1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/config.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/compiler.h> 16 #include <linux/fs.h> 17 #include <linux/aio.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/file.h> 24 #include <linux/uio.h> 25 #include <linux/hash.h> 26 #include <linux/writeback.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 /* 32 * FIXME: remove all knowledge of the buffer layer from the core VM 33 */ 34 #include <linux/buffer_head.h> /* for generic_osync_inode */ 35 36 #include <asm/uaccess.h> 37 #include <asm/mman.h> 38 39 /* 40 * Shared mappings implemented 30.11.1994. It's not fully working yet, 41 * though. 42 * 43 * Shared mappings now work. 15.8.1995 Bruno. 44 * 45 * finished 'unifying' the page and buffer cache and SMP-threaded the 46 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 47 * 48 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 49 */ 50 51 /* 52 * Lock ordering: 53 * 54 * ->i_mmap_lock (vmtruncate) 55 * ->private_lock (__free_pte->__set_page_dirty_buffers) 56 * ->swap_list_lock 57 * ->swap_device_lock (exclusive_swap_page, others) 58 * ->mapping->tree_lock 59 * 60 * ->i_sem 61 * ->i_mmap_lock (truncate->unmap_mapping_range) 62 * 63 * ->mmap_sem 64 * ->i_mmap_lock 65 * ->page_table_lock (various places, mainly in mmap.c) 66 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 67 * 68 * ->mmap_sem 69 * ->lock_page (access_process_vm) 70 * 71 * ->mmap_sem 72 * ->i_sem (msync) 73 * 74 * ->i_sem 75 * ->i_alloc_sem (various) 76 * 77 * ->inode_lock 78 * ->sb_lock (fs/fs-writeback.c) 79 * ->mapping->tree_lock (__sync_single_inode) 80 * 81 * ->i_mmap_lock 82 * ->anon_vma.lock (vma_adjust) 83 * 84 * ->anon_vma.lock 85 * ->page_table_lock (anon_vma_prepare and various) 86 * 87 * ->page_table_lock 88 * ->swap_device_lock (try_to_unmap_one) 89 * ->private_lock (try_to_unmap_one) 90 * ->tree_lock (try_to_unmap_one) 91 * ->zone.lru_lock (follow_page->mark_page_accessed) 92 * ->private_lock (page_remove_rmap->set_page_dirty) 93 * ->tree_lock (page_remove_rmap->set_page_dirty) 94 * ->inode_lock (page_remove_rmap->set_page_dirty) 95 * ->inode_lock (zap_pte_range->set_page_dirty) 96 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 97 * 98 * ->task->proc_lock 99 * ->dcache_lock (proc_pid_lookup) 100 */ 101 102 /* 103 * Remove a page from the page cache and free it. Caller has to make 104 * sure the page is locked and that nobody else uses it - or that usage 105 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 106 */ 107 void __remove_from_page_cache(struct page *page) 108 { 109 struct address_space *mapping = page->mapping; 110 111 radix_tree_delete(&mapping->page_tree, page->index); 112 page->mapping = NULL; 113 mapping->nrpages--; 114 pagecache_acct(-1); 115 } 116 117 void remove_from_page_cache(struct page *page) 118 { 119 struct address_space *mapping = page->mapping; 120 121 BUG_ON(!PageLocked(page)); 122 123 write_lock_irq(&mapping->tree_lock); 124 __remove_from_page_cache(page); 125 write_unlock_irq(&mapping->tree_lock); 126 } 127 128 static int sync_page(void *word) 129 { 130 struct address_space *mapping; 131 struct page *page; 132 133 page = container_of((page_flags_t *)word, struct page, flags); 134 135 /* 136 * page_mapping() is being called without PG_locked held. 137 * Some knowledge of the state and use of the page is used to 138 * reduce the requirements down to a memory barrier. 139 * The danger here is of a stale page_mapping() return value 140 * indicating a struct address_space different from the one it's 141 * associated with when it is associated with one. 142 * After smp_mb(), it's either the correct page_mapping() for 143 * the page, or an old page_mapping() and the page's own 144 * page_mapping() has gone NULL. 145 * The ->sync_page() address_space operation must tolerate 146 * page_mapping() going NULL. By an amazing coincidence, 147 * this comes about because none of the users of the page 148 * in the ->sync_page() methods make essential use of the 149 * page_mapping(), merely passing the page down to the backing 150 * device's unplug functions when it's non-NULL, which in turn 151 * ignore it for all cases but swap, where only page->private is 152 * of interest. When page_mapping() does go NULL, the entire 153 * call stack gracefully ignores the page and returns. 154 * -- wli 155 */ 156 smp_mb(); 157 mapping = page_mapping(page); 158 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 159 mapping->a_ops->sync_page(page); 160 io_schedule(); 161 return 0; 162 } 163 164 /** 165 * filemap_fdatawrite_range - start writeback against all of a mapping's 166 * dirty pages that lie within the byte offsets <start, end> 167 * @mapping: address space structure to write 168 * @start: offset in bytes where the range starts 169 * @end: offset in bytes where the range ends 170 * @sync_mode: enable synchronous operation 171 * 172 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 173 * opposed to a regular memory * cleansing writeback. The difference between 174 * these two operations is that if a dirty page/buffer is encountered, it must 175 * be waited upon, and not just skipped over. 176 */ 177 static int __filemap_fdatawrite_range(struct address_space *mapping, 178 loff_t start, loff_t end, int sync_mode) 179 { 180 int ret; 181 struct writeback_control wbc = { 182 .sync_mode = sync_mode, 183 .nr_to_write = mapping->nrpages * 2, 184 .start = start, 185 .end = end, 186 }; 187 188 if (!mapping_cap_writeback_dirty(mapping)) 189 return 0; 190 191 ret = do_writepages(mapping, &wbc); 192 return ret; 193 } 194 195 static inline int __filemap_fdatawrite(struct address_space *mapping, 196 int sync_mode) 197 { 198 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode); 199 } 200 201 int filemap_fdatawrite(struct address_space *mapping) 202 { 203 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 204 } 205 EXPORT_SYMBOL(filemap_fdatawrite); 206 207 static int filemap_fdatawrite_range(struct address_space *mapping, 208 loff_t start, loff_t end) 209 { 210 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 211 } 212 213 /* 214 * This is a mostly non-blocking flush. Not suitable for data-integrity 215 * purposes - I/O may not be started against all dirty pages. 216 */ 217 int filemap_flush(struct address_space *mapping) 218 { 219 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 220 } 221 EXPORT_SYMBOL(filemap_flush); 222 223 /* 224 * Wait for writeback to complete against pages indexed by start->end 225 * inclusive 226 */ 227 static int wait_on_page_writeback_range(struct address_space *mapping, 228 pgoff_t start, pgoff_t end) 229 { 230 struct pagevec pvec; 231 int nr_pages; 232 int ret = 0; 233 pgoff_t index; 234 235 if (end < start) 236 return 0; 237 238 pagevec_init(&pvec, 0); 239 index = start; 240 while ((index <= end) && 241 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 242 PAGECACHE_TAG_WRITEBACK, 243 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 244 unsigned i; 245 246 for (i = 0; i < nr_pages; i++) { 247 struct page *page = pvec.pages[i]; 248 249 /* until radix tree lookup accepts end_index */ 250 if (page->index > end) 251 continue; 252 253 wait_on_page_writeback(page); 254 if (PageError(page)) 255 ret = -EIO; 256 } 257 pagevec_release(&pvec); 258 cond_resched(); 259 } 260 261 /* Check for outstanding write errors */ 262 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 263 ret = -ENOSPC; 264 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 265 ret = -EIO; 266 267 return ret; 268 } 269 270 /* 271 * Write and wait upon all the pages in the passed range. This is a "data 272 * integrity" operation. It waits upon in-flight writeout before starting and 273 * waiting upon new writeout. If there was an IO error, return it. 274 * 275 * We need to re-take i_sem during the generic_osync_inode list walk because 276 * it is otherwise livelockable. 277 */ 278 int sync_page_range(struct inode *inode, struct address_space *mapping, 279 loff_t pos, size_t count) 280 { 281 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 282 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 283 int ret; 284 285 if (!mapping_cap_writeback_dirty(mapping) || !count) 286 return 0; 287 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 288 if (ret == 0) { 289 down(&inode->i_sem); 290 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 291 up(&inode->i_sem); 292 } 293 if (ret == 0) 294 ret = wait_on_page_writeback_range(mapping, start, end); 295 return ret; 296 } 297 EXPORT_SYMBOL(sync_page_range); 298 299 /* 300 * Note: Holding i_sem across sync_page_range_nolock is not a good idea 301 * as it forces O_SYNC writers to different parts of the same file 302 * to be serialised right until io completion. 303 */ 304 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 305 loff_t pos, size_t count) 306 { 307 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 308 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 309 int ret; 310 311 if (!mapping_cap_writeback_dirty(mapping) || !count) 312 return 0; 313 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 314 if (ret == 0) 315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 316 if (ret == 0) 317 ret = wait_on_page_writeback_range(mapping, start, end); 318 return ret; 319 } 320 EXPORT_SYMBOL(sync_page_range_nolock); 321 322 /** 323 * filemap_fdatawait - walk the list of under-writeback pages of the given 324 * address space and wait for all of them. 325 * 326 * @mapping: address space structure to wait for 327 */ 328 int filemap_fdatawait(struct address_space *mapping) 329 { 330 loff_t i_size = i_size_read(mapping->host); 331 332 if (i_size == 0) 333 return 0; 334 335 return wait_on_page_writeback_range(mapping, 0, 336 (i_size - 1) >> PAGE_CACHE_SHIFT); 337 } 338 EXPORT_SYMBOL(filemap_fdatawait); 339 340 int filemap_write_and_wait(struct address_space *mapping) 341 { 342 int retval = 0; 343 344 if (mapping->nrpages) { 345 retval = filemap_fdatawrite(mapping); 346 if (retval == 0) 347 retval = filemap_fdatawait(mapping); 348 } 349 return retval; 350 } 351 352 int filemap_write_and_wait_range(struct address_space *mapping, 353 loff_t lstart, loff_t lend) 354 { 355 int retval = 0; 356 357 if (mapping->nrpages) { 358 retval = __filemap_fdatawrite_range(mapping, lstart, lend, 359 WB_SYNC_ALL); 360 if (retval == 0) 361 retval = wait_on_page_writeback_range(mapping, 362 lstart >> PAGE_CACHE_SHIFT, 363 lend >> PAGE_CACHE_SHIFT); 364 } 365 return retval; 366 } 367 368 /* 369 * This function is used to add newly allocated pagecache pages: 370 * the page is new, so we can just run SetPageLocked() against it. 371 * The other page state flags were set by rmqueue(). 372 * 373 * This function does not add the page to the LRU. The caller must do that. 374 */ 375 int add_to_page_cache(struct page *page, struct address_space *mapping, 376 pgoff_t offset, int gfp_mask) 377 { 378 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 379 380 if (error == 0) { 381 write_lock_irq(&mapping->tree_lock); 382 error = radix_tree_insert(&mapping->page_tree, offset, page); 383 if (!error) { 384 page_cache_get(page); 385 SetPageLocked(page); 386 page->mapping = mapping; 387 page->index = offset; 388 mapping->nrpages++; 389 pagecache_acct(1); 390 } 391 write_unlock_irq(&mapping->tree_lock); 392 radix_tree_preload_end(); 393 } 394 return error; 395 } 396 397 EXPORT_SYMBOL(add_to_page_cache); 398 399 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 400 pgoff_t offset, int gfp_mask) 401 { 402 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 403 if (ret == 0) 404 lru_cache_add(page); 405 return ret; 406 } 407 408 /* 409 * In order to wait for pages to become available there must be 410 * waitqueues associated with pages. By using a hash table of 411 * waitqueues where the bucket discipline is to maintain all 412 * waiters on the same queue and wake all when any of the pages 413 * become available, and for the woken contexts to check to be 414 * sure the appropriate page became available, this saves space 415 * at a cost of "thundering herd" phenomena during rare hash 416 * collisions. 417 */ 418 static wait_queue_head_t *page_waitqueue(struct page *page) 419 { 420 const struct zone *zone = page_zone(page); 421 422 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 423 } 424 425 static inline void wake_up_page(struct page *page, int bit) 426 { 427 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 428 } 429 430 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 431 { 432 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 433 434 if (test_bit(bit_nr, &page->flags)) 435 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 436 TASK_UNINTERRUPTIBLE); 437 } 438 EXPORT_SYMBOL(wait_on_page_bit); 439 440 /** 441 * unlock_page() - unlock a locked page 442 * 443 * @page: the page 444 * 445 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 446 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 447 * mechananism between PageLocked pages and PageWriteback pages is shared. 448 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 449 * 450 * The first mb is necessary to safely close the critical section opened by the 451 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 452 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 453 * parallel wait_on_page_locked()). 454 */ 455 void fastcall unlock_page(struct page *page) 456 { 457 smp_mb__before_clear_bit(); 458 if (!TestClearPageLocked(page)) 459 BUG(); 460 smp_mb__after_clear_bit(); 461 wake_up_page(page, PG_locked); 462 } 463 EXPORT_SYMBOL(unlock_page); 464 465 /* 466 * End writeback against a page. 467 */ 468 void end_page_writeback(struct page *page) 469 { 470 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 471 if (!test_clear_page_writeback(page)) 472 BUG(); 473 } 474 smp_mb__after_clear_bit(); 475 wake_up_page(page, PG_writeback); 476 } 477 EXPORT_SYMBOL(end_page_writeback); 478 479 /* 480 * Get a lock on the page, assuming we need to sleep to get it. 481 * 482 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 483 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 484 * chances are that on the second loop, the block layer's plug list is empty, 485 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 486 */ 487 void fastcall __lock_page(struct page *page) 488 { 489 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 490 491 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 492 TASK_UNINTERRUPTIBLE); 493 } 494 EXPORT_SYMBOL(__lock_page); 495 496 /* 497 * a rather lightweight function, finding and getting a reference to a 498 * hashed page atomically. 499 */ 500 struct page * find_get_page(struct address_space *mapping, unsigned long offset) 501 { 502 struct page *page; 503 504 read_lock_irq(&mapping->tree_lock); 505 page = radix_tree_lookup(&mapping->page_tree, offset); 506 if (page) 507 page_cache_get(page); 508 read_unlock_irq(&mapping->tree_lock); 509 return page; 510 } 511 512 EXPORT_SYMBOL(find_get_page); 513 514 /* 515 * Same as above, but trylock it instead of incrementing the count. 516 */ 517 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) 518 { 519 struct page *page; 520 521 read_lock_irq(&mapping->tree_lock); 522 page = radix_tree_lookup(&mapping->page_tree, offset); 523 if (page && TestSetPageLocked(page)) 524 page = NULL; 525 read_unlock_irq(&mapping->tree_lock); 526 return page; 527 } 528 529 EXPORT_SYMBOL(find_trylock_page); 530 531 /** 532 * find_lock_page - locate, pin and lock a pagecache page 533 * 534 * @mapping: the address_space to search 535 * @offset: the page index 536 * 537 * Locates the desired pagecache page, locks it, increments its reference 538 * count and returns its address. 539 * 540 * Returns zero if the page was not present. find_lock_page() may sleep. 541 */ 542 struct page *find_lock_page(struct address_space *mapping, 543 unsigned long offset) 544 { 545 struct page *page; 546 547 read_lock_irq(&mapping->tree_lock); 548 repeat: 549 page = radix_tree_lookup(&mapping->page_tree, offset); 550 if (page) { 551 page_cache_get(page); 552 if (TestSetPageLocked(page)) { 553 read_unlock_irq(&mapping->tree_lock); 554 lock_page(page); 555 read_lock_irq(&mapping->tree_lock); 556 557 /* Has the page been truncated while we slept? */ 558 if (page->mapping != mapping || page->index != offset) { 559 unlock_page(page); 560 page_cache_release(page); 561 goto repeat; 562 } 563 } 564 } 565 read_unlock_irq(&mapping->tree_lock); 566 return page; 567 } 568 569 EXPORT_SYMBOL(find_lock_page); 570 571 /** 572 * find_or_create_page - locate or add a pagecache page 573 * 574 * @mapping: the page's address_space 575 * @index: the page's index into the mapping 576 * @gfp_mask: page allocation mode 577 * 578 * Locates a page in the pagecache. If the page is not present, a new page 579 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 580 * LRU list. The returned page is locked and has its reference count 581 * incremented. 582 * 583 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 584 * allocation! 585 * 586 * find_or_create_page() returns the desired page's address, or zero on 587 * memory exhaustion. 588 */ 589 struct page *find_or_create_page(struct address_space *mapping, 590 unsigned long index, unsigned int gfp_mask) 591 { 592 struct page *page, *cached_page = NULL; 593 int err; 594 repeat: 595 page = find_lock_page(mapping, index); 596 if (!page) { 597 if (!cached_page) { 598 cached_page = alloc_page(gfp_mask); 599 if (!cached_page) 600 return NULL; 601 } 602 err = add_to_page_cache_lru(cached_page, mapping, 603 index, gfp_mask); 604 if (!err) { 605 page = cached_page; 606 cached_page = NULL; 607 } else if (err == -EEXIST) 608 goto repeat; 609 } 610 if (cached_page) 611 page_cache_release(cached_page); 612 return page; 613 } 614 615 EXPORT_SYMBOL(find_or_create_page); 616 617 /** 618 * find_get_pages - gang pagecache lookup 619 * @mapping: The address_space to search 620 * @start: The starting page index 621 * @nr_pages: The maximum number of pages 622 * @pages: Where the resulting pages are placed 623 * 624 * find_get_pages() will search for and return a group of up to 625 * @nr_pages pages in the mapping. The pages are placed at @pages. 626 * find_get_pages() takes a reference against the returned pages. 627 * 628 * The search returns a group of mapping-contiguous pages with ascending 629 * indexes. There may be holes in the indices due to not-present pages. 630 * 631 * find_get_pages() returns the number of pages which were found. 632 */ 633 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 634 unsigned int nr_pages, struct page **pages) 635 { 636 unsigned int i; 637 unsigned int ret; 638 639 read_lock_irq(&mapping->tree_lock); 640 ret = radix_tree_gang_lookup(&mapping->page_tree, 641 (void **)pages, start, nr_pages); 642 for (i = 0; i < ret; i++) 643 page_cache_get(pages[i]); 644 read_unlock_irq(&mapping->tree_lock); 645 return ret; 646 } 647 648 /* 649 * Like find_get_pages, except we only return pages which are tagged with 650 * `tag'. We update *index to index the next page for the traversal. 651 */ 652 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 653 int tag, unsigned int nr_pages, struct page **pages) 654 { 655 unsigned int i; 656 unsigned int ret; 657 658 read_lock_irq(&mapping->tree_lock); 659 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 660 (void **)pages, *index, nr_pages, tag); 661 for (i = 0; i < ret; i++) 662 page_cache_get(pages[i]); 663 if (ret) 664 *index = pages[ret - 1]->index + 1; 665 read_unlock_irq(&mapping->tree_lock); 666 return ret; 667 } 668 669 /* 670 * Same as grab_cache_page, but do not wait if the page is unavailable. 671 * This is intended for speculative data generators, where the data can 672 * be regenerated if the page couldn't be grabbed. This routine should 673 * be safe to call while holding the lock for another page. 674 * 675 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 676 * and deadlock against the caller's locked page. 677 */ 678 struct page * 679 grab_cache_page_nowait(struct address_space *mapping, unsigned long index) 680 { 681 struct page *page = find_get_page(mapping, index); 682 unsigned int gfp_mask; 683 684 if (page) { 685 if (!TestSetPageLocked(page)) 686 return page; 687 page_cache_release(page); 688 return NULL; 689 } 690 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS; 691 page = alloc_pages(gfp_mask, 0); 692 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) { 693 page_cache_release(page); 694 page = NULL; 695 } 696 return page; 697 } 698 699 EXPORT_SYMBOL(grab_cache_page_nowait); 700 701 /* 702 * This is a generic file read routine, and uses the 703 * mapping->a_ops->readpage() function for the actual low-level 704 * stuff. 705 * 706 * This is really ugly. But the goto's actually try to clarify some 707 * of the logic when it comes to error handling etc. 708 * 709 * Note the struct file* is only passed for the use of readpage. It may be 710 * NULL. 711 */ 712 void do_generic_mapping_read(struct address_space *mapping, 713 struct file_ra_state *_ra, 714 struct file *filp, 715 loff_t *ppos, 716 read_descriptor_t *desc, 717 read_actor_t actor) 718 { 719 struct inode *inode = mapping->host; 720 unsigned long index; 721 unsigned long end_index; 722 unsigned long offset; 723 unsigned long last_index; 724 unsigned long next_index; 725 unsigned long prev_index; 726 loff_t isize; 727 struct page *cached_page; 728 int error; 729 struct file_ra_state ra = *_ra; 730 731 cached_page = NULL; 732 index = *ppos >> PAGE_CACHE_SHIFT; 733 next_index = index; 734 prev_index = ra.prev_page; 735 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 736 offset = *ppos & ~PAGE_CACHE_MASK; 737 738 isize = i_size_read(inode); 739 if (!isize) 740 goto out; 741 742 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 743 for (;;) { 744 struct page *page; 745 unsigned long nr, ret; 746 747 /* nr is the maximum number of bytes to copy from this page */ 748 nr = PAGE_CACHE_SIZE; 749 if (index >= end_index) { 750 if (index > end_index) 751 goto out; 752 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 753 if (nr <= offset) { 754 goto out; 755 } 756 } 757 nr = nr - offset; 758 759 cond_resched(); 760 if (index == next_index) 761 next_index = page_cache_readahead(mapping, &ra, filp, 762 index, last_index - index); 763 764 find_page: 765 page = find_get_page(mapping, index); 766 if (unlikely(page == NULL)) { 767 handle_ra_miss(mapping, &ra, index); 768 goto no_cached_page; 769 } 770 if (!PageUptodate(page)) 771 goto page_not_up_to_date; 772 page_ok: 773 774 /* If users can be writing to this page using arbitrary 775 * virtual addresses, take care about potential aliasing 776 * before reading the page on the kernel side. 777 */ 778 if (mapping_writably_mapped(mapping)) 779 flush_dcache_page(page); 780 781 /* 782 * When (part of) the same page is read multiple times 783 * in succession, only mark it as accessed the first time. 784 */ 785 if (prev_index != index) 786 mark_page_accessed(page); 787 prev_index = index; 788 789 /* 790 * Ok, we have the page, and it's up-to-date, so 791 * now we can copy it to user space... 792 * 793 * The actor routine returns how many bytes were actually used.. 794 * NOTE! This may not be the same as how much of a user buffer 795 * we filled up (we may be padding etc), so we can only update 796 * "pos" here (the actor routine has to update the user buffer 797 * pointers and the remaining count). 798 */ 799 ret = actor(desc, page, offset, nr); 800 offset += ret; 801 index += offset >> PAGE_CACHE_SHIFT; 802 offset &= ~PAGE_CACHE_MASK; 803 804 page_cache_release(page); 805 if (ret == nr && desc->count) 806 continue; 807 goto out; 808 809 page_not_up_to_date: 810 /* Get exclusive access to the page ... */ 811 lock_page(page); 812 813 /* Did it get unhashed before we got the lock? */ 814 if (!page->mapping) { 815 unlock_page(page); 816 page_cache_release(page); 817 continue; 818 } 819 820 /* Did somebody else fill it already? */ 821 if (PageUptodate(page)) { 822 unlock_page(page); 823 goto page_ok; 824 } 825 826 readpage: 827 /* Start the actual read. The read will unlock the page. */ 828 error = mapping->a_ops->readpage(filp, page); 829 830 if (unlikely(error)) 831 goto readpage_error; 832 833 if (!PageUptodate(page)) { 834 lock_page(page); 835 if (!PageUptodate(page)) { 836 if (page->mapping == NULL) { 837 /* 838 * invalidate_inode_pages got it 839 */ 840 unlock_page(page); 841 page_cache_release(page); 842 goto find_page; 843 } 844 unlock_page(page); 845 error = -EIO; 846 goto readpage_error; 847 } 848 unlock_page(page); 849 } 850 851 /* 852 * i_size must be checked after we have done ->readpage. 853 * 854 * Checking i_size after the readpage allows us to calculate 855 * the correct value for "nr", which means the zero-filled 856 * part of the page is not copied back to userspace (unless 857 * another truncate extends the file - this is desired though). 858 */ 859 isize = i_size_read(inode); 860 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 861 if (unlikely(!isize || index > end_index)) { 862 page_cache_release(page); 863 goto out; 864 } 865 866 /* nr is the maximum number of bytes to copy from this page */ 867 nr = PAGE_CACHE_SIZE; 868 if (index == end_index) { 869 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 870 if (nr <= offset) { 871 page_cache_release(page); 872 goto out; 873 } 874 } 875 nr = nr - offset; 876 goto page_ok; 877 878 readpage_error: 879 /* UHHUH! A synchronous read error occurred. Report it */ 880 desc->error = error; 881 page_cache_release(page); 882 goto out; 883 884 no_cached_page: 885 /* 886 * Ok, it wasn't cached, so we need to create a new 887 * page.. 888 */ 889 if (!cached_page) { 890 cached_page = page_cache_alloc_cold(mapping); 891 if (!cached_page) { 892 desc->error = -ENOMEM; 893 goto out; 894 } 895 } 896 error = add_to_page_cache_lru(cached_page, mapping, 897 index, GFP_KERNEL); 898 if (error) { 899 if (error == -EEXIST) 900 goto find_page; 901 desc->error = error; 902 goto out; 903 } 904 page = cached_page; 905 cached_page = NULL; 906 goto readpage; 907 } 908 909 out: 910 *_ra = ra; 911 912 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 913 if (cached_page) 914 page_cache_release(cached_page); 915 if (filp) 916 file_accessed(filp); 917 } 918 919 EXPORT_SYMBOL(do_generic_mapping_read); 920 921 int file_read_actor(read_descriptor_t *desc, struct page *page, 922 unsigned long offset, unsigned long size) 923 { 924 char *kaddr; 925 unsigned long left, count = desc->count; 926 927 if (size > count) 928 size = count; 929 930 /* 931 * Faults on the destination of a read are common, so do it before 932 * taking the kmap. 933 */ 934 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 935 kaddr = kmap_atomic(page, KM_USER0); 936 left = __copy_to_user_inatomic(desc->arg.buf, 937 kaddr + offset, size); 938 kunmap_atomic(kaddr, KM_USER0); 939 if (left == 0) 940 goto success; 941 } 942 943 /* Do it the slow way */ 944 kaddr = kmap(page); 945 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 946 kunmap(page); 947 948 if (left) { 949 size -= left; 950 desc->error = -EFAULT; 951 } 952 success: 953 desc->count = count - size; 954 desc->written += size; 955 desc->arg.buf += size; 956 return size; 957 } 958 959 /* 960 * This is the "read()" routine for all filesystems 961 * that can use the page cache directly. 962 */ 963 ssize_t 964 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 965 unsigned long nr_segs, loff_t *ppos) 966 { 967 struct file *filp = iocb->ki_filp; 968 ssize_t retval; 969 unsigned long seg; 970 size_t count; 971 972 count = 0; 973 for (seg = 0; seg < nr_segs; seg++) { 974 const struct iovec *iv = &iov[seg]; 975 976 /* 977 * If any segment has a negative length, or the cumulative 978 * length ever wraps negative then return -EINVAL. 979 */ 980 count += iv->iov_len; 981 if (unlikely((ssize_t)(count|iv->iov_len) < 0)) 982 return -EINVAL; 983 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) 984 continue; 985 if (seg == 0) 986 return -EFAULT; 987 nr_segs = seg; 988 count -= iv->iov_len; /* This segment is no good */ 989 break; 990 } 991 992 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 993 if (filp->f_flags & O_DIRECT) { 994 loff_t pos = *ppos, size; 995 struct address_space *mapping; 996 struct inode *inode; 997 998 mapping = filp->f_mapping; 999 inode = mapping->host; 1000 retval = 0; 1001 if (!count) 1002 goto out; /* skip atime */ 1003 size = i_size_read(inode); 1004 if (pos < size) { 1005 retval = generic_file_direct_IO(READ, iocb, 1006 iov, pos, nr_segs); 1007 if (retval > 0 && !is_sync_kiocb(iocb)) 1008 retval = -EIOCBQUEUED; 1009 if (retval > 0) 1010 *ppos = pos + retval; 1011 } 1012 file_accessed(filp); 1013 goto out; 1014 } 1015 1016 retval = 0; 1017 if (count) { 1018 for (seg = 0; seg < nr_segs; seg++) { 1019 read_descriptor_t desc; 1020 1021 desc.written = 0; 1022 desc.arg.buf = iov[seg].iov_base; 1023 desc.count = iov[seg].iov_len; 1024 if (desc.count == 0) 1025 continue; 1026 desc.error = 0; 1027 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1028 retval += desc.written; 1029 if (!retval) { 1030 retval = desc.error; 1031 break; 1032 } 1033 } 1034 } 1035 out: 1036 return retval; 1037 } 1038 1039 EXPORT_SYMBOL(__generic_file_aio_read); 1040 1041 ssize_t 1042 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) 1043 { 1044 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1045 1046 BUG_ON(iocb->ki_pos != pos); 1047 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos); 1048 } 1049 1050 EXPORT_SYMBOL(generic_file_aio_read); 1051 1052 ssize_t 1053 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 1054 { 1055 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1056 struct kiocb kiocb; 1057 ssize_t ret; 1058 1059 init_sync_kiocb(&kiocb, filp); 1060 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos); 1061 if (-EIOCBQUEUED == ret) 1062 ret = wait_on_sync_kiocb(&kiocb); 1063 return ret; 1064 } 1065 1066 EXPORT_SYMBOL(generic_file_read); 1067 1068 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) 1069 { 1070 ssize_t written; 1071 unsigned long count = desc->count; 1072 struct file *file = desc->arg.data; 1073 1074 if (size > count) 1075 size = count; 1076 1077 written = file->f_op->sendpage(file, page, offset, 1078 size, &file->f_pos, size<count); 1079 if (written < 0) { 1080 desc->error = written; 1081 written = 0; 1082 } 1083 desc->count = count - written; 1084 desc->written += written; 1085 return written; 1086 } 1087 1088 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, 1089 size_t count, read_actor_t actor, void *target) 1090 { 1091 read_descriptor_t desc; 1092 1093 if (!count) 1094 return 0; 1095 1096 desc.written = 0; 1097 desc.count = count; 1098 desc.arg.data = target; 1099 desc.error = 0; 1100 1101 do_generic_file_read(in_file, ppos, &desc, actor); 1102 if (desc.written) 1103 return desc.written; 1104 return desc.error; 1105 } 1106 1107 EXPORT_SYMBOL(generic_file_sendfile); 1108 1109 static ssize_t 1110 do_readahead(struct address_space *mapping, struct file *filp, 1111 unsigned long index, unsigned long nr) 1112 { 1113 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1114 return -EINVAL; 1115 1116 force_page_cache_readahead(mapping, filp, index, 1117 max_sane_readahead(nr)); 1118 return 0; 1119 } 1120 1121 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1122 { 1123 ssize_t ret; 1124 struct file *file; 1125 1126 ret = -EBADF; 1127 file = fget(fd); 1128 if (file) { 1129 if (file->f_mode & FMODE_READ) { 1130 struct address_space *mapping = file->f_mapping; 1131 unsigned long start = offset >> PAGE_CACHE_SHIFT; 1132 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1133 unsigned long len = end - start + 1; 1134 ret = do_readahead(mapping, file, start, len); 1135 } 1136 fput(file); 1137 } 1138 return ret; 1139 } 1140 1141 #ifdef CONFIG_MMU 1142 /* 1143 * This adds the requested page to the page cache if it isn't already there, 1144 * and schedules an I/O to read in its contents from disk. 1145 */ 1146 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); 1147 static int fastcall page_cache_read(struct file * file, unsigned long offset) 1148 { 1149 struct address_space *mapping = file->f_mapping; 1150 struct page *page; 1151 int error; 1152 1153 page = page_cache_alloc_cold(mapping); 1154 if (!page) 1155 return -ENOMEM; 1156 1157 error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1158 if (!error) { 1159 error = mapping->a_ops->readpage(file, page); 1160 page_cache_release(page); 1161 return error; 1162 } 1163 1164 /* 1165 * We arrive here in the unlikely event that someone 1166 * raced with us and added our page to the cache first 1167 * or we are out of memory for radix-tree nodes. 1168 */ 1169 page_cache_release(page); 1170 return error == -EEXIST ? 0 : error; 1171 } 1172 1173 #define MMAP_LOTSAMISS (100) 1174 1175 /* 1176 * filemap_nopage() is invoked via the vma operations vector for a 1177 * mapped memory region to read in file data during a page fault. 1178 * 1179 * The goto's are kind of ugly, but this streamlines the normal case of having 1180 * it in the page cache, and handles the special cases reasonably without 1181 * having a lot of duplicated code. 1182 */ 1183 struct page *filemap_nopage(struct vm_area_struct *area, 1184 unsigned long address, int *type) 1185 { 1186 int error; 1187 struct file *file = area->vm_file; 1188 struct address_space *mapping = file->f_mapping; 1189 struct file_ra_state *ra = &file->f_ra; 1190 struct inode *inode = mapping->host; 1191 struct page *page; 1192 unsigned long size, pgoff; 1193 int did_readaround = 0, majmin = VM_FAULT_MINOR; 1194 1195 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; 1196 1197 retry_all: 1198 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1199 if (pgoff >= size) 1200 goto outside_data_content; 1201 1202 /* If we don't want any read-ahead, don't bother */ 1203 if (VM_RandomReadHint(area)) 1204 goto no_cached_page; 1205 1206 /* 1207 * The readahead code wants to be told about each and every page 1208 * so it can build and shrink its windows appropriately 1209 * 1210 * For sequential accesses, we use the generic readahead logic. 1211 */ 1212 if (VM_SequentialReadHint(area)) 1213 page_cache_readahead(mapping, ra, file, pgoff, 1); 1214 1215 /* 1216 * Do we have something in the page cache already? 1217 */ 1218 retry_find: 1219 page = find_get_page(mapping, pgoff); 1220 if (!page) { 1221 unsigned long ra_pages; 1222 1223 if (VM_SequentialReadHint(area)) { 1224 handle_ra_miss(mapping, ra, pgoff); 1225 goto no_cached_page; 1226 } 1227 ra->mmap_miss++; 1228 1229 /* 1230 * Do we miss much more than hit in this file? If so, 1231 * stop bothering with read-ahead. It will only hurt. 1232 */ 1233 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) 1234 goto no_cached_page; 1235 1236 /* 1237 * To keep the pgmajfault counter straight, we need to 1238 * check did_readaround, as this is an inner loop. 1239 */ 1240 if (!did_readaround) { 1241 majmin = VM_FAULT_MAJOR; 1242 inc_page_state(pgmajfault); 1243 } 1244 did_readaround = 1; 1245 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1246 if (ra_pages) { 1247 pgoff_t start = 0; 1248 1249 if (pgoff > ra_pages / 2) 1250 start = pgoff - ra_pages / 2; 1251 do_page_cache_readahead(mapping, file, start, ra_pages); 1252 } 1253 page = find_get_page(mapping, pgoff); 1254 if (!page) 1255 goto no_cached_page; 1256 } 1257 1258 if (!did_readaround) 1259 ra->mmap_hit++; 1260 1261 /* 1262 * Ok, found a page in the page cache, now we need to check 1263 * that it's up-to-date. 1264 */ 1265 if (!PageUptodate(page)) 1266 goto page_not_uptodate; 1267 1268 success: 1269 /* 1270 * Found the page and have a reference on it. 1271 */ 1272 mark_page_accessed(page); 1273 if (type) 1274 *type = majmin; 1275 return page; 1276 1277 outside_data_content: 1278 /* 1279 * An external ptracer can access pages that normally aren't 1280 * accessible.. 1281 */ 1282 if (area->vm_mm == current->mm) 1283 return NULL; 1284 /* Fall through to the non-read-ahead case */ 1285 no_cached_page: 1286 /* 1287 * We're only likely to ever get here if MADV_RANDOM is in 1288 * effect. 1289 */ 1290 error = page_cache_read(file, pgoff); 1291 grab_swap_token(); 1292 1293 /* 1294 * The page we want has now been added to the page cache. 1295 * In the unlikely event that someone removed it in the 1296 * meantime, we'll just come back here and read it again. 1297 */ 1298 if (error >= 0) 1299 goto retry_find; 1300 1301 /* 1302 * An error return from page_cache_read can result if the 1303 * system is low on memory, or a problem occurs while trying 1304 * to schedule I/O. 1305 */ 1306 if (error == -ENOMEM) 1307 return NOPAGE_OOM; 1308 return NULL; 1309 1310 page_not_uptodate: 1311 if (!did_readaround) { 1312 majmin = VM_FAULT_MAJOR; 1313 inc_page_state(pgmajfault); 1314 } 1315 lock_page(page); 1316 1317 /* Did it get unhashed while we waited for it? */ 1318 if (!page->mapping) { 1319 unlock_page(page); 1320 page_cache_release(page); 1321 goto retry_all; 1322 } 1323 1324 /* Did somebody else get it up-to-date? */ 1325 if (PageUptodate(page)) { 1326 unlock_page(page); 1327 goto success; 1328 } 1329 1330 if (!mapping->a_ops->readpage(file, page)) { 1331 wait_on_page_locked(page); 1332 if (PageUptodate(page)) 1333 goto success; 1334 } 1335 1336 /* 1337 * Umm, take care of errors if the page isn't up-to-date. 1338 * Try to re-read it _once_. We do this synchronously, 1339 * because there really aren't any performance issues here 1340 * and we need to check for errors. 1341 */ 1342 lock_page(page); 1343 1344 /* Somebody truncated the page on us? */ 1345 if (!page->mapping) { 1346 unlock_page(page); 1347 page_cache_release(page); 1348 goto retry_all; 1349 } 1350 1351 /* Somebody else successfully read it in? */ 1352 if (PageUptodate(page)) { 1353 unlock_page(page); 1354 goto success; 1355 } 1356 ClearPageError(page); 1357 if (!mapping->a_ops->readpage(file, page)) { 1358 wait_on_page_locked(page); 1359 if (PageUptodate(page)) 1360 goto success; 1361 } 1362 1363 /* 1364 * Things didn't work out. Return zero to tell the 1365 * mm layer so, possibly freeing the page cache page first. 1366 */ 1367 page_cache_release(page); 1368 return NULL; 1369 } 1370 1371 EXPORT_SYMBOL(filemap_nopage); 1372 1373 static struct page * filemap_getpage(struct file *file, unsigned long pgoff, 1374 int nonblock) 1375 { 1376 struct address_space *mapping = file->f_mapping; 1377 struct page *page; 1378 int error; 1379 1380 /* 1381 * Do we have something in the page cache already? 1382 */ 1383 retry_find: 1384 page = find_get_page(mapping, pgoff); 1385 if (!page) { 1386 if (nonblock) 1387 return NULL; 1388 goto no_cached_page; 1389 } 1390 1391 /* 1392 * Ok, found a page in the page cache, now we need to check 1393 * that it's up-to-date. 1394 */ 1395 if (!PageUptodate(page)) { 1396 if (nonblock) { 1397 page_cache_release(page); 1398 return NULL; 1399 } 1400 goto page_not_uptodate; 1401 } 1402 1403 success: 1404 /* 1405 * Found the page and have a reference on it. 1406 */ 1407 mark_page_accessed(page); 1408 return page; 1409 1410 no_cached_page: 1411 error = page_cache_read(file, pgoff); 1412 1413 /* 1414 * The page we want has now been added to the page cache. 1415 * In the unlikely event that someone removed it in the 1416 * meantime, we'll just come back here and read it again. 1417 */ 1418 if (error >= 0) 1419 goto retry_find; 1420 1421 /* 1422 * An error return from page_cache_read can result if the 1423 * system is low on memory, or a problem occurs while trying 1424 * to schedule I/O. 1425 */ 1426 return NULL; 1427 1428 page_not_uptodate: 1429 lock_page(page); 1430 1431 /* Did it get unhashed while we waited for it? */ 1432 if (!page->mapping) { 1433 unlock_page(page); 1434 goto err; 1435 } 1436 1437 /* Did somebody else get it up-to-date? */ 1438 if (PageUptodate(page)) { 1439 unlock_page(page); 1440 goto success; 1441 } 1442 1443 if (!mapping->a_ops->readpage(file, page)) { 1444 wait_on_page_locked(page); 1445 if (PageUptodate(page)) 1446 goto success; 1447 } 1448 1449 /* 1450 * Umm, take care of errors if the page isn't up-to-date. 1451 * Try to re-read it _once_. We do this synchronously, 1452 * because there really aren't any performance issues here 1453 * and we need to check for errors. 1454 */ 1455 lock_page(page); 1456 1457 /* Somebody truncated the page on us? */ 1458 if (!page->mapping) { 1459 unlock_page(page); 1460 goto err; 1461 } 1462 /* Somebody else successfully read it in? */ 1463 if (PageUptodate(page)) { 1464 unlock_page(page); 1465 goto success; 1466 } 1467 1468 ClearPageError(page); 1469 if (!mapping->a_ops->readpage(file, page)) { 1470 wait_on_page_locked(page); 1471 if (PageUptodate(page)) 1472 goto success; 1473 } 1474 1475 /* 1476 * Things didn't work out. Return zero to tell the 1477 * mm layer so, possibly freeing the page cache page first. 1478 */ 1479 err: 1480 page_cache_release(page); 1481 1482 return NULL; 1483 } 1484 1485 int filemap_populate(struct vm_area_struct *vma, unsigned long addr, 1486 unsigned long len, pgprot_t prot, unsigned long pgoff, 1487 int nonblock) 1488 { 1489 struct file *file = vma->vm_file; 1490 struct address_space *mapping = file->f_mapping; 1491 struct inode *inode = mapping->host; 1492 unsigned long size; 1493 struct mm_struct *mm = vma->vm_mm; 1494 struct page *page; 1495 int err; 1496 1497 if (!nonblock) 1498 force_page_cache_readahead(mapping, vma->vm_file, 1499 pgoff, len >> PAGE_CACHE_SHIFT); 1500 1501 repeat: 1502 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1503 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) 1504 return -EINVAL; 1505 1506 page = filemap_getpage(file, pgoff, nonblock); 1507 if (!page && !nonblock) 1508 return -ENOMEM; 1509 if (page) { 1510 err = install_page(mm, vma, addr, page, prot); 1511 if (err) { 1512 page_cache_release(page); 1513 return err; 1514 } 1515 } else { 1516 err = install_file_pte(mm, vma, addr, pgoff, prot); 1517 if (err) 1518 return err; 1519 } 1520 1521 len -= PAGE_SIZE; 1522 addr += PAGE_SIZE; 1523 pgoff++; 1524 if (len) 1525 goto repeat; 1526 1527 return 0; 1528 } 1529 1530 struct vm_operations_struct generic_file_vm_ops = { 1531 .nopage = filemap_nopage, 1532 .populate = filemap_populate, 1533 }; 1534 1535 /* This is used for a general mmap of a disk file */ 1536 1537 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1538 { 1539 struct address_space *mapping = file->f_mapping; 1540 1541 if (!mapping->a_ops->readpage) 1542 return -ENOEXEC; 1543 file_accessed(file); 1544 vma->vm_ops = &generic_file_vm_ops; 1545 return 0; 1546 } 1547 EXPORT_SYMBOL(filemap_populate); 1548 1549 /* 1550 * This is for filesystems which do not implement ->writepage. 1551 */ 1552 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1553 { 1554 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1555 return -EINVAL; 1556 return generic_file_mmap(file, vma); 1557 } 1558 #else 1559 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1560 { 1561 return -ENOSYS; 1562 } 1563 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1564 { 1565 return -ENOSYS; 1566 } 1567 #endif /* CONFIG_MMU */ 1568 1569 EXPORT_SYMBOL(generic_file_mmap); 1570 EXPORT_SYMBOL(generic_file_readonly_mmap); 1571 1572 static inline struct page *__read_cache_page(struct address_space *mapping, 1573 unsigned long index, 1574 int (*filler)(void *,struct page*), 1575 void *data) 1576 { 1577 struct page *page, *cached_page = NULL; 1578 int err; 1579 repeat: 1580 page = find_get_page(mapping, index); 1581 if (!page) { 1582 if (!cached_page) { 1583 cached_page = page_cache_alloc_cold(mapping); 1584 if (!cached_page) 1585 return ERR_PTR(-ENOMEM); 1586 } 1587 err = add_to_page_cache_lru(cached_page, mapping, 1588 index, GFP_KERNEL); 1589 if (err == -EEXIST) 1590 goto repeat; 1591 if (err < 0) { 1592 /* Presumably ENOMEM for radix tree node */ 1593 page_cache_release(cached_page); 1594 return ERR_PTR(err); 1595 } 1596 page = cached_page; 1597 cached_page = NULL; 1598 err = filler(data, page); 1599 if (err < 0) { 1600 page_cache_release(page); 1601 page = ERR_PTR(err); 1602 } 1603 } 1604 if (cached_page) 1605 page_cache_release(cached_page); 1606 return page; 1607 } 1608 1609 /* 1610 * Read into the page cache. If a page already exists, 1611 * and PageUptodate() is not set, try to fill the page. 1612 */ 1613 struct page *read_cache_page(struct address_space *mapping, 1614 unsigned long index, 1615 int (*filler)(void *,struct page*), 1616 void *data) 1617 { 1618 struct page *page; 1619 int err; 1620 1621 retry: 1622 page = __read_cache_page(mapping, index, filler, data); 1623 if (IS_ERR(page)) 1624 goto out; 1625 mark_page_accessed(page); 1626 if (PageUptodate(page)) 1627 goto out; 1628 1629 lock_page(page); 1630 if (!page->mapping) { 1631 unlock_page(page); 1632 page_cache_release(page); 1633 goto retry; 1634 } 1635 if (PageUptodate(page)) { 1636 unlock_page(page); 1637 goto out; 1638 } 1639 err = filler(data, page); 1640 if (err < 0) { 1641 page_cache_release(page); 1642 page = ERR_PTR(err); 1643 } 1644 out: 1645 return page; 1646 } 1647 1648 EXPORT_SYMBOL(read_cache_page); 1649 1650 /* 1651 * If the page was newly created, increment its refcount and add it to the 1652 * caller's lru-buffering pagevec. This function is specifically for 1653 * generic_file_write(). 1654 */ 1655 static inline struct page * 1656 __grab_cache_page(struct address_space *mapping, unsigned long index, 1657 struct page **cached_page, struct pagevec *lru_pvec) 1658 { 1659 int err; 1660 struct page *page; 1661 repeat: 1662 page = find_lock_page(mapping, index); 1663 if (!page) { 1664 if (!*cached_page) { 1665 *cached_page = page_cache_alloc(mapping); 1666 if (!*cached_page) 1667 return NULL; 1668 } 1669 err = add_to_page_cache(*cached_page, mapping, 1670 index, GFP_KERNEL); 1671 if (err == -EEXIST) 1672 goto repeat; 1673 if (err == 0) { 1674 page = *cached_page; 1675 page_cache_get(page); 1676 if (!pagevec_add(lru_pvec, page)) 1677 __pagevec_lru_add(lru_pvec); 1678 *cached_page = NULL; 1679 } 1680 } 1681 return page; 1682 } 1683 1684 /* 1685 * The logic we want is 1686 * 1687 * if suid or (sgid and xgrp) 1688 * remove privs 1689 */ 1690 int remove_suid(struct dentry *dentry) 1691 { 1692 mode_t mode = dentry->d_inode->i_mode; 1693 int kill = 0; 1694 int result = 0; 1695 1696 /* suid always must be killed */ 1697 if (unlikely(mode & S_ISUID)) 1698 kill = ATTR_KILL_SUID; 1699 1700 /* 1701 * sgid without any exec bits is just a mandatory locking mark; leave 1702 * it alone. If some exec bits are set, it's a real sgid; kill it. 1703 */ 1704 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1705 kill |= ATTR_KILL_SGID; 1706 1707 if (unlikely(kill && !capable(CAP_FSETID))) { 1708 struct iattr newattrs; 1709 1710 newattrs.ia_valid = ATTR_FORCE | kill; 1711 result = notify_change(dentry, &newattrs); 1712 } 1713 return result; 1714 } 1715 EXPORT_SYMBOL(remove_suid); 1716 1717 /* 1718 * Copy as much as we can into the page and return the number of bytes which 1719 * were sucessfully copied. If a fault is encountered then clear the page 1720 * out to (offset+bytes) and return the number of bytes which were copied. 1721 */ 1722 static inline size_t 1723 filemap_copy_from_user(struct page *page, unsigned long offset, 1724 const char __user *buf, unsigned bytes) 1725 { 1726 char *kaddr; 1727 int left; 1728 1729 kaddr = kmap_atomic(page, KM_USER0); 1730 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1731 kunmap_atomic(kaddr, KM_USER0); 1732 1733 if (left != 0) { 1734 /* Do it the slow way */ 1735 kaddr = kmap(page); 1736 left = __copy_from_user(kaddr + offset, buf, bytes); 1737 kunmap(page); 1738 } 1739 return bytes - left; 1740 } 1741 1742 static size_t 1743 __filemap_copy_from_user_iovec(char *vaddr, 1744 const struct iovec *iov, size_t base, size_t bytes) 1745 { 1746 size_t copied = 0, left = 0; 1747 1748 while (bytes) { 1749 char __user *buf = iov->iov_base + base; 1750 int copy = min(bytes, iov->iov_len - base); 1751 1752 base = 0; 1753 left = __copy_from_user_inatomic(vaddr, buf, copy); 1754 copied += copy; 1755 bytes -= copy; 1756 vaddr += copy; 1757 iov++; 1758 1759 if (unlikely(left)) { 1760 /* zero the rest of the target like __copy_from_user */ 1761 if (bytes) 1762 memset(vaddr, 0, bytes); 1763 break; 1764 } 1765 } 1766 return copied - left; 1767 } 1768 1769 /* 1770 * This has the same sideeffects and return value as filemap_copy_from_user(). 1771 * The difference is that on a fault we need to memset the remainder of the 1772 * page (out to offset+bytes), to emulate filemap_copy_from_user()'s 1773 * single-segment behaviour. 1774 */ 1775 static inline size_t 1776 filemap_copy_from_user_iovec(struct page *page, unsigned long offset, 1777 const struct iovec *iov, size_t base, size_t bytes) 1778 { 1779 char *kaddr; 1780 size_t copied; 1781 1782 kaddr = kmap_atomic(page, KM_USER0); 1783 copied = __filemap_copy_from_user_iovec(kaddr + offset, iov, 1784 base, bytes); 1785 kunmap_atomic(kaddr, KM_USER0); 1786 if (copied != bytes) { 1787 kaddr = kmap(page); 1788 copied = __filemap_copy_from_user_iovec(kaddr + offset, iov, 1789 base, bytes); 1790 kunmap(page); 1791 } 1792 return copied; 1793 } 1794 1795 static inline void 1796 filemap_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes) 1797 { 1798 const struct iovec *iov = *iovp; 1799 size_t base = *basep; 1800 1801 while (bytes) { 1802 int copy = min(bytes, iov->iov_len - base); 1803 1804 bytes -= copy; 1805 base += copy; 1806 if (iov->iov_len == base) { 1807 iov++; 1808 base = 0; 1809 } 1810 } 1811 *iovp = iov; 1812 *basep = base; 1813 } 1814 1815 /* 1816 * Performs necessary checks before doing a write 1817 * 1818 * Can adjust writing position aor amount of bytes to write. 1819 * Returns appropriate error code that caller should return or 1820 * zero in case that write should be allowed. 1821 */ 1822 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1823 { 1824 struct inode *inode = file->f_mapping->host; 1825 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1826 1827 if (unlikely(*pos < 0)) 1828 return -EINVAL; 1829 1830 if (unlikely(file->f_error)) { 1831 int err = file->f_error; 1832 file->f_error = 0; 1833 return err; 1834 } 1835 1836 if (!isblk) { 1837 /* FIXME: this is for backwards compatibility with 2.4 */ 1838 if (file->f_flags & O_APPEND) 1839 *pos = i_size_read(inode); 1840 1841 if (limit != RLIM_INFINITY) { 1842 if (*pos >= limit) { 1843 send_sig(SIGXFSZ, current, 0); 1844 return -EFBIG; 1845 } 1846 if (*count > limit - (typeof(limit))*pos) { 1847 *count = limit - (typeof(limit))*pos; 1848 } 1849 } 1850 } 1851 1852 /* 1853 * LFS rule 1854 */ 1855 if (unlikely(*pos + *count > MAX_NON_LFS && 1856 !(file->f_flags & O_LARGEFILE))) { 1857 if (*pos >= MAX_NON_LFS) { 1858 send_sig(SIGXFSZ, current, 0); 1859 return -EFBIG; 1860 } 1861 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1862 *count = MAX_NON_LFS - (unsigned long)*pos; 1863 } 1864 } 1865 1866 /* 1867 * Are we about to exceed the fs block limit ? 1868 * 1869 * If we have written data it becomes a short write. If we have 1870 * exceeded without writing data we send a signal and return EFBIG. 1871 * Linus frestrict idea will clean these up nicely.. 1872 */ 1873 if (likely(!isblk)) { 1874 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1875 if (*count || *pos > inode->i_sb->s_maxbytes) { 1876 send_sig(SIGXFSZ, current, 0); 1877 return -EFBIG; 1878 } 1879 /* zero-length writes at ->s_maxbytes are OK */ 1880 } 1881 1882 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 1883 *count = inode->i_sb->s_maxbytes - *pos; 1884 } else { 1885 loff_t isize; 1886 if (bdev_read_only(I_BDEV(inode))) 1887 return -EPERM; 1888 isize = i_size_read(inode); 1889 if (*pos >= isize) { 1890 if (*count || *pos > isize) 1891 return -ENOSPC; 1892 } 1893 1894 if (*pos + *count > isize) 1895 *count = isize - *pos; 1896 } 1897 return 0; 1898 } 1899 EXPORT_SYMBOL(generic_write_checks); 1900 1901 ssize_t 1902 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 1903 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 1904 size_t count, size_t ocount) 1905 { 1906 struct file *file = iocb->ki_filp; 1907 struct address_space *mapping = file->f_mapping; 1908 struct inode *inode = mapping->host; 1909 ssize_t written; 1910 1911 if (count != ocount) 1912 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 1913 1914 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 1915 if (written > 0) { 1916 loff_t end = pos + written; 1917 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 1918 i_size_write(inode, end); 1919 mark_inode_dirty(inode); 1920 } 1921 *ppos = end; 1922 } 1923 1924 /* 1925 * Sync the fs metadata but not the minor inode changes and 1926 * of course not the data as we did direct DMA for the IO. 1927 * i_sem is held, which protects generic_osync_inode() from 1928 * livelocking. 1929 */ 1930 if (written >= 0 && file->f_flags & O_SYNC) 1931 generic_osync_inode(inode, mapping, OSYNC_METADATA); 1932 if (written == count && !is_sync_kiocb(iocb)) 1933 written = -EIOCBQUEUED; 1934 return written; 1935 } 1936 EXPORT_SYMBOL(generic_file_direct_write); 1937 1938 ssize_t 1939 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 1940 unsigned long nr_segs, loff_t pos, loff_t *ppos, 1941 size_t count, ssize_t written) 1942 { 1943 struct file *file = iocb->ki_filp; 1944 struct address_space * mapping = file->f_mapping; 1945 struct address_space_operations *a_ops = mapping->a_ops; 1946 struct inode *inode = mapping->host; 1947 long status = 0; 1948 struct page *page; 1949 struct page *cached_page = NULL; 1950 size_t bytes; 1951 struct pagevec lru_pvec; 1952 const struct iovec *cur_iov = iov; /* current iovec */ 1953 size_t iov_base = 0; /* offset in the current iovec */ 1954 char __user *buf; 1955 1956 pagevec_init(&lru_pvec, 0); 1957 1958 /* 1959 * handle partial DIO write. Adjust cur_iov if needed. 1960 */ 1961 if (likely(nr_segs == 1)) 1962 buf = iov->iov_base + written; 1963 else { 1964 filemap_set_next_iovec(&cur_iov, &iov_base, written); 1965 buf = cur_iov->iov_base + iov_base; 1966 } 1967 1968 do { 1969 unsigned long index; 1970 unsigned long offset; 1971 unsigned long maxlen; 1972 size_t copied; 1973 1974 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 1975 index = pos >> PAGE_CACHE_SHIFT; 1976 bytes = PAGE_CACHE_SIZE - offset; 1977 if (bytes > count) 1978 bytes = count; 1979 1980 /* 1981 * Bring in the user page that we will copy from _first_. 1982 * Otherwise there's a nasty deadlock on copying from the 1983 * same page as we're writing to, without it being marked 1984 * up-to-date. 1985 */ 1986 maxlen = cur_iov->iov_len - iov_base; 1987 if (maxlen > bytes) 1988 maxlen = bytes; 1989 fault_in_pages_readable(buf, maxlen); 1990 1991 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); 1992 if (!page) { 1993 status = -ENOMEM; 1994 break; 1995 } 1996 1997 status = a_ops->prepare_write(file, page, offset, offset+bytes); 1998 if (unlikely(status)) { 1999 loff_t isize = i_size_read(inode); 2000 /* 2001 * prepare_write() may have instantiated a few blocks 2002 * outside i_size. Trim these off again. 2003 */ 2004 unlock_page(page); 2005 page_cache_release(page); 2006 if (pos + bytes > isize) 2007 vmtruncate(inode, isize); 2008 break; 2009 } 2010 if (likely(nr_segs == 1)) 2011 copied = filemap_copy_from_user(page, offset, 2012 buf, bytes); 2013 else 2014 copied = filemap_copy_from_user_iovec(page, offset, 2015 cur_iov, iov_base, bytes); 2016 flush_dcache_page(page); 2017 status = a_ops->commit_write(file, page, offset, offset+bytes); 2018 if (likely(copied > 0)) { 2019 if (!status) 2020 status = copied; 2021 2022 if (status >= 0) { 2023 written += status; 2024 count -= status; 2025 pos += status; 2026 buf += status; 2027 if (unlikely(nr_segs > 1)) { 2028 filemap_set_next_iovec(&cur_iov, 2029 &iov_base, status); 2030 buf = cur_iov->iov_base + iov_base; 2031 } else { 2032 iov_base += status; 2033 } 2034 } 2035 } 2036 if (unlikely(copied != bytes)) 2037 if (status >= 0) 2038 status = -EFAULT; 2039 unlock_page(page); 2040 mark_page_accessed(page); 2041 page_cache_release(page); 2042 if (status < 0) 2043 break; 2044 balance_dirty_pages_ratelimited(mapping); 2045 cond_resched(); 2046 } while (count); 2047 *ppos = pos; 2048 2049 if (cached_page) 2050 page_cache_release(cached_page); 2051 2052 /* 2053 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC 2054 */ 2055 if (likely(status >= 0)) { 2056 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2057 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2058 status = generic_osync_inode(inode, mapping, 2059 OSYNC_METADATA|OSYNC_DATA); 2060 } 2061 } 2062 2063 /* 2064 * If we get here for O_DIRECT writes then we must have fallen through 2065 * to buffered writes (block instantiation inside i_size). So we sync 2066 * the file data here, to try to honour O_DIRECT expectations. 2067 */ 2068 if (unlikely(file->f_flags & O_DIRECT) && written) 2069 status = filemap_write_and_wait(mapping); 2070 2071 pagevec_lru_add(&lru_pvec); 2072 return written ? written : status; 2073 } 2074 EXPORT_SYMBOL(generic_file_buffered_write); 2075 2076 ssize_t 2077 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2078 unsigned long nr_segs, loff_t *ppos) 2079 { 2080 struct file *file = iocb->ki_filp; 2081 struct address_space * mapping = file->f_mapping; 2082 size_t ocount; /* original count */ 2083 size_t count; /* after file limit checks */ 2084 struct inode *inode = mapping->host; 2085 unsigned long seg; 2086 loff_t pos; 2087 ssize_t written; 2088 ssize_t err; 2089 2090 ocount = 0; 2091 for (seg = 0; seg < nr_segs; seg++) { 2092 const struct iovec *iv = &iov[seg]; 2093 2094 /* 2095 * If any segment has a negative length, or the cumulative 2096 * length ever wraps negative then return -EINVAL. 2097 */ 2098 ocount += iv->iov_len; 2099 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) 2100 return -EINVAL; 2101 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) 2102 continue; 2103 if (seg == 0) 2104 return -EFAULT; 2105 nr_segs = seg; 2106 ocount -= iv->iov_len; /* This segment is no good */ 2107 break; 2108 } 2109 2110 count = ocount; 2111 pos = *ppos; 2112 2113 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2114 2115 /* We can write back this queue in page reclaim */ 2116 current->backing_dev_info = mapping->backing_dev_info; 2117 written = 0; 2118 2119 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2120 if (err) 2121 goto out; 2122 2123 if (count == 0) 2124 goto out; 2125 2126 err = remove_suid(file->f_dentry); 2127 if (err) 2128 goto out; 2129 2130 inode_update_time(inode, 1); 2131 2132 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2133 if (unlikely(file->f_flags & O_DIRECT)) { 2134 written = generic_file_direct_write(iocb, iov, 2135 &nr_segs, pos, ppos, count, ocount); 2136 if (written < 0 || written == count) 2137 goto out; 2138 /* 2139 * direct-io write to a hole: fall through to buffered I/O 2140 * for completing the rest of the request. 2141 */ 2142 pos += written; 2143 count -= written; 2144 } 2145 2146 written = generic_file_buffered_write(iocb, iov, nr_segs, 2147 pos, ppos, count, written); 2148 out: 2149 current->backing_dev_info = NULL; 2150 return written ? written : err; 2151 } 2152 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2153 2154 ssize_t 2155 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2156 unsigned long nr_segs, loff_t *ppos) 2157 { 2158 struct file *file = iocb->ki_filp; 2159 struct address_space *mapping = file->f_mapping; 2160 struct inode *inode = mapping->host; 2161 ssize_t ret; 2162 loff_t pos = *ppos; 2163 2164 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos); 2165 2166 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2167 int err; 2168 2169 err = sync_page_range_nolock(inode, mapping, pos, ret); 2170 if (err < 0) 2171 ret = err; 2172 } 2173 return ret; 2174 } 2175 2176 ssize_t 2177 __generic_file_write_nolock(struct file *file, const struct iovec *iov, 2178 unsigned long nr_segs, loff_t *ppos) 2179 { 2180 struct kiocb kiocb; 2181 ssize_t ret; 2182 2183 init_sync_kiocb(&kiocb, file); 2184 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2185 if (ret == -EIOCBQUEUED) 2186 ret = wait_on_sync_kiocb(&kiocb); 2187 return ret; 2188 } 2189 2190 ssize_t 2191 generic_file_write_nolock(struct file *file, const struct iovec *iov, 2192 unsigned long nr_segs, loff_t *ppos) 2193 { 2194 struct kiocb kiocb; 2195 ssize_t ret; 2196 2197 init_sync_kiocb(&kiocb, file); 2198 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2199 if (-EIOCBQUEUED == ret) 2200 ret = wait_on_sync_kiocb(&kiocb); 2201 return ret; 2202 } 2203 EXPORT_SYMBOL(generic_file_write_nolock); 2204 2205 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf, 2206 size_t count, loff_t pos) 2207 { 2208 struct file *file = iocb->ki_filp; 2209 struct address_space *mapping = file->f_mapping; 2210 struct inode *inode = mapping->host; 2211 ssize_t ret; 2212 struct iovec local_iov = { .iov_base = (void __user *)buf, 2213 .iov_len = count }; 2214 2215 BUG_ON(iocb->ki_pos != pos); 2216 2217 down(&inode->i_sem); 2218 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1, 2219 &iocb->ki_pos); 2220 up(&inode->i_sem); 2221 2222 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2223 ssize_t err; 2224 2225 err = sync_page_range(inode, mapping, pos, ret); 2226 if (err < 0) 2227 ret = err; 2228 } 2229 return ret; 2230 } 2231 EXPORT_SYMBOL(generic_file_aio_write); 2232 2233 ssize_t generic_file_write(struct file *file, const char __user *buf, 2234 size_t count, loff_t *ppos) 2235 { 2236 struct address_space *mapping = file->f_mapping; 2237 struct inode *inode = mapping->host; 2238 ssize_t ret; 2239 struct iovec local_iov = { .iov_base = (void __user *)buf, 2240 .iov_len = count }; 2241 2242 down(&inode->i_sem); 2243 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos); 2244 up(&inode->i_sem); 2245 2246 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2247 ssize_t err; 2248 2249 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2250 if (err < 0) 2251 ret = err; 2252 } 2253 return ret; 2254 } 2255 EXPORT_SYMBOL(generic_file_write); 2256 2257 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov, 2258 unsigned long nr_segs, loff_t *ppos) 2259 { 2260 struct kiocb kiocb; 2261 ssize_t ret; 2262 2263 init_sync_kiocb(&kiocb, filp); 2264 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos); 2265 if (-EIOCBQUEUED == ret) 2266 ret = wait_on_sync_kiocb(&kiocb); 2267 return ret; 2268 } 2269 EXPORT_SYMBOL(generic_file_readv); 2270 2271 ssize_t generic_file_writev(struct file *file, const struct iovec *iov, 2272 unsigned long nr_segs, loff_t *ppos) 2273 { 2274 struct address_space *mapping = file->f_mapping; 2275 struct inode *inode = mapping->host; 2276 ssize_t ret; 2277 2278 down(&inode->i_sem); 2279 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos); 2280 up(&inode->i_sem); 2281 2282 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2283 int err; 2284 2285 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2286 if (err < 0) 2287 ret = err; 2288 } 2289 return ret; 2290 } 2291 EXPORT_SYMBOL(generic_file_writev); 2292 2293 /* 2294 * Called under i_sem for writes to S_ISREG files. Returns -EIO if something 2295 * went wrong during pagecache shootdown. 2296 */ 2297 ssize_t 2298 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2299 loff_t offset, unsigned long nr_segs) 2300 { 2301 struct file *file = iocb->ki_filp; 2302 struct address_space *mapping = file->f_mapping; 2303 ssize_t retval; 2304 size_t write_len = 0; 2305 2306 /* 2307 * If it's a write, unmap all mmappings of the file up-front. This 2308 * will cause any pte dirty bits to be propagated into the pageframes 2309 * for the subsequent filemap_write_and_wait(). 2310 */ 2311 if (rw == WRITE) { 2312 write_len = iov_length(iov, nr_segs); 2313 if (mapping_mapped(mapping)) 2314 unmap_mapping_range(mapping, offset, write_len, 0); 2315 } 2316 2317 retval = filemap_write_and_wait(mapping); 2318 if (retval == 0) { 2319 retval = mapping->a_ops->direct_IO(rw, iocb, iov, 2320 offset, nr_segs); 2321 if (rw == WRITE && mapping->nrpages) { 2322 pgoff_t end = (offset + write_len - 1) 2323 >> PAGE_CACHE_SHIFT; 2324 int err = invalidate_inode_pages2_range(mapping, 2325 offset >> PAGE_CACHE_SHIFT, end); 2326 if (err) 2327 retval = err; 2328 } 2329 } 2330 return retval; 2331 } 2332 EXPORT_SYMBOL_GPL(generic_file_direct_IO); 2333