1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/shmem_fs.h> 38 #include <linux/rmap.h> 39 #include <linux/delayacct.h> 40 #include <linux/psi.h> 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/filemap.h> 45 46 /* 47 * FIXME: remove all knowledge of the buffer layer from the core VM 48 */ 49 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 50 51 #include <asm/mman.h> 52 53 /* 54 * Shared mappings implemented 30.11.1994. It's not fully working yet, 55 * though. 56 * 57 * Shared mappings now work. 15.8.1995 Bruno. 58 * 59 * finished 'unifying' the page and buffer cache and SMP-threaded the 60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 61 * 62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 63 */ 64 65 /* 66 * Lock ordering: 67 * 68 * ->i_mmap_rwsem (truncate_pagecache) 69 * ->private_lock (__free_pte->__set_page_dirty_buffers) 70 * ->swap_lock (exclusive_swap_page, others) 71 * ->i_pages lock 72 * 73 * ->i_mutex 74 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 75 * 76 * ->mmap_sem 77 * ->i_mmap_rwsem 78 * ->page_table_lock or pte_lock (various, mainly in memory.c) 79 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 80 * 81 * ->mmap_sem 82 * ->lock_page (access_process_vm) 83 * 84 * ->i_mutex (generic_perform_write) 85 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 86 * 87 * bdi->wb.list_lock 88 * sb_lock (fs/fs-writeback.c) 89 * ->i_pages lock (__sync_single_inode) 90 * 91 * ->i_mmap_rwsem 92 * ->anon_vma.lock (vma_adjust) 93 * 94 * ->anon_vma.lock 95 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 96 * 97 * ->page_table_lock or pte_lock 98 * ->swap_lock (try_to_unmap_one) 99 * ->private_lock (try_to_unmap_one) 100 * ->i_pages lock (try_to_unmap_one) 101 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 102 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 103 * ->private_lock (page_remove_rmap->set_page_dirty) 104 * ->i_pages lock (page_remove_rmap->set_page_dirty) 105 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 106 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 107 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 108 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 109 * ->inode->i_lock (zap_pte_range->set_page_dirty) 110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 111 * 112 * ->i_mmap_rwsem 113 * ->tasklist_lock (memory_failure, collect_procs_ao) 114 */ 115 116 static void page_cache_delete(struct address_space *mapping, 117 struct page *page, void *shadow) 118 { 119 XA_STATE(xas, &mapping->i_pages, page->index); 120 unsigned int nr = 1; 121 122 mapping_set_update(&xas, mapping); 123 124 /* hugetlb pages are represented by a single entry in the xarray */ 125 if (!PageHuge(page)) { 126 xas_set_order(&xas, page->index, compound_order(page)); 127 nr = 1U << compound_order(page); 128 } 129 130 VM_BUG_ON_PAGE(!PageLocked(page), page); 131 VM_BUG_ON_PAGE(PageTail(page), page); 132 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 133 134 xas_store(&xas, shadow); 135 xas_init_marks(&xas); 136 137 page->mapping = NULL; 138 /* Leave page->index set: truncation lookup relies upon it */ 139 140 if (shadow) { 141 mapping->nrexceptional += nr; 142 /* 143 * Make sure the nrexceptional update is committed before 144 * the nrpages update so that final truncate racing 145 * with reclaim does not see both counters 0 at the 146 * same time and miss a shadow entry. 147 */ 148 smp_wmb(); 149 } 150 mapping->nrpages -= nr; 151 } 152 153 static void unaccount_page_cache_page(struct address_space *mapping, 154 struct page *page) 155 { 156 int nr; 157 158 /* 159 * if we're uptodate, flush out into the cleancache, otherwise 160 * invalidate any existing cleancache entries. We can't leave 161 * stale data around in the cleancache once our page is gone 162 */ 163 if (PageUptodate(page) && PageMappedToDisk(page)) 164 cleancache_put_page(page); 165 else 166 cleancache_invalidate_page(mapping, page); 167 168 VM_BUG_ON_PAGE(PageTail(page), page); 169 VM_BUG_ON_PAGE(page_mapped(page), page); 170 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 171 int mapcount; 172 173 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 174 current->comm, page_to_pfn(page)); 175 dump_page(page, "still mapped when deleted"); 176 dump_stack(); 177 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 178 179 mapcount = page_mapcount(page); 180 if (mapping_exiting(mapping) && 181 page_count(page) >= mapcount + 2) { 182 /* 183 * All vmas have already been torn down, so it's 184 * a good bet that actually the page is unmapped, 185 * and we'd prefer not to leak it: if we're wrong, 186 * some other bad page check should catch it later. 187 */ 188 page_mapcount_reset(page); 189 page_ref_sub(page, mapcount); 190 } 191 } 192 193 /* hugetlb pages do not participate in page cache accounting. */ 194 if (PageHuge(page)) 195 return; 196 197 nr = hpage_nr_pages(page); 198 199 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 200 if (PageSwapBacked(page)) { 201 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 202 if (PageTransHuge(page)) 203 __dec_node_page_state(page, NR_SHMEM_THPS); 204 } else { 205 VM_BUG_ON_PAGE(PageTransHuge(page), page); 206 } 207 208 /* 209 * At this point page must be either written or cleaned by 210 * truncate. Dirty page here signals a bug and loss of 211 * unwritten data. 212 * 213 * This fixes dirty accounting after removing the page entirely 214 * but leaves PageDirty set: it has no effect for truncated 215 * page and anyway will be cleared before returning page into 216 * buddy allocator. 217 */ 218 if (WARN_ON_ONCE(PageDirty(page))) 219 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 220 } 221 222 /* 223 * Delete a page from the page cache and free it. Caller has to make 224 * sure the page is locked and that nobody else uses it - or that usage 225 * is safe. The caller must hold the i_pages lock. 226 */ 227 void __delete_from_page_cache(struct page *page, void *shadow) 228 { 229 struct address_space *mapping = page->mapping; 230 231 trace_mm_filemap_delete_from_page_cache(page); 232 233 unaccount_page_cache_page(mapping, page); 234 page_cache_delete(mapping, page, shadow); 235 } 236 237 static void page_cache_free_page(struct address_space *mapping, 238 struct page *page) 239 { 240 void (*freepage)(struct page *); 241 242 freepage = mapping->a_ops->freepage; 243 if (freepage) 244 freepage(page); 245 246 if (PageTransHuge(page) && !PageHuge(page)) { 247 page_ref_sub(page, HPAGE_PMD_NR); 248 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 249 } else { 250 put_page(page); 251 } 252 } 253 254 /** 255 * delete_from_page_cache - delete page from page cache 256 * @page: the page which the kernel is trying to remove from page cache 257 * 258 * This must be called only on pages that have been verified to be in the page 259 * cache and locked. It will never put the page into the free list, the caller 260 * has a reference on the page. 261 */ 262 void delete_from_page_cache(struct page *page) 263 { 264 struct address_space *mapping = page_mapping(page); 265 unsigned long flags; 266 267 BUG_ON(!PageLocked(page)); 268 xa_lock_irqsave(&mapping->i_pages, flags); 269 __delete_from_page_cache(page, NULL); 270 xa_unlock_irqrestore(&mapping->i_pages, flags); 271 272 page_cache_free_page(mapping, page); 273 } 274 EXPORT_SYMBOL(delete_from_page_cache); 275 276 /* 277 * page_cache_delete_batch - delete several pages from page cache 278 * @mapping: the mapping to which pages belong 279 * @pvec: pagevec with pages to delete 280 * 281 * The function walks over mapping->i_pages and removes pages passed in @pvec 282 * from the mapping. The function expects @pvec to be sorted by page index. 283 * It tolerates holes in @pvec (mapping entries at those indices are not 284 * modified). The function expects only THP head pages to be present in the 285 * @pvec and takes care to delete all corresponding tail pages from the 286 * mapping as well. 287 * 288 * The function expects the i_pages lock to be held. 289 */ 290 static void page_cache_delete_batch(struct address_space *mapping, 291 struct pagevec *pvec) 292 { 293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 294 int total_pages = 0; 295 int i = 0, tail_pages = 0; 296 struct page *page; 297 298 mapping_set_update(&xas, mapping); 299 xas_for_each(&xas, page, ULONG_MAX) { 300 if (i >= pagevec_count(pvec) && !tail_pages) 301 break; 302 if (xa_is_value(page)) 303 continue; 304 if (!tail_pages) { 305 /* 306 * Some page got inserted in our range? Skip it. We 307 * have our pages locked so they are protected from 308 * being removed. 309 */ 310 if (page != pvec->pages[i]) { 311 VM_BUG_ON_PAGE(page->index > 312 pvec->pages[i]->index, page); 313 continue; 314 } 315 WARN_ON_ONCE(!PageLocked(page)); 316 if (PageTransHuge(page) && !PageHuge(page)) 317 tail_pages = HPAGE_PMD_NR - 1; 318 page->mapping = NULL; 319 /* 320 * Leave page->index set: truncation lookup relies 321 * upon it 322 */ 323 i++; 324 } else { 325 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages 326 != pvec->pages[i]->index, page); 327 tail_pages--; 328 } 329 xas_store(&xas, NULL); 330 total_pages++; 331 } 332 mapping->nrpages -= total_pages; 333 } 334 335 void delete_from_page_cache_batch(struct address_space *mapping, 336 struct pagevec *pvec) 337 { 338 int i; 339 unsigned long flags; 340 341 if (!pagevec_count(pvec)) 342 return; 343 344 xa_lock_irqsave(&mapping->i_pages, flags); 345 for (i = 0; i < pagevec_count(pvec); i++) { 346 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 347 348 unaccount_page_cache_page(mapping, pvec->pages[i]); 349 } 350 page_cache_delete_batch(mapping, pvec); 351 xa_unlock_irqrestore(&mapping->i_pages, flags); 352 353 for (i = 0; i < pagevec_count(pvec); i++) 354 page_cache_free_page(mapping, pvec->pages[i]); 355 } 356 357 int filemap_check_errors(struct address_space *mapping) 358 { 359 int ret = 0; 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_ENOSPC, &mapping->flags) && 362 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 363 ret = -ENOSPC; 364 if (test_bit(AS_EIO, &mapping->flags) && 365 test_and_clear_bit(AS_EIO, &mapping->flags)) 366 ret = -EIO; 367 return ret; 368 } 369 EXPORT_SYMBOL(filemap_check_errors); 370 371 static int filemap_check_and_keep_errors(struct address_space *mapping) 372 { 373 /* Check for outstanding write errors */ 374 if (test_bit(AS_EIO, &mapping->flags)) 375 return -EIO; 376 if (test_bit(AS_ENOSPC, &mapping->flags)) 377 return -ENOSPC; 378 return 0; 379 } 380 381 /** 382 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 383 * @mapping: address space structure to write 384 * @start: offset in bytes where the range starts 385 * @end: offset in bytes where the range ends (inclusive) 386 * @sync_mode: enable synchronous operation 387 * 388 * Start writeback against all of a mapping's dirty pages that lie 389 * within the byte offsets <start, end> inclusive. 390 * 391 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 392 * opposed to a regular memory cleansing writeback. The difference between 393 * these two operations is that if a dirty page/buffer is encountered, it must 394 * be waited upon, and not just skipped over. 395 * 396 * Return: %0 on success, negative error code otherwise. 397 */ 398 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 399 loff_t end, int sync_mode) 400 { 401 int ret; 402 struct writeback_control wbc = { 403 .sync_mode = sync_mode, 404 .nr_to_write = LONG_MAX, 405 .range_start = start, 406 .range_end = end, 407 }; 408 409 if (!mapping_cap_writeback_dirty(mapping)) 410 return 0; 411 412 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 413 ret = do_writepages(mapping, &wbc); 414 wbc_detach_inode(&wbc); 415 return ret; 416 } 417 418 static inline int __filemap_fdatawrite(struct address_space *mapping, 419 int sync_mode) 420 { 421 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 422 } 423 424 int filemap_fdatawrite(struct address_space *mapping) 425 { 426 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 427 } 428 EXPORT_SYMBOL(filemap_fdatawrite); 429 430 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 431 loff_t end) 432 { 433 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 434 } 435 EXPORT_SYMBOL(filemap_fdatawrite_range); 436 437 /** 438 * filemap_flush - mostly a non-blocking flush 439 * @mapping: target address_space 440 * 441 * This is a mostly non-blocking flush. Not suitable for data-integrity 442 * purposes - I/O may not be started against all dirty pages. 443 * 444 * Return: %0 on success, negative error code otherwise. 445 */ 446 int filemap_flush(struct address_space *mapping) 447 { 448 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 449 } 450 EXPORT_SYMBOL(filemap_flush); 451 452 /** 453 * filemap_range_has_page - check if a page exists in range. 454 * @mapping: address space within which to check 455 * @start_byte: offset in bytes where the range starts 456 * @end_byte: offset in bytes where the range ends (inclusive) 457 * 458 * Find at least one page in the range supplied, usually used to check if 459 * direct writing in this range will trigger a writeback. 460 * 461 * Return: %true if at least one page exists in the specified range, 462 * %false otherwise. 463 */ 464 bool filemap_range_has_page(struct address_space *mapping, 465 loff_t start_byte, loff_t end_byte) 466 { 467 struct page *page; 468 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 469 pgoff_t max = end_byte >> PAGE_SHIFT; 470 471 if (end_byte < start_byte) 472 return false; 473 474 rcu_read_lock(); 475 for (;;) { 476 page = xas_find(&xas, max); 477 if (xas_retry(&xas, page)) 478 continue; 479 /* Shadow entries don't count */ 480 if (xa_is_value(page)) 481 continue; 482 /* 483 * We don't need to try to pin this page; we're about to 484 * release the RCU lock anyway. It is enough to know that 485 * there was a page here recently. 486 */ 487 break; 488 } 489 rcu_read_unlock(); 490 491 return page != NULL; 492 } 493 EXPORT_SYMBOL(filemap_range_has_page); 494 495 static void __filemap_fdatawait_range(struct address_space *mapping, 496 loff_t start_byte, loff_t end_byte) 497 { 498 pgoff_t index = start_byte >> PAGE_SHIFT; 499 pgoff_t end = end_byte >> PAGE_SHIFT; 500 struct pagevec pvec; 501 int nr_pages; 502 503 if (end_byte < start_byte) 504 return; 505 506 pagevec_init(&pvec); 507 while (index <= end) { 508 unsigned i; 509 510 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 511 end, PAGECACHE_TAG_WRITEBACK); 512 if (!nr_pages) 513 break; 514 515 for (i = 0; i < nr_pages; i++) { 516 struct page *page = pvec.pages[i]; 517 518 wait_on_page_writeback(page); 519 ClearPageError(page); 520 } 521 pagevec_release(&pvec); 522 cond_resched(); 523 } 524 } 525 526 /** 527 * filemap_fdatawait_range - wait for writeback to complete 528 * @mapping: address space structure to wait for 529 * @start_byte: offset in bytes where the range starts 530 * @end_byte: offset in bytes where the range ends (inclusive) 531 * 532 * Walk the list of under-writeback pages of the given address space 533 * in the given range and wait for all of them. Check error status of 534 * the address space and return it. 535 * 536 * Since the error status of the address space is cleared by this function, 537 * callers are responsible for checking the return value and handling and/or 538 * reporting the error. 539 * 540 * Return: error status of the address space. 541 */ 542 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 543 loff_t end_byte) 544 { 545 __filemap_fdatawait_range(mapping, start_byte, end_byte); 546 return filemap_check_errors(mapping); 547 } 548 EXPORT_SYMBOL(filemap_fdatawait_range); 549 550 /** 551 * file_fdatawait_range - wait for writeback to complete 552 * @file: file pointing to address space structure to wait for 553 * @start_byte: offset in bytes where the range starts 554 * @end_byte: offset in bytes where the range ends (inclusive) 555 * 556 * Walk the list of under-writeback pages of the address space that file 557 * refers to, in the given range and wait for all of them. Check error 558 * status of the address space vs. the file->f_wb_err cursor and return it. 559 * 560 * Since the error status of the file is advanced by this function, 561 * callers are responsible for checking the return value and handling and/or 562 * reporting the error. 563 * 564 * Return: error status of the address space vs. the file->f_wb_err cursor. 565 */ 566 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 567 { 568 struct address_space *mapping = file->f_mapping; 569 570 __filemap_fdatawait_range(mapping, start_byte, end_byte); 571 return file_check_and_advance_wb_err(file); 572 } 573 EXPORT_SYMBOL(file_fdatawait_range); 574 575 /** 576 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 577 * @mapping: address space structure to wait for 578 * 579 * Walk the list of under-writeback pages of the given address space 580 * and wait for all of them. Unlike filemap_fdatawait(), this function 581 * does not clear error status of the address space. 582 * 583 * Use this function if callers don't handle errors themselves. Expected 584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 585 * fsfreeze(8) 586 * 587 * Return: error status of the address space. 588 */ 589 int filemap_fdatawait_keep_errors(struct address_space *mapping) 590 { 591 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 592 return filemap_check_and_keep_errors(mapping); 593 } 594 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 595 596 static bool mapping_needs_writeback(struct address_space *mapping) 597 { 598 return (!dax_mapping(mapping) && mapping->nrpages) || 599 (dax_mapping(mapping) && mapping->nrexceptional); 600 } 601 602 int filemap_write_and_wait(struct address_space *mapping) 603 { 604 int err = 0; 605 606 if (mapping_needs_writeback(mapping)) { 607 err = filemap_fdatawrite(mapping); 608 /* 609 * Even if the above returned error, the pages may be 610 * written partially (e.g. -ENOSPC), so we wait for it. 611 * But the -EIO is special case, it may indicate the worst 612 * thing (e.g. bug) happened, so we avoid waiting for it. 613 */ 614 if (err != -EIO) { 615 int err2 = filemap_fdatawait(mapping); 616 if (!err) 617 err = err2; 618 } else { 619 /* Clear any previously stored errors */ 620 filemap_check_errors(mapping); 621 } 622 } else { 623 err = filemap_check_errors(mapping); 624 } 625 return err; 626 } 627 EXPORT_SYMBOL(filemap_write_and_wait); 628 629 /** 630 * filemap_write_and_wait_range - write out & wait on a file range 631 * @mapping: the address_space for the pages 632 * @lstart: offset in bytes where the range starts 633 * @lend: offset in bytes where the range ends (inclusive) 634 * 635 * Write out and wait upon file offsets lstart->lend, inclusive. 636 * 637 * Note that @lend is inclusive (describes the last byte to be written) so 638 * that this function can be used to write to the very end-of-file (end = -1). 639 * 640 * Return: error status of the address space. 641 */ 642 int filemap_write_and_wait_range(struct address_space *mapping, 643 loff_t lstart, loff_t lend) 644 { 645 int err = 0; 646 647 if (mapping_needs_writeback(mapping)) { 648 err = __filemap_fdatawrite_range(mapping, lstart, lend, 649 WB_SYNC_ALL); 650 /* See comment of filemap_write_and_wait() */ 651 if (err != -EIO) { 652 int err2 = filemap_fdatawait_range(mapping, 653 lstart, lend); 654 if (!err) 655 err = err2; 656 } else { 657 /* Clear any previously stored errors */ 658 filemap_check_errors(mapping); 659 } 660 } else { 661 err = filemap_check_errors(mapping); 662 } 663 return err; 664 } 665 EXPORT_SYMBOL(filemap_write_and_wait_range); 666 667 void __filemap_set_wb_err(struct address_space *mapping, int err) 668 { 669 errseq_t eseq = errseq_set(&mapping->wb_err, err); 670 671 trace_filemap_set_wb_err(mapping, eseq); 672 } 673 EXPORT_SYMBOL(__filemap_set_wb_err); 674 675 /** 676 * file_check_and_advance_wb_err - report wb error (if any) that was previously 677 * and advance wb_err to current one 678 * @file: struct file on which the error is being reported 679 * 680 * When userland calls fsync (or something like nfsd does the equivalent), we 681 * want to report any writeback errors that occurred since the last fsync (or 682 * since the file was opened if there haven't been any). 683 * 684 * Grab the wb_err from the mapping. If it matches what we have in the file, 685 * then just quickly return 0. The file is all caught up. 686 * 687 * If it doesn't match, then take the mapping value, set the "seen" flag in 688 * it and try to swap it into place. If it works, or another task beat us 689 * to it with the new value, then update the f_wb_err and return the error 690 * portion. The error at this point must be reported via proper channels 691 * (a'la fsync, or NFS COMMIT operation, etc.). 692 * 693 * While we handle mapping->wb_err with atomic operations, the f_wb_err 694 * value is protected by the f_lock since we must ensure that it reflects 695 * the latest value swapped in for this file descriptor. 696 * 697 * Return: %0 on success, negative error code otherwise. 698 */ 699 int file_check_and_advance_wb_err(struct file *file) 700 { 701 int err = 0; 702 errseq_t old = READ_ONCE(file->f_wb_err); 703 struct address_space *mapping = file->f_mapping; 704 705 /* Locklessly handle the common case where nothing has changed */ 706 if (errseq_check(&mapping->wb_err, old)) { 707 /* Something changed, must use slow path */ 708 spin_lock(&file->f_lock); 709 old = file->f_wb_err; 710 err = errseq_check_and_advance(&mapping->wb_err, 711 &file->f_wb_err); 712 trace_file_check_and_advance_wb_err(file, old); 713 spin_unlock(&file->f_lock); 714 } 715 716 /* 717 * We're mostly using this function as a drop in replacement for 718 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 719 * that the legacy code would have had on these flags. 720 */ 721 clear_bit(AS_EIO, &mapping->flags); 722 clear_bit(AS_ENOSPC, &mapping->flags); 723 return err; 724 } 725 EXPORT_SYMBOL(file_check_and_advance_wb_err); 726 727 /** 728 * file_write_and_wait_range - write out & wait on a file range 729 * @file: file pointing to address_space with pages 730 * @lstart: offset in bytes where the range starts 731 * @lend: offset in bytes where the range ends (inclusive) 732 * 733 * Write out and wait upon file offsets lstart->lend, inclusive. 734 * 735 * Note that @lend is inclusive (describes the last byte to be written) so 736 * that this function can be used to write to the very end-of-file (end = -1). 737 * 738 * After writing out and waiting on the data, we check and advance the 739 * f_wb_err cursor to the latest value, and return any errors detected there. 740 * 741 * Return: %0 on success, negative error code otherwise. 742 */ 743 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 744 { 745 int err = 0, err2; 746 struct address_space *mapping = file->f_mapping; 747 748 if (mapping_needs_writeback(mapping)) { 749 err = __filemap_fdatawrite_range(mapping, lstart, lend, 750 WB_SYNC_ALL); 751 /* See comment of filemap_write_and_wait() */ 752 if (err != -EIO) 753 __filemap_fdatawait_range(mapping, lstart, lend); 754 } 755 err2 = file_check_and_advance_wb_err(file); 756 if (!err) 757 err = err2; 758 return err; 759 } 760 EXPORT_SYMBOL(file_write_and_wait_range); 761 762 /** 763 * replace_page_cache_page - replace a pagecache page with a new one 764 * @old: page to be replaced 765 * @new: page to replace with 766 * @gfp_mask: allocation mode 767 * 768 * This function replaces a page in the pagecache with a new one. On 769 * success it acquires the pagecache reference for the new page and 770 * drops it for the old page. Both the old and new pages must be 771 * locked. This function does not add the new page to the LRU, the 772 * caller must do that. 773 * 774 * The remove + add is atomic. This function cannot fail. 775 * 776 * Return: %0 777 */ 778 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 779 { 780 struct address_space *mapping = old->mapping; 781 void (*freepage)(struct page *) = mapping->a_ops->freepage; 782 pgoff_t offset = old->index; 783 XA_STATE(xas, &mapping->i_pages, offset); 784 unsigned long flags; 785 786 VM_BUG_ON_PAGE(!PageLocked(old), old); 787 VM_BUG_ON_PAGE(!PageLocked(new), new); 788 VM_BUG_ON_PAGE(new->mapping, new); 789 790 get_page(new); 791 new->mapping = mapping; 792 new->index = offset; 793 794 xas_lock_irqsave(&xas, flags); 795 xas_store(&xas, new); 796 797 old->mapping = NULL; 798 /* hugetlb pages do not participate in page cache accounting. */ 799 if (!PageHuge(old)) 800 __dec_node_page_state(new, NR_FILE_PAGES); 801 if (!PageHuge(new)) 802 __inc_node_page_state(new, NR_FILE_PAGES); 803 if (PageSwapBacked(old)) 804 __dec_node_page_state(new, NR_SHMEM); 805 if (PageSwapBacked(new)) 806 __inc_node_page_state(new, NR_SHMEM); 807 xas_unlock_irqrestore(&xas, flags); 808 mem_cgroup_migrate(old, new); 809 if (freepage) 810 freepage(old); 811 put_page(old); 812 813 return 0; 814 } 815 EXPORT_SYMBOL_GPL(replace_page_cache_page); 816 817 static int __add_to_page_cache_locked(struct page *page, 818 struct address_space *mapping, 819 pgoff_t offset, gfp_t gfp_mask, 820 void **shadowp) 821 { 822 XA_STATE(xas, &mapping->i_pages, offset); 823 int huge = PageHuge(page); 824 struct mem_cgroup *memcg; 825 int error; 826 void *old; 827 828 VM_BUG_ON_PAGE(!PageLocked(page), page); 829 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 830 mapping_set_update(&xas, mapping); 831 832 if (!huge) { 833 error = mem_cgroup_try_charge(page, current->mm, 834 gfp_mask, &memcg, false); 835 if (error) 836 return error; 837 } 838 839 get_page(page); 840 page->mapping = mapping; 841 page->index = offset; 842 843 do { 844 xas_lock_irq(&xas); 845 old = xas_load(&xas); 846 if (old && !xa_is_value(old)) 847 xas_set_err(&xas, -EEXIST); 848 xas_store(&xas, page); 849 if (xas_error(&xas)) 850 goto unlock; 851 852 if (xa_is_value(old)) { 853 mapping->nrexceptional--; 854 if (shadowp) 855 *shadowp = old; 856 } 857 mapping->nrpages++; 858 859 /* hugetlb pages do not participate in page cache accounting */ 860 if (!huge) 861 __inc_node_page_state(page, NR_FILE_PAGES); 862 unlock: 863 xas_unlock_irq(&xas); 864 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 865 866 if (xas_error(&xas)) 867 goto error; 868 869 if (!huge) 870 mem_cgroup_commit_charge(page, memcg, false, false); 871 trace_mm_filemap_add_to_page_cache(page); 872 return 0; 873 error: 874 page->mapping = NULL; 875 /* Leave page->index set: truncation relies upon it */ 876 if (!huge) 877 mem_cgroup_cancel_charge(page, memcg, false); 878 put_page(page); 879 return xas_error(&xas); 880 } 881 882 /** 883 * add_to_page_cache_locked - add a locked page to the pagecache 884 * @page: page to add 885 * @mapping: the page's address_space 886 * @offset: page index 887 * @gfp_mask: page allocation mode 888 * 889 * This function is used to add a page to the pagecache. It must be locked. 890 * This function does not add the page to the LRU. The caller must do that. 891 * 892 * Return: %0 on success, negative error code otherwise. 893 */ 894 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 895 pgoff_t offset, gfp_t gfp_mask) 896 { 897 return __add_to_page_cache_locked(page, mapping, offset, 898 gfp_mask, NULL); 899 } 900 EXPORT_SYMBOL(add_to_page_cache_locked); 901 902 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 903 pgoff_t offset, gfp_t gfp_mask) 904 { 905 void *shadow = NULL; 906 int ret; 907 908 __SetPageLocked(page); 909 ret = __add_to_page_cache_locked(page, mapping, offset, 910 gfp_mask, &shadow); 911 if (unlikely(ret)) 912 __ClearPageLocked(page); 913 else { 914 /* 915 * The page might have been evicted from cache only 916 * recently, in which case it should be activated like 917 * any other repeatedly accessed page. 918 * The exception is pages getting rewritten; evicting other 919 * data from the working set, only to cache data that will 920 * get overwritten with something else, is a waste of memory. 921 */ 922 WARN_ON_ONCE(PageActive(page)); 923 if (!(gfp_mask & __GFP_WRITE) && shadow) 924 workingset_refault(page, shadow); 925 lru_cache_add(page); 926 } 927 return ret; 928 } 929 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 930 931 #ifdef CONFIG_NUMA 932 struct page *__page_cache_alloc(gfp_t gfp) 933 { 934 int n; 935 struct page *page; 936 937 if (cpuset_do_page_mem_spread()) { 938 unsigned int cpuset_mems_cookie; 939 do { 940 cpuset_mems_cookie = read_mems_allowed_begin(); 941 n = cpuset_mem_spread_node(); 942 page = __alloc_pages_node(n, gfp, 0); 943 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 944 945 return page; 946 } 947 return alloc_pages(gfp, 0); 948 } 949 EXPORT_SYMBOL(__page_cache_alloc); 950 #endif 951 952 /* 953 * In order to wait for pages to become available there must be 954 * waitqueues associated with pages. By using a hash table of 955 * waitqueues where the bucket discipline is to maintain all 956 * waiters on the same queue and wake all when any of the pages 957 * become available, and for the woken contexts to check to be 958 * sure the appropriate page became available, this saves space 959 * at a cost of "thundering herd" phenomena during rare hash 960 * collisions. 961 */ 962 #define PAGE_WAIT_TABLE_BITS 8 963 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 964 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 965 966 static wait_queue_head_t *page_waitqueue(struct page *page) 967 { 968 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 969 } 970 971 void __init pagecache_init(void) 972 { 973 int i; 974 975 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 976 init_waitqueue_head(&page_wait_table[i]); 977 978 page_writeback_init(); 979 } 980 981 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 982 struct wait_page_key { 983 struct page *page; 984 int bit_nr; 985 int page_match; 986 }; 987 988 struct wait_page_queue { 989 struct page *page; 990 int bit_nr; 991 wait_queue_entry_t wait; 992 }; 993 994 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 995 { 996 struct wait_page_key *key = arg; 997 struct wait_page_queue *wait_page 998 = container_of(wait, struct wait_page_queue, wait); 999 1000 if (wait_page->page != key->page) 1001 return 0; 1002 key->page_match = 1; 1003 1004 if (wait_page->bit_nr != key->bit_nr) 1005 return 0; 1006 1007 /* 1008 * Stop walking if it's locked. 1009 * Is this safe if put_and_wait_on_page_locked() is in use? 1010 * Yes: the waker must hold a reference to this page, and if PG_locked 1011 * has now already been set by another task, that task must also hold 1012 * a reference to the *same usage* of this page; so there is no need 1013 * to walk on to wake even the put_and_wait_on_page_locked() callers. 1014 */ 1015 if (test_bit(key->bit_nr, &key->page->flags)) 1016 return -1; 1017 1018 return autoremove_wake_function(wait, mode, sync, key); 1019 } 1020 1021 static void wake_up_page_bit(struct page *page, int bit_nr) 1022 { 1023 wait_queue_head_t *q = page_waitqueue(page); 1024 struct wait_page_key key; 1025 unsigned long flags; 1026 wait_queue_entry_t bookmark; 1027 1028 key.page = page; 1029 key.bit_nr = bit_nr; 1030 key.page_match = 0; 1031 1032 bookmark.flags = 0; 1033 bookmark.private = NULL; 1034 bookmark.func = NULL; 1035 INIT_LIST_HEAD(&bookmark.entry); 1036 1037 spin_lock_irqsave(&q->lock, flags); 1038 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1039 1040 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1041 /* 1042 * Take a breather from holding the lock, 1043 * allow pages that finish wake up asynchronously 1044 * to acquire the lock and remove themselves 1045 * from wait queue 1046 */ 1047 spin_unlock_irqrestore(&q->lock, flags); 1048 cpu_relax(); 1049 spin_lock_irqsave(&q->lock, flags); 1050 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1051 } 1052 1053 /* 1054 * It is possible for other pages to have collided on the waitqueue 1055 * hash, so in that case check for a page match. That prevents a long- 1056 * term waiter 1057 * 1058 * It is still possible to miss a case here, when we woke page waiters 1059 * and removed them from the waitqueue, but there are still other 1060 * page waiters. 1061 */ 1062 if (!waitqueue_active(q) || !key.page_match) { 1063 ClearPageWaiters(page); 1064 /* 1065 * It's possible to miss clearing Waiters here, when we woke 1066 * our page waiters, but the hashed waitqueue has waiters for 1067 * other pages on it. 1068 * 1069 * That's okay, it's a rare case. The next waker will clear it. 1070 */ 1071 } 1072 spin_unlock_irqrestore(&q->lock, flags); 1073 } 1074 1075 static void wake_up_page(struct page *page, int bit) 1076 { 1077 if (!PageWaiters(page)) 1078 return; 1079 wake_up_page_bit(page, bit); 1080 } 1081 1082 /* 1083 * A choice of three behaviors for wait_on_page_bit_common(): 1084 */ 1085 enum behavior { 1086 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1087 * __lock_page() waiting on then setting PG_locked. 1088 */ 1089 SHARED, /* Hold ref to page and check the bit when woken, like 1090 * wait_on_page_writeback() waiting on PG_writeback. 1091 */ 1092 DROP, /* Drop ref to page before wait, no check when woken, 1093 * like put_and_wait_on_page_locked() on PG_locked. 1094 */ 1095 }; 1096 1097 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1098 struct page *page, int bit_nr, int state, enum behavior behavior) 1099 { 1100 struct wait_page_queue wait_page; 1101 wait_queue_entry_t *wait = &wait_page.wait; 1102 bool bit_is_set; 1103 bool thrashing = false; 1104 bool delayacct = false; 1105 unsigned long pflags; 1106 int ret = 0; 1107 1108 if (bit_nr == PG_locked && 1109 !PageUptodate(page) && PageWorkingset(page)) { 1110 if (!PageSwapBacked(page)) { 1111 delayacct_thrashing_start(); 1112 delayacct = true; 1113 } 1114 psi_memstall_enter(&pflags); 1115 thrashing = true; 1116 } 1117 1118 init_wait(wait); 1119 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1120 wait->func = wake_page_function; 1121 wait_page.page = page; 1122 wait_page.bit_nr = bit_nr; 1123 1124 for (;;) { 1125 spin_lock_irq(&q->lock); 1126 1127 if (likely(list_empty(&wait->entry))) { 1128 __add_wait_queue_entry_tail(q, wait); 1129 SetPageWaiters(page); 1130 } 1131 1132 set_current_state(state); 1133 1134 spin_unlock_irq(&q->lock); 1135 1136 bit_is_set = test_bit(bit_nr, &page->flags); 1137 if (behavior == DROP) 1138 put_page(page); 1139 1140 if (likely(bit_is_set)) 1141 io_schedule(); 1142 1143 if (behavior == EXCLUSIVE) { 1144 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1145 break; 1146 } else if (behavior == SHARED) { 1147 if (!test_bit(bit_nr, &page->flags)) 1148 break; 1149 } 1150 1151 if (signal_pending_state(state, current)) { 1152 ret = -EINTR; 1153 break; 1154 } 1155 1156 if (behavior == DROP) { 1157 /* 1158 * We can no longer safely access page->flags: 1159 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, 1160 * there is a risk of waiting forever on a page reused 1161 * for something that keeps it locked indefinitely. 1162 * But best check for -EINTR above before breaking. 1163 */ 1164 break; 1165 } 1166 } 1167 1168 finish_wait(q, wait); 1169 1170 if (thrashing) { 1171 if (delayacct) 1172 delayacct_thrashing_end(); 1173 psi_memstall_leave(&pflags); 1174 } 1175 1176 /* 1177 * A signal could leave PageWaiters set. Clearing it here if 1178 * !waitqueue_active would be possible (by open-coding finish_wait), 1179 * but still fail to catch it in the case of wait hash collision. We 1180 * already can fail to clear wait hash collision cases, so don't 1181 * bother with signals either. 1182 */ 1183 1184 return ret; 1185 } 1186 1187 void wait_on_page_bit(struct page *page, int bit_nr) 1188 { 1189 wait_queue_head_t *q = page_waitqueue(page); 1190 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1191 } 1192 EXPORT_SYMBOL(wait_on_page_bit); 1193 1194 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1195 { 1196 wait_queue_head_t *q = page_waitqueue(page); 1197 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1198 } 1199 EXPORT_SYMBOL(wait_on_page_bit_killable); 1200 1201 /** 1202 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1203 * @page: The page to wait for. 1204 * 1205 * The caller should hold a reference on @page. They expect the page to 1206 * become unlocked relatively soon, but do not wish to hold up migration 1207 * (for example) by holding the reference while waiting for the page to 1208 * come unlocked. After this function returns, the caller should not 1209 * dereference @page. 1210 */ 1211 void put_and_wait_on_page_locked(struct page *page) 1212 { 1213 wait_queue_head_t *q; 1214 1215 page = compound_head(page); 1216 q = page_waitqueue(page); 1217 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1218 } 1219 1220 /** 1221 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1222 * @page: Page defining the wait queue of interest 1223 * @waiter: Waiter to add to the queue 1224 * 1225 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1226 */ 1227 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1228 { 1229 wait_queue_head_t *q = page_waitqueue(page); 1230 unsigned long flags; 1231 1232 spin_lock_irqsave(&q->lock, flags); 1233 __add_wait_queue_entry_tail(q, waiter); 1234 SetPageWaiters(page); 1235 spin_unlock_irqrestore(&q->lock, flags); 1236 } 1237 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1238 1239 #ifndef clear_bit_unlock_is_negative_byte 1240 1241 /* 1242 * PG_waiters is the high bit in the same byte as PG_lock. 1243 * 1244 * On x86 (and on many other architectures), we can clear PG_lock and 1245 * test the sign bit at the same time. But if the architecture does 1246 * not support that special operation, we just do this all by hand 1247 * instead. 1248 * 1249 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1250 * being cleared, but a memory barrier should be unneccssary since it is 1251 * in the same byte as PG_locked. 1252 */ 1253 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1254 { 1255 clear_bit_unlock(nr, mem); 1256 /* smp_mb__after_atomic(); */ 1257 return test_bit(PG_waiters, mem); 1258 } 1259 1260 #endif 1261 1262 /** 1263 * unlock_page - unlock a locked page 1264 * @page: the page 1265 * 1266 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1267 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1268 * mechanism between PageLocked pages and PageWriteback pages is shared. 1269 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1270 * 1271 * Note that this depends on PG_waiters being the sign bit in the byte 1272 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1273 * clear the PG_locked bit and test PG_waiters at the same time fairly 1274 * portably (architectures that do LL/SC can test any bit, while x86 can 1275 * test the sign bit). 1276 */ 1277 void unlock_page(struct page *page) 1278 { 1279 BUILD_BUG_ON(PG_waiters != 7); 1280 page = compound_head(page); 1281 VM_BUG_ON_PAGE(!PageLocked(page), page); 1282 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1283 wake_up_page_bit(page, PG_locked); 1284 } 1285 EXPORT_SYMBOL(unlock_page); 1286 1287 /** 1288 * end_page_writeback - end writeback against a page 1289 * @page: the page 1290 */ 1291 void end_page_writeback(struct page *page) 1292 { 1293 /* 1294 * TestClearPageReclaim could be used here but it is an atomic 1295 * operation and overkill in this particular case. Failing to 1296 * shuffle a page marked for immediate reclaim is too mild to 1297 * justify taking an atomic operation penalty at the end of 1298 * ever page writeback. 1299 */ 1300 if (PageReclaim(page)) { 1301 ClearPageReclaim(page); 1302 rotate_reclaimable_page(page); 1303 } 1304 1305 if (!test_clear_page_writeback(page)) 1306 BUG(); 1307 1308 smp_mb__after_atomic(); 1309 wake_up_page(page, PG_writeback); 1310 } 1311 EXPORT_SYMBOL(end_page_writeback); 1312 1313 /* 1314 * After completing I/O on a page, call this routine to update the page 1315 * flags appropriately 1316 */ 1317 void page_endio(struct page *page, bool is_write, int err) 1318 { 1319 if (!is_write) { 1320 if (!err) { 1321 SetPageUptodate(page); 1322 } else { 1323 ClearPageUptodate(page); 1324 SetPageError(page); 1325 } 1326 unlock_page(page); 1327 } else { 1328 if (err) { 1329 struct address_space *mapping; 1330 1331 SetPageError(page); 1332 mapping = page_mapping(page); 1333 if (mapping) 1334 mapping_set_error(mapping, err); 1335 } 1336 end_page_writeback(page); 1337 } 1338 } 1339 EXPORT_SYMBOL_GPL(page_endio); 1340 1341 /** 1342 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1343 * @__page: the page to lock 1344 */ 1345 void __lock_page(struct page *__page) 1346 { 1347 struct page *page = compound_head(__page); 1348 wait_queue_head_t *q = page_waitqueue(page); 1349 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1350 EXCLUSIVE); 1351 } 1352 EXPORT_SYMBOL(__lock_page); 1353 1354 int __lock_page_killable(struct page *__page) 1355 { 1356 struct page *page = compound_head(__page); 1357 wait_queue_head_t *q = page_waitqueue(page); 1358 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1359 EXCLUSIVE); 1360 } 1361 EXPORT_SYMBOL_GPL(__lock_page_killable); 1362 1363 /* 1364 * Return values: 1365 * 1 - page is locked; mmap_sem is still held. 1366 * 0 - page is not locked. 1367 * mmap_sem has been released (up_read()), unless flags had both 1368 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1369 * which case mmap_sem is still held. 1370 * 1371 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1372 * with the page locked and the mmap_sem unperturbed. 1373 */ 1374 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1375 unsigned int flags) 1376 { 1377 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1378 /* 1379 * CAUTION! In this case, mmap_sem is not released 1380 * even though return 0. 1381 */ 1382 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1383 return 0; 1384 1385 up_read(&mm->mmap_sem); 1386 if (flags & FAULT_FLAG_KILLABLE) 1387 wait_on_page_locked_killable(page); 1388 else 1389 wait_on_page_locked(page); 1390 return 0; 1391 } else { 1392 if (flags & FAULT_FLAG_KILLABLE) { 1393 int ret; 1394 1395 ret = __lock_page_killable(page); 1396 if (ret) { 1397 up_read(&mm->mmap_sem); 1398 return 0; 1399 } 1400 } else 1401 __lock_page(page); 1402 return 1; 1403 } 1404 } 1405 1406 /** 1407 * page_cache_next_miss() - Find the next gap in the page cache. 1408 * @mapping: Mapping. 1409 * @index: Index. 1410 * @max_scan: Maximum range to search. 1411 * 1412 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1413 * gap with the lowest index. 1414 * 1415 * This function may be called under the rcu_read_lock. However, this will 1416 * not atomically search a snapshot of the cache at a single point in time. 1417 * For example, if a gap is created at index 5, then subsequently a gap is 1418 * created at index 10, page_cache_next_miss covering both indices may 1419 * return 10 if called under the rcu_read_lock. 1420 * 1421 * Return: The index of the gap if found, otherwise an index outside the 1422 * range specified (in which case 'return - index >= max_scan' will be true). 1423 * In the rare case of index wrap-around, 0 will be returned. 1424 */ 1425 pgoff_t page_cache_next_miss(struct address_space *mapping, 1426 pgoff_t index, unsigned long max_scan) 1427 { 1428 XA_STATE(xas, &mapping->i_pages, index); 1429 1430 while (max_scan--) { 1431 void *entry = xas_next(&xas); 1432 if (!entry || xa_is_value(entry)) 1433 break; 1434 if (xas.xa_index == 0) 1435 break; 1436 } 1437 1438 return xas.xa_index; 1439 } 1440 EXPORT_SYMBOL(page_cache_next_miss); 1441 1442 /** 1443 * page_cache_prev_miss() - Find the next gap in the page cache. 1444 * @mapping: Mapping. 1445 * @index: Index. 1446 * @max_scan: Maximum range to search. 1447 * 1448 * Search the range [max(index - max_scan + 1, 0), index] for the 1449 * gap with the highest index. 1450 * 1451 * This function may be called under the rcu_read_lock. However, this will 1452 * not atomically search a snapshot of the cache at a single point in time. 1453 * For example, if a gap is created at index 10, then subsequently a gap is 1454 * created at index 5, page_cache_prev_miss() covering both indices may 1455 * return 5 if called under the rcu_read_lock. 1456 * 1457 * Return: The index of the gap if found, otherwise an index outside the 1458 * range specified (in which case 'index - return >= max_scan' will be true). 1459 * In the rare case of wrap-around, ULONG_MAX will be returned. 1460 */ 1461 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1462 pgoff_t index, unsigned long max_scan) 1463 { 1464 XA_STATE(xas, &mapping->i_pages, index); 1465 1466 while (max_scan--) { 1467 void *entry = xas_prev(&xas); 1468 if (!entry || xa_is_value(entry)) 1469 break; 1470 if (xas.xa_index == ULONG_MAX) 1471 break; 1472 } 1473 1474 return xas.xa_index; 1475 } 1476 EXPORT_SYMBOL(page_cache_prev_miss); 1477 1478 /** 1479 * find_get_entry - find and get a page cache entry 1480 * @mapping: the address_space to search 1481 * @offset: the page cache index 1482 * 1483 * Looks up the page cache slot at @mapping & @offset. If there is a 1484 * page cache page, it is returned with an increased refcount. 1485 * 1486 * If the slot holds a shadow entry of a previously evicted page, or a 1487 * swap entry from shmem/tmpfs, it is returned. 1488 * 1489 * Return: the found page or shadow entry, %NULL if nothing is found. 1490 */ 1491 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1492 { 1493 XA_STATE(xas, &mapping->i_pages, offset); 1494 struct page *head, *page; 1495 1496 rcu_read_lock(); 1497 repeat: 1498 xas_reset(&xas); 1499 page = xas_load(&xas); 1500 if (xas_retry(&xas, page)) 1501 goto repeat; 1502 /* 1503 * A shadow entry of a recently evicted page, or a swap entry from 1504 * shmem/tmpfs. Return it without attempting to raise page count. 1505 */ 1506 if (!page || xa_is_value(page)) 1507 goto out; 1508 1509 head = compound_head(page); 1510 if (!page_cache_get_speculative(head)) 1511 goto repeat; 1512 1513 /* The page was split under us? */ 1514 if (compound_head(page) != head) { 1515 put_page(head); 1516 goto repeat; 1517 } 1518 1519 /* 1520 * Has the page moved? 1521 * This is part of the lockless pagecache protocol. See 1522 * include/linux/pagemap.h for details. 1523 */ 1524 if (unlikely(page != xas_reload(&xas))) { 1525 put_page(head); 1526 goto repeat; 1527 } 1528 out: 1529 rcu_read_unlock(); 1530 1531 return page; 1532 } 1533 EXPORT_SYMBOL(find_get_entry); 1534 1535 /** 1536 * find_lock_entry - locate, pin and lock a page cache entry 1537 * @mapping: the address_space to search 1538 * @offset: the page cache index 1539 * 1540 * Looks up the page cache slot at @mapping & @offset. If there is a 1541 * page cache page, it is returned locked and with an increased 1542 * refcount. 1543 * 1544 * If the slot holds a shadow entry of a previously evicted page, or a 1545 * swap entry from shmem/tmpfs, it is returned. 1546 * 1547 * find_lock_entry() may sleep. 1548 * 1549 * Return: the found page or shadow entry, %NULL if nothing is found. 1550 */ 1551 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1552 { 1553 struct page *page; 1554 1555 repeat: 1556 page = find_get_entry(mapping, offset); 1557 if (page && !xa_is_value(page)) { 1558 lock_page(page); 1559 /* Has the page been truncated? */ 1560 if (unlikely(page_mapping(page) != mapping)) { 1561 unlock_page(page); 1562 put_page(page); 1563 goto repeat; 1564 } 1565 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1566 } 1567 return page; 1568 } 1569 EXPORT_SYMBOL(find_lock_entry); 1570 1571 /** 1572 * pagecache_get_page - find and get a page reference 1573 * @mapping: the address_space to search 1574 * @offset: the page index 1575 * @fgp_flags: PCG flags 1576 * @gfp_mask: gfp mask to use for the page cache data page allocation 1577 * 1578 * Looks up the page cache slot at @mapping & @offset. 1579 * 1580 * PCG flags modify how the page is returned. 1581 * 1582 * @fgp_flags can be: 1583 * 1584 * - FGP_ACCESSED: the page will be marked accessed 1585 * - FGP_LOCK: Page is return locked 1586 * - FGP_CREAT: If page is not present then a new page is allocated using 1587 * @gfp_mask and added to the page cache and the VM's LRU 1588 * list. The page is returned locked and with an increased 1589 * refcount. 1590 * 1591 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1592 * if the GFP flags specified for FGP_CREAT are atomic. 1593 * 1594 * If there is a page cache page, it is returned with an increased refcount. 1595 * 1596 * Return: the found page or %NULL otherwise. 1597 */ 1598 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1599 int fgp_flags, gfp_t gfp_mask) 1600 { 1601 struct page *page; 1602 1603 repeat: 1604 page = find_get_entry(mapping, offset); 1605 if (xa_is_value(page)) 1606 page = NULL; 1607 if (!page) 1608 goto no_page; 1609 1610 if (fgp_flags & FGP_LOCK) { 1611 if (fgp_flags & FGP_NOWAIT) { 1612 if (!trylock_page(page)) { 1613 put_page(page); 1614 return NULL; 1615 } 1616 } else { 1617 lock_page(page); 1618 } 1619 1620 /* Has the page been truncated? */ 1621 if (unlikely(page->mapping != mapping)) { 1622 unlock_page(page); 1623 put_page(page); 1624 goto repeat; 1625 } 1626 VM_BUG_ON_PAGE(page->index != offset, page); 1627 } 1628 1629 if (fgp_flags & FGP_ACCESSED) 1630 mark_page_accessed(page); 1631 1632 no_page: 1633 if (!page && (fgp_flags & FGP_CREAT)) { 1634 int err; 1635 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1636 gfp_mask |= __GFP_WRITE; 1637 if (fgp_flags & FGP_NOFS) 1638 gfp_mask &= ~__GFP_FS; 1639 1640 page = __page_cache_alloc(gfp_mask); 1641 if (!page) 1642 return NULL; 1643 1644 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1645 fgp_flags |= FGP_LOCK; 1646 1647 /* Init accessed so avoid atomic mark_page_accessed later */ 1648 if (fgp_flags & FGP_ACCESSED) 1649 __SetPageReferenced(page); 1650 1651 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1652 if (unlikely(err)) { 1653 put_page(page); 1654 page = NULL; 1655 if (err == -EEXIST) 1656 goto repeat; 1657 } 1658 } 1659 1660 return page; 1661 } 1662 EXPORT_SYMBOL(pagecache_get_page); 1663 1664 /** 1665 * find_get_entries - gang pagecache lookup 1666 * @mapping: The address_space to search 1667 * @start: The starting page cache index 1668 * @nr_entries: The maximum number of entries 1669 * @entries: Where the resulting entries are placed 1670 * @indices: The cache indices corresponding to the entries in @entries 1671 * 1672 * find_get_entries() will search for and return a group of up to 1673 * @nr_entries entries in the mapping. The entries are placed at 1674 * @entries. find_get_entries() takes a reference against any actual 1675 * pages it returns. 1676 * 1677 * The search returns a group of mapping-contiguous page cache entries 1678 * with ascending indexes. There may be holes in the indices due to 1679 * not-present pages. 1680 * 1681 * Any shadow entries of evicted pages, or swap entries from 1682 * shmem/tmpfs, are included in the returned array. 1683 * 1684 * Return: the number of pages and shadow entries which were found. 1685 */ 1686 unsigned find_get_entries(struct address_space *mapping, 1687 pgoff_t start, unsigned int nr_entries, 1688 struct page **entries, pgoff_t *indices) 1689 { 1690 XA_STATE(xas, &mapping->i_pages, start); 1691 struct page *page; 1692 unsigned int ret = 0; 1693 1694 if (!nr_entries) 1695 return 0; 1696 1697 rcu_read_lock(); 1698 xas_for_each(&xas, page, ULONG_MAX) { 1699 struct page *head; 1700 if (xas_retry(&xas, page)) 1701 continue; 1702 /* 1703 * A shadow entry of a recently evicted page, a swap 1704 * entry from shmem/tmpfs or a DAX entry. Return it 1705 * without attempting to raise page count. 1706 */ 1707 if (xa_is_value(page)) 1708 goto export; 1709 1710 head = compound_head(page); 1711 if (!page_cache_get_speculative(head)) 1712 goto retry; 1713 1714 /* The page was split under us? */ 1715 if (compound_head(page) != head) 1716 goto put_page; 1717 1718 /* Has the page moved? */ 1719 if (unlikely(page != xas_reload(&xas))) 1720 goto put_page; 1721 1722 export: 1723 indices[ret] = xas.xa_index; 1724 entries[ret] = page; 1725 if (++ret == nr_entries) 1726 break; 1727 continue; 1728 put_page: 1729 put_page(head); 1730 retry: 1731 xas_reset(&xas); 1732 } 1733 rcu_read_unlock(); 1734 return ret; 1735 } 1736 1737 /** 1738 * find_get_pages_range - gang pagecache lookup 1739 * @mapping: The address_space to search 1740 * @start: The starting page index 1741 * @end: The final page index (inclusive) 1742 * @nr_pages: The maximum number of pages 1743 * @pages: Where the resulting pages are placed 1744 * 1745 * find_get_pages_range() will search for and return a group of up to @nr_pages 1746 * pages in the mapping starting at index @start and up to index @end 1747 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1748 * a reference against the returned pages. 1749 * 1750 * The search returns a group of mapping-contiguous pages with ascending 1751 * indexes. There may be holes in the indices due to not-present pages. 1752 * We also update @start to index the next page for the traversal. 1753 * 1754 * Return: the number of pages which were found. If this number is 1755 * smaller than @nr_pages, the end of specified range has been 1756 * reached. 1757 */ 1758 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1759 pgoff_t end, unsigned int nr_pages, 1760 struct page **pages) 1761 { 1762 XA_STATE(xas, &mapping->i_pages, *start); 1763 struct page *page; 1764 unsigned ret = 0; 1765 1766 if (unlikely(!nr_pages)) 1767 return 0; 1768 1769 rcu_read_lock(); 1770 xas_for_each(&xas, page, end) { 1771 struct page *head; 1772 if (xas_retry(&xas, page)) 1773 continue; 1774 /* Skip over shadow, swap and DAX entries */ 1775 if (xa_is_value(page)) 1776 continue; 1777 1778 head = compound_head(page); 1779 if (!page_cache_get_speculative(head)) 1780 goto retry; 1781 1782 /* The page was split under us? */ 1783 if (compound_head(page) != head) 1784 goto put_page; 1785 1786 /* Has the page moved? */ 1787 if (unlikely(page != xas_reload(&xas))) 1788 goto put_page; 1789 1790 pages[ret] = page; 1791 if (++ret == nr_pages) { 1792 *start = xas.xa_index + 1; 1793 goto out; 1794 } 1795 continue; 1796 put_page: 1797 put_page(head); 1798 retry: 1799 xas_reset(&xas); 1800 } 1801 1802 /* 1803 * We come here when there is no page beyond @end. We take care to not 1804 * overflow the index @start as it confuses some of the callers. This 1805 * breaks the iteration when there is a page at index -1 but that is 1806 * already broken anyway. 1807 */ 1808 if (end == (pgoff_t)-1) 1809 *start = (pgoff_t)-1; 1810 else 1811 *start = end + 1; 1812 out: 1813 rcu_read_unlock(); 1814 1815 return ret; 1816 } 1817 1818 /** 1819 * find_get_pages_contig - gang contiguous pagecache lookup 1820 * @mapping: The address_space to search 1821 * @index: The starting page index 1822 * @nr_pages: The maximum number of pages 1823 * @pages: Where the resulting pages are placed 1824 * 1825 * find_get_pages_contig() works exactly like find_get_pages(), except 1826 * that the returned number of pages are guaranteed to be contiguous. 1827 * 1828 * Return: the number of pages which were found. 1829 */ 1830 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1831 unsigned int nr_pages, struct page **pages) 1832 { 1833 XA_STATE(xas, &mapping->i_pages, index); 1834 struct page *page; 1835 unsigned int ret = 0; 1836 1837 if (unlikely(!nr_pages)) 1838 return 0; 1839 1840 rcu_read_lock(); 1841 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1842 struct page *head; 1843 if (xas_retry(&xas, page)) 1844 continue; 1845 /* 1846 * If the entry has been swapped out, we can stop looking. 1847 * No current caller is looking for DAX entries. 1848 */ 1849 if (xa_is_value(page)) 1850 break; 1851 1852 head = compound_head(page); 1853 if (!page_cache_get_speculative(head)) 1854 goto retry; 1855 1856 /* The page was split under us? */ 1857 if (compound_head(page) != head) 1858 goto put_page; 1859 1860 /* Has the page moved? */ 1861 if (unlikely(page != xas_reload(&xas))) 1862 goto put_page; 1863 1864 pages[ret] = page; 1865 if (++ret == nr_pages) 1866 break; 1867 continue; 1868 put_page: 1869 put_page(head); 1870 retry: 1871 xas_reset(&xas); 1872 } 1873 rcu_read_unlock(); 1874 return ret; 1875 } 1876 EXPORT_SYMBOL(find_get_pages_contig); 1877 1878 /** 1879 * find_get_pages_range_tag - find and return pages in given range matching @tag 1880 * @mapping: the address_space to search 1881 * @index: the starting page index 1882 * @end: The final page index (inclusive) 1883 * @tag: the tag index 1884 * @nr_pages: the maximum number of pages 1885 * @pages: where the resulting pages are placed 1886 * 1887 * Like find_get_pages, except we only return pages which are tagged with 1888 * @tag. We update @index to index the next page for the traversal. 1889 * 1890 * Return: the number of pages which were found. 1891 */ 1892 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1893 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1894 struct page **pages) 1895 { 1896 XA_STATE(xas, &mapping->i_pages, *index); 1897 struct page *page; 1898 unsigned ret = 0; 1899 1900 if (unlikely(!nr_pages)) 1901 return 0; 1902 1903 rcu_read_lock(); 1904 xas_for_each_marked(&xas, page, end, tag) { 1905 struct page *head; 1906 if (xas_retry(&xas, page)) 1907 continue; 1908 /* 1909 * Shadow entries should never be tagged, but this iteration 1910 * is lockless so there is a window for page reclaim to evict 1911 * a page we saw tagged. Skip over it. 1912 */ 1913 if (xa_is_value(page)) 1914 continue; 1915 1916 head = compound_head(page); 1917 if (!page_cache_get_speculative(head)) 1918 goto retry; 1919 1920 /* The page was split under us? */ 1921 if (compound_head(page) != head) 1922 goto put_page; 1923 1924 /* Has the page moved? */ 1925 if (unlikely(page != xas_reload(&xas))) 1926 goto put_page; 1927 1928 pages[ret] = page; 1929 if (++ret == nr_pages) { 1930 *index = xas.xa_index + 1; 1931 goto out; 1932 } 1933 continue; 1934 put_page: 1935 put_page(head); 1936 retry: 1937 xas_reset(&xas); 1938 } 1939 1940 /* 1941 * We come here when we got to @end. We take care to not overflow the 1942 * index @index as it confuses some of the callers. This breaks the 1943 * iteration when there is a page at index -1 but that is already 1944 * broken anyway. 1945 */ 1946 if (end == (pgoff_t)-1) 1947 *index = (pgoff_t)-1; 1948 else 1949 *index = end + 1; 1950 out: 1951 rcu_read_unlock(); 1952 1953 return ret; 1954 } 1955 EXPORT_SYMBOL(find_get_pages_range_tag); 1956 1957 /** 1958 * find_get_entries_tag - find and return entries that match @tag 1959 * @mapping: the address_space to search 1960 * @start: the starting page cache index 1961 * @tag: the tag index 1962 * @nr_entries: the maximum number of entries 1963 * @entries: where the resulting entries are placed 1964 * @indices: the cache indices corresponding to the entries in @entries 1965 * 1966 * Like find_get_entries, except we only return entries which are tagged with 1967 * @tag. 1968 * 1969 * Return: the number of entries which were found. 1970 */ 1971 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1972 xa_mark_t tag, unsigned int nr_entries, 1973 struct page **entries, pgoff_t *indices) 1974 { 1975 XA_STATE(xas, &mapping->i_pages, start); 1976 struct page *page; 1977 unsigned int ret = 0; 1978 1979 if (!nr_entries) 1980 return 0; 1981 1982 rcu_read_lock(); 1983 xas_for_each_marked(&xas, page, ULONG_MAX, tag) { 1984 struct page *head; 1985 if (xas_retry(&xas, page)) 1986 continue; 1987 /* 1988 * A shadow entry of a recently evicted page, a swap 1989 * entry from shmem/tmpfs or a DAX entry. Return it 1990 * without attempting to raise page count. 1991 */ 1992 if (xa_is_value(page)) 1993 goto export; 1994 1995 head = compound_head(page); 1996 if (!page_cache_get_speculative(head)) 1997 goto retry; 1998 1999 /* The page was split under us? */ 2000 if (compound_head(page) != head) 2001 goto put_page; 2002 2003 /* Has the page moved? */ 2004 if (unlikely(page != xas_reload(&xas))) 2005 goto put_page; 2006 2007 export: 2008 indices[ret] = xas.xa_index; 2009 entries[ret] = page; 2010 if (++ret == nr_entries) 2011 break; 2012 continue; 2013 put_page: 2014 put_page(head); 2015 retry: 2016 xas_reset(&xas); 2017 } 2018 rcu_read_unlock(); 2019 return ret; 2020 } 2021 EXPORT_SYMBOL(find_get_entries_tag); 2022 2023 /* 2024 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2025 * a _large_ part of the i/o request. Imagine the worst scenario: 2026 * 2027 * ---R__________________________________________B__________ 2028 * ^ reading here ^ bad block(assume 4k) 2029 * 2030 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2031 * => failing the whole request => read(R) => read(R+1) => 2032 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2033 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2034 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2035 * 2036 * It is going insane. Fix it by quickly scaling down the readahead size. 2037 */ 2038 static void shrink_readahead_size_eio(struct file *filp, 2039 struct file_ra_state *ra) 2040 { 2041 ra->ra_pages /= 4; 2042 } 2043 2044 /** 2045 * generic_file_buffered_read - generic file read routine 2046 * @iocb: the iocb to read 2047 * @iter: data destination 2048 * @written: already copied 2049 * 2050 * This is a generic file read routine, and uses the 2051 * mapping->a_ops->readpage() function for the actual low-level stuff. 2052 * 2053 * This is really ugly. But the goto's actually try to clarify some 2054 * of the logic when it comes to error handling etc. 2055 * 2056 * Return: 2057 * * total number of bytes copied, including those the were already @written 2058 * * negative error code if nothing was copied 2059 */ 2060 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2061 struct iov_iter *iter, ssize_t written) 2062 { 2063 struct file *filp = iocb->ki_filp; 2064 struct address_space *mapping = filp->f_mapping; 2065 struct inode *inode = mapping->host; 2066 struct file_ra_state *ra = &filp->f_ra; 2067 loff_t *ppos = &iocb->ki_pos; 2068 pgoff_t index; 2069 pgoff_t last_index; 2070 pgoff_t prev_index; 2071 unsigned long offset; /* offset into pagecache page */ 2072 unsigned int prev_offset; 2073 int error = 0; 2074 2075 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2076 return 0; 2077 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2078 2079 index = *ppos >> PAGE_SHIFT; 2080 prev_index = ra->prev_pos >> PAGE_SHIFT; 2081 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2082 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2083 offset = *ppos & ~PAGE_MASK; 2084 2085 for (;;) { 2086 struct page *page; 2087 pgoff_t end_index; 2088 loff_t isize; 2089 unsigned long nr, ret; 2090 2091 cond_resched(); 2092 find_page: 2093 if (fatal_signal_pending(current)) { 2094 error = -EINTR; 2095 goto out; 2096 } 2097 2098 page = find_get_page(mapping, index); 2099 if (!page) { 2100 if (iocb->ki_flags & IOCB_NOWAIT) 2101 goto would_block; 2102 page_cache_sync_readahead(mapping, 2103 ra, filp, 2104 index, last_index - index); 2105 page = find_get_page(mapping, index); 2106 if (unlikely(page == NULL)) 2107 goto no_cached_page; 2108 } 2109 if (PageReadahead(page)) { 2110 page_cache_async_readahead(mapping, 2111 ra, filp, page, 2112 index, last_index - index); 2113 } 2114 if (!PageUptodate(page)) { 2115 if (iocb->ki_flags & IOCB_NOWAIT) { 2116 put_page(page); 2117 goto would_block; 2118 } 2119 2120 /* 2121 * See comment in do_read_cache_page on why 2122 * wait_on_page_locked is used to avoid unnecessarily 2123 * serialisations and why it's safe. 2124 */ 2125 error = wait_on_page_locked_killable(page); 2126 if (unlikely(error)) 2127 goto readpage_error; 2128 if (PageUptodate(page)) 2129 goto page_ok; 2130 2131 if (inode->i_blkbits == PAGE_SHIFT || 2132 !mapping->a_ops->is_partially_uptodate) 2133 goto page_not_up_to_date; 2134 /* pipes can't handle partially uptodate pages */ 2135 if (unlikely(iov_iter_is_pipe(iter))) 2136 goto page_not_up_to_date; 2137 if (!trylock_page(page)) 2138 goto page_not_up_to_date; 2139 /* Did it get truncated before we got the lock? */ 2140 if (!page->mapping) 2141 goto page_not_up_to_date_locked; 2142 if (!mapping->a_ops->is_partially_uptodate(page, 2143 offset, iter->count)) 2144 goto page_not_up_to_date_locked; 2145 unlock_page(page); 2146 } 2147 page_ok: 2148 /* 2149 * i_size must be checked after we know the page is Uptodate. 2150 * 2151 * Checking i_size after the check allows us to calculate 2152 * the correct value for "nr", which means the zero-filled 2153 * part of the page is not copied back to userspace (unless 2154 * another truncate extends the file - this is desired though). 2155 */ 2156 2157 isize = i_size_read(inode); 2158 end_index = (isize - 1) >> PAGE_SHIFT; 2159 if (unlikely(!isize || index > end_index)) { 2160 put_page(page); 2161 goto out; 2162 } 2163 2164 /* nr is the maximum number of bytes to copy from this page */ 2165 nr = PAGE_SIZE; 2166 if (index == end_index) { 2167 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2168 if (nr <= offset) { 2169 put_page(page); 2170 goto out; 2171 } 2172 } 2173 nr = nr - offset; 2174 2175 /* If users can be writing to this page using arbitrary 2176 * virtual addresses, take care about potential aliasing 2177 * before reading the page on the kernel side. 2178 */ 2179 if (mapping_writably_mapped(mapping)) 2180 flush_dcache_page(page); 2181 2182 /* 2183 * When a sequential read accesses a page several times, 2184 * only mark it as accessed the first time. 2185 */ 2186 if (prev_index != index || offset != prev_offset) 2187 mark_page_accessed(page); 2188 prev_index = index; 2189 2190 /* 2191 * Ok, we have the page, and it's up-to-date, so 2192 * now we can copy it to user space... 2193 */ 2194 2195 ret = copy_page_to_iter(page, offset, nr, iter); 2196 offset += ret; 2197 index += offset >> PAGE_SHIFT; 2198 offset &= ~PAGE_MASK; 2199 prev_offset = offset; 2200 2201 put_page(page); 2202 written += ret; 2203 if (!iov_iter_count(iter)) 2204 goto out; 2205 if (ret < nr) { 2206 error = -EFAULT; 2207 goto out; 2208 } 2209 continue; 2210 2211 page_not_up_to_date: 2212 /* Get exclusive access to the page ... */ 2213 error = lock_page_killable(page); 2214 if (unlikely(error)) 2215 goto readpage_error; 2216 2217 page_not_up_to_date_locked: 2218 /* Did it get truncated before we got the lock? */ 2219 if (!page->mapping) { 2220 unlock_page(page); 2221 put_page(page); 2222 continue; 2223 } 2224 2225 /* Did somebody else fill it already? */ 2226 if (PageUptodate(page)) { 2227 unlock_page(page); 2228 goto page_ok; 2229 } 2230 2231 readpage: 2232 /* 2233 * A previous I/O error may have been due to temporary 2234 * failures, eg. multipath errors. 2235 * PG_error will be set again if readpage fails. 2236 */ 2237 ClearPageError(page); 2238 /* Start the actual read. The read will unlock the page. */ 2239 error = mapping->a_ops->readpage(filp, page); 2240 2241 if (unlikely(error)) { 2242 if (error == AOP_TRUNCATED_PAGE) { 2243 put_page(page); 2244 error = 0; 2245 goto find_page; 2246 } 2247 goto readpage_error; 2248 } 2249 2250 if (!PageUptodate(page)) { 2251 error = lock_page_killable(page); 2252 if (unlikely(error)) 2253 goto readpage_error; 2254 if (!PageUptodate(page)) { 2255 if (page->mapping == NULL) { 2256 /* 2257 * invalidate_mapping_pages got it 2258 */ 2259 unlock_page(page); 2260 put_page(page); 2261 goto find_page; 2262 } 2263 unlock_page(page); 2264 shrink_readahead_size_eio(filp, ra); 2265 error = -EIO; 2266 goto readpage_error; 2267 } 2268 unlock_page(page); 2269 } 2270 2271 goto page_ok; 2272 2273 readpage_error: 2274 /* UHHUH! A synchronous read error occurred. Report it */ 2275 put_page(page); 2276 goto out; 2277 2278 no_cached_page: 2279 /* 2280 * Ok, it wasn't cached, so we need to create a new 2281 * page.. 2282 */ 2283 page = page_cache_alloc(mapping); 2284 if (!page) { 2285 error = -ENOMEM; 2286 goto out; 2287 } 2288 error = add_to_page_cache_lru(page, mapping, index, 2289 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2290 if (error) { 2291 put_page(page); 2292 if (error == -EEXIST) { 2293 error = 0; 2294 goto find_page; 2295 } 2296 goto out; 2297 } 2298 goto readpage; 2299 } 2300 2301 would_block: 2302 error = -EAGAIN; 2303 out: 2304 ra->prev_pos = prev_index; 2305 ra->prev_pos <<= PAGE_SHIFT; 2306 ra->prev_pos |= prev_offset; 2307 2308 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2309 file_accessed(filp); 2310 return written ? written : error; 2311 } 2312 2313 /** 2314 * generic_file_read_iter - generic filesystem read routine 2315 * @iocb: kernel I/O control block 2316 * @iter: destination for the data read 2317 * 2318 * This is the "read_iter()" routine for all filesystems 2319 * that can use the page cache directly. 2320 * Return: 2321 * * number of bytes copied, even for partial reads 2322 * * negative error code if nothing was read 2323 */ 2324 ssize_t 2325 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2326 { 2327 size_t count = iov_iter_count(iter); 2328 ssize_t retval = 0; 2329 2330 if (!count) 2331 goto out; /* skip atime */ 2332 2333 if (iocb->ki_flags & IOCB_DIRECT) { 2334 struct file *file = iocb->ki_filp; 2335 struct address_space *mapping = file->f_mapping; 2336 struct inode *inode = mapping->host; 2337 loff_t size; 2338 2339 size = i_size_read(inode); 2340 if (iocb->ki_flags & IOCB_NOWAIT) { 2341 if (filemap_range_has_page(mapping, iocb->ki_pos, 2342 iocb->ki_pos + count - 1)) 2343 return -EAGAIN; 2344 } else { 2345 retval = filemap_write_and_wait_range(mapping, 2346 iocb->ki_pos, 2347 iocb->ki_pos + count - 1); 2348 if (retval < 0) 2349 goto out; 2350 } 2351 2352 file_accessed(file); 2353 2354 retval = mapping->a_ops->direct_IO(iocb, iter); 2355 if (retval >= 0) { 2356 iocb->ki_pos += retval; 2357 count -= retval; 2358 } 2359 iov_iter_revert(iter, count - iov_iter_count(iter)); 2360 2361 /* 2362 * Btrfs can have a short DIO read if we encounter 2363 * compressed extents, so if there was an error, or if 2364 * we've already read everything we wanted to, or if 2365 * there was a short read because we hit EOF, go ahead 2366 * and return. Otherwise fallthrough to buffered io for 2367 * the rest of the read. Buffered reads will not work for 2368 * DAX files, so don't bother trying. 2369 */ 2370 if (retval < 0 || !count || iocb->ki_pos >= size || 2371 IS_DAX(inode)) 2372 goto out; 2373 } 2374 2375 retval = generic_file_buffered_read(iocb, iter, retval); 2376 out: 2377 return retval; 2378 } 2379 EXPORT_SYMBOL(generic_file_read_iter); 2380 2381 #ifdef CONFIG_MMU 2382 /** 2383 * page_cache_read - adds requested page to the page cache if not already there 2384 * @file: file to read 2385 * @offset: page index 2386 * @gfp_mask: memory allocation flags 2387 * 2388 * This adds the requested page to the page cache if it isn't already there, 2389 * and schedules an I/O to read in its contents from disk. 2390 * 2391 * Return: %0 on success, negative error code otherwise. 2392 */ 2393 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2394 { 2395 struct address_space *mapping = file->f_mapping; 2396 struct page *page; 2397 int ret; 2398 2399 do { 2400 page = __page_cache_alloc(gfp_mask); 2401 if (!page) 2402 return -ENOMEM; 2403 2404 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 2405 if (ret == 0) 2406 ret = mapping->a_ops->readpage(file, page); 2407 else if (ret == -EEXIST) 2408 ret = 0; /* losing race to add is OK */ 2409 2410 put_page(page); 2411 2412 } while (ret == AOP_TRUNCATED_PAGE); 2413 2414 return ret; 2415 } 2416 2417 #define MMAP_LOTSAMISS (100) 2418 2419 /* 2420 * Synchronous readahead happens when we don't even find 2421 * a page in the page cache at all. 2422 */ 2423 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2424 struct file_ra_state *ra, 2425 struct file *file, 2426 pgoff_t offset) 2427 { 2428 struct address_space *mapping = file->f_mapping; 2429 2430 /* If we don't want any read-ahead, don't bother */ 2431 if (vma->vm_flags & VM_RAND_READ) 2432 return; 2433 if (!ra->ra_pages) 2434 return; 2435 2436 if (vma->vm_flags & VM_SEQ_READ) { 2437 page_cache_sync_readahead(mapping, ra, file, offset, 2438 ra->ra_pages); 2439 return; 2440 } 2441 2442 /* Avoid banging the cache line if not needed */ 2443 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2444 ra->mmap_miss++; 2445 2446 /* 2447 * Do we miss much more than hit in this file? If so, 2448 * stop bothering with read-ahead. It will only hurt. 2449 */ 2450 if (ra->mmap_miss > MMAP_LOTSAMISS) 2451 return; 2452 2453 /* 2454 * mmap read-around 2455 */ 2456 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2457 ra->size = ra->ra_pages; 2458 ra->async_size = ra->ra_pages / 4; 2459 ra_submit(ra, mapping, file); 2460 } 2461 2462 /* 2463 * Asynchronous readahead happens when we find the page and PG_readahead, 2464 * so we want to possibly extend the readahead further.. 2465 */ 2466 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2467 struct file_ra_state *ra, 2468 struct file *file, 2469 struct page *page, 2470 pgoff_t offset) 2471 { 2472 struct address_space *mapping = file->f_mapping; 2473 2474 /* If we don't want any read-ahead, don't bother */ 2475 if (vma->vm_flags & VM_RAND_READ) 2476 return; 2477 if (ra->mmap_miss > 0) 2478 ra->mmap_miss--; 2479 if (PageReadahead(page)) 2480 page_cache_async_readahead(mapping, ra, file, 2481 page, offset, ra->ra_pages); 2482 } 2483 2484 /** 2485 * filemap_fault - read in file data for page fault handling 2486 * @vmf: struct vm_fault containing details of the fault 2487 * 2488 * filemap_fault() is invoked via the vma operations vector for a 2489 * mapped memory region to read in file data during a page fault. 2490 * 2491 * The goto's are kind of ugly, but this streamlines the normal case of having 2492 * it in the page cache, and handles the special cases reasonably without 2493 * having a lot of duplicated code. 2494 * 2495 * vma->vm_mm->mmap_sem must be held on entry. 2496 * 2497 * If our return value has VM_FAULT_RETRY set, it's because 2498 * lock_page_or_retry() returned 0. 2499 * The mmap_sem has usually been released in this case. 2500 * See __lock_page_or_retry() for the exception. 2501 * 2502 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2503 * has not been released. 2504 * 2505 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2506 * 2507 * Return: bitwise-OR of %VM_FAULT_ codes. 2508 */ 2509 vm_fault_t filemap_fault(struct vm_fault *vmf) 2510 { 2511 int error; 2512 struct file *file = vmf->vma->vm_file; 2513 struct address_space *mapping = file->f_mapping; 2514 struct file_ra_state *ra = &file->f_ra; 2515 struct inode *inode = mapping->host; 2516 pgoff_t offset = vmf->pgoff; 2517 pgoff_t max_off; 2518 struct page *page; 2519 vm_fault_t ret = 0; 2520 2521 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2522 if (unlikely(offset >= max_off)) 2523 return VM_FAULT_SIGBUS; 2524 2525 /* 2526 * Do we have something in the page cache already? 2527 */ 2528 page = find_get_page(mapping, offset); 2529 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2530 /* 2531 * We found the page, so try async readahead before 2532 * waiting for the lock. 2533 */ 2534 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2535 } else if (!page) { 2536 /* No page in the page cache at all */ 2537 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2538 count_vm_event(PGMAJFAULT); 2539 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2540 ret = VM_FAULT_MAJOR; 2541 retry_find: 2542 page = find_get_page(mapping, offset); 2543 if (!page) 2544 goto no_cached_page; 2545 } 2546 2547 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2548 put_page(page); 2549 return ret | VM_FAULT_RETRY; 2550 } 2551 2552 /* Did it get truncated? */ 2553 if (unlikely(page->mapping != mapping)) { 2554 unlock_page(page); 2555 put_page(page); 2556 goto retry_find; 2557 } 2558 VM_BUG_ON_PAGE(page->index != offset, page); 2559 2560 /* 2561 * We have a locked page in the page cache, now we need to check 2562 * that it's up-to-date. If not, it is going to be due to an error. 2563 */ 2564 if (unlikely(!PageUptodate(page))) 2565 goto page_not_uptodate; 2566 2567 /* 2568 * Found the page and have a reference on it. 2569 * We must recheck i_size under page lock. 2570 */ 2571 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2572 if (unlikely(offset >= max_off)) { 2573 unlock_page(page); 2574 put_page(page); 2575 return VM_FAULT_SIGBUS; 2576 } 2577 2578 vmf->page = page; 2579 return ret | VM_FAULT_LOCKED; 2580 2581 no_cached_page: 2582 /* 2583 * We're only likely to ever get here if MADV_RANDOM is in 2584 * effect. 2585 */ 2586 error = page_cache_read(file, offset, vmf->gfp_mask); 2587 2588 /* 2589 * The page we want has now been added to the page cache. 2590 * In the unlikely event that someone removed it in the 2591 * meantime, we'll just come back here and read it again. 2592 */ 2593 if (error >= 0) 2594 goto retry_find; 2595 2596 /* 2597 * An error return from page_cache_read can result if the 2598 * system is low on memory, or a problem occurs while trying 2599 * to schedule I/O. 2600 */ 2601 return vmf_error(error); 2602 2603 page_not_uptodate: 2604 /* 2605 * Umm, take care of errors if the page isn't up-to-date. 2606 * Try to re-read it _once_. We do this synchronously, 2607 * because there really aren't any performance issues here 2608 * and we need to check for errors. 2609 */ 2610 ClearPageError(page); 2611 error = mapping->a_ops->readpage(file, page); 2612 if (!error) { 2613 wait_on_page_locked(page); 2614 if (!PageUptodate(page)) 2615 error = -EIO; 2616 } 2617 put_page(page); 2618 2619 if (!error || error == AOP_TRUNCATED_PAGE) 2620 goto retry_find; 2621 2622 /* Things didn't work out. Return zero to tell the mm layer so. */ 2623 shrink_readahead_size_eio(file, ra); 2624 return VM_FAULT_SIGBUS; 2625 } 2626 EXPORT_SYMBOL(filemap_fault); 2627 2628 void filemap_map_pages(struct vm_fault *vmf, 2629 pgoff_t start_pgoff, pgoff_t end_pgoff) 2630 { 2631 struct file *file = vmf->vma->vm_file; 2632 struct address_space *mapping = file->f_mapping; 2633 pgoff_t last_pgoff = start_pgoff; 2634 unsigned long max_idx; 2635 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2636 struct page *head, *page; 2637 2638 rcu_read_lock(); 2639 xas_for_each(&xas, page, end_pgoff) { 2640 if (xas_retry(&xas, page)) 2641 continue; 2642 if (xa_is_value(page)) 2643 goto next; 2644 2645 head = compound_head(page); 2646 2647 /* 2648 * Check for a locked page first, as a speculative 2649 * reference may adversely influence page migration. 2650 */ 2651 if (PageLocked(head)) 2652 goto next; 2653 if (!page_cache_get_speculative(head)) 2654 goto next; 2655 2656 /* The page was split under us? */ 2657 if (compound_head(page) != head) 2658 goto skip; 2659 2660 /* Has the page moved? */ 2661 if (unlikely(page != xas_reload(&xas))) 2662 goto skip; 2663 2664 if (!PageUptodate(page) || 2665 PageReadahead(page) || 2666 PageHWPoison(page)) 2667 goto skip; 2668 if (!trylock_page(page)) 2669 goto skip; 2670 2671 if (page->mapping != mapping || !PageUptodate(page)) 2672 goto unlock; 2673 2674 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2675 if (page->index >= max_idx) 2676 goto unlock; 2677 2678 if (file->f_ra.mmap_miss > 0) 2679 file->f_ra.mmap_miss--; 2680 2681 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2682 if (vmf->pte) 2683 vmf->pte += xas.xa_index - last_pgoff; 2684 last_pgoff = xas.xa_index; 2685 if (alloc_set_pte(vmf, NULL, page)) 2686 goto unlock; 2687 unlock_page(page); 2688 goto next; 2689 unlock: 2690 unlock_page(page); 2691 skip: 2692 put_page(page); 2693 next: 2694 /* Huge page is mapped? No need to proceed. */ 2695 if (pmd_trans_huge(*vmf->pmd)) 2696 break; 2697 } 2698 rcu_read_unlock(); 2699 } 2700 EXPORT_SYMBOL(filemap_map_pages); 2701 2702 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2703 { 2704 struct page *page = vmf->page; 2705 struct inode *inode = file_inode(vmf->vma->vm_file); 2706 vm_fault_t ret = VM_FAULT_LOCKED; 2707 2708 sb_start_pagefault(inode->i_sb); 2709 file_update_time(vmf->vma->vm_file); 2710 lock_page(page); 2711 if (page->mapping != inode->i_mapping) { 2712 unlock_page(page); 2713 ret = VM_FAULT_NOPAGE; 2714 goto out; 2715 } 2716 /* 2717 * We mark the page dirty already here so that when freeze is in 2718 * progress, we are guaranteed that writeback during freezing will 2719 * see the dirty page and writeprotect it again. 2720 */ 2721 set_page_dirty(page); 2722 wait_for_stable_page(page); 2723 out: 2724 sb_end_pagefault(inode->i_sb); 2725 return ret; 2726 } 2727 2728 const struct vm_operations_struct generic_file_vm_ops = { 2729 .fault = filemap_fault, 2730 .map_pages = filemap_map_pages, 2731 .page_mkwrite = filemap_page_mkwrite, 2732 }; 2733 2734 /* This is used for a general mmap of a disk file */ 2735 2736 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2737 { 2738 struct address_space *mapping = file->f_mapping; 2739 2740 if (!mapping->a_ops->readpage) 2741 return -ENOEXEC; 2742 file_accessed(file); 2743 vma->vm_ops = &generic_file_vm_ops; 2744 return 0; 2745 } 2746 2747 /* 2748 * This is for filesystems which do not implement ->writepage. 2749 */ 2750 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2751 { 2752 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2753 return -EINVAL; 2754 return generic_file_mmap(file, vma); 2755 } 2756 #else 2757 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2758 { 2759 return VM_FAULT_SIGBUS; 2760 } 2761 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2762 { 2763 return -ENOSYS; 2764 } 2765 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2766 { 2767 return -ENOSYS; 2768 } 2769 #endif /* CONFIG_MMU */ 2770 2771 EXPORT_SYMBOL(filemap_page_mkwrite); 2772 EXPORT_SYMBOL(generic_file_mmap); 2773 EXPORT_SYMBOL(generic_file_readonly_mmap); 2774 2775 static struct page *wait_on_page_read(struct page *page) 2776 { 2777 if (!IS_ERR(page)) { 2778 wait_on_page_locked(page); 2779 if (!PageUptodate(page)) { 2780 put_page(page); 2781 page = ERR_PTR(-EIO); 2782 } 2783 } 2784 return page; 2785 } 2786 2787 static struct page *do_read_cache_page(struct address_space *mapping, 2788 pgoff_t index, 2789 int (*filler)(void *, struct page *), 2790 void *data, 2791 gfp_t gfp) 2792 { 2793 struct page *page; 2794 int err; 2795 repeat: 2796 page = find_get_page(mapping, index); 2797 if (!page) { 2798 page = __page_cache_alloc(gfp); 2799 if (!page) 2800 return ERR_PTR(-ENOMEM); 2801 err = add_to_page_cache_lru(page, mapping, index, gfp); 2802 if (unlikely(err)) { 2803 put_page(page); 2804 if (err == -EEXIST) 2805 goto repeat; 2806 /* Presumably ENOMEM for xarray node */ 2807 return ERR_PTR(err); 2808 } 2809 2810 filler: 2811 err = filler(data, page); 2812 if (err < 0) { 2813 put_page(page); 2814 return ERR_PTR(err); 2815 } 2816 2817 page = wait_on_page_read(page); 2818 if (IS_ERR(page)) 2819 return page; 2820 goto out; 2821 } 2822 if (PageUptodate(page)) 2823 goto out; 2824 2825 /* 2826 * Page is not up to date and may be locked due one of the following 2827 * case a: Page is being filled and the page lock is held 2828 * case b: Read/write error clearing the page uptodate status 2829 * case c: Truncation in progress (page locked) 2830 * case d: Reclaim in progress 2831 * 2832 * Case a, the page will be up to date when the page is unlocked. 2833 * There is no need to serialise on the page lock here as the page 2834 * is pinned so the lock gives no additional protection. Even if the 2835 * the page is truncated, the data is still valid if PageUptodate as 2836 * it's a race vs truncate race. 2837 * Case b, the page will not be up to date 2838 * Case c, the page may be truncated but in itself, the data may still 2839 * be valid after IO completes as it's a read vs truncate race. The 2840 * operation must restart if the page is not uptodate on unlock but 2841 * otherwise serialising on page lock to stabilise the mapping gives 2842 * no additional guarantees to the caller as the page lock is 2843 * released before return. 2844 * Case d, similar to truncation. If reclaim holds the page lock, it 2845 * will be a race with remove_mapping that determines if the mapping 2846 * is valid on unlock but otherwise the data is valid and there is 2847 * no need to serialise with page lock. 2848 * 2849 * As the page lock gives no additional guarantee, we optimistically 2850 * wait on the page to be unlocked and check if it's up to date and 2851 * use the page if it is. Otherwise, the page lock is required to 2852 * distinguish between the different cases. The motivation is that we 2853 * avoid spurious serialisations and wakeups when multiple processes 2854 * wait on the same page for IO to complete. 2855 */ 2856 wait_on_page_locked(page); 2857 if (PageUptodate(page)) 2858 goto out; 2859 2860 /* Distinguish between all the cases under the safety of the lock */ 2861 lock_page(page); 2862 2863 /* Case c or d, restart the operation */ 2864 if (!page->mapping) { 2865 unlock_page(page); 2866 put_page(page); 2867 goto repeat; 2868 } 2869 2870 /* Someone else locked and filled the page in a very small window */ 2871 if (PageUptodate(page)) { 2872 unlock_page(page); 2873 goto out; 2874 } 2875 goto filler; 2876 2877 out: 2878 mark_page_accessed(page); 2879 return page; 2880 } 2881 2882 /** 2883 * read_cache_page - read into page cache, fill it if needed 2884 * @mapping: the page's address_space 2885 * @index: the page index 2886 * @filler: function to perform the read 2887 * @data: first arg to filler(data, page) function, often left as NULL 2888 * 2889 * Read into the page cache. If a page already exists, and PageUptodate() is 2890 * not set, try to fill the page and wait for it to become unlocked. 2891 * 2892 * If the page does not get brought uptodate, return -EIO. 2893 * 2894 * Return: up to date page on success, ERR_PTR() on failure. 2895 */ 2896 struct page *read_cache_page(struct address_space *mapping, 2897 pgoff_t index, 2898 int (*filler)(void *, struct page *), 2899 void *data) 2900 { 2901 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2902 } 2903 EXPORT_SYMBOL(read_cache_page); 2904 2905 /** 2906 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2907 * @mapping: the page's address_space 2908 * @index: the page index 2909 * @gfp: the page allocator flags to use if allocating 2910 * 2911 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2912 * any new page allocations done using the specified allocation flags. 2913 * 2914 * If the page does not get brought uptodate, return -EIO. 2915 * 2916 * Return: up to date page on success, ERR_PTR() on failure. 2917 */ 2918 struct page *read_cache_page_gfp(struct address_space *mapping, 2919 pgoff_t index, 2920 gfp_t gfp) 2921 { 2922 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2923 2924 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2925 } 2926 EXPORT_SYMBOL(read_cache_page_gfp); 2927 2928 /* 2929 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2930 * LFS limits. If pos is under the limit it becomes a short access. If it 2931 * exceeds the limit we return -EFBIG. 2932 */ 2933 static int generic_access_check_limits(struct file *file, loff_t pos, 2934 loff_t *count) 2935 { 2936 struct inode *inode = file->f_mapping->host; 2937 loff_t max_size = inode->i_sb->s_maxbytes; 2938 2939 if (!(file->f_flags & O_LARGEFILE)) 2940 max_size = MAX_NON_LFS; 2941 2942 if (unlikely(pos >= max_size)) 2943 return -EFBIG; 2944 *count = min(*count, max_size - pos); 2945 return 0; 2946 } 2947 2948 static int generic_write_check_limits(struct file *file, loff_t pos, 2949 loff_t *count) 2950 { 2951 loff_t limit = rlimit(RLIMIT_FSIZE); 2952 2953 if (limit != RLIM_INFINITY) { 2954 if (pos >= limit) { 2955 send_sig(SIGXFSZ, current, 0); 2956 return -EFBIG; 2957 } 2958 *count = min(*count, limit - pos); 2959 } 2960 2961 return generic_access_check_limits(file, pos, count); 2962 } 2963 2964 /* 2965 * Performs necessary checks before doing a write 2966 * 2967 * Can adjust writing position or amount of bytes to write. 2968 * Returns appropriate error code that caller should return or 2969 * zero in case that write should be allowed. 2970 */ 2971 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2972 { 2973 struct file *file = iocb->ki_filp; 2974 struct inode *inode = file->f_mapping->host; 2975 loff_t count; 2976 int ret; 2977 2978 if (!iov_iter_count(from)) 2979 return 0; 2980 2981 /* FIXME: this is for backwards compatibility with 2.4 */ 2982 if (iocb->ki_flags & IOCB_APPEND) 2983 iocb->ki_pos = i_size_read(inode); 2984 2985 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2986 return -EINVAL; 2987 2988 count = iov_iter_count(from); 2989 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 2990 if (ret) 2991 return ret; 2992 2993 iov_iter_truncate(from, count); 2994 return iov_iter_count(from); 2995 } 2996 EXPORT_SYMBOL(generic_write_checks); 2997 2998 /* 2999 * Performs necessary checks before doing a clone. 3000 * 3001 * Can adjust amount of bytes to clone. 3002 * Returns appropriate error code that caller should return or 3003 * zero in case the clone should be allowed. 3004 */ 3005 int generic_remap_checks(struct file *file_in, loff_t pos_in, 3006 struct file *file_out, loff_t pos_out, 3007 loff_t *req_count, unsigned int remap_flags) 3008 { 3009 struct inode *inode_in = file_in->f_mapping->host; 3010 struct inode *inode_out = file_out->f_mapping->host; 3011 uint64_t count = *req_count; 3012 uint64_t bcount; 3013 loff_t size_in, size_out; 3014 loff_t bs = inode_out->i_sb->s_blocksize; 3015 int ret; 3016 3017 /* The start of both ranges must be aligned to an fs block. */ 3018 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 3019 return -EINVAL; 3020 3021 /* Ensure offsets don't wrap. */ 3022 if (pos_in + count < pos_in || pos_out + count < pos_out) 3023 return -EINVAL; 3024 3025 size_in = i_size_read(inode_in); 3026 size_out = i_size_read(inode_out); 3027 3028 /* Dedupe requires both ranges to be within EOF. */ 3029 if ((remap_flags & REMAP_FILE_DEDUP) && 3030 (pos_in >= size_in || pos_in + count > size_in || 3031 pos_out >= size_out || pos_out + count > size_out)) 3032 return -EINVAL; 3033 3034 /* Ensure the infile range is within the infile. */ 3035 if (pos_in >= size_in) 3036 return -EINVAL; 3037 count = min(count, size_in - (uint64_t)pos_in); 3038 3039 ret = generic_access_check_limits(file_in, pos_in, &count); 3040 if (ret) 3041 return ret; 3042 3043 ret = generic_write_check_limits(file_out, pos_out, &count); 3044 if (ret) 3045 return ret; 3046 3047 /* 3048 * If the user wanted us to link to the infile's EOF, round up to the 3049 * next block boundary for this check. 3050 * 3051 * Otherwise, make sure the count is also block-aligned, having 3052 * already confirmed the starting offsets' block alignment. 3053 */ 3054 if (pos_in + count == size_in) { 3055 bcount = ALIGN(size_in, bs) - pos_in; 3056 } else { 3057 if (!IS_ALIGNED(count, bs)) 3058 count = ALIGN_DOWN(count, bs); 3059 bcount = count; 3060 } 3061 3062 /* Don't allow overlapped cloning within the same file. */ 3063 if (inode_in == inode_out && 3064 pos_out + bcount > pos_in && 3065 pos_out < pos_in + bcount) 3066 return -EINVAL; 3067 3068 /* 3069 * We shortened the request but the caller can't deal with that, so 3070 * bounce the request back to userspace. 3071 */ 3072 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3073 return -EINVAL; 3074 3075 *req_count = count; 3076 return 0; 3077 } 3078 3079 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3080 loff_t pos, unsigned len, unsigned flags, 3081 struct page **pagep, void **fsdata) 3082 { 3083 const struct address_space_operations *aops = mapping->a_ops; 3084 3085 return aops->write_begin(file, mapping, pos, len, flags, 3086 pagep, fsdata); 3087 } 3088 EXPORT_SYMBOL(pagecache_write_begin); 3089 3090 int pagecache_write_end(struct file *file, struct address_space *mapping, 3091 loff_t pos, unsigned len, unsigned copied, 3092 struct page *page, void *fsdata) 3093 { 3094 const struct address_space_operations *aops = mapping->a_ops; 3095 3096 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3097 } 3098 EXPORT_SYMBOL(pagecache_write_end); 3099 3100 ssize_t 3101 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3102 { 3103 struct file *file = iocb->ki_filp; 3104 struct address_space *mapping = file->f_mapping; 3105 struct inode *inode = mapping->host; 3106 loff_t pos = iocb->ki_pos; 3107 ssize_t written; 3108 size_t write_len; 3109 pgoff_t end; 3110 3111 write_len = iov_iter_count(from); 3112 end = (pos + write_len - 1) >> PAGE_SHIFT; 3113 3114 if (iocb->ki_flags & IOCB_NOWAIT) { 3115 /* If there are pages to writeback, return */ 3116 if (filemap_range_has_page(inode->i_mapping, pos, 3117 pos + write_len - 1)) 3118 return -EAGAIN; 3119 } else { 3120 written = filemap_write_and_wait_range(mapping, pos, 3121 pos + write_len - 1); 3122 if (written) 3123 goto out; 3124 } 3125 3126 /* 3127 * After a write we want buffered reads to be sure to go to disk to get 3128 * the new data. We invalidate clean cached page from the region we're 3129 * about to write. We do this *before* the write so that we can return 3130 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3131 */ 3132 written = invalidate_inode_pages2_range(mapping, 3133 pos >> PAGE_SHIFT, end); 3134 /* 3135 * If a page can not be invalidated, return 0 to fall back 3136 * to buffered write. 3137 */ 3138 if (written) { 3139 if (written == -EBUSY) 3140 return 0; 3141 goto out; 3142 } 3143 3144 written = mapping->a_ops->direct_IO(iocb, from); 3145 3146 /* 3147 * Finally, try again to invalidate clean pages which might have been 3148 * cached by non-direct readahead, or faulted in by get_user_pages() 3149 * if the source of the write was an mmap'ed region of the file 3150 * we're writing. Either one is a pretty crazy thing to do, 3151 * so we don't support it 100%. If this invalidation 3152 * fails, tough, the write still worked... 3153 * 3154 * Most of the time we do not need this since dio_complete() will do 3155 * the invalidation for us. However there are some file systems that 3156 * do not end up with dio_complete() being called, so let's not break 3157 * them by removing it completely 3158 */ 3159 if (mapping->nrpages) 3160 invalidate_inode_pages2_range(mapping, 3161 pos >> PAGE_SHIFT, end); 3162 3163 if (written > 0) { 3164 pos += written; 3165 write_len -= written; 3166 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3167 i_size_write(inode, pos); 3168 mark_inode_dirty(inode); 3169 } 3170 iocb->ki_pos = pos; 3171 } 3172 iov_iter_revert(from, write_len - iov_iter_count(from)); 3173 out: 3174 return written; 3175 } 3176 EXPORT_SYMBOL(generic_file_direct_write); 3177 3178 /* 3179 * Find or create a page at the given pagecache position. Return the locked 3180 * page. This function is specifically for buffered writes. 3181 */ 3182 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3183 pgoff_t index, unsigned flags) 3184 { 3185 struct page *page; 3186 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3187 3188 if (flags & AOP_FLAG_NOFS) 3189 fgp_flags |= FGP_NOFS; 3190 3191 page = pagecache_get_page(mapping, index, fgp_flags, 3192 mapping_gfp_mask(mapping)); 3193 if (page) 3194 wait_for_stable_page(page); 3195 3196 return page; 3197 } 3198 EXPORT_SYMBOL(grab_cache_page_write_begin); 3199 3200 ssize_t generic_perform_write(struct file *file, 3201 struct iov_iter *i, loff_t pos) 3202 { 3203 struct address_space *mapping = file->f_mapping; 3204 const struct address_space_operations *a_ops = mapping->a_ops; 3205 long status = 0; 3206 ssize_t written = 0; 3207 unsigned int flags = 0; 3208 3209 do { 3210 struct page *page; 3211 unsigned long offset; /* Offset into pagecache page */ 3212 unsigned long bytes; /* Bytes to write to page */ 3213 size_t copied; /* Bytes copied from user */ 3214 void *fsdata; 3215 3216 offset = (pos & (PAGE_SIZE - 1)); 3217 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3218 iov_iter_count(i)); 3219 3220 again: 3221 /* 3222 * Bring in the user page that we will copy from _first_. 3223 * Otherwise there's a nasty deadlock on copying from the 3224 * same page as we're writing to, without it being marked 3225 * up-to-date. 3226 * 3227 * Not only is this an optimisation, but it is also required 3228 * to check that the address is actually valid, when atomic 3229 * usercopies are used, below. 3230 */ 3231 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3232 status = -EFAULT; 3233 break; 3234 } 3235 3236 if (fatal_signal_pending(current)) { 3237 status = -EINTR; 3238 break; 3239 } 3240 3241 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3242 &page, &fsdata); 3243 if (unlikely(status < 0)) 3244 break; 3245 3246 if (mapping_writably_mapped(mapping)) 3247 flush_dcache_page(page); 3248 3249 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3250 flush_dcache_page(page); 3251 3252 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3253 page, fsdata); 3254 if (unlikely(status < 0)) 3255 break; 3256 copied = status; 3257 3258 cond_resched(); 3259 3260 iov_iter_advance(i, copied); 3261 if (unlikely(copied == 0)) { 3262 /* 3263 * If we were unable to copy any data at all, we must 3264 * fall back to a single segment length write. 3265 * 3266 * If we didn't fallback here, we could livelock 3267 * because not all segments in the iov can be copied at 3268 * once without a pagefault. 3269 */ 3270 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3271 iov_iter_single_seg_count(i)); 3272 goto again; 3273 } 3274 pos += copied; 3275 written += copied; 3276 3277 balance_dirty_pages_ratelimited(mapping); 3278 } while (iov_iter_count(i)); 3279 3280 return written ? written : status; 3281 } 3282 EXPORT_SYMBOL(generic_perform_write); 3283 3284 /** 3285 * __generic_file_write_iter - write data to a file 3286 * @iocb: IO state structure (file, offset, etc.) 3287 * @from: iov_iter with data to write 3288 * 3289 * This function does all the work needed for actually writing data to a 3290 * file. It does all basic checks, removes SUID from the file, updates 3291 * modification times and calls proper subroutines depending on whether we 3292 * do direct IO or a standard buffered write. 3293 * 3294 * It expects i_mutex to be grabbed unless we work on a block device or similar 3295 * object which does not need locking at all. 3296 * 3297 * This function does *not* take care of syncing data in case of O_SYNC write. 3298 * A caller has to handle it. This is mainly due to the fact that we want to 3299 * avoid syncing under i_mutex. 3300 * 3301 * Return: 3302 * * number of bytes written, even for truncated writes 3303 * * negative error code if no data has been written at all 3304 */ 3305 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3306 { 3307 struct file *file = iocb->ki_filp; 3308 struct address_space * mapping = file->f_mapping; 3309 struct inode *inode = mapping->host; 3310 ssize_t written = 0; 3311 ssize_t err; 3312 ssize_t status; 3313 3314 /* We can write back this queue in page reclaim */ 3315 current->backing_dev_info = inode_to_bdi(inode); 3316 err = file_remove_privs(file); 3317 if (err) 3318 goto out; 3319 3320 err = file_update_time(file); 3321 if (err) 3322 goto out; 3323 3324 if (iocb->ki_flags & IOCB_DIRECT) { 3325 loff_t pos, endbyte; 3326 3327 written = generic_file_direct_write(iocb, from); 3328 /* 3329 * If the write stopped short of completing, fall back to 3330 * buffered writes. Some filesystems do this for writes to 3331 * holes, for example. For DAX files, a buffered write will 3332 * not succeed (even if it did, DAX does not handle dirty 3333 * page-cache pages correctly). 3334 */ 3335 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3336 goto out; 3337 3338 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3339 /* 3340 * If generic_perform_write() returned a synchronous error 3341 * then we want to return the number of bytes which were 3342 * direct-written, or the error code if that was zero. Note 3343 * that this differs from normal direct-io semantics, which 3344 * will return -EFOO even if some bytes were written. 3345 */ 3346 if (unlikely(status < 0)) { 3347 err = status; 3348 goto out; 3349 } 3350 /* 3351 * We need to ensure that the page cache pages are written to 3352 * disk and invalidated to preserve the expected O_DIRECT 3353 * semantics. 3354 */ 3355 endbyte = pos + status - 1; 3356 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3357 if (err == 0) { 3358 iocb->ki_pos = endbyte + 1; 3359 written += status; 3360 invalidate_mapping_pages(mapping, 3361 pos >> PAGE_SHIFT, 3362 endbyte >> PAGE_SHIFT); 3363 } else { 3364 /* 3365 * We don't know how much we wrote, so just return 3366 * the number of bytes which were direct-written 3367 */ 3368 } 3369 } else { 3370 written = generic_perform_write(file, from, iocb->ki_pos); 3371 if (likely(written > 0)) 3372 iocb->ki_pos += written; 3373 } 3374 out: 3375 current->backing_dev_info = NULL; 3376 return written ? written : err; 3377 } 3378 EXPORT_SYMBOL(__generic_file_write_iter); 3379 3380 /** 3381 * generic_file_write_iter - write data to a file 3382 * @iocb: IO state structure 3383 * @from: iov_iter with data to write 3384 * 3385 * This is a wrapper around __generic_file_write_iter() to be used by most 3386 * filesystems. It takes care of syncing the file in case of O_SYNC file 3387 * and acquires i_mutex as needed. 3388 * Return: 3389 * * negative error code if no data has been written at all of 3390 * vfs_fsync_range() failed for a synchronous write 3391 * * number of bytes written, even for truncated writes 3392 */ 3393 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3394 { 3395 struct file *file = iocb->ki_filp; 3396 struct inode *inode = file->f_mapping->host; 3397 ssize_t ret; 3398 3399 inode_lock(inode); 3400 ret = generic_write_checks(iocb, from); 3401 if (ret > 0) 3402 ret = __generic_file_write_iter(iocb, from); 3403 inode_unlock(inode); 3404 3405 if (ret > 0) 3406 ret = generic_write_sync(iocb, ret); 3407 return ret; 3408 } 3409 EXPORT_SYMBOL(generic_file_write_iter); 3410 3411 /** 3412 * try_to_release_page() - release old fs-specific metadata on a page 3413 * 3414 * @page: the page which the kernel is trying to free 3415 * @gfp_mask: memory allocation flags (and I/O mode) 3416 * 3417 * The address_space is to try to release any data against the page 3418 * (presumably at page->private). 3419 * 3420 * This may also be called if PG_fscache is set on a page, indicating that the 3421 * page is known to the local caching routines. 3422 * 3423 * The @gfp_mask argument specifies whether I/O may be performed to release 3424 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3425 * 3426 * Return: %1 if the release was successful, otherwise return zero. 3427 */ 3428 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3429 { 3430 struct address_space * const mapping = page->mapping; 3431 3432 BUG_ON(!PageLocked(page)); 3433 if (PageWriteback(page)) 3434 return 0; 3435 3436 if (mapping && mapping->a_ops->releasepage) 3437 return mapping->a_ops->releasepage(page, gfp_mask); 3438 return try_to_free_buffers(page); 3439 } 3440 3441 EXPORT_SYMBOL(try_to_release_page); 3442