xref: /linux/mm/filemap.c (revision 14b468791fa955d442f962fdf5207dfd39a131c8)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static int page_cache_tree_insert(struct address_space *mapping,
114 				  struct page *page, void **shadowp)
115 {
116 	struct radix_tree_node *node;
117 	void **slot;
118 	int error;
119 
120 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 				    &node, &slot);
122 	if (error)
123 		return error;
124 	if (*slot) {
125 		void *p;
126 
127 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 		if (!radix_tree_exceptional_entry(p))
129 			return -EEXIST;
130 
131 		mapping->nrexceptional--;
132 		if (!dax_mapping(mapping)) {
133 			if (shadowp)
134 				*shadowp = p;
135 		} else {
136 			/* DAX can replace empty locked entry with a hole */
137 			WARN_ON_ONCE(p !=
138 				(void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
139 					 RADIX_DAX_ENTRY_LOCK));
140 			/* Wakeup waiters for exceptional entry lock */
141 			dax_wake_mapping_entry_waiter(mapping, page->index,
142 						      false);
143 		}
144 	}
145 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
146 			     workingset_update_node, mapping);
147 	mapping->nrpages++;
148 	return 0;
149 }
150 
151 static void page_cache_tree_delete(struct address_space *mapping,
152 				   struct page *page, void *shadow)
153 {
154 	int i, nr;
155 
156 	/* hugetlb pages are represented by one entry in the radix tree */
157 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158 
159 	VM_BUG_ON_PAGE(!PageLocked(page), page);
160 	VM_BUG_ON_PAGE(PageTail(page), page);
161 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162 
163 	for (i = 0; i < nr; i++) {
164 		struct radix_tree_node *node;
165 		void **slot;
166 
167 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
168 				    &node, &slot);
169 
170 		if (!node) {
171 			VM_BUG_ON_PAGE(nr != 1, page);
172 			/*
173 			 * We need a node to properly account shadow
174 			 * entries. Don't plant any without. XXX
175 			 */
176 			shadow = NULL;
177 		}
178 
179 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
180 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
181 				     workingset_update_node, mapping);
182 	}
183 
184 	if (shadow) {
185 		mapping->nrexceptional += nr;
186 		/*
187 		 * Make sure the nrexceptional update is committed before
188 		 * the nrpages update so that final truncate racing
189 		 * with reclaim does not see both counters 0 at the
190 		 * same time and miss a shadow entry.
191 		 */
192 		smp_wmb();
193 	}
194 	mapping->nrpages -= nr;
195 }
196 
197 /*
198  * Delete a page from the page cache and free it. Caller has to make
199  * sure the page is locked and that nobody else uses it - or that usage
200  * is safe.  The caller must hold the mapping's tree_lock.
201  */
202 void __delete_from_page_cache(struct page *page, void *shadow)
203 {
204 	struct address_space *mapping = page->mapping;
205 	int nr = hpage_nr_pages(page);
206 
207 	trace_mm_filemap_delete_from_page_cache(page);
208 	/*
209 	 * if we're uptodate, flush out into the cleancache, otherwise
210 	 * invalidate any existing cleancache entries.  We can't leave
211 	 * stale data around in the cleancache once our page is gone
212 	 */
213 	if (PageUptodate(page) && PageMappedToDisk(page))
214 		cleancache_put_page(page);
215 	else
216 		cleancache_invalidate_page(mapping, page);
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	VM_BUG_ON_PAGE(page_mapped(page), page);
220 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
221 		int mapcount;
222 
223 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
224 			 current->comm, page_to_pfn(page));
225 		dump_page(page, "still mapped when deleted");
226 		dump_stack();
227 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
228 
229 		mapcount = page_mapcount(page);
230 		if (mapping_exiting(mapping) &&
231 		    page_count(page) >= mapcount + 2) {
232 			/*
233 			 * All vmas have already been torn down, so it's
234 			 * a good bet that actually the page is unmapped,
235 			 * and we'd prefer not to leak it: if we're wrong,
236 			 * some other bad page check should catch it later.
237 			 */
238 			page_mapcount_reset(page);
239 			page_ref_sub(page, mapcount);
240 		}
241 	}
242 
243 	page_cache_tree_delete(mapping, page, shadow);
244 
245 	page->mapping = NULL;
246 	/* Leave page->index set: truncation lookup relies upon it */
247 
248 	/* hugetlb pages do not participate in page cache accounting. */
249 	if (!PageHuge(page))
250 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
251 	if (PageSwapBacked(page)) {
252 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
253 		if (PageTransHuge(page))
254 			__dec_node_page_state(page, NR_SHMEM_THPS);
255 	} else {
256 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
257 	}
258 
259 	/*
260 	 * At this point page must be either written or cleaned by truncate.
261 	 * Dirty page here signals a bug and loss of unwritten data.
262 	 *
263 	 * This fixes dirty accounting after removing the page entirely but
264 	 * leaves PageDirty set: it has no effect for truncated page and
265 	 * anyway will be cleared before returning page into buddy allocator.
266 	 */
267 	if (WARN_ON_ONCE(PageDirty(page)))
268 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
269 }
270 
271 /**
272  * delete_from_page_cache - delete page from page cache
273  * @page: the page which the kernel is trying to remove from page cache
274  *
275  * This must be called only on pages that have been verified to be in the page
276  * cache and locked.  It will never put the page into the free list, the caller
277  * has a reference on the page.
278  */
279 void delete_from_page_cache(struct page *page)
280 {
281 	struct address_space *mapping = page_mapping(page);
282 	unsigned long flags;
283 	void (*freepage)(struct page *);
284 
285 	BUG_ON(!PageLocked(page));
286 
287 	freepage = mapping->a_ops->freepage;
288 
289 	spin_lock_irqsave(&mapping->tree_lock, flags);
290 	__delete_from_page_cache(page, NULL);
291 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
292 
293 	if (freepage)
294 		freepage(page);
295 
296 	if (PageTransHuge(page) && !PageHuge(page)) {
297 		page_ref_sub(page, HPAGE_PMD_NR);
298 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
299 	} else {
300 		put_page(page);
301 	}
302 }
303 EXPORT_SYMBOL(delete_from_page_cache);
304 
305 int filemap_check_errors(struct address_space *mapping)
306 {
307 	int ret = 0;
308 	/* Check for outstanding write errors */
309 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
310 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
311 		ret = -ENOSPC;
312 	if (test_bit(AS_EIO, &mapping->flags) &&
313 	    test_and_clear_bit(AS_EIO, &mapping->flags))
314 		ret = -EIO;
315 	return ret;
316 }
317 EXPORT_SYMBOL(filemap_check_errors);
318 
319 /**
320  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
321  * @mapping:	address space structure to write
322  * @start:	offset in bytes where the range starts
323  * @end:	offset in bytes where the range ends (inclusive)
324  * @sync_mode:	enable synchronous operation
325  *
326  * Start writeback against all of a mapping's dirty pages that lie
327  * within the byte offsets <start, end> inclusive.
328  *
329  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
330  * opposed to a regular memory cleansing writeback.  The difference between
331  * these two operations is that if a dirty page/buffer is encountered, it must
332  * be waited upon, and not just skipped over.
333  */
334 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
335 				loff_t end, int sync_mode)
336 {
337 	int ret;
338 	struct writeback_control wbc = {
339 		.sync_mode = sync_mode,
340 		.nr_to_write = LONG_MAX,
341 		.range_start = start,
342 		.range_end = end,
343 	};
344 
345 	if (!mapping_cap_writeback_dirty(mapping))
346 		return 0;
347 
348 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
349 	ret = do_writepages(mapping, &wbc);
350 	wbc_detach_inode(&wbc);
351 	return ret;
352 }
353 
354 static inline int __filemap_fdatawrite(struct address_space *mapping,
355 	int sync_mode)
356 {
357 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
358 }
359 
360 int filemap_fdatawrite(struct address_space *mapping)
361 {
362 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
363 }
364 EXPORT_SYMBOL(filemap_fdatawrite);
365 
366 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
367 				loff_t end)
368 {
369 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
370 }
371 EXPORT_SYMBOL(filemap_fdatawrite_range);
372 
373 /**
374  * filemap_flush - mostly a non-blocking flush
375  * @mapping:	target address_space
376  *
377  * This is a mostly non-blocking flush.  Not suitable for data-integrity
378  * purposes - I/O may not be started against all dirty pages.
379  */
380 int filemap_flush(struct address_space *mapping)
381 {
382 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
383 }
384 EXPORT_SYMBOL(filemap_flush);
385 
386 static int __filemap_fdatawait_range(struct address_space *mapping,
387 				     loff_t start_byte, loff_t end_byte)
388 {
389 	pgoff_t index = start_byte >> PAGE_SHIFT;
390 	pgoff_t end = end_byte >> PAGE_SHIFT;
391 	struct pagevec pvec;
392 	int nr_pages;
393 	int ret = 0;
394 
395 	if (end_byte < start_byte)
396 		goto out;
397 
398 	pagevec_init(&pvec, 0);
399 	while ((index <= end) &&
400 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
401 			PAGECACHE_TAG_WRITEBACK,
402 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
403 		unsigned i;
404 
405 		for (i = 0; i < nr_pages; i++) {
406 			struct page *page = pvec.pages[i];
407 
408 			/* until radix tree lookup accepts end_index */
409 			if (page->index > end)
410 				continue;
411 
412 			wait_on_page_writeback(page);
413 			if (TestClearPageError(page))
414 				ret = -EIO;
415 		}
416 		pagevec_release(&pvec);
417 		cond_resched();
418 	}
419 out:
420 	return ret;
421 }
422 
423 /**
424  * filemap_fdatawait_range - wait for writeback to complete
425  * @mapping:		address space structure to wait for
426  * @start_byte:		offset in bytes where the range starts
427  * @end_byte:		offset in bytes where the range ends (inclusive)
428  *
429  * Walk the list of under-writeback pages of the given address space
430  * in the given range and wait for all of them.  Check error status of
431  * the address space and return it.
432  *
433  * Since the error status of the address space is cleared by this function,
434  * callers are responsible for checking the return value and handling and/or
435  * reporting the error.
436  */
437 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
438 			    loff_t end_byte)
439 {
440 	int ret, ret2;
441 
442 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
443 	ret2 = filemap_check_errors(mapping);
444 	if (!ret)
445 		ret = ret2;
446 
447 	return ret;
448 }
449 EXPORT_SYMBOL(filemap_fdatawait_range);
450 
451 /**
452  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
453  * @mapping: address space structure to wait for
454  *
455  * Walk the list of under-writeback pages of the given address space
456  * and wait for all of them.  Unlike filemap_fdatawait(), this function
457  * does not clear error status of the address space.
458  *
459  * Use this function if callers don't handle errors themselves.  Expected
460  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
461  * fsfreeze(8)
462  */
463 void filemap_fdatawait_keep_errors(struct address_space *mapping)
464 {
465 	loff_t i_size = i_size_read(mapping->host);
466 
467 	if (i_size == 0)
468 		return;
469 
470 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
471 }
472 
473 /**
474  * filemap_fdatawait - wait for all under-writeback pages to complete
475  * @mapping: address space structure to wait for
476  *
477  * Walk the list of under-writeback pages of the given address space
478  * and wait for all of them.  Check error status of the address space
479  * and return it.
480  *
481  * Since the error status of the address space is cleared by this function,
482  * callers are responsible for checking the return value and handling and/or
483  * reporting the error.
484  */
485 int filemap_fdatawait(struct address_space *mapping)
486 {
487 	loff_t i_size = i_size_read(mapping->host);
488 
489 	if (i_size == 0)
490 		return 0;
491 
492 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
493 }
494 EXPORT_SYMBOL(filemap_fdatawait);
495 
496 int filemap_write_and_wait(struct address_space *mapping)
497 {
498 	int err = 0;
499 
500 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
501 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
502 		err = filemap_fdatawrite(mapping);
503 		/*
504 		 * Even if the above returned error, the pages may be
505 		 * written partially (e.g. -ENOSPC), so we wait for it.
506 		 * But the -EIO is special case, it may indicate the worst
507 		 * thing (e.g. bug) happened, so we avoid waiting for it.
508 		 */
509 		if (err != -EIO) {
510 			int err2 = filemap_fdatawait(mapping);
511 			if (!err)
512 				err = err2;
513 		}
514 	} else {
515 		err = filemap_check_errors(mapping);
516 	}
517 	return err;
518 }
519 EXPORT_SYMBOL(filemap_write_and_wait);
520 
521 /**
522  * filemap_write_and_wait_range - write out & wait on a file range
523  * @mapping:	the address_space for the pages
524  * @lstart:	offset in bytes where the range starts
525  * @lend:	offset in bytes where the range ends (inclusive)
526  *
527  * Write out and wait upon file offsets lstart->lend, inclusive.
528  *
529  * Note that `lend' is inclusive (describes the last byte to be written) so
530  * that this function can be used to write to the very end-of-file (end = -1).
531  */
532 int filemap_write_and_wait_range(struct address_space *mapping,
533 				 loff_t lstart, loff_t lend)
534 {
535 	int err = 0;
536 
537 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
538 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
539 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
540 						 WB_SYNC_ALL);
541 		/* See comment of filemap_write_and_wait() */
542 		if (err != -EIO) {
543 			int err2 = filemap_fdatawait_range(mapping,
544 						lstart, lend);
545 			if (!err)
546 				err = err2;
547 		}
548 	} else {
549 		err = filemap_check_errors(mapping);
550 	}
551 	return err;
552 }
553 EXPORT_SYMBOL(filemap_write_and_wait_range);
554 
555 /**
556  * replace_page_cache_page - replace a pagecache page with a new one
557  * @old:	page to be replaced
558  * @new:	page to replace with
559  * @gfp_mask:	allocation mode
560  *
561  * This function replaces a page in the pagecache with a new one.  On
562  * success it acquires the pagecache reference for the new page and
563  * drops it for the old page.  Both the old and new pages must be
564  * locked.  This function does not add the new page to the LRU, the
565  * caller must do that.
566  *
567  * The remove + add is atomic.  The only way this function can fail is
568  * memory allocation failure.
569  */
570 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
571 {
572 	int error;
573 
574 	VM_BUG_ON_PAGE(!PageLocked(old), old);
575 	VM_BUG_ON_PAGE(!PageLocked(new), new);
576 	VM_BUG_ON_PAGE(new->mapping, new);
577 
578 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
579 	if (!error) {
580 		struct address_space *mapping = old->mapping;
581 		void (*freepage)(struct page *);
582 		unsigned long flags;
583 
584 		pgoff_t offset = old->index;
585 		freepage = mapping->a_ops->freepage;
586 
587 		get_page(new);
588 		new->mapping = mapping;
589 		new->index = offset;
590 
591 		spin_lock_irqsave(&mapping->tree_lock, flags);
592 		__delete_from_page_cache(old, NULL);
593 		error = page_cache_tree_insert(mapping, new, NULL);
594 		BUG_ON(error);
595 
596 		/*
597 		 * hugetlb pages do not participate in page cache accounting.
598 		 */
599 		if (!PageHuge(new))
600 			__inc_node_page_state(new, NR_FILE_PAGES);
601 		if (PageSwapBacked(new))
602 			__inc_node_page_state(new, NR_SHMEM);
603 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
604 		mem_cgroup_migrate(old, new);
605 		radix_tree_preload_end();
606 		if (freepage)
607 			freepage(old);
608 		put_page(old);
609 	}
610 
611 	return error;
612 }
613 EXPORT_SYMBOL_GPL(replace_page_cache_page);
614 
615 static int __add_to_page_cache_locked(struct page *page,
616 				      struct address_space *mapping,
617 				      pgoff_t offset, gfp_t gfp_mask,
618 				      void **shadowp)
619 {
620 	int huge = PageHuge(page);
621 	struct mem_cgroup *memcg;
622 	int error;
623 
624 	VM_BUG_ON_PAGE(!PageLocked(page), page);
625 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
626 
627 	if (!huge) {
628 		error = mem_cgroup_try_charge(page, current->mm,
629 					      gfp_mask, &memcg, false);
630 		if (error)
631 			return error;
632 	}
633 
634 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
635 	if (error) {
636 		if (!huge)
637 			mem_cgroup_cancel_charge(page, memcg, false);
638 		return error;
639 	}
640 
641 	get_page(page);
642 	page->mapping = mapping;
643 	page->index = offset;
644 
645 	spin_lock_irq(&mapping->tree_lock);
646 	error = page_cache_tree_insert(mapping, page, shadowp);
647 	radix_tree_preload_end();
648 	if (unlikely(error))
649 		goto err_insert;
650 
651 	/* hugetlb pages do not participate in page cache accounting. */
652 	if (!huge)
653 		__inc_node_page_state(page, NR_FILE_PAGES);
654 	spin_unlock_irq(&mapping->tree_lock);
655 	if (!huge)
656 		mem_cgroup_commit_charge(page, memcg, false, false);
657 	trace_mm_filemap_add_to_page_cache(page);
658 	return 0;
659 err_insert:
660 	page->mapping = NULL;
661 	/* Leave page->index set: truncation relies upon it */
662 	spin_unlock_irq(&mapping->tree_lock);
663 	if (!huge)
664 		mem_cgroup_cancel_charge(page, memcg, false);
665 	put_page(page);
666 	return error;
667 }
668 
669 /**
670  * add_to_page_cache_locked - add a locked page to the pagecache
671  * @page:	page to add
672  * @mapping:	the page's address_space
673  * @offset:	page index
674  * @gfp_mask:	page allocation mode
675  *
676  * This function is used to add a page to the pagecache. It must be locked.
677  * This function does not add the page to the LRU.  The caller must do that.
678  */
679 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
680 		pgoff_t offset, gfp_t gfp_mask)
681 {
682 	return __add_to_page_cache_locked(page, mapping, offset,
683 					  gfp_mask, NULL);
684 }
685 EXPORT_SYMBOL(add_to_page_cache_locked);
686 
687 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
688 				pgoff_t offset, gfp_t gfp_mask)
689 {
690 	void *shadow = NULL;
691 	int ret;
692 
693 	__SetPageLocked(page);
694 	ret = __add_to_page_cache_locked(page, mapping, offset,
695 					 gfp_mask, &shadow);
696 	if (unlikely(ret))
697 		__ClearPageLocked(page);
698 	else {
699 		/*
700 		 * The page might have been evicted from cache only
701 		 * recently, in which case it should be activated like
702 		 * any other repeatedly accessed page.
703 		 * The exception is pages getting rewritten; evicting other
704 		 * data from the working set, only to cache data that will
705 		 * get overwritten with something else, is a waste of memory.
706 		 */
707 		if (!(gfp_mask & __GFP_WRITE) &&
708 		    shadow && workingset_refault(shadow)) {
709 			SetPageActive(page);
710 			workingset_activation(page);
711 		} else
712 			ClearPageActive(page);
713 		lru_cache_add(page);
714 	}
715 	return ret;
716 }
717 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
718 
719 #ifdef CONFIG_NUMA
720 struct page *__page_cache_alloc(gfp_t gfp)
721 {
722 	int n;
723 	struct page *page;
724 
725 	if (cpuset_do_page_mem_spread()) {
726 		unsigned int cpuset_mems_cookie;
727 		do {
728 			cpuset_mems_cookie = read_mems_allowed_begin();
729 			n = cpuset_mem_spread_node();
730 			page = __alloc_pages_node(n, gfp, 0);
731 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
732 
733 		return page;
734 	}
735 	return alloc_pages(gfp, 0);
736 }
737 EXPORT_SYMBOL(__page_cache_alloc);
738 #endif
739 
740 /*
741  * In order to wait for pages to become available there must be
742  * waitqueues associated with pages. By using a hash table of
743  * waitqueues where the bucket discipline is to maintain all
744  * waiters on the same queue and wake all when any of the pages
745  * become available, and for the woken contexts to check to be
746  * sure the appropriate page became available, this saves space
747  * at a cost of "thundering herd" phenomena during rare hash
748  * collisions.
749  */
750 wait_queue_head_t *page_waitqueue(struct page *page)
751 {
752 	return bit_waitqueue(page, 0);
753 }
754 EXPORT_SYMBOL(page_waitqueue);
755 
756 void wait_on_page_bit(struct page *page, int bit_nr)
757 {
758 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
759 
760 	if (test_bit(bit_nr, &page->flags))
761 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
762 							TASK_UNINTERRUPTIBLE);
763 }
764 EXPORT_SYMBOL(wait_on_page_bit);
765 
766 int wait_on_page_bit_killable(struct page *page, int bit_nr)
767 {
768 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
769 
770 	if (!test_bit(bit_nr, &page->flags))
771 		return 0;
772 
773 	return __wait_on_bit(page_waitqueue(page), &wait,
774 			     bit_wait_io, TASK_KILLABLE);
775 }
776 
777 int wait_on_page_bit_killable_timeout(struct page *page,
778 				       int bit_nr, unsigned long timeout)
779 {
780 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
781 
782 	wait.key.timeout = jiffies + timeout;
783 	if (!test_bit(bit_nr, &page->flags))
784 		return 0;
785 	return __wait_on_bit(page_waitqueue(page), &wait,
786 			     bit_wait_io_timeout, TASK_KILLABLE);
787 }
788 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
789 
790 /**
791  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
792  * @page: Page defining the wait queue of interest
793  * @waiter: Waiter to add to the queue
794  *
795  * Add an arbitrary @waiter to the wait queue for the nominated @page.
796  */
797 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
798 {
799 	wait_queue_head_t *q = page_waitqueue(page);
800 	unsigned long flags;
801 
802 	spin_lock_irqsave(&q->lock, flags);
803 	__add_wait_queue(q, waiter);
804 	spin_unlock_irqrestore(&q->lock, flags);
805 }
806 EXPORT_SYMBOL_GPL(add_page_wait_queue);
807 
808 /**
809  * unlock_page - unlock a locked page
810  * @page: the page
811  *
812  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
813  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
814  * mechanism between PageLocked pages and PageWriteback pages is shared.
815  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
816  *
817  * The mb is necessary to enforce ordering between the clear_bit and the read
818  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
819  */
820 void unlock_page(struct page *page)
821 {
822 	page = compound_head(page);
823 	VM_BUG_ON_PAGE(!PageLocked(page), page);
824 	clear_bit_unlock(PG_locked, &page->flags);
825 	smp_mb__after_atomic();
826 	wake_up_page(page, PG_locked);
827 }
828 EXPORT_SYMBOL(unlock_page);
829 
830 /**
831  * end_page_writeback - end writeback against a page
832  * @page: the page
833  */
834 void end_page_writeback(struct page *page)
835 {
836 	/*
837 	 * TestClearPageReclaim could be used here but it is an atomic
838 	 * operation and overkill in this particular case. Failing to
839 	 * shuffle a page marked for immediate reclaim is too mild to
840 	 * justify taking an atomic operation penalty at the end of
841 	 * ever page writeback.
842 	 */
843 	if (PageReclaim(page)) {
844 		ClearPageReclaim(page);
845 		rotate_reclaimable_page(page);
846 	}
847 
848 	if (!test_clear_page_writeback(page))
849 		BUG();
850 
851 	smp_mb__after_atomic();
852 	wake_up_page(page, PG_writeback);
853 }
854 EXPORT_SYMBOL(end_page_writeback);
855 
856 /*
857  * After completing I/O on a page, call this routine to update the page
858  * flags appropriately
859  */
860 void page_endio(struct page *page, bool is_write, int err)
861 {
862 	if (!is_write) {
863 		if (!err) {
864 			SetPageUptodate(page);
865 		} else {
866 			ClearPageUptodate(page);
867 			SetPageError(page);
868 		}
869 		unlock_page(page);
870 	} else {
871 		if (err) {
872 			SetPageError(page);
873 			if (page->mapping)
874 				mapping_set_error(page->mapping, err);
875 		}
876 		end_page_writeback(page);
877 	}
878 }
879 EXPORT_SYMBOL_GPL(page_endio);
880 
881 /**
882  * __lock_page - get a lock on the page, assuming we need to sleep to get it
883  * @page: the page to lock
884  */
885 void __lock_page(struct page *page)
886 {
887 	struct page *page_head = compound_head(page);
888 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
889 
890 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
891 							TASK_UNINTERRUPTIBLE);
892 }
893 EXPORT_SYMBOL(__lock_page);
894 
895 int __lock_page_killable(struct page *page)
896 {
897 	struct page *page_head = compound_head(page);
898 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
899 
900 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
901 					bit_wait_io, TASK_KILLABLE);
902 }
903 EXPORT_SYMBOL_GPL(__lock_page_killable);
904 
905 /*
906  * Return values:
907  * 1 - page is locked; mmap_sem is still held.
908  * 0 - page is not locked.
909  *     mmap_sem has been released (up_read()), unless flags had both
910  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
911  *     which case mmap_sem is still held.
912  *
913  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
914  * with the page locked and the mmap_sem unperturbed.
915  */
916 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
917 			 unsigned int flags)
918 {
919 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
920 		/*
921 		 * CAUTION! In this case, mmap_sem is not released
922 		 * even though return 0.
923 		 */
924 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
925 			return 0;
926 
927 		up_read(&mm->mmap_sem);
928 		if (flags & FAULT_FLAG_KILLABLE)
929 			wait_on_page_locked_killable(page);
930 		else
931 			wait_on_page_locked(page);
932 		return 0;
933 	} else {
934 		if (flags & FAULT_FLAG_KILLABLE) {
935 			int ret;
936 
937 			ret = __lock_page_killable(page);
938 			if (ret) {
939 				up_read(&mm->mmap_sem);
940 				return 0;
941 			}
942 		} else
943 			__lock_page(page);
944 		return 1;
945 	}
946 }
947 
948 /**
949  * page_cache_next_hole - find the next hole (not-present entry)
950  * @mapping: mapping
951  * @index: index
952  * @max_scan: maximum range to search
953  *
954  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
955  * lowest indexed hole.
956  *
957  * Returns: the index of the hole if found, otherwise returns an index
958  * outside of the set specified (in which case 'return - index >=
959  * max_scan' will be true). In rare cases of index wrap-around, 0 will
960  * be returned.
961  *
962  * page_cache_next_hole may be called under rcu_read_lock. However,
963  * like radix_tree_gang_lookup, this will not atomically search a
964  * snapshot of the tree at a single point in time. For example, if a
965  * hole is created at index 5, then subsequently a hole is created at
966  * index 10, page_cache_next_hole covering both indexes may return 10
967  * if called under rcu_read_lock.
968  */
969 pgoff_t page_cache_next_hole(struct address_space *mapping,
970 			     pgoff_t index, unsigned long max_scan)
971 {
972 	unsigned long i;
973 
974 	for (i = 0; i < max_scan; i++) {
975 		struct page *page;
976 
977 		page = radix_tree_lookup(&mapping->page_tree, index);
978 		if (!page || radix_tree_exceptional_entry(page))
979 			break;
980 		index++;
981 		if (index == 0)
982 			break;
983 	}
984 
985 	return index;
986 }
987 EXPORT_SYMBOL(page_cache_next_hole);
988 
989 /**
990  * page_cache_prev_hole - find the prev hole (not-present entry)
991  * @mapping: mapping
992  * @index: index
993  * @max_scan: maximum range to search
994  *
995  * Search backwards in the range [max(index-max_scan+1, 0), index] for
996  * the first hole.
997  *
998  * Returns: the index of the hole if found, otherwise returns an index
999  * outside of the set specified (in which case 'index - return >=
1000  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1001  * will be returned.
1002  *
1003  * page_cache_prev_hole may be called under rcu_read_lock. However,
1004  * like radix_tree_gang_lookup, this will not atomically search a
1005  * snapshot of the tree at a single point in time. For example, if a
1006  * hole is created at index 10, then subsequently a hole is created at
1007  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1008  * called under rcu_read_lock.
1009  */
1010 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1011 			     pgoff_t index, unsigned long max_scan)
1012 {
1013 	unsigned long i;
1014 
1015 	for (i = 0; i < max_scan; i++) {
1016 		struct page *page;
1017 
1018 		page = radix_tree_lookup(&mapping->page_tree, index);
1019 		if (!page || radix_tree_exceptional_entry(page))
1020 			break;
1021 		index--;
1022 		if (index == ULONG_MAX)
1023 			break;
1024 	}
1025 
1026 	return index;
1027 }
1028 EXPORT_SYMBOL(page_cache_prev_hole);
1029 
1030 /**
1031  * find_get_entry - find and get a page cache entry
1032  * @mapping: the address_space to search
1033  * @offset: the page cache index
1034  *
1035  * Looks up the page cache slot at @mapping & @offset.  If there is a
1036  * page cache page, it is returned with an increased refcount.
1037  *
1038  * If the slot holds a shadow entry of a previously evicted page, or a
1039  * swap entry from shmem/tmpfs, it is returned.
1040  *
1041  * Otherwise, %NULL is returned.
1042  */
1043 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1044 {
1045 	void **pagep;
1046 	struct page *head, *page;
1047 
1048 	rcu_read_lock();
1049 repeat:
1050 	page = NULL;
1051 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1052 	if (pagep) {
1053 		page = radix_tree_deref_slot(pagep);
1054 		if (unlikely(!page))
1055 			goto out;
1056 		if (radix_tree_exception(page)) {
1057 			if (radix_tree_deref_retry(page))
1058 				goto repeat;
1059 			/*
1060 			 * A shadow entry of a recently evicted page,
1061 			 * or a swap entry from shmem/tmpfs.  Return
1062 			 * it without attempting to raise page count.
1063 			 */
1064 			goto out;
1065 		}
1066 
1067 		head = compound_head(page);
1068 		if (!page_cache_get_speculative(head))
1069 			goto repeat;
1070 
1071 		/* The page was split under us? */
1072 		if (compound_head(page) != head) {
1073 			put_page(head);
1074 			goto repeat;
1075 		}
1076 
1077 		/*
1078 		 * Has the page moved?
1079 		 * This is part of the lockless pagecache protocol. See
1080 		 * include/linux/pagemap.h for details.
1081 		 */
1082 		if (unlikely(page != *pagep)) {
1083 			put_page(head);
1084 			goto repeat;
1085 		}
1086 	}
1087 out:
1088 	rcu_read_unlock();
1089 
1090 	return page;
1091 }
1092 EXPORT_SYMBOL(find_get_entry);
1093 
1094 /**
1095  * find_lock_entry - locate, pin and lock a page cache entry
1096  * @mapping: the address_space to search
1097  * @offset: the page cache index
1098  *
1099  * Looks up the page cache slot at @mapping & @offset.  If there is a
1100  * page cache page, it is returned locked and with an increased
1101  * refcount.
1102  *
1103  * If the slot holds a shadow entry of a previously evicted page, or a
1104  * swap entry from shmem/tmpfs, it is returned.
1105  *
1106  * Otherwise, %NULL is returned.
1107  *
1108  * find_lock_entry() may sleep.
1109  */
1110 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1111 {
1112 	struct page *page;
1113 
1114 repeat:
1115 	page = find_get_entry(mapping, offset);
1116 	if (page && !radix_tree_exception(page)) {
1117 		lock_page(page);
1118 		/* Has the page been truncated? */
1119 		if (unlikely(page_mapping(page) != mapping)) {
1120 			unlock_page(page);
1121 			put_page(page);
1122 			goto repeat;
1123 		}
1124 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1125 	}
1126 	return page;
1127 }
1128 EXPORT_SYMBOL(find_lock_entry);
1129 
1130 /**
1131  * pagecache_get_page - find and get a page reference
1132  * @mapping: the address_space to search
1133  * @offset: the page index
1134  * @fgp_flags: PCG flags
1135  * @gfp_mask: gfp mask to use for the page cache data page allocation
1136  *
1137  * Looks up the page cache slot at @mapping & @offset.
1138  *
1139  * PCG flags modify how the page is returned.
1140  *
1141  * FGP_ACCESSED: the page will be marked accessed
1142  * FGP_LOCK: Page is return locked
1143  * FGP_CREAT: If page is not present then a new page is allocated using
1144  *		@gfp_mask and added to the page cache and the VM's LRU
1145  *		list. The page is returned locked and with an increased
1146  *		refcount. Otherwise, %NULL is returned.
1147  *
1148  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1149  * if the GFP flags specified for FGP_CREAT are atomic.
1150  *
1151  * If there is a page cache page, it is returned with an increased refcount.
1152  */
1153 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1154 	int fgp_flags, gfp_t gfp_mask)
1155 {
1156 	struct page *page;
1157 
1158 repeat:
1159 	page = find_get_entry(mapping, offset);
1160 	if (radix_tree_exceptional_entry(page))
1161 		page = NULL;
1162 	if (!page)
1163 		goto no_page;
1164 
1165 	if (fgp_flags & FGP_LOCK) {
1166 		if (fgp_flags & FGP_NOWAIT) {
1167 			if (!trylock_page(page)) {
1168 				put_page(page);
1169 				return NULL;
1170 			}
1171 		} else {
1172 			lock_page(page);
1173 		}
1174 
1175 		/* Has the page been truncated? */
1176 		if (unlikely(page->mapping != mapping)) {
1177 			unlock_page(page);
1178 			put_page(page);
1179 			goto repeat;
1180 		}
1181 		VM_BUG_ON_PAGE(page->index != offset, page);
1182 	}
1183 
1184 	if (page && (fgp_flags & FGP_ACCESSED))
1185 		mark_page_accessed(page);
1186 
1187 no_page:
1188 	if (!page && (fgp_flags & FGP_CREAT)) {
1189 		int err;
1190 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1191 			gfp_mask |= __GFP_WRITE;
1192 		if (fgp_flags & FGP_NOFS)
1193 			gfp_mask &= ~__GFP_FS;
1194 
1195 		page = __page_cache_alloc(gfp_mask);
1196 		if (!page)
1197 			return NULL;
1198 
1199 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1200 			fgp_flags |= FGP_LOCK;
1201 
1202 		/* Init accessed so avoid atomic mark_page_accessed later */
1203 		if (fgp_flags & FGP_ACCESSED)
1204 			__SetPageReferenced(page);
1205 
1206 		err = add_to_page_cache_lru(page, mapping, offset,
1207 				gfp_mask & GFP_RECLAIM_MASK);
1208 		if (unlikely(err)) {
1209 			put_page(page);
1210 			page = NULL;
1211 			if (err == -EEXIST)
1212 				goto repeat;
1213 		}
1214 	}
1215 
1216 	return page;
1217 }
1218 EXPORT_SYMBOL(pagecache_get_page);
1219 
1220 /**
1221  * find_get_entries - gang pagecache lookup
1222  * @mapping:	The address_space to search
1223  * @start:	The starting page cache index
1224  * @nr_entries:	The maximum number of entries
1225  * @entries:	Where the resulting entries are placed
1226  * @indices:	The cache indices corresponding to the entries in @entries
1227  *
1228  * find_get_entries() will search for and return a group of up to
1229  * @nr_entries entries in the mapping.  The entries are placed at
1230  * @entries.  find_get_entries() takes a reference against any actual
1231  * pages it returns.
1232  *
1233  * The search returns a group of mapping-contiguous page cache entries
1234  * with ascending indexes.  There may be holes in the indices due to
1235  * not-present pages.
1236  *
1237  * Any shadow entries of evicted pages, or swap entries from
1238  * shmem/tmpfs, are included in the returned array.
1239  *
1240  * find_get_entries() returns the number of pages and shadow entries
1241  * which were found.
1242  */
1243 unsigned find_get_entries(struct address_space *mapping,
1244 			  pgoff_t start, unsigned int nr_entries,
1245 			  struct page **entries, pgoff_t *indices)
1246 {
1247 	void **slot;
1248 	unsigned int ret = 0;
1249 	struct radix_tree_iter iter;
1250 
1251 	if (!nr_entries)
1252 		return 0;
1253 
1254 	rcu_read_lock();
1255 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1256 		struct page *head, *page;
1257 repeat:
1258 		page = radix_tree_deref_slot(slot);
1259 		if (unlikely(!page))
1260 			continue;
1261 		if (radix_tree_exception(page)) {
1262 			if (radix_tree_deref_retry(page)) {
1263 				slot = radix_tree_iter_retry(&iter);
1264 				continue;
1265 			}
1266 			/*
1267 			 * A shadow entry of a recently evicted page, a swap
1268 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1269 			 * without attempting to raise page count.
1270 			 */
1271 			goto export;
1272 		}
1273 
1274 		head = compound_head(page);
1275 		if (!page_cache_get_speculative(head))
1276 			goto repeat;
1277 
1278 		/* The page was split under us? */
1279 		if (compound_head(page) != head) {
1280 			put_page(head);
1281 			goto repeat;
1282 		}
1283 
1284 		/* Has the page moved? */
1285 		if (unlikely(page != *slot)) {
1286 			put_page(head);
1287 			goto repeat;
1288 		}
1289 export:
1290 		indices[ret] = iter.index;
1291 		entries[ret] = page;
1292 		if (++ret == nr_entries)
1293 			break;
1294 	}
1295 	rcu_read_unlock();
1296 	return ret;
1297 }
1298 
1299 /**
1300  * find_get_pages - gang pagecache lookup
1301  * @mapping:	The address_space to search
1302  * @start:	The starting page index
1303  * @nr_pages:	The maximum number of pages
1304  * @pages:	Where the resulting pages are placed
1305  *
1306  * find_get_pages() will search for and return a group of up to
1307  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1308  * find_get_pages() takes a reference against the returned pages.
1309  *
1310  * The search returns a group of mapping-contiguous pages with ascending
1311  * indexes.  There may be holes in the indices due to not-present pages.
1312  *
1313  * find_get_pages() returns the number of pages which were found.
1314  */
1315 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1316 			    unsigned int nr_pages, struct page **pages)
1317 {
1318 	struct radix_tree_iter iter;
1319 	void **slot;
1320 	unsigned ret = 0;
1321 
1322 	if (unlikely(!nr_pages))
1323 		return 0;
1324 
1325 	rcu_read_lock();
1326 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1327 		struct page *head, *page;
1328 repeat:
1329 		page = radix_tree_deref_slot(slot);
1330 		if (unlikely(!page))
1331 			continue;
1332 
1333 		if (radix_tree_exception(page)) {
1334 			if (radix_tree_deref_retry(page)) {
1335 				slot = radix_tree_iter_retry(&iter);
1336 				continue;
1337 			}
1338 			/*
1339 			 * A shadow entry of a recently evicted page,
1340 			 * or a swap entry from shmem/tmpfs.  Skip
1341 			 * over it.
1342 			 */
1343 			continue;
1344 		}
1345 
1346 		head = compound_head(page);
1347 		if (!page_cache_get_speculative(head))
1348 			goto repeat;
1349 
1350 		/* The page was split under us? */
1351 		if (compound_head(page) != head) {
1352 			put_page(head);
1353 			goto repeat;
1354 		}
1355 
1356 		/* Has the page moved? */
1357 		if (unlikely(page != *slot)) {
1358 			put_page(head);
1359 			goto repeat;
1360 		}
1361 
1362 		pages[ret] = page;
1363 		if (++ret == nr_pages)
1364 			break;
1365 	}
1366 
1367 	rcu_read_unlock();
1368 	return ret;
1369 }
1370 
1371 /**
1372  * find_get_pages_contig - gang contiguous pagecache lookup
1373  * @mapping:	The address_space to search
1374  * @index:	The starting page index
1375  * @nr_pages:	The maximum number of pages
1376  * @pages:	Where the resulting pages are placed
1377  *
1378  * find_get_pages_contig() works exactly like find_get_pages(), except
1379  * that the returned number of pages are guaranteed to be contiguous.
1380  *
1381  * find_get_pages_contig() returns the number of pages which were found.
1382  */
1383 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1384 			       unsigned int nr_pages, struct page **pages)
1385 {
1386 	struct radix_tree_iter iter;
1387 	void **slot;
1388 	unsigned int ret = 0;
1389 
1390 	if (unlikely(!nr_pages))
1391 		return 0;
1392 
1393 	rcu_read_lock();
1394 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1395 		struct page *head, *page;
1396 repeat:
1397 		page = radix_tree_deref_slot(slot);
1398 		/* The hole, there no reason to continue */
1399 		if (unlikely(!page))
1400 			break;
1401 
1402 		if (radix_tree_exception(page)) {
1403 			if (radix_tree_deref_retry(page)) {
1404 				slot = radix_tree_iter_retry(&iter);
1405 				continue;
1406 			}
1407 			/*
1408 			 * A shadow entry of a recently evicted page,
1409 			 * or a swap entry from shmem/tmpfs.  Stop
1410 			 * looking for contiguous pages.
1411 			 */
1412 			break;
1413 		}
1414 
1415 		head = compound_head(page);
1416 		if (!page_cache_get_speculative(head))
1417 			goto repeat;
1418 
1419 		/* The page was split under us? */
1420 		if (compound_head(page) != head) {
1421 			put_page(head);
1422 			goto repeat;
1423 		}
1424 
1425 		/* Has the page moved? */
1426 		if (unlikely(page != *slot)) {
1427 			put_page(head);
1428 			goto repeat;
1429 		}
1430 
1431 		/*
1432 		 * must check mapping and index after taking the ref.
1433 		 * otherwise we can get both false positives and false
1434 		 * negatives, which is just confusing to the caller.
1435 		 */
1436 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1437 			put_page(page);
1438 			break;
1439 		}
1440 
1441 		pages[ret] = page;
1442 		if (++ret == nr_pages)
1443 			break;
1444 	}
1445 	rcu_read_unlock();
1446 	return ret;
1447 }
1448 EXPORT_SYMBOL(find_get_pages_contig);
1449 
1450 /**
1451  * find_get_pages_tag - find and return pages that match @tag
1452  * @mapping:	the address_space to search
1453  * @index:	the starting page index
1454  * @tag:	the tag index
1455  * @nr_pages:	the maximum number of pages
1456  * @pages:	where the resulting pages are placed
1457  *
1458  * Like find_get_pages, except we only return pages which are tagged with
1459  * @tag.   We update @index to index the next page for the traversal.
1460  */
1461 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1462 			int tag, unsigned int nr_pages, struct page **pages)
1463 {
1464 	struct radix_tree_iter iter;
1465 	void **slot;
1466 	unsigned ret = 0;
1467 
1468 	if (unlikely(!nr_pages))
1469 		return 0;
1470 
1471 	rcu_read_lock();
1472 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1473 				   &iter, *index, tag) {
1474 		struct page *head, *page;
1475 repeat:
1476 		page = radix_tree_deref_slot(slot);
1477 		if (unlikely(!page))
1478 			continue;
1479 
1480 		if (radix_tree_exception(page)) {
1481 			if (radix_tree_deref_retry(page)) {
1482 				slot = radix_tree_iter_retry(&iter);
1483 				continue;
1484 			}
1485 			/*
1486 			 * A shadow entry of a recently evicted page.
1487 			 *
1488 			 * Those entries should never be tagged, but
1489 			 * this tree walk is lockless and the tags are
1490 			 * looked up in bulk, one radix tree node at a
1491 			 * time, so there is a sizable window for page
1492 			 * reclaim to evict a page we saw tagged.
1493 			 *
1494 			 * Skip over it.
1495 			 */
1496 			continue;
1497 		}
1498 
1499 		head = compound_head(page);
1500 		if (!page_cache_get_speculative(head))
1501 			goto repeat;
1502 
1503 		/* The page was split under us? */
1504 		if (compound_head(page) != head) {
1505 			put_page(head);
1506 			goto repeat;
1507 		}
1508 
1509 		/* Has the page moved? */
1510 		if (unlikely(page != *slot)) {
1511 			put_page(head);
1512 			goto repeat;
1513 		}
1514 
1515 		pages[ret] = page;
1516 		if (++ret == nr_pages)
1517 			break;
1518 	}
1519 
1520 	rcu_read_unlock();
1521 
1522 	if (ret)
1523 		*index = pages[ret - 1]->index + 1;
1524 
1525 	return ret;
1526 }
1527 EXPORT_SYMBOL(find_get_pages_tag);
1528 
1529 /**
1530  * find_get_entries_tag - find and return entries that match @tag
1531  * @mapping:	the address_space to search
1532  * @start:	the starting page cache index
1533  * @tag:	the tag index
1534  * @nr_entries:	the maximum number of entries
1535  * @entries:	where the resulting entries are placed
1536  * @indices:	the cache indices corresponding to the entries in @entries
1537  *
1538  * Like find_get_entries, except we only return entries which are tagged with
1539  * @tag.
1540  */
1541 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1542 			int tag, unsigned int nr_entries,
1543 			struct page **entries, pgoff_t *indices)
1544 {
1545 	void **slot;
1546 	unsigned int ret = 0;
1547 	struct radix_tree_iter iter;
1548 
1549 	if (!nr_entries)
1550 		return 0;
1551 
1552 	rcu_read_lock();
1553 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1554 				   &iter, start, tag) {
1555 		struct page *head, *page;
1556 repeat:
1557 		page = radix_tree_deref_slot(slot);
1558 		if (unlikely(!page))
1559 			continue;
1560 		if (radix_tree_exception(page)) {
1561 			if (radix_tree_deref_retry(page)) {
1562 				slot = radix_tree_iter_retry(&iter);
1563 				continue;
1564 			}
1565 
1566 			/*
1567 			 * A shadow entry of a recently evicted page, a swap
1568 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1569 			 * without attempting to raise page count.
1570 			 */
1571 			goto export;
1572 		}
1573 
1574 		head = compound_head(page);
1575 		if (!page_cache_get_speculative(head))
1576 			goto repeat;
1577 
1578 		/* The page was split under us? */
1579 		if (compound_head(page) != head) {
1580 			put_page(head);
1581 			goto repeat;
1582 		}
1583 
1584 		/* Has the page moved? */
1585 		if (unlikely(page != *slot)) {
1586 			put_page(head);
1587 			goto repeat;
1588 		}
1589 export:
1590 		indices[ret] = iter.index;
1591 		entries[ret] = page;
1592 		if (++ret == nr_entries)
1593 			break;
1594 	}
1595 	rcu_read_unlock();
1596 	return ret;
1597 }
1598 EXPORT_SYMBOL(find_get_entries_tag);
1599 
1600 /*
1601  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1602  * a _large_ part of the i/o request. Imagine the worst scenario:
1603  *
1604  *      ---R__________________________________________B__________
1605  *         ^ reading here                             ^ bad block(assume 4k)
1606  *
1607  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1608  * => failing the whole request => read(R) => read(R+1) =>
1609  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1610  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1611  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1612  *
1613  * It is going insane. Fix it by quickly scaling down the readahead size.
1614  */
1615 static void shrink_readahead_size_eio(struct file *filp,
1616 					struct file_ra_state *ra)
1617 {
1618 	ra->ra_pages /= 4;
1619 }
1620 
1621 /**
1622  * do_generic_file_read - generic file read routine
1623  * @filp:	the file to read
1624  * @ppos:	current file position
1625  * @iter:	data destination
1626  * @written:	already copied
1627  *
1628  * This is a generic file read routine, and uses the
1629  * mapping->a_ops->readpage() function for the actual low-level stuff.
1630  *
1631  * This is really ugly. But the goto's actually try to clarify some
1632  * of the logic when it comes to error handling etc.
1633  */
1634 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1635 		struct iov_iter *iter, ssize_t written)
1636 {
1637 	struct address_space *mapping = filp->f_mapping;
1638 	struct inode *inode = mapping->host;
1639 	struct file_ra_state *ra = &filp->f_ra;
1640 	pgoff_t index;
1641 	pgoff_t last_index;
1642 	pgoff_t prev_index;
1643 	unsigned long offset;      /* offset into pagecache page */
1644 	unsigned int prev_offset;
1645 	int error = 0;
1646 
1647 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1648 		return -EINVAL;
1649 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1650 
1651 	index = *ppos >> PAGE_SHIFT;
1652 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1653 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1654 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1655 	offset = *ppos & ~PAGE_MASK;
1656 
1657 	for (;;) {
1658 		struct page *page;
1659 		pgoff_t end_index;
1660 		loff_t isize;
1661 		unsigned long nr, ret;
1662 
1663 		cond_resched();
1664 find_page:
1665 		page = find_get_page(mapping, index);
1666 		if (!page) {
1667 			page_cache_sync_readahead(mapping,
1668 					ra, filp,
1669 					index, last_index - index);
1670 			page = find_get_page(mapping, index);
1671 			if (unlikely(page == NULL))
1672 				goto no_cached_page;
1673 		}
1674 		if (PageReadahead(page)) {
1675 			page_cache_async_readahead(mapping,
1676 					ra, filp, page,
1677 					index, last_index - index);
1678 		}
1679 		if (!PageUptodate(page)) {
1680 			/*
1681 			 * See comment in do_read_cache_page on why
1682 			 * wait_on_page_locked is used to avoid unnecessarily
1683 			 * serialisations and why it's safe.
1684 			 */
1685 			error = wait_on_page_locked_killable(page);
1686 			if (unlikely(error))
1687 				goto readpage_error;
1688 			if (PageUptodate(page))
1689 				goto page_ok;
1690 
1691 			if (inode->i_blkbits == PAGE_SHIFT ||
1692 					!mapping->a_ops->is_partially_uptodate)
1693 				goto page_not_up_to_date;
1694 			/* pipes can't handle partially uptodate pages */
1695 			if (unlikely(iter->type & ITER_PIPE))
1696 				goto page_not_up_to_date;
1697 			if (!trylock_page(page))
1698 				goto page_not_up_to_date;
1699 			/* Did it get truncated before we got the lock? */
1700 			if (!page->mapping)
1701 				goto page_not_up_to_date_locked;
1702 			if (!mapping->a_ops->is_partially_uptodate(page,
1703 							offset, iter->count))
1704 				goto page_not_up_to_date_locked;
1705 			unlock_page(page);
1706 		}
1707 page_ok:
1708 		/*
1709 		 * i_size must be checked after we know the page is Uptodate.
1710 		 *
1711 		 * Checking i_size after the check allows us to calculate
1712 		 * the correct value for "nr", which means the zero-filled
1713 		 * part of the page is not copied back to userspace (unless
1714 		 * another truncate extends the file - this is desired though).
1715 		 */
1716 
1717 		isize = i_size_read(inode);
1718 		end_index = (isize - 1) >> PAGE_SHIFT;
1719 		if (unlikely(!isize || index > end_index)) {
1720 			put_page(page);
1721 			goto out;
1722 		}
1723 
1724 		/* nr is the maximum number of bytes to copy from this page */
1725 		nr = PAGE_SIZE;
1726 		if (index == end_index) {
1727 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1728 			if (nr <= offset) {
1729 				put_page(page);
1730 				goto out;
1731 			}
1732 		}
1733 		nr = nr - offset;
1734 
1735 		/* If users can be writing to this page using arbitrary
1736 		 * virtual addresses, take care about potential aliasing
1737 		 * before reading the page on the kernel side.
1738 		 */
1739 		if (mapping_writably_mapped(mapping))
1740 			flush_dcache_page(page);
1741 
1742 		/*
1743 		 * When a sequential read accesses a page several times,
1744 		 * only mark it as accessed the first time.
1745 		 */
1746 		if (prev_index != index || offset != prev_offset)
1747 			mark_page_accessed(page);
1748 		prev_index = index;
1749 
1750 		/*
1751 		 * Ok, we have the page, and it's up-to-date, so
1752 		 * now we can copy it to user space...
1753 		 */
1754 
1755 		ret = copy_page_to_iter(page, offset, nr, iter);
1756 		offset += ret;
1757 		index += offset >> PAGE_SHIFT;
1758 		offset &= ~PAGE_MASK;
1759 		prev_offset = offset;
1760 
1761 		put_page(page);
1762 		written += ret;
1763 		if (!iov_iter_count(iter))
1764 			goto out;
1765 		if (ret < nr) {
1766 			error = -EFAULT;
1767 			goto out;
1768 		}
1769 		continue;
1770 
1771 page_not_up_to_date:
1772 		/* Get exclusive access to the page ... */
1773 		error = lock_page_killable(page);
1774 		if (unlikely(error))
1775 			goto readpage_error;
1776 
1777 page_not_up_to_date_locked:
1778 		/* Did it get truncated before we got the lock? */
1779 		if (!page->mapping) {
1780 			unlock_page(page);
1781 			put_page(page);
1782 			continue;
1783 		}
1784 
1785 		/* Did somebody else fill it already? */
1786 		if (PageUptodate(page)) {
1787 			unlock_page(page);
1788 			goto page_ok;
1789 		}
1790 
1791 readpage:
1792 		/*
1793 		 * A previous I/O error may have been due to temporary
1794 		 * failures, eg. multipath errors.
1795 		 * PG_error will be set again if readpage fails.
1796 		 */
1797 		ClearPageError(page);
1798 		/* Start the actual read. The read will unlock the page. */
1799 		error = mapping->a_ops->readpage(filp, page);
1800 
1801 		if (unlikely(error)) {
1802 			if (error == AOP_TRUNCATED_PAGE) {
1803 				put_page(page);
1804 				error = 0;
1805 				goto find_page;
1806 			}
1807 			goto readpage_error;
1808 		}
1809 
1810 		if (!PageUptodate(page)) {
1811 			error = lock_page_killable(page);
1812 			if (unlikely(error))
1813 				goto readpage_error;
1814 			if (!PageUptodate(page)) {
1815 				if (page->mapping == NULL) {
1816 					/*
1817 					 * invalidate_mapping_pages got it
1818 					 */
1819 					unlock_page(page);
1820 					put_page(page);
1821 					goto find_page;
1822 				}
1823 				unlock_page(page);
1824 				shrink_readahead_size_eio(filp, ra);
1825 				error = -EIO;
1826 				goto readpage_error;
1827 			}
1828 			unlock_page(page);
1829 		}
1830 
1831 		goto page_ok;
1832 
1833 readpage_error:
1834 		/* UHHUH! A synchronous read error occurred. Report it */
1835 		put_page(page);
1836 		goto out;
1837 
1838 no_cached_page:
1839 		/*
1840 		 * Ok, it wasn't cached, so we need to create a new
1841 		 * page..
1842 		 */
1843 		page = page_cache_alloc_cold(mapping);
1844 		if (!page) {
1845 			error = -ENOMEM;
1846 			goto out;
1847 		}
1848 		error = add_to_page_cache_lru(page, mapping, index,
1849 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1850 		if (error) {
1851 			put_page(page);
1852 			if (error == -EEXIST) {
1853 				error = 0;
1854 				goto find_page;
1855 			}
1856 			goto out;
1857 		}
1858 		goto readpage;
1859 	}
1860 
1861 out:
1862 	ra->prev_pos = prev_index;
1863 	ra->prev_pos <<= PAGE_SHIFT;
1864 	ra->prev_pos |= prev_offset;
1865 
1866 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1867 	file_accessed(filp);
1868 	return written ? written : error;
1869 }
1870 
1871 /**
1872  * generic_file_read_iter - generic filesystem read routine
1873  * @iocb:	kernel I/O control block
1874  * @iter:	destination for the data read
1875  *
1876  * This is the "read_iter()" routine for all filesystems
1877  * that can use the page cache directly.
1878  */
1879 ssize_t
1880 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1881 {
1882 	struct file *file = iocb->ki_filp;
1883 	ssize_t retval = 0;
1884 	size_t count = iov_iter_count(iter);
1885 
1886 	if (!count)
1887 		goto out; /* skip atime */
1888 
1889 	if (iocb->ki_flags & IOCB_DIRECT) {
1890 		struct address_space *mapping = file->f_mapping;
1891 		struct inode *inode = mapping->host;
1892 		struct iov_iter data = *iter;
1893 		loff_t size;
1894 
1895 		size = i_size_read(inode);
1896 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1897 					iocb->ki_pos + count - 1);
1898 		if (retval < 0)
1899 			goto out;
1900 
1901 		file_accessed(file);
1902 
1903 		retval = mapping->a_ops->direct_IO(iocb, &data);
1904 		if (retval >= 0) {
1905 			iocb->ki_pos += retval;
1906 			iov_iter_advance(iter, retval);
1907 		}
1908 
1909 		/*
1910 		 * Btrfs can have a short DIO read if we encounter
1911 		 * compressed extents, so if there was an error, or if
1912 		 * we've already read everything we wanted to, or if
1913 		 * there was a short read because we hit EOF, go ahead
1914 		 * and return.  Otherwise fallthrough to buffered io for
1915 		 * the rest of the read.  Buffered reads will not work for
1916 		 * DAX files, so don't bother trying.
1917 		 */
1918 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1919 		    IS_DAX(inode))
1920 			goto out;
1921 	}
1922 
1923 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1924 out:
1925 	return retval;
1926 }
1927 EXPORT_SYMBOL(generic_file_read_iter);
1928 
1929 #ifdef CONFIG_MMU
1930 /**
1931  * page_cache_read - adds requested page to the page cache if not already there
1932  * @file:	file to read
1933  * @offset:	page index
1934  * @gfp_mask:	memory allocation flags
1935  *
1936  * This adds the requested page to the page cache if it isn't already there,
1937  * and schedules an I/O to read in its contents from disk.
1938  */
1939 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1940 {
1941 	struct address_space *mapping = file->f_mapping;
1942 	struct page *page;
1943 	int ret;
1944 
1945 	do {
1946 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1947 		if (!page)
1948 			return -ENOMEM;
1949 
1950 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1951 		if (ret == 0)
1952 			ret = mapping->a_ops->readpage(file, page);
1953 		else if (ret == -EEXIST)
1954 			ret = 0; /* losing race to add is OK */
1955 
1956 		put_page(page);
1957 
1958 	} while (ret == AOP_TRUNCATED_PAGE);
1959 
1960 	return ret;
1961 }
1962 
1963 #define MMAP_LOTSAMISS  (100)
1964 
1965 /*
1966  * Synchronous readahead happens when we don't even find
1967  * a page in the page cache at all.
1968  */
1969 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1970 				   struct file_ra_state *ra,
1971 				   struct file *file,
1972 				   pgoff_t offset)
1973 {
1974 	struct address_space *mapping = file->f_mapping;
1975 
1976 	/* If we don't want any read-ahead, don't bother */
1977 	if (vma->vm_flags & VM_RAND_READ)
1978 		return;
1979 	if (!ra->ra_pages)
1980 		return;
1981 
1982 	if (vma->vm_flags & VM_SEQ_READ) {
1983 		page_cache_sync_readahead(mapping, ra, file, offset,
1984 					  ra->ra_pages);
1985 		return;
1986 	}
1987 
1988 	/* Avoid banging the cache line if not needed */
1989 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1990 		ra->mmap_miss++;
1991 
1992 	/*
1993 	 * Do we miss much more than hit in this file? If so,
1994 	 * stop bothering with read-ahead. It will only hurt.
1995 	 */
1996 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1997 		return;
1998 
1999 	/*
2000 	 * mmap read-around
2001 	 */
2002 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2003 	ra->size = ra->ra_pages;
2004 	ra->async_size = ra->ra_pages / 4;
2005 	ra_submit(ra, mapping, file);
2006 }
2007 
2008 /*
2009  * Asynchronous readahead happens when we find the page and PG_readahead,
2010  * so we want to possibly extend the readahead further..
2011  */
2012 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2013 				    struct file_ra_state *ra,
2014 				    struct file *file,
2015 				    struct page *page,
2016 				    pgoff_t offset)
2017 {
2018 	struct address_space *mapping = file->f_mapping;
2019 
2020 	/* If we don't want any read-ahead, don't bother */
2021 	if (vma->vm_flags & VM_RAND_READ)
2022 		return;
2023 	if (ra->mmap_miss > 0)
2024 		ra->mmap_miss--;
2025 	if (PageReadahead(page))
2026 		page_cache_async_readahead(mapping, ra, file,
2027 					   page, offset, ra->ra_pages);
2028 }
2029 
2030 /**
2031  * filemap_fault - read in file data for page fault handling
2032  * @vma:	vma in which the fault was taken
2033  * @vmf:	struct vm_fault containing details of the fault
2034  *
2035  * filemap_fault() is invoked via the vma operations vector for a
2036  * mapped memory region to read in file data during a page fault.
2037  *
2038  * The goto's are kind of ugly, but this streamlines the normal case of having
2039  * it in the page cache, and handles the special cases reasonably without
2040  * having a lot of duplicated code.
2041  *
2042  * vma->vm_mm->mmap_sem must be held on entry.
2043  *
2044  * If our return value has VM_FAULT_RETRY set, it's because
2045  * lock_page_or_retry() returned 0.
2046  * The mmap_sem has usually been released in this case.
2047  * See __lock_page_or_retry() for the exception.
2048  *
2049  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2050  * has not been released.
2051  *
2052  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2053  */
2054 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2055 {
2056 	int error;
2057 	struct file *file = vma->vm_file;
2058 	struct address_space *mapping = file->f_mapping;
2059 	struct file_ra_state *ra = &file->f_ra;
2060 	struct inode *inode = mapping->host;
2061 	pgoff_t offset = vmf->pgoff;
2062 	struct page *page;
2063 	loff_t size;
2064 	int ret = 0;
2065 
2066 	size = round_up(i_size_read(inode), PAGE_SIZE);
2067 	if (offset >= size >> PAGE_SHIFT)
2068 		return VM_FAULT_SIGBUS;
2069 
2070 	/*
2071 	 * Do we have something in the page cache already?
2072 	 */
2073 	page = find_get_page(mapping, offset);
2074 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2075 		/*
2076 		 * We found the page, so try async readahead before
2077 		 * waiting for the lock.
2078 		 */
2079 		do_async_mmap_readahead(vma, ra, file, page, offset);
2080 	} else if (!page) {
2081 		/* No page in the page cache at all */
2082 		do_sync_mmap_readahead(vma, ra, file, offset);
2083 		count_vm_event(PGMAJFAULT);
2084 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2085 		ret = VM_FAULT_MAJOR;
2086 retry_find:
2087 		page = find_get_page(mapping, offset);
2088 		if (!page)
2089 			goto no_cached_page;
2090 	}
2091 
2092 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2093 		put_page(page);
2094 		return ret | VM_FAULT_RETRY;
2095 	}
2096 
2097 	/* Did it get truncated? */
2098 	if (unlikely(page->mapping != mapping)) {
2099 		unlock_page(page);
2100 		put_page(page);
2101 		goto retry_find;
2102 	}
2103 	VM_BUG_ON_PAGE(page->index != offset, page);
2104 
2105 	/*
2106 	 * We have a locked page in the page cache, now we need to check
2107 	 * that it's up-to-date. If not, it is going to be due to an error.
2108 	 */
2109 	if (unlikely(!PageUptodate(page)))
2110 		goto page_not_uptodate;
2111 
2112 	/*
2113 	 * Found the page and have a reference on it.
2114 	 * We must recheck i_size under page lock.
2115 	 */
2116 	size = round_up(i_size_read(inode), PAGE_SIZE);
2117 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2118 		unlock_page(page);
2119 		put_page(page);
2120 		return VM_FAULT_SIGBUS;
2121 	}
2122 
2123 	vmf->page = page;
2124 	return ret | VM_FAULT_LOCKED;
2125 
2126 no_cached_page:
2127 	/*
2128 	 * We're only likely to ever get here if MADV_RANDOM is in
2129 	 * effect.
2130 	 */
2131 	error = page_cache_read(file, offset, vmf->gfp_mask);
2132 
2133 	/*
2134 	 * The page we want has now been added to the page cache.
2135 	 * In the unlikely event that someone removed it in the
2136 	 * meantime, we'll just come back here and read it again.
2137 	 */
2138 	if (error >= 0)
2139 		goto retry_find;
2140 
2141 	/*
2142 	 * An error return from page_cache_read can result if the
2143 	 * system is low on memory, or a problem occurs while trying
2144 	 * to schedule I/O.
2145 	 */
2146 	if (error == -ENOMEM)
2147 		return VM_FAULT_OOM;
2148 	return VM_FAULT_SIGBUS;
2149 
2150 page_not_uptodate:
2151 	/*
2152 	 * Umm, take care of errors if the page isn't up-to-date.
2153 	 * Try to re-read it _once_. We do this synchronously,
2154 	 * because there really aren't any performance issues here
2155 	 * and we need to check for errors.
2156 	 */
2157 	ClearPageError(page);
2158 	error = mapping->a_ops->readpage(file, page);
2159 	if (!error) {
2160 		wait_on_page_locked(page);
2161 		if (!PageUptodate(page))
2162 			error = -EIO;
2163 	}
2164 	put_page(page);
2165 
2166 	if (!error || error == AOP_TRUNCATED_PAGE)
2167 		goto retry_find;
2168 
2169 	/* Things didn't work out. Return zero to tell the mm layer so. */
2170 	shrink_readahead_size_eio(file, ra);
2171 	return VM_FAULT_SIGBUS;
2172 }
2173 EXPORT_SYMBOL(filemap_fault);
2174 
2175 void filemap_map_pages(struct fault_env *fe,
2176 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2177 {
2178 	struct radix_tree_iter iter;
2179 	void **slot;
2180 	struct file *file = fe->vma->vm_file;
2181 	struct address_space *mapping = file->f_mapping;
2182 	pgoff_t last_pgoff = start_pgoff;
2183 	loff_t size;
2184 	struct page *head, *page;
2185 
2186 	rcu_read_lock();
2187 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2188 			start_pgoff) {
2189 		if (iter.index > end_pgoff)
2190 			break;
2191 repeat:
2192 		page = radix_tree_deref_slot(slot);
2193 		if (unlikely(!page))
2194 			goto next;
2195 		if (radix_tree_exception(page)) {
2196 			if (radix_tree_deref_retry(page)) {
2197 				slot = radix_tree_iter_retry(&iter);
2198 				continue;
2199 			}
2200 			goto next;
2201 		}
2202 
2203 		head = compound_head(page);
2204 		if (!page_cache_get_speculative(head))
2205 			goto repeat;
2206 
2207 		/* The page was split under us? */
2208 		if (compound_head(page) != head) {
2209 			put_page(head);
2210 			goto repeat;
2211 		}
2212 
2213 		/* Has the page moved? */
2214 		if (unlikely(page != *slot)) {
2215 			put_page(head);
2216 			goto repeat;
2217 		}
2218 
2219 		if (!PageUptodate(page) ||
2220 				PageReadahead(page) ||
2221 				PageHWPoison(page))
2222 			goto skip;
2223 		if (!trylock_page(page))
2224 			goto skip;
2225 
2226 		if (page->mapping != mapping || !PageUptodate(page))
2227 			goto unlock;
2228 
2229 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2230 		if (page->index >= size >> PAGE_SHIFT)
2231 			goto unlock;
2232 
2233 		if (file->f_ra.mmap_miss > 0)
2234 			file->f_ra.mmap_miss--;
2235 
2236 		fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2237 		if (fe->pte)
2238 			fe->pte += iter.index - last_pgoff;
2239 		last_pgoff = iter.index;
2240 		if (alloc_set_pte(fe, NULL, page))
2241 			goto unlock;
2242 		unlock_page(page);
2243 		goto next;
2244 unlock:
2245 		unlock_page(page);
2246 skip:
2247 		put_page(page);
2248 next:
2249 		/* Huge page is mapped? No need to proceed. */
2250 		if (pmd_trans_huge(*fe->pmd))
2251 			break;
2252 		if (iter.index == end_pgoff)
2253 			break;
2254 	}
2255 	rcu_read_unlock();
2256 }
2257 EXPORT_SYMBOL(filemap_map_pages);
2258 
2259 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2260 {
2261 	struct page *page = vmf->page;
2262 	struct inode *inode = file_inode(vma->vm_file);
2263 	int ret = VM_FAULT_LOCKED;
2264 
2265 	sb_start_pagefault(inode->i_sb);
2266 	file_update_time(vma->vm_file);
2267 	lock_page(page);
2268 	if (page->mapping != inode->i_mapping) {
2269 		unlock_page(page);
2270 		ret = VM_FAULT_NOPAGE;
2271 		goto out;
2272 	}
2273 	/*
2274 	 * We mark the page dirty already here so that when freeze is in
2275 	 * progress, we are guaranteed that writeback during freezing will
2276 	 * see the dirty page and writeprotect it again.
2277 	 */
2278 	set_page_dirty(page);
2279 	wait_for_stable_page(page);
2280 out:
2281 	sb_end_pagefault(inode->i_sb);
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL(filemap_page_mkwrite);
2285 
2286 const struct vm_operations_struct generic_file_vm_ops = {
2287 	.fault		= filemap_fault,
2288 	.map_pages	= filemap_map_pages,
2289 	.page_mkwrite	= filemap_page_mkwrite,
2290 };
2291 
2292 /* This is used for a general mmap of a disk file */
2293 
2294 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2295 {
2296 	struct address_space *mapping = file->f_mapping;
2297 
2298 	if (!mapping->a_ops->readpage)
2299 		return -ENOEXEC;
2300 	file_accessed(file);
2301 	vma->vm_ops = &generic_file_vm_ops;
2302 	return 0;
2303 }
2304 
2305 /*
2306  * This is for filesystems which do not implement ->writepage.
2307  */
2308 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2309 {
2310 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2311 		return -EINVAL;
2312 	return generic_file_mmap(file, vma);
2313 }
2314 #else
2315 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2316 {
2317 	return -ENOSYS;
2318 }
2319 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2320 {
2321 	return -ENOSYS;
2322 }
2323 #endif /* CONFIG_MMU */
2324 
2325 EXPORT_SYMBOL(generic_file_mmap);
2326 EXPORT_SYMBOL(generic_file_readonly_mmap);
2327 
2328 static struct page *wait_on_page_read(struct page *page)
2329 {
2330 	if (!IS_ERR(page)) {
2331 		wait_on_page_locked(page);
2332 		if (!PageUptodate(page)) {
2333 			put_page(page);
2334 			page = ERR_PTR(-EIO);
2335 		}
2336 	}
2337 	return page;
2338 }
2339 
2340 static struct page *do_read_cache_page(struct address_space *mapping,
2341 				pgoff_t index,
2342 				int (*filler)(void *, struct page *),
2343 				void *data,
2344 				gfp_t gfp)
2345 {
2346 	struct page *page;
2347 	int err;
2348 repeat:
2349 	page = find_get_page(mapping, index);
2350 	if (!page) {
2351 		page = __page_cache_alloc(gfp | __GFP_COLD);
2352 		if (!page)
2353 			return ERR_PTR(-ENOMEM);
2354 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2355 		if (unlikely(err)) {
2356 			put_page(page);
2357 			if (err == -EEXIST)
2358 				goto repeat;
2359 			/* Presumably ENOMEM for radix tree node */
2360 			return ERR_PTR(err);
2361 		}
2362 
2363 filler:
2364 		err = filler(data, page);
2365 		if (err < 0) {
2366 			put_page(page);
2367 			return ERR_PTR(err);
2368 		}
2369 
2370 		page = wait_on_page_read(page);
2371 		if (IS_ERR(page))
2372 			return page;
2373 		goto out;
2374 	}
2375 	if (PageUptodate(page))
2376 		goto out;
2377 
2378 	/*
2379 	 * Page is not up to date and may be locked due one of the following
2380 	 * case a: Page is being filled and the page lock is held
2381 	 * case b: Read/write error clearing the page uptodate status
2382 	 * case c: Truncation in progress (page locked)
2383 	 * case d: Reclaim in progress
2384 	 *
2385 	 * Case a, the page will be up to date when the page is unlocked.
2386 	 *    There is no need to serialise on the page lock here as the page
2387 	 *    is pinned so the lock gives no additional protection. Even if the
2388 	 *    the page is truncated, the data is still valid if PageUptodate as
2389 	 *    it's a race vs truncate race.
2390 	 * Case b, the page will not be up to date
2391 	 * Case c, the page may be truncated but in itself, the data may still
2392 	 *    be valid after IO completes as it's a read vs truncate race. The
2393 	 *    operation must restart if the page is not uptodate on unlock but
2394 	 *    otherwise serialising on page lock to stabilise the mapping gives
2395 	 *    no additional guarantees to the caller as the page lock is
2396 	 *    released before return.
2397 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2398 	 *    will be a race with remove_mapping that determines if the mapping
2399 	 *    is valid on unlock but otherwise the data is valid and there is
2400 	 *    no need to serialise with page lock.
2401 	 *
2402 	 * As the page lock gives no additional guarantee, we optimistically
2403 	 * wait on the page to be unlocked and check if it's up to date and
2404 	 * use the page if it is. Otherwise, the page lock is required to
2405 	 * distinguish between the different cases. The motivation is that we
2406 	 * avoid spurious serialisations and wakeups when multiple processes
2407 	 * wait on the same page for IO to complete.
2408 	 */
2409 	wait_on_page_locked(page);
2410 	if (PageUptodate(page))
2411 		goto out;
2412 
2413 	/* Distinguish between all the cases under the safety of the lock */
2414 	lock_page(page);
2415 
2416 	/* Case c or d, restart the operation */
2417 	if (!page->mapping) {
2418 		unlock_page(page);
2419 		put_page(page);
2420 		goto repeat;
2421 	}
2422 
2423 	/* Someone else locked and filled the page in a very small window */
2424 	if (PageUptodate(page)) {
2425 		unlock_page(page);
2426 		goto out;
2427 	}
2428 	goto filler;
2429 
2430 out:
2431 	mark_page_accessed(page);
2432 	return page;
2433 }
2434 
2435 /**
2436  * read_cache_page - read into page cache, fill it if needed
2437  * @mapping:	the page's address_space
2438  * @index:	the page index
2439  * @filler:	function to perform the read
2440  * @data:	first arg to filler(data, page) function, often left as NULL
2441  *
2442  * Read into the page cache. If a page already exists, and PageUptodate() is
2443  * not set, try to fill the page and wait for it to become unlocked.
2444  *
2445  * If the page does not get brought uptodate, return -EIO.
2446  */
2447 struct page *read_cache_page(struct address_space *mapping,
2448 				pgoff_t index,
2449 				int (*filler)(void *, struct page *),
2450 				void *data)
2451 {
2452 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2453 }
2454 EXPORT_SYMBOL(read_cache_page);
2455 
2456 /**
2457  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2458  * @mapping:	the page's address_space
2459  * @index:	the page index
2460  * @gfp:	the page allocator flags to use if allocating
2461  *
2462  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2463  * any new page allocations done using the specified allocation flags.
2464  *
2465  * If the page does not get brought uptodate, return -EIO.
2466  */
2467 struct page *read_cache_page_gfp(struct address_space *mapping,
2468 				pgoff_t index,
2469 				gfp_t gfp)
2470 {
2471 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2472 
2473 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2474 }
2475 EXPORT_SYMBOL(read_cache_page_gfp);
2476 
2477 /*
2478  * Performs necessary checks before doing a write
2479  *
2480  * Can adjust writing position or amount of bytes to write.
2481  * Returns appropriate error code that caller should return or
2482  * zero in case that write should be allowed.
2483  */
2484 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2485 {
2486 	struct file *file = iocb->ki_filp;
2487 	struct inode *inode = file->f_mapping->host;
2488 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2489 	loff_t pos;
2490 
2491 	if (!iov_iter_count(from))
2492 		return 0;
2493 
2494 	/* FIXME: this is for backwards compatibility with 2.4 */
2495 	if (iocb->ki_flags & IOCB_APPEND)
2496 		iocb->ki_pos = i_size_read(inode);
2497 
2498 	pos = iocb->ki_pos;
2499 
2500 	if (limit != RLIM_INFINITY) {
2501 		if (iocb->ki_pos >= limit) {
2502 			send_sig(SIGXFSZ, current, 0);
2503 			return -EFBIG;
2504 		}
2505 		iov_iter_truncate(from, limit - (unsigned long)pos);
2506 	}
2507 
2508 	/*
2509 	 * LFS rule
2510 	 */
2511 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2512 				!(file->f_flags & O_LARGEFILE))) {
2513 		if (pos >= MAX_NON_LFS)
2514 			return -EFBIG;
2515 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2516 	}
2517 
2518 	/*
2519 	 * Are we about to exceed the fs block limit ?
2520 	 *
2521 	 * If we have written data it becomes a short write.  If we have
2522 	 * exceeded without writing data we send a signal and return EFBIG.
2523 	 * Linus frestrict idea will clean these up nicely..
2524 	 */
2525 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2526 		return -EFBIG;
2527 
2528 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2529 	return iov_iter_count(from);
2530 }
2531 EXPORT_SYMBOL(generic_write_checks);
2532 
2533 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2534 				loff_t pos, unsigned len, unsigned flags,
2535 				struct page **pagep, void **fsdata)
2536 {
2537 	const struct address_space_operations *aops = mapping->a_ops;
2538 
2539 	return aops->write_begin(file, mapping, pos, len, flags,
2540 							pagep, fsdata);
2541 }
2542 EXPORT_SYMBOL(pagecache_write_begin);
2543 
2544 int pagecache_write_end(struct file *file, struct address_space *mapping,
2545 				loff_t pos, unsigned len, unsigned copied,
2546 				struct page *page, void *fsdata)
2547 {
2548 	const struct address_space_operations *aops = mapping->a_ops;
2549 
2550 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2551 }
2552 EXPORT_SYMBOL(pagecache_write_end);
2553 
2554 ssize_t
2555 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2556 {
2557 	struct file	*file = iocb->ki_filp;
2558 	struct address_space *mapping = file->f_mapping;
2559 	struct inode	*inode = mapping->host;
2560 	loff_t		pos = iocb->ki_pos;
2561 	ssize_t		written;
2562 	size_t		write_len;
2563 	pgoff_t		end;
2564 	struct iov_iter data;
2565 
2566 	write_len = iov_iter_count(from);
2567 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2568 
2569 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2570 	if (written)
2571 		goto out;
2572 
2573 	/*
2574 	 * After a write we want buffered reads to be sure to go to disk to get
2575 	 * the new data.  We invalidate clean cached page from the region we're
2576 	 * about to write.  We do this *before* the write so that we can return
2577 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2578 	 */
2579 	if (mapping->nrpages) {
2580 		written = invalidate_inode_pages2_range(mapping,
2581 					pos >> PAGE_SHIFT, end);
2582 		/*
2583 		 * If a page can not be invalidated, return 0 to fall back
2584 		 * to buffered write.
2585 		 */
2586 		if (written) {
2587 			if (written == -EBUSY)
2588 				return 0;
2589 			goto out;
2590 		}
2591 	}
2592 
2593 	data = *from;
2594 	written = mapping->a_ops->direct_IO(iocb, &data);
2595 
2596 	/*
2597 	 * Finally, try again to invalidate clean pages which might have been
2598 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2599 	 * if the source of the write was an mmap'ed region of the file
2600 	 * we're writing.  Either one is a pretty crazy thing to do,
2601 	 * so we don't support it 100%.  If this invalidation
2602 	 * fails, tough, the write still worked...
2603 	 */
2604 	if (mapping->nrpages) {
2605 		invalidate_inode_pages2_range(mapping,
2606 					      pos >> PAGE_SHIFT, end);
2607 	}
2608 
2609 	if (written > 0) {
2610 		pos += written;
2611 		iov_iter_advance(from, written);
2612 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2613 			i_size_write(inode, pos);
2614 			mark_inode_dirty(inode);
2615 		}
2616 		iocb->ki_pos = pos;
2617 	}
2618 out:
2619 	return written;
2620 }
2621 EXPORT_SYMBOL(generic_file_direct_write);
2622 
2623 /*
2624  * Find or create a page at the given pagecache position. Return the locked
2625  * page. This function is specifically for buffered writes.
2626  */
2627 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2628 					pgoff_t index, unsigned flags)
2629 {
2630 	struct page *page;
2631 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2632 
2633 	if (flags & AOP_FLAG_NOFS)
2634 		fgp_flags |= FGP_NOFS;
2635 
2636 	page = pagecache_get_page(mapping, index, fgp_flags,
2637 			mapping_gfp_mask(mapping));
2638 	if (page)
2639 		wait_for_stable_page(page);
2640 
2641 	return page;
2642 }
2643 EXPORT_SYMBOL(grab_cache_page_write_begin);
2644 
2645 ssize_t generic_perform_write(struct file *file,
2646 				struct iov_iter *i, loff_t pos)
2647 {
2648 	struct address_space *mapping = file->f_mapping;
2649 	const struct address_space_operations *a_ops = mapping->a_ops;
2650 	long status = 0;
2651 	ssize_t written = 0;
2652 	unsigned int flags = 0;
2653 
2654 	/*
2655 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2656 	 */
2657 	if (!iter_is_iovec(i))
2658 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2659 
2660 	do {
2661 		struct page *page;
2662 		unsigned long offset;	/* Offset into pagecache page */
2663 		unsigned long bytes;	/* Bytes to write to page */
2664 		size_t copied;		/* Bytes copied from user */
2665 		void *fsdata;
2666 
2667 		offset = (pos & (PAGE_SIZE - 1));
2668 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2669 						iov_iter_count(i));
2670 
2671 again:
2672 		/*
2673 		 * Bring in the user page that we will copy from _first_.
2674 		 * Otherwise there's a nasty deadlock on copying from the
2675 		 * same page as we're writing to, without it being marked
2676 		 * up-to-date.
2677 		 *
2678 		 * Not only is this an optimisation, but it is also required
2679 		 * to check that the address is actually valid, when atomic
2680 		 * usercopies are used, below.
2681 		 */
2682 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2683 			status = -EFAULT;
2684 			break;
2685 		}
2686 
2687 		if (fatal_signal_pending(current)) {
2688 			status = -EINTR;
2689 			break;
2690 		}
2691 
2692 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2693 						&page, &fsdata);
2694 		if (unlikely(status < 0))
2695 			break;
2696 
2697 		if (mapping_writably_mapped(mapping))
2698 			flush_dcache_page(page);
2699 
2700 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2701 		flush_dcache_page(page);
2702 
2703 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2704 						page, fsdata);
2705 		if (unlikely(status < 0))
2706 			break;
2707 		copied = status;
2708 
2709 		cond_resched();
2710 
2711 		iov_iter_advance(i, copied);
2712 		if (unlikely(copied == 0)) {
2713 			/*
2714 			 * If we were unable to copy any data at all, we must
2715 			 * fall back to a single segment length write.
2716 			 *
2717 			 * If we didn't fallback here, we could livelock
2718 			 * because not all segments in the iov can be copied at
2719 			 * once without a pagefault.
2720 			 */
2721 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2722 						iov_iter_single_seg_count(i));
2723 			goto again;
2724 		}
2725 		pos += copied;
2726 		written += copied;
2727 
2728 		balance_dirty_pages_ratelimited(mapping);
2729 	} while (iov_iter_count(i));
2730 
2731 	return written ? written : status;
2732 }
2733 EXPORT_SYMBOL(generic_perform_write);
2734 
2735 /**
2736  * __generic_file_write_iter - write data to a file
2737  * @iocb:	IO state structure (file, offset, etc.)
2738  * @from:	iov_iter with data to write
2739  *
2740  * This function does all the work needed for actually writing data to a
2741  * file. It does all basic checks, removes SUID from the file, updates
2742  * modification times and calls proper subroutines depending on whether we
2743  * do direct IO or a standard buffered write.
2744  *
2745  * It expects i_mutex to be grabbed unless we work on a block device or similar
2746  * object which does not need locking at all.
2747  *
2748  * This function does *not* take care of syncing data in case of O_SYNC write.
2749  * A caller has to handle it. This is mainly due to the fact that we want to
2750  * avoid syncing under i_mutex.
2751  */
2752 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2753 {
2754 	struct file *file = iocb->ki_filp;
2755 	struct address_space * mapping = file->f_mapping;
2756 	struct inode 	*inode = mapping->host;
2757 	ssize_t		written = 0;
2758 	ssize_t		err;
2759 	ssize_t		status;
2760 
2761 	/* We can write back this queue in page reclaim */
2762 	current->backing_dev_info = inode_to_bdi(inode);
2763 	err = file_remove_privs(file);
2764 	if (err)
2765 		goto out;
2766 
2767 	err = file_update_time(file);
2768 	if (err)
2769 		goto out;
2770 
2771 	if (iocb->ki_flags & IOCB_DIRECT) {
2772 		loff_t pos, endbyte;
2773 
2774 		written = generic_file_direct_write(iocb, from);
2775 		/*
2776 		 * If the write stopped short of completing, fall back to
2777 		 * buffered writes.  Some filesystems do this for writes to
2778 		 * holes, for example.  For DAX files, a buffered write will
2779 		 * not succeed (even if it did, DAX does not handle dirty
2780 		 * page-cache pages correctly).
2781 		 */
2782 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2783 			goto out;
2784 
2785 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2786 		/*
2787 		 * If generic_perform_write() returned a synchronous error
2788 		 * then we want to return the number of bytes which were
2789 		 * direct-written, or the error code if that was zero.  Note
2790 		 * that this differs from normal direct-io semantics, which
2791 		 * will return -EFOO even if some bytes were written.
2792 		 */
2793 		if (unlikely(status < 0)) {
2794 			err = status;
2795 			goto out;
2796 		}
2797 		/*
2798 		 * We need to ensure that the page cache pages are written to
2799 		 * disk and invalidated to preserve the expected O_DIRECT
2800 		 * semantics.
2801 		 */
2802 		endbyte = pos + status - 1;
2803 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2804 		if (err == 0) {
2805 			iocb->ki_pos = endbyte + 1;
2806 			written += status;
2807 			invalidate_mapping_pages(mapping,
2808 						 pos >> PAGE_SHIFT,
2809 						 endbyte >> PAGE_SHIFT);
2810 		} else {
2811 			/*
2812 			 * We don't know how much we wrote, so just return
2813 			 * the number of bytes which were direct-written
2814 			 */
2815 		}
2816 	} else {
2817 		written = generic_perform_write(file, from, iocb->ki_pos);
2818 		if (likely(written > 0))
2819 			iocb->ki_pos += written;
2820 	}
2821 out:
2822 	current->backing_dev_info = NULL;
2823 	return written ? written : err;
2824 }
2825 EXPORT_SYMBOL(__generic_file_write_iter);
2826 
2827 /**
2828  * generic_file_write_iter - write data to a file
2829  * @iocb:	IO state structure
2830  * @from:	iov_iter with data to write
2831  *
2832  * This is a wrapper around __generic_file_write_iter() to be used by most
2833  * filesystems. It takes care of syncing the file in case of O_SYNC file
2834  * and acquires i_mutex as needed.
2835  */
2836 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2837 {
2838 	struct file *file = iocb->ki_filp;
2839 	struct inode *inode = file->f_mapping->host;
2840 	ssize_t ret;
2841 
2842 	inode_lock(inode);
2843 	ret = generic_write_checks(iocb, from);
2844 	if (ret > 0)
2845 		ret = __generic_file_write_iter(iocb, from);
2846 	inode_unlock(inode);
2847 
2848 	if (ret > 0)
2849 		ret = generic_write_sync(iocb, ret);
2850 	return ret;
2851 }
2852 EXPORT_SYMBOL(generic_file_write_iter);
2853 
2854 /**
2855  * try_to_release_page() - release old fs-specific metadata on a page
2856  *
2857  * @page: the page which the kernel is trying to free
2858  * @gfp_mask: memory allocation flags (and I/O mode)
2859  *
2860  * The address_space is to try to release any data against the page
2861  * (presumably at page->private).  If the release was successful, return `1'.
2862  * Otherwise return zero.
2863  *
2864  * This may also be called if PG_fscache is set on a page, indicating that the
2865  * page is known to the local caching routines.
2866  *
2867  * The @gfp_mask argument specifies whether I/O may be performed to release
2868  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2869  *
2870  */
2871 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2872 {
2873 	struct address_space * const mapping = page->mapping;
2874 
2875 	BUG_ON(!PageLocked(page));
2876 	if (PageWriteback(page))
2877 		return 0;
2878 
2879 	if (mapping && mapping->a_ops->releasepage)
2880 		return mapping->a_ops->releasepage(page, gfp_mask);
2881 	return try_to_free_buffers(page);
2882 }
2883 
2884 EXPORT_SYMBOL(try_to_release_page);
2885