xref: /linux/mm/filemap.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35 
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40 
41 #include <asm/mman.h>
42 
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 	loff_t offset, unsigned long nr_segs);
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	BUG_ON(page_mapped(page));
124 }
125 
126 void remove_from_page_cache(struct page *page)
127 {
128 	struct address_space *mapping = page->mapping;
129 
130 	BUG_ON(!PageLocked(page));
131 
132 	write_lock_irq(&mapping->tree_lock);
133 	__remove_from_page_cache(page);
134 	write_unlock_irq(&mapping->tree_lock);
135 }
136 
137 static int sync_page(void *word)
138 {
139 	struct address_space *mapping;
140 	struct page *page;
141 
142 	page = container_of((unsigned long *)word, struct page, flags);
143 
144 	/*
145 	 * page_mapping() is being called without PG_locked held.
146 	 * Some knowledge of the state and use of the page is used to
147 	 * reduce the requirements down to a memory barrier.
148 	 * The danger here is of a stale page_mapping() return value
149 	 * indicating a struct address_space different from the one it's
150 	 * associated with when it is associated with one.
151 	 * After smp_mb(), it's either the correct page_mapping() for
152 	 * the page, or an old page_mapping() and the page's own
153 	 * page_mapping() has gone NULL.
154 	 * The ->sync_page() address_space operation must tolerate
155 	 * page_mapping() going NULL. By an amazing coincidence,
156 	 * this comes about because none of the users of the page
157 	 * in the ->sync_page() methods make essential use of the
158 	 * page_mapping(), merely passing the page down to the backing
159 	 * device's unplug functions when it's non-NULL, which in turn
160 	 * ignore it for all cases but swap, where only page_private(page) is
161 	 * of interest. When page_mapping() does go NULL, the entire
162 	 * call stack gracefully ignores the page and returns.
163 	 * -- wli
164 	 */
165 	smp_mb();
166 	mapping = page_mapping(page);
167 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 		mapping->a_ops->sync_page(page);
169 	io_schedule();
170 	return 0;
171 }
172 
173 /**
174  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175  * @mapping:	address space structure to write
176  * @start:	offset in bytes where the range starts
177  * @end:	offset in bytes where the range ends (inclusive)
178  * @sync_mode:	enable synchronous operation
179  *
180  * Start writeback against all of a mapping's dirty pages that lie
181  * within the byte offsets <start, end> inclusive.
182  *
183  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184  * opposed to a regular memory cleansing writeback.  The difference between
185  * these two operations is that if a dirty page/buffer is encountered, it must
186  * be waited upon, and not just skipped over.
187  */
188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189 				loff_t end, int sync_mode)
190 {
191 	int ret;
192 	struct writeback_control wbc = {
193 		.sync_mode = sync_mode,
194 		.nr_to_write = mapping->nrpages * 2,
195 		.range_start = start,
196 		.range_end = end,
197 	};
198 
199 	if (!mapping_cap_writeback_dirty(mapping))
200 		return 0;
201 
202 	ret = do_writepages(mapping, &wbc);
203 	return ret;
204 }
205 
206 static inline int __filemap_fdatawrite(struct address_space *mapping,
207 	int sync_mode)
208 {
209 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
210 }
211 
212 int filemap_fdatawrite(struct address_space *mapping)
213 {
214 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215 }
216 EXPORT_SYMBOL(filemap_fdatawrite);
217 
218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219 				loff_t end)
220 {
221 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
222 }
223 
224 /**
225  * filemap_flush - mostly a non-blocking flush
226  * @mapping:	target address_space
227  *
228  * This is a mostly non-blocking flush.  Not suitable for data-integrity
229  * purposes - I/O may not be started against all dirty pages.
230  */
231 int filemap_flush(struct address_space *mapping)
232 {
233 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234 }
235 EXPORT_SYMBOL(filemap_flush);
236 
237 /**
238  * wait_on_page_writeback_range - wait for writeback to complete
239  * @mapping:	target address_space
240  * @start:	beginning page index
241  * @end:	ending page index
242  *
243  * Wait for writeback to complete against pages indexed by start->end
244  * inclusive
245  */
246 int wait_on_page_writeback_range(struct address_space *mapping,
247 				pgoff_t start, pgoff_t end)
248 {
249 	struct pagevec pvec;
250 	int nr_pages;
251 	int ret = 0;
252 	pgoff_t index;
253 
254 	if (end < start)
255 		return 0;
256 
257 	pagevec_init(&pvec, 0);
258 	index = start;
259 	while ((index <= end) &&
260 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261 			PAGECACHE_TAG_WRITEBACK,
262 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263 		unsigned i;
264 
265 		for (i = 0; i < nr_pages; i++) {
266 			struct page *page = pvec.pages[i];
267 
268 			/* until radix tree lookup accepts end_index */
269 			if (page->index > end)
270 				continue;
271 
272 			wait_on_page_writeback(page);
273 			if (PageError(page))
274 				ret = -EIO;
275 		}
276 		pagevec_release(&pvec);
277 		cond_resched();
278 	}
279 
280 	/* Check for outstanding write errors */
281 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282 		ret = -ENOSPC;
283 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
284 		ret = -EIO;
285 
286 	return ret;
287 }
288 
289 /**
290  * sync_page_range - write and wait on all pages in the passed range
291  * @inode:	target inode
292  * @mapping:	target address_space
293  * @pos:	beginning offset in pages to write
294  * @count:	number of bytes to write
295  *
296  * Write and wait upon all the pages in the passed range.  This is a "data
297  * integrity" operation.  It waits upon in-flight writeout before starting and
298  * waiting upon new writeout.  If there was an IO error, return it.
299  *
300  * We need to re-take i_mutex during the generic_osync_inode list walk because
301  * it is otherwise livelockable.
302  */
303 int sync_page_range(struct inode *inode, struct address_space *mapping,
304 			loff_t pos, loff_t count)
305 {
306 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308 	int ret;
309 
310 	if (!mapping_cap_writeback_dirty(mapping) || !count)
311 		return 0;
312 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313 	if (ret == 0) {
314 		mutex_lock(&inode->i_mutex);
315 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316 		mutex_unlock(&inode->i_mutex);
317 	}
318 	if (ret == 0)
319 		ret = wait_on_page_writeback_range(mapping, start, end);
320 	return ret;
321 }
322 EXPORT_SYMBOL(sync_page_range);
323 
324 /**
325  * sync_page_range_nolock
326  * @inode:	target inode
327  * @mapping:	target address_space
328  * @pos:	beginning offset in pages to write
329  * @count:	number of bytes to write
330  *
331  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332  * as it forces O_SYNC writers to different parts of the same file
333  * to be serialised right until io completion.
334  */
335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336 			   loff_t pos, loff_t count)
337 {
338 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340 	int ret;
341 
342 	if (!mapping_cap_writeback_dirty(mapping) || !count)
343 		return 0;
344 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345 	if (ret == 0)
346 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347 	if (ret == 0)
348 		ret = wait_on_page_writeback_range(mapping, start, end);
349 	return ret;
350 }
351 EXPORT_SYMBOL(sync_page_range_nolock);
352 
353 /**
354  * filemap_fdatawait - wait for all under-writeback pages to complete
355  * @mapping: address space structure to wait for
356  *
357  * Walk the list of under-writeback pages of the given address space
358  * and wait for all of them.
359  */
360 int filemap_fdatawait(struct address_space *mapping)
361 {
362 	loff_t i_size = i_size_read(mapping->host);
363 
364 	if (i_size == 0)
365 		return 0;
366 
367 	return wait_on_page_writeback_range(mapping, 0,
368 				(i_size - 1) >> PAGE_CACHE_SHIFT);
369 }
370 EXPORT_SYMBOL(filemap_fdatawait);
371 
372 int filemap_write_and_wait(struct address_space *mapping)
373 {
374 	int err = 0;
375 
376 	if (mapping->nrpages) {
377 		err = filemap_fdatawrite(mapping);
378 		/*
379 		 * Even if the above returned error, the pages may be
380 		 * written partially (e.g. -ENOSPC), so we wait for it.
381 		 * But the -EIO is special case, it may indicate the worst
382 		 * thing (e.g. bug) happened, so we avoid waiting for it.
383 		 */
384 		if (err != -EIO) {
385 			int err2 = filemap_fdatawait(mapping);
386 			if (!err)
387 				err = err2;
388 		}
389 	}
390 	return err;
391 }
392 EXPORT_SYMBOL(filemap_write_and_wait);
393 
394 /**
395  * filemap_write_and_wait_range - write out & wait on a file range
396  * @mapping:	the address_space for the pages
397  * @lstart:	offset in bytes where the range starts
398  * @lend:	offset in bytes where the range ends (inclusive)
399  *
400  * Write out and wait upon file offsets lstart->lend, inclusive.
401  *
402  * Note that `lend' is inclusive (describes the last byte to be written) so
403  * that this function can be used to write to the very end-of-file (end = -1).
404  */
405 int filemap_write_and_wait_range(struct address_space *mapping,
406 				 loff_t lstart, loff_t lend)
407 {
408 	int err = 0;
409 
410 	if (mapping->nrpages) {
411 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
412 						 WB_SYNC_ALL);
413 		/* See comment of filemap_write_and_wait() */
414 		if (err != -EIO) {
415 			int err2 = wait_on_page_writeback_range(mapping,
416 						lstart >> PAGE_CACHE_SHIFT,
417 						lend >> PAGE_CACHE_SHIFT);
418 			if (!err)
419 				err = err2;
420 		}
421 	}
422 	return err;
423 }
424 
425 /**
426  * add_to_page_cache - add newly allocated pagecache pages
427  * @page:	page to add
428  * @mapping:	the page's address_space
429  * @offset:	page index
430  * @gfp_mask:	page allocation mode
431  *
432  * This function is used to add newly allocated pagecache pages;
433  * the page is new, so we can just run SetPageLocked() against it.
434  * The other page state flags were set by rmqueue().
435  *
436  * This function does not add the page to the LRU.  The caller must do that.
437  */
438 int add_to_page_cache(struct page *page, struct address_space *mapping,
439 		pgoff_t offset, gfp_t gfp_mask)
440 {
441 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442 
443 	if (error == 0) {
444 		write_lock_irq(&mapping->tree_lock);
445 		error = radix_tree_insert(&mapping->page_tree, offset, page);
446 		if (!error) {
447 			page_cache_get(page);
448 			SetPageLocked(page);
449 			page->mapping = mapping;
450 			page->index = offset;
451 			mapping->nrpages++;
452 			__inc_zone_page_state(page, NR_FILE_PAGES);
453 		}
454 		write_unlock_irq(&mapping->tree_lock);
455 		radix_tree_preload_end();
456 	}
457 	return error;
458 }
459 EXPORT_SYMBOL(add_to_page_cache);
460 
461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462 				pgoff_t offset, gfp_t gfp_mask)
463 {
464 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465 	if (ret == 0)
466 		lru_cache_add(page);
467 	return ret;
468 }
469 
470 #ifdef CONFIG_NUMA
471 struct page *__page_cache_alloc(gfp_t gfp)
472 {
473 	if (cpuset_do_page_mem_spread()) {
474 		int n = cpuset_mem_spread_node();
475 		return alloc_pages_node(n, gfp, 0);
476 	}
477 	return alloc_pages(gfp, 0);
478 }
479 EXPORT_SYMBOL(__page_cache_alloc);
480 #endif
481 
482 static int __sleep_on_page_lock(void *word)
483 {
484 	io_schedule();
485 	return 0;
486 }
487 
488 /*
489  * In order to wait for pages to become available there must be
490  * waitqueues associated with pages. By using a hash table of
491  * waitqueues where the bucket discipline is to maintain all
492  * waiters on the same queue and wake all when any of the pages
493  * become available, and for the woken contexts to check to be
494  * sure the appropriate page became available, this saves space
495  * at a cost of "thundering herd" phenomena during rare hash
496  * collisions.
497  */
498 static wait_queue_head_t *page_waitqueue(struct page *page)
499 {
500 	const struct zone *zone = page_zone(page);
501 
502 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503 }
504 
505 static inline void wake_up_page(struct page *page, int bit)
506 {
507 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
508 }
509 
510 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511 {
512 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513 
514 	if (test_bit(bit_nr, &page->flags))
515 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 							TASK_UNINTERRUPTIBLE);
517 }
518 EXPORT_SYMBOL(wait_on_page_bit);
519 
520 /**
521  * unlock_page - unlock a locked page
522  * @page: the page
523  *
524  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526  * mechananism between PageLocked pages and PageWriteback pages is shared.
527  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528  *
529  * The first mb is necessary to safely close the critical section opened by the
530  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532  * parallel wait_on_page_locked()).
533  */
534 void fastcall unlock_page(struct page *page)
535 {
536 	smp_mb__before_clear_bit();
537 	if (!TestClearPageLocked(page))
538 		BUG();
539 	smp_mb__after_clear_bit();
540 	wake_up_page(page, PG_locked);
541 }
542 EXPORT_SYMBOL(unlock_page);
543 
544 /**
545  * end_page_writeback - end writeback against a page
546  * @page: the page
547  */
548 void end_page_writeback(struct page *page)
549 {
550 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551 		if (!test_clear_page_writeback(page))
552 			BUG();
553 	}
554 	smp_mb__after_clear_bit();
555 	wake_up_page(page, PG_writeback);
556 }
557 EXPORT_SYMBOL(end_page_writeback);
558 
559 /**
560  * __lock_page - get a lock on the page, assuming we need to sleep to get it
561  * @page: the page to lock
562  *
563  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
564  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
565  * chances are that on the second loop, the block layer's plug list is empty,
566  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567  */
568 void fastcall __lock_page(struct page *page)
569 {
570 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571 
572 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573 							TASK_UNINTERRUPTIBLE);
574 }
575 EXPORT_SYMBOL(__lock_page);
576 
577 /*
578  * Variant of lock_page that does not require the caller to hold a reference
579  * on the page's mapping.
580  */
581 void fastcall __lock_page_nosync(struct page *page)
582 {
583 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585 							TASK_UNINTERRUPTIBLE);
586 }
587 
588 /**
589  * find_get_page - find and get a page reference
590  * @mapping: the address_space to search
591  * @offset: the page index
592  *
593  * Is there a pagecache struct page at the given (mapping, offset) tuple?
594  * If yes, increment its refcount and return it; if no, return NULL.
595  */
596 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
597 {
598 	struct page *page;
599 
600 	read_lock_irq(&mapping->tree_lock);
601 	page = radix_tree_lookup(&mapping->page_tree, offset);
602 	if (page)
603 		page_cache_get(page);
604 	read_unlock_irq(&mapping->tree_lock);
605 	return page;
606 }
607 EXPORT_SYMBOL(find_get_page);
608 
609 /**
610  * find_lock_page - locate, pin and lock a pagecache page
611  * @mapping: the address_space to search
612  * @offset: the page index
613  *
614  * Locates the desired pagecache page, locks it, increments its reference
615  * count and returns its address.
616  *
617  * Returns zero if the page was not present. find_lock_page() may sleep.
618  */
619 struct page *find_lock_page(struct address_space *mapping,
620 				unsigned long offset)
621 {
622 	struct page *page;
623 
624 	read_lock_irq(&mapping->tree_lock);
625 repeat:
626 	page = radix_tree_lookup(&mapping->page_tree, offset);
627 	if (page) {
628 		page_cache_get(page);
629 		if (TestSetPageLocked(page)) {
630 			read_unlock_irq(&mapping->tree_lock);
631 			__lock_page(page);
632 			read_lock_irq(&mapping->tree_lock);
633 
634 			/* Has the page been truncated while we slept? */
635 			if (unlikely(page->mapping != mapping ||
636 				     page->index != offset)) {
637 				unlock_page(page);
638 				page_cache_release(page);
639 				goto repeat;
640 			}
641 		}
642 	}
643 	read_unlock_irq(&mapping->tree_lock);
644 	return page;
645 }
646 EXPORT_SYMBOL(find_lock_page);
647 
648 /**
649  * find_or_create_page - locate or add a pagecache page
650  * @mapping: the page's address_space
651  * @index: the page's index into the mapping
652  * @gfp_mask: page allocation mode
653  *
654  * Locates a page in the pagecache.  If the page is not present, a new page
655  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
656  * LRU list.  The returned page is locked and has its reference count
657  * incremented.
658  *
659  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
660  * allocation!
661  *
662  * find_or_create_page() returns the desired page's address, or zero on
663  * memory exhaustion.
664  */
665 struct page *find_or_create_page(struct address_space *mapping,
666 		unsigned long index, gfp_t gfp_mask)
667 {
668 	struct page *page, *cached_page = NULL;
669 	int err;
670 repeat:
671 	page = find_lock_page(mapping, index);
672 	if (!page) {
673 		if (!cached_page) {
674 			cached_page =
675 				__page_cache_alloc(gfp_mask);
676 			if (!cached_page)
677 				return NULL;
678 		}
679 		err = add_to_page_cache_lru(cached_page, mapping,
680 					index, gfp_mask);
681 		if (!err) {
682 			page = cached_page;
683 			cached_page = NULL;
684 		} else if (err == -EEXIST)
685 			goto repeat;
686 	}
687 	if (cached_page)
688 		page_cache_release(cached_page);
689 	return page;
690 }
691 EXPORT_SYMBOL(find_or_create_page);
692 
693 /**
694  * find_get_pages - gang pagecache lookup
695  * @mapping:	The address_space to search
696  * @start:	The starting page index
697  * @nr_pages:	The maximum number of pages
698  * @pages:	Where the resulting pages are placed
699  *
700  * find_get_pages() will search for and return a group of up to
701  * @nr_pages pages in the mapping.  The pages are placed at @pages.
702  * find_get_pages() takes a reference against the returned pages.
703  *
704  * The search returns a group of mapping-contiguous pages with ascending
705  * indexes.  There may be holes in the indices due to not-present pages.
706  *
707  * find_get_pages() returns the number of pages which were found.
708  */
709 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
710 			    unsigned int nr_pages, struct page **pages)
711 {
712 	unsigned int i;
713 	unsigned int ret;
714 
715 	read_lock_irq(&mapping->tree_lock);
716 	ret = radix_tree_gang_lookup(&mapping->page_tree,
717 				(void **)pages, start, nr_pages);
718 	for (i = 0; i < ret; i++)
719 		page_cache_get(pages[i]);
720 	read_unlock_irq(&mapping->tree_lock);
721 	return ret;
722 }
723 
724 /**
725  * find_get_pages_contig - gang contiguous pagecache lookup
726  * @mapping:	The address_space to search
727  * @index:	The starting page index
728  * @nr_pages:	The maximum number of pages
729  * @pages:	Where the resulting pages are placed
730  *
731  * find_get_pages_contig() works exactly like find_get_pages(), except
732  * that the returned number of pages are guaranteed to be contiguous.
733  *
734  * find_get_pages_contig() returns the number of pages which were found.
735  */
736 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
737 			       unsigned int nr_pages, struct page **pages)
738 {
739 	unsigned int i;
740 	unsigned int ret;
741 
742 	read_lock_irq(&mapping->tree_lock);
743 	ret = radix_tree_gang_lookup(&mapping->page_tree,
744 				(void **)pages, index, nr_pages);
745 	for (i = 0; i < ret; i++) {
746 		if (pages[i]->mapping == NULL || pages[i]->index != index)
747 			break;
748 
749 		page_cache_get(pages[i]);
750 		index++;
751 	}
752 	read_unlock_irq(&mapping->tree_lock);
753 	return i;
754 }
755 EXPORT_SYMBOL(find_get_pages_contig);
756 
757 /**
758  * find_get_pages_tag - find and return pages that match @tag
759  * @mapping:	the address_space to search
760  * @index:	the starting page index
761  * @tag:	the tag index
762  * @nr_pages:	the maximum number of pages
763  * @pages:	where the resulting pages are placed
764  *
765  * Like find_get_pages, except we only return pages which are tagged with
766  * @tag.   We update @index to index the next page for the traversal.
767  */
768 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
769 			int tag, unsigned int nr_pages, struct page **pages)
770 {
771 	unsigned int i;
772 	unsigned int ret;
773 
774 	read_lock_irq(&mapping->tree_lock);
775 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
776 				(void **)pages, *index, nr_pages, tag);
777 	for (i = 0; i < ret; i++)
778 		page_cache_get(pages[i]);
779 	if (ret)
780 		*index = pages[ret - 1]->index + 1;
781 	read_unlock_irq(&mapping->tree_lock);
782 	return ret;
783 }
784 EXPORT_SYMBOL(find_get_pages_tag);
785 
786 /**
787  * grab_cache_page_nowait - returns locked page at given index in given cache
788  * @mapping: target address_space
789  * @index: the page index
790  *
791  * Same as grab_cache_page(), but do not wait if the page is unavailable.
792  * This is intended for speculative data generators, where the data can
793  * be regenerated if the page couldn't be grabbed.  This routine should
794  * be safe to call while holding the lock for another page.
795  *
796  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
797  * and deadlock against the caller's locked page.
798  */
799 struct page *
800 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
801 {
802 	struct page *page = find_get_page(mapping, index);
803 
804 	if (page) {
805 		if (!TestSetPageLocked(page))
806 			return page;
807 		page_cache_release(page);
808 		return NULL;
809 	}
810 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
811 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
812 		page_cache_release(page);
813 		page = NULL;
814 	}
815 	return page;
816 }
817 EXPORT_SYMBOL(grab_cache_page_nowait);
818 
819 /*
820  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
821  * a _large_ part of the i/o request. Imagine the worst scenario:
822  *
823  *      ---R__________________________________________B__________
824  *         ^ reading here                             ^ bad block(assume 4k)
825  *
826  * read(R) => miss => readahead(R...B) => media error => frustrating retries
827  * => failing the whole request => read(R) => read(R+1) =>
828  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
829  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
830  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
831  *
832  * It is going insane. Fix it by quickly scaling down the readahead size.
833  */
834 static void shrink_readahead_size_eio(struct file *filp,
835 					struct file_ra_state *ra)
836 {
837 	if (!ra->ra_pages)
838 		return;
839 
840 	ra->ra_pages /= 4;
841 }
842 
843 /**
844  * do_generic_mapping_read - generic file read routine
845  * @mapping:	address_space to be read
846  * @_ra:	file's readahead state
847  * @filp:	the file to read
848  * @ppos:	current file position
849  * @desc:	read_descriptor
850  * @actor:	read method
851  *
852  * This is a generic file read routine, and uses the
853  * mapping->a_ops->readpage() function for the actual low-level stuff.
854  *
855  * This is really ugly. But the goto's actually try to clarify some
856  * of the logic when it comes to error handling etc.
857  *
858  * Note the struct file* is only passed for the use of readpage.
859  * It may be NULL.
860  */
861 void do_generic_mapping_read(struct address_space *mapping,
862 			     struct file_ra_state *_ra,
863 			     struct file *filp,
864 			     loff_t *ppos,
865 			     read_descriptor_t *desc,
866 			     read_actor_t actor)
867 {
868 	struct inode *inode = mapping->host;
869 	unsigned long index;
870 	unsigned long offset;
871 	unsigned long last_index;
872 	unsigned long next_index;
873 	unsigned long prev_index;
874 	unsigned int prev_offset;
875 	struct page *cached_page;
876 	int error;
877 	struct file_ra_state ra = *_ra;
878 
879 	cached_page = NULL;
880 	index = *ppos >> PAGE_CACHE_SHIFT;
881 	next_index = index;
882 	prev_index = ra.prev_index;
883 	prev_offset = ra.prev_offset;
884 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
885 	offset = *ppos & ~PAGE_CACHE_MASK;
886 
887 	for (;;) {
888 		struct page *page;
889 		unsigned long end_index;
890 		loff_t isize;
891 		unsigned long nr, ret;
892 
893 		cond_resched();
894 find_page:
895 		page = find_get_page(mapping, index);
896 		if (!page) {
897 			page_cache_sync_readahead(mapping,
898 					&ra, filp,
899 					index, last_index - index);
900 			page = find_get_page(mapping, index);
901 			if (unlikely(page == NULL))
902 				goto no_cached_page;
903 		}
904 		if (PageReadahead(page)) {
905 			page_cache_async_readahead(mapping,
906 					&ra, filp, page,
907 					index, last_index - index);
908 		}
909 		if (!PageUptodate(page))
910 			goto page_not_up_to_date;
911 page_ok:
912 		/*
913 		 * i_size must be checked after we know the page is Uptodate.
914 		 *
915 		 * Checking i_size after the check allows us to calculate
916 		 * the correct value for "nr", which means the zero-filled
917 		 * part of the page is not copied back to userspace (unless
918 		 * another truncate extends the file - this is desired though).
919 		 */
920 
921 		isize = i_size_read(inode);
922 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
923 		if (unlikely(!isize || index > end_index)) {
924 			page_cache_release(page);
925 			goto out;
926 		}
927 
928 		/* nr is the maximum number of bytes to copy from this page */
929 		nr = PAGE_CACHE_SIZE;
930 		if (index == end_index) {
931 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
932 			if (nr <= offset) {
933 				page_cache_release(page);
934 				goto out;
935 			}
936 		}
937 		nr = nr - offset;
938 
939 		/* If users can be writing to this page using arbitrary
940 		 * virtual addresses, take care about potential aliasing
941 		 * before reading the page on the kernel side.
942 		 */
943 		if (mapping_writably_mapped(mapping))
944 			flush_dcache_page(page);
945 
946 		/*
947 		 * When a sequential read accesses a page several times,
948 		 * only mark it as accessed the first time.
949 		 */
950 		if (prev_index != index || offset != prev_offset)
951 			mark_page_accessed(page);
952 		prev_index = index;
953 
954 		/*
955 		 * Ok, we have the page, and it's up-to-date, so
956 		 * now we can copy it to user space...
957 		 *
958 		 * The actor routine returns how many bytes were actually used..
959 		 * NOTE! This may not be the same as how much of a user buffer
960 		 * we filled up (we may be padding etc), so we can only update
961 		 * "pos" here (the actor routine has to update the user buffer
962 		 * pointers and the remaining count).
963 		 */
964 		ret = actor(desc, page, offset, nr);
965 		offset += ret;
966 		index += offset >> PAGE_CACHE_SHIFT;
967 		offset &= ~PAGE_CACHE_MASK;
968 		prev_offset = offset;
969 		ra.prev_offset = offset;
970 
971 		page_cache_release(page);
972 		if (ret == nr && desc->count)
973 			continue;
974 		goto out;
975 
976 page_not_up_to_date:
977 		/* Get exclusive access to the page ... */
978 		lock_page(page);
979 
980 		/* Did it get truncated before we got the lock? */
981 		if (!page->mapping) {
982 			unlock_page(page);
983 			page_cache_release(page);
984 			continue;
985 		}
986 
987 		/* Did somebody else fill it already? */
988 		if (PageUptodate(page)) {
989 			unlock_page(page);
990 			goto page_ok;
991 		}
992 
993 readpage:
994 		/* Start the actual read. The read will unlock the page. */
995 		error = mapping->a_ops->readpage(filp, page);
996 
997 		if (unlikely(error)) {
998 			if (error == AOP_TRUNCATED_PAGE) {
999 				page_cache_release(page);
1000 				goto find_page;
1001 			}
1002 			goto readpage_error;
1003 		}
1004 
1005 		if (!PageUptodate(page)) {
1006 			lock_page(page);
1007 			if (!PageUptodate(page)) {
1008 				if (page->mapping == NULL) {
1009 					/*
1010 					 * invalidate_inode_pages got it
1011 					 */
1012 					unlock_page(page);
1013 					page_cache_release(page);
1014 					goto find_page;
1015 				}
1016 				unlock_page(page);
1017 				error = -EIO;
1018 				shrink_readahead_size_eio(filp, &ra);
1019 				goto readpage_error;
1020 			}
1021 			unlock_page(page);
1022 		}
1023 
1024 		goto page_ok;
1025 
1026 readpage_error:
1027 		/* UHHUH! A synchronous read error occurred. Report it */
1028 		desc->error = error;
1029 		page_cache_release(page);
1030 		goto out;
1031 
1032 no_cached_page:
1033 		/*
1034 		 * Ok, it wasn't cached, so we need to create a new
1035 		 * page..
1036 		 */
1037 		if (!cached_page) {
1038 			cached_page = page_cache_alloc_cold(mapping);
1039 			if (!cached_page) {
1040 				desc->error = -ENOMEM;
1041 				goto out;
1042 			}
1043 		}
1044 		error = add_to_page_cache_lru(cached_page, mapping,
1045 						index, GFP_KERNEL);
1046 		if (error) {
1047 			if (error == -EEXIST)
1048 				goto find_page;
1049 			desc->error = error;
1050 			goto out;
1051 		}
1052 		page = cached_page;
1053 		cached_page = NULL;
1054 		goto readpage;
1055 	}
1056 
1057 out:
1058 	*_ra = ra;
1059 	_ra->prev_index = prev_index;
1060 
1061 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1062 	if (cached_page)
1063 		page_cache_release(cached_page);
1064 	if (filp)
1065 		file_accessed(filp);
1066 }
1067 EXPORT_SYMBOL(do_generic_mapping_read);
1068 
1069 int file_read_actor(read_descriptor_t *desc, struct page *page,
1070 			unsigned long offset, unsigned long size)
1071 {
1072 	char *kaddr;
1073 	unsigned long left, count = desc->count;
1074 
1075 	if (size > count)
1076 		size = count;
1077 
1078 	/*
1079 	 * Faults on the destination of a read are common, so do it before
1080 	 * taking the kmap.
1081 	 */
1082 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1083 		kaddr = kmap_atomic(page, KM_USER0);
1084 		left = __copy_to_user_inatomic(desc->arg.buf,
1085 						kaddr + offset, size);
1086 		kunmap_atomic(kaddr, KM_USER0);
1087 		if (left == 0)
1088 			goto success;
1089 	}
1090 
1091 	/* Do it the slow way */
1092 	kaddr = kmap(page);
1093 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1094 	kunmap(page);
1095 
1096 	if (left) {
1097 		size -= left;
1098 		desc->error = -EFAULT;
1099 	}
1100 success:
1101 	desc->count = count - size;
1102 	desc->written += size;
1103 	desc->arg.buf += size;
1104 	return size;
1105 }
1106 
1107 /*
1108  * Performs necessary checks before doing a write
1109  * @iov:	io vector request
1110  * @nr_segs:	number of segments in the iovec
1111  * @count:	number of bytes to write
1112  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1113  *
1114  * Adjust number of segments and amount of bytes to write (nr_segs should be
1115  * properly initialized first). Returns appropriate error code that caller
1116  * should return or zero in case that write should be allowed.
1117  */
1118 int generic_segment_checks(const struct iovec *iov,
1119 			unsigned long *nr_segs, size_t *count, int access_flags)
1120 {
1121 	unsigned long   seg;
1122 	size_t cnt = 0;
1123 	for (seg = 0; seg < *nr_segs; seg++) {
1124 		const struct iovec *iv = &iov[seg];
1125 
1126 		/*
1127 		 * If any segment has a negative length, or the cumulative
1128 		 * length ever wraps negative then return -EINVAL.
1129 		 */
1130 		cnt += iv->iov_len;
1131 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1132 			return -EINVAL;
1133 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1134 			continue;
1135 		if (seg == 0)
1136 			return -EFAULT;
1137 		*nr_segs = seg;
1138 		cnt -= iv->iov_len;	/* This segment is no good */
1139 		break;
1140 	}
1141 	*count = cnt;
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL(generic_segment_checks);
1145 
1146 /**
1147  * generic_file_aio_read - generic filesystem read routine
1148  * @iocb:	kernel I/O control block
1149  * @iov:	io vector request
1150  * @nr_segs:	number of segments in the iovec
1151  * @pos:	current file position
1152  *
1153  * This is the "read()" routine for all filesystems
1154  * that can use the page cache directly.
1155  */
1156 ssize_t
1157 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1158 		unsigned long nr_segs, loff_t pos)
1159 {
1160 	struct file *filp = iocb->ki_filp;
1161 	ssize_t retval;
1162 	unsigned long seg;
1163 	size_t count;
1164 	loff_t *ppos = &iocb->ki_pos;
1165 
1166 	count = 0;
1167 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1168 	if (retval)
1169 		return retval;
1170 
1171 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1172 	if (filp->f_flags & O_DIRECT) {
1173 		loff_t size;
1174 		struct address_space *mapping;
1175 		struct inode *inode;
1176 
1177 		mapping = filp->f_mapping;
1178 		inode = mapping->host;
1179 		retval = 0;
1180 		if (!count)
1181 			goto out; /* skip atime */
1182 		size = i_size_read(inode);
1183 		if (pos < size) {
1184 			retval = generic_file_direct_IO(READ, iocb,
1185 						iov, pos, nr_segs);
1186 			if (retval > 0)
1187 				*ppos = pos + retval;
1188 		}
1189 		if (likely(retval != 0)) {
1190 			file_accessed(filp);
1191 			goto out;
1192 		}
1193 	}
1194 
1195 	retval = 0;
1196 	if (count) {
1197 		for (seg = 0; seg < nr_segs; seg++) {
1198 			read_descriptor_t desc;
1199 
1200 			desc.written = 0;
1201 			desc.arg.buf = iov[seg].iov_base;
1202 			desc.count = iov[seg].iov_len;
1203 			if (desc.count == 0)
1204 				continue;
1205 			desc.error = 0;
1206 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1207 			retval += desc.written;
1208 			if (desc.error) {
1209 				retval = retval ?: desc.error;
1210 				break;
1211 			}
1212 			if (desc.count > 0)
1213 				break;
1214 		}
1215 	}
1216 out:
1217 	return retval;
1218 }
1219 EXPORT_SYMBOL(generic_file_aio_read);
1220 
1221 static ssize_t
1222 do_readahead(struct address_space *mapping, struct file *filp,
1223 	     unsigned long index, unsigned long nr)
1224 {
1225 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1226 		return -EINVAL;
1227 
1228 	force_page_cache_readahead(mapping, filp, index,
1229 					max_sane_readahead(nr));
1230 	return 0;
1231 }
1232 
1233 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1234 {
1235 	ssize_t ret;
1236 	struct file *file;
1237 
1238 	ret = -EBADF;
1239 	file = fget(fd);
1240 	if (file) {
1241 		if (file->f_mode & FMODE_READ) {
1242 			struct address_space *mapping = file->f_mapping;
1243 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1244 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1245 			unsigned long len = end - start + 1;
1246 			ret = do_readahead(mapping, file, start, len);
1247 		}
1248 		fput(file);
1249 	}
1250 	return ret;
1251 }
1252 
1253 #ifdef CONFIG_MMU
1254 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1255 /**
1256  * page_cache_read - adds requested page to the page cache if not already there
1257  * @file:	file to read
1258  * @offset:	page index
1259  *
1260  * This adds the requested page to the page cache if it isn't already there,
1261  * and schedules an I/O to read in its contents from disk.
1262  */
1263 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1264 {
1265 	struct address_space *mapping = file->f_mapping;
1266 	struct page *page;
1267 	int ret;
1268 
1269 	do {
1270 		page = page_cache_alloc_cold(mapping);
1271 		if (!page)
1272 			return -ENOMEM;
1273 
1274 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1275 		if (ret == 0)
1276 			ret = mapping->a_ops->readpage(file, page);
1277 		else if (ret == -EEXIST)
1278 			ret = 0; /* losing race to add is OK */
1279 
1280 		page_cache_release(page);
1281 
1282 	} while (ret == AOP_TRUNCATED_PAGE);
1283 
1284 	return ret;
1285 }
1286 
1287 #define MMAP_LOTSAMISS  (100)
1288 
1289 /**
1290  * filemap_fault - read in file data for page fault handling
1291  * @vma:	vma in which the fault was taken
1292  * @vmf:	struct vm_fault containing details of the fault
1293  *
1294  * filemap_fault() is invoked via the vma operations vector for a
1295  * mapped memory region to read in file data during a page fault.
1296  *
1297  * The goto's are kind of ugly, but this streamlines the normal case of having
1298  * it in the page cache, and handles the special cases reasonably without
1299  * having a lot of duplicated code.
1300  */
1301 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1302 {
1303 	int error;
1304 	struct file *file = vma->vm_file;
1305 	struct address_space *mapping = file->f_mapping;
1306 	struct file_ra_state *ra = &file->f_ra;
1307 	struct inode *inode = mapping->host;
1308 	struct page *page;
1309 	unsigned long size;
1310 	int did_readaround = 0;
1311 	int ret = 0;
1312 
1313 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1314 	if (vmf->pgoff >= size)
1315 		goto outside_data_content;
1316 
1317 	/* If we don't want any read-ahead, don't bother */
1318 	if (VM_RandomReadHint(vma))
1319 		goto no_cached_page;
1320 
1321 	/*
1322 	 * Do we have something in the page cache already?
1323 	 */
1324 retry_find:
1325 	page = find_lock_page(mapping, vmf->pgoff);
1326 	/*
1327 	 * For sequential accesses, we use the generic readahead logic.
1328 	 */
1329 	if (VM_SequentialReadHint(vma)) {
1330 		if (!page) {
1331 			page_cache_sync_readahead(mapping, ra, file,
1332 							   vmf->pgoff, 1);
1333 			page = find_lock_page(mapping, vmf->pgoff);
1334 			if (!page)
1335 				goto no_cached_page;
1336 		}
1337 		if (PageReadahead(page)) {
1338 			page_cache_async_readahead(mapping, ra, file, page,
1339 							   vmf->pgoff, 1);
1340 		}
1341 	}
1342 
1343 	if (!page) {
1344 		unsigned long ra_pages;
1345 
1346 		ra->mmap_miss++;
1347 
1348 		/*
1349 		 * Do we miss much more than hit in this file? If so,
1350 		 * stop bothering with read-ahead. It will only hurt.
1351 		 */
1352 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1353 			goto no_cached_page;
1354 
1355 		/*
1356 		 * To keep the pgmajfault counter straight, we need to
1357 		 * check did_readaround, as this is an inner loop.
1358 		 */
1359 		if (!did_readaround) {
1360 			ret = VM_FAULT_MAJOR;
1361 			count_vm_event(PGMAJFAULT);
1362 		}
1363 		did_readaround = 1;
1364 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1365 		if (ra_pages) {
1366 			pgoff_t start = 0;
1367 
1368 			if (vmf->pgoff > ra_pages / 2)
1369 				start = vmf->pgoff - ra_pages / 2;
1370 			do_page_cache_readahead(mapping, file, start, ra_pages);
1371 		}
1372 		page = find_lock_page(mapping, vmf->pgoff);
1373 		if (!page)
1374 			goto no_cached_page;
1375 	}
1376 
1377 	if (!did_readaround)
1378 		ra->mmap_hit++;
1379 
1380 	/*
1381 	 * We have a locked page in the page cache, now we need to check
1382 	 * that it's up-to-date. If not, it is going to be due to an error.
1383 	 */
1384 	if (unlikely(!PageUptodate(page)))
1385 		goto page_not_uptodate;
1386 
1387 	/* Must recheck i_size under page lock */
1388 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1389 	if (unlikely(vmf->pgoff >= size)) {
1390 		unlock_page(page);
1391 		page_cache_release(page);
1392 		goto outside_data_content;
1393 	}
1394 
1395 	/*
1396 	 * Found the page and have a reference on it.
1397 	 */
1398 	mark_page_accessed(page);
1399 	ra->prev_index = page->index;
1400 	vmf->page = page;
1401 	return ret | VM_FAULT_LOCKED;
1402 
1403 outside_data_content:
1404 	/*
1405 	 * An external ptracer can access pages that normally aren't
1406 	 * accessible..
1407 	 */
1408 	if (vma->vm_mm == current->mm)
1409 		return VM_FAULT_SIGBUS;
1410 
1411 	/* Fall through to the non-read-ahead case */
1412 no_cached_page:
1413 	/*
1414 	 * We're only likely to ever get here if MADV_RANDOM is in
1415 	 * effect.
1416 	 */
1417 	error = page_cache_read(file, vmf->pgoff);
1418 
1419 	/*
1420 	 * The page we want has now been added to the page cache.
1421 	 * In the unlikely event that someone removed it in the
1422 	 * meantime, we'll just come back here and read it again.
1423 	 */
1424 	if (error >= 0)
1425 		goto retry_find;
1426 
1427 	/*
1428 	 * An error return from page_cache_read can result if the
1429 	 * system is low on memory, or a problem occurs while trying
1430 	 * to schedule I/O.
1431 	 */
1432 	if (error == -ENOMEM)
1433 		return VM_FAULT_OOM;
1434 	return VM_FAULT_SIGBUS;
1435 
1436 page_not_uptodate:
1437 	/* IO error path */
1438 	if (!did_readaround) {
1439 		ret = VM_FAULT_MAJOR;
1440 		count_vm_event(PGMAJFAULT);
1441 	}
1442 
1443 	/*
1444 	 * Umm, take care of errors if the page isn't up-to-date.
1445 	 * Try to re-read it _once_. We do this synchronously,
1446 	 * because there really aren't any performance issues here
1447 	 * and we need to check for errors.
1448 	 */
1449 	ClearPageError(page);
1450 	error = mapping->a_ops->readpage(file, page);
1451 	page_cache_release(page);
1452 
1453 	if (!error || error == AOP_TRUNCATED_PAGE)
1454 		goto retry_find;
1455 
1456 	/* Things didn't work out. Return zero to tell the mm layer so. */
1457 	shrink_readahead_size_eio(file, ra);
1458 	return VM_FAULT_SIGBUS;
1459 }
1460 EXPORT_SYMBOL(filemap_fault);
1461 
1462 struct vm_operations_struct generic_file_vm_ops = {
1463 	.fault		= filemap_fault,
1464 };
1465 
1466 /* This is used for a general mmap of a disk file */
1467 
1468 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1469 {
1470 	struct address_space *mapping = file->f_mapping;
1471 
1472 	if (!mapping->a_ops->readpage)
1473 		return -ENOEXEC;
1474 	file_accessed(file);
1475 	vma->vm_ops = &generic_file_vm_ops;
1476 	vma->vm_flags |= VM_CAN_NONLINEAR;
1477 	return 0;
1478 }
1479 
1480 /*
1481  * This is for filesystems which do not implement ->writepage.
1482  */
1483 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1484 {
1485 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1486 		return -EINVAL;
1487 	return generic_file_mmap(file, vma);
1488 }
1489 #else
1490 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1491 {
1492 	return -ENOSYS;
1493 }
1494 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1495 {
1496 	return -ENOSYS;
1497 }
1498 #endif /* CONFIG_MMU */
1499 
1500 EXPORT_SYMBOL(generic_file_mmap);
1501 EXPORT_SYMBOL(generic_file_readonly_mmap);
1502 
1503 static struct page *__read_cache_page(struct address_space *mapping,
1504 				unsigned long index,
1505 				int (*filler)(void *,struct page*),
1506 				void *data)
1507 {
1508 	struct page *page, *cached_page = NULL;
1509 	int err;
1510 repeat:
1511 	page = find_get_page(mapping, index);
1512 	if (!page) {
1513 		if (!cached_page) {
1514 			cached_page = page_cache_alloc_cold(mapping);
1515 			if (!cached_page)
1516 				return ERR_PTR(-ENOMEM);
1517 		}
1518 		err = add_to_page_cache_lru(cached_page, mapping,
1519 					index, GFP_KERNEL);
1520 		if (err == -EEXIST)
1521 			goto repeat;
1522 		if (err < 0) {
1523 			/* Presumably ENOMEM for radix tree node */
1524 			page_cache_release(cached_page);
1525 			return ERR_PTR(err);
1526 		}
1527 		page = cached_page;
1528 		cached_page = NULL;
1529 		err = filler(data, page);
1530 		if (err < 0) {
1531 			page_cache_release(page);
1532 			page = ERR_PTR(err);
1533 		}
1534 	}
1535 	if (cached_page)
1536 		page_cache_release(cached_page);
1537 	return page;
1538 }
1539 
1540 /*
1541  * Same as read_cache_page, but don't wait for page to become unlocked
1542  * after submitting it to the filler.
1543  */
1544 struct page *read_cache_page_async(struct address_space *mapping,
1545 				unsigned long index,
1546 				int (*filler)(void *,struct page*),
1547 				void *data)
1548 {
1549 	struct page *page;
1550 	int err;
1551 
1552 retry:
1553 	page = __read_cache_page(mapping, index, filler, data);
1554 	if (IS_ERR(page))
1555 		return page;
1556 	if (PageUptodate(page))
1557 		goto out;
1558 
1559 	lock_page(page);
1560 	if (!page->mapping) {
1561 		unlock_page(page);
1562 		page_cache_release(page);
1563 		goto retry;
1564 	}
1565 	if (PageUptodate(page)) {
1566 		unlock_page(page);
1567 		goto out;
1568 	}
1569 	err = filler(data, page);
1570 	if (err < 0) {
1571 		page_cache_release(page);
1572 		return ERR_PTR(err);
1573 	}
1574 out:
1575 	mark_page_accessed(page);
1576 	return page;
1577 }
1578 EXPORT_SYMBOL(read_cache_page_async);
1579 
1580 /**
1581  * read_cache_page - read into page cache, fill it if needed
1582  * @mapping:	the page's address_space
1583  * @index:	the page index
1584  * @filler:	function to perform the read
1585  * @data:	destination for read data
1586  *
1587  * Read into the page cache. If a page already exists, and PageUptodate() is
1588  * not set, try to fill the page then wait for it to become unlocked.
1589  *
1590  * If the page does not get brought uptodate, return -EIO.
1591  */
1592 struct page *read_cache_page(struct address_space *mapping,
1593 				unsigned long index,
1594 				int (*filler)(void *,struct page*),
1595 				void *data)
1596 {
1597 	struct page *page;
1598 
1599 	page = read_cache_page_async(mapping, index, filler, data);
1600 	if (IS_ERR(page))
1601 		goto out;
1602 	wait_on_page_locked(page);
1603 	if (!PageUptodate(page)) {
1604 		page_cache_release(page);
1605 		page = ERR_PTR(-EIO);
1606 	}
1607  out:
1608 	return page;
1609 }
1610 EXPORT_SYMBOL(read_cache_page);
1611 
1612 /*
1613  * If the page was newly created, increment its refcount and add it to the
1614  * caller's lru-buffering pagevec.  This function is specifically for
1615  * generic_file_write().
1616  */
1617 static inline struct page *
1618 __grab_cache_page(struct address_space *mapping, unsigned long index,
1619 			struct page **cached_page, struct pagevec *lru_pvec)
1620 {
1621 	int err;
1622 	struct page *page;
1623 repeat:
1624 	page = find_lock_page(mapping, index);
1625 	if (!page) {
1626 		if (!*cached_page) {
1627 			*cached_page = page_cache_alloc(mapping);
1628 			if (!*cached_page)
1629 				return NULL;
1630 		}
1631 		err = add_to_page_cache(*cached_page, mapping,
1632 					index, GFP_KERNEL);
1633 		if (err == -EEXIST)
1634 			goto repeat;
1635 		if (err == 0) {
1636 			page = *cached_page;
1637 			page_cache_get(page);
1638 			if (!pagevec_add(lru_pvec, page))
1639 				__pagevec_lru_add(lru_pvec);
1640 			*cached_page = NULL;
1641 		}
1642 	}
1643 	return page;
1644 }
1645 
1646 /*
1647  * The logic we want is
1648  *
1649  *	if suid or (sgid and xgrp)
1650  *		remove privs
1651  */
1652 int should_remove_suid(struct dentry *dentry)
1653 {
1654 	mode_t mode = dentry->d_inode->i_mode;
1655 	int kill = 0;
1656 
1657 	/* suid always must be killed */
1658 	if (unlikely(mode & S_ISUID))
1659 		kill = ATTR_KILL_SUID;
1660 
1661 	/*
1662 	 * sgid without any exec bits is just a mandatory locking mark; leave
1663 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1664 	 */
1665 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1666 		kill |= ATTR_KILL_SGID;
1667 
1668 	if (unlikely(kill && !capable(CAP_FSETID)))
1669 		return kill;
1670 
1671 	return 0;
1672 }
1673 EXPORT_SYMBOL(should_remove_suid);
1674 
1675 int __remove_suid(struct dentry *dentry, int kill)
1676 {
1677 	struct iattr newattrs;
1678 
1679 	newattrs.ia_valid = ATTR_FORCE | kill;
1680 	return notify_change(dentry, &newattrs);
1681 }
1682 
1683 int remove_suid(struct dentry *dentry)
1684 {
1685 	int kill = should_remove_suid(dentry);
1686 
1687 	if (unlikely(kill))
1688 		return __remove_suid(dentry, kill);
1689 
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL(remove_suid);
1693 
1694 size_t
1695 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1696 			const struct iovec *iov, size_t base, size_t bytes)
1697 {
1698 	size_t copied = 0, left = 0;
1699 
1700 	while (bytes) {
1701 		char __user *buf = iov->iov_base + base;
1702 		int copy = min(bytes, iov->iov_len - base);
1703 
1704 		base = 0;
1705 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1706 		copied += copy;
1707 		bytes -= copy;
1708 		vaddr += copy;
1709 		iov++;
1710 
1711 		if (unlikely(left))
1712 			break;
1713 	}
1714 	return copied - left;
1715 }
1716 
1717 /*
1718  * Performs necessary checks before doing a write
1719  *
1720  * Can adjust writing position or amount of bytes to write.
1721  * Returns appropriate error code that caller should return or
1722  * zero in case that write should be allowed.
1723  */
1724 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1725 {
1726 	struct inode *inode = file->f_mapping->host;
1727 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1728 
1729         if (unlikely(*pos < 0))
1730                 return -EINVAL;
1731 
1732 	if (!isblk) {
1733 		/* FIXME: this is for backwards compatibility with 2.4 */
1734 		if (file->f_flags & O_APPEND)
1735                         *pos = i_size_read(inode);
1736 
1737 		if (limit != RLIM_INFINITY) {
1738 			if (*pos >= limit) {
1739 				send_sig(SIGXFSZ, current, 0);
1740 				return -EFBIG;
1741 			}
1742 			if (*count > limit - (typeof(limit))*pos) {
1743 				*count = limit - (typeof(limit))*pos;
1744 			}
1745 		}
1746 	}
1747 
1748 	/*
1749 	 * LFS rule
1750 	 */
1751 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1752 				!(file->f_flags & O_LARGEFILE))) {
1753 		if (*pos >= MAX_NON_LFS) {
1754 			return -EFBIG;
1755 		}
1756 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1757 			*count = MAX_NON_LFS - (unsigned long)*pos;
1758 		}
1759 	}
1760 
1761 	/*
1762 	 * Are we about to exceed the fs block limit ?
1763 	 *
1764 	 * If we have written data it becomes a short write.  If we have
1765 	 * exceeded without writing data we send a signal and return EFBIG.
1766 	 * Linus frestrict idea will clean these up nicely..
1767 	 */
1768 	if (likely(!isblk)) {
1769 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1770 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1771 				return -EFBIG;
1772 			}
1773 			/* zero-length writes at ->s_maxbytes are OK */
1774 		}
1775 
1776 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1777 			*count = inode->i_sb->s_maxbytes - *pos;
1778 	} else {
1779 #ifdef CONFIG_BLOCK
1780 		loff_t isize;
1781 		if (bdev_read_only(I_BDEV(inode)))
1782 			return -EPERM;
1783 		isize = i_size_read(inode);
1784 		if (*pos >= isize) {
1785 			if (*count || *pos > isize)
1786 				return -ENOSPC;
1787 		}
1788 
1789 		if (*pos + *count > isize)
1790 			*count = isize - *pos;
1791 #else
1792 		return -EPERM;
1793 #endif
1794 	}
1795 	return 0;
1796 }
1797 EXPORT_SYMBOL(generic_write_checks);
1798 
1799 ssize_t
1800 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1801 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1802 		size_t count, size_t ocount)
1803 {
1804 	struct file	*file = iocb->ki_filp;
1805 	struct address_space *mapping = file->f_mapping;
1806 	struct inode	*inode = mapping->host;
1807 	ssize_t		written;
1808 
1809 	if (count != ocount)
1810 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1811 
1812 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1813 	if (written > 0) {
1814 		loff_t end = pos + written;
1815 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1816 			i_size_write(inode,  end);
1817 			mark_inode_dirty(inode);
1818 		}
1819 		*ppos = end;
1820 	}
1821 
1822 	/*
1823 	 * Sync the fs metadata but not the minor inode changes and
1824 	 * of course not the data as we did direct DMA for the IO.
1825 	 * i_mutex is held, which protects generic_osync_inode() from
1826 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1827 	 */
1828 	if ((written >= 0 || written == -EIOCBQUEUED) &&
1829 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1830 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1831 		if (err < 0)
1832 			written = err;
1833 	}
1834 	return written;
1835 }
1836 EXPORT_SYMBOL(generic_file_direct_write);
1837 
1838 ssize_t
1839 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1840 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1841 		size_t count, ssize_t written)
1842 {
1843 	struct file *file = iocb->ki_filp;
1844 	struct address_space * mapping = file->f_mapping;
1845 	const struct address_space_operations *a_ops = mapping->a_ops;
1846 	struct inode 	*inode = mapping->host;
1847 	long		status = 0;
1848 	struct page	*page;
1849 	struct page	*cached_page = NULL;
1850 	size_t		bytes;
1851 	struct pagevec	lru_pvec;
1852 	const struct iovec *cur_iov = iov; /* current iovec */
1853 	size_t		iov_base = 0;	   /* offset in the current iovec */
1854 	char __user	*buf;
1855 
1856 	pagevec_init(&lru_pvec, 0);
1857 
1858 	/*
1859 	 * handle partial DIO write.  Adjust cur_iov if needed.
1860 	 */
1861 	if (likely(nr_segs == 1))
1862 		buf = iov->iov_base + written;
1863 	else {
1864 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
1865 		buf = cur_iov->iov_base + iov_base;
1866 	}
1867 
1868 	do {
1869 		unsigned long index;
1870 		unsigned long offset;
1871 		size_t copied;
1872 
1873 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1874 		index = pos >> PAGE_CACHE_SHIFT;
1875 		bytes = PAGE_CACHE_SIZE - offset;
1876 
1877 		/* Limit the size of the copy to the caller's write size */
1878 		bytes = min(bytes, count);
1879 
1880 		/* We only need to worry about prefaulting when writes are from
1881 		 * user-space.  NFSd uses vfs_writev with several non-aligned
1882 		 * segments in the vector, and limiting to one segment a time is
1883 		 * a noticeable performance for re-write
1884 		 */
1885 		if (!segment_eq(get_fs(), KERNEL_DS)) {
1886 			/*
1887 			 * Limit the size of the copy to that of the current
1888 			 * segment, because fault_in_pages_readable() doesn't
1889 			 * know how to walk segments.
1890 			 */
1891 			bytes = min(bytes, cur_iov->iov_len - iov_base);
1892 
1893 			/*
1894 			 * Bring in the user page that we will copy from
1895 			 * _first_.  Otherwise there's a nasty deadlock on
1896 			 * copying from the same page as we're writing to,
1897 			 * without it being marked up-to-date.
1898 			 */
1899 			fault_in_pages_readable(buf, bytes);
1900 		}
1901 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1902 		if (!page) {
1903 			status = -ENOMEM;
1904 			break;
1905 		}
1906 
1907 		if (unlikely(bytes == 0)) {
1908 			status = 0;
1909 			copied = 0;
1910 			goto zero_length_segment;
1911 		}
1912 
1913 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
1914 		if (unlikely(status)) {
1915 			loff_t isize = i_size_read(inode);
1916 
1917 			if (status != AOP_TRUNCATED_PAGE)
1918 				unlock_page(page);
1919 			page_cache_release(page);
1920 			if (status == AOP_TRUNCATED_PAGE)
1921 				continue;
1922 			/*
1923 			 * prepare_write() may have instantiated a few blocks
1924 			 * outside i_size.  Trim these off again.
1925 			 */
1926 			if (pos + bytes > isize)
1927 				vmtruncate(inode, isize);
1928 			break;
1929 		}
1930 		if (likely(nr_segs == 1))
1931 			copied = filemap_copy_from_user(page, offset,
1932 							buf, bytes);
1933 		else
1934 			copied = filemap_copy_from_user_iovec(page, offset,
1935 						cur_iov, iov_base, bytes);
1936 		flush_dcache_page(page);
1937 		status = a_ops->commit_write(file, page, offset, offset+bytes);
1938 		if (status == AOP_TRUNCATED_PAGE) {
1939 			page_cache_release(page);
1940 			continue;
1941 		}
1942 zero_length_segment:
1943 		if (likely(copied >= 0)) {
1944 			if (!status)
1945 				status = copied;
1946 
1947 			if (status >= 0) {
1948 				written += status;
1949 				count -= status;
1950 				pos += status;
1951 				buf += status;
1952 				if (unlikely(nr_segs > 1)) {
1953 					filemap_set_next_iovec(&cur_iov,
1954 							&iov_base, status);
1955 					if (count)
1956 						buf = cur_iov->iov_base +
1957 							iov_base;
1958 				} else {
1959 					iov_base += status;
1960 				}
1961 			}
1962 		}
1963 		if (unlikely(copied != bytes))
1964 			if (status >= 0)
1965 				status = -EFAULT;
1966 		unlock_page(page);
1967 		mark_page_accessed(page);
1968 		page_cache_release(page);
1969 		if (status < 0)
1970 			break;
1971 		balance_dirty_pages_ratelimited(mapping);
1972 		cond_resched();
1973 	} while (count);
1974 	*ppos = pos;
1975 
1976 	if (cached_page)
1977 		page_cache_release(cached_page);
1978 
1979 	/*
1980 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1981 	 */
1982 	if (likely(status >= 0)) {
1983 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1984 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
1985 				status = generic_osync_inode(inode, mapping,
1986 						OSYNC_METADATA|OSYNC_DATA);
1987 		}
1988   	}
1989 
1990 	/*
1991 	 * If we get here for O_DIRECT writes then we must have fallen through
1992 	 * to buffered writes (block instantiation inside i_size).  So we sync
1993 	 * the file data here, to try to honour O_DIRECT expectations.
1994 	 */
1995 	if (unlikely(file->f_flags & O_DIRECT) && written)
1996 		status = filemap_write_and_wait(mapping);
1997 
1998 	pagevec_lru_add(&lru_pvec);
1999 	return written ? written : status;
2000 }
2001 EXPORT_SYMBOL(generic_file_buffered_write);
2002 
2003 static ssize_t
2004 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2005 				unsigned long nr_segs, loff_t *ppos)
2006 {
2007 	struct file *file = iocb->ki_filp;
2008 	struct address_space * mapping = file->f_mapping;
2009 	size_t ocount;		/* original count */
2010 	size_t count;		/* after file limit checks */
2011 	struct inode 	*inode = mapping->host;
2012 	loff_t		pos;
2013 	ssize_t		written;
2014 	ssize_t		err;
2015 
2016 	ocount = 0;
2017 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2018 	if (err)
2019 		return err;
2020 
2021 	count = ocount;
2022 	pos = *ppos;
2023 
2024 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2025 
2026 	/* We can write back this queue in page reclaim */
2027 	current->backing_dev_info = mapping->backing_dev_info;
2028 	written = 0;
2029 
2030 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2031 	if (err)
2032 		goto out;
2033 
2034 	if (count == 0)
2035 		goto out;
2036 
2037 	err = remove_suid(file->f_path.dentry);
2038 	if (err)
2039 		goto out;
2040 
2041 	file_update_time(file);
2042 
2043 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2044 	if (unlikely(file->f_flags & O_DIRECT)) {
2045 		loff_t endbyte;
2046 		ssize_t written_buffered;
2047 
2048 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2049 							ppos, count, ocount);
2050 		if (written < 0 || written == count)
2051 			goto out;
2052 		/*
2053 		 * direct-io write to a hole: fall through to buffered I/O
2054 		 * for completing the rest of the request.
2055 		 */
2056 		pos += written;
2057 		count -= written;
2058 		written_buffered = generic_file_buffered_write(iocb, iov,
2059 						nr_segs, pos, ppos, count,
2060 						written);
2061 		/*
2062 		 * If generic_file_buffered_write() retuned a synchronous error
2063 		 * then we want to return the number of bytes which were
2064 		 * direct-written, or the error code if that was zero.  Note
2065 		 * that this differs from normal direct-io semantics, which
2066 		 * will return -EFOO even if some bytes were written.
2067 		 */
2068 		if (written_buffered < 0) {
2069 			err = written_buffered;
2070 			goto out;
2071 		}
2072 
2073 		/*
2074 		 * We need to ensure that the page cache pages are written to
2075 		 * disk and invalidated to preserve the expected O_DIRECT
2076 		 * semantics.
2077 		 */
2078 		endbyte = pos + written_buffered - written - 1;
2079 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2080 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2081 					    SYNC_FILE_RANGE_WRITE|
2082 					    SYNC_FILE_RANGE_WAIT_AFTER);
2083 		if (err == 0) {
2084 			written = written_buffered;
2085 			invalidate_mapping_pages(mapping,
2086 						 pos >> PAGE_CACHE_SHIFT,
2087 						 endbyte >> PAGE_CACHE_SHIFT);
2088 		} else {
2089 			/*
2090 			 * We don't know how much we wrote, so just return
2091 			 * the number of bytes which were direct-written
2092 			 */
2093 		}
2094 	} else {
2095 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2096 				pos, ppos, count, written);
2097 	}
2098 out:
2099 	current->backing_dev_info = NULL;
2100 	return written ? written : err;
2101 }
2102 
2103 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2104 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2105 {
2106 	struct file *file = iocb->ki_filp;
2107 	struct address_space *mapping = file->f_mapping;
2108 	struct inode *inode = mapping->host;
2109 	ssize_t ret;
2110 
2111 	BUG_ON(iocb->ki_pos != pos);
2112 
2113 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2114 			&iocb->ki_pos);
2115 
2116 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2117 		ssize_t err;
2118 
2119 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2120 		if (err < 0)
2121 			ret = err;
2122 	}
2123 	return ret;
2124 }
2125 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2126 
2127 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2128 		unsigned long nr_segs, loff_t pos)
2129 {
2130 	struct file *file = iocb->ki_filp;
2131 	struct address_space *mapping = file->f_mapping;
2132 	struct inode *inode = mapping->host;
2133 	ssize_t ret;
2134 
2135 	BUG_ON(iocb->ki_pos != pos);
2136 
2137 	mutex_lock(&inode->i_mutex);
2138 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2139 			&iocb->ki_pos);
2140 	mutex_unlock(&inode->i_mutex);
2141 
2142 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2143 		ssize_t err;
2144 
2145 		err = sync_page_range(inode, mapping, pos, ret);
2146 		if (err < 0)
2147 			ret = err;
2148 	}
2149 	return ret;
2150 }
2151 EXPORT_SYMBOL(generic_file_aio_write);
2152 
2153 /*
2154  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2155  * went wrong during pagecache shootdown.
2156  */
2157 static ssize_t
2158 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2159 	loff_t offset, unsigned long nr_segs)
2160 {
2161 	struct file *file = iocb->ki_filp;
2162 	struct address_space *mapping = file->f_mapping;
2163 	ssize_t retval;
2164 	size_t write_len;
2165 	pgoff_t end = 0; /* silence gcc */
2166 
2167 	/*
2168 	 * If it's a write, unmap all mmappings of the file up-front.  This
2169 	 * will cause any pte dirty bits to be propagated into the pageframes
2170 	 * for the subsequent filemap_write_and_wait().
2171 	 */
2172 	if (rw == WRITE) {
2173 		write_len = iov_length(iov, nr_segs);
2174 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2175 	       	if (mapping_mapped(mapping))
2176 			unmap_mapping_range(mapping, offset, write_len, 0);
2177 	}
2178 
2179 	retval = filemap_write_and_wait(mapping);
2180 	if (retval)
2181 		goto out;
2182 
2183 	/*
2184 	 * After a write we want buffered reads to be sure to go to disk to get
2185 	 * the new data.  We invalidate clean cached page from the region we're
2186 	 * about to write.  We do this *before* the write so that we can return
2187 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2188 	 */
2189 	if (rw == WRITE && mapping->nrpages) {
2190 		retval = invalidate_inode_pages2_range(mapping,
2191 					offset >> PAGE_CACHE_SHIFT, end);
2192 		if (retval)
2193 			goto out;
2194 	}
2195 
2196 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2197 	if (retval)
2198 		goto out;
2199 
2200 	/*
2201 	 * Finally, try again to invalidate clean pages which might have been
2202 	 * faulted in by get_user_pages() if the source of the write was an
2203 	 * mmap()ed region of the file we're writing.  That's a pretty crazy
2204 	 * thing to do, so we don't support it 100%.  If this invalidation
2205 	 * fails and we have -EIOCBQUEUED we ignore the failure.
2206 	 */
2207 	if (rw == WRITE && mapping->nrpages) {
2208 		int err = invalidate_inode_pages2_range(mapping,
2209 					      offset >> PAGE_CACHE_SHIFT, end);
2210 		if (err && retval >= 0)
2211 			retval = err;
2212 	}
2213 out:
2214 	return retval;
2215 }
2216 
2217 /**
2218  * try_to_release_page() - release old fs-specific metadata on a page
2219  *
2220  * @page: the page which the kernel is trying to free
2221  * @gfp_mask: memory allocation flags (and I/O mode)
2222  *
2223  * The address_space is to try to release any data against the page
2224  * (presumably at page->private).  If the release was successful, return `1'.
2225  * Otherwise return zero.
2226  *
2227  * The @gfp_mask argument specifies whether I/O may be performed to release
2228  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2229  *
2230  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2231  */
2232 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2233 {
2234 	struct address_space * const mapping = page->mapping;
2235 
2236 	BUG_ON(!PageLocked(page));
2237 	if (PageWriteback(page))
2238 		return 0;
2239 
2240 	if (mapping && mapping->a_ops->releasepage)
2241 		return mapping->a_ops->releasepage(page, gfp_mask);
2242 	return try_to_free_buffers(page);
2243 }
2244 
2245 EXPORT_SYMBOL(try_to_release_page);
2246