xref: /linux/mm/huge_memory.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37 
38 enum scan_result {
39 	SCAN_FAIL,
40 	SCAN_SUCCEED,
41 	SCAN_PMD_NULL,
42 	SCAN_EXCEED_NONE_PTE,
43 	SCAN_PTE_NON_PRESENT,
44 	SCAN_PAGE_RO,
45 	SCAN_NO_REFERENCED_PAGE,
46 	SCAN_PAGE_NULL,
47 	SCAN_SCAN_ABORT,
48 	SCAN_PAGE_COUNT,
49 	SCAN_PAGE_LRU,
50 	SCAN_PAGE_LOCK,
51 	SCAN_PAGE_ANON,
52 	SCAN_PAGE_COMPOUND,
53 	SCAN_ANY_PROCESS,
54 	SCAN_VMA_NULL,
55 	SCAN_VMA_CHECK,
56 	SCAN_ADDRESS_RANGE,
57 	SCAN_SWAP_CACHE_PAGE,
58 	SCAN_DEL_PAGE_LRU,
59 	SCAN_ALLOC_HUGE_PAGE_FAIL,
60 	SCAN_CGROUP_CHARGE_FAIL
61 };
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65 
66 /*
67  * By default transparent hugepage support is disabled in order that avoid
68  * to risk increase the memory footprint of applications without a guaranteed
69  * benefit. When transparent hugepage support is enabled, is for all mappings,
70  * and khugepaged scans all mappings.
71  * Defrag is invoked by khugepaged hugepage allocations and by page faults
72  * for all hugepage allocations.
73  */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
82 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84 
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static struct task_struct *khugepaged_thread __read_mostly;
93 static DEFINE_MUTEX(khugepaged_mutex);
94 static DEFINE_SPINLOCK(khugepaged_mm_lock);
95 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96 /*
97  * default collapse hugepages if there is at least one pte mapped like
98  * it would have happened if the vma was large enough during page
99  * fault.
100  */
101 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
102 
103 static int khugepaged(void *none);
104 static int khugepaged_slab_init(void);
105 static void khugepaged_slab_exit(void);
106 
107 #define MM_SLOTS_HASH_BITS 10
108 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109 
110 static struct kmem_cache *mm_slot_cache __read_mostly;
111 
112 /**
113  * struct mm_slot - hash lookup from mm to mm_slot
114  * @hash: hash collision list
115  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116  * @mm: the mm that this information is valid for
117  */
118 struct mm_slot {
119 	struct hlist_node hash;
120 	struct list_head mm_node;
121 	struct mm_struct *mm;
122 };
123 
124 /**
125  * struct khugepaged_scan - cursor for scanning
126  * @mm_head: the head of the mm list to scan
127  * @mm_slot: the current mm_slot we are scanning
128  * @address: the next address inside that to be scanned
129  *
130  * There is only the one khugepaged_scan instance of this cursor structure.
131  */
132 struct khugepaged_scan {
133 	struct list_head mm_head;
134 	struct mm_slot *mm_slot;
135 	unsigned long address;
136 };
137 static struct khugepaged_scan khugepaged_scan = {
138 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139 };
140 
141 static struct shrinker deferred_split_shrinker;
142 
143 static void set_recommended_min_free_kbytes(void)
144 {
145 	struct zone *zone;
146 	int nr_zones = 0;
147 	unsigned long recommended_min;
148 
149 	for_each_populated_zone(zone)
150 		nr_zones++;
151 
152 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
153 	recommended_min = pageblock_nr_pages * nr_zones * 2;
154 
155 	/*
156 	 * Make sure that on average at least two pageblocks are almost free
157 	 * of another type, one for a migratetype to fall back to and a
158 	 * second to avoid subsequent fallbacks of other types There are 3
159 	 * MIGRATE_TYPES we care about.
160 	 */
161 	recommended_min += pageblock_nr_pages * nr_zones *
162 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163 
164 	/* don't ever allow to reserve more than 5% of the lowmem */
165 	recommended_min = min(recommended_min,
166 			      (unsigned long) nr_free_buffer_pages() / 20);
167 	recommended_min <<= (PAGE_SHIFT-10);
168 
169 	if (recommended_min > min_free_kbytes) {
170 		if (user_min_free_kbytes >= 0)
171 			pr_info("raising min_free_kbytes from %d to %lu "
172 				"to help transparent hugepage allocations\n",
173 				min_free_kbytes, recommended_min);
174 
175 		min_free_kbytes = recommended_min;
176 	}
177 	setup_per_zone_wmarks();
178 }
179 
180 static int start_stop_khugepaged(void)
181 {
182 	int err = 0;
183 	if (khugepaged_enabled()) {
184 		if (!khugepaged_thread)
185 			khugepaged_thread = kthread_run(khugepaged, NULL,
186 							"khugepaged");
187 		if (IS_ERR(khugepaged_thread)) {
188 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189 			err = PTR_ERR(khugepaged_thread);
190 			khugepaged_thread = NULL;
191 			goto fail;
192 		}
193 
194 		if (!list_empty(&khugepaged_scan.mm_head))
195 			wake_up_interruptible(&khugepaged_wait);
196 
197 		set_recommended_min_free_kbytes();
198 	} else if (khugepaged_thread) {
199 		kthread_stop(khugepaged_thread);
200 		khugepaged_thread = NULL;
201 	}
202 fail:
203 	return err;
204 }
205 
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208 
209 struct page *get_huge_zero_page(void)
210 {
211 	struct page *zero_page;
212 retry:
213 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214 		return READ_ONCE(huge_zero_page);
215 
216 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217 			HPAGE_PMD_ORDER);
218 	if (!zero_page) {
219 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220 		return NULL;
221 	}
222 	count_vm_event(THP_ZERO_PAGE_ALLOC);
223 	preempt_disable();
224 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225 		preempt_enable();
226 		__free_pages(zero_page, compound_order(zero_page));
227 		goto retry;
228 	}
229 
230 	/* We take additional reference here. It will be put back by shrinker */
231 	atomic_set(&huge_zero_refcount, 2);
232 	preempt_enable();
233 	return READ_ONCE(huge_zero_page);
234 }
235 
236 static void put_huge_zero_page(void)
237 {
238 	/*
239 	 * Counter should never go to zero here. Only shrinker can put
240 	 * last reference.
241 	 */
242 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244 
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 					struct shrink_control *sc)
247 {
248 	/* we can free zero page only if last reference remains */
249 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251 
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 				       struct shrink_control *sc)
254 {
255 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256 		struct page *zero_page = xchg(&huge_zero_page, NULL);
257 		BUG_ON(zero_page == NULL);
258 		__free_pages(zero_page, compound_order(zero_page));
259 		return HPAGE_PMD_NR;
260 	}
261 
262 	return 0;
263 }
264 
265 static struct shrinker huge_zero_page_shrinker = {
266 	.count_objects = shrink_huge_zero_page_count,
267 	.scan_objects = shrink_huge_zero_page_scan,
268 	.seeks = DEFAULT_SEEKS,
269 };
270 
271 #ifdef CONFIG_SYSFS
272 
273 static ssize_t double_flag_show(struct kobject *kobj,
274 				struct kobj_attribute *attr, char *buf,
275 				enum transparent_hugepage_flag enabled,
276 				enum transparent_hugepage_flag req_madv)
277 {
278 	if (test_bit(enabled, &transparent_hugepage_flags)) {
279 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
280 		return sprintf(buf, "[always] madvise never\n");
281 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
282 		return sprintf(buf, "always [madvise] never\n");
283 	else
284 		return sprintf(buf, "always madvise [never]\n");
285 }
286 static ssize_t double_flag_store(struct kobject *kobj,
287 				 struct kobj_attribute *attr,
288 				 const char *buf, size_t count,
289 				 enum transparent_hugepage_flag enabled,
290 				 enum transparent_hugepage_flag req_madv)
291 {
292 	if (!memcmp("always", buf,
293 		    min(sizeof("always")-1, count))) {
294 		set_bit(enabled, &transparent_hugepage_flags);
295 		clear_bit(req_madv, &transparent_hugepage_flags);
296 	} else if (!memcmp("madvise", buf,
297 			   min(sizeof("madvise")-1, count))) {
298 		clear_bit(enabled, &transparent_hugepage_flags);
299 		set_bit(req_madv, &transparent_hugepage_flags);
300 	} else if (!memcmp("never", buf,
301 			   min(sizeof("never")-1, count))) {
302 		clear_bit(enabled, &transparent_hugepage_flags);
303 		clear_bit(req_madv, &transparent_hugepage_flags);
304 	} else
305 		return -EINVAL;
306 
307 	return count;
308 }
309 
310 static ssize_t enabled_show(struct kobject *kobj,
311 			    struct kobj_attribute *attr, char *buf)
312 {
313 	return double_flag_show(kobj, attr, buf,
314 				TRANSPARENT_HUGEPAGE_FLAG,
315 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
316 }
317 static ssize_t enabled_store(struct kobject *kobj,
318 			     struct kobj_attribute *attr,
319 			     const char *buf, size_t count)
320 {
321 	ssize_t ret;
322 
323 	ret = double_flag_store(kobj, attr, buf, count,
324 				TRANSPARENT_HUGEPAGE_FLAG,
325 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
326 
327 	if (ret > 0) {
328 		int err;
329 
330 		mutex_lock(&khugepaged_mutex);
331 		err = start_stop_khugepaged();
332 		mutex_unlock(&khugepaged_mutex);
333 
334 		if (err)
335 			ret = err;
336 	}
337 
338 	return ret;
339 }
340 static struct kobj_attribute enabled_attr =
341 	__ATTR(enabled, 0644, enabled_show, enabled_store);
342 
343 static ssize_t single_flag_show(struct kobject *kobj,
344 				struct kobj_attribute *attr, char *buf,
345 				enum transparent_hugepage_flag flag)
346 {
347 	return sprintf(buf, "%d\n",
348 		       !!test_bit(flag, &transparent_hugepage_flags));
349 }
350 
351 static ssize_t single_flag_store(struct kobject *kobj,
352 				 struct kobj_attribute *attr,
353 				 const char *buf, size_t count,
354 				 enum transparent_hugepage_flag flag)
355 {
356 	unsigned long value;
357 	int ret;
358 
359 	ret = kstrtoul(buf, 10, &value);
360 	if (ret < 0)
361 		return ret;
362 	if (value > 1)
363 		return -EINVAL;
364 
365 	if (value)
366 		set_bit(flag, &transparent_hugepage_flags);
367 	else
368 		clear_bit(flag, &transparent_hugepage_flags);
369 
370 	return count;
371 }
372 
373 /*
374  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
375  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
376  * memory just to allocate one more hugepage.
377  */
378 static ssize_t defrag_show(struct kobject *kobj,
379 			   struct kobj_attribute *attr, char *buf)
380 {
381 	return double_flag_show(kobj, attr, buf,
382 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
383 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
384 }
385 static ssize_t defrag_store(struct kobject *kobj,
386 			    struct kobj_attribute *attr,
387 			    const char *buf, size_t count)
388 {
389 	return double_flag_store(kobj, attr, buf, count,
390 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
391 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
392 }
393 static struct kobj_attribute defrag_attr =
394 	__ATTR(defrag, 0644, defrag_show, defrag_store);
395 
396 static ssize_t use_zero_page_show(struct kobject *kobj,
397 		struct kobj_attribute *attr, char *buf)
398 {
399 	return single_flag_show(kobj, attr, buf,
400 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401 }
402 static ssize_t use_zero_page_store(struct kobject *kobj,
403 		struct kobj_attribute *attr, const char *buf, size_t count)
404 {
405 	return single_flag_store(kobj, attr, buf, count,
406 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
407 }
408 static struct kobj_attribute use_zero_page_attr =
409 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
410 #ifdef CONFIG_DEBUG_VM
411 static ssize_t debug_cow_show(struct kobject *kobj,
412 				struct kobj_attribute *attr, char *buf)
413 {
414 	return single_flag_show(kobj, attr, buf,
415 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
416 }
417 static ssize_t debug_cow_store(struct kobject *kobj,
418 			       struct kobj_attribute *attr,
419 			       const char *buf, size_t count)
420 {
421 	return single_flag_store(kobj, attr, buf, count,
422 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
423 }
424 static struct kobj_attribute debug_cow_attr =
425 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
426 #endif /* CONFIG_DEBUG_VM */
427 
428 static struct attribute *hugepage_attr[] = {
429 	&enabled_attr.attr,
430 	&defrag_attr.attr,
431 	&use_zero_page_attr.attr,
432 #ifdef CONFIG_DEBUG_VM
433 	&debug_cow_attr.attr,
434 #endif
435 	NULL,
436 };
437 
438 static struct attribute_group hugepage_attr_group = {
439 	.attrs = hugepage_attr,
440 };
441 
442 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
443 					 struct kobj_attribute *attr,
444 					 char *buf)
445 {
446 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
447 }
448 
449 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
450 					  struct kobj_attribute *attr,
451 					  const char *buf, size_t count)
452 {
453 	unsigned long msecs;
454 	int err;
455 
456 	err = kstrtoul(buf, 10, &msecs);
457 	if (err || msecs > UINT_MAX)
458 		return -EINVAL;
459 
460 	khugepaged_scan_sleep_millisecs = msecs;
461 	wake_up_interruptible(&khugepaged_wait);
462 
463 	return count;
464 }
465 static struct kobj_attribute scan_sleep_millisecs_attr =
466 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
467 	       scan_sleep_millisecs_store);
468 
469 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
470 					  struct kobj_attribute *attr,
471 					  char *buf)
472 {
473 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
474 }
475 
476 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
477 					   struct kobj_attribute *attr,
478 					   const char *buf, size_t count)
479 {
480 	unsigned long msecs;
481 	int err;
482 
483 	err = kstrtoul(buf, 10, &msecs);
484 	if (err || msecs > UINT_MAX)
485 		return -EINVAL;
486 
487 	khugepaged_alloc_sleep_millisecs = msecs;
488 	wake_up_interruptible(&khugepaged_wait);
489 
490 	return count;
491 }
492 static struct kobj_attribute alloc_sleep_millisecs_attr =
493 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
494 	       alloc_sleep_millisecs_store);
495 
496 static ssize_t pages_to_scan_show(struct kobject *kobj,
497 				  struct kobj_attribute *attr,
498 				  char *buf)
499 {
500 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
501 }
502 static ssize_t pages_to_scan_store(struct kobject *kobj,
503 				   struct kobj_attribute *attr,
504 				   const char *buf, size_t count)
505 {
506 	int err;
507 	unsigned long pages;
508 
509 	err = kstrtoul(buf, 10, &pages);
510 	if (err || !pages || pages > UINT_MAX)
511 		return -EINVAL;
512 
513 	khugepaged_pages_to_scan = pages;
514 
515 	return count;
516 }
517 static struct kobj_attribute pages_to_scan_attr =
518 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
519 	       pages_to_scan_store);
520 
521 static ssize_t pages_collapsed_show(struct kobject *kobj,
522 				    struct kobj_attribute *attr,
523 				    char *buf)
524 {
525 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
526 }
527 static struct kobj_attribute pages_collapsed_attr =
528 	__ATTR_RO(pages_collapsed);
529 
530 static ssize_t full_scans_show(struct kobject *kobj,
531 			       struct kobj_attribute *attr,
532 			       char *buf)
533 {
534 	return sprintf(buf, "%u\n", khugepaged_full_scans);
535 }
536 static struct kobj_attribute full_scans_attr =
537 	__ATTR_RO(full_scans);
538 
539 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
540 				      struct kobj_attribute *attr, char *buf)
541 {
542 	return single_flag_show(kobj, attr, buf,
543 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
544 }
545 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
546 				       struct kobj_attribute *attr,
547 				       const char *buf, size_t count)
548 {
549 	return single_flag_store(kobj, attr, buf, count,
550 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
551 }
552 static struct kobj_attribute khugepaged_defrag_attr =
553 	__ATTR(defrag, 0644, khugepaged_defrag_show,
554 	       khugepaged_defrag_store);
555 
556 /*
557  * max_ptes_none controls if khugepaged should collapse hugepages over
558  * any unmapped ptes in turn potentially increasing the memory
559  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
560  * reduce the available free memory in the system as it
561  * runs. Increasing max_ptes_none will instead potentially reduce the
562  * free memory in the system during the khugepaged scan.
563  */
564 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
565 					     struct kobj_attribute *attr,
566 					     char *buf)
567 {
568 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
569 }
570 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
571 					      struct kobj_attribute *attr,
572 					      const char *buf, size_t count)
573 {
574 	int err;
575 	unsigned long max_ptes_none;
576 
577 	err = kstrtoul(buf, 10, &max_ptes_none);
578 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
579 		return -EINVAL;
580 
581 	khugepaged_max_ptes_none = max_ptes_none;
582 
583 	return count;
584 }
585 static struct kobj_attribute khugepaged_max_ptes_none_attr =
586 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
587 	       khugepaged_max_ptes_none_store);
588 
589 static struct attribute *khugepaged_attr[] = {
590 	&khugepaged_defrag_attr.attr,
591 	&khugepaged_max_ptes_none_attr.attr,
592 	&pages_to_scan_attr.attr,
593 	&pages_collapsed_attr.attr,
594 	&full_scans_attr.attr,
595 	&scan_sleep_millisecs_attr.attr,
596 	&alloc_sleep_millisecs_attr.attr,
597 	NULL,
598 };
599 
600 static struct attribute_group khugepaged_attr_group = {
601 	.attrs = khugepaged_attr,
602 	.name = "khugepaged",
603 };
604 
605 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
606 {
607 	int err;
608 
609 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
610 	if (unlikely(!*hugepage_kobj)) {
611 		pr_err("failed to create transparent hugepage kobject\n");
612 		return -ENOMEM;
613 	}
614 
615 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
616 	if (err) {
617 		pr_err("failed to register transparent hugepage group\n");
618 		goto delete_obj;
619 	}
620 
621 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
622 	if (err) {
623 		pr_err("failed to register transparent hugepage group\n");
624 		goto remove_hp_group;
625 	}
626 
627 	return 0;
628 
629 remove_hp_group:
630 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
631 delete_obj:
632 	kobject_put(*hugepage_kobj);
633 	return err;
634 }
635 
636 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637 {
638 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
639 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
640 	kobject_put(hugepage_kobj);
641 }
642 #else
643 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
644 {
645 	return 0;
646 }
647 
648 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649 {
650 }
651 #endif /* CONFIG_SYSFS */
652 
653 static int __init hugepage_init(void)
654 {
655 	int err;
656 	struct kobject *hugepage_kobj;
657 
658 	if (!has_transparent_hugepage()) {
659 		transparent_hugepage_flags = 0;
660 		return -EINVAL;
661 	}
662 
663 	err = hugepage_init_sysfs(&hugepage_kobj);
664 	if (err)
665 		goto err_sysfs;
666 
667 	err = khugepaged_slab_init();
668 	if (err)
669 		goto err_slab;
670 
671 	err = register_shrinker(&huge_zero_page_shrinker);
672 	if (err)
673 		goto err_hzp_shrinker;
674 	err = register_shrinker(&deferred_split_shrinker);
675 	if (err)
676 		goto err_split_shrinker;
677 
678 	/*
679 	 * By default disable transparent hugepages on smaller systems,
680 	 * where the extra memory used could hurt more than TLB overhead
681 	 * is likely to save.  The admin can still enable it through /sys.
682 	 */
683 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
684 		transparent_hugepage_flags = 0;
685 		return 0;
686 	}
687 
688 	err = start_stop_khugepaged();
689 	if (err)
690 		goto err_khugepaged;
691 
692 	return 0;
693 err_khugepaged:
694 	unregister_shrinker(&deferred_split_shrinker);
695 err_split_shrinker:
696 	unregister_shrinker(&huge_zero_page_shrinker);
697 err_hzp_shrinker:
698 	khugepaged_slab_exit();
699 err_slab:
700 	hugepage_exit_sysfs(hugepage_kobj);
701 err_sysfs:
702 	return err;
703 }
704 subsys_initcall(hugepage_init);
705 
706 static int __init setup_transparent_hugepage(char *str)
707 {
708 	int ret = 0;
709 	if (!str)
710 		goto out;
711 	if (!strcmp(str, "always")) {
712 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
713 			&transparent_hugepage_flags);
714 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
715 			  &transparent_hugepage_flags);
716 		ret = 1;
717 	} else if (!strcmp(str, "madvise")) {
718 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
719 			  &transparent_hugepage_flags);
720 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
721 			&transparent_hugepage_flags);
722 		ret = 1;
723 	} else if (!strcmp(str, "never")) {
724 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
725 			  &transparent_hugepage_flags);
726 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
727 			  &transparent_hugepage_flags);
728 		ret = 1;
729 	}
730 out:
731 	if (!ret)
732 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
733 	return ret;
734 }
735 __setup("transparent_hugepage=", setup_transparent_hugepage);
736 
737 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
738 {
739 	if (likely(vma->vm_flags & VM_WRITE))
740 		pmd = pmd_mkwrite(pmd);
741 	return pmd;
742 }
743 
744 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
745 {
746 	pmd_t entry;
747 	entry = mk_pmd(page, prot);
748 	entry = pmd_mkhuge(entry);
749 	return entry;
750 }
751 
752 static inline struct list_head *page_deferred_list(struct page *page)
753 {
754 	/*
755 	 * ->lru in the tail pages is occupied by compound_head.
756 	 * Let's use ->mapping + ->index in the second tail page as list_head.
757 	 */
758 	return (struct list_head *)&page[2].mapping;
759 }
760 
761 void prep_transhuge_page(struct page *page)
762 {
763 	/*
764 	 * we use page->mapping and page->indexlru in second tail page
765 	 * as list_head: assuming THP order >= 2
766 	 */
767 	BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
768 
769 	INIT_LIST_HEAD(page_deferred_list(page));
770 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
771 }
772 
773 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
774 					struct vm_area_struct *vma,
775 					unsigned long address, pmd_t *pmd,
776 					struct page *page, gfp_t gfp,
777 					unsigned int flags)
778 {
779 	struct mem_cgroup *memcg;
780 	pgtable_t pgtable;
781 	spinlock_t *ptl;
782 	unsigned long haddr = address & HPAGE_PMD_MASK;
783 
784 	VM_BUG_ON_PAGE(!PageCompound(page), page);
785 
786 	if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
787 		put_page(page);
788 		count_vm_event(THP_FAULT_FALLBACK);
789 		return VM_FAULT_FALLBACK;
790 	}
791 
792 	pgtable = pte_alloc_one(mm, haddr);
793 	if (unlikely(!pgtable)) {
794 		mem_cgroup_cancel_charge(page, memcg, true);
795 		put_page(page);
796 		return VM_FAULT_OOM;
797 	}
798 
799 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
800 	/*
801 	 * The memory barrier inside __SetPageUptodate makes sure that
802 	 * clear_huge_page writes become visible before the set_pmd_at()
803 	 * write.
804 	 */
805 	__SetPageUptodate(page);
806 
807 	ptl = pmd_lock(mm, pmd);
808 	if (unlikely(!pmd_none(*pmd))) {
809 		spin_unlock(ptl);
810 		mem_cgroup_cancel_charge(page, memcg, true);
811 		put_page(page);
812 		pte_free(mm, pgtable);
813 	} else {
814 		pmd_t entry;
815 
816 		/* Deliver the page fault to userland */
817 		if (userfaultfd_missing(vma)) {
818 			int ret;
819 
820 			spin_unlock(ptl);
821 			mem_cgroup_cancel_charge(page, memcg, true);
822 			put_page(page);
823 			pte_free(mm, pgtable);
824 			ret = handle_userfault(vma, address, flags,
825 					       VM_UFFD_MISSING);
826 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
827 			return ret;
828 		}
829 
830 		entry = mk_huge_pmd(page, vma->vm_page_prot);
831 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
832 		page_add_new_anon_rmap(page, vma, haddr, true);
833 		mem_cgroup_commit_charge(page, memcg, false, true);
834 		lru_cache_add_active_or_unevictable(page, vma);
835 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
836 		set_pmd_at(mm, haddr, pmd, entry);
837 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
838 		atomic_long_inc(&mm->nr_ptes);
839 		spin_unlock(ptl);
840 		count_vm_event(THP_FAULT_ALLOC);
841 	}
842 
843 	return 0;
844 }
845 
846 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
847 {
848 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
849 }
850 
851 /* Caller must hold page table lock. */
852 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
853 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
854 		struct page *zero_page)
855 {
856 	pmd_t entry;
857 	if (!pmd_none(*pmd))
858 		return false;
859 	entry = mk_pmd(zero_page, vma->vm_page_prot);
860 	entry = pmd_mkhuge(entry);
861 	if (pgtable)
862 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
863 	set_pmd_at(mm, haddr, pmd, entry);
864 	atomic_long_inc(&mm->nr_ptes);
865 	return true;
866 }
867 
868 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
869 			       unsigned long address, pmd_t *pmd,
870 			       unsigned int flags)
871 {
872 	gfp_t gfp;
873 	struct page *page;
874 	unsigned long haddr = address & HPAGE_PMD_MASK;
875 
876 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
877 		return VM_FAULT_FALLBACK;
878 	if (unlikely(anon_vma_prepare(vma)))
879 		return VM_FAULT_OOM;
880 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
881 		return VM_FAULT_OOM;
882 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
883 			transparent_hugepage_use_zero_page()) {
884 		spinlock_t *ptl;
885 		pgtable_t pgtable;
886 		struct page *zero_page;
887 		bool set;
888 		int ret;
889 		pgtable = pte_alloc_one(mm, haddr);
890 		if (unlikely(!pgtable))
891 			return VM_FAULT_OOM;
892 		zero_page = get_huge_zero_page();
893 		if (unlikely(!zero_page)) {
894 			pte_free(mm, pgtable);
895 			count_vm_event(THP_FAULT_FALLBACK);
896 			return VM_FAULT_FALLBACK;
897 		}
898 		ptl = pmd_lock(mm, pmd);
899 		ret = 0;
900 		set = false;
901 		if (pmd_none(*pmd)) {
902 			if (userfaultfd_missing(vma)) {
903 				spin_unlock(ptl);
904 				ret = handle_userfault(vma, address, flags,
905 						       VM_UFFD_MISSING);
906 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
907 			} else {
908 				set_huge_zero_page(pgtable, mm, vma,
909 						   haddr, pmd,
910 						   zero_page);
911 				spin_unlock(ptl);
912 				set = true;
913 			}
914 		} else
915 			spin_unlock(ptl);
916 		if (!set) {
917 			pte_free(mm, pgtable);
918 			put_huge_zero_page();
919 		}
920 		return ret;
921 	}
922 	gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
923 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
924 	if (unlikely(!page)) {
925 		count_vm_event(THP_FAULT_FALLBACK);
926 		return VM_FAULT_FALLBACK;
927 	}
928 	prep_transhuge_page(page);
929 	return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
930 					    flags);
931 }
932 
933 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
934 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
935 {
936 	struct mm_struct *mm = vma->vm_mm;
937 	pmd_t entry;
938 	spinlock_t *ptl;
939 
940 	ptl = pmd_lock(mm, pmd);
941 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
942 	if (pfn_t_devmap(pfn))
943 		entry = pmd_mkdevmap(entry);
944 	if (write) {
945 		entry = pmd_mkyoung(pmd_mkdirty(entry));
946 		entry = maybe_pmd_mkwrite(entry, vma);
947 	}
948 	set_pmd_at(mm, addr, pmd, entry);
949 	update_mmu_cache_pmd(vma, addr, pmd);
950 	spin_unlock(ptl);
951 }
952 
953 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
954 			pmd_t *pmd, pfn_t pfn, bool write)
955 {
956 	pgprot_t pgprot = vma->vm_page_prot;
957 	/*
958 	 * If we had pmd_special, we could avoid all these restrictions,
959 	 * but we need to be consistent with PTEs and architectures that
960 	 * can't support a 'special' bit.
961 	 */
962 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
963 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
964 						(VM_PFNMAP|VM_MIXEDMAP));
965 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
966 	BUG_ON(!pfn_t_devmap(pfn));
967 
968 	if (addr < vma->vm_start || addr >= vma->vm_end)
969 		return VM_FAULT_SIGBUS;
970 	if (track_pfn_insert(vma, &pgprot, pfn))
971 		return VM_FAULT_SIGBUS;
972 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
973 	return VM_FAULT_NOPAGE;
974 }
975 
976 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
977 		pmd_t *pmd)
978 {
979 	pmd_t _pmd;
980 
981 	/*
982 	 * We should set the dirty bit only for FOLL_WRITE but for now
983 	 * the dirty bit in the pmd is meaningless.  And if the dirty
984 	 * bit will become meaningful and we'll only set it with
985 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
986 	 * set the young bit, instead of the current set_pmd_at.
987 	 */
988 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
989 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
990 				pmd, _pmd,  1))
991 		update_mmu_cache_pmd(vma, addr, pmd);
992 }
993 
994 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
995 		pmd_t *pmd, int flags)
996 {
997 	unsigned long pfn = pmd_pfn(*pmd);
998 	struct mm_struct *mm = vma->vm_mm;
999 	struct dev_pagemap *pgmap;
1000 	struct page *page;
1001 
1002 	assert_spin_locked(pmd_lockptr(mm, pmd));
1003 
1004 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1005 		return NULL;
1006 
1007 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1008 		/* pass */;
1009 	else
1010 		return NULL;
1011 
1012 	if (flags & FOLL_TOUCH)
1013 		touch_pmd(vma, addr, pmd);
1014 
1015 	/*
1016 	 * device mapped pages can only be returned if the
1017 	 * caller will manage the page reference count.
1018 	 */
1019 	if (!(flags & FOLL_GET))
1020 		return ERR_PTR(-EEXIST);
1021 
1022 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1023 	pgmap = get_dev_pagemap(pfn, NULL);
1024 	if (!pgmap)
1025 		return ERR_PTR(-EFAULT);
1026 	page = pfn_to_page(pfn);
1027 	get_page(page);
1028 	put_dev_pagemap(pgmap);
1029 
1030 	return page;
1031 }
1032 
1033 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1035 		  struct vm_area_struct *vma)
1036 {
1037 	spinlock_t *dst_ptl, *src_ptl;
1038 	struct page *src_page;
1039 	pmd_t pmd;
1040 	pgtable_t pgtable = NULL;
1041 	int ret;
1042 
1043 	if (!vma_is_dax(vma)) {
1044 		ret = -ENOMEM;
1045 		pgtable = pte_alloc_one(dst_mm, addr);
1046 		if (unlikely(!pgtable))
1047 			goto out;
1048 	}
1049 
1050 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1051 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1052 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1053 
1054 	ret = -EAGAIN;
1055 	pmd = *src_pmd;
1056 	if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1057 		pte_free(dst_mm, pgtable);
1058 		goto out_unlock;
1059 	}
1060 	/*
1061 	 * When page table lock is held, the huge zero pmd should not be
1062 	 * under splitting since we don't split the page itself, only pmd to
1063 	 * a page table.
1064 	 */
1065 	if (is_huge_zero_pmd(pmd)) {
1066 		struct page *zero_page;
1067 		/*
1068 		 * get_huge_zero_page() will never allocate a new page here,
1069 		 * since we already have a zero page to copy. It just takes a
1070 		 * reference.
1071 		 */
1072 		zero_page = get_huge_zero_page();
1073 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1074 				zero_page);
1075 		ret = 0;
1076 		goto out_unlock;
1077 	}
1078 
1079 	if (!vma_is_dax(vma)) {
1080 		/* thp accounting separate from pmd_devmap accounting */
1081 		src_page = pmd_page(pmd);
1082 		VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1083 		get_page(src_page);
1084 		page_dup_rmap(src_page, true);
1085 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1086 		atomic_long_inc(&dst_mm->nr_ptes);
1087 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1088 	}
1089 
1090 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1091 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1092 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1093 
1094 	ret = 0;
1095 out_unlock:
1096 	spin_unlock(src_ptl);
1097 	spin_unlock(dst_ptl);
1098 out:
1099 	return ret;
1100 }
1101 
1102 void huge_pmd_set_accessed(struct mm_struct *mm,
1103 			   struct vm_area_struct *vma,
1104 			   unsigned long address,
1105 			   pmd_t *pmd, pmd_t orig_pmd,
1106 			   int dirty)
1107 {
1108 	spinlock_t *ptl;
1109 	pmd_t entry;
1110 	unsigned long haddr;
1111 
1112 	ptl = pmd_lock(mm, pmd);
1113 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1114 		goto unlock;
1115 
1116 	entry = pmd_mkyoung(orig_pmd);
1117 	haddr = address & HPAGE_PMD_MASK;
1118 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1119 		update_mmu_cache_pmd(vma, address, pmd);
1120 
1121 unlock:
1122 	spin_unlock(ptl);
1123 }
1124 
1125 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1126 					struct vm_area_struct *vma,
1127 					unsigned long address,
1128 					pmd_t *pmd, pmd_t orig_pmd,
1129 					struct page *page,
1130 					unsigned long haddr)
1131 {
1132 	struct mem_cgroup *memcg;
1133 	spinlock_t *ptl;
1134 	pgtable_t pgtable;
1135 	pmd_t _pmd;
1136 	int ret = 0, i;
1137 	struct page **pages;
1138 	unsigned long mmun_start;	/* For mmu_notifiers */
1139 	unsigned long mmun_end;		/* For mmu_notifiers */
1140 
1141 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1142 			GFP_KERNEL);
1143 	if (unlikely(!pages)) {
1144 		ret |= VM_FAULT_OOM;
1145 		goto out;
1146 	}
1147 
1148 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1149 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1150 					       __GFP_OTHER_NODE,
1151 					       vma, address, page_to_nid(page));
1152 		if (unlikely(!pages[i] ||
1153 			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1154 						   &memcg, false))) {
1155 			if (pages[i])
1156 				put_page(pages[i]);
1157 			while (--i >= 0) {
1158 				memcg = (void *)page_private(pages[i]);
1159 				set_page_private(pages[i], 0);
1160 				mem_cgroup_cancel_charge(pages[i], memcg,
1161 						false);
1162 				put_page(pages[i]);
1163 			}
1164 			kfree(pages);
1165 			ret |= VM_FAULT_OOM;
1166 			goto out;
1167 		}
1168 		set_page_private(pages[i], (unsigned long)memcg);
1169 	}
1170 
1171 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1172 		copy_user_highpage(pages[i], page + i,
1173 				   haddr + PAGE_SIZE * i, vma);
1174 		__SetPageUptodate(pages[i]);
1175 		cond_resched();
1176 	}
1177 
1178 	mmun_start = haddr;
1179 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1180 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1181 
1182 	ptl = pmd_lock(mm, pmd);
1183 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1184 		goto out_free_pages;
1185 	VM_BUG_ON_PAGE(!PageHead(page), page);
1186 
1187 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1188 	/* leave pmd empty until pte is filled */
1189 
1190 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1191 	pmd_populate(mm, &_pmd, pgtable);
1192 
1193 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1194 		pte_t *pte, entry;
1195 		entry = mk_pte(pages[i], vma->vm_page_prot);
1196 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1197 		memcg = (void *)page_private(pages[i]);
1198 		set_page_private(pages[i], 0);
1199 		page_add_new_anon_rmap(pages[i], vma, haddr, false);
1200 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1201 		lru_cache_add_active_or_unevictable(pages[i], vma);
1202 		pte = pte_offset_map(&_pmd, haddr);
1203 		VM_BUG_ON(!pte_none(*pte));
1204 		set_pte_at(mm, haddr, pte, entry);
1205 		pte_unmap(pte);
1206 	}
1207 	kfree(pages);
1208 
1209 	smp_wmb(); /* make pte visible before pmd */
1210 	pmd_populate(mm, pmd, pgtable);
1211 	page_remove_rmap(page, true);
1212 	spin_unlock(ptl);
1213 
1214 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1215 
1216 	ret |= VM_FAULT_WRITE;
1217 	put_page(page);
1218 
1219 out:
1220 	return ret;
1221 
1222 out_free_pages:
1223 	spin_unlock(ptl);
1224 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1225 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1226 		memcg = (void *)page_private(pages[i]);
1227 		set_page_private(pages[i], 0);
1228 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1229 		put_page(pages[i]);
1230 	}
1231 	kfree(pages);
1232 	goto out;
1233 }
1234 
1235 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1236 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1237 {
1238 	spinlock_t *ptl;
1239 	int ret = 0;
1240 	struct page *page = NULL, *new_page;
1241 	struct mem_cgroup *memcg;
1242 	unsigned long haddr;
1243 	unsigned long mmun_start;	/* For mmu_notifiers */
1244 	unsigned long mmun_end;		/* For mmu_notifiers */
1245 	gfp_t huge_gfp;			/* for allocation and charge */
1246 
1247 	ptl = pmd_lockptr(mm, pmd);
1248 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1249 	haddr = address & HPAGE_PMD_MASK;
1250 	if (is_huge_zero_pmd(orig_pmd))
1251 		goto alloc;
1252 	spin_lock(ptl);
1253 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1254 		goto out_unlock;
1255 
1256 	page = pmd_page(orig_pmd);
1257 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1258 	/*
1259 	 * We can only reuse the page if nobody else maps the huge page or it's
1260 	 * part. We can do it by checking page_mapcount() on each sub-page, but
1261 	 * it's expensive.
1262 	 * The cheaper way is to check page_count() to be equal 1: every
1263 	 * mapcount takes page reference reference, so this way we can
1264 	 * guarantee, that the PMD is the only mapping.
1265 	 * This can give false negative if somebody pinned the page, but that's
1266 	 * fine.
1267 	 */
1268 	if (page_mapcount(page) == 1 && page_count(page) == 1) {
1269 		pmd_t entry;
1270 		entry = pmd_mkyoung(orig_pmd);
1271 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1272 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1273 			update_mmu_cache_pmd(vma, address, pmd);
1274 		ret |= VM_FAULT_WRITE;
1275 		goto out_unlock;
1276 	}
1277 	get_page(page);
1278 	spin_unlock(ptl);
1279 alloc:
1280 	if (transparent_hugepage_enabled(vma) &&
1281 	    !transparent_hugepage_debug_cow()) {
1282 		huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1283 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1284 	} else
1285 		new_page = NULL;
1286 
1287 	if (likely(new_page)) {
1288 		prep_transhuge_page(new_page);
1289 	} else {
1290 		if (!page) {
1291 			split_huge_pmd(vma, pmd, address);
1292 			ret |= VM_FAULT_FALLBACK;
1293 		} else {
1294 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1295 					pmd, orig_pmd, page, haddr);
1296 			if (ret & VM_FAULT_OOM) {
1297 				split_huge_pmd(vma, pmd, address);
1298 				ret |= VM_FAULT_FALLBACK;
1299 			}
1300 			put_page(page);
1301 		}
1302 		count_vm_event(THP_FAULT_FALLBACK);
1303 		goto out;
1304 	}
1305 
1306 	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1307 					   true))) {
1308 		put_page(new_page);
1309 		if (page) {
1310 			split_huge_pmd(vma, pmd, address);
1311 			put_page(page);
1312 		} else
1313 			split_huge_pmd(vma, pmd, address);
1314 		ret |= VM_FAULT_FALLBACK;
1315 		count_vm_event(THP_FAULT_FALLBACK);
1316 		goto out;
1317 	}
1318 
1319 	count_vm_event(THP_FAULT_ALLOC);
1320 
1321 	if (!page)
1322 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1323 	else
1324 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1325 	__SetPageUptodate(new_page);
1326 
1327 	mmun_start = haddr;
1328 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1329 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1330 
1331 	spin_lock(ptl);
1332 	if (page)
1333 		put_page(page);
1334 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1335 		spin_unlock(ptl);
1336 		mem_cgroup_cancel_charge(new_page, memcg, true);
1337 		put_page(new_page);
1338 		goto out_mn;
1339 	} else {
1340 		pmd_t entry;
1341 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1342 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1343 		pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1344 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1345 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1346 		lru_cache_add_active_or_unevictable(new_page, vma);
1347 		set_pmd_at(mm, haddr, pmd, entry);
1348 		update_mmu_cache_pmd(vma, address, pmd);
1349 		if (!page) {
1350 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1351 			put_huge_zero_page();
1352 		} else {
1353 			VM_BUG_ON_PAGE(!PageHead(page), page);
1354 			page_remove_rmap(page, true);
1355 			put_page(page);
1356 		}
1357 		ret |= VM_FAULT_WRITE;
1358 	}
1359 	spin_unlock(ptl);
1360 out_mn:
1361 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1362 out:
1363 	return ret;
1364 out_unlock:
1365 	spin_unlock(ptl);
1366 	return ret;
1367 }
1368 
1369 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1370 				   unsigned long addr,
1371 				   pmd_t *pmd,
1372 				   unsigned int flags)
1373 {
1374 	struct mm_struct *mm = vma->vm_mm;
1375 	struct page *page = NULL;
1376 
1377 	assert_spin_locked(pmd_lockptr(mm, pmd));
1378 
1379 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1380 		goto out;
1381 
1382 	/* Avoid dumping huge zero page */
1383 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1384 		return ERR_PTR(-EFAULT);
1385 
1386 	/* Full NUMA hinting faults to serialise migration in fault paths */
1387 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1388 		goto out;
1389 
1390 	page = pmd_page(*pmd);
1391 	VM_BUG_ON_PAGE(!PageHead(page), page);
1392 	if (flags & FOLL_TOUCH)
1393 		touch_pmd(vma, addr, pmd);
1394 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1395 		/*
1396 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1397 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1398 		 *
1399 		 * In most cases the pmd is the only mapping of the page as we
1400 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1401 		 * writable private mappings in populate_vma_page_range().
1402 		 *
1403 		 * The only scenario when we have the page shared here is if we
1404 		 * mlocking read-only mapping shared over fork(). We skip
1405 		 * mlocking such pages.
1406 		 */
1407 		if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1408 				page->mapping && trylock_page(page)) {
1409 			lru_add_drain();
1410 			if (page->mapping)
1411 				mlock_vma_page(page);
1412 			unlock_page(page);
1413 		}
1414 	}
1415 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1416 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1417 	if (flags & FOLL_GET)
1418 		get_page(page);
1419 
1420 out:
1421 	return page;
1422 }
1423 
1424 /* NUMA hinting page fault entry point for trans huge pmds */
1425 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1426 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1427 {
1428 	spinlock_t *ptl;
1429 	struct anon_vma *anon_vma = NULL;
1430 	struct page *page;
1431 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1432 	int page_nid = -1, this_nid = numa_node_id();
1433 	int target_nid, last_cpupid = -1;
1434 	bool page_locked;
1435 	bool migrated = false;
1436 	bool was_writable;
1437 	int flags = 0;
1438 
1439 	/* A PROT_NONE fault should not end up here */
1440 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1441 
1442 	ptl = pmd_lock(mm, pmdp);
1443 	if (unlikely(!pmd_same(pmd, *pmdp)))
1444 		goto out_unlock;
1445 
1446 	/*
1447 	 * If there are potential migrations, wait for completion and retry
1448 	 * without disrupting NUMA hinting information. Do not relock and
1449 	 * check_same as the page may no longer be mapped.
1450 	 */
1451 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1452 		page = pmd_page(*pmdp);
1453 		spin_unlock(ptl);
1454 		wait_on_page_locked(page);
1455 		goto out;
1456 	}
1457 
1458 	page = pmd_page(pmd);
1459 	BUG_ON(is_huge_zero_page(page));
1460 	page_nid = page_to_nid(page);
1461 	last_cpupid = page_cpupid_last(page);
1462 	count_vm_numa_event(NUMA_HINT_FAULTS);
1463 	if (page_nid == this_nid) {
1464 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1465 		flags |= TNF_FAULT_LOCAL;
1466 	}
1467 
1468 	/* See similar comment in do_numa_page for explanation */
1469 	if (!(vma->vm_flags & VM_WRITE))
1470 		flags |= TNF_NO_GROUP;
1471 
1472 	/*
1473 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1474 	 * page_table_lock if at all possible
1475 	 */
1476 	page_locked = trylock_page(page);
1477 	target_nid = mpol_misplaced(page, vma, haddr);
1478 	if (target_nid == -1) {
1479 		/* If the page was locked, there are no parallel migrations */
1480 		if (page_locked)
1481 			goto clear_pmdnuma;
1482 	}
1483 
1484 	/* Migration could have started since the pmd_trans_migrating check */
1485 	if (!page_locked) {
1486 		spin_unlock(ptl);
1487 		wait_on_page_locked(page);
1488 		page_nid = -1;
1489 		goto out;
1490 	}
1491 
1492 	/*
1493 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1494 	 * to serialises splits
1495 	 */
1496 	get_page(page);
1497 	spin_unlock(ptl);
1498 	anon_vma = page_lock_anon_vma_read(page);
1499 
1500 	/* Confirm the PMD did not change while page_table_lock was released */
1501 	spin_lock(ptl);
1502 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1503 		unlock_page(page);
1504 		put_page(page);
1505 		page_nid = -1;
1506 		goto out_unlock;
1507 	}
1508 
1509 	/* Bail if we fail to protect against THP splits for any reason */
1510 	if (unlikely(!anon_vma)) {
1511 		put_page(page);
1512 		page_nid = -1;
1513 		goto clear_pmdnuma;
1514 	}
1515 
1516 	/*
1517 	 * Migrate the THP to the requested node, returns with page unlocked
1518 	 * and access rights restored.
1519 	 */
1520 	spin_unlock(ptl);
1521 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1522 				pmdp, pmd, addr, page, target_nid);
1523 	if (migrated) {
1524 		flags |= TNF_MIGRATED;
1525 		page_nid = target_nid;
1526 	} else
1527 		flags |= TNF_MIGRATE_FAIL;
1528 
1529 	goto out;
1530 clear_pmdnuma:
1531 	BUG_ON(!PageLocked(page));
1532 	was_writable = pmd_write(pmd);
1533 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1534 	pmd = pmd_mkyoung(pmd);
1535 	if (was_writable)
1536 		pmd = pmd_mkwrite(pmd);
1537 	set_pmd_at(mm, haddr, pmdp, pmd);
1538 	update_mmu_cache_pmd(vma, addr, pmdp);
1539 	unlock_page(page);
1540 out_unlock:
1541 	spin_unlock(ptl);
1542 
1543 out:
1544 	if (anon_vma)
1545 		page_unlock_anon_vma_read(anon_vma);
1546 
1547 	if (page_nid != -1)
1548 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1549 
1550 	return 0;
1551 }
1552 
1553 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1554 		pmd_t *pmd, unsigned long addr, unsigned long next)
1555 
1556 {
1557 	spinlock_t *ptl;
1558 	pmd_t orig_pmd;
1559 	struct page *page;
1560 	struct mm_struct *mm = tlb->mm;
1561 	int ret = 0;
1562 
1563 	ptl = pmd_trans_huge_lock(pmd, vma);
1564 	if (!ptl)
1565 		goto out_unlocked;
1566 
1567 	orig_pmd = *pmd;
1568 	if (is_huge_zero_pmd(orig_pmd)) {
1569 		ret = 1;
1570 		goto out;
1571 	}
1572 
1573 	page = pmd_page(orig_pmd);
1574 	/*
1575 	 * If other processes are mapping this page, we couldn't discard
1576 	 * the page unless they all do MADV_FREE so let's skip the page.
1577 	 */
1578 	if (page_mapcount(page) != 1)
1579 		goto out;
1580 
1581 	if (!trylock_page(page))
1582 		goto out;
1583 
1584 	/*
1585 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1586 	 * will deactivate only them.
1587 	 */
1588 	if (next - addr != HPAGE_PMD_SIZE) {
1589 		get_page(page);
1590 		spin_unlock(ptl);
1591 		if (split_huge_page(page)) {
1592 			put_page(page);
1593 			unlock_page(page);
1594 			goto out_unlocked;
1595 		}
1596 		put_page(page);
1597 		unlock_page(page);
1598 		ret = 1;
1599 		goto out_unlocked;
1600 	}
1601 
1602 	if (PageDirty(page))
1603 		ClearPageDirty(page);
1604 	unlock_page(page);
1605 
1606 	if (PageActive(page))
1607 		deactivate_page(page);
1608 
1609 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1610 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1611 			tlb->fullmm);
1612 		orig_pmd = pmd_mkold(orig_pmd);
1613 		orig_pmd = pmd_mkclean(orig_pmd);
1614 
1615 		set_pmd_at(mm, addr, pmd, orig_pmd);
1616 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1617 	}
1618 	ret = 1;
1619 out:
1620 	spin_unlock(ptl);
1621 out_unlocked:
1622 	return ret;
1623 }
1624 
1625 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1626 		 pmd_t *pmd, unsigned long addr)
1627 {
1628 	pmd_t orig_pmd;
1629 	spinlock_t *ptl;
1630 
1631 	ptl = __pmd_trans_huge_lock(pmd, vma);
1632 	if (!ptl)
1633 		return 0;
1634 	/*
1635 	 * For architectures like ppc64 we look at deposited pgtable
1636 	 * when calling pmdp_huge_get_and_clear. So do the
1637 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1638 	 * operations.
1639 	 */
1640 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1641 			tlb->fullmm);
1642 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1643 	if (vma_is_dax(vma)) {
1644 		spin_unlock(ptl);
1645 		if (is_huge_zero_pmd(orig_pmd))
1646 			put_huge_zero_page();
1647 	} else if (is_huge_zero_pmd(orig_pmd)) {
1648 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1649 		atomic_long_dec(&tlb->mm->nr_ptes);
1650 		spin_unlock(ptl);
1651 		put_huge_zero_page();
1652 	} else {
1653 		struct page *page = pmd_page(orig_pmd);
1654 		page_remove_rmap(page, true);
1655 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1656 		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1657 		VM_BUG_ON_PAGE(!PageHead(page), page);
1658 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1659 		atomic_long_dec(&tlb->mm->nr_ptes);
1660 		spin_unlock(ptl);
1661 		tlb_remove_page(tlb, page);
1662 	}
1663 	return 1;
1664 }
1665 
1666 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1667 		  unsigned long old_addr,
1668 		  unsigned long new_addr, unsigned long old_end,
1669 		  pmd_t *old_pmd, pmd_t *new_pmd)
1670 {
1671 	spinlock_t *old_ptl, *new_ptl;
1672 	pmd_t pmd;
1673 
1674 	struct mm_struct *mm = vma->vm_mm;
1675 
1676 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1677 	    (new_addr & ~HPAGE_PMD_MASK) ||
1678 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1679 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1680 		return false;
1681 
1682 	/*
1683 	 * The destination pmd shouldn't be established, free_pgtables()
1684 	 * should have release it.
1685 	 */
1686 	if (WARN_ON(!pmd_none(*new_pmd))) {
1687 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1688 		return false;
1689 	}
1690 
1691 	/*
1692 	 * We don't have to worry about the ordering of src and dst
1693 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1694 	 */
1695 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1696 	if (old_ptl) {
1697 		new_ptl = pmd_lockptr(mm, new_pmd);
1698 		if (new_ptl != old_ptl)
1699 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1700 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1701 		VM_BUG_ON(!pmd_none(*new_pmd));
1702 
1703 		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1704 				vma_is_anonymous(vma)) {
1705 			pgtable_t pgtable;
1706 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1707 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1708 		}
1709 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1710 		if (new_ptl != old_ptl)
1711 			spin_unlock(new_ptl);
1712 		spin_unlock(old_ptl);
1713 		return true;
1714 	}
1715 	return false;
1716 }
1717 
1718 /*
1719  * Returns
1720  *  - 0 if PMD could not be locked
1721  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1722  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1723  */
1724 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1725 		unsigned long addr, pgprot_t newprot, int prot_numa)
1726 {
1727 	struct mm_struct *mm = vma->vm_mm;
1728 	spinlock_t *ptl;
1729 	int ret = 0;
1730 
1731 	ptl = __pmd_trans_huge_lock(pmd, vma);
1732 	if (ptl) {
1733 		pmd_t entry;
1734 		bool preserve_write = prot_numa && pmd_write(*pmd);
1735 		ret = 1;
1736 
1737 		/*
1738 		 * Avoid trapping faults against the zero page. The read-only
1739 		 * data is likely to be read-cached on the local CPU and
1740 		 * local/remote hits to the zero page are not interesting.
1741 		 */
1742 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1743 			spin_unlock(ptl);
1744 			return ret;
1745 		}
1746 
1747 		if (!prot_numa || !pmd_protnone(*pmd)) {
1748 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1749 			entry = pmd_modify(entry, newprot);
1750 			if (preserve_write)
1751 				entry = pmd_mkwrite(entry);
1752 			ret = HPAGE_PMD_NR;
1753 			set_pmd_at(mm, addr, pmd, entry);
1754 			BUG_ON(!preserve_write && pmd_write(entry));
1755 		}
1756 		spin_unlock(ptl);
1757 	}
1758 
1759 	return ret;
1760 }
1761 
1762 /*
1763  * Returns true if a given pmd maps a thp, false otherwise.
1764  *
1765  * Note that if it returns true, this routine returns without unlocking page
1766  * table lock. So callers must unlock it.
1767  */
1768 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1769 {
1770 	spinlock_t *ptl;
1771 	ptl = pmd_lock(vma->vm_mm, pmd);
1772 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1773 		return ptl;
1774 	spin_unlock(ptl);
1775 	return NULL;
1776 }
1777 
1778 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1779 
1780 int hugepage_madvise(struct vm_area_struct *vma,
1781 		     unsigned long *vm_flags, int advice)
1782 {
1783 	switch (advice) {
1784 	case MADV_HUGEPAGE:
1785 #ifdef CONFIG_S390
1786 		/*
1787 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1788 		 * can't handle this properly after s390_enable_sie, so we simply
1789 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1790 		 */
1791 		if (mm_has_pgste(vma->vm_mm))
1792 			return 0;
1793 #endif
1794 		/*
1795 		 * Be somewhat over-protective like KSM for now!
1796 		 */
1797 		if (*vm_flags & VM_NO_THP)
1798 			return -EINVAL;
1799 		*vm_flags &= ~VM_NOHUGEPAGE;
1800 		*vm_flags |= VM_HUGEPAGE;
1801 		/*
1802 		 * If the vma become good for khugepaged to scan,
1803 		 * register it here without waiting a page fault that
1804 		 * may not happen any time soon.
1805 		 */
1806 		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1807 			return -ENOMEM;
1808 		break;
1809 	case MADV_NOHUGEPAGE:
1810 		/*
1811 		 * Be somewhat over-protective like KSM for now!
1812 		 */
1813 		if (*vm_flags & VM_NO_THP)
1814 			return -EINVAL;
1815 		*vm_flags &= ~VM_HUGEPAGE;
1816 		*vm_flags |= VM_NOHUGEPAGE;
1817 		/*
1818 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1819 		 * this vma even if we leave the mm registered in khugepaged if
1820 		 * it got registered before VM_NOHUGEPAGE was set.
1821 		 */
1822 		break;
1823 	}
1824 
1825 	return 0;
1826 }
1827 
1828 static int __init khugepaged_slab_init(void)
1829 {
1830 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1831 					  sizeof(struct mm_slot),
1832 					  __alignof__(struct mm_slot), 0, NULL);
1833 	if (!mm_slot_cache)
1834 		return -ENOMEM;
1835 
1836 	return 0;
1837 }
1838 
1839 static void __init khugepaged_slab_exit(void)
1840 {
1841 	kmem_cache_destroy(mm_slot_cache);
1842 }
1843 
1844 static inline struct mm_slot *alloc_mm_slot(void)
1845 {
1846 	if (!mm_slot_cache)	/* initialization failed */
1847 		return NULL;
1848 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1849 }
1850 
1851 static inline void free_mm_slot(struct mm_slot *mm_slot)
1852 {
1853 	kmem_cache_free(mm_slot_cache, mm_slot);
1854 }
1855 
1856 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1857 {
1858 	struct mm_slot *mm_slot;
1859 
1860 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1861 		if (mm == mm_slot->mm)
1862 			return mm_slot;
1863 
1864 	return NULL;
1865 }
1866 
1867 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1868 				    struct mm_slot *mm_slot)
1869 {
1870 	mm_slot->mm = mm;
1871 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1872 }
1873 
1874 static inline int khugepaged_test_exit(struct mm_struct *mm)
1875 {
1876 	return atomic_read(&mm->mm_users) == 0;
1877 }
1878 
1879 int __khugepaged_enter(struct mm_struct *mm)
1880 {
1881 	struct mm_slot *mm_slot;
1882 	int wakeup;
1883 
1884 	mm_slot = alloc_mm_slot();
1885 	if (!mm_slot)
1886 		return -ENOMEM;
1887 
1888 	/* __khugepaged_exit() must not run from under us */
1889 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1890 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1891 		free_mm_slot(mm_slot);
1892 		return 0;
1893 	}
1894 
1895 	spin_lock(&khugepaged_mm_lock);
1896 	insert_to_mm_slots_hash(mm, mm_slot);
1897 	/*
1898 	 * Insert just behind the scanning cursor, to let the area settle
1899 	 * down a little.
1900 	 */
1901 	wakeup = list_empty(&khugepaged_scan.mm_head);
1902 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1903 	spin_unlock(&khugepaged_mm_lock);
1904 
1905 	atomic_inc(&mm->mm_count);
1906 	if (wakeup)
1907 		wake_up_interruptible(&khugepaged_wait);
1908 
1909 	return 0;
1910 }
1911 
1912 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1913 			       unsigned long vm_flags)
1914 {
1915 	unsigned long hstart, hend;
1916 	if (!vma->anon_vma)
1917 		/*
1918 		 * Not yet faulted in so we will register later in the
1919 		 * page fault if needed.
1920 		 */
1921 		return 0;
1922 	if (vma->vm_ops)
1923 		/* khugepaged not yet working on file or special mappings */
1924 		return 0;
1925 	VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1926 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1927 	hend = vma->vm_end & HPAGE_PMD_MASK;
1928 	if (hstart < hend)
1929 		return khugepaged_enter(vma, vm_flags);
1930 	return 0;
1931 }
1932 
1933 void __khugepaged_exit(struct mm_struct *mm)
1934 {
1935 	struct mm_slot *mm_slot;
1936 	int free = 0;
1937 
1938 	spin_lock(&khugepaged_mm_lock);
1939 	mm_slot = get_mm_slot(mm);
1940 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1941 		hash_del(&mm_slot->hash);
1942 		list_del(&mm_slot->mm_node);
1943 		free = 1;
1944 	}
1945 	spin_unlock(&khugepaged_mm_lock);
1946 
1947 	if (free) {
1948 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1949 		free_mm_slot(mm_slot);
1950 		mmdrop(mm);
1951 	} else if (mm_slot) {
1952 		/*
1953 		 * This is required to serialize against
1954 		 * khugepaged_test_exit() (which is guaranteed to run
1955 		 * under mmap sem read mode). Stop here (after we
1956 		 * return all pagetables will be destroyed) until
1957 		 * khugepaged has finished working on the pagetables
1958 		 * under the mmap_sem.
1959 		 */
1960 		down_write(&mm->mmap_sem);
1961 		up_write(&mm->mmap_sem);
1962 	}
1963 }
1964 
1965 static void release_pte_page(struct page *page)
1966 {
1967 	/* 0 stands for page_is_file_cache(page) == false */
1968 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1969 	unlock_page(page);
1970 	putback_lru_page(page);
1971 }
1972 
1973 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1974 {
1975 	while (--_pte >= pte) {
1976 		pte_t pteval = *_pte;
1977 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
1978 			release_pte_page(pte_page(pteval));
1979 	}
1980 }
1981 
1982 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1983 					unsigned long address,
1984 					pte_t *pte)
1985 {
1986 	struct page *page = NULL;
1987 	pte_t *_pte;
1988 	int none_or_zero = 0, result = 0;
1989 	bool referenced = false, writable = false;
1990 
1991 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1992 	     _pte++, address += PAGE_SIZE) {
1993 		pte_t pteval = *_pte;
1994 		if (pte_none(pteval) || (pte_present(pteval) &&
1995 				is_zero_pfn(pte_pfn(pteval)))) {
1996 			if (!userfaultfd_armed(vma) &&
1997 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1998 				continue;
1999 			} else {
2000 				result = SCAN_EXCEED_NONE_PTE;
2001 				goto out;
2002 			}
2003 		}
2004 		if (!pte_present(pteval)) {
2005 			result = SCAN_PTE_NON_PRESENT;
2006 			goto out;
2007 		}
2008 		page = vm_normal_page(vma, address, pteval);
2009 		if (unlikely(!page)) {
2010 			result = SCAN_PAGE_NULL;
2011 			goto out;
2012 		}
2013 
2014 		VM_BUG_ON_PAGE(PageCompound(page), page);
2015 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2016 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2017 
2018 		/*
2019 		 * We can do it before isolate_lru_page because the
2020 		 * page can't be freed from under us. NOTE: PG_lock
2021 		 * is needed to serialize against split_huge_page
2022 		 * when invoked from the VM.
2023 		 */
2024 		if (!trylock_page(page)) {
2025 			result = SCAN_PAGE_LOCK;
2026 			goto out;
2027 		}
2028 
2029 		/*
2030 		 * cannot use mapcount: can't collapse if there's a gup pin.
2031 		 * The page must only be referenced by the scanned process
2032 		 * and page swap cache.
2033 		 */
2034 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2035 			unlock_page(page);
2036 			result = SCAN_PAGE_COUNT;
2037 			goto out;
2038 		}
2039 		if (pte_write(pteval)) {
2040 			writable = true;
2041 		} else {
2042 			if (PageSwapCache(page) && !reuse_swap_page(page)) {
2043 				unlock_page(page);
2044 				result = SCAN_SWAP_CACHE_PAGE;
2045 				goto out;
2046 			}
2047 			/*
2048 			 * Page is not in the swap cache. It can be collapsed
2049 			 * into a THP.
2050 			 */
2051 		}
2052 
2053 		/*
2054 		 * Isolate the page to avoid collapsing an hugepage
2055 		 * currently in use by the VM.
2056 		 */
2057 		if (isolate_lru_page(page)) {
2058 			unlock_page(page);
2059 			result = SCAN_DEL_PAGE_LRU;
2060 			goto out;
2061 		}
2062 		/* 0 stands for page_is_file_cache(page) == false */
2063 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2064 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2065 		VM_BUG_ON_PAGE(PageLRU(page), page);
2066 
2067 		/* If there is no mapped pte young don't collapse the page */
2068 		if (pte_young(pteval) ||
2069 		    page_is_young(page) || PageReferenced(page) ||
2070 		    mmu_notifier_test_young(vma->vm_mm, address))
2071 			referenced = true;
2072 	}
2073 	if (likely(writable)) {
2074 		if (likely(referenced)) {
2075 			result = SCAN_SUCCEED;
2076 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2077 							    referenced, writable, result);
2078 			return 1;
2079 		}
2080 	} else {
2081 		result = SCAN_PAGE_RO;
2082 	}
2083 
2084 out:
2085 	release_pte_pages(pte, _pte);
2086 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2087 					    referenced, writable, result);
2088 	return 0;
2089 }
2090 
2091 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2092 				      struct vm_area_struct *vma,
2093 				      unsigned long address,
2094 				      spinlock_t *ptl)
2095 {
2096 	pte_t *_pte;
2097 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2098 		pte_t pteval = *_pte;
2099 		struct page *src_page;
2100 
2101 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2102 			clear_user_highpage(page, address);
2103 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2104 			if (is_zero_pfn(pte_pfn(pteval))) {
2105 				/*
2106 				 * ptl mostly unnecessary.
2107 				 */
2108 				spin_lock(ptl);
2109 				/*
2110 				 * paravirt calls inside pte_clear here are
2111 				 * superfluous.
2112 				 */
2113 				pte_clear(vma->vm_mm, address, _pte);
2114 				spin_unlock(ptl);
2115 			}
2116 		} else {
2117 			src_page = pte_page(pteval);
2118 			copy_user_highpage(page, src_page, address, vma);
2119 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2120 			release_pte_page(src_page);
2121 			/*
2122 			 * ptl mostly unnecessary, but preempt has to
2123 			 * be disabled to update the per-cpu stats
2124 			 * inside page_remove_rmap().
2125 			 */
2126 			spin_lock(ptl);
2127 			/*
2128 			 * paravirt calls inside pte_clear here are
2129 			 * superfluous.
2130 			 */
2131 			pte_clear(vma->vm_mm, address, _pte);
2132 			page_remove_rmap(src_page, false);
2133 			spin_unlock(ptl);
2134 			free_page_and_swap_cache(src_page);
2135 		}
2136 
2137 		address += PAGE_SIZE;
2138 		page++;
2139 	}
2140 }
2141 
2142 static void khugepaged_alloc_sleep(void)
2143 {
2144 	DEFINE_WAIT(wait);
2145 
2146 	add_wait_queue(&khugepaged_wait, &wait);
2147 	freezable_schedule_timeout_interruptible(
2148 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2149 	remove_wait_queue(&khugepaged_wait, &wait);
2150 }
2151 
2152 static int khugepaged_node_load[MAX_NUMNODES];
2153 
2154 static bool khugepaged_scan_abort(int nid)
2155 {
2156 	int i;
2157 
2158 	/*
2159 	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2160 	 * allocate memory locally.
2161 	 */
2162 	if (!zone_reclaim_mode)
2163 		return false;
2164 
2165 	/* If there is a count for this node already, it must be acceptable */
2166 	if (khugepaged_node_load[nid])
2167 		return false;
2168 
2169 	for (i = 0; i < MAX_NUMNODES; i++) {
2170 		if (!khugepaged_node_load[i])
2171 			continue;
2172 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2173 			return true;
2174 	}
2175 	return false;
2176 }
2177 
2178 #ifdef CONFIG_NUMA
2179 static int khugepaged_find_target_node(void)
2180 {
2181 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2182 	int nid, target_node = 0, max_value = 0;
2183 
2184 	/* find first node with max normal pages hit */
2185 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2186 		if (khugepaged_node_load[nid] > max_value) {
2187 			max_value = khugepaged_node_load[nid];
2188 			target_node = nid;
2189 		}
2190 
2191 	/* do some balance if several nodes have the same hit record */
2192 	if (target_node <= last_khugepaged_target_node)
2193 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2194 				nid++)
2195 			if (max_value == khugepaged_node_load[nid]) {
2196 				target_node = nid;
2197 				break;
2198 			}
2199 
2200 	last_khugepaged_target_node = target_node;
2201 	return target_node;
2202 }
2203 
2204 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2205 {
2206 	if (IS_ERR(*hpage)) {
2207 		if (!*wait)
2208 			return false;
2209 
2210 		*wait = false;
2211 		*hpage = NULL;
2212 		khugepaged_alloc_sleep();
2213 	} else if (*hpage) {
2214 		put_page(*hpage);
2215 		*hpage = NULL;
2216 	}
2217 
2218 	return true;
2219 }
2220 
2221 static struct page *
2222 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2223 		       unsigned long address, int node)
2224 {
2225 	VM_BUG_ON_PAGE(*hpage, *hpage);
2226 
2227 	/*
2228 	 * Before allocating the hugepage, release the mmap_sem read lock.
2229 	 * The allocation can take potentially a long time if it involves
2230 	 * sync compaction, and we do not need to hold the mmap_sem during
2231 	 * that. We will recheck the vma after taking it again in write mode.
2232 	 */
2233 	up_read(&mm->mmap_sem);
2234 
2235 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2236 	if (unlikely(!*hpage)) {
2237 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2238 		*hpage = ERR_PTR(-ENOMEM);
2239 		return NULL;
2240 	}
2241 
2242 	prep_transhuge_page(*hpage);
2243 	count_vm_event(THP_COLLAPSE_ALLOC);
2244 	return *hpage;
2245 }
2246 #else
2247 static int khugepaged_find_target_node(void)
2248 {
2249 	return 0;
2250 }
2251 
2252 static inline struct page *alloc_hugepage(int defrag)
2253 {
2254 	struct page *page;
2255 
2256 	page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2257 	if (page)
2258 		prep_transhuge_page(page);
2259 	return page;
2260 }
2261 
2262 static struct page *khugepaged_alloc_hugepage(bool *wait)
2263 {
2264 	struct page *hpage;
2265 
2266 	do {
2267 		hpage = alloc_hugepage(khugepaged_defrag());
2268 		if (!hpage) {
2269 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2270 			if (!*wait)
2271 				return NULL;
2272 
2273 			*wait = false;
2274 			khugepaged_alloc_sleep();
2275 		} else
2276 			count_vm_event(THP_COLLAPSE_ALLOC);
2277 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2278 
2279 	return hpage;
2280 }
2281 
2282 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2283 {
2284 	if (!*hpage)
2285 		*hpage = khugepaged_alloc_hugepage(wait);
2286 
2287 	if (unlikely(!*hpage))
2288 		return false;
2289 
2290 	return true;
2291 }
2292 
2293 static struct page *
2294 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2295 		       unsigned long address, int node)
2296 {
2297 	up_read(&mm->mmap_sem);
2298 	VM_BUG_ON(!*hpage);
2299 
2300 	return  *hpage;
2301 }
2302 #endif
2303 
2304 static bool hugepage_vma_check(struct vm_area_struct *vma)
2305 {
2306 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2307 	    (vma->vm_flags & VM_NOHUGEPAGE))
2308 		return false;
2309 	if (!vma->anon_vma || vma->vm_ops)
2310 		return false;
2311 	if (is_vma_temporary_stack(vma))
2312 		return false;
2313 	VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2314 	return true;
2315 }
2316 
2317 static void collapse_huge_page(struct mm_struct *mm,
2318 				   unsigned long address,
2319 				   struct page **hpage,
2320 				   struct vm_area_struct *vma,
2321 				   int node)
2322 {
2323 	pmd_t *pmd, _pmd;
2324 	pte_t *pte;
2325 	pgtable_t pgtable;
2326 	struct page *new_page;
2327 	spinlock_t *pmd_ptl, *pte_ptl;
2328 	int isolated = 0, result = 0;
2329 	unsigned long hstart, hend;
2330 	struct mem_cgroup *memcg;
2331 	unsigned long mmun_start;	/* For mmu_notifiers */
2332 	unsigned long mmun_end;		/* For mmu_notifiers */
2333 	gfp_t gfp;
2334 
2335 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2336 
2337 	/* Only allocate from the target node */
2338 	gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2339 		__GFP_THISNODE;
2340 
2341 	/* release the mmap_sem read lock. */
2342 	new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2343 	if (!new_page) {
2344 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2345 		goto out_nolock;
2346 	}
2347 
2348 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2349 		result = SCAN_CGROUP_CHARGE_FAIL;
2350 		goto out_nolock;
2351 	}
2352 
2353 	/*
2354 	 * Prevent all access to pagetables with the exception of
2355 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2356 	 * handled by the anon_vma lock + PG_lock.
2357 	 */
2358 	down_write(&mm->mmap_sem);
2359 	if (unlikely(khugepaged_test_exit(mm))) {
2360 		result = SCAN_ANY_PROCESS;
2361 		goto out;
2362 	}
2363 
2364 	vma = find_vma(mm, address);
2365 	if (!vma) {
2366 		result = SCAN_VMA_NULL;
2367 		goto out;
2368 	}
2369 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2370 	hend = vma->vm_end & HPAGE_PMD_MASK;
2371 	if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2372 		result = SCAN_ADDRESS_RANGE;
2373 		goto out;
2374 	}
2375 	if (!hugepage_vma_check(vma)) {
2376 		result = SCAN_VMA_CHECK;
2377 		goto out;
2378 	}
2379 	pmd = mm_find_pmd(mm, address);
2380 	if (!pmd) {
2381 		result = SCAN_PMD_NULL;
2382 		goto out;
2383 	}
2384 
2385 	anon_vma_lock_write(vma->anon_vma);
2386 
2387 	pte = pte_offset_map(pmd, address);
2388 	pte_ptl = pte_lockptr(mm, pmd);
2389 
2390 	mmun_start = address;
2391 	mmun_end   = address + HPAGE_PMD_SIZE;
2392 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2393 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2394 	/*
2395 	 * After this gup_fast can't run anymore. This also removes
2396 	 * any huge TLB entry from the CPU so we won't allow
2397 	 * huge and small TLB entries for the same virtual address
2398 	 * to avoid the risk of CPU bugs in that area.
2399 	 */
2400 	_pmd = pmdp_collapse_flush(vma, address, pmd);
2401 	spin_unlock(pmd_ptl);
2402 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2403 
2404 	spin_lock(pte_ptl);
2405 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2406 	spin_unlock(pte_ptl);
2407 
2408 	if (unlikely(!isolated)) {
2409 		pte_unmap(pte);
2410 		spin_lock(pmd_ptl);
2411 		BUG_ON(!pmd_none(*pmd));
2412 		/*
2413 		 * We can only use set_pmd_at when establishing
2414 		 * hugepmds and never for establishing regular pmds that
2415 		 * points to regular pagetables. Use pmd_populate for that
2416 		 */
2417 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2418 		spin_unlock(pmd_ptl);
2419 		anon_vma_unlock_write(vma->anon_vma);
2420 		result = SCAN_FAIL;
2421 		goto out;
2422 	}
2423 
2424 	/*
2425 	 * All pages are isolated and locked so anon_vma rmap
2426 	 * can't run anymore.
2427 	 */
2428 	anon_vma_unlock_write(vma->anon_vma);
2429 
2430 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2431 	pte_unmap(pte);
2432 	__SetPageUptodate(new_page);
2433 	pgtable = pmd_pgtable(_pmd);
2434 
2435 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2436 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2437 
2438 	/*
2439 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2440 	 * this is needed to avoid the copy_huge_page writes to become
2441 	 * visible after the set_pmd_at() write.
2442 	 */
2443 	smp_wmb();
2444 
2445 	spin_lock(pmd_ptl);
2446 	BUG_ON(!pmd_none(*pmd));
2447 	page_add_new_anon_rmap(new_page, vma, address, true);
2448 	mem_cgroup_commit_charge(new_page, memcg, false, true);
2449 	lru_cache_add_active_or_unevictable(new_page, vma);
2450 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2451 	set_pmd_at(mm, address, pmd, _pmd);
2452 	update_mmu_cache_pmd(vma, address, pmd);
2453 	spin_unlock(pmd_ptl);
2454 
2455 	*hpage = NULL;
2456 
2457 	khugepaged_pages_collapsed++;
2458 	result = SCAN_SUCCEED;
2459 out_up_write:
2460 	up_write(&mm->mmap_sem);
2461 	trace_mm_collapse_huge_page(mm, isolated, result);
2462 	return;
2463 
2464 out_nolock:
2465 	trace_mm_collapse_huge_page(mm, isolated, result);
2466 	return;
2467 out:
2468 	mem_cgroup_cancel_charge(new_page, memcg, true);
2469 	goto out_up_write;
2470 }
2471 
2472 static int khugepaged_scan_pmd(struct mm_struct *mm,
2473 			       struct vm_area_struct *vma,
2474 			       unsigned long address,
2475 			       struct page **hpage)
2476 {
2477 	pmd_t *pmd;
2478 	pte_t *pte, *_pte;
2479 	int ret = 0, none_or_zero = 0, result = 0;
2480 	struct page *page = NULL;
2481 	unsigned long _address;
2482 	spinlock_t *ptl;
2483 	int node = NUMA_NO_NODE;
2484 	bool writable = false, referenced = false;
2485 
2486 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2487 
2488 	pmd = mm_find_pmd(mm, address);
2489 	if (!pmd) {
2490 		result = SCAN_PMD_NULL;
2491 		goto out;
2492 	}
2493 
2494 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2495 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2496 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2497 	     _pte++, _address += PAGE_SIZE) {
2498 		pte_t pteval = *_pte;
2499 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2500 			if (!userfaultfd_armed(vma) &&
2501 			    ++none_or_zero <= khugepaged_max_ptes_none) {
2502 				continue;
2503 			} else {
2504 				result = SCAN_EXCEED_NONE_PTE;
2505 				goto out_unmap;
2506 			}
2507 		}
2508 		if (!pte_present(pteval)) {
2509 			result = SCAN_PTE_NON_PRESENT;
2510 			goto out_unmap;
2511 		}
2512 		if (pte_write(pteval))
2513 			writable = true;
2514 
2515 		page = vm_normal_page(vma, _address, pteval);
2516 		if (unlikely(!page)) {
2517 			result = SCAN_PAGE_NULL;
2518 			goto out_unmap;
2519 		}
2520 
2521 		/* TODO: teach khugepaged to collapse THP mapped with pte */
2522 		if (PageCompound(page)) {
2523 			result = SCAN_PAGE_COMPOUND;
2524 			goto out_unmap;
2525 		}
2526 
2527 		/*
2528 		 * Record which node the original page is from and save this
2529 		 * information to khugepaged_node_load[].
2530 		 * Khupaged will allocate hugepage from the node has the max
2531 		 * hit record.
2532 		 */
2533 		node = page_to_nid(page);
2534 		if (khugepaged_scan_abort(node)) {
2535 			result = SCAN_SCAN_ABORT;
2536 			goto out_unmap;
2537 		}
2538 		khugepaged_node_load[node]++;
2539 		if (!PageLRU(page)) {
2540 			result = SCAN_SCAN_ABORT;
2541 			goto out_unmap;
2542 		}
2543 		if (PageLocked(page)) {
2544 			result = SCAN_PAGE_LOCK;
2545 			goto out_unmap;
2546 		}
2547 		if (!PageAnon(page)) {
2548 			result = SCAN_PAGE_ANON;
2549 			goto out_unmap;
2550 		}
2551 
2552 		/*
2553 		 * cannot use mapcount: can't collapse if there's a gup pin.
2554 		 * The page must only be referenced by the scanned process
2555 		 * and page swap cache.
2556 		 */
2557 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2558 			result = SCAN_PAGE_COUNT;
2559 			goto out_unmap;
2560 		}
2561 		if (pte_young(pteval) ||
2562 		    page_is_young(page) || PageReferenced(page) ||
2563 		    mmu_notifier_test_young(vma->vm_mm, address))
2564 			referenced = true;
2565 	}
2566 	if (writable) {
2567 		if (referenced) {
2568 			result = SCAN_SUCCEED;
2569 			ret = 1;
2570 		} else {
2571 			result = SCAN_NO_REFERENCED_PAGE;
2572 		}
2573 	} else {
2574 		result = SCAN_PAGE_RO;
2575 	}
2576 out_unmap:
2577 	pte_unmap_unlock(pte, ptl);
2578 	if (ret) {
2579 		node = khugepaged_find_target_node();
2580 		/* collapse_huge_page will return with the mmap_sem released */
2581 		collapse_huge_page(mm, address, hpage, vma, node);
2582 	}
2583 out:
2584 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2585 				     none_or_zero, result);
2586 	return ret;
2587 }
2588 
2589 static void collect_mm_slot(struct mm_slot *mm_slot)
2590 {
2591 	struct mm_struct *mm = mm_slot->mm;
2592 
2593 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2594 
2595 	if (khugepaged_test_exit(mm)) {
2596 		/* free mm_slot */
2597 		hash_del(&mm_slot->hash);
2598 		list_del(&mm_slot->mm_node);
2599 
2600 		/*
2601 		 * Not strictly needed because the mm exited already.
2602 		 *
2603 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2604 		 */
2605 
2606 		/* khugepaged_mm_lock actually not necessary for the below */
2607 		free_mm_slot(mm_slot);
2608 		mmdrop(mm);
2609 	}
2610 }
2611 
2612 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2613 					    struct page **hpage)
2614 	__releases(&khugepaged_mm_lock)
2615 	__acquires(&khugepaged_mm_lock)
2616 {
2617 	struct mm_slot *mm_slot;
2618 	struct mm_struct *mm;
2619 	struct vm_area_struct *vma;
2620 	int progress = 0;
2621 
2622 	VM_BUG_ON(!pages);
2623 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2624 
2625 	if (khugepaged_scan.mm_slot)
2626 		mm_slot = khugepaged_scan.mm_slot;
2627 	else {
2628 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2629 				     struct mm_slot, mm_node);
2630 		khugepaged_scan.address = 0;
2631 		khugepaged_scan.mm_slot = mm_slot;
2632 	}
2633 	spin_unlock(&khugepaged_mm_lock);
2634 
2635 	mm = mm_slot->mm;
2636 	down_read(&mm->mmap_sem);
2637 	if (unlikely(khugepaged_test_exit(mm)))
2638 		vma = NULL;
2639 	else
2640 		vma = find_vma(mm, khugepaged_scan.address);
2641 
2642 	progress++;
2643 	for (; vma; vma = vma->vm_next) {
2644 		unsigned long hstart, hend;
2645 
2646 		cond_resched();
2647 		if (unlikely(khugepaged_test_exit(mm))) {
2648 			progress++;
2649 			break;
2650 		}
2651 		if (!hugepage_vma_check(vma)) {
2652 skip:
2653 			progress++;
2654 			continue;
2655 		}
2656 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2657 		hend = vma->vm_end & HPAGE_PMD_MASK;
2658 		if (hstart >= hend)
2659 			goto skip;
2660 		if (khugepaged_scan.address > hend)
2661 			goto skip;
2662 		if (khugepaged_scan.address < hstart)
2663 			khugepaged_scan.address = hstart;
2664 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2665 
2666 		while (khugepaged_scan.address < hend) {
2667 			int ret;
2668 			cond_resched();
2669 			if (unlikely(khugepaged_test_exit(mm)))
2670 				goto breakouterloop;
2671 
2672 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2673 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2674 				  hend);
2675 			ret = khugepaged_scan_pmd(mm, vma,
2676 						  khugepaged_scan.address,
2677 						  hpage);
2678 			/* move to next address */
2679 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2680 			progress += HPAGE_PMD_NR;
2681 			if (ret)
2682 				/* we released mmap_sem so break loop */
2683 				goto breakouterloop_mmap_sem;
2684 			if (progress >= pages)
2685 				goto breakouterloop;
2686 		}
2687 	}
2688 breakouterloop:
2689 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2690 breakouterloop_mmap_sem:
2691 
2692 	spin_lock(&khugepaged_mm_lock);
2693 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2694 	/*
2695 	 * Release the current mm_slot if this mm is about to die, or
2696 	 * if we scanned all vmas of this mm.
2697 	 */
2698 	if (khugepaged_test_exit(mm) || !vma) {
2699 		/*
2700 		 * Make sure that if mm_users is reaching zero while
2701 		 * khugepaged runs here, khugepaged_exit will find
2702 		 * mm_slot not pointing to the exiting mm.
2703 		 */
2704 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2705 			khugepaged_scan.mm_slot = list_entry(
2706 				mm_slot->mm_node.next,
2707 				struct mm_slot, mm_node);
2708 			khugepaged_scan.address = 0;
2709 		} else {
2710 			khugepaged_scan.mm_slot = NULL;
2711 			khugepaged_full_scans++;
2712 		}
2713 
2714 		collect_mm_slot(mm_slot);
2715 	}
2716 
2717 	return progress;
2718 }
2719 
2720 static int khugepaged_has_work(void)
2721 {
2722 	return !list_empty(&khugepaged_scan.mm_head) &&
2723 		khugepaged_enabled();
2724 }
2725 
2726 static int khugepaged_wait_event(void)
2727 {
2728 	return !list_empty(&khugepaged_scan.mm_head) ||
2729 		kthread_should_stop();
2730 }
2731 
2732 static void khugepaged_do_scan(void)
2733 {
2734 	struct page *hpage = NULL;
2735 	unsigned int progress = 0, pass_through_head = 0;
2736 	unsigned int pages = khugepaged_pages_to_scan;
2737 	bool wait = true;
2738 
2739 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2740 
2741 	while (progress < pages) {
2742 		if (!khugepaged_prealloc_page(&hpage, &wait))
2743 			break;
2744 
2745 		cond_resched();
2746 
2747 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2748 			break;
2749 
2750 		spin_lock(&khugepaged_mm_lock);
2751 		if (!khugepaged_scan.mm_slot)
2752 			pass_through_head++;
2753 		if (khugepaged_has_work() &&
2754 		    pass_through_head < 2)
2755 			progress += khugepaged_scan_mm_slot(pages - progress,
2756 							    &hpage);
2757 		else
2758 			progress = pages;
2759 		spin_unlock(&khugepaged_mm_lock);
2760 	}
2761 
2762 	if (!IS_ERR_OR_NULL(hpage))
2763 		put_page(hpage);
2764 }
2765 
2766 static void khugepaged_wait_work(void)
2767 {
2768 	if (khugepaged_has_work()) {
2769 		if (!khugepaged_scan_sleep_millisecs)
2770 			return;
2771 
2772 		wait_event_freezable_timeout(khugepaged_wait,
2773 					     kthread_should_stop(),
2774 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2775 		return;
2776 	}
2777 
2778 	if (khugepaged_enabled())
2779 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2780 }
2781 
2782 static int khugepaged(void *none)
2783 {
2784 	struct mm_slot *mm_slot;
2785 
2786 	set_freezable();
2787 	set_user_nice(current, MAX_NICE);
2788 
2789 	while (!kthread_should_stop()) {
2790 		khugepaged_do_scan();
2791 		khugepaged_wait_work();
2792 	}
2793 
2794 	spin_lock(&khugepaged_mm_lock);
2795 	mm_slot = khugepaged_scan.mm_slot;
2796 	khugepaged_scan.mm_slot = NULL;
2797 	if (mm_slot)
2798 		collect_mm_slot(mm_slot);
2799 	spin_unlock(&khugepaged_mm_lock);
2800 	return 0;
2801 }
2802 
2803 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2804 		unsigned long haddr, pmd_t *pmd)
2805 {
2806 	struct mm_struct *mm = vma->vm_mm;
2807 	pgtable_t pgtable;
2808 	pmd_t _pmd;
2809 	int i;
2810 
2811 	/* leave pmd empty until pte is filled */
2812 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2813 
2814 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2815 	pmd_populate(mm, &_pmd, pgtable);
2816 
2817 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2818 		pte_t *pte, entry;
2819 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2820 		entry = pte_mkspecial(entry);
2821 		pte = pte_offset_map(&_pmd, haddr);
2822 		VM_BUG_ON(!pte_none(*pte));
2823 		set_pte_at(mm, haddr, pte, entry);
2824 		pte_unmap(pte);
2825 	}
2826 	smp_wmb(); /* make pte visible before pmd */
2827 	pmd_populate(mm, pmd, pgtable);
2828 	put_huge_zero_page();
2829 }
2830 
2831 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2832 		unsigned long haddr, bool freeze)
2833 {
2834 	struct mm_struct *mm = vma->vm_mm;
2835 	struct page *page;
2836 	pgtable_t pgtable;
2837 	pmd_t _pmd;
2838 	bool young, write, dirty;
2839 	unsigned long addr;
2840 	int i;
2841 
2842 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2843 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2844 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2845 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2846 
2847 	count_vm_event(THP_SPLIT_PMD);
2848 
2849 	if (vma_is_dax(vma)) {
2850 		pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2851 		if (is_huge_zero_pmd(_pmd))
2852 			put_huge_zero_page();
2853 		return;
2854 	} else if (is_huge_zero_pmd(*pmd)) {
2855 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2856 	}
2857 
2858 	page = pmd_page(*pmd);
2859 	VM_BUG_ON_PAGE(!page_count(page), page);
2860 	atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2861 	write = pmd_write(*pmd);
2862 	young = pmd_young(*pmd);
2863 	dirty = pmd_dirty(*pmd);
2864 
2865 	pmdp_huge_split_prepare(vma, haddr, pmd);
2866 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2867 	pmd_populate(mm, &_pmd, pgtable);
2868 
2869 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2870 		pte_t entry, *pte;
2871 		/*
2872 		 * Note that NUMA hinting access restrictions are not
2873 		 * transferred to avoid any possibility of altering
2874 		 * permissions across VMAs.
2875 		 */
2876 		if (freeze) {
2877 			swp_entry_t swp_entry;
2878 			swp_entry = make_migration_entry(page + i, write);
2879 			entry = swp_entry_to_pte(swp_entry);
2880 		} else {
2881 			entry = mk_pte(page + i, vma->vm_page_prot);
2882 			entry = maybe_mkwrite(entry, vma);
2883 			if (!write)
2884 				entry = pte_wrprotect(entry);
2885 			if (!young)
2886 				entry = pte_mkold(entry);
2887 		}
2888 		if (dirty)
2889 			SetPageDirty(page + i);
2890 		pte = pte_offset_map(&_pmd, addr);
2891 		BUG_ON(!pte_none(*pte));
2892 		set_pte_at(mm, addr, pte, entry);
2893 		atomic_inc(&page[i]._mapcount);
2894 		pte_unmap(pte);
2895 	}
2896 
2897 	/*
2898 	 * Set PG_double_map before dropping compound_mapcount to avoid
2899 	 * false-negative page_mapped().
2900 	 */
2901 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2902 		for (i = 0; i < HPAGE_PMD_NR; i++)
2903 			atomic_inc(&page[i]._mapcount);
2904 	}
2905 
2906 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2907 		/* Last compound_mapcount is gone. */
2908 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2909 		if (TestClearPageDoubleMap(page)) {
2910 			/* No need in mapcount reference anymore */
2911 			for (i = 0; i < HPAGE_PMD_NR; i++)
2912 				atomic_dec(&page[i]._mapcount);
2913 		}
2914 	}
2915 
2916 	smp_wmb(); /* make pte visible before pmd */
2917 	/*
2918 	 * Up to this point the pmd is present and huge and userland has the
2919 	 * whole access to the hugepage during the split (which happens in
2920 	 * place). If we overwrite the pmd with the not-huge version pointing
2921 	 * to the pte here (which of course we could if all CPUs were bug
2922 	 * free), userland could trigger a small page size TLB miss on the
2923 	 * small sized TLB while the hugepage TLB entry is still established in
2924 	 * the huge TLB. Some CPU doesn't like that.
2925 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2926 	 * 383 on page 93. Intel should be safe but is also warns that it's
2927 	 * only safe if the permission and cache attributes of the two entries
2928 	 * loaded in the two TLB is identical (which should be the case here).
2929 	 * But it is generally safer to never allow small and huge TLB entries
2930 	 * for the same virtual address to be loaded simultaneously. So instead
2931 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2932 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2933 	 * and pmd_trans_splitting must remain set at all times on the pmd
2934 	 * until the split is complete for this pmd), then we flush the SMP TLB
2935 	 * and finally we write the non-huge version of the pmd entry with
2936 	 * pmd_populate.
2937 	 */
2938 	pmdp_invalidate(vma, haddr, pmd);
2939 	pmd_populate(mm, pmd, pgtable);
2940 
2941 	if (freeze) {
2942 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2943 			page_remove_rmap(page + i, false);
2944 			put_page(page + i);
2945 		}
2946 	}
2947 }
2948 
2949 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2950 		unsigned long address)
2951 {
2952 	spinlock_t *ptl;
2953 	struct mm_struct *mm = vma->vm_mm;
2954 	struct page *page = NULL;
2955 	unsigned long haddr = address & HPAGE_PMD_MASK;
2956 
2957 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2958 	ptl = pmd_lock(mm, pmd);
2959 	if (pmd_trans_huge(*pmd)) {
2960 		page = pmd_page(*pmd);
2961 		if (PageMlocked(page))
2962 			get_page(page);
2963 		else
2964 			page = NULL;
2965 	} else if (!pmd_devmap(*pmd))
2966 		goto out;
2967 	__split_huge_pmd_locked(vma, pmd, haddr, false);
2968 out:
2969 	spin_unlock(ptl);
2970 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2971 	if (page) {
2972 		lock_page(page);
2973 		munlock_vma_page(page);
2974 		unlock_page(page);
2975 		put_page(page);
2976 	}
2977 }
2978 
2979 static void split_huge_pmd_address(struct vm_area_struct *vma,
2980 				    unsigned long address)
2981 {
2982 	pgd_t *pgd;
2983 	pud_t *pud;
2984 	pmd_t *pmd;
2985 
2986 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2987 
2988 	pgd = pgd_offset(vma->vm_mm, address);
2989 	if (!pgd_present(*pgd))
2990 		return;
2991 
2992 	pud = pud_offset(pgd, address);
2993 	if (!pud_present(*pud))
2994 		return;
2995 
2996 	pmd = pmd_offset(pud, address);
2997 	if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
2998 		return;
2999 	/*
3000 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3001 	 * materialize from under us.
3002 	 */
3003 	split_huge_pmd(vma, pmd, address);
3004 }
3005 
3006 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3007 			     unsigned long start,
3008 			     unsigned long end,
3009 			     long adjust_next)
3010 {
3011 	/*
3012 	 * If the new start address isn't hpage aligned and it could
3013 	 * previously contain an hugepage: check if we need to split
3014 	 * an huge pmd.
3015 	 */
3016 	if (start & ~HPAGE_PMD_MASK &&
3017 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3018 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3019 		split_huge_pmd_address(vma, start);
3020 
3021 	/*
3022 	 * If the new end address isn't hpage aligned and it could
3023 	 * previously contain an hugepage: check if we need to split
3024 	 * an huge pmd.
3025 	 */
3026 	if (end & ~HPAGE_PMD_MASK &&
3027 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3028 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3029 		split_huge_pmd_address(vma, end);
3030 
3031 	/*
3032 	 * If we're also updating the vma->vm_next->vm_start, if the new
3033 	 * vm_next->vm_start isn't page aligned and it could previously
3034 	 * contain an hugepage: check if we need to split an huge pmd.
3035 	 */
3036 	if (adjust_next > 0) {
3037 		struct vm_area_struct *next = vma->vm_next;
3038 		unsigned long nstart = next->vm_start;
3039 		nstart += adjust_next << PAGE_SHIFT;
3040 		if (nstart & ~HPAGE_PMD_MASK &&
3041 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3042 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3043 			split_huge_pmd_address(next, nstart);
3044 	}
3045 }
3046 
3047 static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3048 		unsigned long address)
3049 {
3050 	unsigned long haddr = address & HPAGE_PMD_MASK;
3051 	spinlock_t *ptl;
3052 	pgd_t *pgd;
3053 	pud_t *pud;
3054 	pmd_t *pmd;
3055 	pte_t *pte;
3056 	int i, nr = HPAGE_PMD_NR;
3057 
3058 	/* Skip pages which doesn't belong to the VMA */
3059 	if (address < vma->vm_start) {
3060 		int off = (vma->vm_start - address) >> PAGE_SHIFT;
3061 		page += off;
3062 		nr -= off;
3063 		address = vma->vm_start;
3064 	}
3065 
3066 	pgd = pgd_offset(vma->vm_mm, address);
3067 	if (!pgd_present(*pgd))
3068 		return;
3069 	pud = pud_offset(pgd, address);
3070 	if (!pud_present(*pud))
3071 		return;
3072 	pmd = pmd_offset(pud, address);
3073 	ptl = pmd_lock(vma->vm_mm, pmd);
3074 	if (!pmd_present(*pmd)) {
3075 		spin_unlock(ptl);
3076 		return;
3077 	}
3078 	if (pmd_trans_huge(*pmd)) {
3079 		if (page == pmd_page(*pmd))
3080 			__split_huge_pmd_locked(vma, pmd, haddr, true);
3081 		spin_unlock(ptl);
3082 		return;
3083 	}
3084 	spin_unlock(ptl);
3085 
3086 	pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3087 	for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3088 		pte_t entry, swp_pte;
3089 		swp_entry_t swp_entry;
3090 
3091 		/*
3092 		 * We've just crossed page table boundary: need to map next one.
3093 		 * It can happen if THP was mremaped to non PMD-aligned address.
3094 		 */
3095 		if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3096 			pte_unmap_unlock(pte - 1, ptl);
3097 			pmd = mm_find_pmd(vma->vm_mm, address);
3098 			if (!pmd)
3099 				return;
3100 			pte = pte_offset_map_lock(vma->vm_mm, pmd,
3101 					address, &ptl);
3102 		}
3103 
3104 		if (!pte_present(*pte))
3105 			continue;
3106 		if (page_to_pfn(page) != pte_pfn(*pte))
3107 			continue;
3108 		flush_cache_page(vma, address, page_to_pfn(page));
3109 		entry = ptep_clear_flush(vma, address, pte);
3110 		if (pte_dirty(entry))
3111 			SetPageDirty(page);
3112 		swp_entry = make_migration_entry(page, pte_write(entry));
3113 		swp_pte = swp_entry_to_pte(swp_entry);
3114 		if (pte_soft_dirty(entry))
3115 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
3116 		set_pte_at(vma->vm_mm, address, pte, swp_pte);
3117 		page_remove_rmap(page, false);
3118 		put_page(page);
3119 	}
3120 	pte_unmap_unlock(pte - 1, ptl);
3121 }
3122 
3123 static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3124 {
3125 	struct anon_vma_chain *avc;
3126 	pgoff_t pgoff = page_to_pgoff(page);
3127 
3128 	VM_BUG_ON_PAGE(!PageHead(page), page);
3129 
3130 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3131 			pgoff + HPAGE_PMD_NR - 1) {
3132 		unsigned long address = __vma_address(page, avc->vma);
3133 
3134 		mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3135 				address, address + HPAGE_PMD_SIZE);
3136 		freeze_page_vma(avc->vma, page, address);
3137 		mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3138 				address, address + HPAGE_PMD_SIZE);
3139 	}
3140 }
3141 
3142 static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3143 		unsigned long address)
3144 {
3145 	spinlock_t *ptl;
3146 	pmd_t *pmd;
3147 	pte_t *pte, entry;
3148 	swp_entry_t swp_entry;
3149 	unsigned long haddr = address & HPAGE_PMD_MASK;
3150 	int i, nr = HPAGE_PMD_NR;
3151 
3152 	/* Skip pages which doesn't belong to the VMA */
3153 	if (address < vma->vm_start) {
3154 		int off = (vma->vm_start - address) >> PAGE_SHIFT;
3155 		page += off;
3156 		nr -= off;
3157 		address = vma->vm_start;
3158 	}
3159 
3160 	pmd = mm_find_pmd(vma->vm_mm, address);
3161 	if (!pmd)
3162 		return;
3163 
3164 	pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3165 	for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3166 		/*
3167 		 * We've just crossed page table boundary: need to map next one.
3168 		 * It can happen if THP was mremaped to non-PMD aligned address.
3169 		 */
3170 		if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3171 			pte_unmap_unlock(pte - 1, ptl);
3172 			pmd = mm_find_pmd(vma->vm_mm, address);
3173 			if (!pmd)
3174 				return;
3175 			pte = pte_offset_map_lock(vma->vm_mm, pmd,
3176 					address, &ptl);
3177 		}
3178 
3179 		if (!is_swap_pte(*pte))
3180 			continue;
3181 
3182 		swp_entry = pte_to_swp_entry(*pte);
3183 		if (!is_migration_entry(swp_entry))
3184 			continue;
3185 		if (migration_entry_to_page(swp_entry) != page)
3186 			continue;
3187 
3188 		get_page(page);
3189 		page_add_anon_rmap(page, vma, address, false);
3190 
3191 		entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3192 		if (PageDirty(page))
3193 			entry = pte_mkdirty(entry);
3194 		if (is_write_migration_entry(swp_entry))
3195 			entry = maybe_mkwrite(entry, vma);
3196 
3197 		flush_dcache_page(page);
3198 		set_pte_at(vma->vm_mm, address, pte, entry);
3199 
3200 		/* No need to invalidate - it was non-present before */
3201 		update_mmu_cache(vma, address, pte);
3202 	}
3203 	pte_unmap_unlock(pte - 1, ptl);
3204 }
3205 
3206 static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3207 {
3208 	struct anon_vma_chain *avc;
3209 	pgoff_t pgoff = page_to_pgoff(page);
3210 
3211 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3212 			pgoff, pgoff + HPAGE_PMD_NR - 1) {
3213 		unsigned long address = __vma_address(page, avc->vma);
3214 
3215 		mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3216 				address, address + HPAGE_PMD_SIZE);
3217 		unfreeze_page_vma(avc->vma, page, address);
3218 		mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3219 				address, address + HPAGE_PMD_SIZE);
3220 	}
3221 }
3222 
3223 static void __split_huge_page_tail(struct page *head, int tail,
3224 		struct lruvec *lruvec, struct list_head *list)
3225 {
3226 	struct page *page_tail = head + tail;
3227 
3228 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3229 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3230 
3231 	/*
3232 	 * tail_page->_count is zero and not changing from under us. But
3233 	 * get_page_unless_zero() may be running from under us on the
3234 	 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3235 	 * would then run atomic_set() concurrently with
3236 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
3237 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
3238 	 * because of PPro errata 66, 92, so unless somebody can guarantee
3239 	 * atomic_set() here would be safe on all archs (and not only on x86),
3240 	 * it's safer to use atomic_inc().
3241 	 */
3242 	atomic_inc(&page_tail->_count);
3243 
3244 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3245 	page_tail->flags |= (head->flags &
3246 			((1L << PG_referenced) |
3247 			 (1L << PG_swapbacked) |
3248 			 (1L << PG_mlocked) |
3249 			 (1L << PG_uptodate) |
3250 			 (1L << PG_active) |
3251 			 (1L << PG_locked) |
3252 			 (1L << PG_unevictable) |
3253 			 (1L << PG_dirty)));
3254 
3255 	/*
3256 	 * After clearing PageTail the gup refcount can be released.
3257 	 * Page flags also must be visible before we make the page non-compound.
3258 	 */
3259 	smp_wmb();
3260 
3261 	clear_compound_head(page_tail);
3262 
3263 	if (page_is_young(head))
3264 		set_page_young(page_tail);
3265 	if (page_is_idle(head))
3266 		set_page_idle(page_tail);
3267 
3268 	/* ->mapping in first tail page is compound_mapcount */
3269 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3270 			page_tail);
3271 	page_tail->mapping = head->mapping;
3272 
3273 	page_tail->index = head->index + tail;
3274 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3275 	lru_add_page_tail(head, page_tail, lruvec, list);
3276 }
3277 
3278 static void __split_huge_page(struct page *page, struct list_head *list)
3279 {
3280 	struct page *head = compound_head(page);
3281 	struct zone *zone = page_zone(head);
3282 	struct lruvec *lruvec;
3283 	int i;
3284 
3285 	/* prevent PageLRU to go away from under us, and freeze lru stats */
3286 	spin_lock_irq(&zone->lru_lock);
3287 	lruvec = mem_cgroup_page_lruvec(head, zone);
3288 
3289 	/* complete memcg works before add pages to LRU */
3290 	mem_cgroup_split_huge_fixup(head);
3291 
3292 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3293 		__split_huge_page_tail(head, i, lruvec, list);
3294 
3295 	ClearPageCompound(head);
3296 	spin_unlock_irq(&zone->lru_lock);
3297 
3298 	unfreeze_page(page_anon_vma(head), head);
3299 
3300 	for (i = 0; i < HPAGE_PMD_NR; i++) {
3301 		struct page *subpage = head + i;
3302 		if (subpage == page)
3303 			continue;
3304 		unlock_page(subpage);
3305 
3306 		/*
3307 		 * Subpages may be freed if there wasn't any mapping
3308 		 * like if add_to_swap() is running on a lru page that
3309 		 * had its mapping zapped. And freeing these pages
3310 		 * requires taking the lru_lock so we do the put_page
3311 		 * of the tail pages after the split is complete.
3312 		 */
3313 		put_page(subpage);
3314 	}
3315 }
3316 
3317 int total_mapcount(struct page *page)
3318 {
3319 	int i, ret;
3320 
3321 	VM_BUG_ON_PAGE(PageTail(page), page);
3322 
3323 	if (likely(!PageCompound(page)))
3324 		return atomic_read(&page->_mapcount) + 1;
3325 
3326 	ret = compound_mapcount(page);
3327 	if (PageHuge(page))
3328 		return ret;
3329 	for (i = 0; i < HPAGE_PMD_NR; i++)
3330 		ret += atomic_read(&page[i]._mapcount) + 1;
3331 	if (PageDoubleMap(page))
3332 		ret -= HPAGE_PMD_NR;
3333 	return ret;
3334 }
3335 
3336 /*
3337  * This function splits huge page into normal pages. @page can point to any
3338  * subpage of huge page to split. Split doesn't change the position of @page.
3339  *
3340  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3341  * The huge page must be locked.
3342  *
3343  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3344  *
3345  * Both head page and tail pages will inherit mapping, flags, and so on from
3346  * the hugepage.
3347  *
3348  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3349  * they are not mapped.
3350  *
3351  * Returns 0 if the hugepage is split successfully.
3352  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3353  * us.
3354  */
3355 int split_huge_page_to_list(struct page *page, struct list_head *list)
3356 {
3357 	struct page *head = compound_head(page);
3358 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3359 	struct anon_vma *anon_vma;
3360 	int count, mapcount, ret;
3361 	bool mlocked;
3362 	unsigned long flags;
3363 
3364 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3365 	VM_BUG_ON_PAGE(!PageAnon(page), page);
3366 	VM_BUG_ON_PAGE(!PageLocked(page), page);
3367 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3368 	VM_BUG_ON_PAGE(!PageCompound(page), page);
3369 
3370 	/*
3371 	 * The caller does not necessarily hold an mmap_sem that would prevent
3372 	 * the anon_vma disappearing so we first we take a reference to it
3373 	 * and then lock the anon_vma for write. This is similar to
3374 	 * page_lock_anon_vma_read except the write lock is taken to serialise
3375 	 * against parallel split or collapse operations.
3376 	 */
3377 	anon_vma = page_get_anon_vma(head);
3378 	if (!anon_vma) {
3379 		ret = -EBUSY;
3380 		goto out;
3381 	}
3382 	anon_vma_lock_write(anon_vma);
3383 
3384 	/*
3385 	 * Racy check if we can split the page, before freeze_page() will
3386 	 * split PMDs
3387 	 */
3388 	if (total_mapcount(head) != page_count(head) - 1) {
3389 		ret = -EBUSY;
3390 		goto out_unlock;
3391 	}
3392 
3393 	mlocked = PageMlocked(page);
3394 	freeze_page(anon_vma, head);
3395 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
3396 
3397 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
3398 	if (mlocked)
3399 		lru_add_drain();
3400 
3401 	/* Prevent deferred_split_scan() touching ->_count */
3402 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3403 	count = page_count(head);
3404 	mapcount = total_mapcount(head);
3405 	if (!mapcount && count == 1) {
3406 		if (!list_empty(page_deferred_list(head))) {
3407 			pgdata->split_queue_len--;
3408 			list_del(page_deferred_list(head));
3409 		}
3410 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3411 		__split_huge_page(page, list);
3412 		ret = 0;
3413 	} else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3414 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3415 		pr_alert("total_mapcount: %u, page_count(): %u\n",
3416 				mapcount, count);
3417 		if (PageTail(page))
3418 			dump_page(head, NULL);
3419 		dump_page(page, "total_mapcount(head) > 0");
3420 		BUG();
3421 	} else {
3422 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3423 		unfreeze_page(anon_vma, head);
3424 		ret = -EBUSY;
3425 	}
3426 
3427 out_unlock:
3428 	anon_vma_unlock_write(anon_vma);
3429 	put_anon_vma(anon_vma);
3430 out:
3431 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3432 	return ret;
3433 }
3434 
3435 void free_transhuge_page(struct page *page)
3436 {
3437 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3438 	unsigned long flags;
3439 
3440 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3441 	if (!list_empty(page_deferred_list(page))) {
3442 		pgdata->split_queue_len--;
3443 		list_del(page_deferred_list(page));
3444 	}
3445 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3446 	free_compound_page(page);
3447 }
3448 
3449 void deferred_split_huge_page(struct page *page)
3450 {
3451 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3452 	unsigned long flags;
3453 
3454 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3455 
3456 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3457 	if (list_empty(page_deferred_list(page))) {
3458 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3459 		pgdata->split_queue_len++;
3460 	}
3461 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3462 }
3463 
3464 static unsigned long deferred_split_count(struct shrinker *shrink,
3465 		struct shrink_control *sc)
3466 {
3467 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3468 	return ACCESS_ONCE(pgdata->split_queue_len);
3469 }
3470 
3471 static unsigned long deferred_split_scan(struct shrinker *shrink,
3472 		struct shrink_control *sc)
3473 {
3474 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3475 	unsigned long flags;
3476 	LIST_HEAD(list), *pos, *next;
3477 	struct page *page;
3478 	int split = 0;
3479 
3480 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3481 	/* Take pin on all head pages to avoid freeing them under us */
3482 	list_for_each_safe(pos, next, &pgdata->split_queue) {
3483 		page = list_entry((void *)pos, struct page, mapping);
3484 		page = compound_head(page);
3485 		if (get_page_unless_zero(page)) {
3486 			list_move(page_deferred_list(page), &list);
3487 		} else {
3488 			/* We lost race with put_compound_page() */
3489 			list_del_init(page_deferred_list(page));
3490 			pgdata->split_queue_len--;
3491 		}
3492 		if (!--sc->nr_to_scan)
3493 			break;
3494 	}
3495 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3496 
3497 	list_for_each_safe(pos, next, &list) {
3498 		page = list_entry((void *)pos, struct page, mapping);
3499 		lock_page(page);
3500 		/* split_huge_page() removes page from list on success */
3501 		if (!split_huge_page(page))
3502 			split++;
3503 		unlock_page(page);
3504 		put_page(page);
3505 	}
3506 
3507 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3508 	list_splice_tail(&list, &pgdata->split_queue);
3509 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3510 
3511 	/*
3512 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3513 	 * This can happen if pages were freed under us.
3514 	 */
3515 	if (!split && list_empty(&pgdata->split_queue))
3516 		return SHRINK_STOP;
3517 	return split;
3518 }
3519 
3520 static struct shrinker deferred_split_shrinker = {
3521 	.count_objects = deferred_split_count,
3522 	.scan_objects = deferred_split_scan,
3523 	.seeks = DEFAULT_SEEKS,
3524 	.flags = SHRINKER_NUMA_AWARE,
3525 };
3526 
3527 #ifdef CONFIG_DEBUG_FS
3528 static int split_huge_pages_set(void *data, u64 val)
3529 {
3530 	struct zone *zone;
3531 	struct page *page;
3532 	unsigned long pfn, max_zone_pfn;
3533 	unsigned long total = 0, split = 0;
3534 
3535 	if (val != 1)
3536 		return -EINVAL;
3537 
3538 	for_each_populated_zone(zone) {
3539 		max_zone_pfn = zone_end_pfn(zone);
3540 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3541 			if (!pfn_valid(pfn))
3542 				continue;
3543 
3544 			page = pfn_to_page(pfn);
3545 			if (!get_page_unless_zero(page))
3546 				continue;
3547 
3548 			if (zone != page_zone(page))
3549 				goto next;
3550 
3551 			if (!PageHead(page) || !PageAnon(page) ||
3552 					PageHuge(page))
3553 				goto next;
3554 
3555 			total++;
3556 			lock_page(page);
3557 			if (!split_huge_page(page))
3558 				split++;
3559 			unlock_page(page);
3560 next:
3561 			put_page(page);
3562 		}
3563 	}
3564 
3565 	pr_info("%lu of %lu THP split", split, total);
3566 
3567 	return 0;
3568 }
3569 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3570 		"%llu\n");
3571 
3572 static int __init split_huge_pages_debugfs(void)
3573 {
3574 	void *ret;
3575 
3576 	ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3577 			&split_huge_pages_fops);
3578 	if (!ret)
3579 		pr_warn("Failed to create split_huge_pages in debugfs");
3580 	return 0;
3581 }
3582 late_initcall(split_huge_pages_debugfs);
3583 #endif
3584