1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/cpu.h> 11 #include <linux/swap.h> 12 #include <linux/migrate.h> 13 #include <linux/compaction.h> 14 #include <linux/mm_inline.h> 15 #include <linux/backing-dev.h> 16 #include <linux/sysctl.h> 17 #include <linux/sysfs.h> 18 #include <linux/balloon_compaction.h> 19 #include <linux/page-isolation.h> 20 #include <linux/kasan.h> 21 #include <linux/kthread.h> 22 #include <linux/freezer.h> 23 #include "internal.h" 24 25 #ifdef CONFIG_COMPACTION 26 static inline void count_compact_event(enum vm_event_item item) 27 { 28 count_vm_event(item); 29 } 30 31 static inline void count_compact_events(enum vm_event_item item, long delta) 32 { 33 count_vm_events(item, delta); 34 } 35 #else 36 #define count_compact_event(item) do { } while (0) 37 #define count_compact_events(item, delta) do { } while (0) 38 #endif 39 40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/compaction.h> 44 45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 49 50 static unsigned long release_freepages(struct list_head *freelist) 51 { 52 struct page *page, *next; 53 unsigned long high_pfn = 0; 54 55 list_for_each_entry_safe(page, next, freelist, lru) { 56 unsigned long pfn = page_to_pfn(page); 57 list_del(&page->lru); 58 __free_page(page); 59 if (pfn > high_pfn) 60 high_pfn = pfn; 61 } 62 63 return high_pfn; 64 } 65 66 static void map_pages(struct list_head *list) 67 { 68 struct page *page; 69 70 list_for_each_entry(page, list, lru) { 71 arch_alloc_page(page, 0); 72 kernel_map_pages(page, 1, 1); 73 kasan_alloc_pages(page, 0); 74 } 75 } 76 77 static inline bool migrate_async_suitable(int migratetype) 78 { 79 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 80 } 81 82 #ifdef CONFIG_COMPACTION 83 84 /* Do not skip compaction more than 64 times */ 85 #define COMPACT_MAX_DEFER_SHIFT 6 86 87 /* 88 * Compaction is deferred when compaction fails to result in a page 89 * allocation success. 1 << compact_defer_limit compactions are skipped up 90 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 91 */ 92 void defer_compaction(struct zone *zone, int order) 93 { 94 zone->compact_considered = 0; 95 zone->compact_defer_shift++; 96 97 if (order < zone->compact_order_failed) 98 zone->compact_order_failed = order; 99 100 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 101 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 102 103 trace_mm_compaction_defer_compaction(zone, order); 104 } 105 106 /* Returns true if compaction should be skipped this time */ 107 bool compaction_deferred(struct zone *zone, int order) 108 { 109 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 110 111 if (order < zone->compact_order_failed) 112 return false; 113 114 /* Avoid possible overflow */ 115 if (++zone->compact_considered > defer_limit) 116 zone->compact_considered = defer_limit; 117 118 if (zone->compact_considered >= defer_limit) 119 return false; 120 121 trace_mm_compaction_deferred(zone, order); 122 123 return true; 124 } 125 126 /* 127 * Update defer tracking counters after successful compaction of given order, 128 * which means an allocation either succeeded (alloc_success == true) or is 129 * expected to succeed. 130 */ 131 void compaction_defer_reset(struct zone *zone, int order, 132 bool alloc_success) 133 { 134 if (alloc_success) { 135 zone->compact_considered = 0; 136 zone->compact_defer_shift = 0; 137 } 138 if (order >= zone->compact_order_failed) 139 zone->compact_order_failed = order + 1; 140 141 trace_mm_compaction_defer_reset(zone, order); 142 } 143 144 /* Returns true if restarting compaction after many failures */ 145 bool compaction_restarting(struct zone *zone, int order) 146 { 147 if (order < zone->compact_order_failed) 148 return false; 149 150 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 151 zone->compact_considered >= 1UL << zone->compact_defer_shift; 152 } 153 154 /* Returns true if the pageblock should be scanned for pages to isolate. */ 155 static inline bool isolation_suitable(struct compact_control *cc, 156 struct page *page) 157 { 158 if (cc->ignore_skip_hint) 159 return true; 160 161 return !get_pageblock_skip(page); 162 } 163 164 static void reset_cached_positions(struct zone *zone) 165 { 166 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 167 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 168 zone->compact_cached_free_pfn = 169 pageblock_start_pfn(zone_end_pfn(zone) - 1); 170 } 171 172 /* 173 * This function is called to clear all cached information on pageblocks that 174 * should be skipped for page isolation when the migrate and free page scanner 175 * meet. 176 */ 177 static void __reset_isolation_suitable(struct zone *zone) 178 { 179 unsigned long start_pfn = zone->zone_start_pfn; 180 unsigned long end_pfn = zone_end_pfn(zone); 181 unsigned long pfn; 182 183 zone->compact_blockskip_flush = false; 184 185 /* Walk the zone and mark every pageblock as suitable for isolation */ 186 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 187 struct page *page; 188 189 cond_resched(); 190 191 if (!pfn_valid(pfn)) 192 continue; 193 194 page = pfn_to_page(pfn); 195 if (zone != page_zone(page)) 196 continue; 197 198 clear_pageblock_skip(page); 199 } 200 201 reset_cached_positions(zone); 202 } 203 204 void reset_isolation_suitable(pg_data_t *pgdat) 205 { 206 int zoneid; 207 208 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 209 struct zone *zone = &pgdat->node_zones[zoneid]; 210 if (!populated_zone(zone)) 211 continue; 212 213 /* Only flush if a full compaction finished recently */ 214 if (zone->compact_blockskip_flush) 215 __reset_isolation_suitable(zone); 216 } 217 } 218 219 /* 220 * If no pages were isolated then mark this pageblock to be skipped in the 221 * future. The information is later cleared by __reset_isolation_suitable(). 222 */ 223 static void update_pageblock_skip(struct compact_control *cc, 224 struct page *page, unsigned long nr_isolated, 225 bool migrate_scanner) 226 { 227 struct zone *zone = cc->zone; 228 unsigned long pfn; 229 230 if (cc->ignore_skip_hint) 231 return; 232 233 if (!page) 234 return; 235 236 if (nr_isolated) 237 return; 238 239 set_pageblock_skip(page); 240 241 pfn = page_to_pfn(page); 242 243 /* Update where async and sync compaction should restart */ 244 if (migrate_scanner) { 245 if (pfn > zone->compact_cached_migrate_pfn[0]) 246 zone->compact_cached_migrate_pfn[0] = pfn; 247 if (cc->mode != MIGRATE_ASYNC && 248 pfn > zone->compact_cached_migrate_pfn[1]) 249 zone->compact_cached_migrate_pfn[1] = pfn; 250 } else { 251 if (pfn < zone->compact_cached_free_pfn) 252 zone->compact_cached_free_pfn = pfn; 253 } 254 } 255 #else 256 static inline bool isolation_suitable(struct compact_control *cc, 257 struct page *page) 258 { 259 return true; 260 } 261 262 static void update_pageblock_skip(struct compact_control *cc, 263 struct page *page, unsigned long nr_isolated, 264 bool migrate_scanner) 265 { 266 } 267 #endif /* CONFIG_COMPACTION */ 268 269 /* 270 * Compaction requires the taking of some coarse locks that are potentially 271 * very heavily contended. For async compaction, back out if the lock cannot 272 * be taken immediately. For sync compaction, spin on the lock if needed. 273 * 274 * Returns true if the lock is held 275 * Returns false if the lock is not held and compaction should abort 276 */ 277 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 278 struct compact_control *cc) 279 { 280 if (cc->mode == MIGRATE_ASYNC) { 281 if (!spin_trylock_irqsave(lock, *flags)) { 282 cc->contended = COMPACT_CONTENDED_LOCK; 283 return false; 284 } 285 } else { 286 spin_lock_irqsave(lock, *flags); 287 } 288 289 return true; 290 } 291 292 /* 293 * Compaction requires the taking of some coarse locks that are potentially 294 * very heavily contended. The lock should be periodically unlocked to avoid 295 * having disabled IRQs for a long time, even when there is nobody waiting on 296 * the lock. It might also be that allowing the IRQs will result in 297 * need_resched() becoming true. If scheduling is needed, async compaction 298 * aborts. Sync compaction schedules. 299 * Either compaction type will also abort if a fatal signal is pending. 300 * In either case if the lock was locked, it is dropped and not regained. 301 * 302 * Returns true if compaction should abort due to fatal signal pending, or 303 * async compaction due to need_resched() 304 * Returns false when compaction can continue (sync compaction might have 305 * scheduled) 306 */ 307 static bool compact_unlock_should_abort(spinlock_t *lock, 308 unsigned long flags, bool *locked, struct compact_control *cc) 309 { 310 if (*locked) { 311 spin_unlock_irqrestore(lock, flags); 312 *locked = false; 313 } 314 315 if (fatal_signal_pending(current)) { 316 cc->contended = COMPACT_CONTENDED_SCHED; 317 return true; 318 } 319 320 if (need_resched()) { 321 if (cc->mode == MIGRATE_ASYNC) { 322 cc->contended = COMPACT_CONTENDED_SCHED; 323 return true; 324 } 325 cond_resched(); 326 } 327 328 return false; 329 } 330 331 /* 332 * Aside from avoiding lock contention, compaction also periodically checks 333 * need_resched() and either schedules in sync compaction or aborts async 334 * compaction. This is similar to what compact_unlock_should_abort() does, but 335 * is used where no lock is concerned. 336 * 337 * Returns false when no scheduling was needed, or sync compaction scheduled. 338 * Returns true when async compaction should abort. 339 */ 340 static inline bool compact_should_abort(struct compact_control *cc) 341 { 342 /* async compaction aborts if contended */ 343 if (need_resched()) { 344 if (cc->mode == MIGRATE_ASYNC) { 345 cc->contended = COMPACT_CONTENDED_SCHED; 346 return true; 347 } 348 349 cond_resched(); 350 } 351 352 return false; 353 } 354 355 /* 356 * Isolate free pages onto a private freelist. If @strict is true, will abort 357 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 358 * (even though it may still end up isolating some pages). 359 */ 360 static unsigned long isolate_freepages_block(struct compact_control *cc, 361 unsigned long *start_pfn, 362 unsigned long end_pfn, 363 struct list_head *freelist, 364 bool strict) 365 { 366 int nr_scanned = 0, total_isolated = 0; 367 struct page *cursor, *valid_page = NULL; 368 unsigned long flags = 0; 369 bool locked = false; 370 unsigned long blockpfn = *start_pfn; 371 372 cursor = pfn_to_page(blockpfn); 373 374 /* Isolate free pages. */ 375 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 376 int isolated, i; 377 struct page *page = cursor; 378 379 /* 380 * Periodically drop the lock (if held) regardless of its 381 * contention, to give chance to IRQs. Abort if fatal signal 382 * pending or async compaction detects need_resched() 383 */ 384 if (!(blockpfn % SWAP_CLUSTER_MAX) 385 && compact_unlock_should_abort(&cc->zone->lock, flags, 386 &locked, cc)) 387 break; 388 389 nr_scanned++; 390 if (!pfn_valid_within(blockpfn)) 391 goto isolate_fail; 392 393 if (!valid_page) 394 valid_page = page; 395 396 /* 397 * For compound pages such as THP and hugetlbfs, we can save 398 * potentially a lot of iterations if we skip them at once. 399 * The check is racy, but we can consider only valid values 400 * and the only danger is skipping too much. 401 */ 402 if (PageCompound(page)) { 403 unsigned int comp_order = compound_order(page); 404 405 if (likely(comp_order < MAX_ORDER)) { 406 blockpfn += (1UL << comp_order) - 1; 407 cursor += (1UL << comp_order) - 1; 408 } 409 410 goto isolate_fail; 411 } 412 413 if (!PageBuddy(page)) 414 goto isolate_fail; 415 416 /* 417 * If we already hold the lock, we can skip some rechecking. 418 * Note that if we hold the lock now, checked_pageblock was 419 * already set in some previous iteration (or strict is true), 420 * so it is correct to skip the suitable migration target 421 * recheck as well. 422 */ 423 if (!locked) { 424 /* 425 * The zone lock must be held to isolate freepages. 426 * Unfortunately this is a very coarse lock and can be 427 * heavily contended if there are parallel allocations 428 * or parallel compactions. For async compaction do not 429 * spin on the lock and we acquire the lock as late as 430 * possible. 431 */ 432 locked = compact_trylock_irqsave(&cc->zone->lock, 433 &flags, cc); 434 if (!locked) 435 break; 436 437 /* Recheck this is a buddy page under lock */ 438 if (!PageBuddy(page)) 439 goto isolate_fail; 440 } 441 442 /* Found a free page, break it into order-0 pages */ 443 isolated = split_free_page(page); 444 if (!isolated) 445 break; 446 447 total_isolated += isolated; 448 cc->nr_freepages += isolated; 449 for (i = 0; i < isolated; i++) { 450 list_add(&page->lru, freelist); 451 page++; 452 } 453 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 454 blockpfn += isolated; 455 break; 456 } 457 /* Advance to the end of split page */ 458 blockpfn += isolated - 1; 459 cursor += isolated - 1; 460 continue; 461 462 isolate_fail: 463 if (strict) 464 break; 465 else 466 continue; 467 468 } 469 470 if (locked) 471 spin_unlock_irqrestore(&cc->zone->lock, flags); 472 473 /* 474 * There is a tiny chance that we have read bogus compound_order(), 475 * so be careful to not go outside of the pageblock. 476 */ 477 if (unlikely(blockpfn > end_pfn)) 478 blockpfn = end_pfn; 479 480 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 481 nr_scanned, total_isolated); 482 483 /* Record how far we have got within the block */ 484 *start_pfn = blockpfn; 485 486 /* 487 * If strict isolation is requested by CMA then check that all the 488 * pages requested were isolated. If there were any failures, 0 is 489 * returned and CMA will fail. 490 */ 491 if (strict && blockpfn < end_pfn) 492 total_isolated = 0; 493 494 /* Update the pageblock-skip if the whole pageblock was scanned */ 495 if (blockpfn == end_pfn) 496 update_pageblock_skip(cc, valid_page, total_isolated, false); 497 498 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 499 if (total_isolated) 500 count_compact_events(COMPACTISOLATED, total_isolated); 501 return total_isolated; 502 } 503 504 /** 505 * isolate_freepages_range() - isolate free pages. 506 * @start_pfn: The first PFN to start isolating. 507 * @end_pfn: The one-past-last PFN. 508 * 509 * Non-free pages, invalid PFNs, or zone boundaries within the 510 * [start_pfn, end_pfn) range are considered errors, cause function to 511 * undo its actions and return zero. 512 * 513 * Otherwise, function returns one-past-the-last PFN of isolated page 514 * (which may be greater then end_pfn if end fell in a middle of 515 * a free page). 516 */ 517 unsigned long 518 isolate_freepages_range(struct compact_control *cc, 519 unsigned long start_pfn, unsigned long end_pfn) 520 { 521 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 522 LIST_HEAD(freelist); 523 524 pfn = start_pfn; 525 block_start_pfn = pageblock_start_pfn(pfn); 526 if (block_start_pfn < cc->zone->zone_start_pfn) 527 block_start_pfn = cc->zone->zone_start_pfn; 528 block_end_pfn = pageblock_end_pfn(pfn); 529 530 for (; pfn < end_pfn; pfn += isolated, 531 block_start_pfn = block_end_pfn, 532 block_end_pfn += pageblock_nr_pages) { 533 /* Protect pfn from changing by isolate_freepages_block */ 534 unsigned long isolate_start_pfn = pfn; 535 536 block_end_pfn = min(block_end_pfn, end_pfn); 537 538 /* 539 * pfn could pass the block_end_pfn if isolated freepage 540 * is more than pageblock order. In this case, we adjust 541 * scanning range to right one. 542 */ 543 if (pfn >= block_end_pfn) { 544 block_start_pfn = pageblock_start_pfn(pfn); 545 block_end_pfn = pageblock_end_pfn(pfn); 546 block_end_pfn = min(block_end_pfn, end_pfn); 547 } 548 549 if (!pageblock_pfn_to_page(block_start_pfn, 550 block_end_pfn, cc->zone)) 551 break; 552 553 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 554 block_end_pfn, &freelist, true); 555 556 /* 557 * In strict mode, isolate_freepages_block() returns 0 if 558 * there are any holes in the block (ie. invalid PFNs or 559 * non-free pages). 560 */ 561 if (!isolated) 562 break; 563 564 /* 565 * If we managed to isolate pages, it is always (1 << n) * 566 * pageblock_nr_pages for some non-negative n. (Max order 567 * page may span two pageblocks). 568 */ 569 } 570 571 /* split_free_page does not map the pages */ 572 map_pages(&freelist); 573 574 if (pfn < end_pfn) { 575 /* Loop terminated early, cleanup. */ 576 release_freepages(&freelist); 577 return 0; 578 } 579 580 /* We don't use freelists for anything. */ 581 return pfn; 582 } 583 584 /* Update the number of anon and file isolated pages in the zone */ 585 static void acct_isolated(struct zone *zone, struct compact_control *cc) 586 { 587 struct page *page; 588 unsigned int count[2] = { 0, }; 589 590 if (list_empty(&cc->migratepages)) 591 return; 592 593 list_for_each_entry(page, &cc->migratepages, lru) 594 count[!!page_is_file_cache(page)]++; 595 596 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 597 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 598 } 599 600 /* Similar to reclaim, but different enough that they don't share logic */ 601 static bool too_many_isolated(struct zone *zone) 602 { 603 unsigned long active, inactive, isolated; 604 605 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 606 zone_page_state(zone, NR_INACTIVE_ANON); 607 active = zone_page_state(zone, NR_ACTIVE_FILE) + 608 zone_page_state(zone, NR_ACTIVE_ANON); 609 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 610 zone_page_state(zone, NR_ISOLATED_ANON); 611 612 return isolated > (inactive + active) / 2; 613 } 614 615 /** 616 * isolate_migratepages_block() - isolate all migrate-able pages within 617 * a single pageblock 618 * @cc: Compaction control structure. 619 * @low_pfn: The first PFN to isolate 620 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 621 * @isolate_mode: Isolation mode to be used. 622 * 623 * Isolate all pages that can be migrated from the range specified by 624 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 625 * Returns zero if there is a fatal signal pending, otherwise PFN of the 626 * first page that was not scanned (which may be both less, equal to or more 627 * than end_pfn). 628 * 629 * The pages are isolated on cc->migratepages list (not required to be empty), 630 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 631 * is neither read nor updated. 632 */ 633 static unsigned long 634 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 635 unsigned long end_pfn, isolate_mode_t isolate_mode) 636 { 637 struct zone *zone = cc->zone; 638 unsigned long nr_scanned = 0, nr_isolated = 0; 639 struct lruvec *lruvec; 640 unsigned long flags = 0; 641 bool locked = false; 642 struct page *page = NULL, *valid_page = NULL; 643 unsigned long start_pfn = low_pfn; 644 bool skip_on_failure = false; 645 unsigned long next_skip_pfn = 0; 646 647 /* 648 * Ensure that there are not too many pages isolated from the LRU 649 * list by either parallel reclaimers or compaction. If there are, 650 * delay for some time until fewer pages are isolated 651 */ 652 while (unlikely(too_many_isolated(zone))) { 653 /* async migration should just abort */ 654 if (cc->mode == MIGRATE_ASYNC) 655 return 0; 656 657 congestion_wait(BLK_RW_ASYNC, HZ/10); 658 659 if (fatal_signal_pending(current)) 660 return 0; 661 } 662 663 if (compact_should_abort(cc)) 664 return 0; 665 666 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 667 skip_on_failure = true; 668 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 669 } 670 671 /* Time to isolate some pages for migration */ 672 for (; low_pfn < end_pfn; low_pfn++) { 673 bool is_lru; 674 675 if (skip_on_failure && low_pfn >= next_skip_pfn) { 676 /* 677 * We have isolated all migration candidates in the 678 * previous order-aligned block, and did not skip it due 679 * to failure. We should migrate the pages now and 680 * hopefully succeed compaction. 681 */ 682 if (nr_isolated) 683 break; 684 685 /* 686 * We failed to isolate in the previous order-aligned 687 * block. Set the new boundary to the end of the 688 * current block. Note we can't simply increase 689 * next_skip_pfn by 1 << order, as low_pfn might have 690 * been incremented by a higher number due to skipping 691 * a compound or a high-order buddy page in the 692 * previous loop iteration. 693 */ 694 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 695 } 696 697 /* 698 * Periodically drop the lock (if held) regardless of its 699 * contention, to give chance to IRQs. Abort async compaction 700 * if contended. 701 */ 702 if (!(low_pfn % SWAP_CLUSTER_MAX) 703 && compact_unlock_should_abort(&zone->lru_lock, flags, 704 &locked, cc)) 705 break; 706 707 if (!pfn_valid_within(low_pfn)) 708 goto isolate_fail; 709 nr_scanned++; 710 711 page = pfn_to_page(low_pfn); 712 713 if (!valid_page) 714 valid_page = page; 715 716 /* 717 * Skip if free. We read page order here without zone lock 718 * which is generally unsafe, but the race window is small and 719 * the worst thing that can happen is that we skip some 720 * potential isolation targets. 721 */ 722 if (PageBuddy(page)) { 723 unsigned long freepage_order = page_order_unsafe(page); 724 725 /* 726 * Without lock, we cannot be sure that what we got is 727 * a valid page order. Consider only values in the 728 * valid order range to prevent low_pfn overflow. 729 */ 730 if (freepage_order > 0 && freepage_order < MAX_ORDER) 731 low_pfn += (1UL << freepage_order) - 1; 732 continue; 733 } 734 735 /* 736 * Check may be lockless but that's ok as we recheck later. 737 * It's possible to migrate LRU pages and balloon pages 738 * Skip any other type of page 739 */ 740 is_lru = PageLRU(page); 741 if (!is_lru) { 742 if (unlikely(balloon_page_movable(page))) { 743 if (balloon_page_isolate(page)) { 744 /* Successfully isolated */ 745 goto isolate_success; 746 } 747 } 748 } 749 750 /* 751 * Regardless of being on LRU, compound pages such as THP and 752 * hugetlbfs are not to be compacted. We can potentially save 753 * a lot of iterations if we skip them at once. The check is 754 * racy, but we can consider only valid values and the only 755 * danger is skipping too much. 756 */ 757 if (PageCompound(page)) { 758 unsigned int comp_order = compound_order(page); 759 760 if (likely(comp_order < MAX_ORDER)) 761 low_pfn += (1UL << comp_order) - 1; 762 763 goto isolate_fail; 764 } 765 766 if (!is_lru) 767 goto isolate_fail; 768 769 /* 770 * Migration will fail if an anonymous page is pinned in memory, 771 * so avoid taking lru_lock and isolating it unnecessarily in an 772 * admittedly racy check. 773 */ 774 if (!page_mapping(page) && 775 page_count(page) > page_mapcount(page)) 776 goto isolate_fail; 777 778 /* If we already hold the lock, we can skip some rechecking */ 779 if (!locked) { 780 locked = compact_trylock_irqsave(&zone->lru_lock, 781 &flags, cc); 782 if (!locked) 783 break; 784 785 /* Recheck PageLRU and PageCompound under lock */ 786 if (!PageLRU(page)) 787 goto isolate_fail; 788 789 /* 790 * Page become compound since the non-locked check, 791 * and it's on LRU. It can only be a THP so the order 792 * is safe to read and it's 0 for tail pages. 793 */ 794 if (unlikely(PageCompound(page))) { 795 low_pfn += (1UL << compound_order(page)) - 1; 796 goto isolate_fail; 797 } 798 } 799 800 lruvec = mem_cgroup_page_lruvec(page, zone); 801 802 /* Try isolate the page */ 803 if (__isolate_lru_page(page, isolate_mode) != 0) 804 goto isolate_fail; 805 806 VM_BUG_ON_PAGE(PageCompound(page), page); 807 808 /* Successfully isolated */ 809 del_page_from_lru_list(page, lruvec, page_lru(page)); 810 811 isolate_success: 812 list_add(&page->lru, &cc->migratepages); 813 cc->nr_migratepages++; 814 nr_isolated++; 815 816 /* 817 * Record where we could have freed pages by migration and not 818 * yet flushed them to buddy allocator. 819 * - this is the lowest page that was isolated and likely be 820 * then freed by migration. 821 */ 822 if (!cc->last_migrated_pfn) 823 cc->last_migrated_pfn = low_pfn; 824 825 /* Avoid isolating too much */ 826 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 827 ++low_pfn; 828 break; 829 } 830 831 continue; 832 isolate_fail: 833 if (!skip_on_failure) 834 continue; 835 836 /* 837 * We have isolated some pages, but then failed. Release them 838 * instead of migrating, as we cannot form the cc->order buddy 839 * page anyway. 840 */ 841 if (nr_isolated) { 842 if (locked) { 843 spin_unlock_irqrestore(&zone->lru_lock, flags); 844 locked = false; 845 } 846 acct_isolated(zone, cc); 847 putback_movable_pages(&cc->migratepages); 848 cc->nr_migratepages = 0; 849 cc->last_migrated_pfn = 0; 850 nr_isolated = 0; 851 } 852 853 if (low_pfn < next_skip_pfn) { 854 low_pfn = next_skip_pfn - 1; 855 /* 856 * The check near the loop beginning would have updated 857 * next_skip_pfn too, but this is a bit simpler. 858 */ 859 next_skip_pfn += 1UL << cc->order; 860 } 861 } 862 863 /* 864 * The PageBuddy() check could have potentially brought us outside 865 * the range to be scanned. 866 */ 867 if (unlikely(low_pfn > end_pfn)) 868 low_pfn = end_pfn; 869 870 if (locked) 871 spin_unlock_irqrestore(&zone->lru_lock, flags); 872 873 /* 874 * Update the pageblock-skip information and cached scanner pfn, 875 * if the whole pageblock was scanned without isolating any page. 876 */ 877 if (low_pfn == end_pfn) 878 update_pageblock_skip(cc, valid_page, nr_isolated, true); 879 880 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 881 nr_scanned, nr_isolated); 882 883 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 884 if (nr_isolated) 885 count_compact_events(COMPACTISOLATED, nr_isolated); 886 887 return low_pfn; 888 } 889 890 /** 891 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 892 * @cc: Compaction control structure. 893 * @start_pfn: The first PFN to start isolating. 894 * @end_pfn: The one-past-last PFN. 895 * 896 * Returns zero if isolation fails fatally due to e.g. pending signal. 897 * Otherwise, function returns one-past-the-last PFN of isolated page 898 * (which may be greater than end_pfn if end fell in a middle of a THP page). 899 */ 900 unsigned long 901 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 902 unsigned long end_pfn) 903 { 904 unsigned long pfn, block_start_pfn, block_end_pfn; 905 906 /* Scan block by block. First and last block may be incomplete */ 907 pfn = start_pfn; 908 block_start_pfn = pageblock_start_pfn(pfn); 909 if (block_start_pfn < cc->zone->zone_start_pfn) 910 block_start_pfn = cc->zone->zone_start_pfn; 911 block_end_pfn = pageblock_end_pfn(pfn); 912 913 for (; pfn < end_pfn; pfn = block_end_pfn, 914 block_start_pfn = block_end_pfn, 915 block_end_pfn += pageblock_nr_pages) { 916 917 block_end_pfn = min(block_end_pfn, end_pfn); 918 919 if (!pageblock_pfn_to_page(block_start_pfn, 920 block_end_pfn, cc->zone)) 921 continue; 922 923 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 924 ISOLATE_UNEVICTABLE); 925 926 if (!pfn) 927 break; 928 929 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 930 break; 931 } 932 acct_isolated(cc->zone, cc); 933 934 return pfn; 935 } 936 937 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 938 #ifdef CONFIG_COMPACTION 939 940 /* Returns true if the page is within a block suitable for migration to */ 941 static bool suitable_migration_target(struct page *page) 942 { 943 /* If the page is a large free page, then disallow migration */ 944 if (PageBuddy(page)) { 945 /* 946 * We are checking page_order without zone->lock taken. But 947 * the only small danger is that we skip a potentially suitable 948 * pageblock, so it's not worth to check order for valid range. 949 */ 950 if (page_order_unsafe(page) >= pageblock_order) 951 return false; 952 } 953 954 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 955 if (migrate_async_suitable(get_pageblock_migratetype(page))) 956 return true; 957 958 /* Otherwise skip the block */ 959 return false; 960 } 961 962 /* 963 * Test whether the free scanner has reached the same or lower pageblock than 964 * the migration scanner, and compaction should thus terminate. 965 */ 966 static inline bool compact_scanners_met(struct compact_control *cc) 967 { 968 return (cc->free_pfn >> pageblock_order) 969 <= (cc->migrate_pfn >> pageblock_order); 970 } 971 972 /* 973 * Based on information in the current compact_control, find blocks 974 * suitable for isolating free pages from and then isolate them. 975 */ 976 static void isolate_freepages(struct compact_control *cc) 977 { 978 struct zone *zone = cc->zone; 979 struct page *page; 980 unsigned long block_start_pfn; /* start of current pageblock */ 981 unsigned long isolate_start_pfn; /* exact pfn we start at */ 982 unsigned long block_end_pfn; /* end of current pageblock */ 983 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 984 struct list_head *freelist = &cc->freepages; 985 986 /* 987 * Initialise the free scanner. The starting point is where we last 988 * successfully isolated from, zone-cached value, or the end of the 989 * zone when isolating for the first time. For looping we also need 990 * this pfn aligned down to the pageblock boundary, because we do 991 * block_start_pfn -= pageblock_nr_pages in the for loop. 992 * For ending point, take care when isolating in last pageblock of a 993 * a zone which ends in the middle of a pageblock. 994 * The low boundary is the end of the pageblock the migration scanner 995 * is using. 996 */ 997 isolate_start_pfn = cc->free_pfn; 998 block_start_pfn = pageblock_start_pfn(cc->free_pfn); 999 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1000 zone_end_pfn(zone)); 1001 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1002 1003 /* 1004 * Isolate free pages until enough are available to migrate the 1005 * pages on cc->migratepages. We stop searching if the migrate 1006 * and free page scanners meet or enough free pages are isolated. 1007 */ 1008 for (; block_start_pfn >= low_pfn; 1009 block_end_pfn = block_start_pfn, 1010 block_start_pfn -= pageblock_nr_pages, 1011 isolate_start_pfn = block_start_pfn) { 1012 /* 1013 * This can iterate a massively long zone without finding any 1014 * suitable migration targets, so periodically check if we need 1015 * to schedule, or even abort async compaction. 1016 */ 1017 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1018 && compact_should_abort(cc)) 1019 break; 1020 1021 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1022 zone); 1023 if (!page) 1024 continue; 1025 1026 /* Check the block is suitable for migration */ 1027 if (!suitable_migration_target(page)) 1028 continue; 1029 1030 /* If isolation recently failed, do not retry */ 1031 if (!isolation_suitable(cc, page)) 1032 continue; 1033 1034 /* Found a block suitable for isolating free pages from. */ 1035 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn, 1036 freelist, false); 1037 1038 /* 1039 * If we isolated enough freepages, or aborted due to lock 1040 * contention, terminate. 1041 */ 1042 if ((cc->nr_freepages >= cc->nr_migratepages) 1043 || cc->contended) { 1044 if (isolate_start_pfn >= block_end_pfn) { 1045 /* 1046 * Restart at previous pageblock if more 1047 * freepages can be isolated next time. 1048 */ 1049 isolate_start_pfn = 1050 block_start_pfn - pageblock_nr_pages; 1051 } 1052 break; 1053 } else if (isolate_start_pfn < block_end_pfn) { 1054 /* 1055 * If isolation failed early, do not continue 1056 * needlessly. 1057 */ 1058 break; 1059 } 1060 } 1061 1062 /* split_free_page does not map the pages */ 1063 map_pages(freelist); 1064 1065 /* 1066 * Record where the free scanner will restart next time. Either we 1067 * broke from the loop and set isolate_start_pfn based on the last 1068 * call to isolate_freepages_block(), or we met the migration scanner 1069 * and the loop terminated due to isolate_start_pfn < low_pfn 1070 */ 1071 cc->free_pfn = isolate_start_pfn; 1072 } 1073 1074 /* 1075 * This is a migrate-callback that "allocates" freepages by taking pages 1076 * from the isolated freelists in the block we are migrating to. 1077 */ 1078 static struct page *compaction_alloc(struct page *migratepage, 1079 unsigned long data, 1080 int **result) 1081 { 1082 struct compact_control *cc = (struct compact_control *)data; 1083 struct page *freepage; 1084 1085 /* 1086 * Isolate free pages if necessary, and if we are not aborting due to 1087 * contention. 1088 */ 1089 if (list_empty(&cc->freepages)) { 1090 if (!cc->contended) 1091 isolate_freepages(cc); 1092 1093 if (list_empty(&cc->freepages)) 1094 return NULL; 1095 } 1096 1097 freepage = list_entry(cc->freepages.next, struct page, lru); 1098 list_del(&freepage->lru); 1099 cc->nr_freepages--; 1100 1101 return freepage; 1102 } 1103 1104 /* 1105 * This is a migrate-callback that "frees" freepages back to the isolated 1106 * freelist. All pages on the freelist are from the same zone, so there is no 1107 * special handling needed for NUMA. 1108 */ 1109 static void compaction_free(struct page *page, unsigned long data) 1110 { 1111 struct compact_control *cc = (struct compact_control *)data; 1112 1113 list_add(&page->lru, &cc->freepages); 1114 cc->nr_freepages++; 1115 } 1116 1117 /* possible outcome of isolate_migratepages */ 1118 typedef enum { 1119 ISOLATE_ABORT, /* Abort compaction now */ 1120 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1121 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1122 } isolate_migrate_t; 1123 1124 /* 1125 * Allow userspace to control policy on scanning the unevictable LRU for 1126 * compactable pages. 1127 */ 1128 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1129 1130 /* 1131 * Isolate all pages that can be migrated from the first suitable block, 1132 * starting at the block pointed to by the migrate scanner pfn within 1133 * compact_control. 1134 */ 1135 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1136 struct compact_control *cc) 1137 { 1138 unsigned long block_start_pfn; 1139 unsigned long block_end_pfn; 1140 unsigned long low_pfn; 1141 struct page *page; 1142 const isolate_mode_t isolate_mode = 1143 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1144 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1145 1146 /* 1147 * Start at where we last stopped, or beginning of the zone as 1148 * initialized by compact_zone() 1149 */ 1150 low_pfn = cc->migrate_pfn; 1151 block_start_pfn = pageblock_start_pfn(low_pfn); 1152 if (block_start_pfn < zone->zone_start_pfn) 1153 block_start_pfn = zone->zone_start_pfn; 1154 1155 /* Only scan within a pageblock boundary */ 1156 block_end_pfn = pageblock_end_pfn(low_pfn); 1157 1158 /* 1159 * Iterate over whole pageblocks until we find the first suitable. 1160 * Do not cross the free scanner. 1161 */ 1162 for (; block_end_pfn <= cc->free_pfn; 1163 low_pfn = block_end_pfn, 1164 block_start_pfn = block_end_pfn, 1165 block_end_pfn += pageblock_nr_pages) { 1166 1167 /* 1168 * This can potentially iterate a massively long zone with 1169 * many pageblocks unsuitable, so periodically check if we 1170 * need to schedule, or even abort async compaction. 1171 */ 1172 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1173 && compact_should_abort(cc)) 1174 break; 1175 1176 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1177 zone); 1178 if (!page) 1179 continue; 1180 1181 /* If isolation recently failed, do not retry */ 1182 if (!isolation_suitable(cc, page)) 1183 continue; 1184 1185 /* 1186 * For async compaction, also only scan in MOVABLE blocks. 1187 * Async compaction is optimistic to see if the minimum amount 1188 * of work satisfies the allocation. 1189 */ 1190 if (cc->mode == MIGRATE_ASYNC && 1191 !migrate_async_suitable(get_pageblock_migratetype(page))) 1192 continue; 1193 1194 /* Perform the isolation */ 1195 low_pfn = isolate_migratepages_block(cc, low_pfn, 1196 block_end_pfn, isolate_mode); 1197 1198 if (!low_pfn || cc->contended) { 1199 acct_isolated(zone, cc); 1200 return ISOLATE_ABORT; 1201 } 1202 1203 /* 1204 * Either we isolated something and proceed with migration. Or 1205 * we failed and compact_zone should decide if we should 1206 * continue or not. 1207 */ 1208 break; 1209 } 1210 1211 acct_isolated(zone, cc); 1212 /* Record where migration scanner will be restarted. */ 1213 cc->migrate_pfn = low_pfn; 1214 1215 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1216 } 1217 1218 /* 1219 * order == -1 is expected when compacting via 1220 * /proc/sys/vm/compact_memory 1221 */ 1222 static inline bool is_via_compact_memory(int order) 1223 { 1224 return order == -1; 1225 } 1226 1227 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc, 1228 const int migratetype) 1229 { 1230 unsigned int order; 1231 unsigned long watermark; 1232 1233 if (cc->contended || fatal_signal_pending(current)) 1234 return COMPACT_CONTENDED; 1235 1236 /* Compaction run completes if the migrate and free scanner meet */ 1237 if (compact_scanners_met(cc)) { 1238 /* Let the next compaction start anew. */ 1239 reset_cached_positions(zone); 1240 1241 /* 1242 * Mark that the PG_migrate_skip information should be cleared 1243 * by kswapd when it goes to sleep. kcompactd does not set the 1244 * flag itself as the decision to be clear should be directly 1245 * based on an allocation request. 1246 */ 1247 if (cc->direct_compaction) 1248 zone->compact_blockskip_flush = true; 1249 1250 if (cc->whole_zone) 1251 return COMPACT_COMPLETE; 1252 else 1253 return COMPACT_PARTIAL_SKIPPED; 1254 } 1255 1256 if (is_via_compact_memory(cc->order)) 1257 return COMPACT_CONTINUE; 1258 1259 /* Compaction run is not finished if the watermark is not met */ 1260 watermark = low_wmark_pages(zone); 1261 1262 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx, 1263 cc->alloc_flags)) 1264 return COMPACT_CONTINUE; 1265 1266 /* Direct compactor: Is a suitable page free? */ 1267 for (order = cc->order; order < MAX_ORDER; order++) { 1268 struct free_area *area = &zone->free_area[order]; 1269 bool can_steal; 1270 1271 /* Job done if page is free of the right migratetype */ 1272 if (!list_empty(&area->free_list[migratetype])) 1273 return COMPACT_PARTIAL; 1274 1275 #ifdef CONFIG_CMA 1276 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1277 if (migratetype == MIGRATE_MOVABLE && 1278 !list_empty(&area->free_list[MIGRATE_CMA])) 1279 return COMPACT_PARTIAL; 1280 #endif 1281 /* 1282 * Job done if allocation would steal freepages from 1283 * other migratetype buddy lists. 1284 */ 1285 if (find_suitable_fallback(area, order, migratetype, 1286 true, &can_steal) != -1) 1287 return COMPACT_PARTIAL; 1288 } 1289 1290 return COMPACT_NO_SUITABLE_PAGE; 1291 } 1292 1293 static enum compact_result compact_finished(struct zone *zone, 1294 struct compact_control *cc, 1295 const int migratetype) 1296 { 1297 int ret; 1298 1299 ret = __compact_finished(zone, cc, migratetype); 1300 trace_mm_compaction_finished(zone, cc->order, ret); 1301 if (ret == COMPACT_NO_SUITABLE_PAGE) 1302 ret = COMPACT_CONTINUE; 1303 1304 return ret; 1305 } 1306 1307 /* 1308 * compaction_suitable: Is this suitable to run compaction on this zone now? 1309 * Returns 1310 * COMPACT_SKIPPED - If there are too few free pages for compaction 1311 * COMPACT_PARTIAL - If the allocation would succeed without compaction 1312 * COMPACT_CONTINUE - If compaction should run now 1313 */ 1314 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1315 unsigned int alloc_flags, 1316 int classzone_idx, 1317 unsigned long wmark_target) 1318 { 1319 int fragindex; 1320 unsigned long watermark; 1321 1322 if (is_via_compact_memory(order)) 1323 return COMPACT_CONTINUE; 1324 1325 watermark = low_wmark_pages(zone); 1326 /* 1327 * If watermarks for high-order allocation are already met, there 1328 * should be no need for compaction at all. 1329 */ 1330 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1331 alloc_flags)) 1332 return COMPACT_PARTIAL; 1333 1334 /* 1335 * Watermarks for order-0 must be met for compaction. Note the 2UL. 1336 * This is because during migration, copies of pages need to be 1337 * allocated and for a short time, the footprint is higher 1338 */ 1339 watermark += (2UL << order); 1340 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1341 alloc_flags, wmark_target)) 1342 return COMPACT_SKIPPED; 1343 1344 /* 1345 * fragmentation index determines if allocation failures are due to 1346 * low memory or external fragmentation 1347 * 1348 * index of -1000 would imply allocations might succeed depending on 1349 * watermarks, but we already failed the high-order watermark check 1350 * index towards 0 implies failure is due to lack of memory 1351 * index towards 1000 implies failure is due to fragmentation 1352 * 1353 * Only compact if a failure would be due to fragmentation. 1354 */ 1355 fragindex = fragmentation_index(zone, order); 1356 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1357 return COMPACT_NOT_SUITABLE_ZONE; 1358 1359 return COMPACT_CONTINUE; 1360 } 1361 1362 enum compact_result compaction_suitable(struct zone *zone, int order, 1363 unsigned int alloc_flags, 1364 int classzone_idx) 1365 { 1366 enum compact_result ret; 1367 1368 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 1369 zone_page_state(zone, NR_FREE_PAGES)); 1370 trace_mm_compaction_suitable(zone, order, ret); 1371 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1372 ret = COMPACT_SKIPPED; 1373 1374 return ret; 1375 } 1376 1377 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 1378 int alloc_flags) 1379 { 1380 struct zone *zone; 1381 struct zoneref *z; 1382 1383 /* 1384 * Make sure at least one zone would pass __compaction_suitable if we continue 1385 * retrying the reclaim. 1386 */ 1387 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1388 ac->nodemask) { 1389 unsigned long available; 1390 enum compact_result compact_result; 1391 1392 /* 1393 * Do not consider all the reclaimable memory because we do not 1394 * want to trash just for a single high order allocation which 1395 * is even not guaranteed to appear even if __compaction_suitable 1396 * is happy about the watermark check. 1397 */ 1398 available = zone_reclaimable_pages(zone) / order; 1399 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 1400 compact_result = __compaction_suitable(zone, order, alloc_flags, 1401 ac_classzone_idx(ac), available); 1402 if (compact_result != COMPACT_SKIPPED && 1403 compact_result != COMPACT_NOT_SUITABLE_ZONE) 1404 return true; 1405 } 1406 1407 return false; 1408 } 1409 1410 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc) 1411 { 1412 enum compact_result ret; 1413 unsigned long start_pfn = zone->zone_start_pfn; 1414 unsigned long end_pfn = zone_end_pfn(zone); 1415 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1416 const bool sync = cc->mode != MIGRATE_ASYNC; 1417 1418 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1419 cc->classzone_idx); 1420 /* Compaction is likely to fail */ 1421 if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED) 1422 return ret; 1423 1424 /* huh, compaction_suitable is returning something unexpected */ 1425 VM_BUG_ON(ret != COMPACT_CONTINUE); 1426 1427 /* 1428 * Clear pageblock skip if there were failures recently and compaction 1429 * is about to be retried after being deferred. 1430 */ 1431 if (compaction_restarting(zone, cc->order)) 1432 __reset_isolation_suitable(zone); 1433 1434 /* 1435 * Setup to move all movable pages to the end of the zone. Used cached 1436 * information on where the scanners should start but check that it 1437 * is initialised by ensuring the values are within zone boundaries. 1438 */ 1439 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1440 cc->free_pfn = zone->compact_cached_free_pfn; 1441 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1442 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1443 zone->compact_cached_free_pfn = cc->free_pfn; 1444 } 1445 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1446 cc->migrate_pfn = start_pfn; 1447 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1448 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1449 } 1450 1451 if (cc->migrate_pfn == start_pfn) 1452 cc->whole_zone = true; 1453 1454 cc->last_migrated_pfn = 0; 1455 1456 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1457 cc->free_pfn, end_pfn, sync); 1458 1459 migrate_prep_local(); 1460 1461 while ((ret = compact_finished(zone, cc, migratetype)) == 1462 COMPACT_CONTINUE) { 1463 int err; 1464 1465 switch (isolate_migratepages(zone, cc)) { 1466 case ISOLATE_ABORT: 1467 ret = COMPACT_CONTENDED; 1468 putback_movable_pages(&cc->migratepages); 1469 cc->nr_migratepages = 0; 1470 goto out; 1471 case ISOLATE_NONE: 1472 /* 1473 * We haven't isolated and migrated anything, but 1474 * there might still be unflushed migrations from 1475 * previous cc->order aligned block. 1476 */ 1477 goto check_drain; 1478 case ISOLATE_SUCCESS: 1479 ; 1480 } 1481 1482 err = migrate_pages(&cc->migratepages, compaction_alloc, 1483 compaction_free, (unsigned long)cc, cc->mode, 1484 MR_COMPACTION); 1485 1486 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1487 &cc->migratepages); 1488 1489 /* All pages were either migrated or will be released */ 1490 cc->nr_migratepages = 0; 1491 if (err) { 1492 putback_movable_pages(&cc->migratepages); 1493 /* 1494 * migrate_pages() may return -ENOMEM when scanners meet 1495 * and we want compact_finished() to detect it 1496 */ 1497 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1498 ret = COMPACT_CONTENDED; 1499 goto out; 1500 } 1501 /* 1502 * We failed to migrate at least one page in the current 1503 * order-aligned block, so skip the rest of it. 1504 */ 1505 if (cc->direct_compaction && 1506 (cc->mode == MIGRATE_ASYNC)) { 1507 cc->migrate_pfn = block_end_pfn( 1508 cc->migrate_pfn - 1, cc->order); 1509 /* Draining pcplists is useless in this case */ 1510 cc->last_migrated_pfn = 0; 1511 1512 } 1513 } 1514 1515 check_drain: 1516 /* 1517 * Has the migration scanner moved away from the previous 1518 * cc->order aligned block where we migrated from? If yes, 1519 * flush the pages that were freed, so that they can merge and 1520 * compact_finished() can detect immediately if allocation 1521 * would succeed. 1522 */ 1523 if (cc->order > 0 && cc->last_migrated_pfn) { 1524 int cpu; 1525 unsigned long current_block_start = 1526 block_start_pfn(cc->migrate_pfn, cc->order); 1527 1528 if (cc->last_migrated_pfn < current_block_start) { 1529 cpu = get_cpu(); 1530 lru_add_drain_cpu(cpu); 1531 drain_local_pages(zone); 1532 put_cpu(); 1533 /* No more flushing until we migrate again */ 1534 cc->last_migrated_pfn = 0; 1535 } 1536 } 1537 1538 } 1539 1540 out: 1541 /* 1542 * Release free pages and update where the free scanner should restart, 1543 * so we don't leave any returned pages behind in the next attempt. 1544 */ 1545 if (cc->nr_freepages > 0) { 1546 unsigned long free_pfn = release_freepages(&cc->freepages); 1547 1548 cc->nr_freepages = 0; 1549 VM_BUG_ON(free_pfn == 0); 1550 /* The cached pfn is always the first in a pageblock */ 1551 free_pfn = pageblock_start_pfn(free_pfn); 1552 /* 1553 * Only go back, not forward. The cached pfn might have been 1554 * already reset to zone end in compact_finished() 1555 */ 1556 if (free_pfn > zone->compact_cached_free_pfn) 1557 zone->compact_cached_free_pfn = free_pfn; 1558 } 1559 1560 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1561 cc->free_pfn, end_pfn, sync, ret); 1562 1563 if (ret == COMPACT_CONTENDED) 1564 ret = COMPACT_PARTIAL; 1565 1566 return ret; 1567 } 1568 1569 static enum compact_result compact_zone_order(struct zone *zone, int order, 1570 gfp_t gfp_mask, enum migrate_mode mode, int *contended, 1571 unsigned int alloc_flags, int classzone_idx) 1572 { 1573 enum compact_result ret; 1574 struct compact_control cc = { 1575 .nr_freepages = 0, 1576 .nr_migratepages = 0, 1577 .order = order, 1578 .gfp_mask = gfp_mask, 1579 .zone = zone, 1580 .mode = mode, 1581 .alloc_flags = alloc_flags, 1582 .classzone_idx = classzone_idx, 1583 .direct_compaction = true, 1584 }; 1585 INIT_LIST_HEAD(&cc.freepages); 1586 INIT_LIST_HEAD(&cc.migratepages); 1587 1588 ret = compact_zone(zone, &cc); 1589 1590 VM_BUG_ON(!list_empty(&cc.freepages)); 1591 VM_BUG_ON(!list_empty(&cc.migratepages)); 1592 1593 *contended = cc.contended; 1594 return ret; 1595 } 1596 1597 int sysctl_extfrag_threshold = 500; 1598 1599 /** 1600 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1601 * @gfp_mask: The GFP mask of the current allocation 1602 * @order: The order of the current allocation 1603 * @alloc_flags: The allocation flags of the current allocation 1604 * @ac: The context of current allocation 1605 * @mode: The migration mode for async, sync light, or sync migration 1606 * @contended: Return value that determines if compaction was aborted due to 1607 * need_resched() or lock contention 1608 * 1609 * This is the main entry point for direct page compaction. 1610 */ 1611 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1612 unsigned int alloc_flags, const struct alloc_context *ac, 1613 enum migrate_mode mode, int *contended) 1614 { 1615 int may_enter_fs = gfp_mask & __GFP_FS; 1616 int may_perform_io = gfp_mask & __GFP_IO; 1617 struct zoneref *z; 1618 struct zone *zone; 1619 enum compact_result rc = COMPACT_SKIPPED; 1620 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */ 1621 1622 *contended = COMPACT_CONTENDED_NONE; 1623 1624 /* Check if the GFP flags allow compaction */ 1625 if (!order || !may_enter_fs || !may_perform_io) 1626 return COMPACT_SKIPPED; 1627 1628 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode); 1629 1630 /* Compact each zone in the list */ 1631 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1632 ac->nodemask) { 1633 enum compact_result status; 1634 int zone_contended; 1635 1636 if (compaction_deferred(zone, order)) { 1637 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 1638 continue; 1639 } 1640 1641 status = compact_zone_order(zone, order, gfp_mask, mode, 1642 &zone_contended, alloc_flags, 1643 ac_classzone_idx(ac)); 1644 rc = max(status, rc); 1645 /* 1646 * It takes at least one zone that wasn't lock contended 1647 * to clear all_zones_contended. 1648 */ 1649 all_zones_contended &= zone_contended; 1650 1651 /* If a normal allocation would succeed, stop compacting */ 1652 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 1653 ac_classzone_idx(ac), alloc_flags)) { 1654 /* 1655 * We think the allocation will succeed in this zone, 1656 * but it is not certain, hence the false. The caller 1657 * will repeat this with true if allocation indeed 1658 * succeeds in this zone. 1659 */ 1660 compaction_defer_reset(zone, order, false); 1661 /* 1662 * It is possible that async compaction aborted due to 1663 * need_resched() and the watermarks were ok thanks to 1664 * somebody else freeing memory. The allocation can 1665 * however still fail so we better signal the 1666 * need_resched() contention anyway (this will not 1667 * prevent the allocation attempt). 1668 */ 1669 if (zone_contended == COMPACT_CONTENDED_SCHED) 1670 *contended = COMPACT_CONTENDED_SCHED; 1671 1672 goto break_loop; 1673 } 1674 1675 if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE || 1676 status == COMPACT_PARTIAL_SKIPPED)) { 1677 /* 1678 * We think that allocation won't succeed in this zone 1679 * so we defer compaction there. If it ends up 1680 * succeeding after all, it will be reset. 1681 */ 1682 defer_compaction(zone, order); 1683 } 1684 1685 /* 1686 * We might have stopped compacting due to need_resched() in 1687 * async compaction, or due to a fatal signal detected. In that 1688 * case do not try further zones and signal need_resched() 1689 * contention. 1690 */ 1691 if ((zone_contended == COMPACT_CONTENDED_SCHED) 1692 || fatal_signal_pending(current)) { 1693 *contended = COMPACT_CONTENDED_SCHED; 1694 goto break_loop; 1695 } 1696 1697 continue; 1698 break_loop: 1699 /* 1700 * We might not have tried all the zones, so be conservative 1701 * and assume they are not all lock contended. 1702 */ 1703 all_zones_contended = 0; 1704 break; 1705 } 1706 1707 /* 1708 * If at least one zone wasn't deferred or skipped, we report if all 1709 * zones that were tried were lock contended. 1710 */ 1711 if (rc > COMPACT_INACTIVE && all_zones_contended) 1712 *contended = COMPACT_CONTENDED_LOCK; 1713 1714 return rc; 1715 } 1716 1717 1718 /* Compact all zones within a node */ 1719 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1720 { 1721 int zoneid; 1722 struct zone *zone; 1723 1724 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1725 1726 zone = &pgdat->node_zones[zoneid]; 1727 if (!populated_zone(zone)) 1728 continue; 1729 1730 cc->nr_freepages = 0; 1731 cc->nr_migratepages = 0; 1732 cc->zone = zone; 1733 INIT_LIST_HEAD(&cc->freepages); 1734 INIT_LIST_HEAD(&cc->migratepages); 1735 1736 /* 1737 * When called via /proc/sys/vm/compact_memory 1738 * this makes sure we compact the whole zone regardless of 1739 * cached scanner positions. 1740 */ 1741 if (is_via_compact_memory(cc->order)) 1742 __reset_isolation_suitable(zone); 1743 1744 if (is_via_compact_memory(cc->order) || 1745 !compaction_deferred(zone, cc->order)) 1746 compact_zone(zone, cc); 1747 1748 VM_BUG_ON(!list_empty(&cc->freepages)); 1749 VM_BUG_ON(!list_empty(&cc->migratepages)); 1750 1751 if (is_via_compact_memory(cc->order)) 1752 continue; 1753 1754 if (zone_watermark_ok(zone, cc->order, 1755 low_wmark_pages(zone), 0, 0)) 1756 compaction_defer_reset(zone, cc->order, false); 1757 } 1758 } 1759 1760 void compact_pgdat(pg_data_t *pgdat, int order) 1761 { 1762 struct compact_control cc = { 1763 .order = order, 1764 .mode = MIGRATE_ASYNC, 1765 }; 1766 1767 if (!order) 1768 return; 1769 1770 __compact_pgdat(pgdat, &cc); 1771 } 1772 1773 static void compact_node(int nid) 1774 { 1775 struct compact_control cc = { 1776 .order = -1, 1777 .mode = MIGRATE_SYNC, 1778 .ignore_skip_hint = true, 1779 }; 1780 1781 __compact_pgdat(NODE_DATA(nid), &cc); 1782 } 1783 1784 /* Compact all nodes in the system */ 1785 static void compact_nodes(void) 1786 { 1787 int nid; 1788 1789 /* Flush pending updates to the LRU lists */ 1790 lru_add_drain_all(); 1791 1792 for_each_online_node(nid) 1793 compact_node(nid); 1794 } 1795 1796 /* The written value is actually unused, all memory is compacted */ 1797 int sysctl_compact_memory; 1798 1799 /* 1800 * This is the entry point for compacting all nodes via 1801 * /proc/sys/vm/compact_memory 1802 */ 1803 int sysctl_compaction_handler(struct ctl_table *table, int write, 1804 void __user *buffer, size_t *length, loff_t *ppos) 1805 { 1806 if (write) 1807 compact_nodes(); 1808 1809 return 0; 1810 } 1811 1812 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1813 void __user *buffer, size_t *length, loff_t *ppos) 1814 { 1815 proc_dointvec_minmax(table, write, buffer, length, ppos); 1816 1817 return 0; 1818 } 1819 1820 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1821 static ssize_t sysfs_compact_node(struct device *dev, 1822 struct device_attribute *attr, 1823 const char *buf, size_t count) 1824 { 1825 int nid = dev->id; 1826 1827 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1828 /* Flush pending updates to the LRU lists */ 1829 lru_add_drain_all(); 1830 1831 compact_node(nid); 1832 } 1833 1834 return count; 1835 } 1836 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1837 1838 int compaction_register_node(struct node *node) 1839 { 1840 return device_create_file(&node->dev, &dev_attr_compact); 1841 } 1842 1843 void compaction_unregister_node(struct node *node) 1844 { 1845 return device_remove_file(&node->dev, &dev_attr_compact); 1846 } 1847 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1848 1849 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 1850 { 1851 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 1852 } 1853 1854 static bool kcompactd_node_suitable(pg_data_t *pgdat) 1855 { 1856 int zoneid; 1857 struct zone *zone; 1858 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 1859 1860 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 1861 zone = &pgdat->node_zones[zoneid]; 1862 1863 if (!populated_zone(zone)) 1864 continue; 1865 1866 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 1867 classzone_idx) == COMPACT_CONTINUE) 1868 return true; 1869 } 1870 1871 return false; 1872 } 1873 1874 static void kcompactd_do_work(pg_data_t *pgdat) 1875 { 1876 /* 1877 * With no special task, compact all zones so that a page of requested 1878 * order is allocatable. 1879 */ 1880 int zoneid; 1881 struct zone *zone; 1882 struct compact_control cc = { 1883 .order = pgdat->kcompactd_max_order, 1884 .classzone_idx = pgdat->kcompactd_classzone_idx, 1885 .mode = MIGRATE_SYNC_LIGHT, 1886 .ignore_skip_hint = true, 1887 1888 }; 1889 bool success = false; 1890 1891 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 1892 cc.classzone_idx); 1893 count_vm_event(KCOMPACTD_WAKE); 1894 1895 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 1896 int status; 1897 1898 zone = &pgdat->node_zones[zoneid]; 1899 if (!populated_zone(zone)) 1900 continue; 1901 1902 if (compaction_deferred(zone, cc.order)) 1903 continue; 1904 1905 if (compaction_suitable(zone, cc.order, 0, zoneid) != 1906 COMPACT_CONTINUE) 1907 continue; 1908 1909 cc.nr_freepages = 0; 1910 cc.nr_migratepages = 0; 1911 cc.zone = zone; 1912 INIT_LIST_HEAD(&cc.freepages); 1913 INIT_LIST_HEAD(&cc.migratepages); 1914 1915 if (kthread_should_stop()) 1916 return; 1917 status = compact_zone(zone, &cc); 1918 1919 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone), 1920 cc.classzone_idx, 0)) { 1921 success = true; 1922 compaction_defer_reset(zone, cc.order, false); 1923 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 1924 /* 1925 * We use sync migration mode here, so we defer like 1926 * sync direct compaction does. 1927 */ 1928 defer_compaction(zone, cc.order); 1929 } 1930 1931 VM_BUG_ON(!list_empty(&cc.freepages)); 1932 VM_BUG_ON(!list_empty(&cc.migratepages)); 1933 } 1934 1935 /* 1936 * Regardless of success, we are done until woken up next. But remember 1937 * the requested order/classzone_idx in case it was higher/tighter than 1938 * our current ones 1939 */ 1940 if (pgdat->kcompactd_max_order <= cc.order) 1941 pgdat->kcompactd_max_order = 0; 1942 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 1943 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1944 } 1945 1946 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 1947 { 1948 if (!order) 1949 return; 1950 1951 if (pgdat->kcompactd_max_order < order) 1952 pgdat->kcompactd_max_order = order; 1953 1954 if (pgdat->kcompactd_classzone_idx > classzone_idx) 1955 pgdat->kcompactd_classzone_idx = classzone_idx; 1956 1957 if (!waitqueue_active(&pgdat->kcompactd_wait)) 1958 return; 1959 1960 if (!kcompactd_node_suitable(pgdat)) 1961 return; 1962 1963 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 1964 classzone_idx); 1965 wake_up_interruptible(&pgdat->kcompactd_wait); 1966 } 1967 1968 /* 1969 * The background compaction daemon, started as a kernel thread 1970 * from the init process. 1971 */ 1972 static int kcompactd(void *p) 1973 { 1974 pg_data_t *pgdat = (pg_data_t*)p; 1975 struct task_struct *tsk = current; 1976 1977 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1978 1979 if (!cpumask_empty(cpumask)) 1980 set_cpus_allowed_ptr(tsk, cpumask); 1981 1982 set_freezable(); 1983 1984 pgdat->kcompactd_max_order = 0; 1985 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1986 1987 while (!kthread_should_stop()) { 1988 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 1989 wait_event_freezable(pgdat->kcompactd_wait, 1990 kcompactd_work_requested(pgdat)); 1991 1992 kcompactd_do_work(pgdat); 1993 } 1994 1995 return 0; 1996 } 1997 1998 /* 1999 * This kcompactd start function will be called by init and node-hot-add. 2000 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2001 */ 2002 int kcompactd_run(int nid) 2003 { 2004 pg_data_t *pgdat = NODE_DATA(nid); 2005 int ret = 0; 2006 2007 if (pgdat->kcompactd) 2008 return 0; 2009 2010 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2011 if (IS_ERR(pgdat->kcompactd)) { 2012 pr_err("Failed to start kcompactd on node %d\n", nid); 2013 ret = PTR_ERR(pgdat->kcompactd); 2014 pgdat->kcompactd = NULL; 2015 } 2016 return ret; 2017 } 2018 2019 /* 2020 * Called by memory hotplug when all memory in a node is offlined. Caller must 2021 * hold mem_hotplug_begin/end(). 2022 */ 2023 void kcompactd_stop(int nid) 2024 { 2025 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2026 2027 if (kcompactd) { 2028 kthread_stop(kcompactd); 2029 NODE_DATA(nid)->kcompactd = NULL; 2030 } 2031 } 2032 2033 /* 2034 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2035 * not required for correctness. So if the last cpu in a node goes 2036 * away, we get changed to run anywhere: as the first one comes back, 2037 * restore their cpu bindings. 2038 */ 2039 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 2040 void *hcpu) 2041 { 2042 int nid; 2043 2044 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2045 for_each_node_state(nid, N_MEMORY) { 2046 pg_data_t *pgdat = NODE_DATA(nid); 2047 const struct cpumask *mask; 2048 2049 mask = cpumask_of_node(pgdat->node_id); 2050 2051 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2052 /* One of our CPUs online: restore mask */ 2053 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2054 } 2055 } 2056 return NOTIFY_OK; 2057 } 2058 2059 static int __init kcompactd_init(void) 2060 { 2061 int nid; 2062 2063 for_each_node_state(nid, N_MEMORY) 2064 kcompactd_run(nid); 2065 hotcpu_notifier(cpu_callback, 0); 2066 return 0; 2067 } 2068 subsys_initcall(kcompactd_init) 2069 2070 #endif /* CONFIG_COMPACTION */ 2071