xref: /linux/mm/compaction.c (revision d02038f972538b93011d78c068f44514fbde0a8c)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/balloon_compaction.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include "internal.h"
24 
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 	count_vm_event(item);
29 }
30 
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 	count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39 
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44 
45 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
49 
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52 	struct page *page, *next;
53 	unsigned long high_pfn = 0;
54 
55 	list_for_each_entry_safe(page, next, freelist, lru) {
56 		unsigned long pfn = page_to_pfn(page);
57 		list_del(&page->lru);
58 		__free_page(page);
59 		if (pfn > high_pfn)
60 			high_pfn = pfn;
61 	}
62 
63 	return high_pfn;
64 }
65 
66 static void map_pages(struct list_head *list)
67 {
68 	struct page *page;
69 
70 	list_for_each_entry(page, list, lru) {
71 		arch_alloc_page(page, 0);
72 		kernel_map_pages(page, 1, 1);
73 		kasan_alloc_pages(page, 0);
74 	}
75 }
76 
77 static inline bool migrate_async_suitable(int migratetype)
78 {
79 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
80 }
81 
82 #ifdef CONFIG_COMPACTION
83 
84 /* Do not skip compaction more than 64 times */
85 #define COMPACT_MAX_DEFER_SHIFT 6
86 
87 /*
88  * Compaction is deferred when compaction fails to result in a page
89  * allocation success. 1 << compact_defer_limit compactions are skipped up
90  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
91  */
92 void defer_compaction(struct zone *zone, int order)
93 {
94 	zone->compact_considered = 0;
95 	zone->compact_defer_shift++;
96 
97 	if (order < zone->compact_order_failed)
98 		zone->compact_order_failed = order;
99 
100 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
101 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
102 
103 	trace_mm_compaction_defer_compaction(zone, order);
104 }
105 
106 /* Returns true if compaction should be skipped this time */
107 bool compaction_deferred(struct zone *zone, int order)
108 {
109 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
110 
111 	if (order < zone->compact_order_failed)
112 		return false;
113 
114 	/* Avoid possible overflow */
115 	if (++zone->compact_considered > defer_limit)
116 		zone->compact_considered = defer_limit;
117 
118 	if (zone->compact_considered >= defer_limit)
119 		return false;
120 
121 	trace_mm_compaction_deferred(zone, order);
122 
123 	return true;
124 }
125 
126 /*
127  * Update defer tracking counters after successful compaction of given order,
128  * which means an allocation either succeeded (alloc_success == true) or is
129  * expected to succeed.
130  */
131 void compaction_defer_reset(struct zone *zone, int order,
132 		bool alloc_success)
133 {
134 	if (alloc_success) {
135 		zone->compact_considered = 0;
136 		zone->compact_defer_shift = 0;
137 	}
138 	if (order >= zone->compact_order_failed)
139 		zone->compact_order_failed = order + 1;
140 
141 	trace_mm_compaction_defer_reset(zone, order);
142 }
143 
144 /* Returns true if restarting compaction after many failures */
145 bool compaction_restarting(struct zone *zone, int order)
146 {
147 	if (order < zone->compact_order_failed)
148 		return false;
149 
150 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
151 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
152 }
153 
154 /* Returns true if the pageblock should be scanned for pages to isolate. */
155 static inline bool isolation_suitable(struct compact_control *cc,
156 					struct page *page)
157 {
158 	if (cc->ignore_skip_hint)
159 		return true;
160 
161 	return !get_pageblock_skip(page);
162 }
163 
164 static void reset_cached_positions(struct zone *zone)
165 {
166 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
167 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
168 	zone->compact_cached_free_pfn =
169 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
170 }
171 
172 /*
173  * This function is called to clear all cached information on pageblocks that
174  * should be skipped for page isolation when the migrate and free page scanner
175  * meet.
176  */
177 static void __reset_isolation_suitable(struct zone *zone)
178 {
179 	unsigned long start_pfn = zone->zone_start_pfn;
180 	unsigned long end_pfn = zone_end_pfn(zone);
181 	unsigned long pfn;
182 
183 	zone->compact_blockskip_flush = false;
184 
185 	/* Walk the zone and mark every pageblock as suitable for isolation */
186 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
187 		struct page *page;
188 
189 		cond_resched();
190 
191 		if (!pfn_valid(pfn))
192 			continue;
193 
194 		page = pfn_to_page(pfn);
195 		if (zone != page_zone(page))
196 			continue;
197 
198 		clear_pageblock_skip(page);
199 	}
200 
201 	reset_cached_positions(zone);
202 }
203 
204 void reset_isolation_suitable(pg_data_t *pgdat)
205 {
206 	int zoneid;
207 
208 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
209 		struct zone *zone = &pgdat->node_zones[zoneid];
210 		if (!populated_zone(zone))
211 			continue;
212 
213 		/* Only flush if a full compaction finished recently */
214 		if (zone->compact_blockskip_flush)
215 			__reset_isolation_suitable(zone);
216 	}
217 }
218 
219 /*
220  * If no pages were isolated then mark this pageblock to be skipped in the
221  * future. The information is later cleared by __reset_isolation_suitable().
222  */
223 static void update_pageblock_skip(struct compact_control *cc,
224 			struct page *page, unsigned long nr_isolated,
225 			bool migrate_scanner)
226 {
227 	struct zone *zone = cc->zone;
228 	unsigned long pfn;
229 
230 	if (cc->ignore_skip_hint)
231 		return;
232 
233 	if (!page)
234 		return;
235 
236 	if (nr_isolated)
237 		return;
238 
239 	set_pageblock_skip(page);
240 
241 	pfn = page_to_pfn(page);
242 
243 	/* Update where async and sync compaction should restart */
244 	if (migrate_scanner) {
245 		if (pfn > zone->compact_cached_migrate_pfn[0])
246 			zone->compact_cached_migrate_pfn[0] = pfn;
247 		if (cc->mode != MIGRATE_ASYNC &&
248 		    pfn > zone->compact_cached_migrate_pfn[1])
249 			zone->compact_cached_migrate_pfn[1] = pfn;
250 	} else {
251 		if (pfn < zone->compact_cached_free_pfn)
252 			zone->compact_cached_free_pfn = pfn;
253 	}
254 }
255 #else
256 static inline bool isolation_suitable(struct compact_control *cc,
257 					struct page *page)
258 {
259 	return true;
260 }
261 
262 static void update_pageblock_skip(struct compact_control *cc,
263 			struct page *page, unsigned long nr_isolated,
264 			bool migrate_scanner)
265 {
266 }
267 #endif /* CONFIG_COMPACTION */
268 
269 /*
270  * Compaction requires the taking of some coarse locks that are potentially
271  * very heavily contended. For async compaction, back out if the lock cannot
272  * be taken immediately. For sync compaction, spin on the lock if needed.
273  *
274  * Returns true if the lock is held
275  * Returns false if the lock is not held and compaction should abort
276  */
277 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
278 						struct compact_control *cc)
279 {
280 	if (cc->mode == MIGRATE_ASYNC) {
281 		if (!spin_trylock_irqsave(lock, *flags)) {
282 			cc->contended = COMPACT_CONTENDED_LOCK;
283 			return false;
284 		}
285 	} else {
286 		spin_lock_irqsave(lock, *flags);
287 	}
288 
289 	return true;
290 }
291 
292 /*
293  * Compaction requires the taking of some coarse locks that are potentially
294  * very heavily contended. The lock should be periodically unlocked to avoid
295  * having disabled IRQs for a long time, even when there is nobody waiting on
296  * the lock. It might also be that allowing the IRQs will result in
297  * need_resched() becoming true. If scheduling is needed, async compaction
298  * aborts. Sync compaction schedules.
299  * Either compaction type will also abort if a fatal signal is pending.
300  * In either case if the lock was locked, it is dropped and not regained.
301  *
302  * Returns true if compaction should abort due to fatal signal pending, or
303  *		async compaction due to need_resched()
304  * Returns false when compaction can continue (sync compaction might have
305  *		scheduled)
306  */
307 static bool compact_unlock_should_abort(spinlock_t *lock,
308 		unsigned long flags, bool *locked, struct compact_control *cc)
309 {
310 	if (*locked) {
311 		spin_unlock_irqrestore(lock, flags);
312 		*locked = false;
313 	}
314 
315 	if (fatal_signal_pending(current)) {
316 		cc->contended = COMPACT_CONTENDED_SCHED;
317 		return true;
318 	}
319 
320 	if (need_resched()) {
321 		if (cc->mode == MIGRATE_ASYNC) {
322 			cc->contended = COMPACT_CONTENDED_SCHED;
323 			return true;
324 		}
325 		cond_resched();
326 	}
327 
328 	return false;
329 }
330 
331 /*
332  * Aside from avoiding lock contention, compaction also periodically checks
333  * need_resched() and either schedules in sync compaction or aborts async
334  * compaction. This is similar to what compact_unlock_should_abort() does, but
335  * is used where no lock is concerned.
336  *
337  * Returns false when no scheduling was needed, or sync compaction scheduled.
338  * Returns true when async compaction should abort.
339  */
340 static inline bool compact_should_abort(struct compact_control *cc)
341 {
342 	/* async compaction aborts if contended */
343 	if (need_resched()) {
344 		if (cc->mode == MIGRATE_ASYNC) {
345 			cc->contended = COMPACT_CONTENDED_SCHED;
346 			return true;
347 		}
348 
349 		cond_resched();
350 	}
351 
352 	return false;
353 }
354 
355 /*
356  * Isolate free pages onto a private freelist. If @strict is true, will abort
357  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
358  * (even though it may still end up isolating some pages).
359  */
360 static unsigned long isolate_freepages_block(struct compact_control *cc,
361 				unsigned long *start_pfn,
362 				unsigned long end_pfn,
363 				struct list_head *freelist,
364 				bool strict)
365 {
366 	int nr_scanned = 0, total_isolated = 0;
367 	struct page *cursor, *valid_page = NULL;
368 	unsigned long flags = 0;
369 	bool locked = false;
370 	unsigned long blockpfn = *start_pfn;
371 
372 	cursor = pfn_to_page(blockpfn);
373 
374 	/* Isolate free pages. */
375 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
376 		int isolated, i;
377 		struct page *page = cursor;
378 
379 		/*
380 		 * Periodically drop the lock (if held) regardless of its
381 		 * contention, to give chance to IRQs. Abort if fatal signal
382 		 * pending or async compaction detects need_resched()
383 		 */
384 		if (!(blockpfn % SWAP_CLUSTER_MAX)
385 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
386 								&locked, cc))
387 			break;
388 
389 		nr_scanned++;
390 		if (!pfn_valid_within(blockpfn))
391 			goto isolate_fail;
392 
393 		if (!valid_page)
394 			valid_page = page;
395 
396 		/*
397 		 * For compound pages such as THP and hugetlbfs, we can save
398 		 * potentially a lot of iterations if we skip them at once.
399 		 * The check is racy, but we can consider only valid values
400 		 * and the only danger is skipping too much.
401 		 */
402 		if (PageCompound(page)) {
403 			unsigned int comp_order = compound_order(page);
404 
405 			if (likely(comp_order < MAX_ORDER)) {
406 				blockpfn += (1UL << comp_order) - 1;
407 				cursor += (1UL << comp_order) - 1;
408 			}
409 
410 			goto isolate_fail;
411 		}
412 
413 		if (!PageBuddy(page))
414 			goto isolate_fail;
415 
416 		/*
417 		 * If we already hold the lock, we can skip some rechecking.
418 		 * Note that if we hold the lock now, checked_pageblock was
419 		 * already set in some previous iteration (or strict is true),
420 		 * so it is correct to skip the suitable migration target
421 		 * recheck as well.
422 		 */
423 		if (!locked) {
424 			/*
425 			 * The zone lock must be held to isolate freepages.
426 			 * Unfortunately this is a very coarse lock and can be
427 			 * heavily contended if there are parallel allocations
428 			 * or parallel compactions. For async compaction do not
429 			 * spin on the lock and we acquire the lock as late as
430 			 * possible.
431 			 */
432 			locked = compact_trylock_irqsave(&cc->zone->lock,
433 								&flags, cc);
434 			if (!locked)
435 				break;
436 
437 			/* Recheck this is a buddy page under lock */
438 			if (!PageBuddy(page))
439 				goto isolate_fail;
440 		}
441 
442 		/* Found a free page, break it into order-0 pages */
443 		isolated = split_free_page(page);
444 		if (!isolated)
445 			break;
446 
447 		total_isolated += isolated;
448 		cc->nr_freepages += isolated;
449 		for (i = 0; i < isolated; i++) {
450 			list_add(&page->lru, freelist);
451 			page++;
452 		}
453 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
454 			blockpfn += isolated;
455 			break;
456 		}
457 		/* Advance to the end of split page */
458 		blockpfn += isolated - 1;
459 		cursor += isolated - 1;
460 		continue;
461 
462 isolate_fail:
463 		if (strict)
464 			break;
465 		else
466 			continue;
467 
468 	}
469 
470 	if (locked)
471 		spin_unlock_irqrestore(&cc->zone->lock, flags);
472 
473 	/*
474 	 * There is a tiny chance that we have read bogus compound_order(),
475 	 * so be careful to not go outside of the pageblock.
476 	 */
477 	if (unlikely(blockpfn > end_pfn))
478 		blockpfn = end_pfn;
479 
480 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
481 					nr_scanned, total_isolated);
482 
483 	/* Record how far we have got within the block */
484 	*start_pfn = blockpfn;
485 
486 	/*
487 	 * If strict isolation is requested by CMA then check that all the
488 	 * pages requested were isolated. If there were any failures, 0 is
489 	 * returned and CMA will fail.
490 	 */
491 	if (strict && blockpfn < end_pfn)
492 		total_isolated = 0;
493 
494 	/* Update the pageblock-skip if the whole pageblock was scanned */
495 	if (blockpfn == end_pfn)
496 		update_pageblock_skip(cc, valid_page, total_isolated, false);
497 
498 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
499 	if (total_isolated)
500 		count_compact_events(COMPACTISOLATED, total_isolated);
501 	return total_isolated;
502 }
503 
504 /**
505  * isolate_freepages_range() - isolate free pages.
506  * @start_pfn: The first PFN to start isolating.
507  * @end_pfn:   The one-past-last PFN.
508  *
509  * Non-free pages, invalid PFNs, or zone boundaries within the
510  * [start_pfn, end_pfn) range are considered errors, cause function to
511  * undo its actions and return zero.
512  *
513  * Otherwise, function returns one-past-the-last PFN of isolated page
514  * (which may be greater then end_pfn if end fell in a middle of
515  * a free page).
516  */
517 unsigned long
518 isolate_freepages_range(struct compact_control *cc,
519 			unsigned long start_pfn, unsigned long end_pfn)
520 {
521 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
522 	LIST_HEAD(freelist);
523 
524 	pfn = start_pfn;
525 	block_start_pfn = pageblock_start_pfn(pfn);
526 	if (block_start_pfn < cc->zone->zone_start_pfn)
527 		block_start_pfn = cc->zone->zone_start_pfn;
528 	block_end_pfn = pageblock_end_pfn(pfn);
529 
530 	for (; pfn < end_pfn; pfn += isolated,
531 				block_start_pfn = block_end_pfn,
532 				block_end_pfn += pageblock_nr_pages) {
533 		/* Protect pfn from changing by isolate_freepages_block */
534 		unsigned long isolate_start_pfn = pfn;
535 
536 		block_end_pfn = min(block_end_pfn, end_pfn);
537 
538 		/*
539 		 * pfn could pass the block_end_pfn if isolated freepage
540 		 * is more than pageblock order. In this case, we adjust
541 		 * scanning range to right one.
542 		 */
543 		if (pfn >= block_end_pfn) {
544 			block_start_pfn = pageblock_start_pfn(pfn);
545 			block_end_pfn = pageblock_end_pfn(pfn);
546 			block_end_pfn = min(block_end_pfn, end_pfn);
547 		}
548 
549 		if (!pageblock_pfn_to_page(block_start_pfn,
550 					block_end_pfn, cc->zone))
551 			break;
552 
553 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
554 						block_end_pfn, &freelist, true);
555 
556 		/*
557 		 * In strict mode, isolate_freepages_block() returns 0 if
558 		 * there are any holes in the block (ie. invalid PFNs or
559 		 * non-free pages).
560 		 */
561 		if (!isolated)
562 			break;
563 
564 		/*
565 		 * If we managed to isolate pages, it is always (1 << n) *
566 		 * pageblock_nr_pages for some non-negative n.  (Max order
567 		 * page may span two pageblocks).
568 		 */
569 	}
570 
571 	/* split_free_page does not map the pages */
572 	map_pages(&freelist);
573 
574 	if (pfn < end_pfn) {
575 		/* Loop terminated early, cleanup. */
576 		release_freepages(&freelist);
577 		return 0;
578 	}
579 
580 	/* We don't use freelists for anything. */
581 	return pfn;
582 }
583 
584 /* Update the number of anon and file isolated pages in the zone */
585 static void acct_isolated(struct zone *zone, struct compact_control *cc)
586 {
587 	struct page *page;
588 	unsigned int count[2] = { 0, };
589 
590 	if (list_empty(&cc->migratepages))
591 		return;
592 
593 	list_for_each_entry(page, &cc->migratepages, lru)
594 		count[!!page_is_file_cache(page)]++;
595 
596 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
597 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
598 }
599 
600 /* Similar to reclaim, but different enough that they don't share logic */
601 static bool too_many_isolated(struct zone *zone)
602 {
603 	unsigned long active, inactive, isolated;
604 
605 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
606 					zone_page_state(zone, NR_INACTIVE_ANON);
607 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
608 					zone_page_state(zone, NR_ACTIVE_ANON);
609 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
610 					zone_page_state(zone, NR_ISOLATED_ANON);
611 
612 	return isolated > (inactive + active) / 2;
613 }
614 
615 /**
616  * isolate_migratepages_block() - isolate all migrate-able pages within
617  *				  a single pageblock
618  * @cc:		Compaction control structure.
619  * @low_pfn:	The first PFN to isolate
620  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
621  * @isolate_mode: Isolation mode to be used.
622  *
623  * Isolate all pages that can be migrated from the range specified by
624  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
625  * Returns zero if there is a fatal signal pending, otherwise PFN of the
626  * first page that was not scanned (which may be both less, equal to or more
627  * than end_pfn).
628  *
629  * The pages are isolated on cc->migratepages list (not required to be empty),
630  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
631  * is neither read nor updated.
632  */
633 static unsigned long
634 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
635 			unsigned long end_pfn, isolate_mode_t isolate_mode)
636 {
637 	struct zone *zone = cc->zone;
638 	unsigned long nr_scanned = 0, nr_isolated = 0;
639 	struct lruvec *lruvec;
640 	unsigned long flags = 0;
641 	bool locked = false;
642 	struct page *page = NULL, *valid_page = NULL;
643 	unsigned long start_pfn = low_pfn;
644 	bool skip_on_failure = false;
645 	unsigned long next_skip_pfn = 0;
646 
647 	/*
648 	 * Ensure that there are not too many pages isolated from the LRU
649 	 * list by either parallel reclaimers or compaction. If there are,
650 	 * delay for some time until fewer pages are isolated
651 	 */
652 	while (unlikely(too_many_isolated(zone))) {
653 		/* async migration should just abort */
654 		if (cc->mode == MIGRATE_ASYNC)
655 			return 0;
656 
657 		congestion_wait(BLK_RW_ASYNC, HZ/10);
658 
659 		if (fatal_signal_pending(current))
660 			return 0;
661 	}
662 
663 	if (compact_should_abort(cc))
664 		return 0;
665 
666 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
667 		skip_on_failure = true;
668 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
669 	}
670 
671 	/* Time to isolate some pages for migration */
672 	for (; low_pfn < end_pfn; low_pfn++) {
673 		bool is_lru;
674 
675 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
676 			/*
677 			 * We have isolated all migration candidates in the
678 			 * previous order-aligned block, and did not skip it due
679 			 * to failure. We should migrate the pages now and
680 			 * hopefully succeed compaction.
681 			 */
682 			if (nr_isolated)
683 				break;
684 
685 			/*
686 			 * We failed to isolate in the previous order-aligned
687 			 * block. Set the new boundary to the end of the
688 			 * current block. Note we can't simply increase
689 			 * next_skip_pfn by 1 << order, as low_pfn might have
690 			 * been incremented by a higher number due to skipping
691 			 * a compound or a high-order buddy page in the
692 			 * previous loop iteration.
693 			 */
694 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
695 		}
696 
697 		/*
698 		 * Periodically drop the lock (if held) regardless of its
699 		 * contention, to give chance to IRQs. Abort async compaction
700 		 * if contended.
701 		 */
702 		if (!(low_pfn % SWAP_CLUSTER_MAX)
703 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
704 								&locked, cc))
705 			break;
706 
707 		if (!pfn_valid_within(low_pfn))
708 			goto isolate_fail;
709 		nr_scanned++;
710 
711 		page = pfn_to_page(low_pfn);
712 
713 		if (!valid_page)
714 			valid_page = page;
715 
716 		/*
717 		 * Skip if free. We read page order here without zone lock
718 		 * which is generally unsafe, but the race window is small and
719 		 * the worst thing that can happen is that we skip some
720 		 * potential isolation targets.
721 		 */
722 		if (PageBuddy(page)) {
723 			unsigned long freepage_order = page_order_unsafe(page);
724 
725 			/*
726 			 * Without lock, we cannot be sure that what we got is
727 			 * a valid page order. Consider only values in the
728 			 * valid order range to prevent low_pfn overflow.
729 			 */
730 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
731 				low_pfn += (1UL << freepage_order) - 1;
732 			continue;
733 		}
734 
735 		/*
736 		 * Check may be lockless but that's ok as we recheck later.
737 		 * It's possible to migrate LRU pages and balloon pages
738 		 * Skip any other type of page
739 		 */
740 		is_lru = PageLRU(page);
741 		if (!is_lru) {
742 			if (unlikely(balloon_page_movable(page))) {
743 				if (balloon_page_isolate(page)) {
744 					/* Successfully isolated */
745 					goto isolate_success;
746 				}
747 			}
748 		}
749 
750 		/*
751 		 * Regardless of being on LRU, compound pages such as THP and
752 		 * hugetlbfs are not to be compacted. We can potentially save
753 		 * a lot of iterations if we skip them at once. The check is
754 		 * racy, but we can consider only valid values and the only
755 		 * danger is skipping too much.
756 		 */
757 		if (PageCompound(page)) {
758 			unsigned int comp_order = compound_order(page);
759 
760 			if (likely(comp_order < MAX_ORDER))
761 				low_pfn += (1UL << comp_order) - 1;
762 
763 			goto isolate_fail;
764 		}
765 
766 		if (!is_lru)
767 			goto isolate_fail;
768 
769 		/*
770 		 * Migration will fail if an anonymous page is pinned in memory,
771 		 * so avoid taking lru_lock and isolating it unnecessarily in an
772 		 * admittedly racy check.
773 		 */
774 		if (!page_mapping(page) &&
775 		    page_count(page) > page_mapcount(page))
776 			goto isolate_fail;
777 
778 		/* If we already hold the lock, we can skip some rechecking */
779 		if (!locked) {
780 			locked = compact_trylock_irqsave(&zone->lru_lock,
781 								&flags, cc);
782 			if (!locked)
783 				break;
784 
785 			/* Recheck PageLRU and PageCompound under lock */
786 			if (!PageLRU(page))
787 				goto isolate_fail;
788 
789 			/*
790 			 * Page become compound since the non-locked check,
791 			 * and it's on LRU. It can only be a THP so the order
792 			 * is safe to read and it's 0 for tail pages.
793 			 */
794 			if (unlikely(PageCompound(page))) {
795 				low_pfn += (1UL << compound_order(page)) - 1;
796 				goto isolate_fail;
797 			}
798 		}
799 
800 		lruvec = mem_cgroup_page_lruvec(page, zone);
801 
802 		/* Try isolate the page */
803 		if (__isolate_lru_page(page, isolate_mode) != 0)
804 			goto isolate_fail;
805 
806 		VM_BUG_ON_PAGE(PageCompound(page), page);
807 
808 		/* Successfully isolated */
809 		del_page_from_lru_list(page, lruvec, page_lru(page));
810 
811 isolate_success:
812 		list_add(&page->lru, &cc->migratepages);
813 		cc->nr_migratepages++;
814 		nr_isolated++;
815 
816 		/*
817 		 * Record where we could have freed pages by migration and not
818 		 * yet flushed them to buddy allocator.
819 		 * - this is the lowest page that was isolated and likely be
820 		 * then freed by migration.
821 		 */
822 		if (!cc->last_migrated_pfn)
823 			cc->last_migrated_pfn = low_pfn;
824 
825 		/* Avoid isolating too much */
826 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
827 			++low_pfn;
828 			break;
829 		}
830 
831 		continue;
832 isolate_fail:
833 		if (!skip_on_failure)
834 			continue;
835 
836 		/*
837 		 * We have isolated some pages, but then failed. Release them
838 		 * instead of migrating, as we cannot form the cc->order buddy
839 		 * page anyway.
840 		 */
841 		if (nr_isolated) {
842 			if (locked) {
843 				spin_unlock_irqrestore(&zone->lru_lock,	flags);
844 				locked = false;
845 			}
846 			acct_isolated(zone, cc);
847 			putback_movable_pages(&cc->migratepages);
848 			cc->nr_migratepages = 0;
849 			cc->last_migrated_pfn = 0;
850 			nr_isolated = 0;
851 		}
852 
853 		if (low_pfn < next_skip_pfn) {
854 			low_pfn = next_skip_pfn - 1;
855 			/*
856 			 * The check near the loop beginning would have updated
857 			 * next_skip_pfn too, but this is a bit simpler.
858 			 */
859 			next_skip_pfn += 1UL << cc->order;
860 		}
861 	}
862 
863 	/*
864 	 * The PageBuddy() check could have potentially brought us outside
865 	 * the range to be scanned.
866 	 */
867 	if (unlikely(low_pfn > end_pfn))
868 		low_pfn = end_pfn;
869 
870 	if (locked)
871 		spin_unlock_irqrestore(&zone->lru_lock, flags);
872 
873 	/*
874 	 * Update the pageblock-skip information and cached scanner pfn,
875 	 * if the whole pageblock was scanned without isolating any page.
876 	 */
877 	if (low_pfn == end_pfn)
878 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
879 
880 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
881 						nr_scanned, nr_isolated);
882 
883 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
884 	if (nr_isolated)
885 		count_compact_events(COMPACTISOLATED, nr_isolated);
886 
887 	return low_pfn;
888 }
889 
890 /**
891  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
892  * @cc:        Compaction control structure.
893  * @start_pfn: The first PFN to start isolating.
894  * @end_pfn:   The one-past-last PFN.
895  *
896  * Returns zero if isolation fails fatally due to e.g. pending signal.
897  * Otherwise, function returns one-past-the-last PFN of isolated page
898  * (which may be greater than end_pfn if end fell in a middle of a THP page).
899  */
900 unsigned long
901 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
902 							unsigned long end_pfn)
903 {
904 	unsigned long pfn, block_start_pfn, block_end_pfn;
905 
906 	/* Scan block by block. First and last block may be incomplete */
907 	pfn = start_pfn;
908 	block_start_pfn = pageblock_start_pfn(pfn);
909 	if (block_start_pfn < cc->zone->zone_start_pfn)
910 		block_start_pfn = cc->zone->zone_start_pfn;
911 	block_end_pfn = pageblock_end_pfn(pfn);
912 
913 	for (; pfn < end_pfn; pfn = block_end_pfn,
914 				block_start_pfn = block_end_pfn,
915 				block_end_pfn += pageblock_nr_pages) {
916 
917 		block_end_pfn = min(block_end_pfn, end_pfn);
918 
919 		if (!pageblock_pfn_to_page(block_start_pfn,
920 					block_end_pfn, cc->zone))
921 			continue;
922 
923 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
924 							ISOLATE_UNEVICTABLE);
925 
926 		if (!pfn)
927 			break;
928 
929 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
930 			break;
931 	}
932 	acct_isolated(cc->zone, cc);
933 
934 	return pfn;
935 }
936 
937 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
938 #ifdef CONFIG_COMPACTION
939 
940 /* Returns true if the page is within a block suitable for migration to */
941 static bool suitable_migration_target(struct page *page)
942 {
943 	/* If the page is a large free page, then disallow migration */
944 	if (PageBuddy(page)) {
945 		/*
946 		 * We are checking page_order without zone->lock taken. But
947 		 * the only small danger is that we skip a potentially suitable
948 		 * pageblock, so it's not worth to check order for valid range.
949 		 */
950 		if (page_order_unsafe(page) >= pageblock_order)
951 			return false;
952 	}
953 
954 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
955 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
956 		return true;
957 
958 	/* Otherwise skip the block */
959 	return false;
960 }
961 
962 /*
963  * Test whether the free scanner has reached the same or lower pageblock than
964  * the migration scanner, and compaction should thus terminate.
965  */
966 static inline bool compact_scanners_met(struct compact_control *cc)
967 {
968 	return (cc->free_pfn >> pageblock_order)
969 		<= (cc->migrate_pfn >> pageblock_order);
970 }
971 
972 /*
973  * Based on information in the current compact_control, find blocks
974  * suitable for isolating free pages from and then isolate them.
975  */
976 static void isolate_freepages(struct compact_control *cc)
977 {
978 	struct zone *zone = cc->zone;
979 	struct page *page;
980 	unsigned long block_start_pfn;	/* start of current pageblock */
981 	unsigned long isolate_start_pfn; /* exact pfn we start at */
982 	unsigned long block_end_pfn;	/* end of current pageblock */
983 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
984 	struct list_head *freelist = &cc->freepages;
985 
986 	/*
987 	 * Initialise the free scanner. The starting point is where we last
988 	 * successfully isolated from, zone-cached value, or the end of the
989 	 * zone when isolating for the first time. For looping we also need
990 	 * this pfn aligned down to the pageblock boundary, because we do
991 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
992 	 * For ending point, take care when isolating in last pageblock of a
993 	 * a zone which ends in the middle of a pageblock.
994 	 * The low boundary is the end of the pageblock the migration scanner
995 	 * is using.
996 	 */
997 	isolate_start_pfn = cc->free_pfn;
998 	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
999 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1000 						zone_end_pfn(zone));
1001 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1002 
1003 	/*
1004 	 * Isolate free pages until enough are available to migrate the
1005 	 * pages on cc->migratepages. We stop searching if the migrate
1006 	 * and free page scanners meet or enough free pages are isolated.
1007 	 */
1008 	for (; block_start_pfn >= low_pfn;
1009 				block_end_pfn = block_start_pfn,
1010 				block_start_pfn -= pageblock_nr_pages,
1011 				isolate_start_pfn = block_start_pfn) {
1012 		/*
1013 		 * This can iterate a massively long zone without finding any
1014 		 * suitable migration targets, so periodically check if we need
1015 		 * to schedule, or even abort async compaction.
1016 		 */
1017 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1018 						&& compact_should_abort(cc))
1019 			break;
1020 
1021 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1022 									zone);
1023 		if (!page)
1024 			continue;
1025 
1026 		/* Check the block is suitable for migration */
1027 		if (!suitable_migration_target(page))
1028 			continue;
1029 
1030 		/* If isolation recently failed, do not retry */
1031 		if (!isolation_suitable(cc, page))
1032 			continue;
1033 
1034 		/* Found a block suitable for isolating free pages from. */
1035 		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1036 					freelist, false);
1037 
1038 		/*
1039 		 * If we isolated enough freepages, or aborted due to lock
1040 		 * contention, terminate.
1041 		 */
1042 		if ((cc->nr_freepages >= cc->nr_migratepages)
1043 							|| cc->contended) {
1044 			if (isolate_start_pfn >= block_end_pfn) {
1045 				/*
1046 				 * Restart at previous pageblock if more
1047 				 * freepages can be isolated next time.
1048 				 */
1049 				isolate_start_pfn =
1050 					block_start_pfn - pageblock_nr_pages;
1051 			}
1052 			break;
1053 		} else if (isolate_start_pfn < block_end_pfn) {
1054 			/*
1055 			 * If isolation failed early, do not continue
1056 			 * needlessly.
1057 			 */
1058 			break;
1059 		}
1060 	}
1061 
1062 	/* split_free_page does not map the pages */
1063 	map_pages(freelist);
1064 
1065 	/*
1066 	 * Record where the free scanner will restart next time. Either we
1067 	 * broke from the loop and set isolate_start_pfn based on the last
1068 	 * call to isolate_freepages_block(), or we met the migration scanner
1069 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1070 	 */
1071 	cc->free_pfn = isolate_start_pfn;
1072 }
1073 
1074 /*
1075  * This is a migrate-callback that "allocates" freepages by taking pages
1076  * from the isolated freelists in the block we are migrating to.
1077  */
1078 static struct page *compaction_alloc(struct page *migratepage,
1079 					unsigned long data,
1080 					int **result)
1081 {
1082 	struct compact_control *cc = (struct compact_control *)data;
1083 	struct page *freepage;
1084 
1085 	/*
1086 	 * Isolate free pages if necessary, and if we are not aborting due to
1087 	 * contention.
1088 	 */
1089 	if (list_empty(&cc->freepages)) {
1090 		if (!cc->contended)
1091 			isolate_freepages(cc);
1092 
1093 		if (list_empty(&cc->freepages))
1094 			return NULL;
1095 	}
1096 
1097 	freepage = list_entry(cc->freepages.next, struct page, lru);
1098 	list_del(&freepage->lru);
1099 	cc->nr_freepages--;
1100 
1101 	return freepage;
1102 }
1103 
1104 /*
1105  * This is a migrate-callback that "frees" freepages back to the isolated
1106  * freelist.  All pages on the freelist are from the same zone, so there is no
1107  * special handling needed for NUMA.
1108  */
1109 static void compaction_free(struct page *page, unsigned long data)
1110 {
1111 	struct compact_control *cc = (struct compact_control *)data;
1112 
1113 	list_add(&page->lru, &cc->freepages);
1114 	cc->nr_freepages++;
1115 }
1116 
1117 /* possible outcome of isolate_migratepages */
1118 typedef enum {
1119 	ISOLATE_ABORT,		/* Abort compaction now */
1120 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1121 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1122 } isolate_migrate_t;
1123 
1124 /*
1125  * Allow userspace to control policy on scanning the unevictable LRU for
1126  * compactable pages.
1127  */
1128 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1129 
1130 /*
1131  * Isolate all pages that can be migrated from the first suitable block,
1132  * starting at the block pointed to by the migrate scanner pfn within
1133  * compact_control.
1134  */
1135 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1136 					struct compact_control *cc)
1137 {
1138 	unsigned long block_start_pfn;
1139 	unsigned long block_end_pfn;
1140 	unsigned long low_pfn;
1141 	struct page *page;
1142 	const isolate_mode_t isolate_mode =
1143 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1144 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1145 
1146 	/*
1147 	 * Start at where we last stopped, or beginning of the zone as
1148 	 * initialized by compact_zone()
1149 	 */
1150 	low_pfn = cc->migrate_pfn;
1151 	block_start_pfn = pageblock_start_pfn(low_pfn);
1152 	if (block_start_pfn < zone->zone_start_pfn)
1153 		block_start_pfn = zone->zone_start_pfn;
1154 
1155 	/* Only scan within a pageblock boundary */
1156 	block_end_pfn = pageblock_end_pfn(low_pfn);
1157 
1158 	/*
1159 	 * Iterate over whole pageblocks until we find the first suitable.
1160 	 * Do not cross the free scanner.
1161 	 */
1162 	for (; block_end_pfn <= cc->free_pfn;
1163 			low_pfn = block_end_pfn,
1164 			block_start_pfn = block_end_pfn,
1165 			block_end_pfn += pageblock_nr_pages) {
1166 
1167 		/*
1168 		 * This can potentially iterate a massively long zone with
1169 		 * many pageblocks unsuitable, so periodically check if we
1170 		 * need to schedule, or even abort async compaction.
1171 		 */
1172 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1173 						&& compact_should_abort(cc))
1174 			break;
1175 
1176 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1177 									zone);
1178 		if (!page)
1179 			continue;
1180 
1181 		/* If isolation recently failed, do not retry */
1182 		if (!isolation_suitable(cc, page))
1183 			continue;
1184 
1185 		/*
1186 		 * For async compaction, also only scan in MOVABLE blocks.
1187 		 * Async compaction is optimistic to see if the minimum amount
1188 		 * of work satisfies the allocation.
1189 		 */
1190 		if (cc->mode == MIGRATE_ASYNC &&
1191 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1192 			continue;
1193 
1194 		/* Perform the isolation */
1195 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1196 						block_end_pfn, isolate_mode);
1197 
1198 		if (!low_pfn || cc->contended) {
1199 			acct_isolated(zone, cc);
1200 			return ISOLATE_ABORT;
1201 		}
1202 
1203 		/*
1204 		 * Either we isolated something and proceed with migration. Or
1205 		 * we failed and compact_zone should decide if we should
1206 		 * continue or not.
1207 		 */
1208 		break;
1209 	}
1210 
1211 	acct_isolated(zone, cc);
1212 	/* Record where migration scanner will be restarted. */
1213 	cc->migrate_pfn = low_pfn;
1214 
1215 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1216 }
1217 
1218 /*
1219  * order == -1 is expected when compacting via
1220  * /proc/sys/vm/compact_memory
1221  */
1222 static inline bool is_via_compact_memory(int order)
1223 {
1224 	return order == -1;
1225 }
1226 
1227 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1228 			    const int migratetype)
1229 {
1230 	unsigned int order;
1231 	unsigned long watermark;
1232 
1233 	if (cc->contended || fatal_signal_pending(current))
1234 		return COMPACT_CONTENDED;
1235 
1236 	/* Compaction run completes if the migrate and free scanner meet */
1237 	if (compact_scanners_met(cc)) {
1238 		/* Let the next compaction start anew. */
1239 		reset_cached_positions(zone);
1240 
1241 		/*
1242 		 * Mark that the PG_migrate_skip information should be cleared
1243 		 * by kswapd when it goes to sleep. kcompactd does not set the
1244 		 * flag itself as the decision to be clear should be directly
1245 		 * based on an allocation request.
1246 		 */
1247 		if (cc->direct_compaction)
1248 			zone->compact_blockskip_flush = true;
1249 
1250 		if (cc->whole_zone)
1251 			return COMPACT_COMPLETE;
1252 		else
1253 			return COMPACT_PARTIAL_SKIPPED;
1254 	}
1255 
1256 	if (is_via_compact_memory(cc->order))
1257 		return COMPACT_CONTINUE;
1258 
1259 	/* Compaction run is not finished if the watermark is not met */
1260 	watermark = low_wmark_pages(zone);
1261 
1262 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1263 							cc->alloc_flags))
1264 		return COMPACT_CONTINUE;
1265 
1266 	/* Direct compactor: Is a suitable page free? */
1267 	for (order = cc->order; order < MAX_ORDER; order++) {
1268 		struct free_area *area = &zone->free_area[order];
1269 		bool can_steal;
1270 
1271 		/* Job done if page is free of the right migratetype */
1272 		if (!list_empty(&area->free_list[migratetype]))
1273 			return COMPACT_PARTIAL;
1274 
1275 #ifdef CONFIG_CMA
1276 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1277 		if (migratetype == MIGRATE_MOVABLE &&
1278 			!list_empty(&area->free_list[MIGRATE_CMA]))
1279 			return COMPACT_PARTIAL;
1280 #endif
1281 		/*
1282 		 * Job done if allocation would steal freepages from
1283 		 * other migratetype buddy lists.
1284 		 */
1285 		if (find_suitable_fallback(area, order, migratetype,
1286 						true, &can_steal) != -1)
1287 			return COMPACT_PARTIAL;
1288 	}
1289 
1290 	return COMPACT_NO_SUITABLE_PAGE;
1291 }
1292 
1293 static enum compact_result compact_finished(struct zone *zone,
1294 			struct compact_control *cc,
1295 			const int migratetype)
1296 {
1297 	int ret;
1298 
1299 	ret = __compact_finished(zone, cc, migratetype);
1300 	trace_mm_compaction_finished(zone, cc->order, ret);
1301 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1302 		ret = COMPACT_CONTINUE;
1303 
1304 	return ret;
1305 }
1306 
1307 /*
1308  * compaction_suitable: Is this suitable to run compaction on this zone now?
1309  * Returns
1310  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1311  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1312  *   COMPACT_CONTINUE - If compaction should run now
1313  */
1314 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1315 					unsigned int alloc_flags,
1316 					int classzone_idx,
1317 					unsigned long wmark_target)
1318 {
1319 	int fragindex;
1320 	unsigned long watermark;
1321 
1322 	if (is_via_compact_memory(order))
1323 		return COMPACT_CONTINUE;
1324 
1325 	watermark = low_wmark_pages(zone);
1326 	/*
1327 	 * If watermarks for high-order allocation are already met, there
1328 	 * should be no need for compaction at all.
1329 	 */
1330 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1331 								alloc_flags))
1332 		return COMPACT_PARTIAL;
1333 
1334 	/*
1335 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1336 	 * This is because during migration, copies of pages need to be
1337 	 * allocated and for a short time, the footprint is higher
1338 	 */
1339 	watermark += (2UL << order);
1340 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1341 				 alloc_flags, wmark_target))
1342 		return COMPACT_SKIPPED;
1343 
1344 	/*
1345 	 * fragmentation index determines if allocation failures are due to
1346 	 * low memory or external fragmentation
1347 	 *
1348 	 * index of -1000 would imply allocations might succeed depending on
1349 	 * watermarks, but we already failed the high-order watermark check
1350 	 * index towards 0 implies failure is due to lack of memory
1351 	 * index towards 1000 implies failure is due to fragmentation
1352 	 *
1353 	 * Only compact if a failure would be due to fragmentation.
1354 	 */
1355 	fragindex = fragmentation_index(zone, order);
1356 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1357 		return COMPACT_NOT_SUITABLE_ZONE;
1358 
1359 	return COMPACT_CONTINUE;
1360 }
1361 
1362 enum compact_result compaction_suitable(struct zone *zone, int order,
1363 					unsigned int alloc_flags,
1364 					int classzone_idx)
1365 {
1366 	enum compact_result ret;
1367 
1368 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1369 				    zone_page_state(zone, NR_FREE_PAGES));
1370 	trace_mm_compaction_suitable(zone, order, ret);
1371 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1372 		ret = COMPACT_SKIPPED;
1373 
1374 	return ret;
1375 }
1376 
1377 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1378 		int alloc_flags)
1379 {
1380 	struct zone *zone;
1381 	struct zoneref *z;
1382 
1383 	/*
1384 	 * Make sure at least one zone would pass __compaction_suitable if we continue
1385 	 * retrying the reclaim.
1386 	 */
1387 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1388 					ac->nodemask) {
1389 		unsigned long available;
1390 		enum compact_result compact_result;
1391 
1392 		/*
1393 		 * Do not consider all the reclaimable memory because we do not
1394 		 * want to trash just for a single high order allocation which
1395 		 * is even not guaranteed to appear even if __compaction_suitable
1396 		 * is happy about the watermark check.
1397 		 */
1398 		available = zone_reclaimable_pages(zone) / order;
1399 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1400 		compact_result = __compaction_suitable(zone, order, alloc_flags,
1401 				ac_classzone_idx(ac), available);
1402 		if (compact_result != COMPACT_SKIPPED &&
1403 				compact_result != COMPACT_NOT_SUITABLE_ZONE)
1404 			return true;
1405 	}
1406 
1407 	return false;
1408 }
1409 
1410 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1411 {
1412 	enum compact_result ret;
1413 	unsigned long start_pfn = zone->zone_start_pfn;
1414 	unsigned long end_pfn = zone_end_pfn(zone);
1415 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1416 	const bool sync = cc->mode != MIGRATE_ASYNC;
1417 
1418 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1419 							cc->classzone_idx);
1420 	/* Compaction is likely to fail */
1421 	if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1422 		return ret;
1423 
1424 	/* huh, compaction_suitable is returning something unexpected */
1425 	VM_BUG_ON(ret != COMPACT_CONTINUE);
1426 
1427 	/*
1428 	 * Clear pageblock skip if there were failures recently and compaction
1429 	 * is about to be retried after being deferred.
1430 	 */
1431 	if (compaction_restarting(zone, cc->order))
1432 		__reset_isolation_suitable(zone);
1433 
1434 	/*
1435 	 * Setup to move all movable pages to the end of the zone. Used cached
1436 	 * information on where the scanners should start but check that it
1437 	 * is initialised by ensuring the values are within zone boundaries.
1438 	 */
1439 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1440 	cc->free_pfn = zone->compact_cached_free_pfn;
1441 	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1442 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1443 		zone->compact_cached_free_pfn = cc->free_pfn;
1444 	}
1445 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1446 		cc->migrate_pfn = start_pfn;
1447 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1448 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1449 	}
1450 
1451 	if (cc->migrate_pfn == start_pfn)
1452 		cc->whole_zone = true;
1453 
1454 	cc->last_migrated_pfn = 0;
1455 
1456 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1457 				cc->free_pfn, end_pfn, sync);
1458 
1459 	migrate_prep_local();
1460 
1461 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1462 						COMPACT_CONTINUE) {
1463 		int err;
1464 
1465 		switch (isolate_migratepages(zone, cc)) {
1466 		case ISOLATE_ABORT:
1467 			ret = COMPACT_CONTENDED;
1468 			putback_movable_pages(&cc->migratepages);
1469 			cc->nr_migratepages = 0;
1470 			goto out;
1471 		case ISOLATE_NONE:
1472 			/*
1473 			 * We haven't isolated and migrated anything, but
1474 			 * there might still be unflushed migrations from
1475 			 * previous cc->order aligned block.
1476 			 */
1477 			goto check_drain;
1478 		case ISOLATE_SUCCESS:
1479 			;
1480 		}
1481 
1482 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1483 				compaction_free, (unsigned long)cc, cc->mode,
1484 				MR_COMPACTION);
1485 
1486 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1487 							&cc->migratepages);
1488 
1489 		/* All pages were either migrated or will be released */
1490 		cc->nr_migratepages = 0;
1491 		if (err) {
1492 			putback_movable_pages(&cc->migratepages);
1493 			/*
1494 			 * migrate_pages() may return -ENOMEM when scanners meet
1495 			 * and we want compact_finished() to detect it
1496 			 */
1497 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1498 				ret = COMPACT_CONTENDED;
1499 				goto out;
1500 			}
1501 			/*
1502 			 * We failed to migrate at least one page in the current
1503 			 * order-aligned block, so skip the rest of it.
1504 			 */
1505 			if (cc->direct_compaction &&
1506 						(cc->mode == MIGRATE_ASYNC)) {
1507 				cc->migrate_pfn = block_end_pfn(
1508 						cc->migrate_pfn - 1, cc->order);
1509 				/* Draining pcplists is useless in this case */
1510 				cc->last_migrated_pfn = 0;
1511 
1512 			}
1513 		}
1514 
1515 check_drain:
1516 		/*
1517 		 * Has the migration scanner moved away from the previous
1518 		 * cc->order aligned block where we migrated from? If yes,
1519 		 * flush the pages that were freed, so that they can merge and
1520 		 * compact_finished() can detect immediately if allocation
1521 		 * would succeed.
1522 		 */
1523 		if (cc->order > 0 && cc->last_migrated_pfn) {
1524 			int cpu;
1525 			unsigned long current_block_start =
1526 				block_start_pfn(cc->migrate_pfn, cc->order);
1527 
1528 			if (cc->last_migrated_pfn < current_block_start) {
1529 				cpu = get_cpu();
1530 				lru_add_drain_cpu(cpu);
1531 				drain_local_pages(zone);
1532 				put_cpu();
1533 				/* No more flushing until we migrate again */
1534 				cc->last_migrated_pfn = 0;
1535 			}
1536 		}
1537 
1538 	}
1539 
1540 out:
1541 	/*
1542 	 * Release free pages and update where the free scanner should restart,
1543 	 * so we don't leave any returned pages behind in the next attempt.
1544 	 */
1545 	if (cc->nr_freepages > 0) {
1546 		unsigned long free_pfn = release_freepages(&cc->freepages);
1547 
1548 		cc->nr_freepages = 0;
1549 		VM_BUG_ON(free_pfn == 0);
1550 		/* The cached pfn is always the first in a pageblock */
1551 		free_pfn = pageblock_start_pfn(free_pfn);
1552 		/*
1553 		 * Only go back, not forward. The cached pfn might have been
1554 		 * already reset to zone end in compact_finished()
1555 		 */
1556 		if (free_pfn > zone->compact_cached_free_pfn)
1557 			zone->compact_cached_free_pfn = free_pfn;
1558 	}
1559 
1560 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1561 				cc->free_pfn, end_pfn, sync, ret);
1562 
1563 	if (ret == COMPACT_CONTENDED)
1564 		ret = COMPACT_PARTIAL;
1565 
1566 	return ret;
1567 }
1568 
1569 static enum compact_result compact_zone_order(struct zone *zone, int order,
1570 		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1571 		unsigned int alloc_flags, int classzone_idx)
1572 {
1573 	enum compact_result ret;
1574 	struct compact_control cc = {
1575 		.nr_freepages = 0,
1576 		.nr_migratepages = 0,
1577 		.order = order,
1578 		.gfp_mask = gfp_mask,
1579 		.zone = zone,
1580 		.mode = mode,
1581 		.alloc_flags = alloc_flags,
1582 		.classzone_idx = classzone_idx,
1583 		.direct_compaction = true,
1584 	};
1585 	INIT_LIST_HEAD(&cc.freepages);
1586 	INIT_LIST_HEAD(&cc.migratepages);
1587 
1588 	ret = compact_zone(zone, &cc);
1589 
1590 	VM_BUG_ON(!list_empty(&cc.freepages));
1591 	VM_BUG_ON(!list_empty(&cc.migratepages));
1592 
1593 	*contended = cc.contended;
1594 	return ret;
1595 }
1596 
1597 int sysctl_extfrag_threshold = 500;
1598 
1599 /**
1600  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1601  * @gfp_mask: The GFP mask of the current allocation
1602  * @order: The order of the current allocation
1603  * @alloc_flags: The allocation flags of the current allocation
1604  * @ac: The context of current allocation
1605  * @mode: The migration mode for async, sync light, or sync migration
1606  * @contended: Return value that determines if compaction was aborted due to
1607  *	       need_resched() or lock contention
1608  *
1609  * This is the main entry point for direct page compaction.
1610  */
1611 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1612 		unsigned int alloc_flags, const struct alloc_context *ac,
1613 		enum migrate_mode mode, int *contended)
1614 {
1615 	int may_enter_fs = gfp_mask & __GFP_FS;
1616 	int may_perform_io = gfp_mask & __GFP_IO;
1617 	struct zoneref *z;
1618 	struct zone *zone;
1619 	enum compact_result rc = COMPACT_SKIPPED;
1620 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1621 
1622 	*contended = COMPACT_CONTENDED_NONE;
1623 
1624 	/* Check if the GFP flags allow compaction */
1625 	if (!order || !may_enter_fs || !may_perform_io)
1626 		return COMPACT_SKIPPED;
1627 
1628 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1629 
1630 	/* Compact each zone in the list */
1631 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1632 								ac->nodemask) {
1633 		enum compact_result status;
1634 		int zone_contended;
1635 
1636 		if (compaction_deferred(zone, order)) {
1637 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1638 			continue;
1639 		}
1640 
1641 		status = compact_zone_order(zone, order, gfp_mask, mode,
1642 				&zone_contended, alloc_flags,
1643 				ac_classzone_idx(ac));
1644 		rc = max(status, rc);
1645 		/*
1646 		 * It takes at least one zone that wasn't lock contended
1647 		 * to clear all_zones_contended.
1648 		 */
1649 		all_zones_contended &= zone_contended;
1650 
1651 		/* If a normal allocation would succeed, stop compacting */
1652 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1653 					ac_classzone_idx(ac), alloc_flags)) {
1654 			/*
1655 			 * We think the allocation will succeed in this zone,
1656 			 * but it is not certain, hence the false. The caller
1657 			 * will repeat this with true if allocation indeed
1658 			 * succeeds in this zone.
1659 			 */
1660 			compaction_defer_reset(zone, order, false);
1661 			/*
1662 			 * It is possible that async compaction aborted due to
1663 			 * need_resched() and the watermarks were ok thanks to
1664 			 * somebody else freeing memory. The allocation can
1665 			 * however still fail so we better signal the
1666 			 * need_resched() contention anyway (this will not
1667 			 * prevent the allocation attempt).
1668 			 */
1669 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1670 				*contended = COMPACT_CONTENDED_SCHED;
1671 
1672 			goto break_loop;
1673 		}
1674 
1675 		if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
1676 					status == COMPACT_PARTIAL_SKIPPED)) {
1677 			/*
1678 			 * We think that allocation won't succeed in this zone
1679 			 * so we defer compaction there. If it ends up
1680 			 * succeeding after all, it will be reset.
1681 			 */
1682 			defer_compaction(zone, order);
1683 		}
1684 
1685 		/*
1686 		 * We might have stopped compacting due to need_resched() in
1687 		 * async compaction, or due to a fatal signal detected. In that
1688 		 * case do not try further zones and signal need_resched()
1689 		 * contention.
1690 		 */
1691 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1692 					|| fatal_signal_pending(current)) {
1693 			*contended = COMPACT_CONTENDED_SCHED;
1694 			goto break_loop;
1695 		}
1696 
1697 		continue;
1698 break_loop:
1699 		/*
1700 		 * We might not have tried all the zones, so  be conservative
1701 		 * and assume they are not all lock contended.
1702 		 */
1703 		all_zones_contended = 0;
1704 		break;
1705 	}
1706 
1707 	/*
1708 	 * If at least one zone wasn't deferred or skipped, we report if all
1709 	 * zones that were tried were lock contended.
1710 	 */
1711 	if (rc > COMPACT_INACTIVE && all_zones_contended)
1712 		*contended = COMPACT_CONTENDED_LOCK;
1713 
1714 	return rc;
1715 }
1716 
1717 
1718 /* Compact all zones within a node */
1719 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1720 {
1721 	int zoneid;
1722 	struct zone *zone;
1723 
1724 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1725 
1726 		zone = &pgdat->node_zones[zoneid];
1727 		if (!populated_zone(zone))
1728 			continue;
1729 
1730 		cc->nr_freepages = 0;
1731 		cc->nr_migratepages = 0;
1732 		cc->zone = zone;
1733 		INIT_LIST_HEAD(&cc->freepages);
1734 		INIT_LIST_HEAD(&cc->migratepages);
1735 
1736 		/*
1737 		 * When called via /proc/sys/vm/compact_memory
1738 		 * this makes sure we compact the whole zone regardless of
1739 		 * cached scanner positions.
1740 		 */
1741 		if (is_via_compact_memory(cc->order))
1742 			__reset_isolation_suitable(zone);
1743 
1744 		if (is_via_compact_memory(cc->order) ||
1745 				!compaction_deferred(zone, cc->order))
1746 			compact_zone(zone, cc);
1747 
1748 		VM_BUG_ON(!list_empty(&cc->freepages));
1749 		VM_BUG_ON(!list_empty(&cc->migratepages));
1750 
1751 		if (is_via_compact_memory(cc->order))
1752 			continue;
1753 
1754 		if (zone_watermark_ok(zone, cc->order,
1755 				low_wmark_pages(zone), 0, 0))
1756 			compaction_defer_reset(zone, cc->order, false);
1757 	}
1758 }
1759 
1760 void compact_pgdat(pg_data_t *pgdat, int order)
1761 {
1762 	struct compact_control cc = {
1763 		.order = order,
1764 		.mode = MIGRATE_ASYNC,
1765 	};
1766 
1767 	if (!order)
1768 		return;
1769 
1770 	__compact_pgdat(pgdat, &cc);
1771 }
1772 
1773 static void compact_node(int nid)
1774 {
1775 	struct compact_control cc = {
1776 		.order = -1,
1777 		.mode = MIGRATE_SYNC,
1778 		.ignore_skip_hint = true,
1779 	};
1780 
1781 	__compact_pgdat(NODE_DATA(nid), &cc);
1782 }
1783 
1784 /* Compact all nodes in the system */
1785 static void compact_nodes(void)
1786 {
1787 	int nid;
1788 
1789 	/* Flush pending updates to the LRU lists */
1790 	lru_add_drain_all();
1791 
1792 	for_each_online_node(nid)
1793 		compact_node(nid);
1794 }
1795 
1796 /* The written value is actually unused, all memory is compacted */
1797 int sysctl_compact_memory;
1798 
1799 /*
1800  * This is the entry point for compacting all nodes via
1801  * /proc/sys/vm/compact_memory
1802  */
1803 int sysctl_compaction_handler(struct ctl_table *table, int write,
1804 			void __user *buffer, size_t *length, loff_t *ppos)
1805 {
1806 	if (write)
1807 		compact_nodes();
1808 
1809 	return 0;
1810 }
1811 
1812 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1813 			void __user *buffer, size_t *length, loff_t *ppos)
1814 {
1815 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1816 
1817 	return 0;
1818 }
1819 
1820 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1821 static ssize_t sysfs_compact_node(struct device *dev,
1822 			struct device_attribute *attr,
1823 			const char *buf, size_t count)
1824 {
1825 	int nid = dev->id;
1826 
1827 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1828 		/* Flush pending updates to the LRU lists */
1829 		lru_add_drain_all();
1830 
1831 		compact_node(nid);
1832 	}
1833 
1834 	return count;
1835 }
1836 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1837 
1838 int compaction_register_node(struct node *node)
1839 {
1840 	return device_create_file(&node->dev, &dev_attr_compact);
1841 }
1842 
1843 void compaction_unregister_node(struct node *node)
1844 {
1845 	return device_remove_file(&node->dev, &dev_attr_compact);
1846 }
1847 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1848 
1849 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1850 {
1851 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1852 }
1853 
1854 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1855 {
1856 	int zoneid;
1857 	struct zone *zone;
1858 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1859 
1860 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1861 		zone = &pgdat->node_zones[zoneid];
1862 
1863 		if (!populated_zone(zone))
1864 			continue;
1865 
1866 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1867 					classzone_idx) == COMPACT_CONTINUE)
1868 			return true;
1869 	}
1870 
1871 	return false;
1872 }
1873 
1874 static void kcompactd_do_work(pg_data_t *pgdat)
1875 {
1876 	/*
1877 	 * With no special task, compact all zones so that a page of requested
1878 	 * order is allocatable.
1879 	 */
1880 	int zoneid;
1881 	struct zone *zone;
1882 	struct compact_control cc = {
1883 		.order = pgdat->kcompactd_max_order,
1884 		.classzone_idx = pgdat->kcompactd_classzone_idx,
1885 		.mode = MIGRATE_SYNC_LIGHT,
1886 		.ignore_skip_hint = true,
1887 
1888 	};
1889 	bool success = false;
1890 
1891 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1892 							cc.classzone_idx);
1893 	count_vm_event(KCOMPACTD_WAKE);
1894 
1895 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1896 		int status;
1897 
1898 		zone = &pgdat->node_zones[zoneid];
1899 		if (!populated_zone(zone))
1900 			continue;
1901 
1902 		if (compaction_deferred(zone, cc.order))
1903 			continue;
1904 
1905 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1906 							COMPACT_CONTINUE)
1907 			continue;
1908 
1909 		cc.nr_freepages = 0;
1910 		cc.nr_migratepages = 0;
1911 		cc.zone = zone;
1912 		INIT_LIST_HEAD(&cc.freepages);
1913 		INIT_LIST_HEAD(&cc.migratepages);
1914 
1915 		if (kthread_should_stop())
1916 			return;
1917 		status = compact_zone(zone, &cc);
1918 
1919 		if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1920 						cc.classzone_idx, 0)) {
1921 			success = true;
1922 			compaction_defer_reset(zone, cc.order, false);
1923 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1924 			/*
1925 			 * We use sync migration mode here, so we defer like
1926 			 * sync direct compaction does.
1927 			 */
1928 			defer_compaction(zone, cc.order);
1929 		}
1930 
1931 		VM_BUG_ON(!list_empty(&cc.freepages));
1932 		VM_BUG_ON(!list_empty(&cc.migratepages));
1933 	}
1934 
1935 	/*
1936 	 * Regardless of success, we are done until woken up next. But remember
1937 	 * the requested order/classzone_idx in case it was higher/tighter than
1938 	 * our current ones
1939 	 */
1940 	if (pgdat->kcompactd_max_order <= cc.order)
1941 		pgdat->kcompactd_max_order = 0;
1942 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1943 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1944 }
1945 
1946 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1947 {
1948 	if (!order)
1949 		return;
1950 
1951 	if (pgdat->kcompactd_max_order < order)
1952 		pgdat->kcompactd_max_order = order;
1953 
1954 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
1955 		pgdat->kcompactd_classzone_idx = classzone_idx;
1956 
1957 	if (!waitqueue_active(&pgdat->kcompactd_wait))
1958 		return;
1959 
1960 	if (!kcompactd_node_suitable(pgdat))
1961 		return;
1962 
1963 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1964 							classzone_idx);
1965 	wake_up_interruptible(&pgdat->kcompactd_wait);
1966 }
1967 
1968 /*
1969  * The background compaction daemon, started as a kernel thread
1970  * from the init process.
1971  */
1972 static int kcompactd(void *p)
1973 {
1974 	pg_data_t *pgdat = (pg_data_t*)p;
1975 	struct task_struct *tsk = current;
1976 
1977 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1978 
1979 	if (!cpumask_empty(cpumask))
1980 		set_cpus_allowed_ptr(tsk, cpumask);
1981 
1982 	set_freezable();
1983 
1984 	pgdat->kcompactd_max_order = 0;
1985 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1986 
1987 	while (!kthread_should_stop()) {
1988 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1989 		wait_event_freezable(pgdat->kcompactd_wait,
1990 				kcompactd_work_requested(pgdat));
1991 
1992 		kcompactd_do_work(pgdat);
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 /*
1999  * This kcompactd start function will be called by init and node-hot-add.
2000  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2001  */
2002 int kcompactd_run(int nid)
2003 {
2004 	pg_data_t *pgdat = NODE_DATA(nid);
2005 	int ret = 0;
2006 
2007 	if (pgdat->kcompactd)
2008 		return 0;
2009 
2010 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2011 	if (IS_ERR(pgdat->kcompactd)) {
2012 		pr_err("Failed to start kcompactd on node %d\n", nid);
2013 		ret = PTR_ERR(pgdat->kcompactd);
2014 		pgdat->kcompactd = NULL;
2015 	}
2016 	return ret;
2017 }
2018 
2019 /*
2020  * Called by memory hotplug when all memory in a node is offlined. Caller must
2021  * hold mem_hotplug_begin/end().
2022  */
2023 void kcompactd_stop(int nid)
2024 {
2025 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2026 
2027 	if (kcompactd) {
2028 		kthread_stop(kcompactd);
2029 		NODE_DATA(nid)->kcompactd = NULL;
2030 	}
2031 }
2032 
2033 /*
2034  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2035  * not required for correctness. So if the last cpu in a node goes
2036  * away, we get changed to run anywhere: as the first one comes back,
2037  * restore their cpu bindings.
2038  */
2039 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2040 			void *hcpu)
2041 {
2042 	int nid;
2043 
2044 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2045 		for_each_node_state(nid, N_MEMORY) {
2046 			pg_data_t *pgdat = NODE_DATA(nid);
2047 			const struct cpumask *mask;
2048 
2049 			mask = cpumask_of_node(pgdat->node_id);
2050 
2051 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2052 				/* One of our CPUs online: restore mask */
2053 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2054 		}
2055 	}
2056 	return NOTIFY_OK;
2057 }
2058 
2059 static int __init kcompactd_init(void)
2060 {
2061 	int nid;
2062 
2063 	for_each_node_state(nid, N_MEMORY)
2064 		kcompactd_run(nid);
2065 	hotcpu_notifier(cpu_callback, 0);
2066 	return 0;
2067 }
2068 subsys_initcall(kcompactd_init)
2069 
2070 #endif /* CONFIG_COMPACTION */
2071