xref: /linux/mm/filemap.c (revision 59024954a1e7e26b62680e1f2b5725249a6c09f7)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static int page_cache_tree_insert(struct address_space *mapping,
114 				  struct page *page, void **shadowp)
115 {
116 	struct radix_tree_node *node;
117 	void **slot;
118 	int error;
119 
120 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 				    &node, &slot);
122 	if (error)
123 		return error;
124 	if (*slot) {
125 		void *p;
126 
127 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 		if (!radix_tree_exceptional_entry(p))
129 			return -EEXIST;
130 
131 		mapping->nrexceptional--;
132 		if (!dax_mapping(mapping)) {
133 			if (shadowp)
134 				*shadowp = p;
135 			if (node)
136 				workingset_node_shadows_dec(node);
137 		} else {
138 			/* DAX can replace empty locked entry with a hole */
139 			WARN_ON_ONCE(p !=
140 				(void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 					 RADIX_DAX_ENTRY_LOCK));
142 			/* DAX accounts exceptional entries as normal pages */
143 			if (node)
144 				workingset_node_pages_dec(node);
145 			/* Wakeup waiters for exceptional entry lock */
146 			dax_wake_mapping_entry_waiter(mapping, page->index,
147 						      false);
148 		}
149 	}
150 	radix_tree_replace_slot(slot, page);
151 	mapping->nrpages++;
152 	if (node) {
153 		workingset_node_pages_inc(node);
154 		/*
155 		 * Don't track node that contains actual pages.
156 		 *
157 		 * Avoid acquiring the list_lru lock if already
158 		 * untracked.  The list_empty() test is safe as
159 		 * node->private_list is protected by
160 		 * mapping->tree_lock.
161 		 */
162 		if (!list_empty(&node->private_list))
163 			list_lru_del(&workingset_shadow_nodes,
164 				     &node->private_list);
165 	}
166 	return 0;
167 }
168 
169 static void page_cache_tree_delete(struct address_space *mapping,
170 				   struct page *page, void *shadow)
171 {
172 	int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
173 
174 	VM_BUG_ON_PAGE(!PageLocked(page), page);
175 	VM_BUG_ON_PAGE(PageTail(page), page);
176 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
177 
178 	for (i = 0; i < nr; i++) {
179 		struct radix_tree_node *node;
180 		void **slot;
181 
182 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
183 				    &node, &slot);
184 
185 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
186 
187 		if (!node) {
188 			VM_BUG_ON_PAGE(nr != 1, page);
189 			/*
190 			 * We need a node to properly account shadow
191 			 * entries. Don't plant any without. XXX
192 			 */
193 			shadow = NULL;
194 		}
195 
196 		radix_tree_replace_slot(slot, shadow);
197 
198 		if (!node)
199 			break;
200 
201 		workingset_node_pages_dec(node);
202 		if (shadow)
203 			workingset_node_shadows_inc(node);
204 		else
205 			if (__radix_tree_delete_node(&mapping->page_tree, node))
206 				continue;
207 
208 		/*
209 		 * Track node that only contains shadow entries. DAX mappings
210 		 * contain no shadow entries and may contain other exceptional
211 		 * entries so skip those.
212 		 *
213 		 * Avoid acquiring the list_lru lock if already tracked.
214 		 * The list_empty() test is safe as node->private_list is
215 		 * protected by mapping->tree_lock.
216 		 */
217 		if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218 				list_empty(&node->private_list)) {
219 			node->private_data = mapping;
220 			list_lru_add(&workingset_shadow_nodes,
221 					&node->private_list);
222 		}
223 	}
224 
225 	if (shadow) {
226 		mapping->nrexceptional += nr;
227 		/*
228 		 * Make sure the nrexceptional update is committed before
229 		 * the nrpages update so that final truncate racing
230 		 * with reclaim does not see both counters 0 at the
231 		 * same time and miss a shadow entry.
232 		 */
233 		smp_wmb();
234 	}
235 	mapping->nrpages -= nr;
236 }
237 
238 /*
239  * Delete a page from the page cache and free it. Caller has to make
240  * sure the page is locked and that nobody else uses it - or that usage
241  * is safe.  The caller must hold the mapping's tree_lock.
242  */
243 void __delete_from_page_cache(struct page *page, void *shadow)
244 {
245 	struct address_space *mapping = page->mapping;
246 	int nr = hpage_nr_pages(page);
247 
248 	trace_mm_filemap_delete_from_page_cache(page);
249 	/*
250 	 * if we're uptodate, flush out into the cleancache, otherwise
251 	 * invalidate any existing cleancache entries.  We can't leave
252 	 * stale data around in the cleancache once our page is gone
253 	 */
254 	if (PageUptodate(page) && PageMappedToDisk(page))
255 		cleancache_put_page(page);
256 	else
257 		cleancache_invalidate_page(mapping, page);
258 
259 	VM_BUG_ON_PAGE(PageTail(page), page);
260 	VM_BUG_ON_PAGE(page_mapped(page), page);
261 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262 		int mapcount;
263 
264 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
265 			 current->comm, page_to_pfn(page));
266 		dump_page(page, "still mapped when deleted");
267 		dump_stack();
268 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
269 
270 		mapcount = page_mapcount(page);
271 		if (mapping_exiting(mapping) &&
272 		    page_count(page) >= mapcount + 2) {
273 			/*
274 			 * All vmas have already been torn down, so it's
275 			 * a good bet that actually the page is unmapped,
276 			 * and we'd prefer not to leak it: if we're wrong,
277 			 * some other bad page check should catch it later.
278 			 */
279 			page_mapcount_reset(page);
280 			page_ref_sub(page, mapcount);
281 		}
282 	}
283 
284 	page_cache_tree_delete(mapping, page, shadow);
285 
286 	page->mapping = NULL;
287 	/* Leave page->index set: truncation lookup relies upon it */
288 
289 	/* hugetlb pages do not participate in page cache accounting. */
290 	if (!PageHuge(page))
291 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292 	if (PageSwapBacked(page)) {
293 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294 		if (PageTransHuge(page))
295 			__dec_node_page_state(page, NR_SHMEM_THPS);
296 	} else {
297 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
298 	}
299 
300 	/*
301 	 * At this point page must be either written or cleaned by truncate.
302 	 * Dirty page here signals a bug and loss of unwritten data.
303 	 *
304 	 * This fixes dirty accounting after removing the page entirely but
305 	 * leaves PageDirty set: it has no effect for truncated page and
306 	 * anyway will be cleared before returning page into buddy allocator.
307 	 */
308 	if (WARN_ON_ONCE(PageDirty(page)))
309 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
310 }
311 
312 /**
313  * delete_from_page_cache - delete page from page cache
314  * @page: the page which the kernel is trying to remove from page cache
315  *
316  * This must be called only on pages that have been verified to be in the page
317  * cache and locked.  It will never put the page into the free list, the caller
318  * has a reference on the page.
319  */
320 void delete_from_page_cache(struct page *page)
321 {
322 	struct address_space *mapping = page_mapping(page);
323 	unsigned long flags;
324 	void (*freepage)(struct page *);
325 
326 	BUG_ON(!PageLocked(page));
327 
328 	freepage = mapping->a_ops->freepage;
329 
330 	spin_lock_irqsave(&mapping->tree_lock, flags);
331 	__delete_from_page_cache(page, NULL);
332 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
333 
334 	if (freepage)
335 		freepage(page);
336 
337 	if (PageTransHuge(page) && !PageHuge(page)) {
338 		page_ref_sub(page, HPAGE_PMD_NR);
339 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340 	} else {
341 		put_page(page);
342 	}
343 }
344 EXPORT_SYMBOL(delete_from_page_cache);
345 
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 	int ret = 0;
349 	/* Check for outstanding write errors */
350 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 		ret = -ENOSPC;
353 	if (test_bit(AS_EIO, &mapping->flags) &&
354 	    test_and_clear_bit(AS_EIO, &mapping->flags))
355 		ret = -EIO;
356 	return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359 
360 /**
361  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362  * @mapping:	address space structure to write
363  * @start:	offset in bytes where the range starts
364  * @end:	offset in bytes where the range ends (inclusive)
365  * @sync_mode:	enable synchronous operation
366  *
367  * Start writeback against all of a mapping's dirty pages that lie
368  * within the byte offsets <start, end> inclusive.
369  *
370  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371  * opposed to a regular memory cleansing writeback.  The difference between
372  * these two operations is that if a dirty page/buffer is encountered, it must
373  * be waited upon, and not just skipped over.
374  */
375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376 				loff_t end, int sync_mode)
377 {
378 	int ret;
379 	struct writeback_control wbc = {
380 		.sync_mode = sync_mode,
381 		.nr_to_write = LONG_MAX,
382 		.range_start = start,
383 		.range_end = end,
384 	};
385 
386 	if (!mapping_cap_writeback_dirty(mapping))
387 		return 0;
388 
389 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390 	ret = do_writepages(mapping, &wbc);
391 	wbc_detach_inode(&wbc);
392 	return ret;
393 }
394 
395 static inline int __filemap_fdatawrite(struct address_space *mapping,
396 	int sync_mode)
397 {
398 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
399 }
400 
401 int filemap_fdatawrite(struct address_space *mapping)
402 {
403 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
404 }
405 EXPORT_SYMBOL(filemap_fdatawrite);
406 
407 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 				loff_t end)
409 {
410 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
411 }
412 EXPORT_SYMBOL(filemap_fdatawrite_range);
413 
414 /**
415  * filemap_flush - mostly a non-blocking flush
416  * @mapping:	target address_space
417  *
418  * This is a mostly non-blocking flush.  Not suitable for data-integrity
419  * purposes - I/O may not be started against all dirty pages.
420  */
421 int filemap_flush(struct address_space *mapping)
422 {
423 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
424 }
425 EXPORT_SYMBOL(filemap_flush);
426 
427 static int __filemap_fdatawait_range(struct address_space *mapping,
428 				     loff_t start_byte, loff_t end_byte)
429 {
430 	pgoff_t index = start_byte >> PAGE_SHIFT;
431 	pgoff_t end = end_byte >> PAGE_SHIFT;
432 	struct pagevec pvec;
433 	int nr_pages;
434 	int ret = 0;
435 
436 	if (end_byte < start_byte)
437 		goto out;
438 
439 	pagevec_init(&pvec, 0);
440 	while ((index <= end) &&
441 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442 			PAGECACHE_TAG_WRITEBACK,
443 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
444 		unsigned i;
445 
446 		for (i = 0; i < nr_pages; i++) {
447 			struct page *page = pvec.pages[i];
448 
449 			/* until radix tree lookup accepts end_index */
450 			if (page->index > end)
451 				continue;
452 
453 			wait_on_page_writeback(page);
454 			if (TestClearPageError(page))
455 				ret = -EIO;
456 		}
457 		pagevec_release(&pvec);
458 		cond_resched();
459 	}
460 out:
461 	return ret;
462 }
463 
464 /**
465  * filemap_fdatawait_range - wait for writeback to complete
466  * @mapping:		address space structure to wait for
467  * @start_byte:		offset in bytes where the range starts
468  * @end_byte:		offset in bytes where the range ends (inclusive)
469  *
470  * Walk the list of under-writeback pages of the given address space
471  * in the given range and wait for all of them.  Check error status of
472  * the address space and return it.
473  *
474  * Since the error status of the address space is cleared by this function,
475  * callers are responsible for checking the return value and handling and/or
476  * reporting the error.
477  */
478 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
479 			    loff_t end_byte)
480 {
481 	int ret, ret2;
482 
483 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484 	ret2 = filemap_check_errors(mapping);
485 	if (!ret)
486 		ret = ret2;
487 
488 	return ret;
489 }
490 EXPORT_SYMBOL(filemap_fdatawait_range);
491 
492 /**
493  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494  * @mapping: address space structure to wait for
495  *
496  * Walk the list of under-writeback pages of the given address space
497  * and wait for all of them.  Unlike filemap_fdatawait(), this function
498  * does not clear error status of the address space.
499  *
500  * Use this function if callers don't handle errors themselves.  Expected
501  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
502  * fsfreeze(8)
503  */
504 void filemap_fdatawait_keep_errors(struct address_space *mapping)
505 {
506 	loff_t i_size = i_size_read(mapping->host);
507 
508 	if (i_size == 0)
509 		return;
510 
511 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
512 }
513 
514 /**
515  * filemap_fdatawait - wait for all under-writeback pages to complete
516  * @mapping: address space structure to wait for
517  *
518  * Walk the list of under-writeback pages of the given address space
519  * and wait for all of them.  Check error status of the address space
520  * and return it.
521  *
522  * Since the error status of the address space is cleared by this function,
523  * callers are responsible for checking the return value and handling and/or
524  * reporting the error.
525  */
526 int filemap_fdatawait(struct address_space *mapping)
527 {
528 	loff_t i_size = i_size_read(mapping->host);
529 
530 	if (i_size == 0)
531 		return 0;
532 
533 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
534 }
535 EXPORT_SYMBOL(filemap_fdatawait);
536 
537 int filemap_write_and_wait(struct address_space *mapping)
538 {
539 	int err = 0;
540 
541 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
542 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
543 		err = filemap_fdatawrite(mapping);
544 		/*
545 		 * Even if the above returned error, the pages may be
546 		 * written partially (e.g. -ENOSPC), so we wait for it.
547 		 * But the -EIO is special case, it may indicate the worst
548 		 * thing (e.g. bug) happened, so we avoid waiting for it.
549 		 */
550 		if (err != -EIO) {
551 			int err2 = filemap_fdatawait(mapping);
552 			if (!err)
553 				err = err2;
554 		}
555 	} else {
556 		err = filemap_check_errors(mapping);
557 	}
558 	return err;
559 }
560 EXPORT_SYMBOL(filemap_write_and_wait);
561 
562 /**
563  * filemap_write_and_wait_range - write out & wait on a file range
564  * @mapping:	the address_space for the pages
565  * @lstart:	offset in bytes where the range starts
566  * @lend:	offset in bytes where the range ends (inclusive)
567  *
568  * Write out and wait upon file offsets lstart->lend, inclusive.
569  *
570  * Note that `lend' is inclusive (describes the last byte to be written) so
571  * that this function can be used to write to the very end-of-file (end = -1).
572  */
573 int filemap_write_and_wait_range(struct address_space *mapping,
574 				 loff_t lstart, loff_t lend)
575 {
576 	int err = 0;
577 
578 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
579 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
580 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
581 						 WB_SYNC_ALL);
582 		/* See comment of filemap_write_and_wait() */
583 		if (err != -EIO) {
584 			int err2 = filemap_fdatawait_range(mapping,
585 						lstart, lend);
586 			if (!err)
587 				err = err2;
588 		}
589 	} else {
590 		err = filemap_check_errors(mapping);
591 	}
592 	return err;
593 }
594 EXPORT_SYMBOL(filemap_write_and_wait_range);
595 
596 /**
597  * replace_page_cache_page - replace a pagecache page with a new one
598  * @old:	page to be replaced
599  * @new:	page to replace with
600  * @gfp_mask:	allocation mode
601  *
602  * This function replaces a page in the pagecache with a new one.  On
603  * success it acquires the pagecache reference for the new page and
604  * drops it for the old page.  Both the old and new pages must be
605  * locked.  This function does not add the new page to the LRU, the
606  * caller must do that.
607  *
608  * The remove + add is atomic.  The only way this function can fail is
609  * memory allocation failure.
610  */
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
612 {
613 	int error;
614 
615 	VM_BUG_ON_PAGE(!PageLocked(old), old);
616 	VM_BUG_ON_PAGE(!PageLocked(new), new);
617 	VM_BUG_ON_PAGE(new->mapping, new);
618 
619 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
620 	if (!error) {
621 		struct address_space *mapping = old->mapping;
622 		void (*freepage)(struct page *);
623 		unsigned long flags;
624 
625 		pgoff_t offset = old->index;
626 		freepage = mapping->a_ops->freepage;
627 
628 		get_page(new);
629 		new->mapping = mapping;
630 		new->index = offset;
631 
632 		spin_lock_irqsave(&mapping->tree_lock, flags);
633 		__delete_from_page_cache(old, NULL);
634 		error = page_cache_tree_insert(mapping, new, NULL);
635 		BUG_ON(error);
636 
637 		/*
638 		 * hugetlb pages do not participate in page cache accounting.
639 		 */
640 		if (!PageHuge(new))
641 			__inc_node_page_state(new, NR_FILE_PAGES);
642 		if (PageSwapBacked(new))
643 			__inc_node_page_state(new, NR_SHMEM);
644 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
645 		mem_cgroup_migrate(old, new);
646 		radix_tree_preload_end();
647 		if (freepage)
648 			freepage(old);
649 		put_page(old);
650 	}
651 
652 	return error;
653 }
654 EXPORT_SYMBOL_GPL(replace_page_cache_page);
655 
656 static int __add_to_page_cache_locked(struct page *page,
657 				      struct address_space *mapping,
658 				      pgoff_t offset, gfp_t gfp_mask,
659 				      void **shadowp)
660 {
661 	int huge = PageHuge(page);
662 	struct mem_cgroup *memcg;
663 	int error;
664 
665 	VM_BUG_ON_PAGE(!PageLocked(page), page);
666 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
667 
668 	if (!huge) {
669 		error = mem_cgroup_try_charge(page, current->mm,
670 					      gfp_mask, &memcg, false);
671 		if (error)
672 			return error;
673 	}
674 
675 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
676 	if (error) {
677 		if (!huge)
678 			mem_cgroup_cancel_charge(page, memcg, false);
679 		return error;
680 	}
681 
682 	get_page(page);
683 	page->mapping = mapping;
684 	page->index = offset;
685 
686 	spin_lock_irq(&mapping->tree_lock);
687 	error = page_cache_tree_insert(mapping, page, shadowp);
688 	radix_tree_preload_end();
689 	if (unlikely(error))
690 		goto err_insert;
691 
692 	/* hugetlb pages do not participate in page cache accounting. */
693 	if (!huge)
694 		__inc_node_page_state(page, NR_FILE_PAGES);
695 	spin_unlock_irq(&mapping->tree_lock);
696 	if (!huge)
697 		mem_cgroup_commit_charge(page, memcg, false, false);
698 	trace_mm_filemap_add_to_page_cache(page);
699 	return 0;
700 err_insert:
701 	page->mapping = NULL;
702 	/* Leave page->index set: truncation relies upon it */
703 	spin_unlock_irq(&mapping->tree_lock);
704 	if (!huge)
705 		mem_cgroup_cancel_charge(page, memcg, false);
706 	put_page(page);
707 	return error;
708 }
709 
710 /**
711  * add_to_page_cache_locked - add a locked page to the pagecache
712  * @page:	page to add
713  * @mapping:	the page's address_space
714  * @offset:	page index
715  * @gfp_mask:	page allocation mode
716  *
717  * This function is used to add a page to the pagecache. It must be locked.
718  * This function does not add the page to the LRU.  The caller must do that.
719  */
720 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
721 		pgoff_t offset, gfp_t gfp_mask)
722 {
723 	return __add_to_page_cache_locked(page, mapping, offset,
724 					  gfp_mask, NULL);
725 }
726 EXPORT_SYMBOL(add_to_page_cache_locked);
727 
728 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
729 				pgoff_t offset, gfp_t gfp_mask)
730 {
731 	void *shadow = NULL;
732 	int ret;
733 
734 	__SetPageLocked(page);
735 	ret = __add_to_page_cache_locked(page, mapping, offset,
736 					 gfp_mask, &shadow);
737 	if (unlikely(ret))
738 		__ClearPageLocked(page);
739 	else {
740 		/*
741 		 * The page might have been evicted from cache only
742 		 * recently, in which case it should be activated like
743 		 * any other repeatedly accessed page.
744 		 * The exception is pages getting rewritten; evicting other
745 		 * data from the working set, only to cache data that will
746 		 * get overwritten with something else, is a waste of memory.
747 		 */
748 		if (!(gfp_mask & __GFP_WRITE) &&
749 		    shadow && workingset_refault(shadow)) {
750 			SetPageActive(page);
751 			workingset_activation(page);
752 		} else
753 			ClearPageActive(page);
754 		lru_cache_add(page);
755 	}
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
759 
760 #ifdef CONFIG_NUMA
761 struct page *__page_cache_alloc(gfp_t gfp)
762 {
763 	int n;
764 	struct page *page;
765 
766 	if (cpuset_do_page_mem_spread()) {
767 		unsigned int cpuset_mems_cookie;
768 		do {
769 			cpuset_mems_cookie = read_mems_allowed_begin();
770 			n = cpuset_mem_spread_node();
771 			page = __alloc_pages_node(n, gfp, 0);
772 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
773 
774 		return page;
775 	}
776 	return alloc_pages(gfp, 0);
777 }
778 EXPORT_SYMBOL(__page_cache_alloc);
779 #endif
780 
781 /*
782  * In order to wait for pages to become available there must be
783  * waitqueues associated with pages. By using a hash table of
784  * waitqueues where the bucket discipline is to maintain all
785  * waiters on the same queue and wake all when any of the pages
786  * become available, and for the woken contexts to check to be
787  * sure the appropriate page became available, this saves space
788  * at a cost of "thundering herd" phenomena during rare hash
789  * collisions.
790  */
791 wait_queue_head_t *page_waitqueue(struct page *page)
792 {
793 	const struct zone *zone = page_zone(page);
794 
795 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
796 }
797 EXPORT_SYMBOL(page_waitqueue);
798 
799 void wait_on_page_bit(struct page *page, int bit_nr)
800 {
801 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
802 
803 	if (test_bit(bit_nr, &page->flags))
804 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
805 							TASK_UNINTERRUPTIBLE);
806 }
807 EXPORT_SYMBOL(wait_on_page_bit);
808 
809 int wait_on_page_bit_killable(struct page *page, int bit_nr)
810 {
811 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
812 
813 	if (!test_bit(bit_nr, &page->flags))
814 		return 0;
815 
816 	return __wait_on_bit(page_waitqueue(page), &wait,
817 			     bit_wait_io, TASK_KILLABLE);
818 }
819 
820 int wait_on_page_bit_killable_timeout(struct page *page,
821 				       int bit_nr, unsigned long timeout)
822 {
823 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
824 
825 	wait.key.timeout = jiffies + timeout;
826 	if (!test_bit(bit_nr, &page->flags))
827 		return 0;
828 	return __wait_on_bit(page_waitqueue(page), &wait,
829 			     bit_wait_io_timeout, TASK_KILLABLE);
830 }
831 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
832 
833 /**
834  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
835  * @page: Page defining the wait queue of interest
836  * @waiter: Waiter to add to the queue
837  *
838  * Add an arbitrary @waiter to the wait queue for the nominated @page.
839  */
840 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
841 {
842 	wait_queue_head_t *q = page_waitqueue(page);
843 	unsigned long flags;
844 
845 	spin_lock_irqsave(&q->lock, flags);
846 	__add_wait_queue(q, waiter);
847 	spin_unlock_irqrestore(&q->lock, flags);
848 }
849 EXPORT_SYMBOL_GPL(add_page_wait_queue);
850 
851 /**
852  * unlock_page - unlock a locked page
853  * @page: the page
854  *
855  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
856  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
857  * mechanism between PageLocked pages and PageWriteback pages is shared.
858  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
859  *
860  * The mb is necessary to enforce ordering between the clear_bit and the read
861  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
862  */
863 void unlock_page(struct page *page)
864 {
865 	page = compound_head(page);
866 	VM_BUG_ON_PAGE(!PageLocked(page), page);
867 	clear_bit_unlock(PG_locked, &page->flags);
868 	smp_mb__after_atomic();
869 	wake_up_page(page, PG_locked);
870 }
871 EXPORT_SYMBOL(unlock_page);
872 
873 /**
874  * end_page_writeback - end writeback against a page
875  * @page: the page
876  */
877 void end_page_writeback(struct page *page)
878 {
879 	/*
880 	 * TestClearPageReclaim could be used here but it is an atomic
881 	 * operation and overkill in this particular case. Failing to
882 	 * shuffle a page marked for immediate reclaim is too mild to
883 	 * justify taking an atomic operation penalty at the end of
884 	 * ever page writeback.
885 	 */
886 	if (PageReclaim(page)) {
887 		ClearPageReclaim(page);
888 		rotate_reclaimable_page(page);
889 	}
890 
891 	if (!test_clear_page_writeback(page))
892 		BUG();
893 
894 	smp_mb__after_atomic();
895 	wake_up_page(page, PG_writeback);
896 }
897 EXPORT_SYMBOL(end_page_writeback);
898 
899 /*
900  * After completing I/O on a page, call this routine to update the page
901  * flags appropriately
902  */
903 void page_endio(struct page *page, bool is_write, int err)
904 {
905 	if (!is_write) {
906 		if (!err) {
907 			SetPageUptodate(page);
908 		} else {
909 			ClearPageUptodate(page);
910 			SetPageError(page);
911 		}
912 		unlock_page(page);
913 	} else {
914 		if (err) {
915 			SetPageError(page);
916 			if (page->mapping)
917 				mapping_set_error(page->mapping, err);
918 		}
919 		end_page_writeback(page);
920 	}
921 }
922 EXPORT_SYMBOL_GPL(page_endio);
923 
924 /**
925  * __lock_page - get a lock on the page, assuming we need to sleep to get it
926  * @page: the page to lock
927  */
928 void __lock_page(struct page *page)
929 {
930 	struct page *page_head = compound_head(page);
931 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
932 
933 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
934 							TASK_UNINTERRUPTIBLE);
935 }
936 EXPORT_SYMBOL(__lock_page);
937 
938 int __lock_page_killable(struct page *page)
939 {
940 	struct page *page_head = compound_head(page);
941 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
942 
943 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
944 					bit_wait_io, TASK_KILLABLE);
945 }
946 EXPORT_SYMBOL_GPL(__lock_page_killable);
947 
948 /*
949  * Return values:
950  * 1 - page is locked; mmap_sem is still held.
951  * 0 - page is not locked.
952  *     mmap_sem has been released (up_read()), unless flags had both
953  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
954  *     which case mmap_sem is still held.
955  *
956  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
957  * with the page locked and the mmap_sem unperturbed.
958  */
959 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
960 			 unsigned int flags)
961 {
962 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
963 		/*
964 		 * CAUTION! In this case, mmap_sem is not released
965 		 * even though return 0.
966 		 */
967 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
968 			return 0;
969 
970 		up_read(&mm->mmap_sem);
971 		if (flags & FAULT_FLAG_KILLABLE)
972 			wait_on_page_locked_killable(page);
973 		else
974 			wait_on_page_locked(page);
975 		return 0;
976 	} else {
977 		if (flags & FAULT_FLAG_KILLABLE) {
978 			int ret;
979 
980 			ret = __lock_page_killable(page);
981 			if (ret) {
982 				up_read(&mm->mmap_sem);
983 				return 0;
984 			}
985 		} else
986 			__lock_page(page);
987 		return 1;
988 	}
989 }
990 
991 /**
992  * page_cache_next_hole - find the next hole (not-present entry)
993  * @mapping: mapping
994  * @index: index
995  * @max_scan: maximum range to search
996  *
997  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
998  * lowest indexed hole.
999  *
1000  * Returns: the index of the hole if found, otherwise returns an index
1001  * outside of the set specified (in which case 'return - index >=
1002  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1003  * be returned.
1004  *
1005  * page_cache_next_hole may be called under rcu_read_lock. However,
1006  * like radix_tree_gang_lookup, this will not atomically search a
1007  * snapshot of the tree at a single point in time. For example, if a
1008  * hole is created at index 5, then subsequently a hole is created at
1009  * index 10, page_cache_next_hole covering both indexes may return 10
1010  * if called under rcu_read_lock.
1011  */
1012 pgoff_t page_cache_next_hole(struct address_space *mapping,
1013 			     pgoff_t index, unsigned long max_scan)
1014 {
1015 	unsigned long i;
1016 
1017 	for (i = 0; i < max_scan; i++) {
1018 		struct page *page;
1019 
1020 		page = radix_tree_lookup(&mapping->page_tree, index);
1021 		if (!page || radix_tree_exceptional_entry(page))
1022 			break;
1023 		index++;
1024 		if (index == 0)
1025 			break;
1026 	}
1027 
1028 	return index;
1029 }
1030 EXPORT_SYMBOL(page_cache_next_hole);
1031 
1032 /**
1033  * page_cache_prev_hole - find the prev hole (not-present entry)
1034  * @mapping: mapping
1035  * @index: index
1036  * @max_scan: maximum range to search
1037  *
1038  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1039  * the first hole.
1040  *
1041  * Returns: the index of the hole if found, otherwise returns an index
1042  * outside of the set specified (in which case 'index - return >=
1043  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1044  * will be returned.
1045  *
1046  * page_cache_prev_hole may be called under rcu_read_lock. However,
1047  * like radix_tree_gang_lookup, this will not atomically search a
1048  * snapshot of the tree at a single point in time. For example, if a
1049  * hole is created at index 10, then subsequently a hole is created at
1050  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1051  * called under rcu_read_lock.
1052  */
1053 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1054 			     pgoff_t index, unsigned long max_scan)
1055 {
1056 	unsigned long i;
1057 
1058 	for (i = 0; i < max_scan; i++) {
1059 		struct page *page;
1060 
1061 		page = radix_tree_lookup(&mapping->page_tree, index);
1062 		if (!page || radix_tree_exceptional_entry(page))
1063 			break;
1064 		index--;
1065 		if (index == ULONG_MAX)
1066 			break;
1067 	}
1068 
1069 	return index;
1070 }
1071 EXPORT_SYMBOL(page_cache_prev_hole);
1072 
1073 /**
1074  * find_get_entry - find and get a page cache entry
1075  * @mapping: the address_space to search
1076  * @offset: the page cache index
1077  *
1078  * Looks up the page cache slot at @mapping & @offset.  If there is a
1079  * page cache page, it is returned with an increased refcount.
1080  *
1081  * If the slot holds a shadow entry of a previously evicted page, or a
1082  * swap entry from shmem/tmpfs, it is returned.
1083  *
1084  * Otherwise, %NULL is returned.
1085  */
1086 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1087 {
1088 	void **pagep;
1089 	struct page *head, *page;
1090 
1091 	rcu_read_lock();
1092 repeat:
1093 	page = NULL;
1094 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1095 	if (pagep) {
1096 		page = radix_tree_deref_slot(pagep);
1097 		if (unlikely(!page))
1098 			goto out;
1099 		if (radix_tree_exception(page)) {
1100 			if (radix_tree_deref_retry(page))
1101 				goto repeat;
1102 			/*
1103 			 * A shadow entry of a recently evicted page,
1104 			 * or a swap entry from shmem/tmpfs.  Return
1105 			 * it without attempting to raise page count.
1106 			 */
1107 			goto out;
1108 		}
1109 
1110 		head = compound_head(page);
1111 		if (!page_cache_get_speculative(head))
1112 			goto repeat;
1113 
1114 		/* The page was split under us? */
1115 		if (compound_head(page) != head) {
1116 			put_page(head);
1117 			goto repeat;
1118 		}
1119 
1120 		/*
1121 		 * Has the page moved?
1122 		 * This is part of the lockless pagecache protocol. See
1123 		 * include/linux/pagemap.h for details.
1124 		 */
1125 		if (unlikely(page != *pagep)) {
1126 			put_page(head);
1127 			goto repeat;
1128 		}
1129 	}
1130 out:
1131 	rcu_read_unlock();
1132 
1133 	return page;
1134 }
1135 EXPORT_SYMBOL(find_get_entry);
1136 
1137 /**
1138  * find_lock_entry - locate, pin and lock a page cache entry
1139  * @mapping: the address_space to search
1140  * @offset: the page cache index
1141  *
1142  * Looks up the page cache slot at @mapping & @offset.  If there is a
1143  * page cache page, it is returned locked and with an increased
1144  * refcount.
1145  *
1146  * If the slot holds a shadow entry of a previously evicted page, or a
1147  * swap entry from shmem/tmpfs, it is returned.
1148  *
1149  * Otherwise, %NULL is returned.
1150  *
1151  * find_lock_entry() may sleep.
1152  */
1153 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1154 {
1155 	struct page *page;
1156 
1157 repeat:
1158 	page = find_get_entry(mapping, offset);
1159 	if (page && !radix_tree_exception(page)) {
1160 		lock_page(page);
1161 		/* Has the page been truncated? */
1162 		if (unlikely(page_mapping(page) != mapping)) {
1163 			unlock_page(page);
1164 			put_page(page);
1165 			goto repeat;
1166 		}
1167 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1168 	}
1169 	return page;
1170 }
1171 EXPORT_SYMBOL(find_lock_entry);
1172 
1173 /**
1174  * pagecache_get_page - find and get a page reference
1175  * @mapping: the address_space to search
1176  * @offset: the page index
1177  * @fgp_flags: PCG flags
1178  * @gfp_mask: gfp mask to use for the page cache data page allocation
1179  *
1180  * Looks up the page cache slot at @mapping & @offset.
1181  *
1182  * PCG flags modify how the page is returned.
1183  *
1184  * FGP_ACCESSED: the page will be marked accessed
1185  * FGP_LOCK: Page is return locked
1186  * FGP_CREAT: If page is not present then a new page is allocated using
1187  *		@gfp_mask and added to the page cache and the VM's LRU
1188  *		list. The page is returned locked and with an increased
1189  *		refcount. Otherwise, %NULL is returned.
1190  *
1191  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1192  * if the GFP flags specified for FGP_CREAT are atomic.
1193  *
1194  * If there is a page cache page, it is returned with an increased refcount.
1195  */
1196 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1197 	int fgp_flags, gfp_t gfp_mask)
1198 {
1199 	struct page *page;
1200 
1201 repeat:
1202 	page = find_get_entry(mapping, offset);
1203 	if (radix_tree_exceptional_entry(page))
1204 		page = NULL;
1205 	if (!page)
1206 		goto no_page;
1207 
1208 	if (fgp_flags & FGP_LOCK) {
1209 		if (fgp_flags & FGP_NOWAIT) {
1210 			if (!trylock_page(page)) {
1211 				put_page(page);
1212 				return NULL;
1213 			}
1214 		} else {
1215 			lock_page(page);
1216 		}
1217 
1218 		/* Has the page been truncated? */
1219 		if (unlikely(page->mapping != mapping)) {
1220 			unlock_page(page);
1221 			put_page(page);
1222 			goto repeat;
1223 		}
1224 		VM_BUG_ON_PAGE(page->index != offset, page);
1225 	}
1226 
1227 	if (page && (fgp_flags & FGP_ACCESSED))
1228 		mark_page_accessed(page);
1229 
1230 no_page:
1231 	if (!page && (fgp_flags & FGP_CREAT)) {
1232 		int err;
1233 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1234 			gfp_mask |= __GFP_WRITE;
1235 		if (fgp_flags & FGP_NOFS)
1236 			gfp_mask &= ~__GFP_FS;
1237 
1238 		page = __page_cache_alloc(gfp_mask);
1239 		if (!page)
1240 			return NULL;
1241 
1242 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1243 			fgp_flags |= FGP_LOCK;
1244 
1245 		/* Init accessed so avoid atomic mark_page_accessed later */
1246 		if (fgp_flags & FGP_ACCESSED)
1247 			__SetPageReferenced(page);
1248 
1249 		err = add_to_page_cache_lru(page, mapping, offset,
1250 				gfp_mask & GFP_RECLAIM_MASK);
1251 		if (unlikely(err)) {
1252 			put_page(page);
1253 			page = NULL;
1254 			if (err == -EEXIST)
1255 				goto repeat;
1256 		}
1257 	}
1258 
1259 	return page;
1260 }
1261 EXPORT_SYMBOL(pagecache_get_page);
1262 
1263 /**
1264  * find_get_entries - gang pagecache lookup
1265  * @mapping:	The address_space to search
1266  * @start:	The starting page cache index
1267  * @nr_entries:	The maximum number of entries
1268  * @entries:	Where the resulting entries are placed
1269  * @indices:	The cache indices corresponding to the entries in @entries
1270  *
1271  * find_get_entries() will search for and return a group of up to
1272  * @nr_entries entries in the mapping.  The entries are placed at
1273  * @entries.  find_get_entries() takes a reference against any actual
1274  * pages it returns.
1275  *
1276  * The search returns a group of mapping-contiguous page cache entries
1277  * with ascending indexes.  There may be holes in the indices due to
1278  * not-present pages.
1279  *
1280  * Any shadow entries of evicted pages, or swap entries from
1281  * shmem/tmpfs, are included in the returned array.
1282  *
1283  * find_get_entries() returns the number of pages and shadow entries
1284  * which were found.
1285  */
1286 unsigned find_get_entries(struct address_space *mapping,
1287 			  pgoff_t start, unsigned int nr_entries,
1288 			  struct page **entries, pgoff_t *indices)
1289 {
1290 	void **slot;
1291 	unsigned int ret = 0;
1292 	struct radix_tree_iter iter;
1293 
1294 	if (!nr_entries)
1295 		return 0;
1296 
1297 	rcu_read_lock();
1298 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1299 		struct page *head, *page;
1300 repeat:
1301 		page = radix_tree_deref_slot(slot);
1302 		if (unlikely(!page))
1303 			continue;
1304 		if (radix_tree_exception(page)) {
1305 			if (radix_tree_deref_retry(page)) {
1306 				slot = radix_tree_iter_retry(&iter);
1307 				continue;
1308 			}
1309 			/*
1310 			 * A shadow entry of a recently evicted page, a swap
1311 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1312 			 * without attempting to raise page count.
1313 			 */
1314 			goto export;
1315 		}
1316 
1317 		head = compound_head(page);
1318 		if (!page_cache_get_speculative(head))
1319 			goto repeat;
1320 
1321 		/* The page was split under us? */
1322 		if (compound_head(page) != head) {
1323 			put_page(head);
1324 			goto repeat;
1325 		}
1326 
1327 		/* Has the page moved? */
1328 		if (unlikely(page != *slot)) {
1329 			put_page(head);
1330 			goto repeat;
1331 		}
1332 export:
1333 		indices[ret] = iter.index;
1334 		entries[ret] = page;
1335 		if (++ret == nr_entries)
1336 			break;
1337 	}
1338 	rcu_read_unlock();
1339 	return ret;
1340 }
1341 
1342 /**
1343  * find_get_pages - gang pagecache lookup
1344  * @mapping:	The address_space to search
1345  * @start:	The starting page index
1346  * @nr_pages:	The maximum number of pages
1347  * @pages:	Where the resulting pages are placed
1348  *
1349  * find_get_pages() will search for and return a group of up to
1350  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1351  * find_get_pages() takes a reference against the returned pages.
1352  *
1353  * The search returns a group of mapping-contiguous pages with ascending
1354  * indexes.  There may be holes in the indices due to not-present pages.
1355  *
1356  * find_get_pages() returns the number of pages which were found.
1357  */
1358 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1359 			    unsigned int nr_pages, struct page **pages)
1360 {
1361 	struct radix_tree_iter iter;
1362 	void **slot;
1363 	unsigned ret = 0;
1364 
1365 	if (unlikely(!nr_pages))
1366 		return 0;
1367 
1368 	rcu_read_lock();
1369 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1370 		struct page *head, *page;
1371 repeat:
1372 		page = radix_tree_deref_slot(slot);
1373 		if (unlikely(!page))
1374 			continue;
1375 
1376 		if (radix_tree_exception(page)) {
1377 			if (radix_tree_deref_retry(page)) {
1378 				slot = radix_tree_iter_retry(&iter);
1379 				continue;
1380 			}
1381 			/*
1382 			 * A shadow entry of a recently evicted page,
1383 			 * or a swap entry from shmem/tmpfs.  Skip
1384 			 * over it.
1385 			 */
1386 			continue;
1387 		}
1388 
1389 		head = compound_head(page);
1390 		if (!page_cache_get_speculative(head))
1391 			goto repeat;
1392 
1393 		/* The page was split under us? */
1394 		if (compound_head(page) != head) {
1395 			put_page(head);
1396 			goto repeat;
1397 		}
1398 
1399 		/* Has the page moved? */
1400 		if (unlikely(page != *slot)) {
1401 			put_page(head);
1402 			goto repeat;
1403 		}
1404 
1405 		pages[ret] = page;
1406 		if (++ret == nr_pages)
1407 			break;
1408 	}
1409 
1410 	rcu_read_unlock();
1411 	return ret;
1412 }
1413 
1414 /**
1415  * find_get_pages_contig - gang contiguous pagecache lookup
1416  * @mapping:	The address_space to search
1417  * @index:	The starting page index
1418  * @nr_pages:	The maximum number of pages
1419  * @pages:	Where the resulting pages are placed
1420  *
1421  * find_get_pages_contig() works exactly like find_get_pages(), except
1422  * that the returned number of pages are guaranteed to be contiguous.
1423  *
1424  * find_get_pages_contig() returns the number of pages which were found.
1425  */
1426 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1427 			       unsigned int nr_pages, struct page **pages)
1428 {
1429 	struct radix_tree_iter iter;
1430 	void **slot;
1431 	unsigned int ret = 0;
1432 
1433 	if (unlikely(!nr_pages))
1434 		return 0;
1435 
1436 	rcu_read_lock();
1437 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1438 		struct page *head, *page;
1439 repeat:
1440 		page = radix_tree_deref_slot(slot);
1441 		/* The hole, there no reason to continue */
1442 		if (unlikely(!page))
1443 			break;
1444 
1445 		if (radix_tree_exception(page)) {
1446 			if (radix_tree_deref_retry(page)) {
1447 				slot = radix_tree_iter_retry(&iter);
1448 				continue;
1449 			}
1450 			/*
1451 			 * A shadow entry of a recently evicted page,
1452 			 * or a swap entry from shmem/tmpfs.  Stop
1453 			 * looking for contiguous pages.
1454 			 */
1455 			break;
1456 		}
1457 
1458 		head = compound_head(page);
1459 		if (!page_cache_get_speculative(head))
1460 			goto repeat;
1461 
1462 		/* The page was split under us? */
1463 		if (compound_head(page) != head) {
1464 			put_page(head);
1465 			goto repeat;
1466 		}
1467 
1468 		/* Has the page moved? */
1469 		if (unlikely(page != *slot)) {
1470 			put_page(head);
1471 			goto repeat;
1472 		}
1473 
1474 		/*
1475 		 * must check mapping and index after taking the ref.
1476 		 * otherwise we can get both false positives and false
1477 		 * negatives, which is just confusing to the caller.
1478 		 */
1479 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1480 			put_page(page);
1481 			break;
1482 		}
1483 
1484 		pages[ret] = page;
1485 		if (++ret == nr_pages)
1486 			break;
1487 	}
1488 	rcu_read_unlock();
1489 	return ret;
1490 }
1491 EXPORT_SYMBOL(find_get_pages_contig);
1492 
1493 /**
1494  * find_get_pages_tag - find and return pages that match @tag
1495  * @mapping:	the address_space to search
1496  * @index:	the starting page index
1497  * @tag:	the tag index
1498  * @nr_pages:	the maximum number of pages
1499  * @pages:	where the resulting pages are placed
1500  *
1501  * Like find_get_pages, except we only return pages which are tagged with
1502  * @tag.   We update @index to index the next page for the traversal.
1503  */
1504 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1505 			int tag, unsigned int nr_pages, struct page **pages)
1506 {
1507 	struct radix_tree_iter iter;
1508 	void **slot;
1509 	unsigned ret = 0;
1510 
1511 	if (unlikely(!nr_pages))
1512 		return 0;
1513 
1514 	rcu_read_lock();
1515 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1516 				   &iter, *index, tag) {
1517 		struct page *head, *page;
1518 repeat:
1519 		page = radix_tree_deref_slot(slot);
1520 		if (unlikely(!page))
1521 			continue;
1522 
1523 		if (radix_tree_exception(page)) {
1524 			if (radix_tree_deref_retry(page)) {
1525 				slot = radix_tree_iter_retry(&iter);
1526 				continue;
1527 			}
1528 			/*
1529 			 * A shadow entry of a recently evicted page.
1530 			 *
1531 			 * Those entries should never be tagged, but
1532 			 * this tree walk is lockless and the tags are
1533 			 * looked up in bulk, one radix tree node at a
1534 			 * time, so there is a sizable window for page
1535 			 * reclaim to evict a page we saw tagged.
1536 			 *
1537 			 * Skip over it.
1538 			 */
1539 			continue;
1540 		}
1541 
1542 		head = compound_head(page);
1543 		if (!page_cache_get_speculative(head))
1544 			goto repeat;
1545 
1546 		/* The page was split under us? */
1547 		if (compound_head(page) != head) {
1548 			put_page(head);
1549 			goto repeat;
1550 		}
1551 
1552 		/* Has the page moved? */
1553 		if (unlikely(page != *slot)) {
1554 			put_page(head);
1555 			goto repeat;
1556 		}
1557 
1558 		pages[ret] = page;
1559 		if (++ret == nr_pages)
1560 			break;
1561 	}
1562 
1563 	rcu_read_unlock();
1564 
1565 	if (ret)
1566 		*index = pages[ret - 1]->index + 1;
1567 
1568 	return ret;
1569 }
1570 EXPORT_SYMBOL(find_get_pages_tag);
1571 
1572 /**
1573  * find_get_entries_tag - find and return entries that match @tag
1574  * @mapping:	the address_space to search
1575  * @start:	the starting page cache index
1576  * @tag:	the tag index
1577  * @nr_entries:	the maximum number of entries
1578  * @entries:	where the resulting entries are placed
1579  * @indices:	the cache indices corresponding to the entries in @entries
1580  *
1581  * Like find_get_entries, except we only return entries which are tagged with
1582  * @tag.
1583  */
1584 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1585 			int tag, unsigned int nr_entries,
1586 			struct page **entries, pgoff_t *indices)
1587 {
1588 	void **slot;
1589 	unsigned int ret = 0;
1590 	struct radix_tree_iter iter;
1591 
1592 	if (!nr_entries)
1593 		return 0;
1594 
1595 	rcu_read_lock();
1596 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1597 				   &iter, start, tag) {
1598 		struct page *head, *page;
1599 repeat:
1600 		page = radix_tree_deref_slot(slot);
1601 		if (unlikely(!page))
1602 			continue;
1603 		if (radix_tree_exception(page)) {
1604 			if (radix_tree_deref_retry(page)) {
1605 				slot = radix_tree_iter_retry(&iter);
1606 				continue;
1607 			}
1608 
1609 			/*
1610 			 * A shadow entry of a recently evicted page, a swap
1611 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1612 			 * without attempting to raise page count.
1613 			 */
1614 			goto export;
1615 		}
1616 
1617 		head = compound_head(page);
1618 		if (!page_cache_get_speculative(head))
1619 			goto repeat;
1620 
1621 		/* The page was split under us? */
1622 		if (compound_head(page) != head) {
1623 			put_page(head);
1624 			goto repeat;
1625 		}
1626 
1627 		/* Has the page moved? */
1628 		if (unlikely(page != *slot)) {
1629 			put_page(head);
1630 			goto repeat;
1631 		}
1632 export:
1633 		indices[ret] = iter.index;
1634 		entries[ret] = page;
1635 		if (++ret == nr_entries)
1636 			break;
1637 	}
1638 	rcu_read_unlock();
1639 	return ret;
1640 }
1641 EXPORT_SYMBOL(find_get_entries_tag);
1642 
1643 /*
1644  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1645  * a _large_ part of the i/o request. Imagine the worst scenario:
1646  *
1647  *      ---R__________________________________________B__________
1648  *         ^ reading here                             ^ bad block(assume 4k)
1649  *
1650  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1651  * => failing the whole request => read(R) => read(R+1) =>
1652  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1653  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1654  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1655  *
1656  * It is going insane. Fix it by quickly scaling down the readahead size.
1657  */
1658 static void shrink_readahead_size_eio(struct file *filp,
1659 					struct file_ra_state *ra)
1660 {
1661 	ra->ra_pages /= 4;
1662 }
1663 
1664 /**
1665  * do_generic_file_read - generic file read routine
1666  * @filp:	the file to read
1667  * @ppos:	current file position
1668  * @iter:	data destination
1669  * @written:	already copied
1670  *
1671  * This is a generic file read routine, and uses the
1672  * mapping->a_ops->readpage() function for the actual low-level stuff.
1673  *
1674  * This is really ugly. But the goto's actually try to clarify some
1675  * of the logic when it comes to error handling etc.
1676  */
1677 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1678 		struct iov_iter *iter, ssize_t written)
1679 {
1680 	struct address_space *mapping = filp->f_mapping;
1681 	struct inode *inode = mapping->host;
1682 	struct file_ra_state *ra = &filp->f_ra;
1683 	pgoff_t index;
1684 	pgoff_t last_index;
1685 	pgoff_t prev_index;
1686 	unsigned long offset;      /* offset into pagecache page */
1687 	unsigned int prev_offset;
1688 	int error = 0;
1689 
1690 	index = *ppos >> PAGE_SHIFT;
1691 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1692 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1693 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1694 	offset = *ppos & ~PAGE_MASK;
1695 
1696 	for (;;) {
1697 		struct page *page;
1698 		pgoff_t end_index;
1699 		loff_t isize;
1700 		unsigned long nr, ret;
1701 
1702 		cond_resched();
1703 find_page:
1704 		page = find_get_page(mapping, index);
1705 		if (!page) {
1706 			page_cache_sync_readahead(mapping,
1707 					ra, filp,
1708 					index, last_index - index);
1709 			page = find_get_page(mapping, index);
1710 			if (unlikely(page == NULL))
1711 				goto no_cached_page;
1712 		}
1713 		if (PageReadahead(page)) {
1714 			page_cache_async_readahead(mapping,
1715 					ra, filp, page,
1716 					index, last_index - index);
1717 		}
1718 		if (!PageUptodate(page)) {
1719 			/*
1720 			 * See comment in do_read_cache_page on why
1721 			 * wait_on_page_locked is used to avoid unnecessarily
1722 			 * serialisations and why it's safe.
1723 			 */
1724 			wait_on_page_locked_killable(page);
1725 			if (PageUptodate(page))
1726 				goto page_ok;
1727 
1728 			if (inode->i_blkbits == PAGE_SHIFT ||
1729 					!mapping->a_ops->is_partially_uptodate)
1730 				goto page_not_up_to_date;
1731 			if (!trylock_page(page))
1732 				goto page_not_up_to_date;
1733 			/* Did it get truncated before we got the lock? */
1734 			if (!page->mapping)
1735 				goto page_not_up_to_date_locked;
1736 			if (!mapping->a_ops->is_partially_uptodate(page,
1737 							offset, iter->count))
1738 				goto page_not_up_to_date_locked;
1739 			unlock_page(page);
1740 		}
1741 page_ok:
1742 		/*
1743 		 * i_size must be checked after we know the page is Uptodate.
1744 		 *
1745 		 * Checking i_size after the check allows us to calculate
1746 		 * the correct value for "nr", which means the zero-filled
1747 		 * part of the page is not copied back to userspace (unless
1748 		 * another truncate extends the file - this is desired though).
1749 		 */
1750 
1751 		isize = i_size_read(inode);
1752 		end_index = (isize - 1) >> PAGE_SHIFT;
1753 		if (unlikely(!isize || index > end_index)) {
1754 			put_page(page);
1755 			goto out;
1756 		}
1757 
1758 		/* nr is the maximum number of bytes to copy from this page */
1759 		nr = PAGE_SIZE;
1760 		if (index == end_index) {
1761 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1762 			if (nr <= offset) {
1763 				put_page(page);
1764 				goto out;
1765 			}
1766 		}
1767 		nr = nr - offset;
1768 
1769 		/* If users can be writing to this page using arbitrary
1770 		 * virtual addresses, take care about potential aliasing
1771 		 * before reading the page on the kernel side.
1772 		 */
1773 		if (mapping_writably_mapped(mapping))
1774 			flush_dcache_page(page);
1775 
1776 		/*
1777 		 * When a sequential read accesses a page several times,
1778 		 * only mark it as accessed the first time.
1779 		 */
1780 		if (prev_index != index || offset != prev_offset)
1781 			mark_page_accessed(page);
1782 		prev_index = index;
1783 
1784 		/*
1785 		 * Ok, we have the page, and it's up-to-date, so
1786 		 * now we can copy it to user space...
1787 		 */
1788 
1789 		ret = copy_page_to_iter(page, offset, nr, iter);
1790 		offset += ret;
1791 		index += offset >> PAGE_SHIFT;
1792 		offset &= ~PAGE_MASK;
1793 		prev_offset = offset;
1794 
1795 		put_page(page);
1796 		written += ret;
1797 		if (!iov_iter_count(iter))
1798 			goto out;
1799 		if (ret < nr) {
1800 			error = -EFAULT;
1801 			goto out;
1802 		}
1803 		continue;
1804 
1805 page_not_up_to_date:
1806 		/* Get exclusive access to the page ... */
1807 		error = lock_page_killable(page);
1808 		if (unlikely(error))
1809 			goto readpage_error;
1810 
1811 page_not_up_to_date_locked:
1812 		/* Did it get truncated before we got the lock? */
1813 		if (!page->mapping) {
1814 			unlock_page(page);
1815 			put_page(page);
1816 			continue;
1817 		}
1818 
1819 		/* Did somebody else fill it already? */
1820 		if (PageUptodate(page)) {
1821 			unlock_page(page);
1822 			goto page_ok;
1823 		}
1824 
1825 readpage:
1826 		/*
1827 		 * A previous I/O error may have been due to temporary
1828 		 * failures, eg. multipath errors.
1829 		 * PG_error will be set again if readpage fails.
1830 		 */
1831 		ClearPageError(page);
1832 		/* Start the actual read. The read will unlock the page. */
1833 		error = mapping->a_ops->readpage(filp, page);
1834 
1835 		if (unlikely(error)) {
1836 			if (error == AOP_TRUNCATED_PAGE) {
1837 				put_page(page);
1838 				error = 0;
1839 				goto find_page;
1840 			}
1841 			goto readpage_error;
1842 		}
1843 
1844 		if (!PageUptodate(page)) {
1845 			error = lock_page_killable(page);
1846 			if (unlikely(error))
1847 				goto readpage_error;
1848 			if (!PageUptodate(page)) {
1849 				if (page->mapping == NULL) {
1850 					/*
1851 					 * invalidate_mapping_pages got it
1852 					 */
1853 					unlock_page(page);
1854 					put_page(page);
1855 					goto find_page;
1856 				}
1857 				unlock_page(page);
1858 				shrink_readahead_size_eio(filp, ra);
1859 				error = -EIO;
1860 				goto readpage_error;
1861 			}
1862 			unlock_page(page);
1863 		}
1864 
1865 		goto page_ok;
1866 
1867 readpage_error:
1868 		/* UHHUH! A synchronous read error occurred. Report it */
1869 		put_page(page);
1870 		goto out;
1871 
1872 no_cached_page:
1873 		/*
1874 		 * Ok, it wasn't cached, so we need to create a new
1875 		 * page..
1876 		 */
1877 		page = page_cache_alloc_cold(mapping);
1878 		if (!page) {
1879 			error = -ENOMEM;
1880 			goto out;
1881 		}
1882 		error = add_to_page_cache_lru(page, mapping, index,
1883 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1884 		if (error) {
1885 			put_page(page);
1886 			if (error == -EEXIST) {
1887 				error = 0;
1888 				goto find_page;
1889 			}
1890 			goto out;
1891 		}
1892 		goto readpage;
1893 	}
1894 
1895 out:
1896 	ra->prev_pos = prev_index;
1897 	ra->prev_pos <<= PAGE_SHIFT;
1898 	ra->prev_pos |= prev_offset;
1899 
1900 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1901 	file_accessed(filp);
1902 	return written ? written : error;
1903 }
1904 
1905 /**
1906  * generic_file_read_iter - generic filesystem read routine
1907  * @iocb:	kernel I/O control block
1908  * @iter:	destination for the data read
1909  *
1910  * This is the "read_iter()" routine for all filesystems
1911  * that can use the page cache directly.
1912  */
1913 ssize_t
1914 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1915 {
1916 	struct file *file = iocb->ki_filp;
1917 	ssize_t retval = 0;
1918 	size_t count = iov_iter_count(iter);
1919 
1920 	if (!count)
1921 		goto out; /* skip atime */
1922 
1923 	if (iocb->ki_flags & IOCB_DIRECT) {
1924 		struct address_space *mapping = file->f_mapping;
1925 		struct inode *inode = mapping->host;
1926 		struct iov_iter data = *iter;
1927 		loff_t size;
1928 
1929 		size = i_size_read(inode);
1930 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1931 					iocb->ki_pos + count - 1);
1932 		if (retval < 0)
1933 			goto out;
1934 
1935 		file_accessed(file);
1936 
1937 		retval = mapping->a_ops->direct_IO(iocb, &data);
1938 		if (retval > 0) {
1939 			iocb->ki_pos += retval;
1940 			iov_iter_advance(iter, retval);
1941 		}
1942 
1943 		/*
1944 		 * Btrfs can have a short DIO read if we encounter
1945 		 * compressed extents, so if there was an error, or if
1946 		 * we've already read everything we wanted to, or if
1947 		 * there was a short read because we hit EOF, go ahead
1948 		 * and return.  Otherwise fallthrough to buffered io for
1949 		 * the rest of the read.  Buffered reads will not work for
1950 		 * DAX files, so don't bother trying.
1951 		 */
1952 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1953 		    IS_DAX(inode))
1954 			goto out;
1955 	}
1956 
1957 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1958 out:
1959 	return retval;
1960 }
1961 EXPORT_SYMBOL(generic_file_read_iter);
1962 
1963 #ifdef CONFIG_MMU
1964 /**
1965  * page_cache_read - adds requested page to the page cache if not already there
1966  * @file:	file to read
1967  * @offset:	page index
1968  * @gfp_mask:	memory allocation flags
1969  *
1970  * This adds the requested page to the page cache if it isn't already there,
1971  * and schedules an I/O to read in its contents from disk.
1972  */
1973 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1974 {
1975 	struct address_space *mapping = file->f_mapping;
1976 	struct page *page;
1977 	int ret;
1978 
1979 	do {
1980 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1981 		if (!page)
1982 			return -ENOMEM;
1983 
1984 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1985 		if (ret == 0)
1986 			ret = mapping->a_ops->readpage(file, page);
1987 		else if (ret == -EEXIST)
1988 			ret = 0; /* losing race to add is OK */
1989 
1990 		put_page(page);
1991 
1992 	} while (ret == AOP_TRUNCATED_PAGE);
1993 
1994 	return ret;
1995 }
1996 
1997 #define MMAP_LOTSAMISS  (100)
1998 
1999 /*
2000  * Synchronous readahead happens when we don't even find
2001  * a page in the page cache at all.
2002  */
2003 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2004 				   struct file_ra_state *ra,
2005 				   struct file *file,
2006 				   pgoff_t offset)
2007 {
2008 	struct address_space *mapping = file->f_mapping;
2009 
2010 	/* If we don't want any read-ahead, don't bother */
2011 	if (vma->vm_flags & VM_RAND_READ)
2012 		return;
2013 	if (!ra->ra_pages)
2014 		return;
2015 
2016 	if (vma->vm_flags & VM_SEQ_READ) {
2017 		page_cache_sync_readahead(mapping, ra, file, offset,
2018 					  ra->ra_pages);
2019 		return;
2020 	}
2021 
2022 	/* Avoid banging the cache line if not needed */
2023 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2024 		ra->mmap_miss++;
2025 
2026 	/*
2027 	 * Do we miss much more than hit in this file? If so,
2028 	 * stop bothering with read-ahead. It will only hurt.
2029 	 */
2030 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2031 		return;
2032 
2033 	/*
2034 	 * mmap read-around
2035 	 */
2036 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2037 	ra->size = ra->ra_pages;
2038 	ra->async_size = ra->ra_pages / 4;
2039 	ra_submit(ra, mapping, file);
2040 }
2041 
2042 /*
2043  * Asynchronous readahead happens when we find the page and PG_readahead,
2044  * so we want to possibly extend the readahead further..
2045  */
2046 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2047 				    struct file_ra_state *ra,
2048 				    struct file *file,
2049 				    struct page *page,
2050 				    pgoff_t offset)
2051 {
2052 	struct address_space *mapping = file->f_mapping;
2053 
2054 	/* If we don't want any read-ahead, don't bother */
2055 	if (vma->vm_flags & VM_RAND_READ)
2056 		return;
2057 	if (ra->mmap_miss > 0)
2058 		ra->mmap_miss--;
2059 	if (PageReadahead(page))
2060 		page_cache_async_readahead(mapping, ra, file,
2061 					   page, offset, ra->ra_pages);
2062 }
2063 
2064 /**
2065  * filemap_fault - read in file data for page fault handling
2066  * @vma:	vma in which the fault was taken
2067  * @vmf:	struct vm_fault containing details of the fault
2068  *
2069  * filemap_fault() is invoked via the vma operations vector for a
2070  * mapped memory region to read in file data during a page fault.
2071  *
2072  * The goto's are kind of ugly, but this streamlines the normal case of having
2073  * it in the page cache, and handles the special cases reasonably without
2074  * having a lot of duplicated code.
2075  *
2076  * vma->vm_mm->mmap_sem must be held on entry.
2077  *
2078  * If our return value has VM_FAULT_RETRY set, it's because
2079  * lock_page_or_retry() returned 0.
2080  * The mmap_sem has usually been released in this case.
2081  * See __lock_page_or_retry() for the exception.
2082  *
2083  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2084  * has not been released.
2085  *
2086  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2087  */
2088 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2089 {
2090 	int error;
2091 	struct file *file = vma->vm_file;
2092 	struct address_space *mapping = file->f_mapping;
2093 	struct file_ra_state *ra = &file->f_ra;
2094 	struct inode *inode = mapping->host;
2095 	pgoff_t offset = vmf->pgoff;
2096 	struct page *page;
2097 	loff_t size;
2098 	int ret = 0;
2099 
2100 	size = round_up(i_size_read(inode), PAGE_SIZE);
2101 	if (offset >= size >> PAGE_SHIFT)
2102 		return VM_FAULT_SIGBUS;
2103 
2104 	/*
2105 	 * Do we have something in the page cache already?
2106 	 */
2107 	page = find_get_page(mapping, offset);
2108 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2109 		/*
2110 		 * We found the page, so try async readahead before
2111 		 * waiting for the lock.
2112 		 */
2113 		do_async_mmap_readahead(vma, ra, file, page, offset);
2114 	} else if (!page) {
2115 		/* No page in the page cache at all */
2116 		do_sync_mmap_readahead(vma, ra, file, offset);
2117 		count_vm_event(PGMAJFAULT);
2118 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2119 		ret = VM_FAULT_MAJOR;
2120 retry_find:
2121 		page = find_get_page(mapping, offset);
2122 		if (!page)
2123 			goto no_cached_page;
2124 	}
2125 
2126 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2127 		put_page(page);
2128 		return ret | VM_FAULT_RETRY;
2129 	}
2130 
2131 	/* Did it get truncated? */
2132 	if (unlikely(page->mapping != mapping)) {
2133 		unlock_page(page);
2134 		put_page(page);
2135 		goto retry_find;
2136 	}
2137 	VM_BUG_ON_PAGE(page->index != offset, page);
2138 
2139 	/*
2140 	 * We have a locked page in the page cache, now we need to check
2141 	 * that it's up-to-date. If not, it is going to be due to an error.
2142 	 */
2143 	if (unlikely(!PageUptodate(page)))
2144 		goto page_not_uptodate;
2145 
2146 	/*
2147 	 * Found the page and have a reference on it.
2148 	 * We must recheck i_size under page lock.
2149 	 */
2150 	size = round_up(i_size_read(inode), PAGE_SIZE);
2151 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2152 		unlock_page(page);
2153 		put_page(page);
2154 		return VM_FAULT_SIGBUS;
2155 	}
2156 
2157 	vmf->page = page;
2158 	return ret | VM_FAULT_LOCKED;
2159 
2160 no_cached_page:
2161 	/*
2162 	 * We're only likely to ever get here if MADV_RANDOM is in
2163 	 * effect.
2164 	 */
2165 	error = page_cache_read(file, offset, vmf->gfp_mask);
2166 
2167 	/*
2168 	 * The page we want has now been added to the page cache.
2169 	 * In the unlikely event that someone removed it in the
2170 	 * meantime, we'll just come back here and read it again.
2171 	 */
2172 	if (error >= 0)
2173 		goto retry_find;
2174 
2175 	/*
2176 	 * An error return from page_cache_read can result if the
2177 	 * system is low on memory, or a problem occurs while trying
2178 	 * to schedule I/O.
2179 	 */
2180 	if (error == -ENOMEM)
2181 		return VM_FAULT_OOM;
2182 	return VM_FAULT_SIGBUS;
2183 
2184 page_not_uptodate:
2185 	/*
2186 	 * Umm, take care of errors if the page isn't up-to-date.
2187 	 * Try to re-read it _once_. We do this synchronously,
2188 	 * because there really aren't any performance issues here
2189 	 * and we need to check for errors.
2190 	 */
2191 	ClearPageError(page);
2192 	error = mapping->a_ops->readpage(file, page);
2193 	if (!error) {
2194 		wait_on_page_locked(page);
2195 		if (!PageUptodate(page))
2196 			error = -EIO;
2197 	}
2198 	put_page(page);
2199 
2200 	if (!error || error == AOP_TRUNCATED_PAGE)
2201 		goto retry_find;
2202 
2203 	/* Things didn't work out. Return zero to tell the mm layer so. */
2204 	shrink_readahead_size_eio(file, ra);
2205 	return VM_FAULT_SIGBUS;
2206 }
2207 EXPORT_SYMBOL(filemap_fault);
2208 
2209 void filemap_map_pages(struct fault_env *fe,
2210 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2211 {
2212 	struct radix_tree_iter iter;
2213 	void **slot;
2214 	struct file *file = fe->vma->vm_file;
2215 	struct address_space *mapping = file->f_mapping;
2216 	pgoff_t last_pgoff = start_pgoff;
2217 	loff_t size;
2218 	struct page *head, *page;
2219 
2220 	rcu_read_lock();
2221 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2222 			start_pgoff) {
2223 		if (iter.index > end_pgoff)
2224 			break;
2225 repeat:
2226 		page = radix_tree_deref_slot(slot);
2227 		if (unlikely(!page))
2228 			goto next;
2229 		if (radix_tree_exception(page)) {
2230 			if (radix_tree_deref_retry(page)) {
2231 				slot = radix_tree_iter_retry(&iter);
2232 				continue;
2233 			}
2234 			goto next;
2235 		}
2236 
2237 		head = compound_head(page);
2238 		if (!page_cache_get_speculative(head))
2239 			goto repeat;
2240 
2241 		/* The page was split under us? */
2242 		if (compound_head(page) != head) {
2243 			put_page(head);
2244 			goto repeat;
2245 		}
2246 
2247 		/* Has the page moved? */
2248 		if (unlikely(page != *slot)) {
2249 			put_page(head);
2250 			goto repeat;
2251 		}
2252 
2253 		if (!PageUptodate(page) ||
2254 				PageReadahead(page) ||
2255 				PageHWPoison(page))
2256 			goto skip;
2257 		if (!trylock_page(page))
2258 			goto skip;
2259 
2260 		if (page->mapping != mapping || !PageUptodate(page))
2261 			goto unlock;
2262 
2263 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2264 		if (page->index >= size >> PAGE_SHIFT)
2265 			goto unlock;
2266 
2267 		if (file->f_ra.mmap_miss > 0)
2268 			file->f_ra.mmap_miss--;
2269 
2270 		fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2271 		if (fe->pte)
2272 			fe->pte += iter.index - last_pgoff;
2273 		last_pgoff = iter.index;
2274 		if (alloc_set_pte(fe, NULL, page))
2275 			goto unlock;
2276 		unlock_page(page);
2277 		goto next;
2278 unlock:
2279 		unlock_page(page);
2280 skip:
2281 		put_page(page);
2282 next:
2283 		/* Huge page is mapped? No need to proceed. */
2284 		if (pmd_trans_huge(*fe->pmd))
2285 			break;
2286 		if (iter.index == end_pgoff)
2287 			break;
2288 	}
2289 	rcu_read_unlock();
2290 }
2291 EXPORT_SYMBOL(filemap_map_pages);
2292 
2293 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2294 {
2295 	struct page *page = vmf->page;
2296 	struct inode *inode = file_inode(vma->vm_file);
2297 	int ret = VM_FAULT_LOCKED;
2298 
2299 	sb_start_pagefault(inode->i_sb);
2300 	file_update_time(vma->vm_file);
2301 	lock_page(page);
2302 	if (page->mapping != inode->i_mapping) {
2303 		unlock_page(page);
2304 		ret = VM_FAULT_NOPAGE;
2305 		goto out;
2306 	}
2307 	/*
2308 	 * We mark the page dirty already here so that when freeze is in
2309 	 * progress, we are guaranteed that writeback during freezing will
2310 	 * see the dirty page and writeprotect it again.
2311 	 */
2312 	set_page_dirty(page);
2313 	wait_for_stable_page(page);
2314 out:
2315 	sb_end_pagefault(inode->i_sb);
2316 	return ret;
2317 }
2318 EXPORT_SYMBOL(filemap_page_mkwrite);
2319 
2320 const struct vm_operations_struct generic_file_vm_ops = {
2321 	.fault		= filemap_fault,
2322 	.map_pages	= filemap_map_pages,
2323 	.page_mkwrite	= filemap_page_mkwrite,
2324 };
2325 
2326 /* This is used for a general mmap of a disk file */
2327 
2328 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2329 {
2330 	struct address_space *mapping = file->f_mapping;
2331 
2332 	if (!mapping->a_ops->readpage)
2333 		return -ENOEXEC;
2334 	file_accessed(file);
2335 	vma->vm_ops = &generic_file_vm_ops;
2336 	return 0;
2337 }
2338 
2339 /*
2340  * This is for filesystems which do not implement ->writepage.
2341  */
2342 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2343 {
2344 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2345 		return -EINVAL;
2346 	return generic_file_mmap(file, vma);
2347 }
2348 #else
2349 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2350 {
2351 	return -ENOSYS;
2352 }
2353 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2354 {
2355 	return -ENOSYS;
2356 }
2357 #endif /* CONFIG_MMU */
2358 
2359 EXPORT_SYMBOL(generic_file_mmap);
2360 EXPORT_SYMBOL(generic_file_readonly_mmap);
2361 
2362 static struct page *wait_on_page_read(struct page *page)
2363 {
2364 	if (!IS_ERR(page)) {
2365 		wait_on_page_locked(page);
2366 		if (!PageUptodate(page)) {
2367 			put_page(page);
2368 			page = ERR_PTR(-EIO);
2369 		}
2370 	}
2371 	return page;
2372 }
2373 
2374 static struct page *do_read_cache_page(struct address_space *mapping,
2375 				pgoff_t index,
2376 				int (*filler)(void *, struct page *),
2377 				void *data,
2378 				gfp_t gfp)
2379 {
2380 	struct page *page;
2381 	int err;
2382 repeat:
2383 	page = find_get_page(mapping, index);
2384 	if (!page) {
2385 		page = __page_cache_alloc(gfp | __GFP_COLD);
2386 		if (!page)
2387 			return ERR_PTR(-ENOMEM);
2388 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2389 		if (unlikely(err)) {
2390 			put_page(page);
2391 			if (err == -EEXIST)
2392 				goto repeat;
2393 			/* Presumably ENOMEM for radix tree node */
2394 			return ERR_PTR(err);
2395 		}
2396 
2397 filler:
2398 		err = filler(data, page);
2399 		if (err < 0) {
2400 			put_page(page);
2401 			return ERR_PTR(err);
2402 		}
2403 
2404 		page = wait_on_page_read(page);
2405 		if (IS_ERR(page))
2406 			return page;
2407 		goto out;
2408 	}
2409 	if (PageUptodate(page))
2410 		goto out;
2411 
2412 	/*
2413 	 * Page is not up to date and may be locked due one of the following
2414 	 * case a: Page is being filled and the page lock is held
2415 	 * case b: Read/write error clearing the page uptodate status
2416 	 * case c: Truncation in progress (page locked)
2417 	 * case d: Reclaim in progress
2418 	 *
2419 	 * Case a, the page will be up to date when the page is unlocked.
2420 	 *    There is no need to serialise on the page lock here as the page
2421 	 *    is pinned so the lock gives no additional protection. Even if the
2422 	 *    the page is truncated, the data is still valid if PageUptodate as
2423 	 *    it's a race vs truncate race.
2424 	 * Case b, the page will not be up to date
2425 	 * Case c, the page may be truncated but in itself, the data may still
2426 	 *    be valid after IO completes as it's a read vs truncate race. The
2427 	 *    operation must restart if the page is not uptodate on unlock but
2428 	 *    otherwise serialising on page lock to stabilise the mapping gives
2429 	 *    no additional guarantees to the caller as the page lock is
2430 	 *    released before return.
2431 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2432 	 *    will be a race with remove_mapping that determines if the mapping
2433 	 *    is valid on unlock but otherwise the data is valid and there is
2434 	 *    no need to serialise with page lock.
2435 	 *
2436 	 * As the page lock gives no additional guarantee, we optimistically
2437 	 * wait on the page to be unlocked and check if it's up to date and
2438 	 * use the page if it is. Otherwise, the page lock is required to
2439 	 * distinguish between the different cases. The motivation is that we
2440 	 * avoid spurious serialisations and wakeups when multiple processes
2441 	 * wait on the same page for IO to complete.
2442 	 */
2443 	wait_on_page_locked(page);
2444 	if (PageUptodate(page))
2445 		goto out;
2446 
2447 	/* Distinguish between all the cases under the safety of the lock */
2448 	lock_page(page);
2449 
2450 	/* Case c or d, restart the operation */
2451 	if (!page->mapping) {
2452 		unlock_page(page);
2453 		put_page(page);
2454 		goto repeat;
2455 	}
2456 
2457 	/* Someone else locked and filled the page in a very small window */
2458 	if (PageUptodate(page)) {
2459 		unlock_page(page);
2460 		goto out;
2461 	}
2462 	goto filler;
2463 
2464 out:
2465 	mark_page_accessed(page);
2466 	return page;
2467 }
2468 
2469 /**
2470  * read_cache_page - read into page cache, fill it if needed
2471  * @mapping:	the page's address_space
2472  * @index:	the page index
2473  * @filler:	function to perform the read
2474  * @data:	first arg to filler(data, page) function, often left as NULL
2475  *
2476  * Read into the page cache. If a page already exists, and PageUptodate() is
2477  * not set, try to fill the page and wait for it to become unlocked.
2478  *
2479  * If the page does not get brought uptodate, return -EIO.
2480  */
2481 struct page *read_cache_page(struct address_space *mapping,
2482 				pgoff_t index,
2483 				int (*filler)(void *, struct page *),
2484 				void *data)
2485 {
2486 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2487 }
2488 EXPORT_SYMBOL(read_cache_page);
2489 
2490 /**
2491  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2492  * @mapping:	the page's address_space
2493  * @index:	the page index
2494  * @gfp:	the page allocator flags to use if allocating
2495  *
2496  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2497  * any new page allocations done using the specified allocation flags.
2498  *
2499  * If the page does not get brought uptodate, return -EIO.
2500  */
2501 struct page *read_cache_page_gfp(struct address_space *mapping,
2502 				pgoff_t index,
2503 				gfp_t gfp)
2504 {
2505 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2506 
2507 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2508 }
2509 EXPORT_SYMBOL(read_cache_page_gfp);
2510 
2511 /*
2512  * Performs necessary checks before doing a write
2513  *
2514  * Can adjust writing position or amount of bytes to write.
2515  * Returns appropriate error code that caller should return or
2516  * zero in case that write should be allowed.
2517  */
2518 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2519 {
2520 	struct file *file = iocb->ki_filp;
2521 	struct inode *inode = file->f_mapping->host;
2522 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2523 	loff_t pos;
2524 
2525 	if (!iov_iter_count(from))
2526 		return 0;
2527 
2528 	/* FIXME: this is for backwards compatibility with 2.4 */
2529 	if (iocb->ki_flags & IOCB_APPEND)
2530 		iocb->ki_pos = i_size_read(inode);
2531 
2532 	pos = iocb->ki_pos;
2533 
2534 	if (limit != RLIM_INFINITY) {
2535 		if (iocb->ki_pos >= limit) {
2536 			send_sig(SIGXFSZ, current, 0);
2537 			return -EFBIG;
2538 		}
2539 		iov_iter_truncate(from, limit - (unsigned long)pos);
2540 	}
2541 
2542 	/*
2543 	 * LFS rule
2544 	 */
2545 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2546 				!(file->f_flags & O_LARGEFILE))) {
2547 		if (pos >= MAX_NON_LFS)
2548 			return -EFBIG;
2549 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2550 	}
2551 
2552 	/*
2553 	 * Are we about to exceed the fs block limit ?
2554 	 *
2555 	 * If we have written data it becomes a short write.  If we have
2556 	 * exceeded without writing data we send a signal and return EFBIG.
2557 	 * Linus frestrict idea will clean these up nicely..
2558 	 */
2559 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2560 		return -EFBIG;
2561 
2562 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2563 	return iov_iter_count(from);
2564 }
2565 EXPORT_SYMBOL(generic_write_checks);
2566 
2567 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2568 				loff_t pos, unsigned len, unsigned flags,
2569 				struct page **pagep, void **fsdata)
2570 {
2571 	const struct address_space_operations *aops = mapping->a_ops;
2572 
2573 	return aops->write_begin(file, mapping, pos, len, flags,
2574 							pagep, fsdata);
2575 }
2576 EXPORT_SYMBOL(pagecache_write_begin);
2577 
2578 int pagecache_write_end(struct file *file, struct address_space *mapping,
2579 				loff_t pos, unsigned len, unsigned copied,
2580 				struct page *page, void *fsdata)
2581 {
2582 	const struct address_space_operations *aops = mapping->a_ops;
2583 
2584 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2585 }
2586 EXPORT_SYMBOL(pagecache_write_end);
2587 
2588 ssize_t
2589 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2590 {
2591 	struct file	*file = iocb->ki_filp;
2592 	struct address_space *mapping = file->f_mapping;
2593 	struct inode	*inode = mapping->host;
2594 	loff_t		pos = iocb->ki_pos;
2595 	ssize_t		written;
2596 	size_t		write_len;
2597 	pgoff_t		end;
2598 	struct iov_iter data;
2599 
2600 	write_len = iov_iter_count(from);
2601 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2602 
2603 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2604 	if (written)
2605 		goto out;
2606 
2607 	/*
2608 	 * After a write we want buffered reads to be sure to go to disk to get
2609 	 * the new data.  We invalidate clean cached page from the region we're
2610 	 * about to write.  We do this *before* the write so that we can return
2611 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2612 	 */
2613 	if (mapping->nrpages) {
2614 		written = invalidate_inode_pages2_range(mapping,
2615 					pos >> PAGE_SHIFT, end);
2616 		/*
2617 		 * If a page can not be invalidated, return 0 to fall back
2618 		 * to buffered write.
2619 		 */
2620 		if (written) {
2621 			if (written == -EBUSY)
2622 				return 0;
2623 			goto out;
2624 		}
2625 	}
2626 
2627 	data = *from;
2628 	written = mapping->a_ops->direct_IO(iocb, &data);
2629 
2630 	/*
2631 	 * Finally, try again to invalidate clean pages which might have been
2632 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2633 	 * if the source of the write was an mmap'ed region of the file
2634 	 * we're writing.  Either one is a pretty crazy thing to do,
2635 	 * so we don't support it 100%.  If this invalidation
2636 	 * fails, tough, the write still worked...
2637 	 */
2638 	if (mapping->nrpages) {
2639 		invalidate_inode_pages2_range(mapping,
2640 					      pos >> PAGE_SHIFT, end);
2641 	}
2642 
2643 	if (written > 0) {
2644 		pos += written;
2645 		iov_iter_advance(from, written);
2646 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2647 			i_size_write(inode, pos);
2648 			mark_inode_dirty(inode);
2649 		}
2650 		iocb->ki_pos = pos;
2651 	}
2652 out:
2653 	return written;
2654 }
2655 EXPORT_SYMBOL(generic_file_direct_write);
2656 
2657 /*
2658  * Find or create a page at the given pagecache position. Return the locked
2659  * page. This function is specifically for buffered writes.
2660  */
2661 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2662 					pgoff_t index, unsigned flags)
2663 {
2664 	struct page *page;
2665 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2666 
2667 	if (flags & AOP_FLAG_NOFS)
2668 		fgp_flags |= FGP_NOFS;
2669 
2670 	page = pagecache_get_page(mapping, index, fgp_flags,
2671 			mapping_gfp_mask(mapping));
2672 	if (page)
2673 		wait_for_stable_page(page);
2674 
2675 	return page;
2676 }
2677 EXPORT_SYMBOL(grab_cache_page_write_begin);
2678 
2679 ssize_t generic_perform_write(struct file *file,
2680 				struct iov_iter *i, loff_t pos)
2681 {
2682 	struct address_space *mapping = file->f_mapping;
2683 	const struct address_space_operations *a_ops = mapping->a_ops;
2684 	long status = 0;
2685 	ssize_t written = 0;
2686 	unsigned int flags = 0;
2687 
2688 	/*
2689 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2690 	 */
2691 	if (!iter_is_iovec(i))
2692 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2693 
2694 	do {
2695 		struct page *page;
2696 		unsigned long offset;	/* Offset into pagecache page */
2697 		unsigned long bytes;	/* Bytes to write to page */
2698 		size_t copied;		/* Bytes copied from user */
2699 		void *fsdata;
2700 
2701 		offset = (pos & (PAGE_SIZE - 1));
2702 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2703 						iov_iter_count(i));
2704 
2705 again:
2706 		/*
2707 		 * Bring in the user page that we will copy from _first_.
2708 		 * Otherwise there's a nasty deadlock on copying from the
2709 		 * same page as we're writing to, without it being marked
2710 		 * up-to-date.
2711 		 *
2712 		 * Not only is this an optimisation, but it is also required
2713 		 * to check that the address is actually valid, when atomic
2714 		 * usercopies are used, below.
2715 		 */
2716 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2717 			status = -EFAULT;
2718 			break;
2719 		}
2720 
2721 		if (fatal_signal_pending(current)) {
2722 			status = -EINTR;
2723 			break;
2724 		}
2725 
2726 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2727 						&page, &fsdata);
2728 		if (unlikely(status < 0))
2729 			break;
2730 
2731 		if (mapping_writably_mapped(mapping))
2732 			flush_dcache_page(page);
2733 
2734 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2735 		flush_dcache_page(page);
2736 
2737 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2738 						page, fsdata);
2739 		if (unlikely(status < 0))
2740 			break;
2741 		copied = status;
2742 
2743 		cond_resched();
2744 
2745 		iov_iter_advance(i, copied);
2746 		if (unlikely(copied == 0)) {
2747 			/*
2748 			 * If we were unable to copy any data at all, we must
2749 			 * fall back to a single segment length write.
2750 			 *
2751 			 * If we didn't fallback here, we could livelock
2752 			 * because not all segments in the iov can be copied at
2753 			 * once without a pagefault.
2754 			 */
2755 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2756 						iov_iter_single_seg_count(i));
2757 			goto again;
2758 		}
2759 		pos += copied;
2760 		written += copied;
2761 
2762 		balance_dirty_pages_ratelimited(mapping);
2763 	} while (iov_iter_count(i));
2764 
2765 	return written ? written : status;
2766 }
2767 EXPORT_SYMBOL(generic_perform_write);
2768 
2769 /**
2770  * __generic_file_write_iter - write data to a file
2771  * @iocb:	IO state structure (file, offset, etc.)
2772  * @from:	iov_iter with data to write
2773  *
2774  * This function does all the work needed for actually writing data to a
2775  * file. It does all basic checks, removes SUID from the file, updates
2776  * modification times and calls proper subroutines depending on whether we
2777  * do direct IO or a standard buffered write.
2778  *
2779  * It expects i_mutex to be grabbed unless we work on a block device or similar
2780  * object which does not need locking at all.
2781  *
2782  * This function does *not* take care of syncing data in case of O_SYNC write.
2783  * A caller has to handle it. This is mainly due to the fact that we want to
2784  * avoid syncing under i_mutex.
2785  */
2786 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2787 {
2788 	struct file *file = iocb->ki_filp;
2789 	struct address_space * mapping = file->f_mapping;
2790 	struct inode 	*inode = mapping->host;
2791 	ssize_t		written = 0;
2792 	ssize_t		err;
2793 	ssize_t		status;
2794 
2795 	/* We can write back this queue in page reclaim */
2796 	current->backing_dev_info = inode_to_bdi(inode);
2797 	err = file_remove_privs(file);
2798 	if (err)
2799 		goto out;
2800 
2801 	err = file_update_time(file);
2802 	if (err)
2803 		goto out;
2804 
2805 	if (iocb->ki_flags & IOCB_DIRECT) {
2806 		loff_t pos, endbyte;
2807 
2808 		written = generic_file_direct_write(iocb, from);
2809 		/*
2810 		 * If the write stopped short of completing, fall back to
2811 		 * buffered writes.  Some filesystems do this for writes to
2812 		 * holes, for example.  For DAX files, a buffered write will
2813 		 * not succeed (even if it did, DAX does not handle dirty
2814 		 * page-cache pages correctly).
2815 		 */
2816 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2817 			goto out;
2818 
2819 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2820 		/*
2821 		 * If generic_perform_write() returned a synchronous error
2822 		 * then we want to return the number of bytes which were
2823 		 * direct-written, or the error code if that was zero.  Note
2824 		 * that this differs from normal direct-io semantics, which
2825 		 * will return -EFOO even if some bytes were written.
2826 		 */
2827 		if (unlikely(status < 0)) {
2828 			err = status;
2829 			goto out;
2830 		}
2831 		/*
2832 		 * We need to ensure that the page cache pages are written to
2833 		 * disk and invalidated to preserve the expected O_DIRECT
2834 		 * semantics.
2835 		 */
2836 		endbyte = pos + status - 1;
2837 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2838 		if (err == 0) {
2839 			iocb->ki_pos = endbyte + 1;
2840 			written += status;
2841 			invalidate_mapping_pages(mapping,
2842 						 pos >> PAGE_SHIFT,
2843 						 endbyte >> PAGE_SHIFT);
2844 		} else {
2845 			/*
2846 			 * We don't know how much we wrote, so just return
2847 			 * the number of bytes which were direct-written
2848 			 */
2849 		}
2850 	} else {
2851 		written = generic_perform_write(file, from, iocb->ki_pos);
2852 		if (likely(written > 0))
2853 			iocb->ki_pos += written;
2854 	}
2855 out:
2856 	current->backing_dev_info = NULL;
2857 	return written ? written : err;
2858 }
2859 EXPORT_SYMBOL(__generic_file_write_iter);
2860 
2861 /**
2862  * generic_file_write_iter - write data to a file
2863  * @iocb:	IO state structure
2864  * @from:	iov_iter with data to write
2865  *
2866  * This is a wrapper around __generic_file_write_iter() to be used by most
2867  * filesystems. It takes care of syncing the file in case of O_SYNC file
2868  * and acquires i_mutex as needed.
2869  */
2870 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2871 {
2872 	struct file *file = iocb->ki_filp;
2873 	struct inode *inode = file->f_mapping->host;
2874 	ssize_t ret;
2875 
2876 	inode_lock(inode);
2877 	ret = generic_write_checks(iocb, from);
2878 	if (ret > 0)
2879 		ret = __generic_file_write_iter(iocb, from);
2880 	inode_unlock(inode);
2881 
2882 	if (ret > 0)
2883 		ret = generic_write_sync(iocb, ret);
2884 	return ret;
2885 }
2886 EXPORT_SYMBOL(generic_file_write_iter);
2887 
2888 /**
2889  * try_to_release_page() - release old fs-specific metadata on a page
2890  *
2891  * @page: the page which the kernel is trying to free
2892  * @gfp_mask: memory allocation flags (and I/O mode)
2893  *
2894  * The address_space is to try to release any data against the page
2895  * (presumably at page->private).  If the release was successful, return `1'.
2896  * Otherwise return zero.
2897  *
2898  * This may also be called if PG_fscache is set on a page, indicating that the
2899  * page is known to the local caching routines.
2900  *
2901  * The @gfp_mask argument specifies whether I/O may be performed to release
2902  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2903  *
2904  */
2905 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2906 {
2907 	struct address_space * const mapping = page->mapping;
2908 
2909 	BUG_ON(!PageLocked(page));
2910 	if (PageWriteback(page))
2911 		return 0;
2912 
2913 	if (mapping && mapping->a_ops->releasepage)
2914 		return mapping->a_ops->releasepage(page, gfp_mask);
2915 	return try_to_free_buffers(page);
2916 }
2917 
2918 EXPORT_SYMBOL(try_to_release_page);
2919