1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include <linux/balloon_compaction.h> 18 #include <linux/page-isolation.h> 19 #include <linux/kasan.h> 20 #include "internal.h" 21 22 #ifdef CONFIG_COMPACTION 23 static inline void count_compact_event(enum vm_event_item item) 24 { 25 count_vm_event(item); 26 } 27 28 static inline void count_compact_events(enum vm_event_item item, long delta) 29 { 30 count_vm_events(item, delta); 31 } 32 #else 33 #define count_compact_event(item) do { } while (0) 34 #define count_compact_events(item, delta) do { } while (0) 35 #endif 36 37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/compaction.h> 41 42 static unsigned long release_freepages(struct list_head *freelist) 43 { 44 struct page *page, *next; 45 unsigned long high_pfn = 0; 46 47 list_for_each_entry_safe(page, next, freelist, lru) { 48 unsigned long pfn = page_to_pfn(page); 49 list_del(&page->lru); 50 __free_page(page); 51 if (pfn > high_pfn) 52 high_pfn = pfn; 53 } 54 55 return high_pfn; 56 } 57 58 static void map_pages(struct list_head *list) 59 { 60 struct page *page; 61 62 list_for_each_entry(page, list, lru) { 63 arch_alloc_page(page, 0); 64 kernel_map_pages(page, 1, 1); 65 kasan_alloc_pages(page, 0); 66 } 67 } 68 69 static inline bool migrate_async_suitable(int migratetype) 70 { 71 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 72 } 73 74 #ifdef CONFIG_COMPACTION 75 76 /* Do not skip compaction more than 64 times */ 77 #define COMPACT_MAX_DEFER_SHIFT 6 78 79 /* 80 * Compaction is deferred when compaction fails to result in a page 81 * allocation success. 1 << compact_defer_limit compactions are skipped up 82 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 83 */ 84 void defer_compaction(struct zone *zone, int order) 85 { 86 zone->compact_considered = 0; 87 zone->compact_defer_shift++; 88 89 if (order < zone->compact_order_failed) 90 zone->compact_order_failed = order; 91 92 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 93 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 94 95 trace_mm_compaction_defer_compaction(zone, order); 96 } 97 98 /* Returns true if compaction should be skipped this time */ 99 bool compaction_deferred(struct zone *zone, int order) 100 { 101 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 102 103 if (order < zone->compact_order_failed) 104 return false; 105 106 /* Avoid possible overflow */ 107 if (++zone->compact_considered > defer_limit) 108 zone->compact_considered = defer_limit; 109 110 if (zone->compact_considered >= defer_limit) 111 return false; 112 113 trace_mm_compaction_deferred(zone, order); 114 115 return true; 116 } 117 118 /* 119 * Update defer tracking counters after successful compaction of given order, 120 * which means an allocation either succeeded (alloc_success == true) or is 121 * expected to succeed. 122 */ 123 void compaction_defer_reset(struct zone *zone, int order, 124 bool alloc_success) 125 { 126 if (alloc_success) { 127 zone->compact_considered = 0; 128 zone->compact_defer_shift = 0; 129 } 130 if (order >= zone->compact_order_failed) 131 zone->compact_order_failed = order + 1; 132 133 trace_mm_compaction_defer_reset(zone, order); 134 } 135 136 /* Returns true if restarting compaction after many failures */ 137 bool compaction_restarting(struct zone *zone, int order) 138 { 139 if (order < zone->compact_order_failed) 140 return false; 141 142 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 143 zone->compact_considered >= 1UL << zone->compact_defer_shift; 144 } 145 146 /* Returns true if the pageblock should be scanned for pages to isolate. */ 147 static inline bool isolation_suitable(struct compact_control *cc, 148 struct page *page) 149 { 150 if (cc->ignore_skip_hint) 151 return true; 152 153 return !get_pageblock_skip(page); 154 } 155 156 static void reset_cached_positions(struct zone *zone) 157 { 158 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 159 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 160 zone->compact_cached_free_pfn = 161 round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages); 162 } 163 164 /* 165 * This function is called to clear all cached information on pageblocks that 166 * should be skipped for page isolation when the migrate and free page scanner 167 * meet. 168 */ 169 static void __reset_isolation_suitable(struct zone *zone) 170 { 171 unsigned long start_pfn = zone->zone_start_pfn; 172 unsigned long end_pfn = zone_end_pfn(zone); 173 unsigned long pfn; 174 175 zone->compact_blockskip_flush = false; 176 177 /* Walk the zone and mark every pageblock as suitable for isolation */ 178 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 179 struct page *page; 180 181 cond_resched(); 182 183 if (!pfn_valid(pfn)) 184 continue; 185 186 page = pfn_to_page(pfn); 187 if (zone != page_zone(page)) 188 continue; 189 190 clear_pageblock_skip(page); 191 } 192 193 reset_cached_positions(zone); 194 } 195 196 void reset_isolation_suitable(pg_data_t *pgdat) 197 { 198 int zoneid; 199 200 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 201 struct zone *zone = &pgdat->node_zones[zoneid]; 202 if (!populated_zone(zone)) 203 continue; 204 205 /* Only flush if a full compaction finished recently */ 206 if (zone->compact_blockskip_flush) 207 __reset_isolation_suitable(zone); 208 } 209 } 210 211 /* 212 * If no pages were isolated then mark this pageblock to be skipped in the 213 * future. The information is later cleared by __reset_isolation_suitable(). 214 */ 215 static void update_pageblock_skip(struct compact_control *cc, 216 struct page *page, unsigned long nr_isolated, 217 bool migrate_scanner) 218 { 219 struct zone *zone = cc->zone; 220 unsigned long pfn; 221 222 if (cc->ignore_skip_hint) 223 return; 224 225 if (!page) 226 return; 227 228 if (nr_isolated) 229 return; 230 231 set_pageblock_skip(page); 232 233 pfn = page_to_pfn(page); 234 235 /* Update where async and sync compaction should restart */ 236 if (migrate_scanner) { 237 if (pfn > zone->compact_cached_migrate_pfn[0]) 238 zone->compact_cached_migrate_pfn[0] = pfn; 239 if (cc->mode != MIGRATE_ASYNC && 240 pfn > zone->compact_cached_migrate_pfn[1]) 241 zone->compact_cached_migrate_pfn[1] = pfn; 242 } else { 243 if (pfn < zone->compact_cached_free_pfn) 244 zone->compact_cached_free_pfn = pfn; 245 } 246 } 247 #else 248 static inline bool isolation_suitable(struct compact_control *cc, 249 struct page *page) 250 { 251 return true; 252 } 253 254 static void update_pageblock_skip(struct compact_control *cc, 255 struct page *page, unsigned long nr_isolated, 256 bool migrate_scanner) 257 { 258 } 259 #endif /* CONFIG_COMPACTION */ 260 261 /* 262 * Compaction requires the taking of some coarse locks that are potentially 263 * very heavily contended. For async compaction, back out if the lock cannot 264 * be taken immediately. For sync compaction, spin on the lock if needed. 265 * 266 * Returns true if the lock is held 267 * Returns false if the lock is not held and compaction should abort 268 */ 269 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 270 struct compact_control *cc) 271 { 272 if (cc->mode == MIGRATE_ASYNC) { 273 if (!spin_trylock_irqsave(lock, *flags)) { 274 cc->contended = COMPACT_CONTENDED_LOCK; 275 return false; 276 } 277 } else { 278 spin_lock_irqsave(lock, *flags); 279 } 280 281 return true; 282 } 283 284 /* 285 * Compaction requires the taking of some coarse locks that are potentially 286 * very heavily contended. The lock should be periodically unlocked to avoid 287 * having disabled IRQs for a long time, even when there is nobody waiting on 288 * the lock. It might also be that allowing the IRQs will result in 289 * need_resched() becoming true. If scheduling is needed, async compaction 290 * aborts. Sync compaction schedules. 291 * Either compaction type will also abort if a fatal signal is pending. 292 * In either case if the lock was locked, it is dropped and not regained. 293 * 294 * Returns true if compaction should abort due to fatal signal pending, or 295 * async compaction due to need_resched() 296 * Returns false when compaction can continue (sync compaction might have 297 * scheduled) 298 */ 299 static bool compact_unlock_should_abort(spinlock_t *lock, 300 unsigned long flags, bool *locked, struct compact_control *cc) 301 { 302 if (*locked) { 303 spin_unlock_irqrestore(lock, flags); 304 *locked = false; 305 } 306 307 if (fatal_signal_pending(current)) { 308 cc->contended = COMPACT_CONTENDED_SCHED; 309 return true; 310 } 311 312 if (need_resched()) { 313 if (cc->mode == MIGRATE_ASYNC) { 314 cc->contended = COMPACT_CONTENDED_SCHED; 315 return true; 316 } 317 cond_resched(); 318 } 319 320 return false; 321 } 322 323 /* 324 * Aside from avoiding lock contention, compaction also periodically checks 325 * need_resched() and either schedules in sync compaction or aborts async 326 * compaction. This is similar to what compact_unlock_should_abort() does, but 327 * is used where no lock is concerned. 328 * 329 * Returns false when no scheduling was needed, or sync compaction scheduled. 330 * Returns true when async compaction should abort. 331 */ 332 static inline bool compact_should_abort(struct compact_control *cc) 333 { 334 /* async compaction aborts if contended */ 335 if (need_resched()) { 336 if (cc->mode == MIGRATE_ASYNC) { 337 cc->contended = COMPACT_CONTENDED_SCHED; 338 return true; 339 } 340 341 cond_resched(); 342 } 343 344 return false; 345 } 346 347 /* 348 * Isolate free pages onto a private freelist. If @strict is true, will abort 349 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 350 * (even though it may still end up isolating some pages). 351 */ 352 static unsigned long isolate_freepages_block(struct compact_control *cc, 353 unsigned long *start_pfn, 354 unsigned long end_pfn, 355 struct list_head *freelist, 356 bool strict) 357 { 358 int nr_scanned = 0, total_isolated = 0; 359 struct page *cursor, *valid_page = NULL; 360 unsigned long flags = 0; 361 bool locked = false; 362 unsigned long blockpfn = *start_pfn; 363 364 cursor = pfn_to_page(blockpfn); 365 366 /* Isolate free pages. */ 367 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 368 int isolated, i; 369 struct page *page = cursor; 370 371 /* 372 * Periodically drop the lock (if held) regardless of its 373 * contention, to give chance to IRQs. Abort if fatal signal 374 * pending or async compaction detects need_resched() 375 */ 376 if (!(blockpfn % SWAP_CLUSTER_MAX) 377 && compact_unlock_should_abort(&cc->zone->lock, flags, 378 &locked, cc)) 379 break; 380 381 nr_scanned++; 382 if (!pfn_valid_within(blockpfn)) 383 goto isolate_fail; 384 385 if (!valid_page) 386 valid_page = page; 387 388 /* 389 * For compound pages such as THP and hugetlbfs, we can save 390 * potentially a lot of iterations if we skip them at once. 391 * The check is racy, but we can consider only valid values 392 * and the only danger is skipping too much. 393 */ 394 if (PageCompound(page)) { 395 unsigned int comp_order = compound_order(page); 396 397 if (likely(comp_order < MAX_ORDER)) { 398 blockpfn += (1UL << comp_order) - 1; 399 cursor += (1UL << comp_order) - 1; 400 } 401 402 goto isolate_fail; 403 } 404 405 if (!PageBuddy(page)) 406 goto isolate_fail; 407 408 /* 409 * If we already hold the lock, we can skip some rechecking. 410 * Note that if we hold the lock now, checked_pageblock was 411 * already set in some previous iteration (or strict is true), 412 * so it is correct to skip the suitable migration target 413 * recheck as well. 414 */ 415 if (!locked) { 416 /* 417 * The zone lock must be held to isolate freepages. 418 * Unfortunately this is a very coarse lock and can be 419 * heavily contended if there are parallel allocations 420 * or parallel compactions. For async compaction do not 421 * spin on the lock and we acquire the lock as late as 422 * possible. 423 */ 424 locked = compact_trylock_irqsave(&cc->zone->lock, 425 &flags, cc); 426 if (!locked) 427 break; 428 429 /* Recheck this is a buddy page under lock */ 430 if (!PageBuddy(page)) 431 goto isolate_fail; 432 } 433 434 /* Found a free page, break it into order-0 pages */ 435 isolated = split_free_page(page); 436 total_isolated += isolated; 437 for (i = 0; i < isolated; i++) { 438 list_add(&page->lru, freelist); 439 page++; 440 } 441 442 /* If a page was split, advance to the end of it */ 443 if (isolated) { 444 cc->nr_freepages += isolated; 445 if (!strict && 446 cc->nr_migratepages <= cc->nr_freepages) { 447 blockpfn += isolated; 448 break; 449 } 450 451 blockpfn += isolated - 1; 452 cursor += isolated - 1; 453 continue; 454 } 455 456 isolate_fail: 457 if (strict) 458 break; 459 else 460 continue; 461 462 } 463 464 /* 465 * There is a tiny chance that we have read bogus compound_order(), 466 * so be careful to not go outside of the pageblock. 467 */ 468 if (unlikely(blockpfn > end_pfn)) 469 blockpfn = end_pfn; 470 471 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 472 nr_scanned, total_isolated); 473 474 /* Record how far we have got within the block */ 475 *start_pfn = blockpfn; 476 477 /* 478 * If strict isolation is requested by CMA then check that all the 479 * pages requested were isolated. If there were any failures, 0 is 480 * returned and CMA will fail. 481 */ 482 if (strict && blockpfn < end_pfn) 483 total_isolated = 0; 484 485 if (locked) 486 spin_unlock_irqrestore(&cc->zone->lock, flags); 487 488 /* Update the pageblock-skip if the whole pageblock was scanned */ 489 if (blockpfn == end_pfn) 490 update_pageblock_skip(cc, valid_page, total_isolated, false); 491 492 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 493 if (total_isolated) 494 count_compact_events(COMPACTISOLATED, total_isolated); 495 return total_isolated; 496 } 497 498 /** 499 * isolate_freepages_range() - isolate free pages. 500 * @start_pfn: The first PFN to start isolating. 501 * @end_pfn: The one-past-last PFN. 502 * 503 * Non-free pages, invalid PFNs, or zone boundaries within the 504 * [start_pfn, end_pfn) range are considered errors, cause function to 505 * undo its actions and return zero. 506 * 507 * Otherwise, function returns one-past-the-last PFN of isolated page 508 * (which may be greater then end_pfn if end fell in a middle of 509 * a free page). 510 */ 511 unsigned long 512 isolate_freepages_range(struct compact_control *cc, 513 unsigned long start_pfn, unsigned long end_pfn) 514 { 515 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 516 LIST_HEAD(freelist); 517 518 pfn = start_pfn; 519 block_start_pfn = pfn & ~(pageblock_nr_pages - 1); 520 if (block_start_pfn < cc->zone->zone_start_pfn) 521 block_start_pfn = cc->zone->zone_start_pfn; 522 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 523 524 for (; pfn < end_pfn; pfn += isolated, 525 block_start_pfn = block_end_pfn, 526 block_end_pfn += pageblock_nr_pages) { 527 /* Protect pfn from changing by isolate_freepages_block */ 528 unsigned long isolate_start_pfn = pfn; 529 530 block_end_pfn = min(block_end_pfn, end_pfn); 531 532 /* 533 * pfn could pass the block_end_pfn if isolated freepage 534 * is more than pageblock order. In this case, we adjust 535 * scanning range to right one. 536 */ 537 if (pfn >= block_end_pfn) { 538 block_start_pfn = pfn & ~(pageblock_nr_pages - 1); 539 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 540 block_end_pfn = min(block_end_pfn, end_pfn); 541 } 542 543 if (!pageblock_pfn_to_page(block_start_pfn, 544 block_end_pfn, cc->zone)) 545 break; 546 547 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 548 block_end_pfn, &freelist, true); 549 550 /* 551 * In strict mode, isolate_freepages_block() returns 0 if 552 * there are any holes in the block (ie. invalid PFNs or 553 * non-free pages). 554 */ 555 if (!isolated) 556 break; 557 558 /* 559 * If we managed to isolate pages, it is always (1 << n) * 560 * pageblock_nr_pages for some non-negative n. (Max order 561 * page may span two pageblocks). 562 */ 563 } 564 565 /* split_free_page does not map the pages */ 566 map_pages(&freelist); 567 568 if (pfn < end_pfn) { 569 /* Loop terminated early, cleanup. */ 570 release_freepages(&freelist); 571 return 0; 572 } 573 574 /* We don't use freelists for anything. */ 575 return pfn; 576 } 577 578 /* Update the number of anon and file isolated pages in the zone */ 579 static void acct_isolated(struct zone *zone, struct compact_control *cc) 580 { 581 struct page *page; 582 unsigned int count[2] = { 0, }; 583 584 if (list_empty(&cc->migratepages)) 585 return; 586 587 list_for_each_entry(page, &cc->migratepages, lru) 588 count[!!page_is_file_cache(page)]++; 589 590 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 591 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 592 } 593 594 /* Similar to reclaim, but different enough that they don't share logic */ 595 static bool too_many_isolated(struct zone *zone) 596 { 597 unsigned long active, inactive, isolated; 598 599 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 600 zone_page_state(zone, NR_INACTIVE_ANON); 601 active = zone_page_state(zone, NR_ACTIVE_FILE) + 602 zone_page_state(zone, NR_ACTIVE_ANON); 603 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 604 zone_page_state(zone, NR_ISOLATED_ANON); 605 606 return isolated > (inactive + active) / 2; 607 } 608 609 /** 610 * isolate_migratepages_block() - isolate all migrate-able pages within 611 * a single pageblock 612 * @cc: Compaction control structure. 613 * @low_pfn: The first PFN to isolate 614 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 615 * @isolate_mode: Isolation mode to be used. 616 * 617 * Isolate all pages that can be migrated from the range specified by 618 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 619 * Returns zero if there is a fatal signal pending, otherwise PFN of the 620 * first page that was not scanned (which may be both less, equal to or more 621 * than end_pfn). 622 * 623 * The pages are isolated on cc->migratepages list (not required to be empty), 624 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 625 * is neither read nor updated. 626 */ 627 static unsigned long 628 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 629 unsigned long end_pfn, isolate_mode_t isolate_mode) 630 { 631 struct zone *zone = cc->zone; 632 unsigned long nr_scanned = 0, nr_isolated = 0; 633 struct list_head *migratelist = &cc->migratepages; 634 struct lruvec *lruvec; 635 unsigned long flags = 0; 636 bool locked = false; 637 struct page *page = NULL, *valid_page = NULL; 638 unsigned long start_pfn = low_pfn; 639 640 /* 641 * Ensure that there are not too many pages isolated from the LRU 642 * list by either parallel reclaimers or compaction. If there are, 643 * delay for some time until fewer pages are isolated 644 */ 645 while (unlikely(too_many_isolated(zone))) { 646 /* async migration should just abort */ 647 if (cc->mode == MIGRATE_ASYNC) 648 return 0; 649 650 congestion_wait(BLK_RW_ASYNC, HZ/10); 651 652 if (fatal_signal_pending(current)) 653 return 0; 654 } 655 656 if (compact_should_abort(cc)) 657 return 0; 658 659 /* Time to isolate some pages for migration */ 660 for (; low_pfn < end_pfn; low_pfn++) { 661 bool is_lru; 662 663 /* 664 * Periodically drop the lock (if held) regardless of its 665 * contention, to give chance to IRQs. Abort async compaction 666 * if contended. 667 */ 668 if (!(low_pfn % SWAP_CLUSTER_MAX) 669 && compact_unlock_should_abort(&zone->lru_lock, flags, 670 &locked, cc)) 671 break; 672 673 if (!pfn_valid_within(low_pfn)) 674 continue; 675 nr_scanned++; 676 677 page = pfn_to_page(low_pfn); 678 679 if (!valid_page) 680 valid_page = page; 681 682 /* 683 * Skip if free. We read page order here without zone lock 684 * which is generally unsafe, but the race window is small and 685 * the worst thing that can happen is that we skip some 686 * potential isolation targets. 687 */ 688 if (PageBuddy(page)) { 689 unsigned long freepage_order = page_order_unsafe(page); 690 691 /* 692 * Without lock, we cannot be sure that what we got is 693 * a valid page order. Consider only values in the 694 * valid order range to prevent low_pfn overflow. 695 */ 696 if (freepage_order > 0 && freepage_order < MAX_ORDER) 697 low_pfn += (1UL << freepage_order) - 1; 698 continue; 699 } 700 701 /* 702 * Check may be lockless but that's ok as we recheck later. 703 * It's possible to migrate LRU pages and balloon pages 704 * Skip any other type of page 705 */ 706 is_lru = PageLRU(page); 707 if (!is_lru) { 708 if (unlikely(balloon_page_movable(page))) { 709 if (balloon_page_isolate(page)) { 710 /* Successfully isolated */ 711 goto isolate_success; 712 } 713 } 714 } 715 716 /* 717 * Regardless of being on LRU, compound pages such as THP and 718 * hugetlbfs are not to be compacted. We can potentially save 719 * a lot of iterations if we skip them at once. The check is 720 * racy, but we can consider only valid values and the only 721 * danger is skipping too much. 722 */ 723 if (PageCompound(page)) { 724 unsigned int comp_order = compound_order(page); 725 726 if (likely(comp_order < MAX_ORDER)) 727 low_pfn += (1UL << comp_order) - 1; 728 729 continue; 730 } 731 732 if (!is_lru) 733 continue; 734 735 /* 736 * Migration will fail if an anonymous page is pinned in memory, 737 * so avoid taking lru_lock and isolating it unnecessarily in an 738 * admittedly racy check. 739 */ 740 if (!page_mapping(page) && 741 page_count(page) > page_mapcount(page)) 742 continue; 743 744 /* If we already hold the lock, we can skip some rechecking */ 745 if (!locked) { 746 locked = compact_trylock_irqsave(&zone->lru_lock, 747 &flags, cc); 748 if (!locked) 749 break; 750 751 /* Recheck PageLRU and PageCompound under lock */ 752 if (!PageLRU(page)) 753 continue; 754 755 /* 756 * Page become compound since the non-locked check, 757 * and it's on LRU. It can only be a THP so the order 758 * is safe to read and it's 0 for tail pages. 759 */ 760 if (unlikely(PageCompound(page))) { 761 low_pfn += (1UL << compound_order(page)) - 1; 762 continue; 763 } 764 } 765 766 lruvec = mem_cgroup_page_lruvec(page, zone); 767 768 /* Try isolate the page */ 769 if (__isolate_lru_page(page, isolate_mode) != 0) 770 continue; 771 772 VM_BUG_ON_PAGE(PageCompound(page), page); 773 774 /* Successfully isolated */ 775 del_page_from_lru_list(page, lruvec, page_lru(page)); 776 777 isolate_success: 778 list_add(&page->lru, migratelist); 779 cc->nr_migratepages++; 780 nr_isolated++; 781 782 /* Avoid isolating too much */ 783 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 784 ++low_pfn; 785 break; 786 } 787 } 788 789 /* 790 * The PageBuddy() check could have potentially brought us outside 791 * the range to be scanned. 792 */ 793 if (unlikely(low_pfn > end_pfn)) 794 low_pfn = end_pfn; 795 796 if (locked) 797 spin_unlock_irqrestore(&zone->lru_lock, flags); 798 799 /* 800 * Update the pageblock-skip information and cached scanner pfn, 801 * if the whole pageblock was scanned without isolating any page. 802 */ 803 if (low_pfn == end_pfn) 804 update_pageblock_skip(cc, valid_page, nr_isolated, true); 805 806 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 807 nr_scanned, nr_isolated); 808 809 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 810 if (nr_isolated) 811 count_compact_events(COMPACTISOLATED, nr_isolated); 812 813 return low_pfn; 814 } 815 816 /** 817 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 818 * @cc: Compaction control structure. 819 * @start_pfn: The first PFN to start isolating. 820 * @end_pfn: The one-past-last PFN. 821 * 822 * Returns zero if isolation fails fatally due to e.g. pending signal. 823 * Otherwise, function returns one-past-the-last PFN of isolated page 824 * (which may be greater than end_pfn if end fell in a middle of a THP page). 825 */ 826 unsigned long 827 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 828 unsigned long end_pfn) 829 { 830 unsigned long pfn, block_start_pfn, block_end_pfn; 831 832 /* Scan block by block. First and last block may be incomplete */ 833 pfn = start_pfn; 834 block_start_pfn = pfn & ~(pageblock_nr_pages - 1); 835 if (block_start_pfn < cc->zone->zone_start_pfn) 836 block_start_pfn = cc->zone->zone_start_pfn; 837 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 838 839 for (; pfn < end_pfn; pfn = block_end_pfn, 840 block_start_pfn = block_end_pfn, 841 block_end_pfn += pageblock_nr_pages) { 842 843 block_end_pfn = min(block_end_pfn, end_pfn); 844 845 if (!pageblock_pfn_to_page(block_start_pfn, 846 block_end_pfn, cc->zone)) 847 continue; 848 849 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 850 ISOLATE_UNEVICTABLE); 851 852 /* 853 * In case of fatal failure, release everything that might 854 * have been isolated in the previous iteration, and signal 855 * the failure back to caller. 856 */ 857 if (!pfn) { 858 putback_movable_pages(&cc->migratepages); 859 cc->nr_migratepages = 0; 860 break; 861 } 862 863 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 864 break; 865 } 866 acct_isolated(cc->zone, cc); 867 868 return pfn; 869 } 870 871 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 872 #ifdef CONFIG_COMPACTION 873 874 /* Returns true if the page is within a block suitable for migration to */ 875 static bool suitable_migration_target(struct page *page) 876 { 877 /* If the page is a large free page, then disallow migration */ 878 if (PageBuddy(page)) { 879 /* 880 * We are checking page_order without zone->lock taken. But 881 * the only small danger is that we skip a potentially suitable 882 * pageblock, so it's not worth to check order for valid range. 883 */ 884 if (page_order_unsafe(page) >= pageblock_order) 885 return false; 886 } 887 888 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 889 if (migrate_async_suitable(get_pageblock_migratetype(page))) 890 return true; 891 892 /* Otherwise skip the block */ 893 return false; 894 } 895 896 /* 897 * Test whether the free scanner has reached the same or lower pageblock than 898 * the migration scanner, and compaction should thus terminate. 899 */ 900 static inline bool compact_scanners_met(struct compact_control *cc) 901 { 902 return (cc->free_pfn >> pageblock_order) 903 <= (cc->migrate_pfn >> pageblock_order); 904 } 905 906 /* 907 * Based on information in the current compact_control, find blocks 908 * suitable for isolating free pages from and then isolate them. 909 */ 910 static void isolate_freepages(struct compact_control *cc) 911 { 912 struct zone *zone = cc->zone; 913 struct page *page; 914 unsigned long block_start_pfn; /* start of current pageblock */ 915 unsigned long isolate_start_pfn; /* exact pfn we start at */ 916 unsigned long block_end_pfn; /* end of current pageblock */ 917 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 918 struct list_head *freelist = &cc->freepages; 919 920 /* 921 * Initialise the free scanner. The starting point is where we last 922 * successfully isolated from, zone-cached value, or the end of the 923 * zone when isolating for the first time. For looping we also need 924 * this pfn aligned down to the pageblock boundary, because we do 925 * block_start_pfn -= pageblock_nr_pages in the for loop. 926 * For ending point, take care when isolating in last pageblock of a 927 * a zone which ends in the middle of a pageblock. 928 * The low boundary is the end of the pageblock the migration scanner 929 * is using. 930 */ 931 isolate_start_pfn = cc->free_pfn; 932 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1); 933 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 934 zone_end_pfn(zone)); 935 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); 936 937 /* 938 * Isolate free pages until enough are available to migrate the 939 * pages on cc->migratepages. We stop searching if the migrate 940 * and free page scanners meet or enough free pages are isolated. 941 */ 942 for (; block_start_pfn >= low_pfn; 943 block_end_pfn = block_start_pfn, 944 block_start_pfn -= pageblock_nr_pages, 945 isolate_start_pfn = block_start_pfn) { 946 947 /* 948 * This can iterate a massively long zone without finding any 949 * suitable migration targets, so periodically check if we need 950 * to schedule, or even abort async compaction. 951 */ 952 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 953 && compact_should_abort(cc)) 954 break; 955 956 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 957 zone); 958 if (!page) 959 continue; 960 961 /* Check the block is suitable for migration */ 962 if (!suitable_migration_target(page)) 963 continue; 964 965 /* If isolation recently failed, do not retry */ 966 if (!isolation_suitable(cc, page)) 967 continue; 968 969 /* Found a block suitable for isolating free pages from. */ 970 isolate_freepages_block(cc, &isolate_start_pfn, 971 block_end_pfn, freelist, false); 972 973 /* 974 * If we isolated enough freepages, or aborted due to async 975 * compaction being contended, terminate the loop. 976 * Remember where the free scanner should restart next time, 977 * which is where isolate_freepages_block() left off. 978 * But if it scanned the whole pageblock, isolate_start_pfn 979 * now points at block_end_pfn, which is the start of the next 980 * pageblock. 981 * In that case we will however want to restart at the start 982 * of the previous pageblock. 983 */ 984 if ((cc->nr_freepages >= cc->nr_migratepages) 985 || cc->contended) { 986 if (isolate_start_pfn >= block_end_pfn) 987 isolate_start_pfn = 988 block_start_pfn - pageblock_nr_pages; 989 break; 990 } else { 991 /* 992 * isolate_freepages_block() should not terminate 993 * prematurely unless contended, or isolated enough 994 */ 995 VM_BUG_ON(isolate_start_pfn < block_end_pfn); 996 } 997 } 998 999 /* split_free_page does not map the pages */ 1000 map_pages(freelist); 1001 1002 /* 1003 * Record where the free scanner will restart next time. Either we 1004 * broke from the loop and set isolate_start_pfn based on the last 1005 * call to isolate_freepages_block(), or we met the migration scanner 1006 * and the loop terminated due to isolate_start_pfn < low_pfn 1007 */ 1008 cc->free_pfn = isolate_start_pfn; 1009 } 1010 1011 /* 1012 * This is a migrate-callback that "allocates" freepages by taking pages 1013 * from the isolated freelists in the block we are migrating to. 1014 */ 1015 static struct page *compaction_alloc(struct page *migratepage, 1016 unsigned long data, 1017 int **result) 1018 { 1019 struct compact_control *cc = (struct compact_control *)data; 1020 struct page *freepage; 1021 1022 /* 1023 * Isolate free pages if necessary, and if we are not aborting due to 1024 * contention. 1025 */ 1026 if (list_empty(&cc->freepages)) { 1027 if (!cc->contended) 1028 isolate_freepages(cc); 1029 1030 if (list_empty(&cc->freepages)) 1031 return NULL; 1032 } 1033 1034 freepage = list_entry(cc->freepages.next, struct page, lru); 1035 list_del(&freepage->lru); 1036 cc->nr_freepages--; 1037 1038 return freepage; 1039 } 1040 1041 /* 1042 * This is a migrate-callback that "frees" freepages back to the isolated 1043 * freelist. All pages on the freelist are from the same zone, so there is no 1044 * special handling needed for NUMA. 1045 */ 1046 static void compaction_free(struct page *page, unsigned long data) 1047 { 1048 struct compact_control *cc = (struct compact_control *)data; 1049 1050 list_add(&page->lru, &cc->freepages); 1051 cc->nr_freepages++; 1052 } 1053 1054 /* possible outcome of isolate_migratepages */ 1055 typedef enum { 1056 ISOLATE_ABORT, /* Abort compaction now */ 1057 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1058 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1059 } isolate_migrate_t; 1060 1061 /* 1062 * Allow userspace to control policy on scanning the unevictable LRU for 1063 * compactable pages. 1064 */ 1065 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1066 1067 /* 1068 * Isolate all pages that can be migrated from the first suitable block, 1069 * starting at the block pointed to by the migrate scanner pfn within 1070 * compact_control. 1071 */ 1072 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1073 struct compact_control *cc) 1074 { 1075 unsigned long block_start_pfn; 1076 unsigned long block_end_pfn; 1077 unsigned long low_pfn; 1078 unsigned long isolate_start_pfn; 1079 struct page *page; 1080 const isolate_mode_t isolate_mode = 1081 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1082 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1083 1084 /* 1085 * Start at where we last stopped, or beginning of the zone as 1086 * initialized by compact_zone() 1087 */ 1088 low_pfn = cc->migrate_pfn; 1089 block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1); 1090 if (block_start_pfn < zone->zone_start_pfn) 1091 block_start_pfn = zone->zone_start_pfn; 1092 1093 /* Only scan within a pageblock boundary */ 1094 block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); 1095 1096 /* 1097 * Iterate over whole pageblocks until we find the first suitable. 1098 * Do not cross the free scanner. 1099 */ 1100 for (; block_end_pfn <= cc->free_pfn; 1101 low_pfn = block_end_pfn, 1102 block_start_pfn = block_end_pfn, 1103 block_end_pfn += pageblock_nr_pages) { 1104 1105 /* 1106 * This can potentially iterate a massively long zone with 1107 * many pageblocks unsuitable, so periodically check if we 1108 * need to schedule, or even abort async compaction. 1109 */ 1110 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1111 && compact_should_abort(cc)) 1112 break; 1113 1114 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1115 zone); 1116 if (!page) 1117 continue; 1118 1119 /* If isolation recently failed, do not retry */ 1120 if (!isolation_suitable(cc, page)) 1121 continue; 1122 1123 /* 1124 * For async compaction, also only scan in MOVABLE blocks. 1125 * Async compaction is optimistic to see if the minimum amount 1126 * of work satisfies the allocation. 1127 */ 1128 if (cc->mode == MIGRATE_ASYNC && 1129 !migrate_async_suitable(get_pageblock_migratetype(page))) 1130 continue; 1131 1132 /* Perform the isolation */ 1133 isolate_start_pfn = low_pfn; 1134 low_pfn = isolate_migratepages_block(cc, low_pfn, 1135 block_end_pfn, isolate_mode); 1136 1137 if (!low_pfn || cc->contended) { 1138 acct_isolated(zone, cc); 1139 return ISOLATE_ABORT; 1140 } 1141 1142 /* 1143 * Record where we could have freed pages by migration and not 1144 * yet flushed them to buddy allocator. 1145 * - this is the lowest page that could have been isolated and 1146 * then freed by migration. 1147 */ 1148 if (cc->nr_migratepages && !cc->last_migrated_pfn) 1149 cc->last_migrated_pfn = isolate_start_pfn; 1150 1151 /* 1152 * Either we isolated something and proceed with migration. Or 1153 * we failed and compact_zone should decide if we should 1154 * continue or not. 1155 */ 1156 break; 1157 } 1158 1159 acct_isolated(zone, cc); 1160 /* Record where migration scanner will be restarted. */ 1161 cc->migrate_pfn = low_pfn; 1162 1163 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1164 } 1165 1166 /* 1167 * order == -1 is expected when compacting via 1168 * /proc/sys/vm/compact_memory 1169 */ 1170 static inline bool is_via_compact_memory(int order) 1171 { 1172 return order == -1; 1173 } 1174 1175 static int __compact_finished(struct zone *zone, struct compact_control *cc, 1176 const int migratetype) 1177 { 1178 unsigned int order; 1179 unsigned long watermark; 1180 1181 if (cc->contended || fatal_signal_pending(current)) 1182 return COMPACT_CONTENDED; 1183 1184 /* Compaction run completes if the migrate and free scanner meet */ 1185 if (compact_scanners_met(cc)) { 1186 /* Let the next compaction start anew. */ 1187 reset_cached_positions(zone); 1188 1189 /* 1190 * Mark that the PG_migrate_skip information should be cleared 1191 * by kswapd when it goes to sleep. kswapd does not set the 1192 * flag itself as the decision to be clear should be directly 1193 * based on an allocation request. 1194 */ 1195 if (!current_is_kswapd()) 1196 zone->compact_blockskip_flush = true; 1197 1198 return COMPACT_COMPLETE; 1199 } 1200 1201 if (is_via_compact_memory(cc->order)) 1202 return COMPACT_CONTINUE; 1203 1204 /* Compaction run is not finished if the watermark is not met */ 1205 watermark = low_wmark_pages(zone); 1206 1207 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx, 1208 cc->alloc_flags)) 1209 return COMPACT_CONTINUE; 1210 1211 /* Direct compactor: Is a suitable page free? */ 1212 for (order = cc->order; order < MAX_ORDER; order++) { 1213 struct free_area *area = &zone->free_area[order]; 1214 bool can_steal; 1215 1216 /* Job done if page is free of the right migratetype */ 1217 if (!list_empty(&area->free_list[migratetype])) 1218 return COMPACT_PARTIAL; 1219 1220 #ifdef CONFIG_CMA 1221 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1222 if (migratetype == MIGRATE_MOVABLE && 1223 !list_empty(&area->free_list[MIGRATE_CMA])) 1224 return COMPACT_PARTIAL; 1225 #endif 1226 /* 1227 * Job done if allocation would steal freepages from 1228 * other migratetype buddy lists. 1229 */ 1230 if (find_suitable_fallback(area, order, migratetype, 1231 true, &can_steal) != -1) 1232 return COMPACT_PARTIAL; 1233 } 1234 1235 return COMPACT_NO_SUITABLE_PAGE; 1236 } 1237 1238 static int compact_finished(struct zone *zone, struct compact_control *cc, 1239 const int migratetype) 1240 { 1241 int ret; 1242 1243 ret = __compact_finished(zone, cc, migratetype); 1244 trace_mm_compaction_finished(zone, cc->order, ret); 1245 if (ret == COMPACT_NO_SUITABLE_PAGE) 1246 ret = COMPACT_CONTINUE; 1247 1248 return ret; 1249 } 1250 1251 /* 1252 * compaction_suitable: Is this suitable to run compaction on this zone now? 1253 * Returns 1254 * COMPACT_SKIPPED - If there are too few free pages for compaction 1255 * COMPACT_PARTIAL - If the allocation would succeed without compaction 1256 * COMPACT_CONTINUE - If compaction should run now 1257 */ 1258 static unsigned long __compaction_suitable(struct zone *zone, int order, 1259 int alloc_flags, int classzone_idx) 1260 { 1261 int fragindex; 1262 unsigned long watermark; 1263 1264 if (is_via_compact_memory(order)) 1265 return COMPACT_CONTINUE; 1266 1267 watermark = low_wmark_pages(zone); 1268 /* 1269 * If watermarks for high-order allocation are already met, there 1270 * should be no need for compaction at all. 1271 */ 1272 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1273 alloc_flags)) 1274 return COMPACT_PARTIAL; 1275 1276 /* 1277 * Watermarks for order-0 must be met for compaction. Note the 2UL. 1278 * This is because during migration, copies of pages need to be 1279 * allocated and for a short time, the footprint is higher 1280 */ 1281 watermark += (2UL << order); 1282 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags)) 1283 return COMPACT_SKIPPED; 1284 1285 /* 1286 * fragmentation index determines if allocation failures are due to 1287 * low memory or external fragmentation 1288 * 1289 * index of -1000 would imply allocations might succeed depending on 1290 * watermarks, but we already failed the high-order watermark check 1291 * index towards 0 implies failure is due to lack of memory 1292 * index towards 1000 implies failure is due to fragmentation 1293 * 1294 * Only compact if a failure would be due to fragmentation. 1295 */ 1296 fragindex = fragmentation_index(zone, order); 1297 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1298 return COMPACT_NOT_SUITABLE_ZONE; 1299 1300 return COMPACT_CONTINUE; 1301 } 1302 1303 unsigned long compaction_suitable(struct zone *zone, int order, 1304 int alloc_flags, int classzone_idx) 1305 { 1306 unsigned long ret; 1307 1308 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx); 1309 trace_mm_compaction_suitable(zone, order, ret); 1310 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1311 ret = COMPACT_SKIPPED; 1312 1313 return ret; 1314 } 1315 1316 static int compact_zone(struct zone *zone, struct compact_control *cc) 1317 { 1318 int ret; 1319 unsigned long start_pfn = zone->zone_start_pfn; 1320 unsigned long end_pfn = zone_end_pfn(zone); 1321 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1322 const bool sync = cc->mode != MIGRATE_ASYNC; 1323 1324 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1325 cc->classzone_idx); 1326 switch (ret) { 1327 case COMPACT_PARTIAL: 1328 case COMPACT_SKIPPED: 1329 /* Compaction is likely to fail */ 1330 return ret; 1331 case COMPACT_CONTINUE: 1332 /* Fall through to compaction */ 1333 ; 1334 } 1335 1336 /* 1337 * Clear pageblock skip if there were failures recently and compaction 1338 * is about to be retried after being deferred. kswapd does not do 1339 * this reset as it'll reset the cached information when going to sleep. 1340 */ 1341 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 1342 __reset_isolation_suitable(zone); 1343 1344 /* 1345 * Setup to move all movable pages to the end of the zone. Used cached 1346 * information on where the scanners should start but check that it 1347 * is initialised by ensuring the values are within zone boundaries. 1348 */ 1349 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1350 cc->free_pfn = zone->compact_cached_free_pfn; 1351 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1352 cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages); 1353 zone->compact_cached_free_pfn = cc->free_pfn; 1354 } 1355 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1356 cc->migrate_pfn = start_pfn; 1357 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1358 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1359 } 1360 cc->last_migrated_pfn = 0; 1361 1362 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1363 cc->free_pfn, end_pfn, sync); 1364 1365 migrate_prep_local(); 1366 1367 while ((ret = compact_finished(zone, cc, migratetype)) == 1368 COMPACT_CONTINUE) { 1369 int err; 1370 1371 switch (isolate_migratepages(zone, cc)) { 1372 case ISOLATE_ABORT: 1373 ret = COMPACT_CONTENDED; 1374 putback_movable_pages(&cc->migratepages); 1375 cc->nr_migratepages = 0; 1376 goto out; 1377 case ISOLATE_NONE: 1378 /* 1379 * We haven't isolated and migrated anything, but 1380 * there might still be unflushed migrations from 1381 * previous cc->order aligned block. 1382 */ 1383 goto check_drain; 1384 case ISOLATE_SUCCESS: 1385 ; 1386 } 1387 1388 err = migrate_pages(&cc->migratepages, compaction_alloc, 1389 compaction_free, (unsigned long)cc, cc->mode, 1390 MR_COMPACTION); 1391 1392 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1393 &cc->migratepages); 1394 1395 /* All pages were either migrated or will be released */ 1396 cc->nr_migratepages = 0; 1397 if (err) { 1398 putback_movable_pages(&cc->migratepages); 1399 /* 1400 * migrate_pages() may return -ENOMEM when scanners meet 1401 * and we want compact_finished() to detect it 1402 */ 1403 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1404 ret = COMPACT_CONTENDED; 1405 goto out; 1406 } 1407 } 1408 1409 check_drain: 1410 /* 1411 * Has the migration scanner moved away from the previous 1412 * cc->order aligned block where we migrated from? If yes, 1413 * flush the pages that were freed, so that they can merge and 1414 * compact_finished() can detect immediately if allocation 1415 * would succeed. 1416 */ 1417 if (cc->order > 0 && cc->last_migrated_pfn) { 1418 int cpu; 1419 unsigned long current_block_start = 1420 cc->migrate_pfn & ~((1UL << cc->order) - 1); 1421 1422 if (cc->last_migrated_pfn < current_block_start) { 1423 cpu = get_cpu(); 1424 lru_add_drain_cpu(cpu); 1425 drain_local_pages(zone); 1426 put_cpu(); 1427 /* No more flushing until we migrate again */ 1428 cc->last_migrated_pfn = 0; 1429 } 1430 } 1431 1432 } 1433 1434 out: 1435 /* 1436 * Release free pages and update where the free scanner should restart, 1437 * so we don't leave any returned pages behind in the next attempt. 1438 */ 1439 if (cc->nr_freepages > 0) { 1440 unsigned long free_pfn = release_freepages(&cc->freepages); 1441 1442 cc->nr_freepages = 0; 1443 VM_BUG_ON(free_pfn == 0); 1444 /* The cached pfn is always the first in a pageblock */ 1445 free_pfn &= ~(pageblock_nr_pages-1); 1446 /* 1447 * Only go back, not forward. The cached pfn might have been 1448 * already reset to zone end in compact_finished() 1449 */ 1450 if (free_pfn > zone->compact_cached_free_pfn) 1451 zone->compact_cached_free_pfn = free_pfn; 1452 } 1453 1454 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1455 cc->free_pfn, end_pfn, sync, ret); 1456 1457 if (ret == COMPACT_CONTENDED) 1458 ret = COMPACT_PARTIAL; 1459 1460 return ret; 1461 } 1462 1463 static unsigned long compact_zone_order(struct zone *zone, int order, 1464 gfp_t gfp_mask, enum migrate_mode mode, int *contended, 1465 int alloc_flags, int classzone_idx) 1466 { 1467 unsigned long ret; 1468 struct compact_control cc = { 1469 .nr_freepages = 0, 1470 .nr_migratepages = 0, 1471 .order = order, 1472 .gfp_mask = gfp_mask, 1473 .zone = zone, 1474 .mode = mode, 1475 .alloc_flags = alloc_flags, 1476 .classzone_idx = classzone_idx, 1477 }; 1478 INIT_LIST_HEAD(&cc.freepages); 1479 INIT_LIST_HEAD(&cc.migratepages); 1480 1481 ret = compact_zone(zone, &cc); 1482 1483 VM_BUG_ON(!list_empty(&cc.freepages)); 1484 VM_BUG_ON(!list_empty(&cc.migratepages)); 1485 1486 *contended = cc.contended; 1487 return ret; 1488 } 1489 1490 int sysctl_extfrag_threshold = 500; 1491 1492 /** 1493 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1494 * @gfp_mask: The GFP mask of the current allocation 1495 * @order: The order of the current allocation 1496 * @alloc_flags: The allocation flags of the current allocation 1497 * @ac: The context of current allocation 1498 * @mode: The migration mode for async, sync light, or sync migration 1499 * @contended: Return value that determines if compaction was aborted due to 1500 * need_resched() or lock contention 1501 * 1502 * This is the main entry point for direct page compaction. 1503 */ 1504 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1505 int alloc_flags, const struct alloc_context *ac, 1506 enum migrate_mode mode, int *contended) 1507 { 1508 int may_enter_fs = gfp_mask & __GFP_FS; 1509 int may_perform_io = gfp_mask & __GFP_IO; 1510 struct zoneref *z; 1511 struct zone *zone; 1512 int rc = COMPACT_DEFERRED; 1513 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */ 1514 1515 *contended = COMPACT_CONTENDED_NONE; 1516 1517 /* Check if the GFP flags allow compaction */ 1518 if (!order || !may_enter_fs || !may_perform_io) 1519 return COMPACT_SKIPPED; 1520 1521 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode); 1522 1523 /* Compact each zone in the list */ 1524 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1525 ac->nodemask) { 1526 int status; 1527 int zone_contended; 1528 1529 if (compaction_deferred(zone, order)) 1530 continue; 1531 1532 status = compact_zone_order(zone, order, gfp_mask, mode, 1533 &zone_contended, alloc_flags, 1534 ac->classzone_idx); 1535 rc = max(status, rc); 1536 /* 1537 * It takes at least one zone that wasn't lock contended 1538 * to clear all_zones_contended. 1539 */ 1540 all_zones_contended &= zone_contended; 1541 1542 /* If a normal allocation would succeed, stop compacting */ 1543 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 1544 ac->classzone_idx, alloc_flags)) { 1545 /* 1546 * We think the allocation will succeed in this zone, 1547 * but it is not certain, hence the false. The caller 1548 * will repeat this with true if allocation indeed 1549 * succeeds in this zone. 1550 */ 1551 compaction_defer_reset(zone, order, false); 1552 /* 1553 * It is possible that async compaction aborted due to 1554 * need_resched() and the watermarks were ok thanks to 1555 * somebody else freeing memory. The allocation can 1556 * however still fail so we better signal the 1557 * need_resched() contention anyway (this will not 1558 * prevent the allocation attempt). 1559 */ 1560 if (zone_contended == COMPACT_CONTENDED_SCHED) 1561 *contended = COMPACT_CONTENDED_SCHED; 1562 1563 goto break_loop; 1564 } 1565 1566 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) { 1567 /* 1568 * We think that allocation won't succeed in this zone 1569 * so we defer compaction there. If it ends up 1570 * succeeding after all, it will be reset. 1571 */ 1572 defer_compaction(zone, order); 1573 } 1574 1575 /* 1576 * We might have stopped compacting due to need_resched() in 1577 * async compaction, or due to a fatal signal detected. In that 1578 * case do not try further zones and signal need_resched() 1579 * contention. 1580 */ 1581 if ((zone_contended == COMPACT_CONTENDED_SCHED) 1582 || fatal_signal_pending(current)) { 1583 *contended = COMPACT_CONTENDED_SCHED; 1584 goto break_loop; 1585 } 1586 1587 continue; 1588 break_loop: 1589 /* 1590 * We might not have tried all the zones, so be conservative 1591 * and assume they are not all lock contended. 1592 */ 1593 all_zones_contended = 0; 1594 break; 1595 } 1596 1597 /* 1598 * If at least one zone wasn't deferred or skipped, we report if all 1599 * zones that were tried were lock contended. 1600 */ 1601 if (rc > COMPACT_SKIPPED && all_zones_contended) 1602 *contended = COMPACT_CONTENDED_LOCK; 1603 1604 return rc; 1605 } 1606 1607 1608 /* Compact all zones within a node */ 1609 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1610 { 1611 int zoneid; 1612 struct zone *zone; 1613 1614 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1615 1616 zone = &pgdat->node_zones[zoneid]; 1617 if (!populated_zone(zone)) 1618 continue; 1619 1620 cc->nr_freepages = 0; 1621 cc->nr_migratepages = 0; 1622 cc->zone = zone; 1623 INIT_LIST_HEAD(&cc->freepages); 1624 INIT_LIST_HEAD(&cc->migratepages); 1625 1626 /* 1627 * When called via /proc/sys/vm/compact_memory 1628 * this makes sure we compact the whole zone regardless of 1629 * cached scanner positions. 1630 */ 1631 if (is_via_compact_memory(cc->order)) 1632 __reset_isolation_suitable(zone); 1633 1634 if (is_via_compact_memory(cc->order) || 1635 !compaction_deferred(zone, cc->order)) 1636 compact_zone(zone, cc); 1637 1638 VM_BUG_ON(!list_empty(&cc->freepages)); 1639 VM_BUG_ON(!list_empty(&cc->migratepages)); 1640 1641 if (is_via_compact_memory(cc->order)) 1642 continue; 1643 1644 if (zone_watermark_ok(zone, cc->order, 1645 low_wmark_pages(zone), 0, 0)) 1646 compaction_defer_reset(zone, cc->order, false); 1647 } 1648 } 1649 1650 void compact_pgdat(pg_data_t *pgdat, int order) 1651 { 1652 struct compact_control cc = { 1653 .order = order, 1654 .mode = MIGRATE_ASYNC, 1655 }; 1656 1657 if (!order) 1658 return; 1659 1660 __compact_pgdat(pgdat, &cc); 1661 } 1662 1663 static void compact_node(int nid) 1664 { 1665 struct compact_control cc = { 1666 .order = -1, 1667 .mode = MIGRATE_SYNC, 1668 .ignore_skip_hint = true, 1669 }; 1670 1671 __compact_pgdat(NODE_DATA(nid), &cc); 1672 } 1673 1674 /* Compact all nodes in the system */ 1675 static void compact_nodes(void) 1676 { 1677 int nid; 1678 1679 /* Flush pending updates to the LRU lists */ 1680 lru_add_drain_all(); 1681 1682 for_each_online_node(nid) 1683 compact_node(nid); 1684 } 1685 1686 /* The written value is actually unused, all memory is compacted */ 1687 int sysctl_compact_memory; 1688 1689 /* 1690 * This is the entry point for compacting all nodes via 1691 * /proc/sys/vm/compact_memory 1692 */ 1693 int sysctl_compaction_handler(struct ctl_table *table, int write, 1694 void __user *buffer, size_t *length, loff_t *ppos) 1695 { 1696 if (write) 1697 compact_nodes(); 1698 1699 return 0; 1700 } 1701 1702 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1703 void __user *buffer, size_t *length, loff_t *ppos) 1704 { 1705 proc_dointvec_minmax(table, write, buffer, length, ppos); 1706 1707 return 0; 1708 } 1709 1710 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1711 static ssize_t sysfs_compact_node(struct device *dev, 1712 struct device_attribute *attr, 1713 const char *buf, size_t count) 1714 { 1715 int nid = dev->id; 1716 1717 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1718 /* Flush pending updates to the LRU lists */ 1719 lru_add_drain_all(); 1720 1721 compact_node(nid); 1722 } 1723 1724 return count; 1725 } 1726 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1727 1728 int compaction_register_node(struct node *node) 1729 { 1730 return device_create_file(&node->dev, &dev_attr_compact); 1731 } 1732 1733 void compaction_unregister_node(struct node *node) 1734 { 1735 return device_remove_file(&node->dev, &dev_attr_compact); 1736 } 1737 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1738 1739 #endif /* CONFIG_COMPACTION */ 1740