xref: /linux/mm/filemap.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include "filemap.h"
32 /*
33  * FIXME: remove all knowledge of the buffer layer from the core VM
34  */
35 #include <linux/buffer_head.h> /* for generic_osync_inode */
36 
37 #include <asm/uaccess.h>
38 #include <asm/mman.h>
39 
40 /*
41  * Shared mappings implemented 30.11.1994. It's not fully working yet,
42  * though.
43  *
44  * Shared mappings now work. 15.8.1995  Bruno.
45  *
46  * finished 'unifying' the page and buffer cache and SMP-threaded the
47  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
48  *
49  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
50  */
51 
52 /*
53  * Lock ordering:
54  *
55  *  ->i_mmap_lock		(vmtruncate)
56  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
57  *      ->swap_lock		(exclusive_swap_page, others)
58  *        ->mapping->tree_lock
59  *
60  *  ->i_sem
61  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
62  *
63  *  ->mmap_sem
64  *    ->i_mmap_lock
65  *      ->page_table_lock	(various places, mainly in mmap.c)
66  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
67  *
68  *  ->mmap_sem
69  *    ->lock_page		(access_process_vm)
70  *
71  *  ->mmap_sem
72  *    ->i_sem			(msync)
73  *
74  *  ->i_sem
75  *    ->i_alloc_sem             (various)
76  *
77  *  ->inode_lock
78  *    ->sb_lock			(fs/fs-writeback.c)
79  *    ->mapping->tree_lock	(__sync_single_inode)
80  *
81  *  ->i_mmap_lock
82  *    ->anon_vma.lock		(vma_adjust)
83  *
84  *  ->anon_vma.lock
85  *    ->page_table_lock		(anon_vma_prepare and various)
86  *
87  *  ->page_table_lock
88  *    ->swap_lock		(try_to_unmap_one)
89  *    ->private_lock		(try_to_unmap_one)
90  *    ->tree_lock		(try_to_unmap_one)
91  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
92  *    ->private_lock		(page_remove_rmap->set_page_dirty)
93  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
94  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
95  *    ->inode_lock		(zap_pte_range->set_page_dirty)
96  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
97  *
98  *  ->task->proc_lock
99  *    ->dcache_lock		(proc_pid_lookup)
100  */
101 
102 /*
103  * Remove a page from the page cache and free it. Caller has to make
104  * sure the page is locked and that nobody else uses it - or that usage
105  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
106  */
107 void __remove_from_page_cache(struct page *page)
108 {
109 	struct address_space *mapping = page->mapping;
110 
111 	radix_tree_delete(&mapping->page_tree, page->index);
112 	page->mapping = NULL;
113 	mapping->nrpages--;
114 	pagecache_acct(-1);
115 }
116 
117 void remove_from_page_cache(struct page *page)
118 {
119 	struct address_space *mapping = page->mapping;
120 
121 	BUG_ON(!PageLocked(page));
122 
123 	write_lock_irq(&mapping->tree_lock);
124 	__remove_from_page_cache(page);
125 	write_unlock_irq(&mapping->tree_lock);
126 }
127 
128 static int sync_page(void *word)
129 {
130 	struct address_space *mapping;
131 	struct page *page;
132 
133 	page = container_of((page_flags_t *)word, struct page, flags);
134 
135 	/*
136 	 * page_mapping() is being called without PG_locked held.
137 	 * Some knowledge of the state and use of the page is used to
138 	 * reduce the requirements down to a memory barrier.
139 	 * The danger here is of a stale page_mapping() return value
140 	 * indicating a struct address_space different from the one it's
141 	 * associated with when it is associated with one.
142 	 * After smp_mb(), it's either the correct page_mapping() for
143 	 * the page, or an old page_mapping() and the page's own
144 	 * page_mapping() has gone NULL.
145 	 * The ->sync_page() address_space operation must tolerate
146 	 * page_mapping() going NULL. By an amazing coincidence,
147 	 * this comes about because none of the users of the page
148 	 * in the ->sync_page() methods make essential use of the
149 	 * page_mapping(), merely passing the page down to the backing
150 	 * device's unplug functions when it's non-NULL, which in turn
151 	 * ignore it for all cases but swap, where only page->private is
152 	 * of interest. When page_mapping() does go NULL, the entire
153 	 * call stack gracefully ignores the page and returns.
154 	 * -- wli
155 	 */
156 	smp_mb();
157 	mapping = page_mapping(page);
158 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
159 		mapping->a_ops->sync_page(page);
160 	io_schedule();
161 	return 0;
162 }
163 
164 /**
165  * filemap_fdatawrite_range - start writeback against all of a mapping's
166  * dirty pages that lie within the byte offsets <start, end>
167  * @mapping:	address space structure to write
168  * @start:	offset in bytes where the range starts
169  * @end:	offset in bytes where the range ends
170  * @sync_mode:	enable synchronous operation
171  *
172  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
173  * opposed to a regular memory * cleansing writeback.  The difference between
174  * these two operations is that if a dirty page/buffer is encountered, it must
175  * be waited upon, and not just skipped over.
176  */
177 static int __filemap_fdatawrite_range(struct address_space *mapping,
178 	loff_t start, loff_t end, int sync_mode)
179 {
180 	int ret;
181 	struct writeback_control wbc = {
182 		.sync_mode = sync_mode,
183 		.nr_to_write = mapping->nrpages * 2,
184 		.start = start,
185 		.end = end,
186 	};
187 
188 	if (!mapping_cap_writeback_dirty(mapping))
189 		return 0;
190 
191 	ret = do_writepages(mapping, &wbc);
192 	return ret;
193 }
194 
195 static inline int __filemap_fdatawrite(struct address_space *mapping,
196 	int sync_mode)
197 {
198 	return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
199 }
200 
201 int filemap_fdatawrite(struct address_space *mapping)
202 {
203 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
204 }
205 EXPORT_SYMBOL(filemap_fdatawrite);
206 
207 static int filemap_fdatawrite_range(struct address_space *mapping,
208 	loff_t start, loff_t end)
209 {
210 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
211 }
212 
213 /*
214  * This is a mostly non-blocking flush.  Not suitable for data-integrity
215  * purposes - I/O may not be started against all dirty pages.
216  */
217 int filemap_flush(struct address_space *mapping)
218 {
219 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
220 }
221 EXPORT_SYMBOL(filemap_flush);
222 
223 /*
224  * Wait for writeback to complete against pages indexed by start->end
225  * inclusive
226  */
227 static int wait_on_page_writeback_range(struct address_space *mapping,
228 				pgoff_t start, pgoff_t end)
229 {
230 	struct pagevec pvec;
231 	int nr_pages;
232 	int ret = 0;
233 	pgoff_t index;
234 
235 	if (end < start)
236 		return 0;
237 
238 	pagevec_init(&pvec, 0);
239 	index = start;
240 	while ((index <= end) &&
241 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
242 			PAGECACHE_TAG_WRITEBACK,
243 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
244 		unsigned i;
245 
246 		for (i = 0; i < nr_pages; i++) {
247 			struct page *page = pvec.pages[i];
248 
249 			/* until radix tree lookup accepts end_index */
250 			if (page->index > end)
251 				continue;
252 
253 			wait_on_page_writeback(page);
254 			if (PageError(page))
255 				ret = -EIO;
256 		}
257 		pagevec_release(&pvec);
258 		cond_resched();
259 	}
260 
261 	/* Check for outstanding write errors */
262 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
263 		ret = -ENOSPC;
264 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
265 		ret = -EIO;
266 
267 	return ret;
268 }
269 
270 /*
271  * Write and wait upon all the pages in the passed range.  This is a "data
272  * integrity" operation.  It waits upon in-flight writeout before starting and
273  * waiting upon new writeout.  If there was an IO error, return it.
274  *
275  * We need to re-take i_sem during the generic_osync_inode list walk because
276  * it is otherwise livelockable.
277  */
278 int sync_page_range(struct inode *inode, struct address_space *mapping,
279 			loff_t pos, size_t count)
280 {
281 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
282 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
283 	int ret;
284 
285 	if (!mapping_cap_writeback_dirty(mapping) || !count)
286 		return 0;
287 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
288 	if (ret == 0) {
289 		down(&inode->i_sem);
290 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
291 		up(&inode->i_sem);
292 	}
293 	if (ret == 0)
294 		ret = wait_on_page_writeback_range(mapping, start, end);
295 	return ret;
296 }
297 EXPORT_SYMBOL(sync_page_range);
298 
299 /*
300  * Note: Holding i_sem across sync_page_range_nolock is not a good idea
301  * as it forces O_SYNC writers to different parts of the same file
302  * to be serialised right until io completion.
303  */
304 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
305 			loff_t pos, size_t count)
306 {
307 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
308 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
309 	int ret;
310 
311 	if (!mapping_cap_writeback_dirty(mapping) || !count)
312 		return 0;
313 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
314 	if (ret == 0)
315 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316 	if (ret == 0)
317 		ret = wait_on_page_writeback_range(mapping, start, end);
318 	return ret;
319 }
320 EXPORT_SYMBOL(sync_page_range_nolock);
321 
322 /**
323  * filemap_fdatawait - walk the list of under-writeback pages of the given
324  *     address space and wait for all of them.
325  *
326  * @mapping: address space structure to wait for
327  */
328 int filemap_fdatawait(struct address_space *mapping)
329 {
330 	loff_t i_size = i_size_read(mapping->host);
331 
332 	if (i_size == 0)
333 		return 0;
334 
335 	return wait_on_page_writeback_range(mapping, 0,
336 				(i_size - 1) >> PAGE_CACHE_SHIFT);
337 }
338 EXPORT_SYMBOL(filemap_fdatawait);
339 
340 int filemap_write_and_wait(struct address_space *mapping)
341 {
342 	int retval = 0;
343 
344 	if (mapping->nrpages) {
345 		retval = filemap_fdatawrite(mapping);
346 		if (retval == 0)
347 			retval = filemap_fdatawait(mapping);
348 	}
349 	return retval;
350 }
351 
352 int filemap_write_and_wait_range(struct address_space *mapping,
353 				 loff_t lstart, loff_t lend)
354 {
355 	int retval = 0;
356 
357 	if (mapping->nrpages) {
358 		retval = __filemap_fdatawrite_range(mapping, lstart, lend,
359 						    WB_SYNC_ALL);
360 		if (retval == 0)
361 			retval = wait_on_page_writeback_range(mapping,
362 						    lstart >> PAGE_CACHE_SHIFT,
363 						    lend >> PAGE_CACHE_SHIFT);
364 	}
365 	return retval;
366 }
367 
368 /*
369  * This function is used to add newly allocated pagecache pages:
370  * the page is new, so we can just run SetPageLocked() against it.
371  * The other page state flags were set by rmqueue().
372  *
373  * This function does not add the page to the LRU.  The caller must do that.
374  */
375 int add_to_page_cache(struct page *page, struct address_space *mapping,
376 		pgoff_t offset, int gfp_mask)
377 {
378 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
379 
380 	if (error == 0) {
381 		write_lock_irq(&mapping->tree_lock);
382 		error = radix_tree_insert(&mapping->page_tree, offset, page);
383 		if (!error) {
384 			page_cache_get(page);
385 			SetPageLocked(page);
386 			page->mapping = mapping;
387 			page->index = offset;
388 			mapping->nrpages++;
389 			pagecache_acct(1);
390 		}
391 		write_unlock_irq(&mapping->tree_lock);
392 		radix_tree_preload_end();
393 	}
394 	return error;
395 }
396 
397 EXPORT_SYMBOL(add_to_page_cache);
398 
399 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
400 				pgoff_t offset, int gfp_mask)
401 {
402 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
403 	if (ret == 0)
404 		lru_cache_add(page);
405 	return ret;
406 }
407 
408 /*
409  * In order to wait for pages to become available there must be
410  * waitqueues associated with pages. By using a hash table of
411  * waitqueues where the bucket discipline is to maintain all
412  * waiters on the same queue and wake all when any of the pages
413  * become available, and for the woken contexts to check to be
414  * sure the appropriate page became available, this saves space
415  * at a cost of "thundering herd" phenomena during rare hash
416  * collisions.
417  */
418 static wait_queue_head_t *page_waitqueue(struct page *page)
419 {
420 	const struct zone *zone = page_zone(page);
421 
422 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
423 }
424 
425 static inline void wake_up_page(struct page *page, int bit)
426 {
427 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
428 }
429 
430 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
431 {
432 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
433 
434 	if (test_bit(bit_nr, &page->flags))
435 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
436 							TASK_UNINTERRUPTIBLE);
437 }
438 EXPORT_SYMBOL(wait_on_page_bit);
439 
440 /**
441  * unlock_page() - unlock a locked page
442  *
443  * @page: the page
444  *
445  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
446  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
447  * mechananism between PageLocked pages and PageWriteback pages is shared.
448  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
449  *
450  * The first mb is necessary to safely close the critical section opened by the
451  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
452  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
453  * parallel wait_on_page_locked()).
454  */
455 void fastcall unlock_page(struct page *page)
456 {
457 	smp_mb__before_clear_bit();
458 	if (!TestClearPageLocked(page))
459 		BUG();
460 	smp_mb__after_clear_bit();
461 	wake_up_page(page, PG_locked);
462 }
463 EXPORT_SYMBOL(unlock_page);
464 
465 /*
466  * End writeback against a page.
467  */
468 void end_page_writeback(struct page *page)
469 {
470 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
471 		if (!test_clear_page_writeback(page))
472 			BUG();
473 	}
474 	smp_mb__after_clear_bit();
475 	wake_up_page(page, PG_writeback);
476 }
477 EXPORT_SYMBOL(end_page_writeback);
478 
479 /*
480  * Get a lock on the page, assuming we need to sleep to get it.
481  *
482  * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
483  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
484  * chances are that on the second loop, the block layer's plug list is empty,
485  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
486  */
487 void fastcall __lock_page(struct page *page)
488 {
489 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
490 
491 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
492 							TASK_UNINTERRUPTIBLE);
493 }
494 EXPORT_SYMBOL(__lock_page);
495 
496 /*
497  * a rather lightweight function, finding and getting a reference to a
498  * hashed page atomically.
499  */
500 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
501 {
502 	struct page *page;
503 
504 	read_lock_irq(&mapping->tree_lock);
505 	page = radix_tree_lookup(&mapping->page_tree, offset);
506 	if (page)
507 		page_cache_get(page);
508 	read_unlock_irq(&mapping->tree_lock);
509 	return page;
510 }
511 
512 EXPORT_SYMBOL(find_get_page);
513 
514 /*
515  * Same as above, but trylock it instead of incrementing the count.
516  */
517 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
518 {
519 	struct page *page;
520 
521 	read_lock_irq(&mapping->tree_lock);
522 	page = radix_tree_lookup(&mapping->page_tree, offset);
523 	if (page && TestSetPageLocked(page))
524 		page = NULL;
525 	read_unlock_irq(&mapping->tree_lock);
526 	return page;
527 }
528 
529 EXPORT_SYMBOL(find_trylock_page);
530 
531 /**
532  * find_lock_page - locate, pin and lock a pagecache page
533  *
534  * @mapping: the address_space to search
535  * @offset: the page index
536  *
537  * Locates the desired pagecache page, locks it, increments its reference
538  * count and returns its address.
539  *
540  * Returns zero if the page was not present. find_lock_page() may sleep.
541  */
542 struct page *find_lock_page(struct address_space *mapping,
543 				unsigned long offset)
544 {
545 	struct page *page;
546 
547 	read_lock_irq(&mapping->tree_lock);
548 repeat:
549 	page = radix_tree_lookup(&mapping->page_tree, offset);
550 	if (page) {
551 		page_cache_get(page);
552 		if (TestSetPageLocked(page)) {
553 			read_unlock_irq(&mapping->tree_lock);
554 			lock_page(page);
555 			read_lock_irq(&mapping->tree_lock);
556 
557 			/* Has the page been truncated while we slept? */
558 			if (page->mapping != mapping || page->index != offset) {
559 				unlock_page(page);
560 				page_cache_release(page);
561 				goto repeat;
562 			}
563 		}
564 	}
565 	read_unlock_irq(&mapping->tree_lock);
566 	return page;
567 }
568 
569 EXPORT_SYMBOL(find_lock_page);
570 
571 /**
572  * find_or_create_page - locate or add a pagecache page
573  *
574  * @mapping: the page's address_space
575  * @index: the page's index into the mapping
576  * @gfp_mask: page allocation mode
577  *
578  * Locates a page in the pagecache.  If the page is not present, a new page
579  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
580  * LRU list.  The returned page is locked and has its reference count
581  * incremented.
582  *
583  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
584  * allocation!
585  *
586  * find_or_create_page() returns the desired page's address, or zero on
587  * memory exhaustion.
588  */
589 struct page *find_or_create_page(struct address_space *mapping,
590 		unsigned long index, unsigned int gfp_mask)
591 {
592 	struct page *page, *cached_page = NULL;
593 	int err;
594 repeat:
595 	page = find_lock_page(mapping, index);
596 	if (!page) {
597 		if (!cached_page) {
598 			cached_page = alloc_page(gfp_mask);
599 			if (!cached_page)
600 				return NULL;
601 		}
602 		err = add_to_page_cache_lru(cached_page, mapping,
603 					index, gfp_mask);
604 		if (!err) {
605 			page = cached_page;
606 			cached_page = NULL;
607 		} else if (err == -EEXIST)
608 			goto repeat;
609 	}
610 	if (cached_page)
611 		page_cache_release(cached_page);
612 	return page;
613 }
614 
615 EXPORT_SYMBOL(find_or_create_page);
616 
617 /**
618  * find_get_pages - gang pagecache lookup
619  * @mapping:	The address_space to search
620  * @start:	The starting page index
621  * @nr_pages:	The maximum number of pages
622  * @pages:	Where the resulting pages are placed
623  *
624  * find_get_pages() will search for and return a group of up to
625  * @nr_pages pages in the mapping.  The pages are placed at @pages.
626  * find_get_pages() takes a reference against the returned pages.
627  *
628  * The search returns a group of mapping-contiguous pages with ascending
629  * indexes.  There may be holes in the indices due to not-present pages.
630  *
631  * find_get_pages() returns the number of pages which were found.
632  */
633 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
634 			    unsigned int nr_pages, struct page **pages)
635 {
636 	unsigned int i;
637 	unsigned int ret;
638 
639 	read_lock_irq(&mapping->tree_lock);
640 	ret = radix_tree_gang_lookup(&mapping->page_tree,
641 				(void **)pages, start, nr_pages);
642 	for (i = 0; i < ret; i++)
643 		page_cache_get(pages[i]);
644 	read_unlock_irq(&mapping->tree_lock);
645 	return ret;
646 }
647 
648 /*
649  * Like find_get_pages, except we only return pages which are tagged with
650  * `tag'.   We update *index to index the next page for the traversal.
651  */
652 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
653 			int tag, unsigned int nr_pages, struct page **pages)
654 {
655 	unsigned int i;
656 	unsigned int ret;
657 
658 	read_lock_irq(&mapping->tree_lock);
659 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
660 				(void **)pages, *index, nr_pages, tag);
661 	for (i = 0; i < ret; i++)
662 		page_cache_get(pages[i]);
663 	if (ret)
664 		*index = pages[ret - 1]->index + 1;
665 	read_unlock_irq(&mapping->tree_lock);
666 	return ret;
667 }
668 
669 /*
670  * Same as grab_cache_page, but do not wait if the page is unavailable.
671  * This is intended for speculative data generators, where the data can
672  * be regenerated if the page couldn't be grabbed.  This routine should
673  * be safe to call while holding the lock for another page.
674  *
675  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
676  * and deadlock against the caller's locked page.
677  */
678 struct page *
679 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
680 {
681 	struct page *page = find_get_page(mapping, index);
682 	unsigned int gfp_mask;
683 
684 	if (page) {
685 		if (!TestSetPageLocked(page))
686 			return page;
687 		page_cache_release(page);
688 		return NULL;
689 	}
690 	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
691 	page = alloc_pages(gfp_mask, 0);
692 	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
693 		page_cache_release(page);
694 		page = NULL;
695 	}
696 	return page;
697 }
698 
699 EXPORT_SYMBOL(grab_cache_page_nowait);
700 
701 /*
702  * This is a generic file read routine, and uses the
703  * mapping->a_ops->readpage() function for the actual low-level
704  * stuff.
705  *
706  * This is really ugly. But the goto's actually try to clarify some
707  * of the logic when it comes to error handling etc.
708  *
709  * Note the struct file* is only passed for the use of readpage.  It may be
710  * NULL.
711  */
712 void do_generic_mapping_read(struct address_space *mapping,
713 			     struct file_ra_state *_ra,
714 			     struct file *filp,
715 			     loff_t *ppos,
716 			     read_descriptor_t *desc,
717 			     read_actor_t actor)
718 {
719 	struct inode *inode = mapping->host;
720 	unsigned long index;
721 	unsigned long end_index;
722 	unsigned long offset;
723 	unsigned long last_index;
724 	unsigned long next_index;
725 	unsigned long prev_index;
726 	loff_t isize;
727 	struct page *cached_page;
728 	int error;
729 	struct file_ra_state ra = *_ra;
730 
731 	cached_page = NULL;
732 	index = *ppos >> PAGE_CACHE_SHIFT;
733 	next_index = index;
734 	prev_index = ra.prev_page;
735 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
736 	offset = *ppos & ~PAGE_CACHE_MASK;
737 
738 	isize = i_size_read(inode);
739 	if (!isize)
740 		goto out;
741 
742 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
743 	for (;;) {
744 		struct page *page;
745 		unsigned long nr, ret;
746 
747 		/* nr is the maximum number of bytes to copy from this page */
748 		nr = PAGE_CACHE_SIZE;
749 		if (index >= end_index) {
750 			if (index > end_index)
751 				goto out;
752 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
753 			if (nr <= offset) {
754 				goto out;
755 			}
756 		}
757 		nr = nr - offset;
758 
759 		cond_resched();
760 		if (index == next_index)
761 			next_index = page_cache_readahead(mapping, &ra, filp,
762 					index, last_index - index);
763 
764 find_page:
765 		page = find_get_page(mapping, index);
766 		if (unlikely(page == NULL)) {
767 			handle_ra_miss(mapping, &ra, index);
768 			goto no_cached_page;
769 		}
770 		if (!PageUptodate(page))
771 			goto page_not_up_to_date;
772 page_ok:
773 
774 		/* If users can be writing to this page using arbitrary
775 		 * virtual addresses, take care about potential aliasing
776 		 * before reading the page on the kernel side.
777 		 */
778 		if (mapping_writably_mapped(mapping))
779 			flush_dcache_page(page);
780 
781 		/*
782 		 * When (part of) the same page is read multiple times
783 		 * in succession, only mark it as accessed the first time.
784 		 */
785 		if (prev_index != index)
786 			mark_page_accessed(page);
787 		prev_index = index;
788 
789 		/*
790 		 * Ok, we have the page, and it's up-to-date, so
791 		 * now we can copy it to user space...
792 		 *
793 		 * The actor routine returns how many bytes were actually used..
794 		 * NOTE! This may not be the same as how much of a user buffer
795 		 * we filled up (we may be padding etc), so we can only update
796 		 * "pos" here (the actor routine has to update the user buffer
797 		 * pointers and the remaining count).
798 		 */
799 		ret = actor(desc, page, offset, nr);
800 		offset += ret;
801 		index += offset >> PAGE_CACHE_SHIFT;
802 		offset &= ~PAGE_CACHE_MASK;
803 
804 		page_cache_release(page);
805 		if (ret == nr && desc->count)
806 			continue;
807 		goto out;
808 
809 page_not_up_to_date:
810 		/* Get exclusive access to the page ... */
811 		lock_page(page);
812 
813 		/* Did it get unhashed before we got the lock? */
814 		if (!page->mapping) {
815 			unlock_page(page);
816 			page_cache_release(page);
817 			continue;
818 		}
819 
820 		/* Did somebody else fill it already? */
821 		if (PageUptodate(page)) {
822 			unlock_page(page);
823 			goto page_ok;
824 		}
825 
826 readpage:
827 		/* Start the actual read. The read will unlock the page. */
828 		error = mapping->a_ops->readpage(filp, page);
829 
830 		if (unlikely(error))
831 			goto readpage_error;
832 
833 		if (!PageUptodate(page)) {
834 			lock_page(page);
835 			if (!PageUptodate(page)) {
836 				if (page->mapping == NULL) {
837 					/*
838 					 * invalidate_inode_pages got it
839 					 */
840 					unlock_page(page);
841 					page_cache_release(page);
842 					goto find_page;
843 				}
844 				unlock_page(page);
845 				error = -EIO;
846 				goto readpage_error;
847 			}
848 			unlock_page(page);
849 		}
850 
851 		/*
852 		 * i_size must be checked after we have done ->readpage.
853 		 *
854 		 * Checking i_size after the readpage allows us to calculate
855 		 * the correct value for "nr", which means the zero-filled
856 		 * part of the page is not copied back to userspace (unless
857 		 * another truncate extends the file - this is desired though).
858 		 */
859 		isize = i_size_read(inode);
860 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
861 		if (unlikely(!isize || index > end_index)) {
862 			page_cache_release(page);
863 			goto out;
864 		}
865 
866 		/* nr is the maximum number of bytes to copy from this page */
867 		nr = PAGE_CACHE_SIZE;
868 		if (index == end_index) {
869 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
870 			if (nr <= offset) {
871 				page_cache_release(page);
872 				goto out;
873 			}
874 		}
875 		nr = nr - offset;
876 		goto page_ok;
877 
878 readpage_error:
879 		/* UHHUH! A synchronous read error occurred. Report it */
880 		desc->error = error;
881 		page_cache_release(page);
882 		goto out;
883 
884 no_cached_page:
885 		/*
886 		 * Ok, it wasn't cached, so we need to create a new
887 		 * page..
888 		 */
889 		if (!cached_page) {
890 			cached_page = page_cache_alloc_cold(mapping);
891 			if (!cached_page) {
892 				desc->error = -ENOMEM;
893 				goto out;
894 			}
895 		}
896 		error = add_to_page_cache_lru(cached_page, mapping,
897 						index, GFP_KERNEL);
898 		if (error) {
899 			if (error == -EEXIST)
900 				goto find_page;
901 			desc->error = error;
902 			goto out;
903 		}
904 		page = cached_page;
905 		cached_page = NULL;
906 		goto readpage;
907 	}
908 
909 out:
910 	*_ra = ra;
911 
912 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
913 	if (cached_page)
914 		page_cache_release(cached_page);
915 	if (filp)
916 		file_accessed(filp);
917 }
918 
919 EXPORT_SYMBOL(do_generic_mapping_read);
920 
921 int file_read_actor(read_descriptor_t *desc, struct page *page,
922 			unsigned long offset, unsigned long size)
923 {
924 	char *kaddr;
925 	unsigned long left, count = desc->count;
926 
927 	if (size > count)
928 		size = count;
929 
930 	/*
931 	 * Faults on the destination of a read are common, so do it before
932 	 * taking the kmap.
933 	 */
934 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
935 		kaddr = kmap_atomic(page, KM_USER0);
936 		left = __copy_to_user_inatomic(desc->arg.buf,
937 						kaddr + offset, size);
938 		kunmap_atomic(kaddr, KM_USER0);
939 		if (left == 0)
940 			goto success;
941 	}
942 
943 	/* Do it the slow way */
944 	kaddr = kmap(page);
945 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
946 	kunmap(page);
947 
948 	if (left) {
949 		size -= left;
950 		desc->error = -EFAULT;
951 	}
952 success:
953 	desc->count = count - size;
954 	desc->written += size;
955 	desc->arg.buf += size;
956 	return size;
957 }
958 
959 /*
960  * This is the "read()" routine for all filesystems
961  * that can use the page cache directly.
962  */
963 ssize_t
964 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
965 		unsigned long nr_segs, loff_t *ppos)
966 {
967 	struct file *filp = iocb->ki_filp;
968 	ssize_t retval;
969 	unsigned long seg;
970 	size_t count;
971 
972 	count = 0;
973 	for (seg = 0; seg < nr_segs; seg++) {
974 		const struct iovec *iv = &iov[seg];
975 
976 		/*
977 		 * If any segment has a negative length, or the cumulative
978 		 * length ever wraps negative then return -EINVAL.
979 		 */
980 		count += iv->iov_len;
981 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
982 			return -EINVAL;
983 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
984 			continue;
985 		if (seg == 0)
986 			return -EFAULT;
987 		nr_segs = seg;
988 		count -= iv->iov_len;	/* This segment is no good */
989 		break;
990 	}
991 
992 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
993 	if (filp->f_flags & O_DIRECT) {
994 		loff_t pos = *ppos, size;
995 		struct address_space *mapping;
996 		struct inode *inode;
997 
998 		mapping = filp->f_mapping;
999 		inode = mapping->host;
1000 		retval = 0;
1001 		if (!count)
1002 			goto out; /* skip atime */
1003 		size = i_size_read(inode);
1004 		if (pos < size) {
1005 			retval = generic_file_direct_IO(READ, iocb,
1006 						iov, pos, nr_segs);
1007 			if (retval > 0 && !is_sync_kiocb(iocb))
1008 				retval = -EIOCBQUEUED;
1009 			if (retval > 0)
1010 				*ppos = pos + retval;
1011 		}
1012 		file_accessed(filp);
1013 		goto out;
1014 	}
1015 
1016 	retval = 0;
1017 	if (count) {
1018 		for (seg = 0; seg < nr_segs; seg++) {
1019 			read_descriptor_t desc;
1020 
1021 			desc.written = 0;
1022 			desc.arg.buf = iov[seg].iov_base;
1023 			desc.count = iov[seg].iov_len;
1024 			if (desc.count == 0)
1025 				continue;
1026 			desc.error = 0;
1027 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1028 			retval += desc.written;
1029 			if (!retval) {
1030 				retval = desc.error;
1031 				break;
1032 			}
1033 		}
1034 	}
1035 out:
1036 	return retval;
1037 }
1038 
1039 EXPORT_SYMBOL(__generic_file_aio_read);
1040 
1041 ssize_t
1042 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1043 {
1044 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1045 
1046 	BUG_ON(iocb->ki_pos != pos);
1047 	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1048 }
1049 
1050 EXPORT_SYMBOL(generic_file_aio_read);
1051 
1052 ssize_t
1053 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1054 {
1055 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1056 	struct kiocb kiocb;
1057 	ssize_t ret;
1058 
1059 	init_sync_kiocb(&kiocb, filp);
1060 	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1061 	if (-EIOCBQUEUED == ret)
1062 		ret = wait_on_sync_kiocb(&kiocb);
1063 	return ret;
1064 }
1065 
1066 EXPORT_SYMBOL(generic_file_read);
1067 
1068 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1069 {
1070 	ssize_t written;
1071 	unsigned long count = desc->count;
1072 	struct file *file = desc->arg.data;
1073 
1074 	if (size > count)
1075 		size = count;
1076 
1077 	written = file->f_op->sendpage(file, page, offset,
1078 				       size, &file->f_pos, size<count);
1079 	if (written < 0) {
1080 		desc->error = written;
1081 		written = 0;
1082 	}
1083 	desc->count = count - written;
1084 	desc->written += written;
1085 	return written;
1086 }
1087 
1088 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1089 			 size_t count, read_actor_t actor, void *target)
1090 {
1091 	read_descriptor_t desc;
1092 
1093 	if (!count)
1094 		return 0;
1095 
1096 	desc.written = 0;
1097 	desc.count = count;
1098 	desc.arg.data = target;
1099 	desc.error = 0;
1100 
1101 	do_generic_file_read(in_file, ppos, &desc, actor);
1102 	if (desc.written)
1103 		return desc.written;
1104 	return desc.error;
1105 }
1106 
1107 EXPORT_SYMBOL(generic_file_sendfile);
1108 
1109 static ssize_t
1110 do_readahead(struct address_space *mapping, struct file *filp,
1111 	     unsigned long index, unsigned long nr)
1112 {
1113 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1114 		return -EINVAL;
1115 
1116 	force_page_cache_readahead(mapping, filp, index,
1117 					max_sane_readahead(nr));
1118 	return 0;
1119 }
1120 
1121 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1122 {
1123 	ssize_t ret;
1124 	struct file *file;
1125 
1126 	ret = -EBADF;
1127 	file = fget(fd);
1128 	if (file) {
1129 		if (file->f_mode & FMODE_READ) {
1130 			struct address_space *mapping = file->f_mapping;
1131 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1132 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1133 			unsigned long len = end - start + 1;
1134 			ret = do_readahead(mapping, file, start, len);
1135 		}
1136 		fput(file);
1137 	}
1138 	return ret;
1139 }
1140 
1141 #ifdef CONFIG_MMU
1142 /*
1143  * This adds the requested page to the page cache if it isn't already there,
1144  * and schedules an I/O to read in its contents from disk.
1145  */
1146 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1147 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1148 {
1149 	struct address_space *mapping = file->f_mapping;
1150 	struct page *page;
1151 	int error;
1152 
1153 	page = page_cache_alloc_cold(mapping);
1154 	if (!page)
1155 		return -ENOMEM;
1156 
1157 	error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1158 	if (!error) {
1159 		error = mapping->a_ops->readpage(file, page);
1160 		page_cache_release(page);
1161 		return error;
1162 	}
1163 
1164 	/*
1165 	 * We arrive here in the unlikely event that someone
1166 	 * raced with us and added our page to the cache first
1167 	 * or we are out of memory for radix-tree nodes.
1168 	 */
1169 	page_cache_release(page);
1170 	return error == -EEXIST ? 0 : error;
1171 }
1172 
1173 #define MMAP_LOTSAMISS  (100)
1174 
1175 /*
1176  * filemap_nopage() is invoked via the vma operations vector for a
1177  * mapped memory region to read in file data during a page fault.
1178  *
1179  * The goto's are kind of ugly, but this streamlines the normal case of having
1180  * it in the page cache, and handles the special cases reasonably without
1181  * having a lot of duplicated code.
1182  */
1183 struct page *filemap_nopage(struct vm_area_struct *area,
1184 				unsigned long address, int *type)
1185 {
1186 	int error;
1187 	struct file *file = area->vm_file;
1188 	struct address_space *mapping = file->f_mapping;
1189 	struct file_ra_state *ra = &file->f_ra;
1190 	struct inode *inode = mapping->host;
1191 	struct page *page;
1192 	unsigned long size, pgoff;
1193 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1194 
1195 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1196 
1197 retry_all:
1198 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1199 	if (pgoff >= size)
1200 		goto outside_data_content;
1201 
1202 	/* If we don't want any read-ahead, don't bother */
1203 	if (VM_RandomReadHint(area))
1204 		goto no_cached_page;
1205 
1206 	/*
1207 	 * The readahead code wants to be told about each and every page
1208 	 * so it can build and shrink its windows appropriately
1209 	 *
1210 	 * For sequential accesses, we use the generic readahead logic.
1211 	 */
1212 	if (VM_SequentialReadHint(area))
1213 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1214 
1215 	/*
1216 	 * Do we have something in the page cache already?
1217 	 */
1218 retry_find:
1219 	page = find_get_page(mapping, pgoff);
1220 	if (!page) {
1221 		unsigned long ra_pages;
1222 
1223 		if (VM_SequentialReadHint(area)) {
1224 			handle_ra_miss(mapping, ra, pgoff);
1225 			goto no_cached_page;
1226 		}
1227 		ra->mmap_miss++;
1228 
1229 		/*
1230 		 * Do we miss much more than hit in this file? If so,
1231 		 * stop bothering with read-ahead. It will only hurt.
1232 		 */
1233 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1234 			goto no_cached_page;
1235 
1236 		/*
1237 		 * To keep the pgmajfault counter straight, we need to
1238 		 * check did_readaround, as this is an inner loop.
1239 		 */
1240 		if (!did_readaround) {
1241 			majmin = VM_FAULT_MAJOR;
1242 			inc_page_state(pgmajfault);
1243 		}
1244 		did_readaround = 1;
1245 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1246 		if (ra_pages) {
1247 			pgoff_t start = 0;
1248 
1249 			if (pgoff > ra_pages / 2)
1250 				start = pgoff - ra_pages / 2;
1251 			do_page_cache_readahead(mapping, file, start, ra_pages);
1252 		}
1253 		page = find_get_page(mapping, pgoff);
1254 		if (!page)
1255 			goto no_cached_page;
1256 	}
1257 
1258 	if (!did_readaround)
1259 		ra->mmap_hit++;
1260 
1261 	/*
1262 	 * Ok, found a page in the page cache, now we need to check
1263 	 * that it's up-to-date.
1264 	 */
1265 	if (!PageUptodate(page))
1266 		goto page_not_uptodate;
1267 
1268 success:
1269 	/*
1270 	 * Found the page and have a reference on it.
1271 	 */
1272 	mark_page_accessed(page);
1273 	if (type)
1274 		*type = majmin;
1275 	return page;
1276 
1277 outside_data_content:
1278 	/*
1279 	 * An external ptracer can access pages that normally aren't
1280 	 * accessible..
1281 	 */
1282 	if (area->vm_mm == current->mm)
1283 		return NULL;
1284 	/* Fall through to the non-read-ahead case */
1285 no_cached_page:
1286 	/*
1287 	 * We're only likely to ever get here if MADV_RANDOM is in
1288 	 * effect.
1289 	 */
1290 	error = page_cache_read(file, pgoff);
1291 	grab_swap_token();
1292 
1293 	/*
1294 	 * The page we want has now been added to the page cache.
1295 	 * In the unlikely event that someone removed it in the
1296 	 * meantime, we'll just come back here and read it again.
1297 	 */
1298 	if (error >= 0)
1299 		goto retry_find;
1300 
1301 	/*
1302 	 * An error return from page_cache_read can result if the
1303 	 * system is low on memory, or a problem occurs while trying
1304 	 * to schedule I/O.
1305 	 */
1306 	if (error == -ENOMEM)
1307 		return NOPAGE_OOM;
1308 	return NULL;
1309 
1310 page_not_uptodate:
1311 	if (!did_readaround) {
1312 		majmin = VM_FAULT_MAJOR;
1313 		inc_page_state(pgmajfault);
1314 	}
1315 	lock_page(page);
1316 
1317 	/* Did it get unhashed while we waited for it? */
1318 	if (!page->mapping) {
1319 		unlock_page(page);
1320 		page_cache_release(page);
1321 		goto retry_all;
1322 	}
1323 
1324 	/* Did somebody else get it up-to-date? */
1325 	if (PageUptodate(page)) {
1326 		unlock_page(page);
1327 		goto success;
1328 	}
1329 
1330 	if (!mapping->a_ops->readpage(file, page)) {
1331 		wait_on_page_locked(page);
1332 		if (PageUptodate(page))
1333 			goto success;
1334 	}
1335 
1336 	/*
1337 	 * Umm, take care of errors if the page isn't up-to-date.
1338 	 * Try to re-read it _once_. We do this synchronously,
1339 	 * because there really aren't any performance issues here
1340 	 * and we need to check for errors.
1341 	 */
1342 	lock_page(page);
1343 
1344 	/* Somebody truncated the page on us? */
1345 	if (!page->mapping) {
1346 		unlock_page(page);
1347 		page_cache_release(page);
1348 		goto retry_all;
1349 	}
1350 
1351 	/* Somebody else successfully read it in? */
1352 	if (PageUptodate(page)) {
1353 		unlock_page(page);
1354 		goto success;
1355 	}
1356 	ClearPageError(page);
1357 	if (!mapping->a_ops->readpage(file, page)) {
1358 		wait_on_page_locked(page);
1359 		if (PageUptodate(page))
1360 			goto success;
1361 	}
1362 
1363 	/*
1364 	 * Things didn't work out. Return zero to tell the
1365 	 * mm layer so, possibly freeing the page cache page first.
1366 	 */
1367 	page_cache_release(page);
1368 	return NULL;
1369 }
1370 
1371 EXPORT_SYMBOL(filemap_nopage);
1372 
1373 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1374 					int nonblock)
1375 {
1376 	struct address_space *mapping = file->f_mapping;
1377 	struct page *page;
1378 	int error;
1379 
1380 	/*
1381 	 * Do we have something in the page cache already?
1382 	 */
1383 retry_find:
1384 	page = find_get_page(mapping, pgoff);
1385 	if (!page) {
1386 		if (nonblock)
1387 			return NULL;
1388 		goto no_cached_page;
1389 	}
1390 
1391 	/*
1392 	 * Ok, found a page in the page cache, now we need to check
1393 	 * that it's up-to-date.
1394 	 */
1395 	if (!PageUptodate(page)) {
1396 		if (nonblock) {
1397 			page_cache_release(page);
1398 			return NULL;
1399 		}
1400 		goto page_not_uptodate;
1401 	}
1402 
1403 success:
1404 	/*
1405 	 * Found the page and have a reference on it.
1406 	 */
1407 	mark_page_accessed(page);
1408 	return page;
1409 
1410 no_cached_page:
1411 	error = page_cache_read(file, pgoff);
1412 
1413 	/*
1414 	 * The page we want has now been added to the page cache.
1415 	 * In the unlikely event that someone removed it in the
1416 	 * meantime, we'll just come back here and read it again.
1417 	 */
1418 	if (error >= 0)
1419 		goto retry_find;
1420 
1421 	/*
1422 	 * An error return from page_cache_read can result if the
1423 	 * system is low on memory, or a problem occurs while trying
1424 	 * to schedule I/O.
1425 	 */
1426 	return NULL;
1427 
1428 page_not_uptodate:
1429 	lock_page(page);
1430 
1431 	/* Did it get unhashed while we waited for it? */
1432 	if (!page->mapping) {
1433 		unlock_page(page);
1434 		goto err;
1435 	}
1436 
1437 	/* Did somebody else get it up-to-date? */
1438 	if (PageUptodate(page)) {
1439 		unlock_page(page);
1440 		goto success;
1441 	}
1442 
1443 	if (!mapping->a_ops->readpage(file, page)) {
1444 		wait_on_page_locked(page);
1445 		if (PageUptodate(page))
1446 			goto success;
1447 	}
1448 
1449 	/*
1450 	 * Umm, take care of errors if the page isn't up-to-date.
1451 	 * Try to re-read it _once_. We do this synchronously,
1452 	 * because there really aren't any performance issues here
1453 	 * and we need to check for errors.
1454 	 */
1455 	lock_page(page);
1456 
1457 	/* Somebody truncated the page on us? */
1458 	if (!page->mapping) {
1459 		unlock_page(page);
1460 		goto err;
1461 	}
1462 	/* Somebody else successfully read it in? */
1463 	if (PageUptodate(page)) {
1464 		unlock_page(page);
1465 		goto success;
1466 	}
1467 
1468 	ClearPageError(page);
1469 	if (!mapping->a_ops->readpage(file, page)) {
1470 		wait_on_page_locked(page);
1471 		if (PageUptodate(page))
1472 			goto success;
1473 	}
1474 
1475 	/*
1476 	 * Things didn't work out. Return zero to tell the
1477 	 * mm layer so, possibly freeing the page cache page first.
1478 	 */
1479 err:
1480 	page_cache_release(page);
1481 
1482 	return NULL;
1483 }
1484 
1485 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1486 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1487 		int nonblock)
1488 {
1489 	struct file *file = vma->vm_file;
1490 	struct address_space *mapping = file->f_mapping;
1491 	struct inode *inode = mapping->host;
1492 	unsigned long size;
1493 	struct mm_struct *mm = vma->vm_mm;
1494 	struct page *page;
1495 	int err;
1496 
1497 	if (!nonblock)
1498 		force_page_cache_readahead(mapping, vma->vm_file,
1499 					pgoff, len >> PAGE_CACHE_SHIFT);
1500 
1501 repeat:
1502 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1503 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1504 		return -EINVAL;
1505 
1506 	page = filemap_getpage(file, pgoff, nonblock);
1507 
1508 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1509 	 * done in shmem_populate calling shmem_getpage */
1510 	if (!page && !nonblock)
1511 		return -ENOMEM;
1512 
1513 	if (page) {
1514 		err = install_page(mm, vma, addr, page, prot);
1515 		if (err) {
1516 			page_cache_release(page);
1517 			return err;
1518 		}
1519 	} else {
1520 		/* No page was found just because we can't read it in now (being
1521 		 * here implies nonblock != 0), but the page may exist, so set
1522 		 * the PTE to fault it in later. */
1523 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1524 		if (err)
1525 			return err;
1526 	}
1527 
1528 	len -= PAGE_SIZE;
1529 	addr += PAGE_SIZE;
1530 	pgoff++;
1531 	if (len)
1532 		goto repeat;
1533 
1534 	return 0;
1535 }
1536 
1537 struct vm_operations_struct generic_file_vm_ops = {
1538 	.nopage		= filemap_nopage,
1539 	.populate	= filemap_populate,
1540 };
1541 
1542 /* This is used for a general mmap of a disk file */
1543 
1544 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1545 {
1546 	struct address_space *mapping = file->f_mapping;
1547 
1548 	if (!mapping->a_ops->readpage)
1549 		return -ENOEXEC;
1550 	file_accessed(file);
1551 	vma->vm_ops = &generic_file_vm_ops;
1552 	return 0;
1553 }
1554 EXPORT_SYMBOL(filemap_populate);
1555 
1556 /*
1557  * This is for filesystems which do not implement ->writepage.
1558  */
1559 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1560 {
1561 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1562 		return -EINVAL;
1563 	return generic_file_mmap(file, vma);
1564 }
1565 #else
1566 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1567 {
1568 	return -ENOSYS;
1569 }
1570 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1571 {
1572 	return -ENOSYS;
1573 }
1574 #endif /* CONFIG_MMU */
1575 
1576 EXPORT_SYMBOL(generic_file_mmap);
1577 EXPORT_SYMBOL(generic_file_readonly_mmap);
1578 
1579 static inline struct page *__read_cache_page(struct address_space *mapping,
1580 				unsigned long index,
1581 				int (*filler)(void *,struct page*),
1582 				void *data)
1583 {
1584 	struct page *page, *cached_page = NULL;
1585 	int err;
1586 repeat:
1587 	page = find_get_page(mapping, index);
1588 	if (!page) {
1589 		if (!cached_page) {
1590 			cached_page = page_cache_alloc_cold(mapping);
1591 			if (!cached_page)
1592 				return ERR_PTR(-ENOMEM);
1593 		}
1594 		err = add_to_page_cache_lru(cached_page, mapping,
1595 					index, GFP_KERNEL);
1596 		if (err == -EEXIST)
1597 			goto repeat;
1598 		if (err < 0) {
1599 			/* Presumably ENOMEM for radix tree node */
1600 			page_cache_release(cached_page);
1601 			return ERR_PTR(err);
1602 		}
1603 		page = cached_page;
1604 		cached_page = NULL;
1605 		err = filler(data, page);
1606 		if (err < 0) {
1607 			page_cache_release(page);
1608 			page = ERR_PTR(err);
1609 		}
1610 	}
1611 	if (cached_page)
1612 		page_cache_release(cached_page);
1613 	return page;
1614 }
1615 
1616 /*
1617  * Read into the page cache. If a page already exists,
1618  * and PageUptodate() is not set, try to fill the page.
1619  */
1620 struct page *read_cache_page(struct address_space *mapping,
1621 				unsigned long index,
1622 				int (*filler)(void *,struct page*),
1623 				void *data)
1624 {
1625 	struct page *page;
1626 	int err;
1627 
1628 retry:
1629 	page = __read_cache_page(mapping, index, filler, data);
1630 	if (IS_ERR(page))
1631 		goto out;
1632 	mark_page_accessed(page);
1633 	if (PageUptodate(page))
1634 		goto out;
1635 
1636 	lock_page(page);
1637 	if (!page->mapping) {
1638 		unlock_page(page);
1639 		page_cache_release(page);
1640 		goto retry;
1641 	}
1642 	if (PageUptodate(page)) {
1643 		unlock_page(page);
1644 		goto out;
1645 	}
1646 	err = filler(data, page);
1647 	if (err < 0) {
1648 		page_cache_release(page);
1649 		page = ERR_PTR(err);
1650 	}
1651  out:
1652 	return page;
1653 }
1654 
1655 EXPORT_SYMBOL(read_cache_page);
1656 
1657 /*
1658  * If the page was newly created, increment its refcount and add it to the
1659  * caller's lru-buffering pagevec.  This function is specifically for
1660  * generic_file_write().
1661  */
1662 static inline struct page *
1663 __grab_cache_page(struct address_space *mapping, unsigned long index,
1664 			struct page **cached_page, struct pagevec *lru_pvec)
1665 {
1666 	int err;
1667 	struct page *page;
1668 repeat:
1669 	page = find_lock_page(mapping, index);
1670 	if (!page) {
1671 		if (!*cached_page) {
1672 			*cached_page = page_cache_alloc(mapping);
1673 			if (!*cached_page)
1674 				return NULL;
1675 		}
1676 		err = add_to_page_cache(*cached_page, mapping,
1677 					index, GFP_KERNEL);
1678 		if (err == -EEXIST)
1679 			goto repeat;
1680 		if (err == 0) {
1681 			page = *cached_page;
1682 			page_cache_get(page);
1683 			if (!pagevec_add(lru_pvec, page))
1684 				__pagevec_lru_add(lru_pvec);
1685 			*cached_page = NULL;
1686 		}
1687 	}
1688 	return page;
1689 }
1690 
1691 /*
1692  * The logic we want is
1693  *
1694  *	if suid or (sgid and xgrp)
1695  *		remove privs
1696  */
1697 int remove_suid(struct dentry *dentry)
1698 {
1699 	mode_t mode = dentry->d_inode->i_mode;
1700 	int kill = 0;
1701 	int result = 0;
1702 
1703 	/* suid always must be killed */
1704 	if (unlikely(mode & S_ISUID))
1705 		kill = ATTR_KILL_SUID;
1706 
1707 	/*
1708 	 * sgid without any exec bits is just a mandatory locking mark; leave
1709 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1710 	 */
1711 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1712 		kill |= ATTR_KILL_SGID;
1713 
1714 	if (unlikely(kill && !capable(CAP_FSETID))) {
1715 		struct iattr newattrs;
1716 
1717 		newattrs.ia_valid = ATTR_FORCE | kill;
1718 		result = notify_change(dentry, &newattrs);
1719 	}
1720 	return result;
1721 }
1722 EXPORT_SYMBOL(remove_suid);
1723 
1724 size_t
1725 __filemap_copy_from_user_iovec(char *vaddr,
1726 			const struct iovec *iov, size_t base, size_t bytes)
1727 {
1728 	size_t copied = 0, left = 0;
1729 
1730 	while (bytes) {
1731 		char __user *buf = iov->iov_base + base;
1732 		int copy = min(bytes, iov->iov_len - base);
1733 
1734 		base = 0;
1735 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1736 		copied += copy;
1737 		bytes -= copy;
1738 		vaddr += copy;
1739 		iov++;
1740 
1741 		if (unlikely(left)) {
1742 			/* zero the rest of the target like __copy_from_user */
1743 			if (bytes)
1744 				memset(vaddr, 0, bytes);
1745 			break;
1746 		}
1747 	}
1748 	return copied - left;
1749 }
1750 
1751 /*
1752  * Performs necessary checks before doing a write
1753  *
1754  * Can adjust writing position aor amount of bytes to write.
1755  * Returns appropriate error code that caller should return or
1756  * zero in case that write should be allowed.
1757  */
1758 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1759 {
1760 	struct inode *inode = file->f_mapping->host;
1761 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1762 
1763         if (unlikely(*pos < 0))
1764                 return -EINVAL;
1765 
1766 	if (!isblk) {
1767 		/* FIXME: this is for backwards compatibility with 2.4 */
1768 		if (file->f_flags & O_APPEND)
1769                         *pos = i_size_read(inode);
1770 
1771 		if (limit != RLIM_INFINITY) {
1772 			if (*pos >= limit) {
1773 				send_sig(SIGXFSZ, current, 0);
1774 				return -EFBIG;
1775 			}
1776 			if (*count > limit - (typeof(limit))*pos) {
1777 				*count = limit - (typeof(limit))*pos;
1778 			}
1779 		}
1780 	}
1781 
1782 	/*
1783 	 * LFS rule
1784 	 */
1785 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1786 				!(file->f_flags & O_LARGEFILE))) {
1787 		if (*pos >= MAX_NON_LFS) {
1788 			send_sig(SIGXFSZ, current, 0);
1789 			return -EFBIG;
1790 		}
1791 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1792 			*count = MAX_NON_LFS - (unsigned long)*pos;
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * Are we about to exceed the fs block limit ?
1798 	 *
1799 	 * If we have written data it becomes a short write.  If we have
1800 	 * exceeded without writing data we send a signal and return EFBIG.
1801 	 * Linus frestrict idea will clean these up nicely..
1802 	 */
1803 	if (likely(!isblk)) {
1804 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1805 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1806 				send_sig(SIGXFSZ, current, 0);
1807 				return -EFBIG;
1808 			}
1809 			/* zero-length writes at ->s_maxbytes are OK */
1810 		}
1811 
1812 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1813 			*count = inode->i_sb->s_maxbytes - *pos;
1814 	} else {
1815 		loff_t isize;
1816 		if (bdev_read_only(I_BDEV(inode)))
1817 			return -EPERM;
1818 		isize = i_size_read(inode);
1819 		if (*pos >= isize) {
1820 			if (*count || *pos > isize)
1821 				return -ENOSPC;
1822 		}
1823 
1824 		if (*pos + *count > isize)
1825 			*count = isize - *pos;
1826 	}
1827 	return 0;
1828 }
1829 EXPORT_SYMBOL(generic_write_checks);
1830 
1831 ssize_t
1832 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1833 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1834 		size_t count, size_t ocount)
1835 {
1836 	struct file	*file = iocb->ki_filp;
1837 	struct address_space *mapping = file->f_mapping;
1838 	struct inode	*inode = mapping->host;
1839 	ssize_t		written;
1840 
1841 	if (count != ocount)
1842 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1843 
1844 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1845 	if (written > 0) {
1846 		loff_t end = pos + written;
1847 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1848 			i_size_write(inode,  end);
1849 			mark_inode_dirty(inode);
1850 		}
1851 		*ppos = end;
1852 	}
1853 
1854 	/*
1855 	 * Sync the fs metadata but not the minor inode changes and
1856 	 * of course not the data as we did direct DMA for the IO.
1857 	 * i_sem is held, which protects generic_osync_inode() from
1858 	 * livelocking.
1859 	 */
1860 	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1861 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1862 		if (err < 0)
1863 			written = err;
1864 	}
1865 	if (written == count && !is_sync_kiocb(iocb))
1866 		written = -EIOCBQUEUED;
1867 	return written;
1868 }
1869 EXPORT_SYMBOL(generic_file_direct_write);
1870 
1871 ssize_t
1872 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1873 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1874 		size_t count, ssize_t written)
1875 {
1876 	struct file *file = iocb->ki_filp;
1877 	struct address_space * mapping = file->f_mapping;
1878 	struct address_space_operations *a_ops = mapping->a_ops;
1879 	struct inode 	*inode = mapping->host;
1880 	long		status = 0;
1881 	struct page	*page;
1882 	struct page	*cached_page = NULL;
1883 	size_t		bytes;
1884 	struct pagevec	lru_pvec;
1885 	const struct iovec *cur_iov = iov; /* current iovec */
1886 	size_t		iov_base = 0;	   /* offset in the current iovec */
1887 	char __user	*buf;
1888 
1889 	pagevec_init(&lru_pvec, 0);
1890 
1891 	/*
1892 	 * handle partial DIO write.  Adjust cur_iov if needed.
1893 	 */
1894 	if (likely(nr_segs == 1))
1895 		buf = iov->iov_base + written;
1896 	else {
1897 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
1898 		buf = cur_iov->iov_base + iov_base;
1899 	}
1900 
1901 	do {
1902 		unsigned long index;
1903 		unsigned long offset;
1904 		unsigned long maxlen;
1905 		size_t copied;
1906 
1907 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1908 		index = pos >> PAGE_CACHE_SHIFT;
1909 		bytes = PAGE_CACHE_SIZE - offset;
1910 		if (bytes > count)
1911 			bytes = count;
1912 
1913 		/*
1914 		 * Bring in the user page that we will copy from _first_.
1915 		 * Otherwise there's a nasty deadlock on copying from the
1916 		 * same page as we're writing to, without it being marked
1917 		 * up-to-date.
1918 		 */
1919 		maxlen = cur_iov->iov_len - iov_base;
1920 		if (maxlen > bytes)
1921 			maxlen = bytes;
1922 		fault_in_pages_readable(buf, maxlen);
1923 
1924 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1925 		if (!page) {
1926 			status = -ENOMEM;
1927 			break;
1928 		}
1929 
1930 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
1931 		if (unlikely(status)) {
1932 			loff_t isize = i_size_read(inode);
1933 			/*
1934 			 * prepare_write() may have instantiated a few blocks
1935 			 * outside i_size.  Trim these off again.
1936 			 */
1937 			unlock_page(page);
1938 			page_cache_release(page);
1939 			if (pos + bytes > isize)
1940 				vmtruncate(inode, isize);
1941 			break;
1942 		}
1943 		if (likely(nr_segs == 1))
1944 			copied = filemap_copy_from_user(page, offset,
1945 							buf, bytes);
1946 		else
1947 			copied = filemap_copy_from_user_iovec(page, offset,
1948 						cur_iov, iov_base, bytes);
1949 		flush_dcache_page(page);
1950 		status = a_ops->commit_write(file, page, offset, offset+bytes);
1951 		if (likely(copied > 0)) {
1952 			if (!status)
1953 				status = copied;
1954 
1955 			if (status >= 0) {
1956 				written += status;
1957 				count -= status;
1958 				pos += status;
1959 				buf += status;
1960 				if (unlikely(nr_segs > 1)) {
1961 					filemap_set_next_iovec(&cur_iov,
1962 							&iov_base, status);
1963 					if (count)
1964 						buf = cur_iov->iov_base +
1965 							iov_base;
1966 				} else {
1967 					iov_base += status;
1968 				}
1969 			}
1970 		}
1971 		if (unlikely(copied != bytes))
1972 			if (status >= 0)
1973 				status = -EFAULT;
1974 		unlock_page(page);
1975 		mark_page_accessed(page);
1976 		page_cache_release(page);
1977 		if (status < 0)
1978 			break;
1979 		balance_dirty_pages_ratelimited(mapping);
1980 		cond_resched();
1981 	} while (count);
1982 	*ppos = pos;
1983 
1984 	if (cached_page)
1985 		page_cache_release(cached_page);
1986 
1987 	/*
1988 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1989 	 */
1990 	if (likely(status >= 0)) {
1991 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1992 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
1993 				status = generic_osync_inode(inode, mapping,
1994 						OSYNC_METADATA|OSYNC_DATA);
1995 		}
1996   	}
1997 
1998 	/*
1999 	 * If we get here for O_DIRECT writes then we must have fallen through
2000 	 * to buffered writes (block instantiation inside i_size).  So we sync
2001 	 * the file data here, to try to honour O_DIRECT expectations.
2002 	 */
2003 	if (unlikely(file->f_flags & O_DIRECT) && written)
2004 		status = filemap_write_and_wait(mapping);
2005 
2006 	pagevec_lru_add(&lru_pvec);
2007 	return written ? written : status;
2008 }
2009 EXPORT_SYMBOL(generic_file_buffered_write);
2010 
2011 ssize_t
2012 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2013 				unsigned long nr_segs, loff_t *ppos)
2014 {
2015 	struct file *file = iocb->ki_filp;
2016 	struct address_space * mapping = file->f_mapping;
2017 	size_t ocount;		/* original count */
2018 	size_t count;		/* after file limit checks */
2019 	struct inode 	*inode = mapping->host;
2020 	unsigned long	seg;
2021 	loff_t		pos;
2022 	ssize_t		written;
2023 	ssize_t		err;
2024 
2025 	ocount = 0;
2026 	for (seg = 0; seg < nr_segs; seg++) {
2027 		const struct iovec *iv = &iov[seg];
2028 
2029 		/*
2030 		 * If any segment has a negative length, or the cumulative
2031 		 * length ever wraps negative then return -EINVAL.
2032 		 */
2033 		ocount += iv->iov_len;
2034 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2035 			return -EINVAL;
2036 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2037 			continue;
2038 		if (seg == 0)
2039 			return -EFAULT;
2040 		nr_segs = seg;
2041 		ocount -= iv->iov_len;	/* This segment is no good */
2042 		break;
2043 	}
2044 
2045 	count = ocount;
2046 	pos = *ppos;
2047 
2048 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2049 
2050 	/* We can write back this queue in page reclaim */
2051 	current->backing_dev_info = mapping->backing_dev_info;
2052 	written = 0;
2053 
2054 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2055 	if (err)
2056 		goto out;
2057 
2058 	if (count == 0)
2059 		goto out;
2060 
2061 	err = remove_suid(file->f_dentry);
2062 	if (err)
2063 		goto out;
2064 
2065 	inode_update_time(inode, 1);
2066 
2067 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2068 	if (unlikely(file->f_flags & O_DIRECT)) {
2069 		written = generic_file_direct_write(iocb, iov,
2070 				&nr_segs, pos, ppos, count, ocount);
2071 		if (written < 0 || written == count)
2072 			goto out;
2073 		/*
2074 		 * direct-io write to a hole: fall through to buffered I/O
2075 		 * for completing the rest of the request.
2076 		 */
2077 		pos += written;
2078 		count -= written;
2079 	}
2080 
2081 	written = generic_file_buffered_write(iocb, iov, nr_segs,
2082 			pos, ppos, count, written);
2083 out:
2084 	current->backing_dev_info = NULL;
2085 	return written ? written : err;
2086 }
2087 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2088 
2089 ssize_t
2090 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2091 				unsigned long nr_segs, loff_t *ppos)
2092 {
2093 	struct file *file = iocb->ki_filp;
2094 	struct address_space *mapping = file->f_mapping;
2095 	struct inode *inode = mapping->host;
2096 	ssize_t ret;
2097 	loff_t pos = *ppos;
2098 
2099 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2100 
2101 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2102 		int err;
2103 
2104 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2105 		if (err < 0)
2106 			ret = err;
2107 	}
2108 	return ret;
2109 }
2110 
2111 ssize_t
2112 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2113 				unsigned long nr_segs, loff_t *ppos)
2114 {
2115 	struct kiocb kiocb;
2116 	ssize_t ret;
2117 
2118 	init_sync_kiocb(&kiocb, file);
2119 	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2120 	if (ret == -EIOCBQUEUED)
2121 		ret = wait_on_sync_kiocb(&kiocb);
2122 	return ret;
2123 }
2124 
2125 ssize_t
2126 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2127 				unsigned long nr_segs, loff_t *ppos)
2128 {
2129 	struct kiocb kiocb;
2130 	ssize_t ret;
2131 
2132 	init_sync_kiocb(&kiocb, file);
2133 	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2134 	if (-EIOCBQUEUED == ret)
2135 		ret = wait_on_sync_kiocb(&kiocb);
2136 	return ret;
2137 }
2138 EXPORT_SYMBOL(generic_file_write_nolock);
2139 
2140 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2141 			       size_t count, loff_t pos)
2142 {
2143 	struct file *file = iocb->ki_filp;
2144 	struct address_space *mapping = file->f_mapping;
2145 	struct inode *inode = mapping->host;
2146 	ssize_t ret;
2147 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2148 					.iov_len = count };
2149 
2150 	BUG_ON(iocb->ki_pos != pos);
2151 
2152 	down(&inode->i_sem);
2153 	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2154 						&iocb->ki_pos);
2155 	up(&inode->i_sem);
2156 
2157 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2158 		ssize_t err;
2159 
2160 		err = sync_page_range(inode, mapping, pos, ret);
2161 		if (err < 0)
2162 			ret = err;
2163 	}
2164 	return ret;
2165 }
2166 EXPORT_SYMBOL(generic_file_aio_write);
2167 
2168 ssize_t generic_file_write(struct file *file, const char __user *buf,
2169 			   size_t count, loff_t *ppos)
2170 {
2171 	struct address_space *mapping = file->f_mapping;
2172 	struct inode *inode = mapping->host;
2173 	ssize_t	ret;
2174 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2175 					.iov_len = count };
2176 
2177 	down(&inode->i_sem);
2178 	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2179 	up(&inode->i_sem);
2180 
2181 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2182 		ssize_t err;
2183 
2184 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2185 		if (err < 0)
2186 			ret = err;
2187 	}
2188 	return ret;
2189 }
2190 EXPORT_SYMBOL(generic_file_write);
2191 
2192 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2193 			unsigned long nr_segs, loff_t *ppos)
2194 {
2195 	struct kiocb kiocb;
2196 	ssize_t ret;
2197 
2198 	init_sync_kiocb(&kiocb, filp);
2199 	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2200 	if (-EIOCBQUEUED == ret)
2201 		ret = wait_on_sync_kiocb(&kiocb);
2202 	return ret;
2203 }
2204 EXPORT_SYMBOL(generic_file_readv);
2205 
2206 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2207 			unsigned long nr_segs, loff_t *ppos)
2208 {
2209 	struct address_space *mapping = file->f_mapping;
2210 	struct inode *inode = mapping->host;
2211 	ssize_t ret;
2212 
2213 	down(&inode->i_sem);
2214 	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2215 	up(&inode->i_sem);
2216 
2217 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2218 		int err;
2219 
2220 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2221 		if (err < 0)
2222 			ret = err;
2223 	}
2224 	return ret;
2225 }
2226 EXPORT_SYMBOL(generic_file_writev);
2227 
2228 /*
2229  * Called under i_sem for writes to S_ISREG files.   Returns -EIO if something
2230  * went wrong during pagecache shootdown.
2231  */
2232 ssize_t
2233 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2234 	loff_t offset, unsigned long nr_segs)
2235 {
2236 	struct file *file = iocb->ki_filp;
2237 	struct address_space *mapping = file->f_mapping;
2238 	ssize_t retval;
2239 	size_t write_len = 0;
2240 
2241 	/*
2242 	 * If it's a write, unmap all mmappings of the file up-front.  This
2243 	 * will cause any pte dirty bits to be propagated into the pageframes
2244 	 * for the subsequent filemap_write_and_wait().
2245 	 */
2246 	if (rw == WRITE) {
2247 		write_len = iov_length(iov, nr_segs);
2248 	       	if (mapping_mapped(mapping))
2249 			unmap_mapping_range(mapping, offset, write_len, 0);
2250 	}
2251 
2252 	retval = filemap_write_and_wait(mapping);
2253 	if (retval == 0) {
2254 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2255 						offset, nr_segs);
2256 		if (rw == WRITE && mapping->nrpages) {
2257 			pgoff_t end = (offset + write_len - 1)
2258 						>> PAGE_CACHE_SHIFT;
2259 			int err = invalidate_inode_pages2_range(mapping,
2260 					offset >> PAGE_CACHE_SHIFT, end);
2261 			if (err)
2262 				retval = err;
2263 		}
2264 	}
2265 	return retval;
2266 }
2267 EXPORT_SYMBOL_GPL(generic_file_direct_IO);
2268