages_to_scan_store);
497 
498 static ssize_t pages_collapsed_show(struct kobject *kobj,
499 				    struct kobj_attribute *attr,
500 				    char *buf)
501 {
502 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
503 }
504 static struct kobj_attribute pages_collapsed_attr =
505 	__ATTR_RO(pages_collapsed);
506 
507 static ssize_t full_scans_show(struct kobject *kobj,
508 			       struct kobj_attribute *attr,
509 			       char *buf)
510 {
511 	return sprintf(buf, "%u\n", khugepaged_full_scans);
512 }
513 static struct kobj_attribute full_scans_attr =
514 	__ATTR_RO(full_scans);
515 
516 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
517 				      struct kobj_attribute *attr, char *buf)
518 {
519 	return single_flag_show(kobj, attr, buf,
520 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 }
522 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
523 				       struct kobj_attribute *attr,
524 				       const char *buf, size_t count)
525 {
526 	return single_flag_store(kobj, attr, buf, count,
527 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
528 }
529 static struct kobj_attribute khugepaged_defrag_attr =
530 	__ATTR(defrag, 0644, khugepaged_defrag_show,
531 	       khugepaged_defrag_store);
532 
533 /*
534  * max_ptes_none controls if khugepaged should collapse hugepages over
535  * any unmapped ptes in turn potentially increasing the memory
536  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
537  * reduce the available free memory in the system as it
538  * runs. Increasing max_ptes_none will instead potentially reduce the
539  * free memory in the system during the khugepaged scan.
540  */
541 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
542 					     struct kobj_attribute *attr,
543 					     char *buf)
544 {
545 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
546 }
547 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
548 					      struct kobj_attribute *attr,
549 					      const char *buf, size_t count)
550 {
551 	int err;
552 	unsigned long max_ptes_none;
553 
554 	err = kstrtoul(buf, 10, &max_ptes_none);
555 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
556 		return -EINVAL;
557 
558 	khugepaged_max_ptes_none = max_ptes_none;
559 
560 	return count;
561 }
562 static struct kobj_attribute khugepaged_max_ptes_none_attr =
563 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
564 	       khugepaged_max_ptes_none_store);
565 
566 static struct attribute *khugepaged_attr[] = {
567 	&khugepaged_defrag_attr.attr,
568 	&khugepaged_max_ptes_none_attr.attr,
569 	&pages_to_scan_attr.attr,
570 	&pages_collapsed_attr.attr,
571 	&full_scans_attr.attr,
572 	&scan_sleep_millisecs_attr.attr,
573 	&alloc_sleep_millisecs_attr.attr,
574 	NULL,
575 };
576 
577 static struct attribute_group khugepaged_attr_group = {
578 	.attrs = khugepaged_attr,
579 	.name = "khugepaged",
580 };
581 
582 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
583 {
584 	int err;
585 
586 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
587 	if (unlikely(!*hugepage_kobj)) {
588 		pr_err("failed to create transparent hugepage kobject\n");
589 		return -ENOMEM;
590 	}
591 
592 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
593 	if (err) {
594 		pr_err("failed to register transparent hugepage group\n");
595 		goto delete_obj;
596 	}
597 
598 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
599 	if (err) {
600 		pr_err("failed to register transparent hugepage group\n");
601 		goto remove_hp_group;
602 	}
603 
604 	return 0;
605 
606 remove_hp_group:
607 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
608 delete_obj:
609 	kobject_put(*hugepage_kobj);
610 	return err;
611 }
612 
613 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614 {
615 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
616 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
617 	kobject_put(hugepage_kobj);
618 }
619 #else
620 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
621 {
622 	return 0;
623 }
624 
625 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
626 {
627 }
628 #endif /* CONFIG_SYSFS */
629 
630 static int __init hugepage_init(void)
631 {
632 	int err;
633 	struct kobject *hugepage_kobj;
634 
635 	if (!has_transparent_hugepage()) {
636 		transparent_hugepage_flags = 0;
637 		return -EINVAL;
638 	}
639 
640 	err = hugepage_init_sysfs(&hugepage_kobj);
641 	if (err)
642 		return err;
643 
644 	err = khugepaged_slab_init();
645 	if (err)
646 		goto out;
647 
648 	register_shrinker(&huge_zero_page_shrinker);
649 
650 	/*
651 	 * By default disable transparent hugepages on smaller systems,
652 	 * where the extra memory used could hurt more than TLB overhead
653 	 * is likely to save.  The admin can still enable it through /sys.
654 	 */
655 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
656 		transparent_hugepage_flags = 0;
657 
658 	start_khugepaged();
659 
660 	return 0;
661 out:
662 	hugepage_exit_sysfs(hugepage_kobj);
663 	return err;
664 }
665 subsys_initcall(hugepage_init);
666 
667 static int __init setup_transparent_hugepage(char *str)
668 {
669 	int ret = 0;
670 	if (!str)
671 		goto out;
672 	if (!strcmp(str, "always")) {
673 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 			&transparent_hugepage_flags);
675 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 			  &transparent_hugepage_flags);
677 		ret = 1;
678 	} else if (!strcmp(str, "madvise")) {
679 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 			  &transparent_hugepage_flags);
681 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 			&transparent_hugepage_flags);
683 		ret = 1;
684 	} else if (!strcmp(str, "never")) {
685 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 			  &transparent_hugepage_flags);
687 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 			  &transparent_hugepage_flags);
689 		ret = 1;
690 	}
691 out:
692 	if (!ret)
693 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
694 	return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697 
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700 	if (likely(vma->vm_flags & VM_WRITE))
701 		pmd = pmd_mkwrite(pmd);
702 	return pmd;
703 }
704 
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707 	pmd_t entry;
708 	entry = mk_pmd(page, prot);
709 	entry = pmd_mkhuge(entry);
710 	return entry;
711 }
712 
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 					struct vm_area_struct *vma,
715 					unsigned long haddr, pmd_t *pmd,
716 					struct page *page)
717 {
718 	pgtable_t pgtable;
719 	spinlock_t *ptl;
720 
721 	VM_BUG_ON_PAGE(!PageCompound(page), page);
722 	pgtable = pte_alloc_one(mm, haddr);
723 	if (unlikely(!pgtable))
724 		return VM_FAULT_OOM;
725 
726 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
727 	/*
728 	 * The memory barrier inside __SetPageUptodate makes sure that
729 	 * clear_huge_page writes become visible before the set_pmd_at()
730 	 * write.
731 	 */
732 	__SetPageUptodate(page);
733 
734 	ptl = pmd_lock(mm, pmd);
735 	if (unlikely(!pmd_none(*pmd))) {
736 		spin_unlock(ptl);
737 		mem_cgroup_uncharge_page(page);
738 		put_page(page);
739 		pte_free(mm, pgtable);
740 	} else {
741 		pmd_t entry;
742 		entry = mk_huge_pmd(page, vma->vm_page_prot);
743 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744 		page_add_new_anon_rmap(page, vma, haddr);
745 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
746 		set_pmd_at(mm, haddr, pmd, entry);
747 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748 		atomic_long_inc(&mm->nr_ptes);
749 		spin_unlock(ptl);
750 	}
751 
752 	return 0;
753 }
754 
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
756 {
757 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
758 }
759 
760 static inline struct page *alloc_hugepage_vma(int defrag,
761 					      struct vm_area_struct *vma,
762 					      unsigned long haddr, int nd,
763 					      gfp_t extra_gfp)
764 {
765 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766 			       HPAGE_PMD_ORDER, vma, haddr, nd);
767 }
768 
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 		struct page *zero_page)
773 {
774 	pmd_t entry;
775 	if (!pmd_none(*pmd))
776 		return false;
777 	entry = mk_pmd(zero_page, vma->vm_page_prot);
778 	entry = pmd_wrprotect(entry);
779 	entry = pmd_mkhuge(entry);
780 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 	set_pmd_at(mm, haddr, pmd, entry);
782 	atomic_long_inc(&mm->nr_ptes);
783 	return true;
784 }
785 
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 			       unsigned long address, pmd_t *pmd,
788 			       unsigned int flags)
789 {
790 	struct page *page;
791 	unsigned long haddr = address & HPAGE_PMD_MASK;
792 
793 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 		return VM_FAULT_FALLBACK;
795 	if (unlikely(anon_vma_prepare(vma)))
796 		return VM_FAULT_OOM;
797 	if (unlikely(khugepaged_enter(vma)))
798 		return VM_FAULT_OOM;
799 	if (!(flags & FAULT_FLAG_WRITE) &&
800 			transparent_hugepage_use_zero_page()) {
801 		spinlock_t *ptl;
802 		pgtable_t pgtable;
803 		struct page *zero_page;
804 		bool set;
805 		pgtable = pte_alloc_one(mm, haddr);
806 		if (unlikely(!pgtable))
807 			return VM_FAULT_OOM;
808 		zero_page = get_huge_zero_page();
809 		if (unlikely(!zero_page)) {
810 			pte_free(mm, pgtable);
811 			count_vm_event(THP_FAULT_FALLBACK);
812 			return VM_FAULT_FALLBACK;
813 		}
814 		ptl = pmd_lock(mm, pmd);
815 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816 				zero_page);
817 		spin_unlock(ptl);
818 		if (!set) {
819 			pte_free(mm, pgtable);
820 			put_huge_zero_page();
821 		}
822 		return 0;
823 	}
824 	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825 			vma, haddr, numa_node_id(), 0);
826 	if (unlikely(!page)) {
827 		count_vm_event(THP_FAULT_FALLBACK);
828 		return VM_FAULT_FALLBACK;
829 	}
830 	if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
831 		put_page(page);
832 		count_vm_event(THP_FAULT_FALLBACK);
833 		return VM_FAULT_FALLBACK;
834 	}
835 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836 		mem_cgroup_uncharge_page(page);
837 		put_page(page);
838 		count_vm_event(THP_FAULT_FALLBACK);
839 		return VM_FAULT_FALLBACK;
840 	}
841 
842 	count_vm_event(THP_FAULT_ALLOC);
843 	return 0;
844 }
845 
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 		  struct vm_area_struct *vma)
849 {
850 	spinlock_t *dst_ptl, *src_ptl;
851 	struct page *src_page;
852 	pmd_t pmd;
853 	pgtable_t pgtable;
854 	int ret;
855 
856 	ret = -ENOMEM;
857 	pgtable = pte_alloc_one(dst_mm, addr);
858 	if (unlikely(!pgtable))
859 		goto out;
860 
861 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 	src_ptl = pmd_lockptr(src_mm, src_pmd);
863 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
864 
865 	ret = -EAGAIN;
866 	pmd = *src_pmd;
867 	if (unlikely(!pmd_trans_huge(pmd))) {
868 		pte_free(dst_mm, pgtable);
869 		goto out_unlock;
870 	}
871 	/*
872 	 * When page table lock is held, the huge zero pmd should not be
873 	 * under splitting since we don't split the page itself, only pmd to
874 	 * a page table.
875 	 */
876 	if (is_huge_zero_pmd(pmd)) {
877 		struct page *zero_page;
878 		bool set;
879 		/*
880 		 * get_huge_zero_page() will never allocate a new page here,
881 		 * since we already have a zero page to copy. It just takes a
882 		 * reference.
883 		 */
884 		zero_page = get_huge_zero_page();
885 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 				zero_page);
887 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 		ret = 0;
889 		goto out_unlock;
890 	}
891 
892 	if (unlikely(pmd_trans_splitting(pmd))) {
893 		/* split huge page running from under us */
894 		spin_unlock(src_ptl);
895 		spin_unlock(dst_ptl);
896 		pte_free(dst_mm, pgtable);
897 
898 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 		goto out;
900 	}
901 	src_page = pmd_page(pmd);
902 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 	get_page(src_page);
904 	page_dup_rmap(src_page);
905 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
906 
907 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 	pmd = pmd_mkold(pmd_wrprotect(pmd));
909 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 	atomic_long_inc(&dst_mm->nr_ptes);
912 
913 	ret = 0;
914 out_unlock:
915 	spin_unlock(src_ptl);
916 	spin_unlock(dst_ptl);
917 out:
918 	return ret;
919 }
920 
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922 			   struct vm_area_struct *vma,
923 			   unsigned long address,
924 			   pmd_t *pmd, pmd_t orig_pmd,
925 			   int dirty)
926 {
927 	spinlock_t *ptl;
928 	pmd_t entry;
929 	unsigned long haddr;
930 
931 	ptl = pmd_lock(mm, pmd);
932 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 		goto unlock;
934 
935 	entry = pmd_mkyoung(orig_pmd);
936 	haddr = address & HPAGE_PMD_MASK;
937 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 		update_mmu_cache_pmd(vma, address, pmd);
939 
940 unlock:
941 	spin_unlock(ptl);
942 }
943 
944 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
945 					struct vm_area_struct *vma,
946 					unsigned long address,
947 					pmd_t *pmd, pmd_t orig_pmd,
948 					struct page *page,
949 					unsigned long haddr)
950 {
951 	spinlock_t *ptl;
952 	pgtable_t pgtable;
953 	pmd_t _pmd;
954 	int ret = 0, i;
955 	struct page **pages;
956 	unsigned long mmun_start;	/* For mmu_notifiers */
957 	unsigned long mmun_end;		/* For mmu_notifiers */
958 
959 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
960 			GFP_KERNEL);
961 	if (unlikely(!pages)) {
962 		ret |= VM_FAULT_OOM;
963 		goto out;
964 	}
965 
966 	for (i = 0; i < HPAGE_PMD_NR; i++) {
967 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
968 					       __GFP_OTHER_NODE,
969 					       vma, address, page_to_nid(page));
970 		if (unlikely(!pages[i] ||
971 			     mem_cgroup_charge_anon(pages[i], mm,
972 						       GFP_KERNEL))) {
973 			if (pages[i])
974 				put_page(pages[i]);
975 			mem_cgroup_uncharge_start();
976 			while (--i >= 0) {
977 				mem_cgroup_uncharge_page(pages[i]);
978 				put_page(pages[i]);
979 			}
980 			mem_cgroup_uncharge_end();
981 			kfree(pages);
982 			ret |= VM_FAULT_OOM;
983 			goto out;
984 		}
985 	}
986 
987 	for (i = 0; i < HPAGE_PMD_NR; i++) {
988 		copy_user_highpage(pages[i], page + i,
989 				   haddr + PAGE_SIZE * i, vma);
990 		__SetPageUptodate(pages[i]);
991 		cond_resched();
992 	}
993 
994 	mmun_start = haddr;
995 	mmun_end   = haddr + HPAGE_PMD_SIZE;
996 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
997 
998 	ptl = pmd_lock(mm, pmd);
999 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000 		goto out_free_pages;
1001 	VM_BUG_ON_PAGE(!PageHead(page), page);
1002 
1003 	pmdp_clear_flush(vma, haddr, pmd);
1004 	/* leave pmd empty until pte is filled */
1005 
1006 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007 	pmd_populate(mm, &_pmd, pgtable);
1008 
1009 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010 		pte_t *pte, entry;
1011 		entry = mk_pte(pages[i], vma->vm_page_prot);
1012 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013 		page_add_new_anon_rmap(pages[i], vma, haddr);
1014 		pte = pte_offset_map(&_pmd, haddr);
1015 		VM_BUG_ON(!pte_none(*pte));
1016 		set_pte_at(mm, haddr, pte, entry);
1017 		pte_unmap(pte);
1018 	}
1019 	kfree(pages);
1020 
1021 	smp_wmb(); /* make pte visible before pmd */
1022 	pmd_populate(mm, pmd, pgtable);
1023 	page_remove_rmap(page);
1024 	spin_unlock(ptl);
1025 
1026 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027 
1028 	ret |= VM_FAULT_WRITE;
1029 	put_page(page);
1030 
1031 out:
1032 	return ret;
1033 
1034 out_free_pages:
1035 	spin_unlock(ptl);
1036 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037 	mem_cgroup_uncharge_start();
1038 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1039 		mem_cgroup_uncharge_page(pages[i]);
1040 		put_page(pages[i]);
1041 	}
1042 	mem_cgroup_uncharge_end();
1043 	kfree(pages);
1044 	goto out;
1045 }
1046 
1047 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1049 {
1050 	spinlock_t *ptl;
1051 	int ret = 0;
1052 	struct page *page = NULL, *new_page;
1053 	unsigned long haddr;
1054 	unsigned long mmun_start;	/* For mmu_notifiers */
1055 	unsigned long mmun_end;		/* For mmu_notifiers */
1056 
1057 	ptl = pmd_lockptr(mm, pmd);
1058 	VM_BUG_ON(!vma->anon_vma);
1059 	haddr = address & HPAGE_PMD_MASK;
1060 	if (is_huge_zero_pmd(orig_pmd))
1061 		goto alloc;
1062 	spin_lock(ptl);
1063 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064 		goto out_unlock;
1065 
1066 	page = pmd_page(orig_pmd);
1067 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1068 	if (page_mapcount(page) == 1) {
1069 		pmd_t entry;
1070 		entry = pmd_mkyoung(orig_pmd);
1071 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1073 			update_mmu_cache_pmd(vma, address, pmd);
1074 		ret |= VM_FAULT_WRITE;
1075 		goto out_unlock;
1076 	}
1077 	get_page(page);
1078 	spin_unlock(ptl);
1079 alloc:
1080 	if (transparent_hugepage_enabled(vma) &&
1081 	    !transparent_hugepage_debug_cow())
1082 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083 					      vma, haddr, numa_node_id(), 0);
1084 	else
1085 		new_page = NULL;
1086 
1087 	if (unlikely(!new_page)) {
1088 		if (!page) {
1089 			split_huge_page_pmd(vma, address, pmd);
1090 			ret |= VM_FAULT_FALLBACK;
1091 		} else {
1092 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093 					pmd, orig_pmd, page, haddr);
1094 			if (ret & VM_FAULT_OOM) {
1095 				split_huge_page(page);
1096 				ret |= VM_FAULT_FALLBACK;
1097 			}
1098 			put_page(page);
1099 		}
1100 		count_vm_event(THP_FAULT_FALLBACK);
1101 		goto out;
1102 	}
1103 
1104 	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
1105 		put_page(new_page);
1106 		if (page) {
1107 			split_huge_page(page);
1108 			put_page(page);
1109 		} else
1110 			split_huge_page_pmd(vma, address, pmd);
1111 		ret |= VM_FAULT_FALLBACK;
1112 		count_vm_event(THP_FAULT_FALLBACK);
1113 		goto out;
1114 	}
1115 
1116 	count_vm_event(THP_FAULT_ALLOC);
1117 
1118 	if (!page)
1119 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120 	else
1121 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122 	__SetPageUptodate(new_page);
1123 
1124 	mmun_start = haddr;
1125 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1126 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127 
1128 	spin_lock(ptl);
1129 	if (page)
1130 		put_page(page);
1131 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132 		spin_unlock(ptl);
1133 		mem_cgroup_uncharge_page(new_page);
1134 		put_page(new_page);
1135 		goto out_mn;
1136 	} else {
1137 		pmd_t entry;
1138 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1139 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140 		pmdp_clear_flush(vma, haddr, pmd);
1141 		page_add_new_anon_rmap(new_page, vma, haddr);
1142 		set_pmd_at(mm, haddr, pmd, entry);
1143 		update_mmu_cache_pmd(vma, address, pmd);
1144 		if (!page) {
1145 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146 			put_huge_zero_page();
1147 		} else {
1148 			VM_BUG_ON_PAGE(!PageHead(page), page);
1149 			page_remove_rmap(page);
1150 			put_page(page);
1151 		}
1152 		ret |= VM_FAULT_WRITE;
1153 	}
1154 	spin_unlock(ptl);
1155 out_mn:
1156 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157 out:
1158 	return ret;
1159 out_unlock:
1160 	spin_unlock(ptl);
1161 	return ret;
1162 }
1163 
1164 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165 				   unsigned long addr,
1166 				   pmd_t *pmd,
1167 				   unsigned int flags)
1168 {
1169 	struct mm_struct *mm = vma->vm_mm;
1170 	struct page *page = NULL;
1171 
1172 	assert_spin_locked(pmd_lockptr(mm, pmd));
1173 
1174 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175 		goto out;
1176 
1177 	/* Avoid dumping huge zero page */
1178 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179 		return ERR_PTR(-EFAULT);
1180 
1181 	/* Full NUMA hinting faults to serialise migration in fault paths */
1182 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183 		goto out;
1184 
1185 	page = pmd_page(*pmd);
1186 	VM_BUG_ON_PAGE(!PageHead(page), page);
1187 	if (flags & FOLL_TOUCH) {
1188 		pmd_t _pmd;
1189 		/*
1190 		 * We should set the dirty bit only for FOLL_WRITE but
1191 		 * for now the dirty bit in the pmd is meaningless.
1192 		 * And if the dirty bit will become meaningful and
1193 		 * we'll only set it with FOLL_WRITE, an atomic
1194 		 * set_bit will be required on the pmd to set the
1195 		 * young bit, instead of the current set_pmd_at.
1196 		 */
1197 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199 					  pmd, _pmd,  1))
1200 			update_mmu_cache_pmd(vma, addr, pmd);
1201 	}
1202 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203 		if (page->mapping && trylock_page(page)) {
1204 			lru_add_drain();
1205 			if (page->mapping)
1206 				mlock_vma_page(page);
1207 			unlock_page(page);
1208 		}
1209 	}
1210 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1212 	if (flags & FOLL_GET)
1213 		get_page_foll(page);
1214 
1215 out:
1216 	return page;
1217 }
1218 
1219 /* NUMA hinting page fault entry point for trans huge pmds */
1220 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1222 {
1223 	spinlock_t *ptl;
1224 	struct anon_vma *anon_vma = NULL;
1225 	struct page *page;
1226 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1227 	int page_nid = -1, this_nid = numa_node_id();
1228 	int target_nid, last_cpupid = -1;
1229 	bool page_locked;
1230 	bool migrated = false;
1231 	int flags = 0;
1232 
1233 	ptl = pmd_lock(mm, pmdp);
1234 	if (unlikely(!pmd_same(pmd, *pmdp)))
1235 		goto out_unlock;
1236 
1237 	/*
1238 	 * If there are potential migrations, wait for completion and retry
1239 	 * without disrupting NUMA hinting information. Do not relock and
1240 	 * check_same as the page may no longer be mapped.
1241 	 */
1242 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1243 		spin_unlock(ptl);
1244 		wait_migrate_huge_page(vma->anon_vma, pmdp);
1245 		goto out;
1246 	}
1247 
1248 	page = pmd_page(pmd);
1249 	BUG_ON(is_huge_zero_page(page));
1250 	page_nid = page_to_nid(page);
1251 	last_cpupid = page_cpupid_last(page);
1252 	count_vm_numa_event(NUMA_HINT_FAULTS);
1253 	if (page_nid == this_nid) {
1254 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255 		flags |= TNF_FAULT_LOCAL;
1256 	}
1257 
1258 	/*
1259 	 * Avoid grouping on DSO/COW pages in specific and RO pages
1260 	 * in general, RO pages shouldn't hurt as much anyway since
1261 	 * they can be in shared cache state.
1262 	 */
1263 	if (!pmd_write(pmd))
1264 		flags |= TNF_NO_GROUP;
1265 
1266 	/*
1267 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1268 	 * page_table_lock if at all possible
1269 	 */
1270 	page_locked = trylock_page(page);
1271 	target_nid = mpol_misplaced(page, vma, haddr);
1272 	if (target_nid == -1) {
1273 		/* If the page was locked, there are no parallel migrations */
1274 		if (page_locked)
1275 			goto clear_pmdnuma;
1276 	}
1277 
1278 	/* Migration could have started since the pmd_trans_migrating check */
1279 	if (!page_locked) {
1280 		spin_unlock(ptl);
1281 		wait_on_page_locked(page);
1282 		page_nid = -1;
1283 		goto out;
1284 	}
1285 
1286 	/*
1287 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288 	 * to serialises splits
1289 	 */
1290 	get_page(page);
1291 	spin_unlock(ptl);
1292 	anon_vma = page_lock_anon_vma_read(page);
1293 
1294 	/* Confirm the PMD did not change while page_table_lock was released */
1295 	spin_lock(ptl);
1296 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1297 		unlock_page(page);
1298 		put_page(page);
1299 		page_nid = -1;
1300 		goto out_unlock;
1301 	}
1302 
1303 	/* Bail if we fail to protect against THP splits for any reason */
1304 	if (unlikely(!anon_vma)) {
1305 		put_page(page);
1306 		page_nid = -1;
1307 		goto clear_pmdnuma;
1308 	}
1309 
1310 	/*
1311 	 * Migrate the THP to the requested node, returns with page unlocked
1312 	 * and pmd_numa cleared.
1313 	 */
1314 	spin_unlock(ptl);
1315 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1316 				pmdp, pmd, addr, page, target_nid);
1317 	if (migrated) {
1318 		flags |= TNF_MIGRATED;
1319 		page_nid = target_nid;
1320 	}
1321 
1322 	goto out;
1323 clear_pmdnuma:
1324 	BUG_ON(!PageLocked(page));
1325 	pmd = pmd_mknonnuma(pmd);
1326 	set_pmd_at(mm, haddr, pmdp, pmd);
1327 	VM_BUG_ON(pmd_numa(*pmdp));
1328 	update_mmu_cache_pmd(vma, addr, pmdp);
1329 	unlock_page(page);
1330 out_unlock:
1331 	spin_unlock(ptl);
1332 
1333 out:
1334 	if (anon_vma)
1335 		page_unlock_anon_vma_read(anon_vma);
1336 
1337 	if (page_nid != -1)
1338 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1339 
1340 	return 0;
1341 }
1342 
1343 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344 		 pmd_t *pmd, unsigned long addr)
1345 {
1346 	spinlock_t *ptl;
1347 	int ret = 0;
1348 
1349 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350 		struct page *page;
1351 		pgtable_t pgtable;
1352 		pmd_t orig_pmd;
1353 		/*
1354 		 * For architectures like ppc64 we look at deposited pgtable
1355 		 * when calling pmdp_get_and_clear. So do the
1356 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1357 		 * operations.
1358 		 */
1359 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362 		if (is_huge_zero_pmd(orig_pmd)) {
1363 			atomic_long_dec(&tlb->mm->nr_ptes);
1364 			spin_unlock(ptl);
1365 			put_huge_zero_page();
1366 		} else {
1367 			page = pmd_page(orig_pmd);
1368 			page_remove_rmap(page);
1369 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1370 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371 			VM_BUG_ON_PAGE(!PageHead(page), page);
1372 			atomic_long_dec(&tlb->mm->nr_ptes);
1373 			spin_unlock(ptl);
1374 			tlb_remove_page(tlb, page);
1375 		}
1376 		pte_free(tlb->mm, pgtable);
1377 		ret = 1;
1378 	}
1379 	return ret;
1380 }
1381 
1382 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383 		unsigned long addr, unsigned long end,
1384 		unsigned char *vec)
1385 {
1386 	spinlock_t *ptl;
1387 	int ret = 0;
1388 
1389 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390 		/*
1391 		 * All logical pages in the range are present
1392 		 * if backed by a huge page.
1393 		 */
1394 		spin_unlock(ptl);
1395 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396 		ret = 1;
1397 	}
1398 
1399 	return ret;
1400 }
1401 
1402 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403 		  unsigned long old_addr,
1404 		  unsigned long new_addr, unsigned long old_end,
1405 		  pmd_t *old_pmd, pmd_t *new_pmd)
1406 {
1407 	spinlock_t *old_ptl, *new_ptl;
1408 	int ret = 0;
1409 	pmd_t pmd;
1410 
1411 	struct mm_struct *mm = vma->vm_mm;
1412 
1413 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1414 	    (new_addr & ~HPAGE_PMD_MASK) ||
1415 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1416 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1417 		goto out;
1418 
1419 	/*
1420 	 * The destination pmd shouldn't be established, free_pgtables()
1421 	 * should have release it.
1422 	 */
1423 	if (WARN_ON(!pmd_none(*new_pmd))) {
1424 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425 		goto out;
1426 	}
1427 
1428 	/*
1429 	 * We don't have to worry about the ordering of src and dst
1430 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1431 	 */
1432 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433 	if (ret == 1) {
1434 		new_ptl = pmd_lockptr(mm, new_pmd);
1435 		if (new_ptl != old_ptl)
1436 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1438 		VM_BUG_ON(!pmd_none(*new_pmd));
1439 
1440 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1441 			pgtable_t pgtable;
1442 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1444 		}
1445 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1446 		if (new_ptl != old_ptl)
1447 			spin_unlock(new_ptl);
1448 		spin_unlock(old_ptl);
1449 	}
1450 out:
1451 	return ret;
1452 }
1453 
1454 /*
1455  * Returns
1456  *  - 0 if PMD could not be locked
1457  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1459  */
1460 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461 		unsigned long addr, pgprot_t newprot, int prot_numa)
1462 {
1463 	struct mm_struct *mm = vma->vm_mm;
1464 	spinlock_t *ptl;
1465 	int ret = 0;
1466 
1467 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1468 		pmd_t entry;
1469 		ret = 1;
1470 		if (!prot_numa) {
1471 			entry = pmdp_get_and_clear(mm, addr, pmd);
1472 			if (pmd_numa(entry))
1473 				entry = pmd_mknonnuma(entry);
1474 			entry = pmd_modify(entry, newprot);
1475 			ret = HPAGE_PMD_NR;
1476 			set_pmd_at(mm, addr, pmd, entry);
1477 			BUG_ON(pmd_write(entry));
1478 		} else {
1479 			struct page *page = pmd_page(*pmd);
1480 
1481 			/*
1482 			 * Do not trap faults against the zero page. The
1483 			 * read-only data is likely to be read-cached on the
1484 			 * local CPU cache and it is less useful to know about
1485 			 * local vs remote hits on the zero page.
1486 			 */
1487 			if (!is_huge_zero_page(page) &&
1488 			    !pmd_numa(*pmd)) {
1489 				pmdp_set_numa(mm, addr, pmd);
1490 				ret = HPAGE_PMD_NR;
1491 			}
1492 		}
1493 		spin_unlock(ptl);
1494 	}
1495 
1496 	return ret;
1497 }
1498 
1499 /*
1500  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1502  *
1503  * Note that if it returns 1, this routine returns without unlocking page
1504  * table locks. So callers must unlock them.
1505  */
1506 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507 		spinlock_t **ptl)
1508 {
1509 	*ptl = pmd_lock(vma->vm_mm, pmd);
1510 	if (likely(pmd_trans_huge(*pmd))) {
1511 		if (unlikely(pmd_trans_splitting(*pmd))) {
1512 			spin_unlock(*ptl);
1513 			wait_split_huge_page(vma->anon_vma, pmd);
1514 			return -1;
1515 		} else {
1516 			/* Thp mapped by 'pmd' is stable, so we can
1517 			 * handle it as it is. */
1518 			return 1;
1519 		}
1520 	}
1521 	spin_unlock(*ptl);
1522 	return 0;
1523 }
1524 
1525 /*
1526  * This function returns whether a given @page is mapped onto the @address
1527  * in the virtual space of @mm.
1528  *
1529  * When it's true, this function returns *pmd with holding the page table lock
1530  * and passing it back to the caller via @ptl.
1531  * If it's false, returns NULL without holding the page table lock.
1532  */
1533 pmd_t *page_check_address_pmd(struct page *page,
1534 			      struct mm_struct *mm,
1535 			      unsigned long address,
1536 			      enum page_check_address_pmd_flag flag,
1537 			      spinlock_t **ptl)
1538 {
1539 	pgd_t *pgd;
1540 	pud_t *pud;
1541 	pmd_t *pmd;
1542 
1543 	if (address & ~HPAGE_PMD_MASK)
1544 		return NULL;
1545 
1546 	pgd = pgd_offset(mm, address);
1547 	if (!pgd_present(*pgd))
1548 		return NULL;
1549 	pud = pud_offset(pgd, address);
1550 	if (!pud_present(*pud))
1551 		return NULL;
1552 	pmd = pmd_offset(pud, address);
1553 
1554 	*ptl = pmd_lock(mm, pmd);
1555 	if (!pmd_present(*pmd))
1556 		goto unlock;
1557 	if (pmd_page(*pmd) != page)
1558 		goto unlock;
1559 	/*
1560 	 * split_vma() may create temporary aliased mappings. There is
1561 	 * no risk as long as all huge pmd are found and have their
1562 	 * splitting bit set before __split_huge_page_refcount
1563 	 * runs. Finding the same huge pmd more than once during the
1564 	 * same rmap walk is not a problem.
1565 	 */
1566 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1567 	    pmd_trans_splitting(*pmd))
1568 		goto unlock;
1569 	if (pmd_trans_huge(*pmd)) {
1570 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1571 			  !pmd_trans_splitting(*pmd));
1572 		return pmd;
1573 	}
1574 unlock:
1575 	spin_unlock(*ptl);
1576 	return NULL;
1577 }
1578 
1579 static int __split_huge_page_splitting(struct page *page,
1580 				       struct vm_area_struct *vma,
1581 				       unsigned long address)
1582 {
1583 	struct mm_struct *mm = vma->vm_mm;
1584 	spinlock_t *ptl;
1585 	pmd_t *pmd;
1586 	int ret = 0;
1587 	/* For mmu_notifiers */
1588 	const unsigned long mmun_start = address;
1589 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1590 
1591 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1592 	pmd = page_check_address_pmd(page, mm, address,
1593 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1594 	if (pmd) {
1595 		/*
1596 		 * We can't temporarily set the pmd to null in order
1597 		 * to split it, the pmd must remain marked huge at all
1598 		 * times or the VM won't take the pmd_trans_huge paths
1599 		 * and it won't wait on the anon_vma->root->rwsem to
1600 		 * serialize against split_huge_page*.
1601 		 */
1602 		pmdp_splitting_flush(vma, address, pmd);
1603 		ret = 1;
1604 		spin_unlock(ptl);
1605 	}
1606 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1607 
1608 	return ret;
1609 }
1610 
1611 static void __split_huge_page_refcount(struct page *page,
1612 				       struct list_head *list)
1613 {
1614 	int i;
1615 	struct zone *zone = page_zone(page);
1616 	struct lruvec *lruvec;
1617 	int tail_count = 0;
1618 
1619 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1620 	spin_lock_irq(&zone->lru_lock);
1621 	lruvec = mem_cgroup_page_lruvec(page, zone);
1622 
1623 	compound_lock(page);
1624 	/* complete memcg works before add pages to LRU */
1625 	mem_cgroup_split_huge_fixup(page);
1626 
1627 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1628 		struct page *page_tail = page + i;
1629 
1630 		/* tail_page->_mapcount cannot change */
1631 		BUG_ON(page_mapcount(page_tail) < 0);
1632 		tail_count += page_mapcount(page_tail);
1633 		/* check for overflow */
1634 		BUG_ON(tail_count < 0);
1635 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1636 		/*
1637 		 * tail_page->_count is zero and not changing from
1638 		 * under us. But get_page_unless_zero() may be running
1639 		 * from under us on the tail_page. If we used
1640 		 * atomic_set() below instead of atomic_add(), we
1641 		 * would then run atomic_set() concurrently with
1642 		 * get_page_unless_zero(), and atomic_set() is
1643 		 * implemented in C not using locked ops. spin_unlock
1644 		 * on x86 sometime uses locked ops because of PPro
1645 		 * errata 66, 92, so unless somebody can guarantee
1646 		 * atomic_set() here would be safe on all archs (and
1647 		 * not only on x86), it's safer to use atomic_add().
1648 		 */
1649 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1650 			   &page_tail->_count);
1651 
1652 		/* after clearing PageTail the gup refcount can be released */
1653 		smp_mb();
1654 
1655 		/*
1656 		 * retain hwpoison flag of the poisoned tail page:
1657 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1658 		 *   by the memory-failure.
1659 		 */
1660 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1661 		page_tail->flags |= (page->flags &
1662 				     ((1L << PG_referenced) |
1663 				      (1L << PG_swapbacked) |
1664 				      (1L << PG_mlocked) |
1665 				      (1L << PG_uptodate) |
1666 				      (1L << PG_active) |
1667 				      (1L << PG_unevictable)));
1668 		page_tail->flags |= (1L << PG_dirty);
1669 
1670 		/* clear PageTail before overwriting first_page */
1671 		smp_wmb();
1672 
1673 		/*
1674 		 * __split_huge_page_splitting() already set the
1675 		 * splitting bit in all pmd that could map this
1676 		 * hugepage, that will ensure no CPU can alter the
1677 		 * mapcount on the head page. The mapcount is only
1678 		 * accounted in the head page and it has to be
1679 		 * transferred to all tail pages in the below code. So
1680 		 * for this code to be safe, the split the mapcount
1681 		 * can't change. But that doesn't mean userland can't
1682 		 * keep changing and reading the page contents while
1683 		 * we transfer the mapcount, so the pmd splitting
1684 		 * status is achieved setting a reserved bit in the
1685 		 * pmd, not by clearing the present bit.
1686 		*/
1687 		page_tail->_mapcount = page->_mapcount;
1688 
1689 		BUG_ON(page_tail->mapping);
1690 		page_tail->mapping = page->mapping;
1691 
1692 		page_tail->index = page->index + i;
1693 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1694 
1695 		BUG_ON(!PageAnon(page_tail));
1696 		BUG_ON(!PageUptodate(page_tail));
1697 		BUG_ON(!PageDirty(page_tail));
1698 		BUG_ON(!PageSwapBacked(page_tail));
1699 
1700 		lru_add_page_tail(page, page_tail, lruvec, list);
1701 	}
1702 	atomic_sub(tail_count, &page->_count);
1703 	BUG_ON(atomic_read(&page->_count) <= 0);
1704 
1705 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1706 
1707 	ClearPageCompound(page);
1708 	compound_unlock(page);
1709 	spin_unlock_irq(&zone->lru_lock);
1710 
1711 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1712 		struct page *page_tail = page + i;
1713 		BUG_ON(page_count(page_tail) <= 0);
1714 		/*
1715 		 * Tail pages may be freed if there wasn't any mapping
1716 		 * like if add_to_swap() is running on a lru page that
1717 		 * had its mapping zapped. And freeing these pages
1718 		 * requires taking the lru_lock so we do the put_page
1719 		 * of the tail pages after the split is complete.
1720 		 */
1721 		put_page(page_tail);
1722 	}
1723 
1724 	/*
1725 	 * Only the head page (now become a regular page) is required
1726 	 * to be pinned by the caller.
1727 	 */
1728 	BUG_ON(page_count(page) <= 0);
1729 }
1730 
1731 static int __split_huge_page_map(struct page *page,
1732 				 struct vm_area_struct *vma,
1733 				 unsigned long address)
1734 {
1735 	struct mm_struct *mm = vma->vm_mm;
1736 	spinlock_t *ptl;
1737 	pmd_t *pmd, _pmd;
1738 	int ret = 0, i;
1739 	pgtable_t pgtable;
1740 	unsigned long haddr;
1741 
1742 	pmd = page_check_address_pmd(page, mm, address,
1743 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1744 	if (pmd) {
1745 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746 		pmd_populate(mm, &_pmd, pgtable);
1747 
1748 		haddr = address;
1749 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1750 			pte_t *pte, entry;
1751 			BUG_ON(PageCompound(page+i));
1752 			entry = mk_pte(page + i, vma->vm_page_prot);
1753 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1754 			if (!pmd_write(*pmd))
1755 				entry = pte_wrprotect(entry);
1756 			else
1757 				BUG_ON(page_mapcount(page) != 1);
1758 			if (!pmd_young(*pmd))
1759 				entry = pte_mkold(entry);
1760 			if (pmd_numa(*pmd))
1761 				entry = pte_mknuma(entry);
1762 			pte = pte_offset_map(&_pmd, haddr);
1763 			BUG_ON(!pte_none(*pte));
1764 			set_pte_at(mm, haddr, pte, entry);
1765 			pte_unmap(pte);
1766 		}
1767 
1768 		smp_wmb(); /* make pte visible before pmd */
1769 		/*
1770 		 * Up to this point the pmd is present and huge and
1771 		 * userland has the whole access to the hugepage
1772 		 * during the split (which happens in place). If we
1773 		 * overwrite the pmd with the not-huge version
1774 		 * pointing to the pte here (which of course we could
1775 		 * if all CPUs were bug free), userland could trigger
1776 		 * a small page size TLB miss on the small sized TLB
1777 		 * while the hugepage TLB entry is still established
1778 		 * in the huge TLB. Some CPU doesn't like that. See
1779 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1780 		 * Erratum 383 on page 93. Intel should be safe but is
1781 		 * also warns that it's only safe if the permission
1782 		 * and cache attributes of the two entries loaded in
1783 		 * the two TLB is identical (which should be the case
1784 		 * here). But it is generally safer to never allow
1785 		 * small and huge TLB entries for the same virtual
1786 		 * address to be loaded simultaneously. So instead of
1787 		 * doing "pmd_populate(); flush_tlb_range();" we first
1788 		 * mark the current pmd notpresent (atomically because
1789 		 * here the pmd_trans_huge and pmd_trans_splitting
1790 		 * must remain set at all times on the pmd until the
1791 		 * split is complete for this pmd), then we flush the
1792 		 * SMP TLB and finally we write the non-huge version
1793 		 * of the pmd entry with pmd_populate.
1794 		 */
1795 		pmdp_invalidate(vma, address, pmd);
1796 		pmd_populate(mm, pmd, pgtable);
1797 		ret = 1;
1798 		spin_unlock(ptl);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 /* must be called with anon_vma->root->rwsem held */
1805 static void __split_huge_page(struct page *page,
1806 			      struct anon_vma *anon_vma,
1807 			      struct list_head *list)
1808 {
1809 	int mapcount, mapcount2;
1810 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1811 	struct anon_vma_chain *avc;
1812 
1813 	BUG_ON(!PageHead(page));
1814 	BUG_ON(PageTail(page));
1815 
1816 	mapcount = 0;
1817 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1818 		struct vm_area_struct *vma = avc->vma;
1819 		unsigned long addr = vma_address(page, vma);
1820 		BUG_ON(is_vma_temporary_stack(vma));
1821 		mapcount += __split_huge_page_splitting(page, vma, addr);
1822 	}
1823 	/*
1824 	 * It is critical that new vmas are added to the tail of the
1825 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1826 	 * and establishes a child pmd before
1827 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1828 	 * we fail to prevent copy_huge_pmd() from running until the
1829 	 * whole __split_huge_page() is complete), we will still see
1830 	 * the newly established pmd of the child later during the
1831 	 * walk, to be able to set it as pmd_trans_splitting too.
1832 	 */
1833 	if (mapcount != page_mapcount(page)) {
1834 		pr_err("mapcount %d page_mapcount %d\n",
1835 			mapcount, page_mapcount(page));
1836 		BUG();
1837 	}
1838 
1839 	__split_huge_page_refcount(page, list);
1840 
1841 	mapcount2 = 0;
1842 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1843 		struct vm_area_struct *vma = avc->vma;
1844 		unsigned long addr = vma_address(page, vma);
1845 		BUG_ON(is_vma_temporary_stack(vma));
1846 		mapcount2 += __split_huge_page_map(page, vma, addr);
1847 	}
1848 	if (mapcount != mapcount2) {
1849 		pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1850 			mapcount, mapcount2, page_mapcount(page));
1851 		BUG();
1852 	}
1853 }
1854 
1855 /*
1856  * Split a hugepage into normal pages. This doesn't change the position of head
1857  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1858  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1859  * from the hugepage.
1860  * Return 0 if the hugepage is split successfully otherwise return 1.
1861  */
1862 int split_huge_page_to_list(struct page *page, struct list_head *list)
1863 {
1864 	struct anon_vma *anon_vma;
1865 	int ret = 1;
1866 
1867 	BUG_ON(is_huge_zero_page(page));
1868 	BUG_ON(!PageAnon(page));
1869 
1870 	/*
1871 	 * The caller does not necessarily hold an mmap_sem that would prevent
1872 	 * the anon_vma disappearing so we first we take a reference to it
1873 	 * and then lock the anon_vma for write. This is similar to
1874 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1875 	 * against parallel split or collapse operations.
1876 	 */
1877 	anon_vma = page_get_anon_vma(page);
1878 	if (!anon_vma)
1879 		goto out;
1880 	anon_vma_lock_write(anon_vma);
1881 
1882 	ret = 0;
1883 	if (!PageCompound(page))
1884 		goto out_unlock;
1885 
1886 	BUG_ON(!PageSwapBacked(page));
1887 	__split_huge_page(page, anon_vma, list);
1888 	count_vm_event(THP_SPLIT);
1889 
1890 	BUG_ON(PageCompound(page));
1891 out_unlock:
1892 	anon_vma_unlock_write(anon_vma);
1893 	put_anon_vma(anon_vma);
1894 out:
1895 	return ret;
1896 }
1897 
1898 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1899 
1900 int hugepage_madvise(struct vm_area_struct *vma,
1901 		     unsigned long *vm_flags, int advice)
1902 {
1903 	switch (advice) {
1904 	case MADV_HUGEPAGE:
1905 #ifdef CONFIG_S390
1906 		/*
1907 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1908 		 * can't handle this properly after s390_enable_sie, so we simply
1909 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1910 		 */
1911 		if (mm_has_pgste(vma->vm_mm))
1912 			return 0;
1913 #endif
1914 		/*
1915 		 * Be somewhat over-protective like KSM for now!
1916 		 */
1917 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1918 			return -EINVAL;
1919 		*vm_flags &= ~VM_NOHUGEPAGE;
1920 		*vm_flags |= VM_HUGEPAGE;
1921 		/*
1922 		 * If the vma become good for khugepaged to scan,
1923 		 * register it here without waiting a page fault that
1924 		 * may not happen any time soon.
1925 		 */
1926 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1927 			return -ENOMEM;
1928 		break;
1929 	case MADV_NOHUGEPAGE:
1930 		/*
1931 		 * Be somewhat over-protective like KSM for now!
1932 		 */
1933 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1934 			return -EINVAL;
1935 		*vm_flags &= ~VM_HUGEPAGE;
1936 		*vm_flags |= VM_NOHUGEPAGE;
1937 		/*
1938 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1939 		 * this vma even if we leave the mm registered in khugepaged if
1940 		 * it got registered before VM_NOHUGEPAGE was set.
1941 		 */
1942 		break;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static int __init khugepaged_slab_init(void)
1949 {
1950 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1951 					  sizeof(struct mm_slot),
1952 					  __alignof__(struct mm_slot), 0, NULL);
1953 	if (!mm_slot_cache)
1954 		return -ENOMEM;
1955 
1956 	return 0;
1957 }
1958 
1959 static inline struct mm_slot *alloc_mm_slot(void)
1960 {
1961 	if (!mm_slot_cache)	/* initialization failed */
1962 		return NULL;
1963 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1964 }
1965 
1966 static inline void free_mm_slot(struct mm_slot *mm_slot)
1967 {
1968 	kmem_cache_free(mm_slot_cache, mm_slot);
1969 }
1970 
1971 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1972 {
1973 	struct mm_slot *mm_slot;
1974 
1975 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1976 		if (mm == mm_slot->mm)
1977 			return mm_slot;
1978 
1979 	return NULL;
1980 }
1981 
1982 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1983 				    struct mm_slot *mm_slot)
1984 {
1985 	mm_slot->mm = mm;
1986 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1987 }
1988 
1989 static inline int khugepaged_test_exit(struct mm_struct *mm)
1990 {
1991 	return atomic_read(&mm->mm_users) == 0;
1992 }
1993 
1994 int __khugepaged_enter(struct mm_struct *mm)
1995 {
1996 	struct mm_slot *mm_slot;
1997 	int wakeup;
1998 
1999 	mm_slot = alloc_mm_slot();
2000 	if (!mm_slot)
2001 		return -ENOMEM;
2002 
2003 	/* __khugepaged_exit() must not run from under us */
2004 	VM_BUG_ON(khugepaged_test_exit(mm));
2005 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2006 		free_mm_slot(mm_slot);
2007 		return 0;
2008 	}
2009 
2010 	spin_lock(&khugepaged_mm_lock);
2011 	insert_to_mm_slots_hash(mm, mm_slot);
2012 	/*
2013 	 * Insert just behind the scanning cursor, to let the area settle
2014 	 * down a little.
2015 	 */
2016 	wakeup = list_empty(&khugepaged_scan.mm_head);
2017 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2018 	spin_unlock(&khugepaged_mm_lock);
2019 
2020 	atomic_inc(&mm->mm_count);
2021 	if (wakeup)
2022 		wake_up_interruptible(&khugepaged_wait);
2023 
2024 	return 0;
2025 }
2026 
2027 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2028 {
2029 	unsigned long hstart, hend;
2030 	if (!vma->anon_vma)
2031 		/*
2032 		 * Not yet faulted in so we will register later in the
2033 		 * page fault if needed.
2034 		 */
2035 		return 0;
2036 	if (vma->vm_ops)
2037 		/* khugepaged not yet working on file or special mappings */
2038 		return 0;
2039 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2040 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2041 	hend = vma->vm_end & HPAGE_PMD_MASK;
2042 	if (hstart < hend)
2043 		return khugepaged_enter(vma);
2044 	return 0;
2045 }
2046 
2047 void __khugepaged_exit(struct mm_struct *mm)
2048 {
2049 	struct mm_slot *mm_slot;
2050 	int free = 0;
2051 
2052 	spin_lock(&khugepaged_mm_lock);
2053 	mm_slot = get_mm_slot(mm);
2054 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2055 		hash_del(&mm_slot->hash);
2056 		list_del(&mm_slot->mm_node);
2057 		free = 1;
2058 	}
2059 	spin_unlock(&khugepaged_mm_lock);
2060 
2061 	if (free) {
2062 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2063 		free_mm_slot(mm_slot);
2064 		mmdrop(mm);
2065 	} else if (mm_slot) {
2066 		/*
2067 		 * This is required to serialize against
2068 		 * khugepaged_test_exit() (which is guaranteed to run
2069 		 * under mmap sem read mode). Stop here (after we
2070 		 * return all pagetables will be destroyed) until
2071 		 * khugepaged has finished working on the pagetables
2072 		 * under the mmap_sem.
2073 		 */
2074 		down_write(&mm->mmap_sem);
2075 		up_write(&mm->mmap_sem);
2076 	}
2077 }
2078 
2079 static void release_pte_page(struct page *page)
2080 {
2081 	/* 0 stands for page_is_file_cache(page) == false */
2082 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2083 	unlock_page(page);
2084 	putback_lru_page(page);
2085 }
2086 
2087 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2088 {
2089 	while (--_pte >= pte) {
2090 		pte_t pteval = *_pte;
2091 		if (!pte_none(pteval))
2092 			release_pte_page(pte_page(pteval));
2093 	}
2094 }
2095 
2096 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2097 					unsigned long address,
2098 					pte_t *pte)
2099 {
2100 	struct page *page;
2101 	pte_t *_pte;
2102 	int referenced = 0, none = 0;
2103 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2104 	     _pte++, address += PAGE_SIZE) {
2105 		pte_t pteval = *_pte;
2106 		if (pte_none(pteval)) {
2107 			if (++none <= khugepaged_max_ptes_none)
2108 				continue;
2109 			else
2110 				goto out;
2111 		}
2112 		if (!pte_present(pteval) || !pte_write(pteval))
2113 			goto out;
2114 		page = vm_normal_page(vma, address, pteval);
2115 		if (unlikely(!page))
2116 			goto out;
2117 
2118 		VM_BUG_ON_PAGE(PageCompound(page), page);
2119 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2120 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2121 
2122 		/* cannot use mapcount: can't collapse if there's a gup pin */
2123 		if (page_count(page) != 1)
2124 			goto out;
2125 		/*
2126 		 * We can do it before isolate_lru_page because the
2127 		 * page can't be freed from under us. NOTE: PG_lock
2128 		 * is needed to serialize against split_huge_page
2129 		 * when invoked from the VM.
2130 		 */
2131 		if (!trylock_page(page))
2132 			goto out;
2133 		/*
2134 		 * Isolate the page to avoid collapsing an hugepage
2135 		 * currently in use by the VM.
2136 		 */
2137 		if (isolate_lru_page(page)) {
2138 			unlock_page(page);
2139 			goto out;
2140 		}
2141 		/* 0 stands for page_is_file_cache(page) == false */
2142 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2143 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2144 		VM_BUG_ON_PAGE(PageLRU(page), page);
2145 
2146 		/* If there is no mapped pte young don't collapse the page */
2147 		if (pte_young(pteval) || PageReferenced(page) ||
2148 		    mmu_notifier_test_young(vma->vm_mm, address))
2149 			referenced = 1;
2150 	}
2151 	if (likely(referenced))
2152 		return 1;
2153 out:
2154 	release_pte_pages(pte, _pte);
2155 	return 0;
2156 }
2157 
2158 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2159 				      struct vm_area_struct *vma,
2160 				      unsigned long address,
2161 				      spinlock_t *ptl)
2162 {
2163 	pte_t *_pte;
2164 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2165 		pte_t pteval = *_pte;
2166 		struct page *src_page;
2167 
2168 		if (pte_none(pteval)) {
2169 			clear_user_highpage(page, address);
2170 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2171 		} else {
2172 			src_page = pte_page(pteval);
2173 			copy_user_highpage(page, src_page, address, vma);
2174 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2175 			release_pte_page(src_page);
2176 			/*
2177 			 * ptl mostly unnecessary, but preempt has to
2178 			 * be disabled to update the per-cpu stats
2179 			 * inside page_remove_rmap().
2180 			 */
2181 			spin_lock(ptl);
2182 			/*
2183 			 * paravirt calls inside pte_clear here are
2184 			 * superfluous.
2185 			 */
2186 			pte_clear(vma->vm_mm, address, _pte);
2187 			page_remove_rmap(src_page);
2188 			spin_unlock(ptl);
2189 			free_page_and_swap_cache(src_page);
2190 		}
2191 
2192 		address += PAGE_SIZE;
2193 		page++;
2194 	}
2195 }
2196 
2197 static void khugepaged_alloc_sleep(void)
2198 {
2199 	wait_event_freezable_timeout(khugepaged_wait, false,
2200 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2201 }
2202 
2203 static int khugepaged_node_load[MAX_NUMNODES];
2204 
2205 #ifdef CONFIG_NUMA
2206 static int khugepaged_find_target_node(void)
2207 {
2208 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2209 	int nid, target_node = 0, max_value = 0;
2210 
2211 	/* find first node with max normal pages hit */
2212 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2213 		if (khugepaged_node_load[nid] > max_value) {
2214 			max_value = khugepaged_node_load[nid];
2215 			target_node = nid;
2216 		}
2217 
2218 	/* do some balance if several nodes have the same hit record */
2219 	if (target_node <= last_khugepaged_target_node)
2220 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2221 				nid++)
2222 			if (max_value == khugepaged_node_load[nid]) {
2223 				target_node = nid;
2224 				break;
2225 			}
2226 
2227 	last_khugepaged_target_node = target_node;
2228 	return target_node;
2229 }
2230 
2231 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2232 {
2233 	if (IS_ERR(*hpage)) {
2234 		if (!*wait)
2235 			return false;
2236 
2237 		*wait = false;
2238 		*hpage = NULL;
2239 		khugepaged_alloc_sleep();
2240 	} else if (*hpage) {
2241 		put_page(*hpage);
2242 		*hpage = NULL;
2243 	}
2244 
2245 	return true;
2246 }
2247 
2248 static struct page
2249 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2250 		       struct vm_area_struct *vma, unsigned long address,
2251 		       int node)
2252 {
2253 	VM_BUG_ON_PAGE(*hpage, *hpage);
2254 	/*
2255 	 * Allocate the page while the vma is still valid and under
2256 	 * the mmap_sem read mode so there is no memory allocation
2257 	 * later when we take the mmap_sem in write mode. This is more
2258 	 * friendly behavior (OTOH it may actually hide bugs) to
2259 	 * filesystems in userland with daemons allocating memory in
2260 	 * the userland I/O paths.  Allocating memory with the
2261 	 * mmap_sem in read mode is good idea also to allow greater
2262 	 * scalability.
2263 	 */
2264 	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2265 		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2266 	/*
2267 	 * After allocating the hugepage, release the mmap_sem read lock in
2268 	 * preparation for taking it in write mode.
2269 	 */
2270 	up_read(&mm->mmap_sem);
2271 	if (unlikely(!*hpage)) {
2272 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2273 		*hpage = ERR_PTR(-ENOMEM);
2274 		return NULL;
2275 	}
2276 
2277 	count_vm_event(THP_COLLAPSE_ALLOC);
2278 	return *hpage;
2279 }
2280 #else
2281 static int khugepaged_find_target_node(void)
2282 {
2283 	return 0;
2284 }
2285 
2286 static inline struct page *alloc_hugepage(int defrag)
2287 {
2288 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2289 			   HPAGE_PMD_ORDER);
2290 }
2291 
2292 static struct page *khugepaged_alloc_hugepage(bool *wait)
2293 {
2294 	struct page *hpage;
2295 
2296 	do {
2297 		hpage = alloc_hugepage(khugepaged_defrag());
2298 		if (!hpage) {
2299 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2300 			if (!*wait)
2301 				return NULL;
2302 
2303 			*wait = false;
2304 			khugepaged_alloc_sleep();
2305 		} else
2306 			count_vm_event(THP_COLLAPSE_ALLOC);
2307 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2308 
2309 	return hpage;
2310 }
2311 
2312 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2313 {
2314 	if (!*hpage)
2315 		*hpage = khugepaged_alloc_hugepage(wait);
2316 
2317 	if (unlikely(!*hpage))
2318 		return false;
2319 
2320 	return true;
2321 }
2322 
2323 static struct page
2324 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2325 		       struct vm_area_struct *vma, unsigned long address,
2326 		       int node)
2327 {
2328 	up_read(&mm->mmap_sem);
2329 	VM_BUG_ON(!*hpage);
2330 	return  *hpage;
2331 }
2332 #endif
2333 
2334 static bool hugepage_vma_check(struct vm_area_struct *vma)
2335 {
2336 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2337 	    (vma->vm_flags & VM_NOHUGEPAGE))
2338 		return false;
2339 
2340 	if (!vma->anon_vma || vma->vm_ops)
2341 		return false;
2342 	if (is_vma_temporary_stack(vma))
2343 		return false;
2344 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2345 	return true;
2346 }
2347 
2348 static void collapse_huge_page(struct mm_struct *mm,
2349 				   unsigned long address,
2350 				   struct page **hpage,
2351 				   struct vm_area_struct *vma,
2352 				   int node)
2353 {
2354 	pmd_t *pmd, _pmd;
2355 	pte_t *pte;
2356 	pgtable_t pgtable;
2357 	struct page *new_page;
2358 	spinlock_t *pmd_ptl, *pte_ptl;
2359 	int isolated;
2360 	unsigned long hstart, hend;
2361 	unsigned long mmun_start;	/* For mmu_notifiers */
2362 	unsigned long mmun_end;		/* For mmu_notifiers */
2363 
2364 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2365 
2366 	/* release the mmap_sem read lock. */
2367 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2368 	if (!new_page)
2369 		return;
2370 
2371 	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2372 		return;
2373 
2374 	/*
2375 	 * Prevent all access to pagetables with the exception of
2376 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2377 	 * handled by the anon_vma lock + PG_lock.
2378 	 */
2379 	down_write(&mm->mmap_sem);
2380 	if (unlikely(khugepaged_test_exit(mm)))
2381 		goto out;
2382 
2383 	vma = find_vma(mm, address);
2384 	if (!vma)
2385 		goto out;
2386 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2387 	hend = vma->vm_end & HPAGE_PMD_MASK;
2388 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2389 		goto out;
2390 	if (!hugepage_vma_check(vma))
2391 		goto out;
2392 	pmd = mm_find_pmd(mm, address);
2393 	if (!pmd)
2394 		goto out;
2395 	if (pmd_trans_huge(*pmd))
2396 		goto out;
2397 
2398 	anon_vma_lock_write(vma->anon_vma);
2399 
2400 	pte = pte_offset_map(pmd, address);
2401 	pte_ptl = pte_lockptr(mm, pmd);
2402 
2403 	mmun_start = address;
2404 	mmun_end   = address + HPAGE_PMD_SIZE;
2405 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2406 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2407 	/*
2408 	 * After this gup_fast can't run anymore. This also removes
2409 	 * any huge TLB entry from the CPU so we won't allow
2410 	 * huge and small TLB entries for the same virtual address
2411 	 * to avoid the risk of CPU bugs in that area.
2412 	 */
2413 	_pmd = pmdp_clear_flush(vma, address, pmd);
2414 	spin_unlock(pmd_ptl);
2415 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2416 
2417 	spin_lock(pte_ptl);
2418 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2419 	spin_unlock(pte_ptl);
2420 
2421 	if (unlikely(!isolated)) {
2422 		pte_unmap(pte);
2423 		spin_lock(pmd_ptl);
2424 		BUG_ON(!pmd_none(*pmd));
2425 		/*
2426 		 * We can only use set_pmd_at when establishing
2427 		 * hugepmds and never for establishing regular pmds that
2428 		 * points to regular pagetables. Use pmd_populate for that
2429 		 */
2430 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2431 		spin_unlock(pmd_ptl);
2432 		anon_vma_unlock_write(vma->anon_vma);
2433 		goto out;
2434 	}
2435 
2436 	/*
2437 	 * All pages are isolated and locked so anon_vma rmap
2438 	 * can't run anymore.
2439 	 */
2440 	anon_vma_unlock_write(vma->anon_vma);
2441 
2442 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2443 	pte_unmap(pte);
2444 	__SetPageUptodate(new_page);
2445 	pgtable = pmd_pgtable(_pmd);
2446 
2447 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2448 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2449 
2450 	/*
2451 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2452 	 * this is needed to avoid the copy_huge_page writes to become
2453 	 * visible after the set_pmd_at() write.
2454 	 */
2455 	smp_wmb();
2456 
2457 	spin_lock(pmd_ptl);
2458 	BUG_ON(!pmd_none(*pmd));
2459 	page_add_new_anon_rmap(new_page, vma, address);
2460 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2461 	set_pmd_at(mm, address, pmd, _pmd);
2462 	update_mmu_cache_pmd(vma, address, pmd);
2463 	spin_unlock(pmd_ptl);
2464 
2465 	*hpage = NULL;
2466 
2467 	khugepaged_pages_collapsed++;
2468 out_up_write:
2469 	up_write(&mm->mmap_sem);
2470 	return;
2471 
2472 out:
2473 	mem_cgroup_uncharge_page(new_page);
2474 	goto out_up_write;
2475 }
2476 
2477 static int khugepaged_scan_pmd(struct mm_struct *mm,
2478 			       struct vm_area_struct *vma,
2479 			       unsigned long address,
2480 			       struct page **hpage)
2481 {
2482 	pmd_t *pmd;
2483 	pte_t *pte, *_pte;
2484 	int ret = 0, referenced = 0, none = 0;
2485 	struct page *page;
2486 	unsigned long _address;
2487 	spinlock_t *ptl;
2488 	int node = NUMA_NO_NODE;
2489 
2490 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2491 
2492 	pmd = mm_find_pmd(mm, address);
2493 	if (!pmd)
2494 		goto out;
2495 	if (pmd_trans_huge(*pmd))
2496 		goto out;
2497 
2498 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2499 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2500 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2501 	     _pte++, _address += PAGE_SIZE) {
2502 		pte_t pteval = *_pte;
2503 		if (pte_none(pteval)) {
2504 			if (++none <= khugepaged_max_ptes_none)
2505 				continue;
2506 			else
2507 				goto out_unmap;
2508 		}
2509 		if (!pte_present(pteval) || !pte_write(pteval))
2510 			goto out_unmap;
2511 		page = vm_normal_page(vma, _address, pteval);
2512 		if (unlikely(!page))
2513 			goto out_unmap;
2514 		/*
2515 		 * Record which node the original page is from and save this
2516 		 * information to khugepaged_node_load[].
2517 		 * Khupaged will allocate hugepage from the node has the max
2518 		 * hit record.
2519 		 */
2520 		node = page_to_nid(page);
2521 		khugepaged_node_load[node]++;
2522 		VM_BUG_ON_PAGE(PageCompound(page), page);
2523 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2524 			goto out_unmap;
2525 		/* cannot use mapcount: can't collapse if there's a gup pin */
2526 		if (page_count(page) != 1)
2527 			goto out_unmap;
2528 		if (pte_young(pteval) || PageReferenced(page) ||
2529 		    mmu_notifier_test_young(vma->vm_mm, address))
2530 			referenced = 1;
2531 	}
2532 	if (referenced)
2533 		ret = 1;
2534 out_unmap:
2535 	pte_unmap_unlock(pte, ptl);
2536 	if (ret) {
2537 		node = khugepaged_find_target_node();
2538 		/* collapse_huge_page will return with the mmap_sem released */
2539 		collapse_huge_page(mm, address, hpage, vma, node);
2540 	}
2541 out:
2542 	return ret;
2543 }
2544 
2545 static void collect_mm_slot(struct mm_slot *mm_slot)
2546 {
2547 	struct mm_struct *mm = mm_slot->mm;
2548 
2549 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2550 
2551 	if (khugepaged_test_exit(mm)) {
2552 		/* free mm_slot */
2553 		hash_del(&mm_slot->hash);
2554 		list_del(&mm_slot->mm_node);
2555 
2556 		/*
2557 		 * Not strictly needed because the mm exited already.
2558 		 *
2559 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2560 		 */
2561 
2562 		/* khugepaged_mm_lock actually not necessary for the below */
2563 		free_mm_slot(mm_slot);
2564 		mmdrop(mm);
2565 	}
2566 }
2567 
2568 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2569 					    struct page **hpage)
2570 	__releases(&khugepaged_mm_lock)
2571 	__acquires(&khugepaged_mm_lock)
2572 {
2573 	struct mm_slot *mm_slot;
2574 	struct mm_struct *mm;
2575 	struct vm_area_struct *vma;
2576 	int progress = 0;
2577 
2578 	VM_BUG_ON(!pages);
2579 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2580 
2581 	if (khugepaged_scan.mm_slot)
2582 		mm_slot = khugepaged_scan.mm_slot;
2583 	else {
2584 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2585 				     struct mm_slot, mm_node);
2586 		khugepaged_scan.address = 0;
2587 		khugepaged_scan.mm_slot = mm_slot;
2588 	}
2589 	spin_unlock(&khugepaged_mm_lock);
2590 
2591 	mm = mm_slot->mm;
2592 	down_read(&mm->mmap_sem);
2593 	if (unlikely(khugepaged_test_exit(mm)))
2594 		vma = NULL;
2595 	else
2596 		vma = find_vma(mm, khugepaged_scan.address);
2597 
2598 	progress++;
2599 	for (; vma; vma = vma->vm_next) {
2600 		unsigned long hstart, hend;
2601 
2602 		cond_resched();
2603 		if (unlikely(khugepaged_test_exit(mm))) {
2604 			progress++;
2605 			break;
2606 		}
2607 		if (!hugepage_vma_check(vma)) {
2608 skip:
2609 			progress++;
2610 			continue;
2611 		}
2612 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2613 		hend = vma->vm_end & HPAGE_PMD_MASK;
2614 		if (hstart >= hend)
2615 			goto skip;
2616 		if (khugepaged_scan.address > hend)
2617 			goto skip;
2618 		if (khugepaged_scan.address < hstart)
2619 			khugepaged_scan.address = hstart;
2620 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2621 
2622 		while (khugepaged_scan.address < hend) {
2623 			int ret;
2624 			cond_resched();
2625 			if (unlikely(khugepaged_test_exit(mm)))
2626 				goto breakouterloop;
2627 
2628 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2629 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2630 				  hend);
2631 			ret = khugepaged_scan_pmd(mm, vma,
2632 						  khugepaged_scan.address,
2633 						  hpage);
2634 			/* move to next address */
2635 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2636 			progress += HPAGE_PMD_NR;
2637 			if (ret)
2638 				/* we released mmap_sem so break loop */
2639 				goto breakouterloop_mmap_sem;
2640 			if (progress >= pages)
2641 				goto breakouterloop;
2642 		}
2643 	}
2644 breakouterloop:
2645 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2646 breakouterloop_mmap_sem:
2647 
2648 	spin_lock(&khugepaged_mm_lock);
2649 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2650 	/*
2651 	 * Release the current mm_slot if this mm is about to die, or
2652 	 * if we scanned all vmas of this mm.
2653 	 */
2654 	if (khugepaged_test_exit(mm) || !vma) {
2655 		/*
2656 		 * Make sure that if mm_users is reaching zero while
2657 		 * khugepaged runs here, khugepaged_exit will find
2658 		 * mm_slot not pointing to the exiting mm.
2659 		 */
2660 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2661 			khugepaged_scan.mm_slot = list_entry(
2662 				mm_slot->mm_node.next,
2663 				struct mm_slot, mm_node);
2664 			khugepaged_scan.address = 0;
2665 		} else {
2666 			khugepaged_scan.mm_slot = NULL;
2667 			khugepaged_full_scans++;
2668 		}
2669 
2670 		collect_mm_slot(mm_slot);
2671 	}
2672 
2673 	return progress;
2674 }
2675 
2676 static int khugepaged_has_work(void)
2677 {
2678 	return !list_empty(&khugepaged_scan.mm_head) &&
2679 		khugepaged_enabled();
2680 }
2681 
2682 static int khugepaged_wait_event(void)
2683 {
2684 	return !list_empty(&khugepaged_scan.mm_head) ||
2685 		kthread_should_stop();
2686 }
2687 
2688 static void khugepaged_do_scan(void)
2689 {
2690 	struct page *hpage = NULL;
2691 	unsigned int progress = 0, pass_through_head = 0;
2692 	unsigned int pages = khugepaged_pages_to_scan;
2693 	bool wait = true;
2694 
2695 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2696 
2697 	while (progress < pages) {
2698 		if (!khugepaged_prealloc_page(&hpage, &wait))
2699 			break;
2700 
2701 		cond_resched();
2702 
2703 		if (unlikely(kthread_should_stop() || freezing(current)))
2704 			break;
2705 
2706 		spin_lock(&khugepaged_mm_lock);
2707 		if (!khugepaged_scan.mm_slot)
2708 			pass_through_head++;
2709 		if (khugepaged_has_work() &&
2710 		    pass_through_head < 2)
2711 			progress += khugepaged_scan_mm_slot(pages - progress,
2712 							    &hpage);
2713 		else
2714 			progress = pages;
2715 		spin_unlock(&khugepaged_mm_lock);
2716 	}
2717 
2718 	if (!IS_ERR_OR_NULL(hpage))
2719 		put_page(hpage);
2720 }
2721 
2722 static void khugepaged_wait_work(void)
2723 {
2724 	try_to_freeze();
2725 
2726 	if (khugepaged_has_work()) {
2727 		if (!khugepaged_scan_sleep_millisecs)
2728 			return;
2729 
2730 		wait_event_freezable_timeout(khugepaged_wait,
2731 					     kthread_should_stop(),
2732 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2733 		return;
2734 	}
2735 
2736 	if (khugepaged_enabled())
2737 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2738 }
2739 
2740 static int khugepaged(void *none)
2741 {
2742 	struct mm_slot *mm_slot;
2743 
2744 	set_freezable();
2745 	set_user_nice(current, MAX_NICE);
2746 
2747 	while (!kthread_should_stop()) {
2748 		khugepaged_do_scan();
2749 		khugepaged_wait_work();
2750 	}
2751 
2752 	spin_lock(&khugepaged_mm_lock);
2753 	mm_slot = khugepaged_scan.mm_slot;
2754 	khugepaged_scan.mm_slot = NULL;
2755 	if (mm_slot)
2756 		collect_mm_slot(mm_slot);
2757 	spin_unlock(&khugepaged_mm_lock);
2758 	return 0;
2759 }
2760 
2761 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2762 		unsigned long haddr, pmd_t *pmd)
2763 {
2764 	struct mm_struct *mm = vma->vm_mm;
2765 	pgtable_t pgtable;
2766 	pmd_t _pmd;
2767 	int i;
2768 
2769 	pmdp_clear_flush(vma, haddr, pmd);
2770 	/* leave pmd empty until pte is filled */
2771 
2772 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2773 	pmd_populate(mm, &_pmd, pgtable);
2774 
2775 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2776 		pte_t *pte, entry;
2777 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2778 		entry = pte_mkspecial(entry);
2779 		pte = pte_offset_map(&_pmd, haddr);
2780 		VM_BUG_ON(!pte_none(*pte));
2781 		set_pte_at(mm, haddr, pte, entry);
2782 		pte_unmap(pte);
2783 	}
2784 	smp_wmb(); /* make pte visible before pmd */
2785 	pmd_populate(mm, pmd, pgtable);
2786 	put_huge_zero_page();
2787 }
2788 
2789 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2790 		pmd_t *pmd)
2791 {
2792 	spinlock_t *ptl;
2793 	struct page *page;
2794 	struct mm_struct *mm = vma->vm_mm;
2795 	unsigned long haddr = address & HPAGE_PMD_MASK;
2796 	unsigned long mmun_start;	/* For mmu_notifiers */
2797 	unsigned long mmun_end;		/* For mmu_notifiers */
2798 
2799 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2800 
2801 	mmun_start = haddr;
2802 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2803 again:
2804 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2805 	ptl = pmd_lock(mm, pmd);
2806 	if (unlikely(!pmd_trans_huge(*pmd))) {
2807 		spin_unlock(ptl);
2808 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2809 		return;
2810 	}
2811 	if (is_huge_zero_pmd(*pmd)) {
2812 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2813 		spin_unlock(ptl);
2814 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2815 		return;
2816 	}
2817 	page = pmd_page(*pmd);
2818 	VM_BUG_ON_PAGE(!page_count(page), page);
2819 	get_page(page);
2820 	spin_unlock(ptl);
2821 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2822 
2823 	split_huge_page(page);
2824 
2825 	put_page(page);
2826 
2827 	/*
2828 	 * We don't always have down_write of mmap_sem here: a racing
2829 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2830 	 * huge page before our split_huge_page() got the anon_vma lock.
2831 	 */
2832 	if (unlikely(pmd_trans_huge(*pmd)))
2833 		goto again;
2834 }
2835 
2836 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2837 		pmd_t *pmd)
2838 {
2839 	struct vm_area_struct *vma;
2840 
2841 	vma = find_vma(mm, address);
2842 	BUG_ON(vma == NULL);
2843 	split_huge_page_pmd(vma, address, pmd);
2844 }
2845 
2846 static void split_huge_page_address(struct mm_struct *mm,
2847 				    unsigned long address)
2848 {
2849 	pmd_t *pmd;
2850 
2851 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2852 
2853 	pmd = mm_find_pmd(mm, address);
2854 	if (!pmd)
2855 		return;
2856 	/*
2857 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2858 	 * materialize from under us.
2859 	 */
2860 	split_huge_page_pmd_mm(mm, address, pmd);
2861 }
2862 
2863 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2864 			     unsigned long start,
2865 			     unsigned long end,
2866 			     long adjust_next)
2867 {
2868 	/*
2869 	 * If the new start address isn't hpage aligned and it could
2870 	 * previously contain an hugepage: check if we need to split
2871 	 * an huge pmd.
2872 	 */
2873 	if (start & ~HPAGE_PMD_MASK &&
2874 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2875 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2876 		split_huge_page_address(vma->vm_mm, start);
2877 
2878 	/*
2879 	 * If the new end address isn't hpage aligned and it could
2880 	 * previously contain an hugepage: check if we need to split
2881 	 * an huge pmd.
2882 	 */
2883 	if (end & ~HPAGE_PMD_MASK &&
2884 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2885 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2886 		split_huge_page_address(vma->vm_mm, end);
2887 
2888 	/*
2889 	 * If we're also updating the vma->vm_next->vm_start, if the new
2890 	 * vm_next->vm_start isn't page aligned and it could previously
2891 	 * contain an hugepage: check if we need to split an huge pmd.
2892 	 */
2893 	if (adjust_next > 0) {
2894 		struct vm_area_struct *next = vma->vm_next;
2895 		unsigned long nstart = next->vm_start;
2896 		nstart += adjust_next << PAGE_SHIFT;
2897 		if (nstart & ~HPAGE_PMD_MASK &&
2898 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2899 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2900 			split_huge_page_address(next->vm_mm, nstart);
2901 	}
2902 }
2903