1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sysctl.h>
51 #include <asm/pgalloc.h>
52 #include <asm/tlbflush.h>
53 #include "internal.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/filemap.h>
57
58 /*
59 * FIXME: remove all knowledge of the buffer layer from the core VM
60 */
61 #include <linux/buffer_head.h> /* for try_to_free_buffers */
62
63 #include <asm/mman.h>
64
65 #include "swap.h"
66
67 /*
68 * Shared mappings implemented 30.11.1994. It's not fully working yet,
69 * though.
70 *
71 * Shared mappings now work. 15.8.1995 Bruno.
72 *
73 * finished 'unifying' the page and buffer cache and SMP-threaded the
74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
75 *
76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
77 */
78
79 /*
80 * Lock ordering:
81 *
82 * ->i_mmap_rwsem (truncate_pagecache)
83 * ->private_lock (__free_pte->block_dirty_folio)
84 * ->swap_lock (exclusive_swap_page, others)
85 * ->i_pages lock
86 *
87 * ->i_rwsem
88 * ->invalidate_lock (acquired by fs in truncate path)
89 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
90 *
91 * ->mmap_lock
92 * ->i_mmap_rwsem
93 * ->page_table_lock or pte_lock (various, mainly in memory.c)
94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
95 *
96 * ->mmap_lock
97 * ->invalidate_lock (filemap_fault)
98 * ->lock_page (filemap_fault, access_process_vm)
99 *
100 * ->i_rwsem (generic_perform_write)
101 * ->mmap_lock (fault_in_readable->do_page_fault)
102 *
103 * bdi->wb.list_lock
104 * sb_lock (fs/fs-writeback.c)
105 * ->i_pages lock (__sync_single_inode)
106 *
107 * ->i_mmap_rwsem
108 * ->anon_vma.lock (vma_merge)
109 *
110 * ->anon_vma.lock
111 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
112 *
113 * ->page_table_lock or pte_lock
114 * ->swap_lock (try_to_unmap_one)
115 * ->private_lock (try_to_unmap_one)
116 * ->i_pages lock (try_to_unmap_one)
117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
124 * ->inode->i_lock (zap_pte_range->set_page_dirty)
125 * ->private_lock (zap_pte_range->block_dirty_folio)
126 */
127
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)128 static void page_cache_delete(struct address_space *mapping,
129 struct folio *folio, void *shadow)
130 {
131 XA_STATE(xas, &mapping->i_pages, folio->index);
132 long nr = 1;
133
134 mapping_set_update(&xas, mapping);
135
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
138
139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140
141 xas_store(&xas, shadow);
142 xas_init_marks(&xas);
143
144 folio->mapping = NULL;
145 /* Leave folio->index set: truncation lookup relies upon it */
146 mapping->nrpages -= nr;
147 }
148
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)149 static void filemap_unaccount_folio(struct address_space *mapping,
150 struct folio *folio)
151 {
152 long nr;
153
154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
157 current->comm, folio_pfn(folio));
158 dump_page(&folio->page, "still mapped when deleted");
159 dump_stack();
160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
161
162 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
163 int mapcount = folio_mapcount(folio);
164
165 if (folio_ref_count(folio) >= mapcount + 2) {
166 /*
167 * All vmas have already been torn down, so it's
168 * a good bet that actually the page is unmapped
169 * and we'd rather not leak it: if we're wrong,
170 * another bad page check should catch it later.
171 */
172 atomic_set(&folio->_mapcount, -1);
173 folio_ref_sub(folio, mapcount);
174 }
175 }
176 }
177
178 /* hugetlb folios do not participate in page cache accounting. */
179 if (folio_test_hugetlb(folio))
180 return;
181
182 nr = folio_nr_pages(folio);
183
184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
185 if (folio_test_swapbacked(folio)) {
186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
187 if (folio_test_pmd_mappable(folio))
188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
189 } else if (folio_test_pmd_mappable(folio)) {
190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
191 filemap_nr_thps_dec(mapping);
192 }
193 if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags))
194 mod_node_page_state(folio_pgdat(folio),
195 NR_KERNEL_FILE_PAGES, -nr);
196
197 /*
198 * At this point folio must be either written or cleaned by
199 * truncate. Dirty folio here signals a bug and loss of
200 * unwritten data - on ordinary filesystems.
201 *
202 * But it's harmless on in-memory filesystems like tmpfs; and can
203 * occur when a driver which did get_user_pages() sets page dirty
204 * before putting it, while the inode is being finally evicted.
205 *
206 * Below fixes dirty accounting after removing the folio entirely
207 * but leaves the dirty flag set: it has no effect for truncated
208 * folio and anyway will be cleared before returning folio to
209 * buddy allocator.
210 */
211 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
212 mapping_can_writeback(mapping)))
213 folio_account_cleaned(folio, inode_to_wb(mapping->host));
214 }
215
216 /*
217 * Delete a page from the page cache and free it. Caller has to make
218 * sure the page is locked and that nobody else uses it - or that usage
219 * is safe. The caller must hold the i_pages lock.
220 */
__filemap_remove_folio(struct folio * folio,void * shadow)221 void __filemap_remove_folio(struct folio *folio, void *shadow)
222 {
223 struct address_space *mapping = folio->mapping;
224
225 trace_mm_filemap_delete_from_page_cache(folio);
226 filemap_unaccount_folio(mapping, folio);
227 page_cache_delete(mapping, folio, shadow);
228 }
229
filemap_free_folio(struct address_space * mapping,struct folio * folio)230 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
231 {
232 void (*free_folio)(struct folio *);
233
234 free_folio = mapping->a_ops->free_folio;
235 if (free_folio)
236 free_folio(folio);
237
238 folio_put_refs(folio, folio_nr_pages(folio));
239 }
240
241 /**
242 * filemap_remove_folio - Remove folio from page cache.
243 * @folio: The folio.
244 *
245 * This must be called only on folios that are locked and have been
246 * verified to be in the page cache. It will never put the folio into
247 * the free list because the caller has a reference on the page.
248 */
filemap_remove_folio(struct folio * folio)249 void filemap_remove_folio(struct folio *folio)
250 {
251 struct address_space *mapping = folio->mapping;
252
253 BUG_ON(!folio_test_locked(folio));
254 spin_lock(&mapping->host->i_lock);
255 xa_lock_irq(&mapping->i_pages);
256 __filemap_remove_folio(folio, NULL);
257 xa_unlock_irq(&mapping->i_pages);
258 if (mapping_shrinkable(mapping))
259 inode_lru_list_add(mapping->host);
260 spin_unlock(&mapping->host->i_lock);
261
262 filemap_free_folio(mapping, folio);
263 }
264
265 /*
266 * page_cache_delete_batch - delete several folios from page cache
267 * @mapping: the mapping to which folios belong
268 * @fbatch: batch of folios to delete
269 *
270 * The function walks over mapping->i_pages and removes folios passed in
271 * @fbatch from the mapping. The function expects @fbatch to be sorted
272 * by page index and is optimised for it to be dense.
273 * It tolerates holes in @fbatch (mapping entries at those indices are not
274 * modified).
275 *
276 * The function expects the i_pages lock to be held.
277 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)278 static void page_cache_delete_batch(struct address_space *mapping,
279 struct folio_batch *fbatch)
280 {
281 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
282 long total_pages = 0;
283 int i = 0;
284 struct folio *folio;
285
286 mapping_set_update(&xas, mapping);
287 xas_for_each(&xas, folio, ULONG_MAX) {
288 if (i >= folio_batch_count(fbatch))
289 break;
290
291 /* A swap/dax/shadow entry got inserted? Skip it. */
292 if (xa_is_value(folio))
293 continue;
294 /*
295 * A page got inserted in our range? Skip it. We have our
296 * pages locked so they are protected from being removed.
297 * If we see a page whose index is higher than ours, it
298 * means our page has been removed, which shouldn't be
299 * possible because we're holding the PageLock.
300 */
301 if (folio != fbatch->folios[i]) {
302 VM_BUG_ON_FOLIO(folio->index >
303 fbatch->folios[i]->index, folio);
304 continue;
305 }
306
307 WARN_ON_ONCE(!folio_test_locked(folio));
308
309 folio->mapping = NULL;
310 /* Leave folio->index set: truncation lookup relies on it */
311
312 i++;
313 xas_store(&xas, NULL);
314 total_pages += folio_nr_pages(folio);
315 }
316 mapping->nrpages -= total_pages;
317 }
318
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)319 void delete_from_page_cache_batch(struct address_space *mapping,
320 struct folio_batch *fbatch)
321 {
322 int i;
323
324 if (!folio_batch_count(fbatch))
325 return;
326
327 spin_lock(&mapping->host->i_lock);
328 xa_lock_irq(&mapping->i_pages);
329 for (i = 0; i < folio_batch_count(fbatch); i++) {
330 struct folio *folio = fbatch->folios[i];
331
332 trace_mm_filemap_delete_from_page_cache(folio);
333 filemap_unaccount_folio(mapping, folio);
334 }
335 page_cache_delete_batch(mapping, fbatch);
336 xa_unlock_irq(&mapping->i_pages);
337 if (mapping_shrinkable(mapping))
338 inode_lru_list_add(mapping->host);
339 spin_unlock(&mapping->host->i_lock);
340
341 for (i = 0; i < folio_batch_count(fbatch); i++)
342 filemap_free_folio(mapping, fbatch->folios[i]);
343 }
344
filemap_check_errors(struct address_space * mapping)345 int filemap_check_errors(struct address_space *mapping)
346 {
347 int ret = 0;
348 /* Check for outstanding write errors */
349 if (test_bit(AS_ENOSPC, &mapping->flags) &&
350 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351 ret = -ENOSPC;
352 if (test_bit(AS_EIO, &mapping->flags) &&
353 test_and_clear_bit(AS_EIO, &mapping->flags))
354 ret = -EIO;
355 return ret;
356 }
357 EXPORT_SYMBOL(filemap_check_errors);
358
filemap_check_and_keep_errors(struct address_space * mapping)359 static int filemap_check_and_keep_errors(struct address_space *mapping)
360 {
361 /* Check for outstanding write errors */
362 if (test_bit(AS_EIO, &mapping->flags))
363 return -EIO;
364 if (test_bit(AS_ENOSPC, &mapping->flags))
365 return -ENOSPC;
366 return 0;
367 }
368
filemap_writeback(struct address_space * mapping,loff_t start,loff_t end,enum writeback_sync_modes sync_mode,long * nr_to_write)369 static int filemap_writeback(struct address_space *mapping, loff_t start,
370 loff_t end, enum writeback_sync_modes sync_mode,
371 long *nr_to_write)
372 {
373 struct writeback_control wbc = {
374 .sync_mode = sync_mode,
375 .nr_to_write = nr_to_write ? *nr_to_write : LONG_MAX,
376 .range_start = start,
377 .range_end = end,
378 };
379 int ret;
380
381 if (!mapping_can_writeback(mapping) ||
382 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
383 return 0;
384
385 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
386 ret = do_writepages(mapping, &wbc);
387 wbc_detach_inode(&wbc);
388
389 if (!ret && nr_to_write)
390 *nr_to_write = wbc.nr_to_write;
391 return ret;
392 }
393
394 /**
395 * filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 *
400 * Start writeback against all of a mapping's dirty pages that lie
401 * within the byte offsets <start, end> inclusive.
402 *
403 * This is a data integrity operation that waits upon dirty or in writeback
404 * pages.
405 *
406 * Return: %0 on success, negative error code otherwise.
407 */
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)408 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409 loff_t end)
410 {
411 return filemap_writeback(mapping, start, end, WB_SYNC_ALL, NULL);
412 }
413 EXPORT_SYMBOL(filemap_fdatawrite_range);
414
filemap_fdatawrite(struct address_space * mapping)415 int filemap_fdatawrite(struct address_space *mapping)
416 {
417 return filemap_fdatawrite_range(mapping, 0, LLONG_MAX);
418 }
419 EXPORT_SYMBOL(filemap_fdatawrite);
420
421 /**
422 * filemap_flush_range - start writeback on a range
423 * @mapping: target address_space
424 * @start: index to start writeback on
425 * @end: last (inclusive) index for writeback
426 *
427 * This is a non-integrity writeback helper, to start writing back folios
428 * for the indicated range.
429 *
430 * Return: %0 on success, negative error code otherwise.
431 */
filemap_flush_range(struct address_space * mapping,loff_t start,loff_t end)432 int filemap_flush_range(struct address_space *mapping, loff_t start,
433 loff_t end)
434 {
435 return filemap_writeback(mapping, start, end, WB_SYNC_NONE, NULL);
436 }
437 EXPORT_SYMBOL_GPL(filemap_flush_range);
438
439 /**
440 * filemap_flush - mostly a non-blocking flush
441 * @mapping: target address_space
442 *
443 * This is a mostly non-blocking flush. Not suitable for data-integrity
444 * purposes - I/O may not be started against all dirty pages.
445 *
446 * Return: %0 on success, negative error code otherwise.
447 */
filemap_flush(struct address_space * mapping)448 int filemap_flush(struct address_space *mapping)
449 {
450 return filemap_flush_range(mapping, 0, LLONG_MAX);
451 }
452 EXPORT_SYMBOL(filemap_flush);
453
454 /*
455 * Start writeback on @nr_to_write pages from @mapping. No one but the existing
456 * btrfs caller should be using this. Talk to linux-mm if you think adding a
457 * new caller is a good idea.
458 */
filemap_flush_nr(struct address_space * mapping,long * nr_to_write)459 int filemap_flush_nr(struct address_space *mapping, long *nr_to_write)
460 {
461 return filemap_writeback(mapping, 0, LLONG_MAX, WB_SYNC_NONE,
462 nr_to_write);
463 }
464 EXPORT_SYMBOL_FOR_MODULES(filemap_flush_nr, "btrfs");
465
466 /**
467 * filemap_range_has_page - check if a page exists in range.
468 * @mapping: address space within which to check
469 * @start_byte: offset in bytes where the range starts
470 * @end_byte: offset in bytes where the range ends (inclusive)
471 *
472 * Find at least one page in the range supplied, usually used to check if
473 * direct writing in this range will trigger a writeback.
474 *
475 * Return: %true if at least one page exists in the specified range,
476 * %false otherwise.
477 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)478 bool filemap_range_has_page(struct address_space *mapping,
479 loff_t start_byte, loff_t end_byte)
480 {
481 struct folio *folio;
482 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
483 pgoff_t max = end_byte >> PAGE_SHIFT;
484
485 if (end_byte < start_byte)
486 return false;
487
488 rcu_read_lock();
489 for (;;) {
490 folio = xas_find(&xas, max);
491 if (xas_retry(&xas, folio))
492 continue;
493 /* Shadow entries don't count */
494 if (xa_is_value(folio))
495 continue;
496 /*
497 * We don't need to try to pin this page; we're about to
498 * release the RCU lock anyway. It is enough to know that
499 * there was a page here recently.
500 */
501 break;
502 }
503 rcu_read_unlock();
504
505 return folio != NULL;
506 }
507 EXPORT_SYMBOL(filemap_range_has_page);
508
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)509 static void __filemap_fdatawait_range(struct address_space *mapping,
510 loff_t start_byte, loff_t end_byte)
511 {
512 pgoff_t index = start_byte >> PAGE_SHIFT;
513 pgoff_t end = end_byte >> PAGE_SHIFT;
514 struct folio_batch fbatch;
515 unsigned nr_folios;
516
517 folio_batch_init(&fbatch);
518
519 while (index <= end) {
520 unsigned i;
521
522 nr_folios = filemap_get_folios_tag(mapping, &index, end,
523 PAGECACHE_TAG_WRITEBACK, &fbatch);
524
525 if (!nr_folios)
526 break;
527
528 for (i = 0; i < nr_folios; i++) {
529 struct folio *folio = fbatch.folios[i];
530
531 folio_wait_writeback(folio);
532 }
533 folio_batch_release(&fbatch);
534 cond_resched();
535 }
536 }
537
538 /**
539 * filemap_fdatawait_range - wait for writeback to complete
540 * @mapping: address space structure to wait for
541 * @start_byte: offset in bytes where the range starts
542 * @end_byte: offset in bytes where the range ends (inclusive)
543 *
544 * Walk the list of under-writeback pages of the given address space
545 * in the given range and wait for all of them. Check error status of
546 * the address space and return it.
547 *
548 * Since the error status of the address space is cleared by this function,
549 * callers are responsible for checking the return value and handling and/or
550 * reporting the error.
551 *
552 * Return: error status of the address space.
553 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)554 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
555 loff_t end_byte)
556 {
557 __filemap_fdatawait_range(mapping, start_byte, end_byte);
558 return filemap_check_errors(mapping);
559 }
560 EXPORT_SYMBOL(filemap_fdatawait_range);
561
562 /**
563 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
564 * @mapping: address space structure to wait for
565 * @start_byte: offset in bytes where the range starts
566 * @end_byte: offset in bytes where the range ends (inclusive)
567 *
568 * Walk the list of under-writeback pages of the given address space in the
569 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
570 * this function does not clear error status of the address space.
571 *
572 * Use this function if callers don't handle errors themselves. Expected
573 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
574 * fsfreeze(8)
575 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)576 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
577 loff_t start_byte, loff_t end_byte)
578 {
579 __filemap_fdatawait_range(mapping, start_byte, end_byte);
580 return filemap_check_and_keep_errors(mapping);
581 }
582 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
583
584 /**
585 * file_fdatawait_range - wait for writeback to complete
586 * @file: file pointing to address space structure to wait for
587 * @start_byte: offset in bytes where the range starts
588 * @end_byte: offset in bytes where the range ends (inclusive)
589 *
590 * Walk the list of under-writeback pages of the address space that file
591 * refers to, in the given range and wait for all of them. Check error
592 * status of the address space vs. the file->f_wb_err cursor and return it.
593 *
594 * Since the error status of the file is advanced by this function,
595 * callers are responsible for checking the return value and handling and/or
596 * reporting the error.
597 *
598 * Return: error status of the address space vs. the file->f_wb_err cursor.
599 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)600 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
601 {
602 struct address_space *mapping = file->f_mapping;
603
604 __filemap_fdatawait_range(mapping, start_byte, end_byte);
605 return file_check_and_advance_wb_err(file);
606 }
607 EXPORT_SYMBOL(file_fdatawait_range);
608
609 /**
610 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
611 * @mapping: address space structure to wait for
612 *
613 * Walk the list of under-writeback pages of the given address space
614 * and wait for all of them. Unlike filemap_fdatawait(), this function
615 * does not clear error status of the address space.
616 *
617 * Use this function if callers don't handle errors themselves. Expected
618 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
619 * fsfreeze(8)
620 *
621 * Return: error status of the address space.
622 */
filemap_fdatawait_keep_errors(struct address_space * mapping)623 int filemap_fdatawait_keep_errors(struct address_space *mapping)
624 {
625 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
626 return filemap_check_and_keep_errors(mapping);
627 }
628 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
629
630 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)631 static bool mapping_needs_writeback(struct address_space *mapping)
632 {
633 return mapping->nrpages;
634 }
635
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)636 bool filemap_range_has_writeback(struct address_space *mapping,
637 loff_t start_byte, loff_t end_byte)
638 {
639 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
640 pgoff_t max = end_byte >> PAGE_SHIFT;
641 struct folio *folio;
642
643 if (end_byte < start_byte)
644 return false;
645
646 rcu_read_lock();
647 xas_for_each(&xas, folio, max) {
648 if (xas_retry(&xas, folio))
649 continue;
650 if (xa_is_value(folio))
651 continue;
652 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
653 folio_test_writeback(folio))
654 break;
655 }
656 rcu_read_unlock();
657 return folio != NULL;
658 }
659 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
660
661 /**
662 * filemap_write_and_wait_range - write out & wait on a file range
663 * @mapping: the address_space for the pages
664 * @lstart: offset in bytes where the range starts
665 * @lend: offset in bytes where the range ends (inclusive)
666 *
667 * Write out and wait upon file offsets lstart->lend, inclusive.
668 *
669 * Note that @lend is inclusive (describes the last byte to be written) so
670 * that this function can be used to write to the very end-of-file (end = -1).
671 *
672 * Return: error status of the address space.
673 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)674 int filemap_write_and_wait_range(struct address_space *mapping,
675 loff_t lstart, loff_t lend)
676 {
677 int err = 0, err2;
678
679 if (lend < lstart)
680 return 0;
681
682 if (mapping_needs_writeback(mapping)) {
683 err = filemap_fdatawrite_range(mapping, lstart, lend);
684 /*
685 * Even if the above returned error, the pages may be
686 * written partially (e.g. -ENOSPC), so we wait for it.
687 * But the -EIO is special case, it may indicate the worst
688 * thing (e.g. bug) happened, so we avoid waiting for it.
689 */
690 if (err != -EIO)
691 __filemap_fdatawait_range(mapping, lstart, lend);
692 }
693 err2 = filemap_check_errors(mapping);
694 if (!err)
695 err = err2;
696 return err;
697 }
698 EXPORT_SYMBOL(filemap_write_and_wait_range);
699
__filemap_set_wb_err(struct address_space * mapping,int err)700 void __filemap_set_wb_err(struct address_space *mapping, int err)
701 {
702 errseq_t eseq = errseq_set(&mapping->wb_err, err);
703
704 trace_filemap_set_wb_err(mapping, eseq);
705 }
706 EXPORT_SYMBOL(__filemap_set_wb_err);
707
708 /**
709 * file_check_and_advance_wb_err - report wb error (if any) that was previously
710 * and advance wb_err to current one
711 * @file: struct file on which the error is being reported
712 *
713 * When userland calls fsync (or something like nfsd does the equivalent), we
714 * want to report any writeback errors that occurred since the last fsync (or
715 * since the file was opened if there haven't been any).
716 *
717 * Grab the wb_err from the mapping. If it matches what we have in the file,
718 * then just quickly return 0. The file is all caught up.
719 *
720 * If it doesn't match, then take the mapping value, set the "seen" flag in
721 * it and try to swap it into place. If it works, or another task beat us
722 * to it with the new value, then update the f_wb_err and return the error
723 * portion. The error at this point must be reported via proper channels
724 * (a'la fsync, or NFS COMMIT operation, etc.).
725 *
726 * While we handle mapping->wb_err with atomic operations, the f_wb_err
727 * value is protected by the f_lock since we must ensure that it reflects
728 * the latest value swapped in for this file descriptor.
729 *
730 * Return: %0 on success, negative error code otherwise.
731 */
file_check_and_advance_wb_err(struct file * file)732 int file_check_and_advance_wb_err(struct file *file)
733 {
734 int err = 0;
735 errseq_t old = READ_ONCE(file->f_wb_err);
736 struct address_space *mapping = file->f_mapping;
737
738 /* Locklessly handle the common case where nothing has changed */
739 if (errseq_check(&mapping->wb_err, old)) {
740 /* Something changed, must use slow path */
741 spin_lock(&file->f_lock);
742 old = file->f_wb_err;
743 err = errseq_check_and_advance(&mapping->wb_err,
744 &file->f_wb_err);
745 trace_file_check_and_advance_wb_err(file, old);
746 spin_unlock(&file->f_lock);
747 }
748
749 /*
750 * We're mostly using this function as a drop in replacement for
751 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
752 * that the legacy code would have had on these flags.
753 */
754 clear_bit(AS_EIO, &mapping->flags);
755 clear_bit(AS_ENOSPC, &mapping->flags);
756 return err;
757 }
758 EXPORT_SYMBOL(file_check_and_advance_wb_err);
759
760 /**
761 * file_write_and_wait_range - write out & wait on a file range
762 * @file: file pointing to address_space with pages
763 * @lstart: offset in bytes where the range starts
764 * @lend: offset in bytes where the range ends (inclusive)
765 *
766 * Write out and wait upon file offsets lstart->lend, inclusive.
767 *
768 * Note that @lend is inclusive (describes the last byte to be written) so
769 * that this function can be used to write to the very end-of-file (end = -1).
770 *
771 * After writing out and waiting on the data, we check and advance the
772 * f_wb_err cursor to the latest value, and return any errors detected there.
773 *
774 * Return: %0 on success, negative error code otherwise.
775 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)776 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
777 {
778 int err = 0, err2;
779 struct address_space *mapping = file->f_mapping;
780
781 if (lend < lstart)
782 return 0;
783
784 if (mapping_needs_writeback(mapping)) {
785 err = filemap_fdatawrite_range(mapping, lstart, lend);
786 /* See comment of filemap_write_and_wait() */
787 if (err != -EIO)
788 __filemap_fdatawait_range(mapping, lstart, lend);
789 }
790 err2 = file_check_and_advance_wb_err(file);
791 if (!err)
792 err = err2;
793 return err;
794 }
795 EXPORT_SYMBOL(file_write_and_wait_range);
796
797 /**
798 * replace_page_cache_folio - replace a pagecache folio with a new one
799 * @old: folio to be replaced
800 * @new: folio to replace with
801 *
802 * This function replaces a folio in the pagecache with a new one. On
803 * success it acquires the pagecache reference for the new folio and
804 * drops it for the old folio. Both the old and new folios must be
805 * locked. This function does not add the new folio to the LRU, the
806 * caller must do that.
807 *
808 * The remove + add is atomic. This function cannot fail.
809 */
replace_page_cache_folio(struct folio * old,struct folio * new)810 void replace_page_cache_folio(struct folio *old, struct folio *new)
811 {
812 struct address_space *mapping = old->mapping;
813 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
814 pgoff_t offset = old->index;
815 XA_STATE(xas, &mapping->i_pages, offset);
816
817 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
818 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
819 VM_BUG_ON_FOLIO(new->mapping, new);
820
821 folio_get(new);
822 new->mapping = mapping;
823 new->index = offset;
824
825 mem_cgroup_replace_folio(old, new);
826
827 xas_lock_irq(&xas);
828 xas_store(&xas, new);
829
830 old->mapping = NULL;
831 /* hugetlb pages do not participate in page cache accounting. */
832 if (!folio_test_hugetlb(old))
833 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
834 if (!folio_test_hugetlb(new))
835 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
836 if (folio_test_swapbacked(old))
837 __lruvec_stat_sub_folio(old, NR_SHMEM);
838 if (folio_test_swapbacked(new))
839 __lruvec_stat_add_folio(new, NR_SHMEM);
840 xas_unlock_irq(&xas);
841 if (free_folio)
842 free_folio(old);
843 folio_put(old);
844 }
845 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
846
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)847 noinline int __filemap_add_folio(struct address_space *mapping,
848 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
849 {
850 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
851 bool huge;
852 long nr;
853 unsigned int forder = folio_order(folio);
854
855 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
856 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
857 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
858 folio);
859 mapping_set_update(&xas, mapping);
860
861 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
862 huge = folio_test_hugetlb(folio);
863 nr = folio_nr_pages(folio);
864
865 gfp &= GFP_RECLAIM_MASK;
866 folio_ref_add(folio, nr);
867 folio->mapping = mapping;
868 folio->index = xas.xa_index;
869
870 for (;;) {
871 int order = -1;
872 void *entry, *old = NULL;
873
874 xas_lock_irq(&xas);
875 xas_for_each_conflict(&xas, entry) {
876 old = entry;
877 if (!xa_is_value(entry)) {
878 xas_set_err(&xas, -EEXIST);
879 goto unlock;
880 }
881 /*
882 * If a larger entry exists,
883 * it will be the first and only entry iterated.
884 */
885 if (order == -1)
886 order = xas_get_order(&xas);
887 }
888
889 if (old) {
890 if (order > 0 && order > forder) {
891 unsigned int split_order = max(forder,
892 xas_try_split_min_order(order));
893
894 /* How to handle large swap entries? */
895 BUG_ON(shmem_mapping(mapping));
896
897 while (order > forder) {
898 xas_set_order(&xas, index, split_order);
899 xas_try_split(&xas, old, order);
900 if (xas_error(&xas))
901 goto unlock;
902 order = split_order;
903 split_order =
904 max(xas_try_split_min_order(
905 split_order),
906 forder);
907 }
908 xas_reset(&xas);
909 }
910 if (shadowp)
911 *shadowp = old;
912 }
913
914 xas_store(&xas, folio);
915 if (xas_error(&xas))
916 goto unlock;
917
918 mapping->nrpages += nr;
919
920 /* hugetlb pages do not participate in page cache accounting */
921 if (!huge) {
922 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
923 if (folio_test_pmd_mappable(folio))
924 __lruvec_stat_mod_folio(folio,
925 NR_FILE_THPS, nr);
926 }
927
928 unlock:
929 xas_unlock_irq(&xas);
930
931 if (!xas_nomem(&xas, gfp))
932 break;
933 }
934
935 if (xas_error(&xas))
936 goto error;
937
938 trace_mm_filemap_add_to_page_cache(folio);
939 return 0;
940 error:
941 folio->mapping = NULL;
942 /* Leave folio->index set: truncation relies upon it */
943 folio_put_refs(folio, nr);
944 return xas_error(&xas);
945 }
946 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
947
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)948 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
949 pgoff_t index, gfp_t gfp)
950 {
951 void *shadow = NULL;
952 int ret;
953 struct mem_cgroup *tmp;
954 bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags);
955
956 if (kernel_file)
957 tmp = set_active_memcg(root_mem_cgroup);
958 ret = mem_cgroup_charge(folio, NULL, gfp);
959 if (kernel_file)
960 set_active_memcg(tmp);
961 if (ret)
962 return ret;
963
964 __folio_set_locked(folio);
965 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
966 if (unlikely(ret)) {
967 mem_cgroup_uncharge(folio);
968 __folio_clear_locked(folio);
969 } else {
970 /*
971 * The folio might have been evicted from cache only
972 * recently, in which case it should be activated like
973 * any other repeatedly accessed folio.
974 * The exception is folios getting rewritten; evicting other
975 * data from the working set, only to cache data that will
976 * get overwritten with something else, is a waste of memory.
977 */
978 WARN_ON_ONCE(folio_test_active(folio));
979 if (!(gfp & __GFP_WRITE) && shadow)
980 workingset_refault(folio, shadow);
981 folio_add_lru(folio);
982 if (kernel_file)
983 mod_node_page_state(folio_pgdat(folio),
984 NR_KERNEL_FILE_PAGES,
985 folio_nr_pages(folio));
986 }
987 return ret;
988 }
989 EXPORT_SYMBOL_GPL(filemap_add_folio);
990
991 #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)992 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
993 {
994 int n;
995 struct folio *folio;
996
997 if (cpuset_do_page_mem_spread()) {
998 unsigned int cpuset_mems_cookie;
999 do {
1000 cpuset_mems_cookie = read_mems_allowed_begin();
1001 n = cpuset_mem_spread_node();
1002 folio = __folio_alloc_node_noprof(gfp, order, n);
1003 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1004
1005 return folio;
1006 }
1007 return folio_alloc_noprof(gfp, order);
1008 }
1009 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1010 #endif
1011
1012 /*
1013 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1014 *
1015 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1016 *
1017 * @mapping1: the first mapping to lock
1018 * @mapping2: the second mapping to lock
1019 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1020 void filemap_invalidate_lock_two(struct address_space *mapping1,
1021 struct address_space *mapping2)
1022 {
1023 if (mapping1 > mapping2)
1024 swap(mapping1, mapping2);
1025 if (mapping1)
1026 down_write(&mapping1->invalidate_lock);
1027 if (mapping2 && mapping1 != mapping2)
1028 down_write_nested(&mapping2->invalidate_lock, 1);
1029 }
1030 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1031
1032 /*
1033 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1034 *
1035 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1036 *
1037 * @mapping1: the first mapping to unlock
1038 * @mapping2: the second mapping to unlock
1039 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1040 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1041 struct address_space *mapping2)
1042 {
1043 if (mapping1)
1044 up_write(&mapping1->invalidate_lock);
1045 if (mapping2 && mapping1 != mapping2)
1046 up_write(&mapping2->invalidate_lock);
1047 }
1048 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1049
1050 /*
1051 * In order to wait for pages to become available there must be
1052 * waitqueues associated with pages. By using a hash table of
1053 * waitqueues where the bucket discipline is to maintain all
1054 * waiters on the same queue and wake all when any of the pages
1055 * become available, and for the woken contexts to check to be
1056 * sure the appropriate page became available, this saves space
1057 * at a cost of "thundering herd" phenomena during rare hash
1058 * collisions.
1059 */
1060 #define PAGE_WAIT_TABLE_BITS 8
1061 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1062 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1063
folio_waitqueue(struct folio * folio)1064 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1065 {
1066 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1067 }
1068
1069 /* How many times do we accept lock stealing from under a waiter? */
1070 static int sysctl_page_lock_unfairness = 5;
1071 static const struct ctl_table filemap_sysctl_table[] = {
1072 {
1073 .procname = "page_lock_unfairness",
1074 .data = &sysctl_page_lock_unfairness,
1075 .maxlen = sizeof(sysctl_page_lock_unfairness),
1076 .mode = 0644,
1077 .proc_handler = proc_dointvec_minmax,
1078 .extra1 = SYSCTL_ZERO,
1079 }
1080 };
1081
pagecache_init(void)1082 void __init pagecache_init(void)
1083 {
1084 int i;
1085
1086 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1087 init_waitqueue_head(&folio_wait_table[i]);
1088
1089 page_writeback_init();
1090 register_sysctl_init("vm", filemap_sysctl_table);
1091 }
1092
1093 /*
1094 * The page wait code treats the "wait->flags" somewhat unusually, because
1095 * we have multiple different kinds of waits, not just the usual "exclusive"
1096 * one.
1097 *
1098 * We have:
1099 *
1100 * (a) no special bits set:
1101 *
1102 * We're just waiting for the bit to be released, and when a waker
1103 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1104 * and remove it from the wait queue.
1105 *
1106 * Simple and straightforward.
1107 *
1108 * (b) WQ_FLAG_EXCLUSIVE:
1109 *
1110 * The waiter is waiting to get the lock, and only one waiter should
1111 * be woken up to avoid any thundering herd behavior. We'll set the
1112 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1113 *
1114 * This is the traditional exclusive wait.
1115 *
1116 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1117 *
1118 * The waiter is waiting to get the bit, and additionally wants the
1119 * lock to be transferred to it for fair lock behavior. If the lock
1120 * cannot be taken, we stop walking the wait queue without waking
1121 * the waiter.
1122 *
1123 * This is the "fair lock handoff" case, and in addition to setting
1124 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1125 * that it now has the lock.
1126 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1127 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1128 {
1129 unsigned int flags;
1130 struct wait_page_key *key = arg;
1131 struct wait_page_queue *wait_page
1132 = container_of(wait, struct wait_page_queue, wait);
1133
1134 if (!wake_page_match(wait_page, key))
1135 return 0;
1136
1137 /*
1138 * If it's a lock handoff wait, we get the bit for it, and
1139 * stop walking (and do not wake it up) if we can't.
1140 */
1141 flags = wait->flags;
1142 if (flags & WQ_FLAG_EXCLUSIVE) {
1143 if (test_bit(key->bit_nr, &key->folio->flags.f))
1144 return -1;
1145 if (flags & WQ_FLAG_CUSTOM) {
1146 if (test_and_set_bit(key->bit_nr, &key->folio->flags.f))
1147 return -1;
1148 flags |= WQ_FLAG_DONE;
1149 }
1150 }
1151
1152 /*
1153 * We are holding the wait-queue lock, but the waiter that
1154 * is waiting for this will be checking the flags without
1155 * any locking.
1156 *
1157 * So update the flags atomically, and wake up the waiter
1158 * afterwards to avoid any races. This store-release pairs
1159 * with the load-acquire in folio_wait_bit_common().
1160 */
1161 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1162 wake_up_state(wait->private, mode);
1163
1164 /*
1165 * Ok, we have successfully done what we're waiting for,
1166 * and we can unconditionally remove the wait entry.
1167 *
1168 * Note that this pairs with the "finish_wait()" in the
1169 * waiter, and has to be the absolute last thing we do.
1170 * After this list_del_init(&wait->entry) the wait entry
1171 * might be de-allocated and the process might even have
1172 * exited.
1173 */
1174 list_del_init_careful(&wait->entry);
1175 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1176 }
1177
folio_wake_bit(struct folio * folio,int bit_nr)1178 static void folio_wake_bit(struct folio *folio, int bit_nr)
1179 {
1180 wait_queue_head_t *q = folio_waitqueue(folio);
1181 struct wait_page_key key;
1182 unsigned long flags;
1183
1184 key.folio = folio;
1185 key.bit_nr = bit_nr;
1186 key.page_match = 0;
1187
1188 spin_lock_irqsave(&q->lock, flags);
1189 __wake_up_locked_key(q, TASK_NORMAL, &key);
1190
1191 /*
1192 * It's possible to miss clearing waiters here, when we woke our page
1193 * waiters, but the hashed waitqueue has waiters for other pages on it.
1194 * That's okay, it's a rare case. The next waker will clear it.
1195 *
1196 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1197 * other), the flag may be cleared in the course of freeing the page;
1198 * but that is not required for correctness.
1199 */
1200 if (!waitqueue_active(q) || !key.page_match)
1201 folio_clear_waiters(folio);
1202
1203 spin_unlock_irqrestore(&q->lock, flags);
1204 }
1205
1206 /*
1207 * A choice of three behaviors for folio_wait_bit_common():
1208 */
1209 enum behavior {
1210 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1211 * __folio_lock() waiting on then setting PG_locked.
1212 */
1213 SHARED, /* Hold ref to page and check the bit when woken, like
1214 * folio_wait_writeback() waiting on PG_writeback.
1215 */
1216 DROP, /* Drop ref to page before wait, no check when woken,
1217 * like folio_put_wait_locked() on PG_locked.
1218 */
1219 };
1220
1221 /*
1222 * Attempt to check (or get) the folio flag, and mark us done
1223 * if successful.
1224 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1225 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1226 struct wait_queue_entry *wait)
1227 {
1228 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1229 if (test_and_set_bit(bit_nr, &folio->flags.f))
1230 return false;
1231 } else if (test_bit(bit_nr, &folio->flags.f))
1232 return false;
1233
1234 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1235 return true;
1236 }
1237
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1238 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1239 int state, enum behavior behavior)
1240 {
1241 wait_queue_head_t *q = folio_waitqueue(folio);
1242 int unfairness = sysctl_page_lock_unfairness;
1243 struct wait_page_queue wait_page;
1244 wait_queue_entry_t *wait = &wait_page.wait;
1245 bool thrashing = false;
1246 unsigned long pflags;
1247 bool in_thrashing;
1248
1249 if (bit_nr == PG_locked &&
1250 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1251 delayacct_thrashing_start(&in_thrashing);
1252 psi_memstall_enter(&pflags);
1253 thrashing = true;
1254 }
1255
1256 init_wait(wait);
1257 wait->func = wake_page_function;
1258 wait_page.folio = folio;
1259 wait_page.bit_nr = bit_nr;
1260
1261 repeat:
1262 wait->flags = 0;
1263 if (behavior == EXCLUSIVE) {
1264 wait->flags = WQ_FLAG_EXCLUSIVE;
1265 if (--unfairness < 0)
1266 wait->flags |= WQ_FLAG_CUSTOM;
1267 }
1268
1269 /*
1270 * Do one last check whether we can get the
1271 * page bit synchronously.
1272 *
1273 * Do the folio_set_waiters() marking before that
1274 * to let any waker we _just_ missed know they
1275 * need to wake us up (otherwise they'll never
1276 * even go to the slow case that looks at the
1277 * page queue), and add ourselves to the wait
1278 * queue if we need to sleep.
1279 *
1280 * This part needs to be done under the queue
1281 * lock to avoid races.
1282 */
1283 spin_lock_irq(&q->lock);
1284 folio_set_waiters(folio);
1285 if (!folio_trylock_flag(folio, bit_nr, wait))
1286 __add_wait_queue_entry_tail(q, wait);
1287 spin_unlock_irq(&q->lock);
1288
1289 /*
1290 * From now on, all the logic will be based on
1291 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1292 * see whether the page bit testing has already
1293 * been done by the wake function.
1294 *
1295 * We can drop our reference to the folio.
1296 */
1297 if (behavior == DROP)
1298 folio_put(folio);
1299
1300 /*
1301 * Note that until the "finish_wait()", or until
1302 * we see the WQ_FLAG_WOKEN flag, we need to
1303 * be very careful with the 'wait->flags', because
1304 * we may race with a waker that sets them.
1305 */
1306 for (;;) {
1307 unsigned int flags;
1308
1309 set_current_state(state);
1310
1311 /* Loop until we've been woken or interrupted */
1312 flags = smp_load_acquire(&wait->flags);
1313 if (!(flags & WQ_FLAG_WOKEN)) {
1314 if (signal_pending_state(state, current))
1315 break;
1316
1317 io_schedule();
1318 continue;
1319 }
1320
1321 /* If we were non-exclusive, we're done */
1322 if (behavior != EXCLUSIVE)
1323 break;
1324
1325 /* If the waker got the lock for us, we're done */
1326 if (flags & WQ_FLAG_DONE)
1327 break;
1328
1329 /*
1330 * Otherwise, if we're getting the lock, we need to
1331 * try to get it ourselves.
1332 *
1333 * And if that fails, we'll have to retry this all.
1334 */
1335 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1336 goto repeat;
1337
1338 wait->flags |= WQ_FLAG_DONE;
1339 break;
1340 }
1341
1342 /*
1343 * If a signal happened, this 'finish_wait()' may remove the last
1344 * waiter from the wait-queues, but the folio waiters bit will remain
1345 * set. That's ok. The next wakeup will take care of it, and trying
1346 * to do it here would be difficult and prone to races.
1347 */
1348 finish_wait(q, wait);
1349
1350 if (thrashing) {
1351 delayacct_thrashing_end(&in_thrashing);
1352 psi_memstall_leave(&pflags);
1353 }
1354
1355 /*
1356 * NOTE! The wait->flags weren't stable until we've done the
1357 * 'finish_wait()', and we could have exited the loop above due
1358 * to a signal, and had a wakeup event happen after the signal
1359 * test but before the 'finish_wait()'.
1360 *
1361 * So only after the finish_wait() can we reliably determine
1362 * if we got woken up or not, so we can now figure out the final
1363 * return value based on that state without races.
1364 *
1365 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1366 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1367 */
1368 if (behavior == EXCLUSIVE)
1369 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1370
1371 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1372 }
1373
1374 #ifdef CONFIG_MIGRATION
1375 /**
1376 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1377 * @entry: migration swap entry.
1378 * @ptl: already locked ptl. This function will drop the lock.
1379 *
1380 * Wait for a migration entry referencing the given page to be removed. This is
1381 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except
1382 * this can be called without taking a reference on the page. Instead this
1383 * should be called while holding the ptl for the migration entry referencing
1384 * the page.
1385 *
1386 * Returns after unlocking the ptl.
1387 *
1388 * This follows the same logic as folio_wait_bit_common() so see the comments
1389 * there.
1390 */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1391 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1392 __releases(ptl)
1393 {
1394 struct wait_page_queue wait_page;
1395 wait_queue_entry_t *wait = &wait_page.wait;
1396 bool thrashing = false;
1397 unsigned long pflags;
1398 bool in_thrashing;
1399 wait_queue_head_t *q;
1400 struct folio *folio = pfn_swap_entry_folio(entry);
1401
1402 q = folio_waitqueue(folio);
1403 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1404 delayacct_thrashing_start(&in_thrashing);
1405 psi_memstall_enter(&pflags);
1406 thrashing = true;
1407 }
1408
1409 init_wait(wait);
1410 wait->func = wake_page_function;
1411 wait_page.folio = folio;
1412 wait_page.bit_nr = PG_locked;
1413 wait->flags = 0;
1414
1415 spin_lock_irq(&q->lock);
1416 folio_set_waiters(folio);
1417 if (!folio_trylock_flag(folio, PG_locked, wait))
1418 __add_wait_queue_entry_tail(q, wait);
1419 spin_unlock_irq(&q->lock);
1420
1421 /*
1422 * If a migration entry exists for the page the migration path must hold
1423 * a valid reference to the page, and it must take the ptl to remove the
1424 * migration entry. So the page is valid until the ptl is dropped.
1425 */
1426 spin_unlock(ptl);
1427
1428 for (;;) {
1429 unsigned int flags;
1430
1431 set_current_state(TASK_UNINTERRUPTIBLE);
1432
1433 /* Loop until we've been woken or interrupted */
1434 flags = smp_load_acquire(&wait->flags);
1435 if (!(flags & WQ_FLAG_WOKEN)) {
1436 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1437 break;
1438
1439 io_schedule();
1440 continue;
1441 }
1442 break;
1443 }
1444
1445 finish_wait(q, wait);
1446
1447 if (thrashing) {
1448 delayacct_thrashing_end(&in_thrashing);
1449 psi_memstall_leave(&pflags);
1450 }
1451 }
1452 #endif
1453
folio_wait_bit(struct folio * folio,int bit_nr)1454 void folio_wait_bit(struct folio *folio, int bit_nr)
1455 {
1456 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1457 }
1458 EXPORT_SYMBOL(folio_wait_bit);
1459
folio_wait_bit_killable(struct folio * folio,int bit_nr)1460 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1461 {
1462 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1463 }
1464 EXPORT_SYMBOL(folio_wait_bit_killable);
1465
1466 /**
1467 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1468 * @folio: The folio to wait for.
1469 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1470 *
1471 * The caller should hold a reference on @folio. They expect the page to
1472 * become unlocked relatively soon, but do not wish to hold up migration
1473 * (for example) by holding the reference while waiting for the folio to
1474 * come unlocked. After this function returns, the caller should not
1475 * dereference @folio.
1476 *
1477 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1478 */
folio_put_wait_locked(struct folio * folio,int state)1479 static int folio_put_wait_locked(struct folio *folio, int state)
1480 {
1481 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1482 }
1483
1484 /**
1485 * folio_unlock - Unlock a locked folio.
1486 * @folio: The folio.
1487 *
1488 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1489 *
1490 * Context: May be called from interrupt or process context. May not be
1491 * called from NMI context.
1492 */
folio_unlock(struct folio * folio)1493 void folio_unlock(struct folio *folio)
1494 {
1495 /* Bit 7 allows x86 to check the byte's sign bit */
1496 BUILD_BUG_ON(PG_waiters != 7);
1497 BUILD_BUG_ON(PG_locked > 7);
1498 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1499 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1500 folio_wake_bit(folio, PG_locked);
1501 }
1502 EXPORT_SYMBOL(folio_unlock);
1503
1504 /**
1505 * folio_end_read - End read on a folio.
1506 * @folio: The folio.
1507 * @success: True if all reads completed successfully.
1508 *
1509 * When all reads against a folio have completed, filesystems should
1510 * call this function to let the pagecache know that no more reads
1511 * are outstanding. This will unlock the folio and wake up any thread
1512 * sleeping on the lock. The folio will also be marked uptodate if all
1513 * reads succeeded.
1514 *
1515 * Context: May be called from interrupt or process context. May not be
1516 * called from NMI context.
1517 */
folio_end_read(struct folio * folio,bool success)1518 void folio_end_read(struct folio *folio, bool success)
1519 {
1520 unsigned long mask = 1 << PG_locked;
1521
1522 /* Must be in bottom byte for x86 to work */
1523 BUILD_BUG_ON(PG_uptodate > 7);
1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1525 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1526
1527 if (likely(success))
1528 mask |= 1 << PG_uptodate;
1529 if (folio_xor_flags_has_waiters(folio, mask))
1530 folio_wake_bit(folio, PG_locked);
1531 }
1532 EXPORT_SYMBOL(folio_end_read);
1533
1534 /**
1535 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1536 * @folio: The folio.
1537 *
1538 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1539 * it. The folio reference held for PG_private_2 being set is released.
1540 *
1541 * This is, for example, used when a netfs folio is being written to a local
1542 * disk cache, thereby allowing writes to the cache for the same folio to be
1543 * serialised.
1544 */
folio_end_private_2(struct folio * folio)1545 void folio_end_private_2(struct folio *folio)
1546 {
1547 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1548 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1549 folio_wake_bit(folio, PG_private_2);
1550 folio_put(folio);
1551 }
1552 EXPORT_SYMBOL(folio_end_private_2);
1553
1554 /**
1555 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1556 * @folio: The folio to wait on.
1557 *
1558 * Wait for PG_private_2 to be cleared on a folio.
1559 */
folio_wait_private_2(struct folio * folio)1560 void folio_wait_private_2(struct folio *folio)
1561 {
1562 while (folio_test_private_2(folio))
1563 folio_wait_bit(folio, PG_private_2);
1564 }
1565 EXPORT_SYMBOL(folio_wait_private_2);
1566
1567 /**
1568 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1569 * @folio: The folio to wait on.
1570 *
1571 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1572 * received by the calling task.
1573 *
1574 * Return:
1575 * - 0 if successful.
1576 * - -EINTR if a fatal signal was encountered.
1577 */
folio_wait_private_2_killable(struct folio * folio)1578 int folio_wait_private_2_killable(struct folio *folio)
1579 {
1580 int ret = 0;
1581
1582 while (folio_test_private_2(folio)) {
1583 ret = folio_wait_bit_killable(folio, PG_private_2);
1584 if (ret < 0)
1585 break;
1586 }
1587
1588 return ret;
1589 }
1590 EXPORT_SYMBOL(folio_wait_private_2_killable);
1591
filemap_end_dropbehind(struct folio * folio)1592 static void filemap_end_dropbehind(struct folio *folio)
1593 {
1594 struct address_space *mapping = folio->mapping;
1595
1596 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1597
1598 if (folio_test_writeback(folio) || folio_test_dirty(folio))
1599 return;
1600 if (!folio_test_clear_dropbehind(folio))
1601 return;
1602 if (mapping)
1603 folio_unmap_invalidate(mapping, folio, 0);
1604 }
1605
1606 /*
1607 * If folio was marked as dropbehind, then pages should be dropped when writeback
1608 * completes. Do that now. If we fail, it's likely because of a big folio -
1609 * just reset dropbehind for that case and latter completions should invalidate.
1610 */
folio_end_dropbehind(struct folio * folio)1611 void folio_end_dropbehind(struct folio *folio)
1612 {
1613 if (!folio_test_dropbehind(folio))
1614 return;
1615
1616 /*
1617 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1618 * but can happen if normal writeback just happens to find dirty folios
1619 * that were created as part of uncached writeback, and that writeback
1620 * would otherwise not need non-IRQ handling. Just skip the
1621 * invalidation in that case.
1622 */
1623 if (in_task() && folio_trylock(folio)) {
1624 filemap_end_dropbehind(folio);
1625 folio_unlock(folio);
1626 }
1627 }
1628 EXPORT_SYMBOL_GPL(folio_end_dropbehind);
1629
1630 /**
1631 * folio_end_writeback_no_dropbehind - End writeback against a folio.
1632 * @folio: The folio.
1633 *
1634 * The folio must actually be under writeback.
1635 * This call is intended for filesystems that need to defer dropbehind.
1636 *
1637 * Context: May be called from process or interrupt context.
1638 */
folio_end_writeback_no_dropbehind(struct folio * folio)1639 void folio_end_writeback_no_dropbehind(struct folio *folio)
1640 {
1641 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1642
1643 /*
1644 * folio_test_clear_reclaim() could be used here but it is an
1645 * atomic operation and overkill in this particular case. Failing
1646 * to shuffle a folio marked for immediate reclaim is too mild
1647 * a gain to justify taking an atomic operation penalty at the
1648 * end of every folio writeback.
1649 */
1650 if (folio_test_reclaim(folio)) {
1651 folio_clear_reclaim(folio);
1652 folio_rotate_reclaimable(folio);
1653 }
1654
1655 if (__folio_end_writeback(folio))
1656 folio_wake_bit(folio, PG_writeback);
1657
1658 acct_reclaim_writeback(folio);
1659 }
1660 EXPORT_SYMBOL_GPL(folio_end_writeback_no_dropbehind);
1661
1662 /**
1663 * folio_end_writeback - End writeback against a folio.
1664 * @folio: The folio.
1665 *
1666 * The folio must actually be under writeback.
1667 *
1668 * Context: May be called from process or interrupt context.
1669 */
folio_end_writeback(struct folio * folio)1670 void folio_end_writeback(struct folio *folio)
1671 {
1672 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1673
1674 /*
1675 * Writeback does not hold a folio reference of its own, relying
1676 * on truncation to wait for the clearing of PG_writeback.
1677 * But here we must make sure that the folio is not freed and
1678 * reused before the folio_wake_bit().
1679 */
1680 folio_get(folio);
1681 folio_end_writeback_no_dropbehind(folio);
1682 folio_end_dropbehind(folio);
1683 folio_put(folio);
1684 }
1685 EXPORT_SYMBOL(folio_end_writeback);
1686
1687 /**
1688 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1689 * @folio: The folio to lock
1690 */
__folio_lock(struct folio * folio)1691 void __folio_lock(struct folio *folio)
1692 {
1693 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1694 EXCLUSIVE);
1695 }
1696 EXPORT_SYMBOL(__folio_lock);
1697
__folio_lock_killable(struct folio * folio)1698 int __folio_lock_killable(struct folio *folio)
1699 {
1700 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1701 EXCLUSIVE);
1702 }
1703 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1704
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1705 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1706 {
1707 struct wait_queue_head *q = folio_waitqueue(folio);
1708 int ret;
1709
1710 wait->folio = folio;
1711 wait->bit_nr = PG_locked;
1712
1713 spin_lock_irq(&q->lock);
1714 __add_wait_queue_entry_tail(q, &wait->wait);
1715 folio_set_waiters(folio);
1716 ret = !folio_trylock(folio);
1717 /*
1718 * If we were successful now, we know we're still on the
1719 * waitqueue as we're still under the lock. This means it's
1720 * safe to remove and return success, we know the callback
1721 * isn't going to trigger.
1722 */
1723 if (!ret)
1724 __remove_wait_queue(q, &wait->wait);
1725 else
1726 ret = -EIOCBQUEUED;
1727 spin_unlock_irq(&q->lock);
1728 return ret;
1729 }
1730
1731 /*
1732 * Return values:
1733 * 0 - folio is locked.
1734 * non-zero - folio is not locked.
1735 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1736 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1737 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1738 *
1739 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1740 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1741 */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1742 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1743 {
1744 unsigned int flags = vmf->flags;
1745
1746 if (fault_flag_allow_retry_first(flags)) {
1747 /*
1748 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1749 * released even though returning VM_FAULT_RETRY.
1750 */
1751 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1752 return VM_FAULT_RETRY;
1753
1754 release_fault_lock(vmf);
1755 if (flags & FAULT_FLAG_KILLABLE)
1756 folio_wait_locked_killable(folio);
1757 else
1758 folio_wait_locked(folio);
1759 return VM_FAULT_RETRY;
1760 }
1761 if (flags & FAULT_FLAG_KILLABLE) {
1762 bool ret;
1763
1764 ret = __folio_lock_killable(folio);
1765 if (ret) {
1766 release_fault_lock(vmf);
1767 return VM_FAULT_RETRY;
1768 }
1769 } else {
1770 __folio_lock(folio);
1771 }
1772
1773 return 0;
1774 }
1775
1776 /**
1777 * page_cache_next_miss() - Find the next gap in the page cache.
1778 * @mapping: Mapping.
1779 * @index: Index.
1780 * @max_scan: Maximum range to search.
1781 *
1782 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1783 * gap with the lowest index.
1784 *
1785 * This function may be called under the rcu_read_lock. However, this will
1786 * not atomically search a snapshot of the cache at a single point in time.
1787 * For example, if a gap is created at index 5, then subsequently a gap is
1788 * created at index 10, page_cache_next_miss covering both indices may
1789 * return 10 if called under the rcu_read_lock.
1790 *
1791 * Return: The index of the gap if found, otherwise an index outside the
1792 * range specified (in which case 'return - index >= max_scan' will be true).
1793 * In the rare case of index wrap-around, 0 will be returned.
1794 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1795 pgoff_t page_cache_next_miss(struct address_space *mapping,
1796 pgoff_t index, unsigned long max_scan)
1797 {
1798 XA_STATE(xas, &mapping->i_pages, index);
1799 unsigned long nr = max_scan;
1800
1801 while (nr--) {
1802 void *entry = xas_next(&xas);
1803 if (!entry || xa_is_value(entry))
1804 return xas.xa_index;
1805 if (xas.xa_index == 0)
1806 return 0;
1807 }
1808
1809 return index + max_scan;
1810 }
1811 EXPORT_SYMBOL(page_cache_next_miss);
1812
1813 /**
1814 * page_cache_prev_miss() - Find the previous gap in the page cache.
1815 * @mapping: Mapping.
1816 * @index: Index.
1817 * @max_scan: Maximum range to search.
1818 *
1819 * Search the range [max(index - max_scan + 1, 0), index] for the
1820 * gap with the highest index.
1821 *
1822 * This function may be called under the rcu_read_lock. However, this will
1823 * not atomically search a snapshot of the cache at a single point in time.
1824 * For example, if a gap is created at index 10, then subsequently a gap is
1825 * created at index 5, page_cache_prev_miss() covering both indices may
1826 * return 5 if called under the rcu_read_lock.
1827 *
1828 * Return: The index of the gap if found, otherwise an index outside the
1829 * range specified (in which case 'index - return >= max_scan' will be true).
1830 * In the rare case of wrap-around, ULONG_MAX will be returned.
1831 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1832 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1833 pgoff_t index, unsigned long max_scan)
1834 {
1835 XA_STATE(xas, &mapping->i_pages, index);
1836
1837 while (max_scan--) {
1838 void *entry = xas_prev(&xas);
1839 if (!entry || xa_is_value(entry))
1840 break;
1841 if (xas.xa_index == ULONG_MAX)
1842 break;
1843 }
1844
1845 return xas.xa_index;
1846 }
1847 EXPORT_SYMBOL(page_cache_prev_miss);
1848
1849 /*
1850 * Lockless page cache protocol:
1851 * On the lookup side:
1852 * 1. Load the folio from i_pages
1853 * 2. Increment the refcount if it's not zero
1854 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1855 *
1856 * On the removal side:
1857 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1858 * B. Remove the page from i_pages
1859 * C. Return the page to the page allocator
1860 *
1861 * This means that any page may have its reference count temporarily
1862 * increased by a speculative page cache (or GUP-fast) lookup as it can
1863 * be allocated by another user before the RCU grace period expires.
1864 * Because the refcount temporarily acquired here may end up being the
1865 * last refcount on the page, any page allocation must be freeable by
1866 * folio_put().
1867 */
1868
1869 /*
1870 * filemap_get_entry - Get a page cache entry.
1871 * @mapping: the address_space to search
1872 * @index: The page cache index.
1873 *
1874 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1875 * it is returned with an increased refcount. If it is a shadow entry
1876 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1877 * it is returned without further action.
1878 *
1879 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1880 */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1881 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1882 {
1883 XA_STATE(xas, &mapping->i_pages, index);
1884 struct folio *folio;
1885
1886 rcu_read_lock();
1887 repeat:
1888 xas_reset(&xas);
1889 folio = xas_load(&xas);
1890 if (xas_retry(&xas, folio))
1891 goto repeat;
1892 /*
1893 * A shadow entry of a recently evicted page, or a swap entry from
1894 * shmem/tmpfs. Return it without attempting to raise page count.
1895 */
1896 if (!folio || xa_is_value(folio))
1897 goto out;
1898
1899 if (!folio_try_get(folio))
1900 goto repeat;
1901
1902 if (unlikely(folio != xas_reload(&xas))) {
1903 folio_put(folio);
1904 goto repeat;
1905 }
1906 out:
1907 rcu_read_unlock();
1908
1909 return folio;
1910 }
1911
1912 /**
1913 * __filemap_get_folio - Find and get a reference to a folio.
1914 * @mapping: The address_space to search.
1915 * @index: The page index.
1916 * @fgp_flags: %FGP flags modify how the folio is returned.
1917 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1918 *
1919 * Looks up the page cache entry at @mapping & @index.
1920 *
1921 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1922 * if the %GFP flags specified for %FGP_CREAT are atomic.
1923 *
1924 * If this function returns a folio, it is returned with an increased refcount.
1925 *
1926 * Return: The found folio or an ERR_PTR() otherwise.
1927 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1928 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1929 fgf_t fgp_flags, gfp_t gfp)
1930 {
1931 struct folio *folio;
1932
1933 repeat:
1934 folio = filemap_get_entry(mapping, index);
1935 if (xa_is_value(folio))
1936 folio = NULL;
1937 if (!folio)
1938 goto no_page;
1939
1940 if (fgp_flags & FGP_LOCK) {
1941 if (fgp_flags & FGP_NOWAIT) {
1942 if (!folio_trylock(folio)) {
1943 folio_put(folio);
1944 return ERR_PTR(-EAGAIN);
1945 }
1946 } else {
1947 folio_lock(folio);
1948 }
1949
1950 /* Has the page been truncated? */
1951 if (unlikely(folio->mapping != mapping)) {
1952 folio_unlock(folio);
1953 folio_put(folio);
1954 goto repeat;
1955 }
1956 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1957 }
1958
1959 if (fgp_flags & FGP_ACCESSED)
1960 folio_mark_accessed(folio);
1961 else if (fgp_flags & FGP_WRITE) {
1962 /* Clear idle flag for buffer write */
1963 if (folio_test_idle(folio))
1964 folio_clear_idle(folio);
1965 }
1966
1967 if (fgp_flags & FGP_STABLE)
1968 folio_wait_stable(folio);
1969 no_page:
1970 if (!folio && (fgp_flags & FGP_CREAT)) {
1971 unsigned int min_order = mapping_min_folio_order(mapping);
1972 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1973 int err;
1974 index = mapping_align_index(mapping, index);
1975
1976 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1977 gfp |= __GFP_WRITE;
1978 if (fgp_flags & FGP_NOFS)
1979 gfp &= ~__GFP_FS;
1980 if (fgp_flags & FGP_NOWAIT) {
1981 gfp &= ~GFP_KERNEL;
1982 gfp |= GFP_NOWAIT;
1983 }
1984 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1985 fgp_flags |= FGP_LOCK;
1986
1987 if (order > mapping_max_folio_order(mapping))
1988 order = mapping_max_folio_order(mapping);
1989 /* If we're not aligned, allocate a smaller folio */
1990 if (index & ((1UL << order) - 1))
1991 order = __ffs(index);
1992
1993 do {
1994 gfp_t alloc_gfp = gfp;
1995
1996 err = -ENOMEM;
1997 if (order > min_order)
1998 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1999 folio = filemap_alloc_folio(alloc_gfp, order);
2000 if (!folio)
2001 continue;
2002
2003 /* Init accessed so avoid atomic mark_page_accessed later */
2004 if (fgp_flags & FGP_ACCESSED)
2005 __folio_set_referenced(folio);
2006 if (fgp_flags & FGP_DONTCACHE)
2007 __folio_set_dropbehind(folio);
2008
2009 err = filemap_add_folio(mapping, folio, index, gfp);
2010 if (!err)
2011 break;
2012 folio_put(folio);
2013 folio = NULL;
2014 } while (order-- > min_order);
2015
2016 if (err == -EEXIST)
2017 goto repeat;
2018 if (err) {
2019 /*
2020 * When NOWAIT I/O fails to allocate folios this could
2021 * be due to a nonblocking memory allocation and not
2022 * because the system actually is out of memory.
2023 * Return -EAGAIN so that there caller retries in a
2024 * blocking fashion instead of propagating -ENOMEM
2025 * to the application.
2026 */
2027 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
2028 err = -EAGAIN;
2029 return ERR_PTR(err);
2030 }
2031 /*
2032 * filemap_add_folio locks the page, and for mmap
2033 * we expect an unlocked page.
2034 */
2035 if (folio && (fgp_flags & FGP_FOR_MMAP))
2036 folio_unlock(folio);
2037 }
2038
2039 if (!folio)
2040 return ERR_PTR(-ENOENT);
2041 /* not an uncached lookup, clear uncached if set */
2042 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2043 folio_clear_dropbehind(folio);
2044 return folio;
2045 }
2046 EXPORT_SYMBOL(__filemap_get_folio);
2047
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)2048 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2049 xa_mark_t mark)
2050 {
2051 struct folio *folio;
2052
2053 retry:
2054 if (mark == XA_PRESENT)
2055 folio = xas_find(xas, max);
2056 else
2057 folio = xas_find_marked(xas, max, mark);
2058
2059 if (xas_retry(xas, folio))
2060 goto retry;
2061 /*
2062 * A shadow entry of a recently evicted page, a swap
2063 * entry from shmem/tmpfs or a DAX entry. Return it
2064 * without attempting to raise page count.
2065 */
2066 if (!folio || xa_is_value(folio))
2067 return folio;
2068
2069 if (!folio_try_get(folio))
2070 goto reset;
2071
2072 if (unlikely(folio != xas_reload(xas))) {
2073 folio_put(folio);
2074 goto reset;
2075 }
2076
2077 return folio;
2078 reset:
2079 xas_reset(xas);
2080 goto retry;
2081 }
2082
2083 /**
2084 * find_get_entries - gang pagecache lookup
2085 * @mapping: The address_space to search
2086 * @start: The starting page cache index
2087 * @end: The final page index (inclusive).
2088 * @fbatch: Where the resulting entries are placed.
2089 * @indices: The cache indices corresponding to the entries in @entries
2090 *
2091 * find_get_entries() will search for and return a batch of entries in
2092 * the mapping. The entries are placed in @fbatch. find_get_entries()
2093 * takes a reference on any actual folios it returns.
2094 *
2095 * The entries have ascending indexes. The indices may not be consecutive
2096 * due to not-present entries or large folios.
2097 *
2098 * Any shadow entries of evicted folios, or swap entries from
2099 * shmem/tmpfs, are included in the returned array.
2100 *
2101 * Return: The number of entries which were found.
2102 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2103 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2104 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2105 {
2106 XA_STATE(xas, &mapping->i_pages, *start);
2107 struct folio *folio;
2108
2109 rcu_read_lock();
2110 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2111 indices[fbatch->nr] = xas.xa_index;
2112 if (!folio_batch_add(fbatch, folio))
2113 break;
2114 }
2115
2116 if (folio_batch_count(fbatch)) {
2117 unsigned long nr;
2118 int idx = folio_batch_count(fbatch) - 1;
2119
2120 folio = fbatch->folios[idx];
2121 if (!xa_is_value(folio))
2122 nr = folio_nr_pages(folio);
2123 else
2124 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2125 *start = round_down(indices[idx] + nr, nr);
2126 }
2127 rcu_read_unlock();
2128
2129 return folio_batch_count(fbatch);
2130 }
2131
2132 /**
2133 * find_lock_entries - Find a batch of pagecache entries.
2134 * @mapping: The address_space to search.
2135 * @start: The starting page cache index.
2136 * @end: The final page index (inclusive).
2137 * @fbatch: Where the resulting entries are placed.
2138 * @indices: The cache indices of the entries in @fbatch.
2139 *
2140 * find_lock_entries() will return a batch of entries from @mapping.
2141 * Swap, shadow and DAX entries are included. Folios are returned
2142 * locked and with an incremented refcount. Folios which are locked
2143 * by somebody else or under writeback are skipped. Folios which are
2144 * partially outside the range are not returned.
2145 *
2146 * The entries have ascending indexes. The indices may not be consecutive
2147 * due to not-present entries, large folios, folios which could not be
2148 * locked or folios under writeback.
2149 *
2150 * Return: The number of entries which were found.
2151 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2152 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2153 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2154 {
2155 XA_STATE(xas, &mapping->i_pages, *start);
2156 struct folio *folio;
2157
2158 rcu_read_lock();
2159 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2160 unsigned long base;
2161 unsigned long nr;
2162
2163 if (!xa_is_value(folio)) {
2164 nr = folio_nr_pages(folio);
2165 base = folio->index;
2166 /* Omit large folio which begins before the start */
2167 if (base < *start)
2168 goto put;
2169 /* Omit large folio which extends beyond the end */
2170 if (base + nr - 1 > end)
2171 goto put;
2172 if (!folio_trylock(folio))
2173 goto put;
2174 if (folio->mapping != mapping ||
2175 folio_test_writeback(folio))
2176 goto unlock;
2177 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2178 folio);
2179 } else {
2180 nr = 1 << xas_get_order(&xas);
2181 base = xas.xa_index & ~(nr - 1);
2182 /* Omit order>0 value which begins before the start */
2183 if (base < *start)
2184 continue;
2185 /* Omit order>0 value which extends beyond the end */
2186 if (base + nr - 1 > end)
2187 break;
2188 }
2189
2190 /* Update start now so that last update is correct on return */
2191 *start = base + nr;
2192 indices[fbatch->nr] = xas.xa_index;
2193 if (!folio_batch_add(fbatch, folio))
2194 break;
2195 continue;
2196 unlock:
2197 folio_unlock(folio);
2198 put:
2199 folio_put(folio);
2200 }
2201 rcu_read_unlock();
2202
2203 return folio_batch_count(fbatch);
2204 }
2205
2206 /**
2207 * filemap_get_folios - Get a batch of folios
2208 * @mapping: The address_space to search
2209 * @start: The starting page index
2210 * @end: The final page index (inclusive)
2211 * @fbatch: The batch to fill.
2212 *
2213 * Search for and return a batch of folios in the mapping starting at
2214 * index @start and up to index @end (inclusive). The folios are returned
2215 * in @fbatch with an elevated reference count.
2216 *
2217 * Return: The number of folios which were found.
2218 * We also update @start to index the next folio for the traversal.
2219 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2220 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2221 pgoff_t end, struct folio_batch *fbatch)
2222 {
2223 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2224 }
2225 EXPORT_SYMBOL(filemap_get_folios);
2226
2227 /**
2228 * filemap_get_folios_contig - Get a batch of contiguous folios
2229 * @mapping: The address_space to search
2230 * @start: The starting page index
2231 * @end: The final page index (inclusive)
2232 * @fbatch: The batch to fill
2233 *
2234 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2235 * except the returned folios are guaranteed to be contiguous. This may
2236 * not return all contiguous folios if the batch gets filled up.
2237 *
2238 * Return: The number of folios found.
2239 * Also update @start to be positioned for traversal of the next folio.
2240 */
2241
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2242 unsigned filemap_get_folios_contig(struct address_space *mapping,
2243 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2244 {
2245 XA_STATE(xas, &mapping->i_pages, *start);
2246 unsigned long nr;
2247 struct folio *folio;
2248
2249 rcu_read_lock();
2250
2251 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2252 folio = xas_next(&xas)) {
2253 if (xas_retry(&xas, folio))
2254 continue;
2255 /*
2256 * If the entry has been swapped out, we can stop looking.
2257 * No current caller is looking for DAX entries.
2258 */
2259 if (xa_is_value(folio))
2260 goto update_start;
2261
2262 /* If we landed in the middle of a THP, continue at its end. */
2263 if (xa_is_sibling(folio))
2264 goto update_start;
2265
2266 if (!folio_try_get(folio))
2267 goto retry;
2268
2269 if (unlikely(folio != xas_reload(&xas)))
2270 goto put_folio;
2271
2272 if (!folio_batch_add(fbatch, folio)) {
2273 nr = folio_nr_pages(folio);
2274 *start = folio->index + nr;
2275 goto out;
2276 }
2277 xas_advance(&xas, folio_next_index(folio) - 1);
2278 continue;
2279 put_folio:
2280 folio_put(folio);
2281
2282 retry:
2283 xas_reset(&xas);
2284 }
2285
2286 update_start:
2287 nr = folio_batch_count(fbatch);
2288
2289 if (nr) {
2290 folio = fbatch->folios[nr - 1];
2291 *start = folio_next_index(folio);
2292 }
2293 out:
2294 rcu_read_unlock();
2295 return folio_batch_count(fbatch);
2296 }
2297 EXPORT_SYMBOL(filemap_get_folios_contig);
2298
2299 /**
2300 * filemap_get_folios_tag - Get a batch of folios matching @tag
2301 * @mapping: The address_space to search
2302 * @start: The starting page index
2303 * @end: The final page index (inclusive)
2304 * @tag: The tag index
2305 * @fbatch: The batch to fill
2306 *
2307 * The first folio may start before @start; if it does, it will contain
2308 * @start. The final folio may extend beyond @end; if it does, it will
2309 * contain @end. The folios have ascending indices. There may be gaps
2310 * between the folios if there are indices which have no folio in the
2311 * page cache. If folios are added to or removed from the page cache
2312 * while this is running, they may or may not be found by this call.
2313 * Only returns folios that are tagged with @tag.
2314 *
2315 * Return: The number of folios found.
2316 * Also update @start to index the next folio for traversal.
2317 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2318 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2319 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2320 {
2321 XA_STATE(xas, &mapping->i_pages, *start);
2322 struct folio *folio;
2323
2324 rcu_read_lock();
2325 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2326 /*
2327 * Shadow entries should never be tagged, but this iteration
2328 * is lockless so there is a window for page reclaim to evict
2329 * a page we saw tagged. Skip over it.
2330 */
2331 if (xa_is_value(folio))
2332 continue;
2333 if (!folio_batch_add(fbatch, folio)) {
2334 unsigned long nr = folio_nr_pages(folio);
2335 *start = folio->index + nr;
2336 goto out;
2337 }
2338 }
2339 /*
2340 * We come here when there is no page beyond @end. We take care to not
2341 * overflow the index @start as it confuses some of the callers. This
2342 * breaks the iteration when there is a page at index -1 but that is
2343 * already broke anyway.
2344 */
2345 if (end == (pgoff_t)-1)
2346 *start = (pgoff_t)-1;
2347 else
2348 *start = end + 1;
2349 out:
2350 rcu_read_unlock();
2351
2352 return folio_batch_count(fbatch);
2353 }
2354 EXPORT_SYMBOL(filemap_get_folios_tag);
2355
2356 /**
2357 * filemap_get_folios_dirty - Get a batch of dirty folios
2358 * @mapping: The address_space to search
2359 * @start: The starting folio index
2360 * @end: The final folio index (inclusive)
2361 * @fbatch: The batch to fill
2362 *
2363 * filemap_get_folios_dirty() works exactly like filemap_get_folios(), except
2364 * the returned folios are presumed to be dirty or undergoing writeback. Dirty
2365 * state is presumed because we don't block on folio lock nor want to miss
2366 * folios. Callers that need to can recheck state upon locking the folio.
2367 *
2368 * This may not return all dirty folios if the batch gets filled up.
2369 *
2370 * Return: The number of folios found.
2371 * Also update @start to be positioned for traversal of the next folio.
2372 */
filemap_get_folios_dirty(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2373 unsigned filemap_get_folios_dirty(struct address_space *mapping, pgoff_t *start,
2374 pgoff_t end, struct folio_batch *fbatch)
2375 {
2376 XA_STATE(xas, &mapping->i_pages, *start);
2377 struct folio *folio;
2378
2379 rcu_read_lock();
2380 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2381 if (xa_is_value(folio))
2382 continue;
2383 if (folio_trylock(folio)) {
2384 bool clean = !folio_test_dirty(folio) &&
2385 !folio_test_writeback(folio);
2386 folio_unlock(folio);
2387 if (clean) {
2388 folio_put(folio);
2389 continue;
2390 }
2391 }
2392 if (!folio_batch_add(fbatch, folio)) {
2393 unsigned long nr = folio_nr_pages(folio);
2394 *start = folio->index + nr;
2395 goto out;
2396 }
2397 }
2398 /*
2399 * We come here when there is no folio beyond @end. We take care to not
2400 * overflow the index @start as it confuses some of the callers. This
2401 * breaks the iteration when there is a folio at index -1 but that is
2402 * already broke anyway.
2403 */
2404 if (end == (pgoff_t)-1)
2405 *start = (pgoff_t)-1;
2406 else
2407 *start = end + 1;
2408 out:
2409 rcu_read_unlock();
2410
2411 return folio_batch_count(fbatch);
2412 }
2413
2414 /*
2415 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2416 * a _large_ part of the i/o request. Imagine the worst scenario:
2417 *
2418 * ---R__________________________________________B__________
2419 * ^ reading here ^ bad block(assume 4k)
2420 *
2421 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2422 * => failing the whole request => read(R) => read(R+1) =>
2423 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2424 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2425 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2426 *
2427 * It is going insane. Fix it by quickly scaling down the readahead size.
2428 */
shrink_readahead_size_eio(struct file_ra_state * ra)2429 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2430 {
2431 ra->ra_pages /= 4;
2432 }
2433
2434 /*
2435 * filemap_get_read_batch - Get a batch of folios for read
2436 *
2437 * Get a batch of folios which represent a contiguous range of bytes in
2438 * the file. No exceptional entries will be returned. If @index is in
2439 * the middle of a folio, the entire folio will be returned. The last
2440 * folio in the batch may have the readahead flag set or the uptodate flag
2441 * clear so that the caller can take the appropriate action.
2442 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2443 static void filemap_get_read_batch(struct address_space *mapping,
2444 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2445 {
2446 XA_STATE(xas, &mapping->i_pages, index);
2447 struct folio *folio;
2448
2449 rcu_read_lock();
2450 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2451 if (xas_retry(&xas, folio))
2452 continue;
2453 if (xas.xa_index > max || xa_is_value(folio))
2454 break;
2455 if (xa_is_sibling(folio))
2456 break;
2457 if (!folio_try_get(folio))
2458 goto retry;
2459
2460 if (unlikely(folio != xas_reload(&xas)))
2461 goto put_folio;
2462
2463 if (!folio_batch_add(fbatch, folio))
2464 break;
2465 if (!folio_test_uptodate(folio))
2466 break;
2467 if (folio_test_readahead(folio))
2468 break;
2469 xas_advance(&xas, folio_next_index(folio) - 1);
2470 continue;
2471 put_folio:
2472 folio_put(folio);
2473 retry:
2474 xas_reset(&xas);
2475 }
2476 rcu_read_unlock();
2477 }
2478
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2479 static int filemap_read_folio(struct file *file, filler_t filler,
2480 struct folio *folio)
2481 {
2482 bool workingset = folio_test_workingset(folio);
2483 unsigned long pflags;
2484 int error;
2485
2486 /* Start the actual read. The read will unlock the page. */
2487 if (unlikely(workingset))
2488 psi_memstall_enter(&pflags);
2489 error = filler(file, folio);
2490 if (unlikely(workingset))
2491 psi_memstall_leave(&pflags);
2492 if (error)
2493 return error;
2494
2495 error = folio_wait_locked_killable(folio);
2496 if (error)
2497 return error;
2498 if (folio_test_uptodate(folio))
2499 return 0;
2500 if (file)
2501 shrink_readahead_size_eio(&file->f_ra);
2502 return -EIO;
2503 }
2504
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2505 static bool filemap_range_uptodate(struct address_space *mapping,
2506 loff_t pos, size_t count, struct folio *folio,
2507 bool need_uptodate)
2508 {
2509 if (folio_test_uptodate(folio))
2510 return true;
2511 /* pipes can't handle partially uptodate pages */
2512 if (need_uptodate)
2513 return false;
2514 if (!mapping->a_ops->is_partially_uptodate)
2515 return false;
2516 if (mapping->host->i_blkbits >= folio_shift(folio))
2517 return false;
2518
2519 if (folio_pos(folio) > pos) {
2520 count -= folio_pos(folio) - pos;
2521 pos = 0;
2522 } else {
2523 pos -= folio_pos(folio);
2524 }
2525
2526 if (pos == 0 && count >= folio_size(folio))
2527 return false;
2528
2529 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2530 }
2531
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2532 static int filemap_update_page(struct kiocb *iocb,
2533 struct address_space *mapping, size_t count,
2534 struct folio *folio, bool need_uptodate)
2535 {
2536 int error;
2537
2538 if (iocb->ki_flags & IOCB_NOWAIT) {
2539 if (!filemap_invalidate_trylock_shared(mapping))
2540 return -EAGAIN;
2541 } else {
2542 filemap_invalidate_lock_shared(mapping);
2543 }
2544
2545 if (!folio_trylock(folio)) {
2546 error = -EAGAIN;
2547 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2548 goto unlock_mapping;
2549 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2550 filemap_invalidate_unlock_shared(mapping);
2551 /*
2552 * This is where we usually end up waiting for a
2553 * previously submitted readahead to finish.
2554 */
2555 folio_put_wait_locked(folio, TASK_KILLABLE);
2556 return AOP_TRUNCATED_PAGE;
2557 }
2558 error = __folio_lock_async(folio, iocb->ki_waitq);
2559 if (error)
2560 goto unlock_mapping;
2561 }
2562
2563 error = AOP_TRUNCATED_PAGE;
2564 if (!folio->mapping)
2565 goto unlock;
2566
2567 error = 0;
2568 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2569 need_uptodate))
2570 goto unlock;
2571
2572 error = -EAGAIN;
2573 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2574 goto unlock;
2575
2576 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2577 folio);
2578 goto unlock_mapping;
2579 unlock:
2580 folio_unlock(folio);
2581 unlock_mapping:
2582 filemap_invalidate_unlock_shared(mapping);
2583 if (error == AOP_TRUNCATED_PAGE)
2584 folio_put(folio);
2585 return error;
2586 }
2587
filemap_create_folio(struct kiocb * iocb,struct folio_batch * fbatch)2588 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2589 {
2590 struct address_space *mapping = iocb->ki_filp->f_mapping;
2591 struct folio *folio;
2592 int error;
2593 unsigned int min_order = mapping_min_folio_order(mapping);
2594 pgoff_t index;
2595
2596 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2597 return -EAGAIN;
2598
2599 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2600 if (!folio)
2601 return -ENOMEM;
2602 if (iocb->ki_flags & IOCB_DONTCACHE)
2603 __folio_set_dropbehind(folio);
2604
2605 /*
2606 * Protect against truncate / hole punch. Grabbing invalidate_lock
2607 * here assures we cannot instantiate and bring uptodate new
2608 * pagecache folios after evicting page cache during truncate
2609 * and before actually freeing blocks. Note that we could
2610 * release invalidate_lock after inserting the folio into
2611 * the page cache as the locked folio would then be enough to
2612 * synchronize with hole punching. But there are code paths
2613 * such as filemap_update_page() filling in partially uptodate
2614 * pages or ->readahead() that need to hold invalidate_lock
2615 * while mapping blocks for IO so let's hold the lock here as
2616 * well to keep locking rules simple.
2617 */
2618 filemap_invalidate_lock_shared(mapping);
2619 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2620 error = filemap_add_folio(mapping, folio, index,
2621 mapping_gfp_constraint(mapping, GFP_KERNEL));
2622 if (error == -EEXIST)
2623 error = AOP_TRUNCATED_PAGE;
2624 if (error)
2625 goto error;
2626
2627 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2628 folio);
2629 if (error)
2630 goto error;
2631
2632 filemap_invalidate_unlock_shared(mapping);
2633 folio_batch_add(fbatch, folio);
2634 return 0;
2635 error:
2636 filemap_invalidate_unlock_shared(mapping);
2637 folio_put(folio);
2638 return error;
2639 }
2640
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2641 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2642 struct address_space *mapping, struct folio *folio,
2643 pgoff_t last_index)
2644 {
2645 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2646
2647 if (iocb->ki_flags & IOCB_NOIO)
2648 return -EAGAIN;
2649 if (iocb->ki_flags & IOCB_DONTCACHE)
2650 ractl.dropbehind = 1;
2651 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2652 return 0;
2653 }
2654
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2655 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2656 struct folio_batch *fbatch, bool need_uptodate)
2657 {
2658 struct file *filp = iocb->ki_filp;
2659 struct address_space *mapping = filp->f_mapping;
2660 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2661 pgoff_t last_index;
2662 struct folio *folio;
2663 unsigned int flags;
2664 int err = 0;
2665
2666 /* "last_index" is the index of the folio beyond the end of the read */
2667 last_index = round_up(iocb->ki_pos + count,
2668 mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT;
2669 retry:
2670 if (fatal_signal_pending(current))
2671 return -EINTR;
2672
2673 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2674 if (!folio_batch_count(fbatch)) {
2675 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2676
2677 if (iocb->ki_flags & IOCB_NOIO)
2678 return -EAGAIN;
2679 if (iocb->ki_flags & IOCB_NOWAIT)
2680 flags = memalloc_noio_save();
2681 if (iocb->ki_flags & IOCB_DONTCACHE)
2682 ractl.dropbehind = 1;
2683 page_cache_sync_ra(&ractl, last_index - index);
2684 if (iocb->ki_flags & IOCB_NOWAIT)
2685 memalloc_noio_restore(flags);
2686 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2687 }
2688 if (!folio_batch_count(fbatch)) {
2689 err = filemap_create_folio(iocb, fbatch);
2690 if (err == AOP_TRUNCATED_PAGE)
2691 goto retry;
2692 return err;
2693 }
2694
2695 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2696 if (folio_test_readahead(folio)) {
2697 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2698 if (err)
2699 goto err;
2700 }
2701 if (!folio_test_uptodate(folio)) {
2702 if (folio_batch_count(fbatch) > 1) {
2703 err = -EAGAIN;
2704 goto err;
2705 }
2706 err = filemap_update_page(iocb, mapping, count, folio,
2707 need_uptodate);
2708 if (err)
2709 goto err;
2710 }
2711
2712 trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2713 return 0;
2714 err:
2715 if (err < 0)
2716 folio_put(folio);
2717 if (likely(--fbatch->nr))
2718 return 0;
2719 if (err == AOP_TRUNCATED_PAGE)
2720 goto retry;
2721 return err;
2722 }
2723
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2724 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2725 {
2726 unsigned int shift = folio_shift(folio);
2727
2728 return (pos1 >> shift == pos2 >> shift);
2729 }
2730
filemap_end_dropbehind_read(struct folio * folio)2731 static void filemap_end_dropbehind_read(struct folio *folio)
2732 {
2733 if (!folio_test_dropbehind(folio))
2734 return;
2735 if (folio_test_writeback(folio) || folio_test_dirty(folio))
2736 return;
2737 if (folio_trylock(folio)) {
2738 filemap_end_dropbehind(folio);
2739 folio_unlock(folio);
2740 }
2741 }
2742
2743 /**
2744 * filemap_read - Read data from the page cache.
2745 * @iocb: The iocb to read.
2746 * @iter: Destination for the data.
2747 * @already_read: Number of bytes already read by the caller.
2748 *
2749 * Copies data from the page cache. If the data is not currently present,
2750 * uses the readahead and read_folio address_space operations to fetch it.
2751 *
2752 * Return: Total number of bytes copied, including those already read by
2753 * the caller. If an error happens before any bytes are copied, returns
2754 * a negative error number.
2755 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2756 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2757 ssize_t already_read)
2758 {
2759 struct file *filp = iocb->ki_filp;
2760 struct file_ra_state *ra = &filp->f_ra;
2761 struct address_space *mapping = filp->f_mapping;
2762 struct inode *inode = mapping->host;
2763 struct folio_batch fbatch;
2764 int i, error = 0;
2765 bool writably_mapped;
2766 loff_t isize, end_offset;
2767 loff_t last_pos = ra->prev_pos;
2768
2769 if (unlikely(iocb->ki_pos < 0))
2770 return -EINVAL;
2771 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2772 return 0;
2773 if (unlikely(!iov_iter_count(iter)))
2774 return 0;
2775
2776 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2777 folio_batch_init(&fbatch);
2778
2779 do {
2780 cond_resched();
2781
2782 /*
2783 * If we've already successfully copied some data, then we
2784 * can no longer safely return -EIOCBQUEUED. Hence mark
2785 * an async read NOWAIT at that point.
2786 */
2787 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2788 iocb->ki_flags |= IOCB_NOWAIT;
2789
2790 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2791 break;
2792
2793 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2794 if (error < 0)
2795 break;
2796
2797 /*
2798 * i_size must be checked after we know the pages are Uptodate.
2799 *
2800 * Checking i_size after the check allows us to calculate
2801 * the correct value for "nr", which means the zero-filled
2802 * part of the page is not copied back to userspace (unless
2803 * another truncate extends the file - this is desired though).
2804 */
2805 isize = i_size_read(inode);
2806 if (unlikely(iocb->ki_pos >= isize))
2807 goto put_folios;
2808 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2809
2810 /*
2811 * Once we start copying data, we don't want to be touching any
2812 * cachelines that might be contended:
2813 */
2814 writably_mapped = mapping_writably_mapped(mapping);
2815
2816 /*
2817 * When a read accesses the same folio several times, only
2818 * mark it as accessed the first time.
2819 */
2820 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2821 fbatch.folios[0]))
2822 folio_mark_accessed(fbatch.folios[0]);
2823
2824 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2825 struct folio *folio = fbatch.folios[i];
2826 size_t fsize = folio_size(folio);
2827 size_t offset = iocb->ki_pos & (fsize - 1);
2828 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2829 fsize - offset);
2830 size_t copied;
2831
2832 if (end_offset < folio_pos(folio))
2833 break;
2834 if (i > 0)
2835 folio_mark_accessed(folio);
2836 /*
2837 * If users can be writing to this folio using arbitrary
2838 * virtual addresses, take care of potential aliasing
2839 * before reading the folio on the kernel side.
2840 */
2841 if (writably_mapped)
2842 flush_dcache_folio(folio);
2843
2844 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2845
2846 already_read += copied;
2847 iocb->ki_pos += copied;
2848 last_pos = iocb->ki_pos;
2849
2850 if (copied < bytes) {
2851 error = -EFAULT;
2852 break;
2853 }
2854 }
2855 put_folios:
2856 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2857 struct folio *folio = fbatch.folios[i];
2858
2859 filemap_end_dropbehind_read(folio);
2860 folio_put(folio);
2861 }
2862 folio_batch_init(&fbatch);
2863 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2864
2865 file_accessed(filp);
2866 ra->prev_pos = last_pos;
2867 return already_read ? already_read : error;
2868 }
2869 EXPORT_SYMBOL_GPL(filemap_read);
2870
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2871 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2872 {
2873 struct address_space *mapping = iocb->ki_filp->f_mapping;
2874 loff_t pos = iocb->ki_pos;
2875 loff_t end = pos + count - 1;
2876
2877 if (iocb->ki_flags & IOCB_NOWAIT) {
2878 if (filemap_range_needs_writeback(mapping, pos, end))
2879 return -EAGAIN;
2880 return 0;
2881 }
2882
2883 return filemap_write_and_wait_range(mapping, pos, end);
2884 }
2885 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2886
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2887 int filemap_invalidate_pages(struct address_space *mapping,
2888 loff_t pos, loff_t end, bool nowait)
2889 {
2890 int ret;
2891
2892 if (nowait) {
2893 /* we could block if there are any pages in the range */
2894 if (filemap_range_has_page(mapping, pos, end))
2895 return -EAGAIN;
2896 } else {
2897 ret = filemap_write_and_wait_range(mapping, pos, end);
2898 if (ret)
2899 return ret;
2900 }
2901
2902 /*
2903 * After a write we want buffered reads to be sure to go to disk to get
2904 * the new data. We invalidate clean cached page from the region we're
2905 * about to write. We do this *before* the write so that we can return
2906 * without clobbering -EIOCBQUEUED from ->direct_IO().
2907 */
2908 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2909 end >> PAGE_SHIFT);
2910 }
2911
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2912 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2913 {
2914 struct address_space *mapping = iocb->ki_filp->f_mapping;
2915
2916 return filemap_invalidate_pages(mapping, iocb->ki_pos,
2917 iocb->ki_pos + count - 1,
2918 iocb->ki_flags & IOCB_NOWAIT);
2919 }
2920 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2921
2922 /**
2923 * generic_file_read_iter - generic filesystem read routine
2924 * @iocb: kernel I/O control block
2925 * @iter: destination for the data read
2926 *
2927 * This is the "read_iter()" routine for all filesystems
2928 * that can use the page cache directly.
2929 *
2930 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2931 * be returned when no data can be read without waiting for I/O requests
2932 * to complete; it doesn't prevent readahead.
2933 *
2934 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2935 * requests shall be made for the read or for readahead. When no data
2936 * can be read, -EAGAIN shall be returned. When readahead would be
2937 * triggered, a partial, possibly empty read shall be returned.
2938 *
2939 * Return:
2940 * * number of bytes copied, even for partial reads
2941 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2942 */
2943 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2944 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2945 {
2946 size_t count = iov_iter_count(iter);
2947 ssize_t retval = 0;
2948
2949 if (!count)
2950 return 0; /* skip atime */
2951
2952 if (iocb->ki_flags & IOCB_DIRECT) {
2953 struct file *file = iocb->ki_filp;
2954 struct address_space *mapping = file->f_mapping;
2955 struct inode *inode = mapping->host;
2956
2957 retval = kiocb_write_and_wait(iocb, count);
2958 if (retval < 0)
2959 return retval;
2960 file_accessed(file);
2961
2962 retval = mapping->a_ops->direct_IO(iocb, iter);
2963 if (retval >= 0) {
2964 iocb->ki_pos += retval;
2965 count -= retval;
2966 }
2967 if (retval != -EIOCBQUEUED)
2968 iov_iter_revert(iter, count - iov_iter_count(iter));
2969
2970 /*
2971 * Btrfs can have a short DIO read if we encounter
2972 * compressed extents, so if there was an error, or if
2973 * we've already read everything we wanted to, or if
2974 * there was a short read because we hit EOF, go ahead
2975 * and return. Otherwise fallthrough to buffered io for
2976 * the rest of the read. Buffered reads will not work for
2977 * DAX files, so don't bother trying.
2978 */
2979 if (retval < 0 || !count || IS_DAX(inode))
2980 return retval;
2981 if (iocb->ki_pos >= i_size_read(inode))
2982 return retval;
2983 }
2984
2985 return filemap_read(iocb, iter, retval);
2986 }
2987 EXPORT_SYMBOL(generic_file_read_iter);
2988
2989 /*
2990 * Splice subpages from a folio into a pipe.
2991 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2992 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2993 struct folio *folio, loff_t fpos, size_t size)
2994 {
2995 struct page *page;
2996 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2997
2998 page = folio_page(folio, offset / PAGE_SIZE);
2999 size = min(size, folio_size(folio) - offset);
3000 offset %= PAGE_SIZE;
3001
3002 while (spliced < size && !pipe_is_full(pipe)) {
3003 struct pipe_buffer *buf = pipe_head_buf(pipe);
3004 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
3005
3006 *buf = (struct pipe_buffer) {
3007 .ops = &page_cache_pipe_buf_ops,
3008 .page = page,
3009 .offset = offset,
3010 .len = part,
3011 };
3012 folio_get(folio);
3013 pipe->head++;
3014 page++;
3015 spliced += part;
3016 offset = 0;
3017 }
3018
3019 return spliced;
3020 }
3021
3022 /**
3023 * filemap_splice_read - Splice data from a file's pagecache into a pipe
3024 * @in: The file to read from
3025 * @ppos: Pointer to the file position to read from
3026 * @pipe: The pipe to splice into
3027 * @len: The amount to splice
3028 * @flags: The SPLICE_F_* flags
3029 *
3030 * This function gets folios from a file's pagecache and splices them into the
3031 * pipe. Readahead will be called as necessary to fill more folios. This may
3032 * be used for blockdevs also.
3033 *
3034 * Return: On success, the number of bytes read will be returned and *@ppos
3035 * will be updated if appropriate; 0 will be returned if there is no more data
3036 * to be read; -EAGAIN will be returned if the pipe had no space, and some
3037 * other negative error code will be returned on error. A short read may occur
3038 * if the pipe has insufficient space, we reach the end of the data or we hit a
3039 * hole.
3040 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3041 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3042 struct pipe_inode_info *pipe,
3043 size_t len, unsigned int flags)
3044 {
3045 struct folio_batch fbatch;
3046 struct kiocb iocb;
3047 size_t total_spliced = 0, used, npages;
3048 loff_t isize, end_offset;
3049 bool writably_mapped;
3050 int i, error = 0;
3051
3052 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
3053 return 0;
3054
3055 init_sync_kiocb(&iocb, in);
3056 iocb.ki_pos = *ppos;
3057
3058 /* Work out how much data we can actually add into the pipe */
3059 used = pipe_buf_usage(pipe);
3060 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3061 len = min_t(size_t, len, npages * PAGE_SIZE);
3062
3063 folio_batch_init(&fbatch);
3064
3065 do {
3066 cond_resched();
3067
3068 if (*ppos >= i_size_read(in->f_mapping->host))
3069 break;
3070
3071 iocb.ki_pos = *ppos;
3072 error = filemap_get_pages(&iocb, len, &fbatch, true);
3073 if (error < 0)
3074 break;
3075
3076 /*
3077 * i_size must be checked after we know the pages are Uptodate.
3078 *
3079 * Checking i_size after the check allows us to calculate
3080 * the correct value for "nr", which means the zero-filled
3081 * part of the page is not copied back to userspace (unless
3082 * another truncate extends the file - this is desired though).
3083 */
3084 isize = i_size_read(in->f_mapping->host);
3085 if (unlikely(*ppos >= isize))
3086 break;
3087 end_offset = min_t(loff_t, isize, *ppos + len);
3088
3089 /*
3090 * Once we start copying data, we don't want to be touching any
3091 * cachelines that might be contended:
3092 */
3093 writably_mapped = mapping_writably_mapped(in->f_mapping);
3094
3095 for (i = 0; i < folio_batch_count(&fbatch); i++) {
3096 struct folio *folio = fbatch.folios[i];
3097 size_t n;
3098
3099 if (folio_pos(folio) >= end_offset)
3100 goto out;
3101 folio_mark_accessed(folio);
3102
3103 /*
3104 * If users can be writing to this folio using arbitrary
3105 * virtual addresses, take care of potential aliasing
3106 * before reading the folio on the kernel side.
3107 */
3108 if (writably_mapped)
3109 flush_dcache_folio(folio);
3110
3111 n = min_t(loff_t, len, isize - *ppos);
3112 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3113 if (!n)
3114 goto out;
3115 len -= n;
3116 total_spliced += n;
3117 *ppos += n;
3118 in->f_ra.prev_pos = *ppos;
3119 if (pipe_is_full(pipe))
3120 goto out;
3121 }
3122
3123 folio_batch_release(&fbatch);
3124 } while (len);
3125
3126 out:
3127 folio_batch_release(&fbatch);
3128 file_accessed(in);
3129
3130 return total_spliced ? total_spliced : error;
3131 }
3132 EXPORT_SYMBOL(filemap_splice_read);
3133
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)3134 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3135 struct address_space *mapping, struct folio *folio,
3136 loff_t start, loff_t end, bool seek_data)
3137 {
3138 const struct address_space_operations *ops = mapping->a_ops;
3139 size_t offset, bsz = i_blocksize(mapping->host);
3140
3141 if (xa_is_value(folio) || folio_test_uptodate(folio))
3142 return seek_data ? start : end;
3143 if (!ops->is_partially_uptodate)
3144 return seek_data ? end : start;
3145
3146 xas_pause(xas);
3147 rcu_read_unlock();
3148 folio_lock(folio);
3149 if (unlikely(folio->mapping != mapping))
3150 goto unlock;
3151
3152 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3153
3154 do {
3155 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3156 seek_data)
3157 break;
3158 start = (start + bsz) & ~((u64)bsz - 1);
3159 offset += bsz;
3160 } while (offset < folio_size(folio));
3161 unlock:
3162 folio_unlock(folio);
3163 rcu_read_lock();
3164 return start;
3165 }
3166
seek_folio_size(struct xa_state * xas,struct folio * folio)3167 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3168 {
3169 if (xa_is_value(folio))
3170 return PAGE_SIZE << xas_get_order(xas);
3171 return folio_size(folio);
3172 }
3173
3174 /**
3175 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3176 * @mapping: Address space to search.
3177 * @start: First byte to consider.
3178 * @end: Limit of search (exclusive).
3179 * @whence: Either SEEK_HOLE or SEEK_DATA.
3180 *
3181 * If the page cache knows which blocks contain holes and which blocks
3182 * contain data, your filesystem can use this function to implement
3183 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3184 * entirely memory-based such as tmpfs, and filesystems which support
3185 * unwritten extents.
3186 *
3187 * Return: The requested offset on success, or -ENXIO if @whence specifies
3188 * SEEK_DATA and there is no data after @start. There is an implicit hole
3189 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3190 * and @end contain data.
3191 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3192 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3193 loff_t end, int whence)
3194 {
3195 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3196 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3197 bool seek_data = (whence == SEEK_DATA);
3198 struct folio *folio;
3199
3200 if (end <= start)
3201 return -ENXIO;
3202
3203 rcu_read_lock();
3204 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3205 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3206 size_t seek_size;
3207
3208 if (start < pos) {
3209 if (!seek_data)
3210 goto unlock;
3211 start = pos;
3212 }
3213
3214 seek_size = seek_folio_size(&xas, folio);
3215 pos = round_up((u64)pos + 1, seek_size);
3216 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3217 seek_data);
3218 if (start < pos)
3219 goto unlock;
3220 if (start >= end)
3221 break;
3222 if (seek_size > PAGE_SIZE)
3223 xas_set(&xas, pos >> PAGE_SHIFT);
3224 if (!xa_is_value(folio))
3225 folio_put(folio);
3226 }
3227 if (seek_data)
3228 start = -ENXIO;
3229 unlock:
3230 rcu_read_unlock();
3231 if (folio && !xa_is_value(folio))
3232 folio_put(folio);
3233 if (start > end)
3234 return end;
3235 return start;
3236 }
3237
3238 #ifdef CONFIG_MMU
3239 #define MMAP_LOTSAMISS (100)
3240 /*
3241 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3242 * @vmf - the vm_fault for this fault.
3243 * @folio - the folio to lock.
3244 * @fpin - the pointer to the file we may pin (or is already pinned).
3245 *
3246 * This works similar to lock_folio_or_retry in that it can drop the
3247 * mmap_lock. It differs in that it actually returns the folio locked
3248 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3249 * to drop the mmap_lock then fpin will point to the pinned file and
3250 * needs to be fput()'ed at a later point.
3251 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3252 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3253 struct file **fpin)
3254 {
3255 if (folio_trylock(folio))
3256 return 1;
3257
3258 /*
3259 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3260 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3261 * is supposed to work. We have way too many special cases..
3262 */
3263 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3264 return 0;
3265
3266 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3267 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3268 if (__folio_lock_killable(folio)) {
3269 /*
3270 * We didn't have the right flags to drop the
3271 * fault lock, but all fault_handlers only check
3272 * for fatal signals if we return VM_FAULT_RETRY,
3273 * so we need to drop the fault lock here and
3274 * return 0 if we don't have a fpin.
3275 */
3276 if (*fpin == NULL)
3277 release_fault_lock(vmf);
3278 return 0;
3279 }
3280 } else
3281 __folio_lock(folio);
3282
3283 return 1;
3284 }
3285
3286 /*
3287 * Synchronous readahead happens when we don't even find a page in the page
3288 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3289 * to drop the mmap sem we return the file that was pinned in order for us to do
3290 * that. If we didn't pin a file then we return NULL. The file that is
3291 * returned needs to be fput()'ed when we're done with it.
3292 */
do_sync_mmap_readahead(struct vm_fault * vmf)3293 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3294 {
3295 struct file *file = vmf->vma->vm_file;
3296 struct file_ra_state *ra = &file->f_ra;
3297 struct address_space *mapping = file->f_mapping;
3298 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3299 struct file *fpin = NULL;
3300 vm_flags_t vm_flags = vmf->vma->vm_flags;
3301 unsigned short mmap_miss;
3302
3303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3304 /* Use the readahead code, even if readahead is disabled */
3305 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3306 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3307 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3308 ra->size = HPAGE_PMD_NR;
3309 /*
3310 * Fetch two PMD folios, so we get the chance to actually
3311 * readahead, unless we've been told not to.
3312 */
3313 if (!(vm_flags & VM_RAND_READ))
3314 ra->size *= 2;
3315 ra->async_size = HPAGE_PMD_NR;
3316 ra->order = HPAGE_PMD_ORDER;
3317 page_cache_ra_order(&ractl, ra);
3318 return fpin;
3319 }
3320 #endif
3321
3322 /*
3323 * If we don't want any read-ahead, don't bother. VM_EXEC case below is
3324 * already intended for random access.
3325 */
3326 if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ)
3327 return fpin;
3328 if (!ra->ra_pages)
3329 return fpin;
3330
3331 if (vm_flags & VM_SEQ_READ) {
3332 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3333 page_cache_sync_ra(&ractl, ra->ra_pages);
3334 return fpin;
3335 }
3336
3337 /* Avoid banging the cache line if not needed */
3338 mmap_miss = READ_ONCE(ra->mmap_miss);
3339 if (mmap_miss < MMAP_LOTSAMISS * 10)
3340 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3341
3342 /*
3343 * Do we miss much more than hit in this file? If so,
3344 * stop bothering with read-ahead. It will only hurt.
3345 */
3346 if (mmap_miss > MMAP_LOTSAMISS)
3347 return fpin;
3348
3349 if (vm_flags & VM_EXEC) {
3350 /*
3351 * Allow arch to request a preferred minimum folio order for
3352 * executable memory. This can often be beneficial to
3353 * performance if (e.g.) arm64 can contpte-map the folio.
3354 * Executable memory rarely benefits from readahead, due to its
3355 * random access nature, so set async_size to 0.
3356 *
3357 * Limit to the boundaries of the VMA to avoid reading in any
3358 * pad that might exist between sections, which would be a waste
3359 * of memory.
3360 */
3361 struct vm_area_struct *vma = vmf->vma;
3362 unsigned long start = vma->vm_pgoff;
3363 unsigned long end = start + vma_pages(vma);
3364 unsigned long ra_end;
3365
3366 ra->order = exec_folio_order();
3367 ra->start = round_down(vmf->pgoff, 1UL << ra->order);
3368 ra->start = max(ra->start, start);
3369 ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order);
3370 ra_end = min(ra_end, end);
3371 ra->size = ra_end - ra->start;
3372 ra->async_size = 0;
3373 } else {
3374 /*
3375 * mmap read-around
3376 */
3377 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3378 ra->size = ra->ra_pages;
3379 ra->async_size = ra->ra_pages / 4;
3380 ra->order = 0;
3381 }
3382
3383 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3384 ractl._index = ra->start;
3385 page_cache_ra_order(&ractl, ra);
3386 return fpin;
3387 }
3388
3389 /*
3390 * Asynchronous readahead happens when we find the page and PG_readahead,
3391 * so we want to possibly extend the readahead further. We return the file that
3392 * was pinned if we have to drop the mmap_lock in order to do IO.
3393 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3394 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3395 struct folio *folio)
3396 {
3397 struct file *file = vmf->vma->vm_file;
3398 struct file_ra_state *ra = &file->f_ra;
3399 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3400 struct file *fpin = NULL;
3401 unsigned short mmap_miss;
3402
3403 /* If we don't want any read-ahead, don't bother */
3404 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3405 return fpin;
3406
3407 /*
3408 * If the folio is locked, we're likely racing against another fault.
3409 * Don't touch the mmap_miss counter to avoid decreasing it multiple
3410 * times for a single folio and break the balance with mmap_miss
3411 * increase in do_sync_mmap_readahead().
3412 */
3413 if (likely(!folio_test_locked(folio))) {
3414 mmap_miss = READ_ONCE(ra->mmap_miss);
3415 if (mmap_miss)
3416 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3417 }
3418
3419 if (folio_test_readahead(folio)) {
3420 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3421 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3422 }
3423 return fpin;
3424 }
3425
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3426 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3427 {
3428 struct vm_area_struct *vma = vmf->vma;
3429 vm_fault_t ret = 0;
3430 pte_t *ptep;
3431
3432 /*
3433 * We might have COW'ed a pagecache folio and might now have an mlocked
3434 * anon folio mapped. The original pagecache folio is not mlocked and
3435 * might have been evicted. During a read+clear/modify/write update of
3436 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3437 * temporarily clear the PTE under PT lock and might detect it here as
3438 * "none" when not holding the PT lock.
3439 *
3440 * Not rechecking the PTE under PT lock could result in an unexpected
3441 * major fault in an mlock'ed region. Recheck only for this special
3442 * scenario while holding the PT lock, to not degrade non-mlocked
3443 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3444 * the number of times we hold PT lock.
3445 */
3446 if (!(vma->vm_flags & VM_LOCKED))
3447 return 0;
3448
3449 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3450 return 0;
3451
3452 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3453 &vmf->ptl);
3454 if (unlikely(!ptep))
3455 return VM_FAULT_NOPAGE;
3456
3457 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3458 ret = VM_FAULT_NOPAGE;
3459 } else {
3460 spin_lock(vmf->ptl);
3461 if (unlikely(!pte_none(ptep_get(ptep))))
3462 ret = VM_FAULT_NOPAGE;
3463 spin_unlock(vmf->ptl);
3464 }
3465 pte_unmap(ptep);
3466 return ret;
3467 }
3468
3469 /**
3470 * filemap_fault - read in file data for page fault handling
3471 * @vmf: struct vm_fault containing details of the fault
3472 *
3473 * filemap_fault() is invoked via the vma operations vector for a
3474 * mapped memory region to read in file data during a page fault.
3475 *
3476 * The goto's are kind of ugly, but this streamlines the normal case of having
3477 * it in the page cache, and handles the special cases reasonably without
3478 * having a lot of duplicated code.
3479 *
3480 * vma->vm_mm->mmap_lock must be held on entry.
3481 *
3482 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3483 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3484 *
3485 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3486 * has not been released.
3487 *
3488 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3489 *
3490 * Return: bitwise-OR of %VM_FAULT_ codes.
3491 */
filemap_fault(struct vm_fault * vmf)3492 vm_fault_t filemap_fault(struct vm_fault *vmf)
3493 {
3494 int error;
3495 struct file *file = vmf->vma->vm_file;
3496 struct file *fpin = NULL;
3497 struct address_space *mapping = file->f_mapping;
3498 struct inode *inode = mapping->host;
3499 pgoff_t max_idx, index = vmf->pgoff;
3500 struct folio *folio;
3501 vm_fault_t ret = 0;
3502 bool mapping_locked = false;
3503
3504 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3505 if (unlikely(index >= max_idx))
3506 return VM_FAULT_SIGBUS;
3507
3508 trace_mm_filemap_fault(mapping, index);
3509
3510 /*
3511 * Do we have something in the page cache already?
3512 */
3513 folio = filemap_get_folio(mapping, index);
3514 if (likely(!IS_ERR(folio))) {
3515 /*
3516 * We found the page, so try async readahead before waiting for
3517 * the lock.
3518 */
3519 if (!(vmf->flags & FAULT_FLAG_TRIED))
3520 fpin = do_async_mmap_readahead(vmf, folio);
3521 if (unlikely(!folio_test_uptodate(folio))) {
3522 filemap_invalidate_lock_shared(mapping);
3523 mapping_locked = true;
3524 }
3525 } else {
3526 ret = filemap_fault_recheck_pte_none(vmf);
3527 if (unlikely(ret))
3528 return ret;
3529
3530 /* No page in the page cache at all */
3531 count_vm_event(PGMAJFAULT);
3532 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3533 ret = VM_FAULT_MAJOR;
3534 fpin = do_sync_mmap_readahead(vmf);
3535 retry_find:
3536 /*
3537 * See comment in filemap_create_folio() why we need
3538 * invalidate_lock
3539 */
3540 if (!mapping_locked) {
3541 filemap_invalidate_lock_shared(mapping);
3542 mapping_locked = true;
3543 }
3544 folio = __filemap_get_folio(mapping, index,
3545 FGP_CREAT|FGP_FOR_MMAP,
3546 vmf->gfp_mask);
3547 if (IS_ERR(folio)) {
3548 if (fpin)
3549 goto out_retry;
3550 filemap_invalidate_unlock_shared(mapping);
3551 return VM_FAULT_OOM;
3552 }
3553 }
3554
3555 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3556 goto out_retry;
3557
3558 /* Did it get truncated? */
3559 if (unlikely(folio->mapping != mapping)) {
3560 folio_unlock(folio);
3561 folio_put(folio);
3562 goto retry_find;
3563 }
3564 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3565
3566 /*
3567 * We have a locked folio in the page cache, now we need to check
3568 * that it's up-to-date. If not, it is going to be due to an error,
3569 * or because readahead was otherwise unable to retrieve it.
3570 */
3571 if (unlikely(!folio_test_uptodate(folio))) {
3572 /*
3573 * If the invalidate lock is not held, the folio was in cache
3574 * and uptodate and now it is not. Strange but possible since we
3575 * didn't hold the page lock all the time. Let's drop
3576 * everything, get the invalidate lock and try again.
3577 */
3578 if (!mapping_locked) {
3579 folio_unlock(folio);
3580 folio_put(folio);
3581 goto retry_find;
3582 }
3583
3584 /*
3585 * OK, the folio is really not uptodate. This can be because the
3586 * VMA has the VM_RAND_READ flag set, or because an error
3587 * arose. Let's read it in directly.
3588 */
3589 goto page_not_uptodate;
3590 }
3591
3592 /*
3593 * We've made it this far and we had to drop our mmap_lock, now is the
3594 * time to return to the upper layer and have it re-find the vma and
3595 * redo the fault.
3596 */
3597 if (fpin) {
3598 folio_unlock(folio);
3599 goto out_retry;
3600 }
3601 if (mapping_locked)
3602 filemap_invalidate_unlock_shared(mapping);
3603
3604 /*
3605 * Found the page and have a reference on it.
3606 * We must recheck i_size under page lock.
3607 */
3608 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3609 if (unlikely(index >= max_idx)) {
3610 folio_unlock(folio);
3611 folio_put(folio);
3612 return VM_FAULT_SIGBUS;
3613 }
3614
3615 vmf->page = folio_file_page(folio, index);
3616 return ret | VM_FAULT_LOCKED;
3617
3618 page_not_uptodate:
3619 /*
3620 * Umm, take care of errors if the page isn't up-to-date.
3621 * Try to re-read it _once_. We do this synchronously,
3622 * because there really aren't any performance issues here
3623 * and we need to check for errors.
3624 */
3625 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3626 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3627 if (fpin)
3628 goto out_retry;
3629 folio_put(folio);
3630
3631 if (!error || error == AOP_TRUNCATED_PAGE)
3632 goto retry_find;
3633 filemap_invalidate_unlock_shared(mapping);
3634
3635 return VM_FAULT_SIGBUS;
3636
3637 out_retry:
3638 /*
3639 * We dropped the mmap_lock, we need to return to the fault handler to
3640 * re-find the vma and come back and find our hopefully still populated
3641 * page.
3642 */
3643 if (!IS_ERR(folio))
3644 folio_put(folio);
3645 if (mapping_locked)
3646 filemap_invalidate_unlock_shared(mapping);
3647 if (fpin)
3648 fput(fpin);
3649 return ret | VM_FAULT_RETRY;
3650 }
3651 EXPORT_SYMBOL(filemap_fault);
3652
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3653 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3654 pgoff_t start)
3655 {
3656 struct mm_struct *mm = vmf->vma->vm_mm;
3657
3658 /* Huge page is mapped? No need to proceed. */
3659 if (pmd_trans_huge(*vmf->pmd)) {
3660 folio_unlock(folio);
3661 folio_put(folio);
3662 return true;
3663 }
3664
3665 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3666 struct page *page = folio_file_page(folio, start);
3667 vm_fault_t ret = do_set_pmd(vmf, folio, page);
3668 if (!ret) {
3669 /* The page is mapped successfully, reference consumed. */
3670 folio_unlock(folio);
3671 return true;
3672 }
3673 }
3674
3675 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3676 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3677
3678 return false;
3679 }
3680
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3681 static struct folio *next_uptodate_folio(struct xa_state *xas,
3682 struct address_space *mapping, pgoff_t end_pgoff)
3683 {
3684 struct folio *folio = xas_next_entry(xas, end_pgoff);
3685 unsigned long max_idx;
3686
3687 do {
3688 if (!folio)
3689 return NULL;
3690 if (xas_retry(xas, folio))
3691 continue;
3692 if (xa_is_value(folio))
3693 continue;
3694 if (!folio_try_get(folio))
3695 continue;
3696 if (folio_test_locked(folio))
3697 goto skip;
3698 /* Has the page moved or been split? */
3699 if (unlikely(folio != xas_reload(xas)))
3700 goto skip;
3701 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3702 goto skip;
3703 if (!folio_trylock(folio))
3704 goto skip;
3705 if (folio->mapping != mapping)
3706 goto unlock;
3707 if (!folio_test_uptodate(folio))
3708 goto unlock;
3709 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3710 if (xas->xa_index >= max_idx)
3711 goto unlock;
3712 return folio;
3713 unlock:
3714 folio_unlock(folio);
3715 skip:
3716 folio_put(folio);
3717 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3718
3719 return NULL;
3720 }
3721
3722 /*
3723 * Map page range [start_page, start_page + nr_pages) of folio.
3724 * start_page is gotten from start by folio_page(folio, start)
3725 */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned short * mmap_miss,pgoff_t file_end)3726 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3727 struct folio *folio, unsigned long start,
3728 unsigned long addr, unsigned int nr_pages,
3729 unsigned long *rss, unsigned short *mmap_miss,
3730 pgoff_t file_end)
3731 {
3732 struct address_space *mapping = folio->mapping;
3733 unsigned int ref_from_caller = 1;
3734 vm_fault_t ret = 0;
3735 struct page *page = folio_page(folio, start);
3736 unsigned int count = 0;
3737 pte_t *old_ptep = vmf->pte;
3738 unsigned long addr0;
3739
3740 /*
3741 * Map the large folio fully where possible:
3742 *
3743 * - The folio is fully within size of the file or belong
3744 * to shmem/tmpfs;
3745 * - The folio doesn't cross VMA boundary;
3746 * - The folio doesn't cross page table boundary;
3747 */
3748 addr0 = addr - start * PAGE_SIZE;
3749 if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) &&
3750 folio_within_vma(folio, vmf->vma) &&
3751 (addr0 & PMD_MASK) == ((addr0 + folio_size(folio) - 1) & PMD_MASK)) {
3752 vmf->pte -= start;
3753 page -= start;
3754 addr = addr0;
3755 nr_pages = folio_nr_pages(folio);
3756 }
3757
3758 do {
3759 if (PageHWPoison(page + count))
3760 goto skip;
3761
3762 /*
3763 * If there are too many folios that are recently evicted
3764 * in a file, they will probably continue to be evicted.
3765 * In such situation, read-ahead is only a waste of IO.
3766 * Don't decrease mmap_miss in this scenario to make sure
3767 * we can stop read-ahead.
3768 */
3769 if (!folio_test_workingset(folio))
3770 (*mmap_miss)++;
3771
3772 /*
3773 * NOTE: If there're PTE markers, we'll leave them to be
3774 * handled in the specific fault path, and it'll prohibit the
3775 * fault-around logic.
3776 */
3777 if (!pte_none(ptep_get(&vmf->pte[count])))
3778 goto skip;
3779
3780 count++;
3781 continue;
3782 skip:
3783 if (count) {
3784 set_pte_range(vmf, folio, page, count, addr);
3785 *rss += count;
3786 folio_ref_add(folio, count - ref_from_caller);
3787 ref_from_caller = 0;
3788 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3789 ret = VM_FAULT_NOPAGE;
3790 }
3791
3792 count++;
3793 page += count;
3794 vmf->pte += count;
3795 addr += count * PAGE_SIZE;
3796 count = 0;
3797 } while (--nr_pages > 0);
3798
3799 if (count) {
3800 set_pte_range(vmf, folio, page, count, addr);
3801 *rss += count;
3802 folio_ref_add(folio, count - ref_from_caller);
3803 ref_from_caller = 0;
3804 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3805 ret = VM_FAULT_NOPAGE;
3806 }
3807
3808 vmf->pte = old_ptep;
3809 if (ref_from_caller)
3810 /* Locked folios cannot get truncated. */
3811 folio_ref_dec(folio);
3812
3813 return ret;
3814 }
3815
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned short * mmap_miss)3816 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3817 struct folio *folio, unsigned long addr,
3818 unsigned long *rss, unsigned short *mmap_miss)
3819 {
3820 vm_fault_t ret = 0;
3821 struct page *page = &folio->page;
3822
3823 if (PageHWPoison(page))
3824 goto out;
3825
3826 /* See comment of filemap_map_folio_range() */
3827 if (!folio_test_workingset(folio))
3828 (*mmap_miss)++;
3829
3830 /*
3831 * NOTE: If there're PTE markers, we'll leave them to be
3832 * handled in the specific fault path, and it'll prohibit
3833 * the fault-around logic.
3834 */
3835 if (!pte_none(ptep_get(vmf->pte)))
3836 goto out;
3837
3838 if (vmf->address == addr)
3839 ret = VM_FAULT_NOPAGE;
3840
3841 set_pte_range(vmf, folio, page, 1, addr);
3842 (*rss)++;
3843 return ret;
3844
3845 out:
3846 /* Locked folios cannot get truncated. */
3847 folio_ref_dec(folio);
3848 return ret;
3849 }
3850
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3851 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3852 pgoff_t start_pgoff, pgoff_t end_pgoff)
3853 {
3854 struct vm_area_struct *vma = vmf->vma;
3855 struct file *file = vma->vm_file;
3856 struct address_space *mapping = file->f_mapping;
3857 pgoff_t file_end, last_pgoff = start_pgoff;
3858 unsigned long addr;
3859 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3860 struct folio *folio;
3861 vm_fault_t ret = 0;
3862 unsigned long rss = 0;
3863 unsigned int nr_pages = 0, folio_type;
3864 unsigned short mmap_miss = 0, mmap_miss_saved;
3865
3866 rcu_read_lock();
3867 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3868 if (!folio)
3869 goto out;
3870
3871 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3872 end_pgoff = min(end_pgoff, file_end);
3873
3874 /*
3875 * Do not allow to map with PMD across i_size to preserve
3876 * SIGBUS semantics.
3877 *
3878 * Make an exception for shmem/tmpfs that for long time
3879 * intentionally mapped with PMDs across i_size.
3880 */
3881 if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) &&
3882 filemap_map_pmd(vmf, folio, start_pgoff)) {
3883 ret = VM_FAULT_NOPAGE;
3884 goto out;
3885 }
3886
3887 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3888 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3889 if (!vmf->pte) {
3890 folio_unlock(folio);
3891 folio_put(folio);
3892 goto out;
3893 }
3894
3895 folio_type = mm_counter_file(folio);
3896 do {
3897 unsigned long end;
3898
3899 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3900 vmf->pte += xas.xa_index - last_pgoff;
3901 last_pgoff = xas.xa_index;
3902 end = folio_next_index(folio) - 1;
3903 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3904
3905 if (!folio_test_large(folio))
3906 ret |= filemap_map_order0_folio(vmf,
3907 folio, addr, &rss, &mmap_miss);
3908 else
3909 ret |= filemap_map_folio_range(vmf, folio,
3910 xas.xa_index - folio->index, addr,
3911 nr_pages, &rss, &mmap_miss, file_end);
3912
3913 folio_unlock(folio);
3914 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3915 add_mm_counter(vma->vm_mm, folio_type, rss);
3916 pte_unmap_unlock(vmf->pte, vmf->ptl);
3917 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3918 out:
3919 rcu_read_unlock();
3920
3921 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3922 if (mmap_miss >= mmap_miss_saved)
3923 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3924 else
3925 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3926
3927 return ret;
3928 }
3929 EXPORT_SYMBOL(filemap_map_pages);
3930
filemap_page_mkwrite(struct vm_fault * vmf)3931 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3932 {
3933 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3934 struct folio *folio = page_folio(vmf->page);
3935 vm_fault_t ret = VM_FAULT_LOCKED;
3936
3937 sb_start_pagefault(mapping->host->i_sb);
3938 file_update_time(vmf->vma->vm_file);
3939 folio_lock(folio);
3940 if (folio->mapping != mapping) {
3941 folio_unlock(folio);
3942 ret = VM_FAULT_NOPAGE;
3943 goto out;
3944 }
3945 /*
3946 * We mark the folio dirty already here so that when freeze is in
3947 * progress, we are guaranteed that writeback during freezing will
3948 * see the dirty folio and writeprotect it again.
3949 */
3950 folio_mark_dirty(folio);
3951 folio_wait_stable(folio);
3952 out:
3953 sb_end_pagefault(mapping->host->i_sb);
3954 return ret;
3955 }
3956
3957 const struct vm_operations_struct generic_file_vm_ops = {
3958 .fault = filemap_fault,
3959 .map_pages = filemap_map_pages,
3960 .page_mkwrite = filemap_page_mkwrite,
3961 };
3962
3963 /* This is used for a general mmap of a disk file */
3964
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3965 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3966 {
3967 struct address_space *mapping = file->f_mapping;
3968
3969 if (!mapping->a_ops->read_folio)
3970 return -ENOEXEC;
3971 file_accessed(file);
3972 vma->vm_ops = &generic_file_vm_ops;
3973 return 0;
3974 }
3975
generic_file_mmap_prepare(struct vm_area_desc * desc)3976 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3977 {
3978 struct file *file = desc->file;
3979 struct address_space *mapping = file->f_mapping;
3980
3981 if (!mapping->a_ops->read_folio)
3982 return -ENOEXEC;
3983 file_accessed(file);
3984 desc->vm_ops = &generic_file_vm_ops;
3985 return 0;
3986 }
3987
3988 /*
3989 * This is for filesystems which do not implement ->writepage.
3990 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3991 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3992 {
3993 if (vma_is_shared_maywrite(vma))
3994 return -EINVAL;
3995 return generic_file_mmap(file, vma);
3996 }
3997
generic_file_readonly_mmap_prepare(struct vm_area_desc * desc)3998 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3999 {
4000 if (is_shared_maywrite(desc->vm_flags))
4001 return -EINVAL;
4002 return generic_file_mmap_prepare(desc);
4003 }
4004 #else
filemap_page_mkwrite(struct vm_fault * vmf)4005 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4006 {
4007 return VM_FAULT_SIGBUS;
4008 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)4009 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
4010 {
4011 return -ENOSYS;
4012 }
generic_file_mmap_prepare(struct vm_area_desc * desc)4013 int generic_file_mmap_prepare(struct vm_area_desc *desc)
4014 {
4015 return -ENOSYS;
4016 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)4017 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
4018 {
4019 return -ENOSYS;
4020 }
generic_file_readonly_mmap_prepare(struct vm_area_desc * desc)4021 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
4022 {
4023 return -ENOSYS;
4024 }
4025 #endif /* CONFIG_MMU */
4026
4027 EXPORT_SYMBOL(filemap_page_mkwrite);
4028 EXPORT_SYMBOL(generic_file_mmap);
4029 EXPORT_SYMBOL(generic_file_mmap_prepare);
4030 EXPORT_SYMBOL(generic_file_readonly_mmap);
4031 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare);
4032
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)4033 static struct folio *do_read_cache_folio(struct address_space *mapping,
4034 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
4035 {
4036 struct folio *folio;
4037 int err;
4038
4039 if (!filler)
4040 filler = mapping->a_ops->read_folio;
4041 repeat:
4042 folio = filemap_get_folio(mapping, index);
4043 if (IS_ERR(folio)) {
4044 folio = filemap_alloc_folio(gfp,
4045 mapping_min_folio_order(mapping));
4046 if (!folio)
4047 return ERR_PTR(-ENOMEM);
4048 index = mapping_align_index(mapping, index);
4049 err = filemap_add_folio(mapping, folio, index, gfp);
4050 if (unlikely(err)) {
4051 folio_put(folio);
4052 if (err == -EEXIST)
4053 goto repeat;
4054 /* Presumably ENOMEM for xarray node */
4055 return ERR_PTR(err);
4056 }
4057
4058 goto filler;
4059 }
4060 if (folio_test_uptodate(folio))
4061 goto out;
4062
4063 if (!folio_trylock(folio)) {
4064 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
4065 goto repeat;
4066 }
4067
4068 /* Folio was truncated from mapping */
4069 if (!folio->mapping) {
4070 folio_unlock(folio);
4071 folio_put(folio);
4072 goto repeat;
4073 }
4074
4075 /* Someone else locked and filled the page in a very small window */
4076 if (folio_test_uptodate(folio)) {
4077 folio_unlock(folio);
4078 goto out;
4079 }
4080
4081 filler:
4082 err = filemap_read_folio(file, filler, folio);
4083 if (err) {
4084 folio_put(folio);
4085 if (err == AOP_TRUNCATED_PAGE)
4086 goto repeat;
4087 return ERR_PTR(err);
4088 }
4089
4090 out:
4091 folio_mark_accessed(folio);
4092 return folio;
4093 }
4094
4095 /**
4096 * read_cache_folio - Read into page cache, fill it if needed.
4097 * @mapping: The address_space to read from.
4098 * @index: The index to read.
4099 * @filler: Function to perform the read, or NULL to use aops->read_folio().
4100 * @file: Passed to filler function, may be NULL if not required.
4101 *
4102 * Read one page into the page cache. If it succeeds, the folio returned
4103 * will contain @index, but it may not be the first page of the folio.
4104 *
4105 * If the filler function returns an error, it will be returned to the
4106 * caller.
4107 *
4108 * Context: May sleep. Expects mapping->invalidate_lock to be held.
4109 * Return: An uptodate folio on success, ERR_PTR() on failure.
4110 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)4111 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
4112 filler_t filler, struct file *file)
4113 {
4114 return do_read_cache_folio(mapping, index, filler, file,
4115 mapping_gfp_mask(mapping));
4116 }
4117 EXPORT_SYMBOL(read_cache_folio);
4118
4119 /**
4120 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
4121 * @mapping: The address_space for the folio.
4122 * @index: The index that the allocated folio will contain.
4123 * @gfp: The page allocator flags to use if allocating.
4124 *
4125 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4126 * any new memory allocations done using the specified allocation flags.
4127 *
4128 * The most likely error from this function is EIO, but ENOMEM is
4129 * possible and so is EINTR. If ->read_folio returns another error,
4130 * that will be returned to the caller.
4131 *
4132 * The function expects mapping->invalidate_lock to be already held.
4133 *
4134 * Return: Uptodate folio on success, ERR_PTR() on failure.
4135 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4136 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4137 pgoff_t index, gfp_t gfp)
4138 {
4139 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4140 }
4141 EXPORT_SYMBOL(mapping_read_folio_gfp);
4142
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)4143 static struct page *do_read_cache_page(struct address_space *mapping,
4144 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4145 {
4146 struct folio *folio;
4147
4148 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4149 if (IS_ERR(folio))
4150 return &folio->page;
4151 return folio_file_page(folio, index);
4152 }
4153
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)4154 struct page *read_cache_page(struct address_space *mapping,
4155 pgoff_t index, filler_t *filler, struct file *file)
4156 {
4157 return do_read_cache_page(mapping, index, filler, file,
4158 mapping_gfp_mask(mapping));
4159 }
4160 EXPORT_SYMBOL(read_cache_page);
4161
4162 /**
4163 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
4164 * @mapping: the page's address_space
4165 * @index: the page index
4166 * @gfp: the page allocator flags to use if allocating
4167 *
4168 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
4169 * any new page allocations done using the specified allocation flags.
4170 *
4171 * If the page does not get brought uptodate, return -EIO.
4172 *
4173 * The function expects mapping->invalidate_lock to be already held.
4174 *
4175 * Return: up to date page on success, ERR_PTR() on failure.
4176 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4177 struct page *read_cache_page_gfp(struct address_space *mapping,
4178 pgoff_t index,
4179 gfp_t gfp)
4180 {
4181 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4182 }
4183 EXPORT_SYMBOL(read_cache_page_gfp);
4184
4185 /*
4186 * Warn about a page cache invalidation failure during a direct I/O write.
4187 */
dio_warn_stale_pagecache(struct file * filp)4188 static void dio_warn_stale_pagecache(struct file *filp)
4189 {
4190 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4191 char pathname[128];
4192 char *path;
4193
4194 errseq_set(&filp->f_mapping->wb_err, -EIO);
4195 if (__ratelimit(&_rs)) {
4196 path = file_path(filp, pathname, sizeof(pathname));
4197 if (IS_ERR(path))
4198 path = "(unknown)";
4199 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
4200 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4201 current->comm);
4202 }
4203 }
4204
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)4205 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4206 {
4207 struct address_space *mapping = iocb->ki_filp->f_mapping;
4208
4209 if (mapping->nrpages &&
4210 invalidate_inode_pages2_range(mapping,
4211 iocb->ki_pos >> PAGE_SHIFT,
4212 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4213 dio_warn_stale_pagecache(iocb->ki_filp);
4214 }
4215
4216 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)4217 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4218 {
4219 struct address_space *mapping = iocb->ki_filp->f_mapping;
4220 size_t write_len = iov_iter_count(from);
4221 ssize_t written;
4222
4223 /*
4224 * If a page can not be invalidated, return 0 to fall back
4225 * to buffered write.
4226 */
4227 written = kiocb_invalidate_pages(iocb, write_len);
4228 if (written) {
4229 if (written == -EBUSY)
4230 return 0;
4231 return written;
4232 }
4233
4234 written = mapping->a_ops->direct_IO(iocb, from);
4235
4236 /*
4237 * Finally, try again to invalidate clean pages which might have been
4238 * cached by non-direct readahead, or faulted in by get_user_pages()
4239 * if the source of the write was an mmap'ed region of the file
4240 * we're writing. Either one is a pretty crazy thing to do,
4241 * so we don't support it 100%. If this invalidation
4242 * fails, tough, the write still worked...
4243 *
4244 * Most of the time we do not need this since dio_complete() will do
4245 * the invalidation for us. However there are some file systems that
4246 * do not end up with dio_complete() being called, so let's not break
4247 * them by removing it completely.
4248 *
4249 * Noticeable example is a blkdev_direct_IO().
4250 *
4251 * Skip invalidation for async writes or if mapping has no pages.
4252 */
4253 if (written > 0) {
4254 struct inode *inode = mapping->host;
4255 loff_t pos = iocb->ki_pos;
4256
4257 kiocb_invalidate_post_direct_write(iocb, written);
4258 pos += written;
4259 write_len -= written;
4260 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4261 i_size_write(inode, pos);
4262 mark_inode_dirty(inode);
4263 }
4264 iocb->ki_pos = pos;
4265 }
4266 if (written != -EIOCBQUEUED)
4267 iov_iter_revert(from, write_len - iov_iter_count(from));
4268 return written;
4269 }
4270 EXPORT_SYMBOL(generic_file_direct_write);
4271
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4272 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4273 {
4274 struct file *file = iocb->ki_filp;
4275 loff_t pos = iocb->ki_pos;
4276 struct address_space *mapping = file->f_mapping;
4277 const struct address_space_operations *a_ops = mapping->a_ops;
4278 size_t chunk = mapping_max_folio_size(mapping);
4279 long status = 0;
4280 ssize_t written = 0;
4281
4282 do {
4283 struct folio *folio;
4284 size_t offset; /* Offset into folio */
4285 size_t bytes; /* Bytes to write to folio */
4286 size_t copied; /* Bytes copied from user */
4287 void *fsdata = NULL;
4288
4289 bytes = iov_iter_count(i);
4290 retry:
4291 offset = pos & (chunk - 1);
4292 bytes = min(chunk - offset, bytes);
4293 balance_dirty_pages_ratelimited(mapping);
4294
4295 if (fatal_signal_pending(current)) {
4296 status = -EINTR;
4297 break;
4298 }
4299
4300 status = a_ops->write_begin(iocb, mapping, pos, bytes,
4301 &folio, &fsdata);
4302 if (unlikely(status < 0))
4303 break;
4304
4305 offset = offset_in_folio(folio, pos);
4306 if (bytes > folio_size(folio) - offset)
4307 bytes = folio_size(folio) - offset;
4308
4309 if (mapping_writably_mapped(mapping))
4310 flush_dcache_folio(folio);
4311
4312 /*
4313 * Faults here on mmap()s can recurse into arbitrary
4314 * filesystem code. Lots of locks are held that can
4315 * deadlock. Use an atomic copy to avoid deadlocking
4316 * in page fault handling.
4317 */
4318 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4319 flush_dcache_folio(folio);
4320
4321 status = a_ops->write_end(iocb, mapping, pos, bytes, copied,
4322 folio, fsdata);
4323 if (unlikely(status != copied)) {
4324 iov_iter_revert(i, copied - max(status, 0L));
4325 if (unlikely(status < 0))
4326 break;
4327 }
4328 cond_resched();
4329
4330 if (unlikely(status == 0)) {
4331 /*
4332 * A short copy made ->write_end() reject the
4333 * thing entirely. Might be memory poisoning
4334 * halfway through, might be a race with munmap,
4335 * might be severe memory pressure.
4336 */
4337 if (chunk > PAGE_SIZE)
4338 chunk /= 2;
4339 if (copied) {
4340 bytes = copied;
4341 goto retry;
4342 }
4343
4344 /*
4345 * 'folio' is now unlocked and faults on it can be
4346 * handled. Ensure forward progress by trying to
4347 * fault it in now.
4348 */
4349 if (fault_in_iov_iter_readable(i, bytes) == bytes) {
4350 status = -EFAULT;
4351 break;
4352 }
4353 } else {
4354 pos += status;
4355 written += status;
4356 }
4357 } while (iov_iter_count(i));
4358
4359 if (!written)
4360 return status;
4361 iocb->ki_pos += written;
4362 return written;
4363 }
4364 EXPORT_SYMBOL(generic_perform_write);
4365
4366 /**
4367 * __generic_file_write_iter - write data to a file
4368 * @iocb: IO state structure (file, offset, etc.)
4369 * @from: iov_iter with data to write
4370 *
4371 * This function does all the work needed for actually writing data to a
4372 * file. It does all basic checks, removes SUID from the file, updates
4373 * modification times and calls proper subroutines depending on whether we
4374 * do direct IO or a standard buffered write.
4375 *
4376 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4377 * object which does not need locking at all.
4378 *
4379 * This function does *not* take care of syncing data in case of O_SYNC write.
4380 * A caller has to handle it. This is mainly due to the fact that we want to
4381 * avoid syncing under i_rwsem.
4382 *
4383 * Return:
4384 * * number of bytes written, even for truncated writes
4385 * * negative error code if no data has been written at all
4386 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4387 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4388 {
4389 struct file *file = iocb->ki_filp;
4390 struct address_space *mapping = file->f_mapping;
4391 struct inode *inode = mapping->host;
4392 ssize_t ret;
4393
4394 ret = file_remove_privs(file);
4395 if (ret)
4396 return ret;
4397
4398 ret = file_update_time(file);
4399 if (ret)
4400 return ret;
4401
4402 if (iocb->ki_flags & IOCB_DIRECT) {
4403 ret = generic_file_direct_write(iocb, from);
4404 /*
4405 * If the write stopped short of completing, fall back to
4406 * buffered writes. Some filesystems do this for writes to
4407 * holes, for example. For DAX files, a buffered write will
4408 * not succeed (even if it did, DAX does not handle dirty
4409 * page-cache pages correctly).
4410 */
4411 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4412 return ret;
4413 return direct_write_fallback(iocb, from, ret,
4414 generic_perform_write(iocb, from));
4415 }
4416
4417 return generic_perform_write(iocb, from);
4418 }
4419 EXPORT_SYMBOL(__generic_file_write_iter);
4420
4421 /**
4422 * generic_file_write_iter - write data to a file
4423 * @iocb: IO state structure
4424 * @from: iov_iter with data to write
4425 *
4426 * This is a wrapper around __generic_file_write_iter() to be used by most
4427 * filesystems. It takes care of syncing the file in case of O_SYNC file
4428 * and acquires i_rwsem as needed.
4429 * Return:
4430 * * negative error code if no data has been written at all of
4431 * vfs_fsync_range() failed for a synchronous write
4432 * * number of bytes written, even for truncated writes
4433 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4434 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4435 {
4436 struct file *file = iocb->ki_filp;
4437 struct inode *inode = file->f_mapping->host;
4438 ssize_t ret;
4439
4440 inode_lock(inode);
4441 ret = generic_write_checks(iocb, from);
4442 if (ret > 0)
4443 ret = __generic_file_write_iter(iocb, from);
4444 inode_unlock(inode);
4445
4446 if (ret > 0)
4447 ret = generic_write_sync(iocb, ret);
4448 return ret;
4449 }
4450 EXPORT_SYMBOL(generic_file_write_iter);
4451
4452 /**
4453 * filemap_release_folio() - Release fs-specific metadata on a folio.
4454 * @folio: The folio which the kernel is trying to free.
4455 * @gfp: Memory allocation flags (and I/O mode).
4456 *
4457 * The address_space is trying to release any data attached to a folio
4458 * (presumably at folio->private).
4459 *
4460 * This will also be called if the private_2 flag is set on a page,
4461 * indicating that the folio has other metadata associated with it.
4462 *
4463 * The @gfp argument specifies whether I/O may be performed to release
4464 * this page (__GFP_IO), and whether the call may block
4465 * (__GFP_RECLAIM & __GFP_FS).
4466 *
4467 * Return: %true if the release was successful, otherwise %false.
4468 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4469 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4470 {
4471 struct address_space * const mapping = folio->mapping;
4472
4473 BUG_ON(!folio_test_locked(folio));
4474 if (!folio_needs_release(folio))
4475 return true;
4476 if (folio_test_writeback(folio))
4477 return false;
4478
4479 if (mapping && mapping->a_ops->release_folio)
4480 return mapping->a_ops->release_folio(folio, gfp);
4481 return try_to_free_buffers(folio);
4482 }
4483 EXPORT_SYMBOL(filemap_release_folio);
4484
4485 /**
4486 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4487 * @inode: The inode to flush
4488 * @flush: Set to write back rather than simply invalidate.
4489 * @start: First byte to in range.
4490 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4491 * onwards.
4492 *
4493 * Invalidate all the folios on an inode that contribute to the specified
4494 * range, possibly writing them back first. Whilst the operation is
4495 * undertaken, the invalidate lock is held to prevent new folios from being
4496 * installed.
4497 */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4498 int filemap_invalidate_inode(struct inode *inode, bool flush,
4499 loff_t start, loff_t end)
4500 {
4501 struct address_space *mapping = inode->i_mapping;
4502 pgoff_t first = start >> PAGE_SHIFT;
4503 pgoff_t last = end >> PAGE_SHIFT;
4504 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4505
4506 if (!mapping || !mapping->nrpages || end < start)
4507 goto out;
4508
4509 /* Prevent new folios from being added to the inode. */
4510 filemap_invalidate_lock(mapping);
4511
4512 if (!mapping->nrpages)
4513 goto unlock;
4514
4515 unmap_mapping_pages(mapping, first, nr, false);
4516
4517 /* Write back the data if we're asked to. */
4518 if (flush)
4519 filemap_fdatawrite_range(mapping, start, end);
4520
4521 /* Wait for writeback to complete on all folios and discard. */
4522 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4523
4524 unlock:
4525 filemap_invalidate_unlock(mapping);
4526 out:
4527 return filemap_check_errors(mapping);
4528 }
4529 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4530
4531 #ifdef CONFIG_CACHESTAT_SYSCALL
4532 /**
4533 * filemap_cachestat() - compute the page cache statistics of a mapping
4534 * @mapping: The mapping to compute the statistics for.
4535 * @first_index: The starting page cache index.
4536 * @last_index: The final page index (inclusive).
4537 * @cs: the cachestat struct to write the result to.
4538 *
4539 * This will query the page cache statistics of a mapping in the
4540 * page range of [first_index, last_index] (inclusive). The statistics
4541 * queried include: number of dirty pages, number of pages marked for
4542 * writeback, and the number of (recently) evicted pages.
4543 */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4544 static void filemap_cachestat(struct address_space *mapping,
4545 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4546 {
4547 XA_STATE(xas, &mapping->i_pages, first_index);
4548 struct folio *folio;
4549
4550 /* Flush stats (and potentially sleep) outside the RCU read section. */
4551 mem_cgroup_flush_stats_ratelimited(NULL);
4552
4553 rcu_read_lock();
4554 xas_for_each(&xas, folio, last_index) {
4555 int order;
4556 unsigned long nr_pages;
4557 pgoff_t folio_first_index, folio_last_index;
4558
4559 /*
4560 * Don't deref the folio. It is not pinned, and might
4561 * get freed (and reused) underneath us.
4562 *
4563 * We *could* pin it, but that would be expensive for
4564 * what should be a fast and lightweight syscall.
4565 *
4566 * Instead, derive all information of interest from
4567 * the rcu-protected xarray.
4568 */
4569
4570 if (xas_retry(&xas, folio))
4571 continue;
4572
4573 order = xas_get_order(&xas);
4574 nr_pages = 1 << order;
4575 folio_first_index = round_down(xas.xa_index, 1 << order);
4576 folio_last_index = folio_first_index + nr_pages - 1;
4577
4578 /* Folios might straddle the range boundaries, only count covered pages */
4579 if (folio_first_index < first_index)
4580 nr_pages -= first_index - folio_first_index;
4581
4582 if (folio_last_index > last_index)
4583 nr_pages -= folio_last_index - last_index;
4584
4585 if (xa_is_value(folio)) {
4586 /* page is evicted */
4587 void *shadow = (void *)folio;
4588 bool workingset; /* not used */
4589
4590 cs->nr_evicted += nr_pages;
4591
4592 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4593 if (shmem_mapping(mapping)) {
4594 /* shmem file - in swap cache */
4595 swp_entry_t swp = radix_to_swp_entry(folio);
4596
4597 /* swapin error results in poisoned entry */
4598 if (non_swap_entry(swp))
4599 goto resched;
4600
4601 /*
4602 * Getting a swap entry from the shmem
4603 * inode means we beat
4604 * shmem_unuse(). rcu_read_lock()
4605 * ensures swapoff waits for us before
4606 * freeing the swapper space. However,
4607 * we can race with swapping and
4608 * invalidation, so there might not be
4609 * a shadow in the swapcache (yet).
4610 */
4611 shadow = swap_cache_get_shadow(swp);
4612 if (!shadow)
4613 goto resched;
4614 }
4615 #endif
4616 if (workingset_test_recent(shadow, true, &workingset, false))
4617 cs->nr_recently_evicted += nr_pages;
4618
4619 goto resched;
4620 }
4621
4622 /* page is in cache */
4623 cs->nr_cache += nr_pages;
4624
4625 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4626 cs->nr_dirty += nr_pages;
4627
4628 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4629 cs->nr_writeback += nr_pages;
4630
4631 resched:
4632 if (need_resched()) {
4633 xas_pause(&xas);
4634 cond_resched_rcu();
4635 }
4636 }
4637 rcu_read_unlock();
4638 }
4639
4640 /*
4641 * See mincore: reveal pagecache information only for files
4642 * that the calling process has write access to, or could (if
4643 * tried) open for writing.
4644 */
can_do_cachestat(struct file * f)4645 static inline bool can_do_cachestat(struct file *f)
4646 {
4647 if (f->f_mode & FMODE_WRITE)
4648 return true;
4649 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4650 return true;
4651 return file_permission(f, MAY_WRITE) == 0;
4652 }
4653
4654 /*
4655 * The cachestat(2) system call.
4656 *
4657 * cachestat() returns the page cache statistics of a file in the
4658 * bytes range specified by `off` and `len`: number of cached pages,
4659 * number of dirty pages, number of pages marked for writeback,
4660 * number of evicted pages, and number of recently evicted pages.
4661 *
4662 * An evicted page is a page that is previously in the page cache
4663 * but has been evicted since. A page is recently evicted if its last
4664 * eviction was recent enough that its reentry to the cache would
4665 * indicate that it is actively being used by the system, and that
4666 * there is memory pressure on the system.
4667 *
4668 * `off` and `len` must be non-negative integers. If `len` > 0,
4669 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4670 * we will query in the range from `off` to the end of the file.
4671 *
4672 * The `flags` argument is unused for now, but is included for future
4673 * extensibility. User should pass 0 (i.e no flag specified).
4674 *
4675 * Currently, hugetlbfs is not supported.
4676 *
4677 * Because the status of a page can change after cachestat() checks it
4678 * but before it returns to the application, the returned values may
4679 * contain stale information.
4680 *
4681 * return values:
4682 * zero - success
4683 * -EFAULT - cstat or cstat_range points to an illegal address
4684 * -EINVAL - invalid flags
4685 * -EBADF - invalid file descriptor
4686 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4687 */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4688 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4689 struct cachestat_range __user *, cstat_range,
4690 struct cachestat __user *, cstat, unsigned int, flags)
4691 {
4692 CLASS(fd, f)(fd);
4693 struct address_space *mapping;
4694 struct cachestat_range csr;
4695 struct cachestat cs;
4696 pgoff_t first_index, last_index;
4697
4698 if (fd_empty(f))
4699 return -EBADF;
4700
4701 if (copy_from_user(&csr, cstat_range,
4702 sizeof(struct cachestat_range)))
4703 return -EFAULT;
4704
4705 /* hugetlbfs is not supported */
4706 if (is_file_hugepages(fd_file(f)))
4707 return -EOPNOTSUPP;
4708
4709 if (!can_do_cachestat(fd_file(f)))
4710 return -EPERM;
4711
4712 if (flags != 0)
4713 return -EINVAL;
4714
4715 first_index = csr.off >> PAGE_SHIFT;
4716 last_index =
4717 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4718 memset(&cs, 0, sizeof(struct cachestat));
4719 mapping = fd_file(f)->f_mapping;
4720 filemap_cachestat(mapping, first_index, last_index, &cs);
4721
4722 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4723 return -EFAULT;
4724
4725 return 0;
4726 }
4727 #endif /* CONFIG_CACHESTAT_SYSCALL */
4728