xref: /linux/mm/compaction.c (revision 5e4e38446a62a4f50d77b0dd11d4b379dee08988)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21 
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 	count_vm_event(item);
26 }
27 
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 	count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36 
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
41 
42 static unsigned long release_freepages(struct list_head *freelist)
43 {
44 	struct page *page, *next;
45 	unsigned long high_pfn = 0;
46 
47 	list_for_each_entry_safe(page, next, freelist, lru) {
48 		unsigned long pfn = page_to_pfn(page);
49 		list_del(&page->lru);
50 		__free_page(page);
51 		if (pfn > high_pfn)
52 			high_pfn = pfn;
53 	}
54 
55 	return high_pfn;
56 }
57 
58 static void map_pages(struct list_head *list)
59 {
60 	struct page *page;
61 
62 	list_for_each_entry(page, list, lru) {
63 		arch_alloc_page(page, 0);
64 		kernel_map_pages(page, 1, 1);
65 		kasan_alloc_pages(page, 0);
66 	}
67 }
68 
69 static inline bool migrate_async_suitable(int migratetype)
70 {
71 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73 
74 #ifdef CONFIG_COMPACTION
75 
76 /* Do not skip compaction more than 64 times */
77 #define COMPACT_MAX_DEFER_SHIFT 6
78 
79 /*
80  * Compaction is deferred when compaction fails to result in a page
81  * allocation success. 1 << compact_defer_limit compactions are skipped up
82  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
83  */
84 void defer_compaction(struct zone *zone, int order)
85 {
86 	zone->compact_considered = 0;
87 	zone->compact_defer_shift++;
88 
89 	if (order < zone->compact_order_failed)
90 		zone->compact_order_failed = order;
91 
92 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
93 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
94 
95 	trace_mm_compaction_defer_compaction(zone, order);
96 }
97 
98 /* Returns true if compaction should be skipped this time */
99 bool compaction_deferred(struct zone *zone, int order)
100 {
101 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
102 
103 	if (order < zone->compact_order_failed)
104 		return false;
105 
106 	/* Avoid possible overflow */
107 	if (++zone->compact_considered > defer_limit)
108 		zone->compact_considered = defer_limit;
109 
110 	if (zone->compact_considered >= defer_limit)
111 		return false;
112 
113 	trace_mm_compaction_deferred(zone, order);
114 
115 	return true;
116 }
117 
118 /*
119  * Update defer tracking counters after successful compaction of given order,
120  * which means an allocation either succeeded (alloc_success == true) or is
121  * expected to succeed.
122  */
123 void compaction_defer_reset(struct zone *zone, int order,
124 		bool alloc_success)
125 {
126 	if (alloc_success) {
127 		zone->compact_considered = 0;
128 		zone->compact_defer_shift = 0;
129 	}
130 	if (order >= zone->compact_order_failed)
131 		zone->compact_order_failed = order + 1;
132 
133 	trace_mm_compaction_defer_reset(zone, order);
134 }
135 
136 /* Returns true if restarting compaction after many failures */
137 bool compaction_restarting(struct zone *zone, int order)
138 {
139 	if (order < zone->compact_order_failed)
140 		return false;
141 
142 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
143 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
144 }
145 
146 /* Returns true if the pageblock should be scanned for pages to isolate. */
147 static inline bool isolation_suitable(struct compact_control *cc,
148 					struct page *page)
149 {
150 	if (cc->ignore_skip_hint)
151 		return true;
152 
153 	return !get_pageblock_skip(page);
154 }
155 
156 static void reset_cached_positions(struct zone *zone)
157 {
158 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
159 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
160 	zone->compact_cached_free_pfn =
161 			round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
162 }
163 
164 /*
165  * This function is called to clear all cached information on pageblocks that
166  * should be skipped for page isolation when the migrate and free page scanner
167  * meet.
168  */
169 static void __reset_isolation_suitable(struct zone *zone)
170 {
171 	unsigned long start_pfn = zone->zone_start_pfn;
172 	unsigned long end_pfn = zone_end_pfn(zone);
173 	unsigned long pfn;
174 
175 	zone->compact_blockskip_flush = false;
176 
177 	/* Walk the zone and mark every pageblock as suitable for isolation */
178 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
179 		struct page *page;
180 
181 		cond_resched();
182 
183 		if (!pfn_valid(pfn))
184 			continue;
185 
186 		page = pfn_to_page(pfn);
187 		if (zone != page_zone(page))
188 			continue;
189 
190 		clear_pageblock_skip(page);
191 	}
192 
193 	reset_cached_positions(zone);
194 }
195 
196 void reset_isolation_suitable(pg_data_t *pgdat)
197 {
198 	int zoneid;
199 
200 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
201 		struct zone *zone = &pgdat->node_zones[zoneid];
202 		if (!populated_zone(zone))
203 			continue;
204 
205 		/* Only flush if a full compaction finished recently */
206 		if (zone->compact_blockskip_flush)
207 			__reset_isolation_suitable(zone);
208 	}
209 }
210 
211 /*
212  * If no pages were isolated then mark this pageblock to be skipped in the
213  * future. The information is later cleared by __reset_isolation_suitable().
214  */
215 static void update_pageblock_skip(struct compact_control *cc,
216 			struct page *page, unsigned long nr_isolated,
217 			bool migrate_scanner)
218 {
219 	struct zone *zone = cc->zone;
220 	unsigned long pfn;
221 
222 	if (cc->ignore_skip_hint)
223 		return;
224 
225 	if (!page)
226 		return;
227 
228 	if (nr_isolated)
229 		return;
230 
231 	set_pageblock_skip(page);
232 
233 	pfn = page_to_pfn(page);
234 
235 	/* Update where async and sync compaction should restart */
236 	if (migrate_scanner) {
237 		if (pfn > zone->compact_cached_migrate_pfn[0])
238 			zone->compact_cached_migrate_pfn[0] = pfn;
239 		if (cc->mode != MIGRATE_ASYNC &&
240 		    pfn > zone->compact_cached_migrate_pfn[1])
241 			zone->compact_cached_migrate_pfn[1] = pfn;
242 	} else {
243 		if (pfn < zone->compact_cached_free_pfn)
244 			zone->compact_cached_free_pfn = pfn;
245 	}
246 }
247 #else
248 static inline bool isolation_suitable(struct compact_control *cc,
249 					struct page *page)
250 {
251 	return true;
252 }
253 
254 static void update_pageblock_skip(struct compact_control *cc,
255 			struct page *page, unsigned long nr_isolated,
256 			bool migrate_scanner)
257 {
258 }
259 #endif /* CONFIG_COMPACTION */
260 
261 /*
262  * Compaction requires the taking of some coarse locks that are potentially
263  * very heavily contended. For async compaction, back out if the lock cannot
264  * be taken immediately. For sync compaction, spin on the lock if needed.
265  *
266  * Returns true if the lock is held
267  * Returns false if the lock is not held and compaction should abort
268  */
269 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
270 						struct compact_control *cc)
271 {
272 	if (cc->mode == MIGRATE_ASYNC) {
273 		if (!spin_trylock_irqsave(lock, *flags)) {
274 			cc->contended = COMPACT_CONTENDED_LOCK;
275 			return false;
276 		}
277 	} else {
278 		spin_lock_irqsave(lock, *flags);
279 	}
280 
281 	return true;
282 }
283 
284 /*
285  * Compaction requires the taking of some coarse locks that are potentially
286  * very heavily contended. The lock should be periodically unlocked to avoid
287  * having disabled IRQs for a long time, even when there is nobody waiting on
288  * the lock. It might also be that allowing the IRQs will result in
289  * need_resched() becoming true. If scheduling is needed, async compaction
290  * aborts. Sync compaction schedules.
291  * Either compaction type will also abort if a fatal signal is pending.
292  * In either case if the lock was locked, it is dropped and not regained.
293  *
294  * Returns true if compaction should abort due to fatal signal pending, or
295  *		async compaction due to need_resched()
296  * Returns false when compaction can continue (sync compaction might have
297  *		scheduled)
298  */
299 static bool compact_unlock_should_abort(spinlock_t *lock,
300 		unsigned long flags, bool *locked, struct compact_control *cc)
301 {
302 	if (*locked) {
303 		spin_unlock_irqrestore(lock, flags);
304 		*locked = false;
305 	}
306 
307 	if (fatal_signal_pending(current)) {
308 		cc->contended = COMPACT_CONTENDED_SCHED;
309 		return true;
310 	}
311 
312 	if (need_resched()) {
313 		if (cc->mode == MIGRATE_ASYNC) {
314 			cc->contended = COMPACT_CONTENDED_SCHED;
315 			return true;
316 		}
317 		cond_resched();
318 	}
319 
320 	return false;
321 }
322 
323 /*
324  * Aside from avoiding lock contention, compaction also periodically checks
325  * need_resched() and either schedules in sync compaction or aborts async
326  * compaction. This is similar to what compact_unlock_should_abort() does, but
327  * is used where no lock is concerned.
328  *
329  * Returns false when no scheduling was needed, or sync compaction scheduled.
330  * Returns true when async compaction should abort.
331  */
332 static inline bool compact_should_abort(struct compact_control *cc)
333 {
334 	/* async compaction aborts if contended */
335 	if (need_resched()) {
336 		if (cc->mode == MIGRATE_ASYNC) {
337 			cc->contended = COMPACT_CONTENDED_SCHED;
338 			return true;
339 		}
340 
341 		cond_resched();
342 	}
343 
344 	return false;
345 }
346 
347 /*
348  * Isolate free pages onto a private freelist. If @strict is true, will abort
349  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
350  * (even though it may still end up isolating some pages).
351  */
352 static unsigned long isolate_freepages_block(struct compact_control *cc,
353 				unsigned long *start_pfn,
354 				unsigned long end_pfn,
355 				struct list_head *freelist,
356 				bool strict)
357 {
358 	int nr_scanned = 0, total_isolated = 0;
359 	struct page *cursor, *valid_page = NULL;
360 	unsigned long flags = 0;
361 	bool locked = false;
362 	unsigned long blockpfn = *start_pfn;
363 
364 	cursor = pfn_to_page(blockpfn);
365 
366 	/* Isolate free pages. */
367 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
368 		int isolated, i;
369 		struct page *page = cursor;
370 
371 		/*
372 		 * Periodically drop the lock (if held) regardless of its
373 		 * contention, to give chance to IRQs. Abort if fatal signal
374 		 * pending or async compaction detects need_resched()
375 		 */
376 		if (!(blockpfn % SWAP_CLUSTER_MAX)
377 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
378 								&locked, cc))
379 			break;
380 
381 		nr_scanned++;
382 		if (!pfn_valid_within(blockpfn))
383 			goto isolate_fail;
384 
385 		if (!valid_page)
386 			valid_page = page;
387 
388 		/*
389 		 * For compound pages such as THP and hugetlbfs, we can save
390 		 * potentially a lot of iterations if we skip them at once.
391 		 * The check is racy, but we can consider only valid values
392 		 * and the only danger is skipping too much.
393 		 */
394 		if (PageCompound(page)) {
395 			unsigned int comp_order = compound_order(page);
396 
397 			if (likely(comp_order < MAX_ORDER)) {
398 				blockpfn += (1UL << comp_order) - 1;
399 				cursor += (1UL << comp_order) - 1;
400 			}
401 
402 			goto isolate_fail;
403 		}
404 
405 		if (!PageBuddy(page))
406 			goto isolate_fail;
407 
408 		/*
409 		 * If we already hold the lock, we can skip some rechecking.
410 		 * Note that if we hold the lock now, checked_pageblock was
411 		 * already set in some previous iteration (or strict is true),
412 		 * so it is correct to skip the suitable migration target
413 		 * recheck as well.
414 		 */
415 		if (!locked) {
416 			/*
417 			 * The zone lock must be held to isolate freepages.
418 			 * Unfortunately this is a very coarse lock and can be
419 			 * heavily contended if there are parallel allocations
420 			 * or parallel compactions. For async compaction do not
421 			 * spin on the lock and we acquire the lock as late as
422 			 * possible.
423 			 */
424 			locked = compact_trylock_irqsave(&cc->zone->lock,
425 								&flags, cc);
426 			if (!locked)
427 				break;
428 
429 			/* Recheck this is a buddy page under lock */
430 			if (!PageBuddy(page))
431 				goto isolate_fail;
432 		}
433 
434 		/* Found a free page, break it into order-0 pages */
435 		isolated = split_free_page(page);
436 		total_isolated += isolated;
437 		for (i = 0; i < isolated; i++) {
438 			list_add(&page->lru, freelist);
439 			page++;
440 		}
441 
442 		/* If a page was split, advance to the end of it */
443 		if (isolated) {
444 			cc->nr_freepages += isolated;
445 			if (!strict &&
446 				cc->nr_migratepages <= cc->nr_freepages) {
447 				blockpfn += isolated;
448 				break;
449 			}
450 
451 			blockpfn += isolated - 1;
452 			cursor += isolated - 1;
453 			continue;
454 		}
455 
456 isolate_fail:
457 		if (strict)
458 			break;
459 		else
460 			continue;
461 
462 	}
463 
464 	/*
465 	 * There is a tiny chance that we have read bogus compound_order(),
466 	 * so be careful to not go outside of the pageblock.
467 	 */
468 	if (unlikely(blockpfn > end_pfn))
469 		blockpfn = end_pfn;
470 
471 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
472 					nr_scanned, total_isolated);
473 
474 	/* Record how far we have got within the block */
475 	*start_pfn = blockpfn;
476 
477 	/*
478 	 * If strict isolation is requested by CMA then check that all the
479 	 * pages requested were isolated. If there were any failures, 0 is
480 	 * returned and CMA will fail.
481 	 */
482 	if (strict && blockpfn < end_pfn)
483 		total_isolated = 0;
484 
485 	if (locked)
486 		spin_unlock_irqrestore(&cc->zone->lock, flags);
487 
488 	/* Update the pageblock-skip if the whole pageblock was scanned */
489 	if (blockpfn == end_pfn)
490 		update_pageblock_skip(cc, valid_page, total_isolated, false);
491 
492 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
493 	if (total_isolated)
494 		count_compact_events(COMPACTISOLATED, total_isolated);
495 	return total_isolated;
496 }
497 
498 /**
499  * isolate_freepages_range() - isolate free pages.
500  * @start_pfn: The first PFN to start isolating.
501  * @end_pfn:   The one-past-last PFN.
502  *
503  * Non-free pages, invalid PFNs, or zone boundaries within the
504  * [start_pfn, end_pfn) range are considered errors, cause function to
505  * undo its actions and return zero.
506  *
507  * Otherwise, function returns one-past-the-last PFN of isolated page
508  * (which may be greater then end_pfn if end fell in a middle of
509  * a free page).
510  */
511 unsigned long
512 isolate_freepages_range(struct compact_control *cc,
513 			unsigned long start_pfn, unsigned long end_pfn)
514 {
515 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
516 	LIST_HEAD(freelist);
517 
518 	pfn = start_pfn;
519 	block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
520 	if (block_start_pfn < cc->zone->zone_start_pfn)
521 		block_start_pfn = cc->zone->zone_start_pfn;
522 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
523 
524 	for (; pfn < end_pfn; pfn += isolated,
525 				block_start_pfn = block_end_pfn,
526 				block_end_pfn += pageblock_nr_pages) {
527 		/* Protect pfn from changing by isolate_freepages_block */
528 		unsigned long isolate_start_pfn = pfn;
529 
530 		block_end_pfn = min(block_end_pfn, end_pfn);
531 
532 		/*
533 		 * pfn could pass the block_end_pfn if isolated freepage
534 		 * is more than pageblock order. In this case, we adjust
535 		 * scanning range to right one.
536 		 */
537 		if (pfn >= block_end_pfn) {
538 			block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
539 			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
540 			block_end_pfn = min(block_end_pfn, end_pfn);
541 		}
542 
543 		if (!pageblock_pfn_to_page(block_start_pfn,
544 					block_end_pfn, cc->zone))
545 			break;
546 
547 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
548 						block_end_pfn, &freelist, true);
549 
550 		/*
551 		 * In strict mode, isolate_freepages_block() returns 0 if
552 		 * there are any holes in the block (ie. invalid PFNs or
553 		 * non-free pages).
554 		 */
555 		if (!isolated)
556 			break;
557 
558 		/*
559 		 * If we managed to isolate pages, it is always (1 << n) *
560 		 * pageblock_nr_pages for some non-negative n.  (Max order
561 		 * page may span two pageblocks).
562 		 */
563 	}
564 
565 	/* split_free_page does not map the pages */
566 	map_pages(&freelist);
567 
568 	if (pfn < end_pfn) {
569 		/* Loop terminated early, cleanup. */
570 		release_freepages(&freelist);
571 		return 0;
572 	}
573 
574 	/* We don't use freelists for anything. */
575 	return pfn;
576 }
577 
578 /* Update the number of anon and file isolated pages in the zone */
579 static void acct_isolated(struct zone *zone, struct compact_control *cc)
580 {
581 	struct page *page;
582 	unsigned int count[2] = { 0, };
583 
584 	if (list_empty(&cc->migratepages))
585 		return;
586 
587 	list_for_each_entry(page, &cc->migratepages, lru)
588 		count[!!page_is_file_cache(page)]++;
589 
590 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
591 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
592 }
593 
594 /* Similar to reclaim, but different enough that they don't share logic */
595 static bool too_many_isolated(struct zone *zone)
596 {
597 	unsigned long active, inactive, isolated;
598 
599 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
600 					zone_page_state(zone, NR_INACTIVE_ANON);
601 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
602 					zone_page_state(zone, NR_ACTIVE_ANON);
603 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
604 					zone_page_state(zone, NR_ISOLATED_ANON);
605 
606 	return isolated > (inactive + active) / 2;
607 }
608 
609 /**
610  * isolate_migratepages_block() - isolate all migrate-able pages within
611  *				  a single pageblock
612  * @cc:		Compaction control structure.
613  * @low_pfn:	The first PFN to isolate
614  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
615  * @isolate_mode: Isolation mode to be used.
616  *
617  * Isolate all pages that can be migrated from the range specified by
618  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
619  * Returns zero if there is a fatal signal pending, otherwise PFN of the
620  * first page that was not scanned (which may be both less, equal to or more
621  * than end_pfn).
622  *
623  * The pages are isolated on cc->migratepages list (not required to be empty),
624  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
625  * is neither read nor updated.
626  */
627 static unsigned long
628 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
629 			unsigned long end_pfn, isolate_mode_t isolate_mode)
630 {
631 	struct zone *zone = cc->zone;
632 	unsigned long nr_scanned = 0, nr_isolated = 0;
633 	struct list_head *migratelist = &cc->migratepages;
634 	struct lruvec *lruvec;
635 	unsigned long flags = 0;
636 	bool locked = false;
637 	struct page *page = NULL, *valid_page = NULL;
638 	unsigned long start_pfn = low_pfn;
639 
640 	/*
641 	 * Ensure that there are not too many pages isolated from the LRU
642 	 * list by either parallel reclaimers or compaction. If there are,
643 	 * delay for some time until fewer pages are isolated
644 	 */
645 	while (unlikely(too_many_isolated(zone))) {
646 		/* async migration should just abort */
647 		if (cc->mode == MIGRATE_ASYNC)
648 			return 0;
649 
650 		congestion_wait(BLK_RW_ASYNC, HZ/10);
651 
652 		if (fatal_signal_pending(current))
653 			return 0;
654 	}
655 
656 	if (compact_should_abort(cc))
657 		return 0;
658 
659 	/* Time to isolate some pages for migration */
660 	for (; low_pfn < end_pfn; low_pfn++) {
661 		bool is_lru;
662 
663 		/*
664 		 * Periodically drop the lock (if held) regardless of its
665 		 * contention, to give chance to IRQs. Abort async compaction
666 		 * if contended.
667 		 */
668 		if (!(low_pfn % SWAP_CLUSTER_MAX)
669 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
670 								&locked, cc))
671 			break;
672 
673 		if (!pfn_valid_within(low_pfn))
674 			continue;
675 		nr_scanned++;
676 
677 		page = pfn_to_page(low_pfn);
678 
679 		if (!valid_page)
680 			valid_page = page;
681 
682 		/*
683 		 * Skip if free. We read page order here without zone lock
684 		 * which is generally unsafe, but the race window is small and
685 		 * the worst thing that can happen is that we skip some
686 		 * potential isolation targets.
687 		 */
688 		if (PageBuddy(page)) {
689 			unsigned long freepage_order = page_order_unsafe(page);
690 
691 			/*
692 			 * Without lock, we cannot be sure that what we got is
693 			 * a valid page order. Consider only values in the
694 			 * valid order range to prevent low_pfn overflow.
695 			 */
696 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
697 				low_pfn += (1UL << freepage_order) - 1;
698 			continue;
699 		}
700 
701 		/*
702 		 * Check may be lockless but that's ok as we recheck later.
703 		 * It's possible to migrate LRU pages and balloon pages
704 		 * Skip any other type of page
705 		 */
706 		is_lru = PageLRU(page);
707 		if (!is_lru) {
708 			if (unlikely(balloon_page_movable(page))) {
709 				if (balloon_page_isolate(page)) {
710 					/* Successfully isolated */
711 					goto isolate_success;
712 				}
713 			}
714 		}
715 
716 		/*
717 		 * Regardless of being on LRU, compound pages such as THP and
718 		 * hugetlbfs are not to be compacted. We can potentially save
719 		 * a lot of iterations if we skip them at once. The check is
720 		 * racy, but we can consider only valid values and the only
721 		 * danger is skipping too much.
722 		 */
723 		if (PageCompound(page)) {
724 			unsigned int comp_order = compound_order(page);
725 
726 			if (likely(comp_order < MAX_ORDER))
727 				low_pfn += (1UL << comp_order) - 1;
728 
729 			continue;
730 		}
731 
732 		if (!is_lru)
733 			continue;
734 
735 		/*
736 		 * Migration will fail if an anonymous page is pinned in memory,
737 		 * so avoid taking lru_lock and isolating it unnecessarily in an
738 		 * admittedly racy check.
739 		 */
740 		if (!page_mapping(page) &&
741 		    page_count(page) > page_mapcount(page))
742 			continue;
743 
744 		/* If we already hold the lock, we can skip some rechecking */
745 		if (!locked) {
746 			locked = compact_trylock_irqsave(&zone->lru_lock,
747 								&flags, cc);
748 			if (!locked)
749 				break;
750 
751 			/* Recheck PageLRU and PageCompound under lock */
752 			if (!PageLRU(page))
753 				continue;
754 
755 			/*
756 			 * Page become compound since the non-locked check,
757 			 * and it's on LRU. It can only be a THP so the order
758 			 * is safe to read and it's 0 for tail pages.
759 			 */
760 			if (unlikely(PageCompound(page))) {
761 				low_pfn += (1UL << compound_order(page)) - 1;
762 				continue;
763 			}
764 		}
765 
766 		lruvec = mem_cgroup_page_lruvec(page, zone);
767 
768 		/* Try isolate the page */
769 		if (__isolate_lru_page(page, isolate_mode) != 0)
770 			continue;
771 
772 		VM_BUG_ON_PAGE(PageCompound(page), page);
773 
774 		/* Successfully isolated */
775 		del_page_from_lru_list(page, lruvec, page_lru(page));
776 
777 isolate_success:
778 		list_add(&page->lru, migratelist);
779 		cc->nr_migratepages++;
780 		nr_isolated++;
781 
782 		/* Avoid isolating too much */
783 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
784 			++low_pfn;
785 			break;
786 		}
787 	}
788 
789 	/*
790 	 * The PageBuddy() check could have potentially brought us outside
791 	 * the range to be scanned.
792 	 */
793 	if (unlikely(low_pfn > end_pfn))
794 		low_pfn = end_pfn;
795 
796 	if (locked)
797 		spin_unlock_irqrestore(&zone->lru_lock, flags);
798 
799 	/*
800 	 * Update the pageblock-skip information and cached scanner pfn,
801 	 * if the whole pageblock was scanned without isolating any page.
802 	 */
803 	if (low_pfn == end_pfn)
804 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
805 
806 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
807 						nr_scanned, nr_isolated);
808 
809 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
810 	if (nr_isolated)
811 		count_compact_events(COMPACTISOLATED, nr_isolated);
812 
813 	return low_pfn;
814 }
815 
816 /**
817  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
818  * @cc:        Compaction control structure.
819  * @start_pfn: The first PFN to start isolating.
820  * @end_pfn:   The one-past-last PFN.
821  *
822  * Returns zero if isolation fails fatally due to e.g. pending signal.
823  * Otherwise, function returns one-past-the-last PFN of isolated page
824  * (which may be greater than end_pfn if end fell in a middle of a THP page).
825  */
826 unsigned long
827 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
828 							unsigned long end_pfn)
829 {
830 	unsigned long pfn, block_start_pfn, block_end_pfn;
831 
832 	/* Scan block by block. First and last block may be incomplete */
833 	pfn = start_pfn;
834 	block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
835 	if (block_start_pfn < cc->zone->zone_start_pfn)
836 		block_start_pfn = cc->zone->zone_start_pfn;
837 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
838 
839 	for (; pfn < end_pfn; pfn = block_end_pfn,
840 				block_start_pfn = block_end_pfn,
841 				block_end_pfn += pageblock_nr_pages) {
842 
843 		block_end_pfn = min(block_end_pfn, end_pfn);
844 
845 		if (!pageblock_pfn_to_page(block_start_pfn,
846 					block_end_pfn, cc->zone))
847 			continue;
848 
849 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
850 							ISOLATE_UNEVICTABLE);
851 
852 		/*
853 		 * In case of fatal failure, release everything that might
854 		 * have been isolated in the previous iteration, and signal
855 		 * the failure back to caller.
856 		 */
857 		if (!pfn) {
858 			putback_movable_pages(&cc->migratepages);
859 			cc->nr_migratepages = 0;
860 			break;
861 		}
862 
863 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
864 			break;
865 	}
866 	acct_isolated(cc->zone, cc);
867 
868 	return pfn;
869 }
870 
871 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
872 #ifdef CONFIG_COMPACTION
873 
874 /* Returns true if the page is within a block suitable for migration to */
875 static bool suitable_migration_target(struct page *page)
876 {
877 	/* If the page is a large free page, then disallow migration */
878 	if (PageBuddy(page)) {
879 		/*
880 		 * We are checking page_order without zone->lock taken. But
881 		 * the only small danger is that we skip a potentially suitable
882 		 * pageblock, so it's not worth to check order for valid range.
883 		 */
884 		if (page_order_unsafe(page) >= pageblock_order)
885 			return false;
886 	}
887 
888 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
889 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
890 		return true;
891 
892 	/* Otherwise skip the block */
893 	return false;
894 }
895 
896 /*
897  * Test whether the free scanner has reached the same or lower pageblock than
898  * the migration scanner, and compaction should thus terminate.
899  */
900 static inline bool compact_scanners_met(struct compact_control *cc)
901 {
902 	return (cc->free_pfn >> pageblock_order)
903 		<= (cc->migrate_pfn >> pageblock_order);
904 }
905 
906 /*
907  * Based on information in the current compact_control, find blocks
908  * suitable for isolating free pages from and then isolate them.
909  */
910 static void isolate_freepages(struct compact_control *cc)
911 {
912 	struct zone *zone = cc->zone;
913 	struct page *page;
914 	unsigned long block_start_pfn;	/* start of current pageblock */
915 	unsigned long isolate_start_pfn; /* exact pfn we start at */
916 	unsigned long block_end_pfn;	/* end of current pageblock */
917 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
918 	struct list_head *freelist = &cc->freepages;
919 
920 	/*
921 	 * Initialise the free scanner. The starting point is where we last
922 	 * successfully isolated from, zone-cached value, or the end of the
923 	 * zone when isolating for the first time. For looping we also need
924 	 * this pfn aligned down to the pageblock boundary, because we do
925 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
926 	 * For ending point, take care when isolating in last pageblock of a
927 	 * a zone which ends in the middle of a pageblock.
928 	 * The low boundary is the end of the pageblock the migration scanner
929 	 * is using.
930 	 */
931 	isolate_start_pfn = cc->free_pfn;
932 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
933 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
934 						zone_end_pfn(zone));
935 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
936 
937 	/*
938 	 * Isolate free pages until enough are available to migrate the
939 	 * pages on cc->migratepages. We stop searching if the migrate
940 	 * and free page scanners meet or enough free pages are isolated.
941 	 */
942 	for (; block_start_pfn >= low_pfn;
943 				block_end_pfn = block_start_pfn,
944 				block_start_pfn -= pageblock_nr_pages,
945 				isolate_start_pfn = block_start_pfn) {
946 
947 		/*
948 		 * This can iterate a massively long zone without finding any
949 		 * suitable migration targets, so periodically check if we need
950 		 * to schedule, or even abort async compaction.
951 		 */
952 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
953 						&& compact_should_abort(cc))
954 			break;
955 
956 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
957 									zone);
958 		if (!page)
959 			continue;
960 
961 		/* Check the block is suitable for migration */
962 		if (!suitable_migration_target(page))
963 			continue;
964 
965 		/* If isolation recently failed, do not retry */
966 		if (!isolation_suitable(cc, page))
967 			continue;
968 
969 		/* Found a block suitable for isolating free pages from. */
970 		isolate_freepages_block(cc, &isolate_start_pfn,
971 					block_end_pfn, freelist, false);
972 
973 		/*
974 		 * If we isolated enough freepages, or aborted due to async
975 		 * compaction being contended, terminate the loop.
976 		 * Remember where the free scanner should restart next time,
977 		 * which is where isolate_freepages_block() left off.
978 		 * But if it scanned the whole pageblock, isolate_start_pfn
979 		 * now points at block_end_pfn, which is the start of the next
980 		 * pageblock.
981 		 * In that case we will however want to restart at the start
982 		 * of the previous pageblock.
983 		 */
984 		if ((cc->nr_freepages >= cc->nr_migratepages)
985 							|| cc->contended) {
986 			if (isolate_start_pfn >= block_end_pfn)
987 				isolate_start_pfn =
988 					block_start_pfn - pageblock_nr_pages;
989 			break;
990 		} else {
991 			/*
992 			 * isolate_freepages_block() should not terminate
993 			 * prematurely unless contended, or isolated enough
994 			 */
995 			VM_BUG_ON(isolate_start_pfn < block_end_pfn);
996 		}
997 	}
998 
999 	/* split_free_page does not map the pages */
1000 	map_pages(freelist);
1001 
1002 	/*
1003 	 * Record where the free scanner will restart next time. Either we
1004 	 * broke from the loop and set isolate_start_pfn based on the last
1005 	 * call to isolate_freepages_block(), or we met the migration scanner
1006 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1007 	 */
1008 	cc->free_pfn = isolate_start_pfn;
1009 }
1010 
1011 /*
1012  * This is a migrate-callback that "allocates" freepages by taking pages
1013  * from the isolated freelists in the block we are migrating to.
1014  */
1015 static struct page *compaction_alloc(struct page *migratepage,
1016 					unsigned long data,
1017 					int **result)
1018 {
1019 	struct compact_control *cc = (struct compact_control *)data;
1020 	struct page *freepage;
1021 
1022 	/*
1023 	 * Isolate free pages if necessary, and if we are not aborting due to
1024 	 * contention.
1025 	 */
1026 	if (list_empty(&cc->freepages)) {
1027 		if (!cc->contended)
1028 			isolate_freepages(cc);
1029 
1030 		if (list_empty(&cc->freepages))
1031 			return NULL;
1032 	}
1033 
1034 	freepage = list_entry(cc->freepages.next, struct page, lru);
1035 	list_del(&freepage->lru);
1036 	cc->nr_freepages--;
1037 
1038 	return freepage;
1039 }
1040 
1041 /*
1042  * This is a migrate-callback that "frees" freepages back to the isolated
1043  * freelist.  All pages on the freelist are from the same zone, so there is no
1044  * special handling needed for NUMA.
1045  */
1046 static void compaction_free(struct page *page, unsigned long data)
1047 {
1048 	struct compact_control *cc = (struct compact_control *)data;
1049 
1050 	list_add(&page->lru, &cc->freepages);
1051 	cc->nr_freepages++;
1052 }
1053 
1054 /* possible outcome of isolate_migratepages */
1055 typedef enum {
1056 	ISOLATE_ABORT,		/* Abort compaction now */
1057 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1058 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1059 } isolate_migrate_t;
1060 
1061 /*
1062  * Allow userspace to control policy on scanning the unevictable LRU for
1063  * compactable pages.
1064  */
1065 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1066 
1067 /*
1068  * Isolate all pages that can be migrated from the first suitable block,
1069  * starting at the block pointed to by the migrate scanner pfn within
1070  * compact_control.
1071  */
1072 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1073 					struct compact_control *cc)
1074 {
1075 	unsigned long block_start_pfn;
1076 	unsigned long block_end_pfn;
1077 	unsigned long low_pfn;
1078 	unsigned long isolate_start_pfn;
1079 	struct page *page;
1080 	const isolate_mode_t isolate_mode =
1081 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1082 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1083 
1084 	/*
1085 	 * Start at where we last stopped, or beginning of the zone as
1086 	 * initialized by compact_zone()
1087 	 */
1088 	low_pfn = cc->migrate_pfn;
1089 	block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
1090 	if (block_start_pfn < zone->zone_start_pfn)
1091 		block_start_pfn = zone->zone_start_pfn;
1092 
1093 	/* Only scan within a pageblock boundary */
1094 	block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1095 
1096 	/*
1097 	 * Iterate over whole pageblocks until we find the first suitable.
1098 	 * Do not cross the free scanner.
1099 	 */
1100 	for (; block_end_pfn <= cc->free_pfn;
1101 			low_pfn = block_end_pfn,
1102 			block_start_pfn = block_end_pfn,
1103 			block_end_pfn += pageblock_nr_pages) {
1104 
1105 		/*
1106 		 * This can potentially iterate a massively long zone with
1107 		 * many pageblocks unsuitable, so periodically check if we
1108 		 * need to schedule, or even abort async compaction.
1109 		 */
1110 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1111 						&& compact_should_abort(cc))
1112 			break;
1113 
1114 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1115 									zone);
1116 		if (!page)
1117 			continue;
1118 
1119 		/* If isolation recently failed, do not retry */
1120 		if (!isolation_suitable(cc, page))
1121 			continue;
1122 
1123 		/*
1124 		 * For async compaction, also only scan in MOVABLE blocks.
1125 		 * Async compaction is optimistic to see if the minimum amount
1126 		 * of work satisfies the allocation.
1127 		 */
1128 		if (cc->mode == MIGRATE_ASYNC &&
1129 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1130 			continue;
1131 
1132 		/* Perform the isolation */
1133 		isolate_start_pfn = low_pfn;
1134 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1135 						block_end_pfn, isolate_mode);
1136 
1137 		if (!low_pfn || cc->contended) {
1138 			acct_isolated(zone, cc);
1139 			return ISOLATE_ABORT;
1140 		}
1141 
1142 		/*
1143 		 * Record where we could have freed pages by migration and not
1144 		 * yet flushed them to buddy allocator.
1145 		 * - this is the lowest page that could have been isolated and
1146 		 * then freed by migration.
1147 		 */
1148 		if (cc->nr_migratepages && !cc->last_migrated_pfn)
1149 			cc->last_migrated_pfn = isolate_start_pfn;
1150 
1151 		/*
1152 		 * Either we isolated something and proceed with migration. Or
1153 		 * we failed and compact_zone should decide if we should
1154 		 * continue or not.
1155 		 */
1156 		break;
1157 	}
1158 
1159 	acct_isolated(zone, cc);
1160 	/* Record where migration scanner will be restarted. */
1161 	cc->migrate_pfn = low_pfn;
1162 
1163 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1164 }
1165 
1166 /*
1167  * order == -1 is expected when compacting via
1168  * /proc/sys/vm/compact_memory
1169  */
1170 static inline bool is_via_compact_memory(int order)
1171 {
1172 	return order == -1;
1173 }
1174 
1175 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1176 			    const int migratetype)
1177 {
1178 	unsigned int order;
1179 	unsigned long watermark;
1180 
1181 	if (cc->contended || fatal_signal_pending(current))
1182 		return COMPACT_CONTENDED;
1183 
1184 	/* Compaction run completes if the migrate and free scanner meet */
1185 	if (compact_scanners_met(cc)) {
1186 		/* Let the next compaction start anew. */
1187 		reset_cached_positions(zone);
1188 
1189 		/*
1190 		 * Mark that the PG_migrate_skip information should be cleared
1191 		 * by kswapd when it goes to sleep. kswapd does not set the
1192 		 * flag itself as the decision to be clear should be directly
1193 		 * based on an allocation request.
1194 		 */
1195 		if (!current_is_kswapd())
1196 			zone->compact_blockskip_flush = true;
1197 
1198 		return COMPACT_COMPLETE;
1199 	}
1200 
1201 	if (is_via_compact_memory(cc->order))
1202 		return COMPACT_CONTINUE;
1203 
1204 	/* Compaction run is not finished if the watermark is not met */
1205 	watermark = low_wmark_pages(zone);
1206 
1207 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1208 							cc->alloc_flags))
1209 		return COMPACT_CONTINUE;
1210 
1211 	/* Direct compactor: Is a suitable page free? */
1212 	for (order = cc->order; order < MAX_ORDER; order++) {
1213 		struct free_area *area = &zone->free_area[order];
1214 		bool can_steal;
1215 
1216 		/* Job done if page is free of the right migratetype */
1217 		if (!list_empty(&area->free_list[migratetype]))
1218 			return COMPACT_PARTIAL;
1219 
1220 #ifdef CONFIG_CMA
1221 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1222 		if (migratetype == MIGRATE_MOVABLE &&
1223 			!list_empty(&area->free_list[MIGRATE_CMA]))
1224 			return COMPACT_PARTIAL;
1225 #endif
1226 		/*
1227 		 * Job done if allocation would steal freepages from
1228 		 * other migratetype buddy lists.
1229 		 */
1230 		if (find_suitable_fallback(area, order, migratetype,
1231 						true, &can_steal) != -1)
1232 			return COMPACT_PARTIAL;
1233 	}
1234 
1235 	return COMPACT_NO_SUITABLE_PAGE;
1236 }
1237 
1238 static int compact_finished(struct zone *zone, struct compact_control *cc,
1239 			    const int migratetype)
1240 {
1241 	int ret;
1242 
1243 	ret = __compact_finished(zone, cc, migratetype);
1244 	trace_mm_compaction_finished(zone, cc->order, ret);
1245 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1246 		ret = COMPACT_CONTINUE;
1247 
1248 	return ret;
1249 }
1250 
1251 /*
1252  * compaction_suitable: Is this suitable to run compaction on this zone now?
1253  * Returns
1254  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1255  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1256  *   COMPACT_CONTINUE - If compaction should run now
1257  */
1258 static unsigned long __compaction_suitable(struct zone *zone, int order,
1259 					int alloc_flags, int classzone_idx)
1260 {
1261 	int fragindex;
1262 	unsigned long watermark;
1263 
1264 	if (is_via_compact_memory(order))
1265 		return COMPACT_CONTINUE;
1266 
1267 	watermark = low_wmark_pages(zone);
1268 	/*
1269 	 * If watermarks for high-order allocation are already met, there
1270 	 * should be no need for compaction at all.
1271 	 */
1272 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1273 								alloc_flags))
1274 		return COMPACT_PARTIAL;
1275 
1276 	/*
1277 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1278 	 * This is because during migration, copies of pages need to be
1279 	 * allocated and for a short time, the footprint is higher
1280 	 */
1281 	watermark += (2UL << order);
1282 	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1283 		return COMPACT_SKIPPED;
1284 
1285 	/*
1286 	 * fragmentation index determines if allocation failures are due to
1287 	 * low memory or external fragmentation
1288 	 *
1289 	 * index of -1000 would imply allocations might succeed depending on
1290 	 * watermarks, but we already failed the high-order watermark check
1291 	 * index towards 0 implies failure is due to lack of memory
1292 	 * index towards 1000 implies failure is due to fragmentation
1293 	 *
1294 	 * Only compact if a failure would be due to fragmentation.
1295 	 */
1296 	fragindex = fragmentation_index(zone, order);
1297 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1298 		return COMPACT_NOT_SUITABLE_ZONE;
1299 
1300 	return COMPACT_CONTINUE;
1301 }
1302 
1303 unsigned long compaction_suitable(struct zone *zone, int order,
1304 					int alloc_flags, int classzone_idx)
1305 {
1306 	unsigned long ret;
1307 
1308 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1309 	trace_mm_compaction_suitable(zone, order, ret);
1310 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1311 		ret = COMPACT_SKIPPED;
1312 
1313 	return ret;
1314 }
1315 
1316 static int compact_zone(struct zone *zone, struct compact_control *cc)
1317 {
1318 	int ret;
1319 	unsigned long start_pfn = zone->zone_start_pfn;
1320 	unsigned long end_pfn = zone_end_pfn(zone);
1321 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1322 	const bool sync = cc->mode != MIGRATE_ASYNC;
1323 
1324 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1325 							cc->classzone_idx);
1326 	switch (ret) {
1327 	case COMPACT_PARTIAL:
1328 	case COMPACT_SKIPPED:
1329 		/* Compaction is likely to fail */
1330 		return ret;
1331 	case COMPACT_CONTINUE:
1332 		/* Fall through to compaction */
1333 		;
1334 	}
1335 
1336 	/*
1337 	 * Clear pageblock skip if there were failures recently and compaction
1338 	 * is about to be retried after being deferred. kswapd does not do
1339 	 * this reset as it'll reset the cached information when going to sleep.
1340 	 */
1341 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1342 		__reset_isolation_suitable(zone);
1343 
1344 	/*
1345 	 * Setup to move all movable pages to the end of the zone. Used cached
1346 	 * information on where the scanners should start but check that it
1347 	 * is initialised by ensuring the values are within zone boundaries.
1348 	 */
1349 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1350 	cc->free_pfn = zone->compact_cached_free_pfn;
1351 	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1352 		cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1353 		zone->compact_cached_free_pfn = cc->free_pfn;
1354 	}
1355 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1356 		cc->migrate_pfn = start_pfn;
1357 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1358 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1359 	}
1360 	cc->last_migrated_pfn = 0;
1361 
1362 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1363 				cc->free_pfn, end_pfn, sync);
1364 
1365 	migrate_prep_local();
1366 
1367 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1368 						COMPACT_CONTINUE) {
1369 		int err;
1370 
1371 		switch (isolate_migratepages(zone, cc)) {
1372 		case ISOLATE_ABORT:
1373 			ret = COMPACT_CONTENDED;
1374 			putback_movable_pages(&cc->migratepages);
1375 			cc->nr_migratepages = 0;
1376 			goto out;
1377 		case ISOLATE_NONE:
1378 			/*
1379 			 * We haven't isolated and migrated anything, but
1380 			 * there might still be unflushed migrations from
1381 			 * previous cc->order aligned block.
1382 			 */
1383 			goto check_drain;
1384 		case ISOLATE_SUCCESS:
1385 			;
1386 		}
1387 
1388 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1389 				compaction_free, (unsigned long)cc, cc->mode,
1390 				MR_COMPACTION);
1391 
1392 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1393 							&cc->migratepages);
1394 
1395 		/* All pages were either migrated or will be released */
1396 		cc->nr_migratepages = 0;
1397 		if (err) {
1398 			putback_movable_pages(&cc->migratepages);
1399 			/*
1400 			 * migrate_pages() may return -ENOMEM when scanners meet
1401 			 * and we want compact_finished() to detect it
1402 			 */
1403 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1404 				ret = COMPACT_CONTENDED;
1405 				goto out;
1406 			}
1407 		}
1408 
1409 check_drain:
1410 		/*
1411 		 * Has the migration scanner moved away from the previous
1412 		 * cc->order aligned block where we migrated from? If yes,
1413 		 * flush the pages that were freed, so that they can merge and
1414 		 * compact_finished() can detect immediately if allocation
1415 		 * would succeed.
1416 		 */
1417 		if (cc->order > 0 && cc->last_migrated_pfn) {
1418 			int cpu;
1419 			unsigned long current_block_start =
1420 				cc->migrate_pfn & ~((1UL << cc->order) - 1);
1421 
1422 			if (cc->last_migrated_pfn < current_block_start) {
1423 				cpu = get_cpu();
1424 				lru_add_drain_cpu(cpu);
1425 				drain_local_pages(zone);
1426 				put_cpu();
1427 				/* No more flushing until we migrate again */
1428 				cc->last_migrated_pfn = 0;
1429 			}
1430 		}
1431 
1432 	}
1433 
1434 out:
1435 	/*
1436 	 * Release free pages and update where the free scanner should restart,
1437 	 * so we don't leave any returned pages behind in the next attempt.
1438 	 */
1439 	if (cc->nr_freepages > 0) {
1440 		unsigned long free_pfn = release_freepages(&cc->freepages);
1441 
1442 		cc->nr_freepages = 0;
1443 		VM_BUG_ON(free_pfn == 0);
1444 		/* The cached pfn is always the first in a pageblock */
1445 		free_pfn &= ~(pageblock_nr_pages-1);
1446 		/*
1447 		 * Only go back, not forward. The cached pfn might have been
1448 		 * already reset to zone end in compact_finished()
1449 		 */
1450 		if (free_pfn > zone->compact_cached_free_pfn)
1451 			zone->compact_cached_free_pfn = free_pfn;
1452 	}
1453 
1454 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1455 				cc->free_pfn, end_pfn, sync, ret);
1456 
1457 	if (ret == COMPACT_CONTENDED)
1458 		ret = COMPACT_PARTIAL;
1459 
1460 	return ret;
1461 }
1462 
1463 static unsigned long compact_zone_order(struct zone *zone, int order,
1464 		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1465 		int alloc_flags, int classzone_idx)
1466 {
1467 	unsigned long ret;
1468 	struct compact_control cc = {
1469 		.nr_freepages = 0,
1470 		.nr_migratepages = 0,
1471 		.order = order,
1472 		.gfp_mask = gfp_mask,
1473 		.zone = zone,
1474 		.mode = mode,
1475 		.alloc_flags = alloc_flags,
1476 		.classzone_idx = classzone_idx,
1477 	};
1478 	INIT_LIST_HEAD(&cc.freepages);
1479 	INIT_LIST_HEAD(&cc.migratepages);
1480 
1481 	ret = compact_zone(zone, &cc);
1482 
1483 	VM_BUG_ON(!list_empty(&cc.freepages));
1484 	VM_BUG_ON(!list_empty(&cc.migratepages));
1485 
1486 	*contended = cc.contended;
1487 	return ret;
1488 }
1489 
1490 int sysctl_extfrag_threshold = 500;
1491 
1492 /**
1493  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1494  * @gfp_mask: The GFP mask of the current allocation
1495  * @order: The order of the current allocation
1496  * @alloc_flags: The allocation flags of the current allocation
1497  * @ac: The context of current allocation
1498  * @mode: The migration mode for async, sync light, or sync migration
1499  * @contended: Return value that determines if compaction was aborted due to
1500  *	       need_resched() or lock contention
1501  *
1502  * This is the main entry point for direct page compaction.
1503  */
1504 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1505 			int alloc_flags, const struct alloc_context *ac,
1506 			enum migrate_mode mode, int *contended)
1507 {
1508 	int may_enter_fs = gfp_mask & __GFP_FS;
1509 	int may_perform_io = gfp_mask & __GFP_IO;
1510 	struct zoneref *z;
1511 	struct zone *zone;
1512 	int rc = COMPACT_DEFERRED;
1513 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1514 
1515 	*contended = COMPACT_CONTENDED_NONE;
1516 
1517 	/* Check if the GFP flags allow compaction */
1518 	if (!order || !may_enter_fs || !may_perform_io)
1519 		return COMPACT_SKIPPED;
1520 
1521 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1522 
1523 	/* Compact each zone in the list */
1524 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1525 								ac->nodemask) {
1526 		int status;
1527 		int zone_contended;
1528 
1529 		if (compaction_deferred(zone, order))
1530 			continue;
1531 
1532 		status = compact_zone_order(zone, order, gfp_mask, mode,
1533 				&zone_contended, alloc_flags,
1534 				ac->classzone_idx);
1535 		rc = max(status, rc);
1536 		/*
1537 		 * It takes at least one zone that wasn't lock contended
1538 		 * to clear all_zones_contended.
1539 		 */
1540 		all_zones_contended &= zone_contended;
1541 
1542 		/* If a normal allocation would succeed, stop compacting */
1543 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1544 					ac->classzone_idx, alloc_flags)) {
1545 			/*
1546 			 * We think the allocation will succeed in this zone,
1547 			 * but it is not certain, hence the false. The caller
1548 			 * will repeat this with true if allocation indeed
1549 			 * succeeds in this zone.
1550 			 */
1551 			compaction_defer_reset(zone, order, false);
1552 			/*
1553 			 * It is possible that async compaction aborted due to
1554 			 * need_resched() and the watermarks were ok thanks to
1555 			 * somebody else freeing memory. The allocation can
1556 			 * however still fail so we better signal the
1557 			 * need_resched() contention anyway (this will not
1558 			 * prevent the allocation attempt).
1559 			 */
1560 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1561 				*contended = COMPACT_CONTENDED_SCHED;
1562 
1563 			goto break_loop;
1564 		}
1565 
1566 		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1567 			/*
1568 			 * We think that allocation won't succeed in this zone
1569 			 * so we defer compaction there. If it ends up
1570 			 * succeeding after all, it will be reset.
1571 			 */
1572 			defer_compaction(zone, order);
1573 		}
1574 
1575 		/*
1576 		 * We might have stopped compacting due to need_resched() in
1577 		 * async compaction, or due to a fatal signal detected. In that
1578 		 * case do not try further zones and signal need_resched()
1579 		 * contention.
1580 		 */
1581 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1582 					|| fatal_signal_pending(current)) {
1583 			*contended = COMPACT_CONTENDED_SCHED;
1584 			goto break_loop;
1585 		}
1586 
1587 		continue;
1588 break_loop:
1589 		/*
1590 		 * We might not have tried all the zones, so  be conservative
1591 		 * and assume they are not all lock contended.
1592 		 */
1593 		all_zones_contended = 0;
1594 		break;
1595 	}
1596 
1597 	/*
1598 	 * If at least one zone wasn't deferred or skipped, we report if all
1599 	 * zones that were tried were lock contended.
1600 	 */
1601 	if (rc > COMPACT_SKIPPED && all_zones_contended)
1602 		*contended = COMPACT_CONTENDED_LOCK;
1603 
1604 	return rc;
1605 }
1606 
1607 
1608 /* Compact all zones within a node */
1609 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1610 {
1611 	int zoneid;
1612 	struct zone *zone;
1613 
1614 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1615 
1616 		zone = &pgdat->node_zones[zoneid];
1617 		if (!populated_zone(zone))
1618 			continue;
1619 
1620 		cc->nr_freepages = 0;
1621 		cc->nr_migratepages = 0;
1622 		cc->zone = zone;
1623 		INIT_LIST_HEAD(&cc->freepages);
1624 		INIT_LIST_HEAD(&cc->migratepages);
1625 
1626 		/*
1627 		 * When called via /proc/sys/vm/compact_memory
1628 		 * this makes sure we compact the whole zone regardless of
1629 		 * cached scanner positions.
1630 		 */
1631 		if (is_via_compact_memory(cc->order))
1632 			__reset_isolation_suitable(zone);
1633 
1634 		if (is_via_compact_memory(cc->order) ||
1635 				!compaction_deferred(zone, cc->order))
1636 			compact_zone(zone, cc);
1637 
1638 		VM_BUG_ON(!list_empty(&cc->freepages));
1639 		VM_BUG_ON(!list_empty(&cc->migratepages));
1640 
1641 		if (is_via_compact_memory(cc->order))
1642 			continue;
1643 
1644 		if (zone_watermark_ok(zone, cc->order,
1645 				low_wmark_pages(zone), 0, 0))
1646 			compaction_defer_reset(zone, cc->order, false);
1647 	}
1648 }
1649 
1650 void compact_pgdat(pg_data_t *pgdat, int order)
1651 {
1652 	struct compact_control cc = {
1653 		.order = order,
1654 		.mode = MIGRATE_ASYNC,
1655 	};
1656 
1657 	if (!order)
1658 		return;
1659 
1660 	__compact_pgdat(pgdat, &cc);
1661 }
1662 
1663 static void compact_node(int nid)
1664 {
1665 	struct compact_control cc = {
1666 		.order = -1,
1667 		.mode = MIGRATE_SYNC,
1668 		.ignore_skip_hint = true,
1669 	};
1670 
1671 	__compact_pgdat(NODE_DATA(nid), &cc);
1672 }
1673 
1674 /* Compact all nodes in the system */
1675 static void compact_nodes(void)
1676 {
1677 	int nid;
1678 
1679 	/* Flush pending updates to the LRU lists */
1680 	lru_add_drain_all();
1681 
1682 	for_each_online_node(nid)
1683 		compact_node(nid);
1684 }
1685 
1686 /* The written value is actually unused, all memory is compacted */
1687 int sysctl_compact_memory;
1688 
1689 /*
1690  * This is the entry point for compacting all nodes via
1691  * /proc/sys/vm/compact_memory
1692  */
1693 int sysctl_compaction_handler(struct ctl_table *table, int write,
1694 			void __user *buffer, size_t *length, loff_t *ppos)
1695 {
1696 	if (write)
1697 		compact_nodes();
1698 
1699 	return 0;
1700 }
1701 
1702 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1703 			void __user *buffer, size_t *length, loff_t *ppos)
1704 {
1705 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1706 
1707 	return 0;
1708 }
1709 
1710 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1711 static ssize_t sysfs_compact_node(struct device *dev,
1712 			struct device_attribute *attr,
1713 			const char *buf, size_t count)
1714 {
1715 	int nid = dev->id;
1716 
1717 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1718 		/* Flush pending updates to the LRU lists */
1719 		lru_add_drain_all();
1720 
1721 		compact_node(nid);
1722 	}
1723 
1724 	return count;
1725 }
1726 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1727 
1728 int compaction_register_node(struct node *node)
1729 {
1730 	return device_create_file(&node->dev, &dev_attr_compact);
1731 }
1732 
1733 void compaction_unregister_node(struct node *node)
1734 {
1735 	return device_remove_file(&node->dev, &dev_attr_compact);
1736 }
1737 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1738 
1739 #endif /* CONFIG_COMPACTION */
1740