1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/cpu.h> 11 #include <linux/swap.h> 12 #include <linux/migrate.h> 13 #include <linux/compaction.h> 14 #include <linux/mm_inline.h> 15 #include <linux/backing-dev.h> 16 #include <linux/sysctl.h> 17 #include <linux/sysfs.h> 18 #include <linux/page-isolation.h> 19 #include <linux/kasan.h> 20 #include <linux/kthread.h> 21 #include <linux/freezer.h> 22 #include <linux/page_owner.h> 23 #include "internal.h" 24 25 #ifdef CONFIG_COMPACTION 26 static inline void count_compact_event(enum vm_event_item item) 27 { 28 count_vm_event(item); 29 } 30 31 static inline void count_compact_events(enum vm_event_item item, long delta) 32 { 33 count_vm_events(item, delta); 34 } 35 #else 36 #define count_compact_event(item) do { } while (0) 37 #define count_compact_events(item, delta) do { } while (0) 38 #endif 39 40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/compaction.h> 44 45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 49 50 static unsigned long release_freepages(struct list_head *freelist) 51 { 52 struct page *page, *next; 53 unsigned long high_pfn = 0; 54 55 list_for_each_entry_safe(page, next, freelist, lru) { 56 unsigned long pfn = page_to_pfn(page); 57 list_del(&page->lru); 58 __free_page(page); 59 if (pfn > high_pfn) 60 high_pfn = pfn; 61 } 62 63 return high_pfn; 64 } 65 66 static void map_pages(struct list_head *list) 67 { 68 unsigned int i, order, nr_pages; 69 struct page *page, *next; 70 LIST_HEAD(tmp_list); 71 72 list_for_each_entry_safe(page, next, list, lru) { 73 list_del(&page->lru); 74 75 order = page_private(page); 76 nr_pages = 1 << order; 77 78 post_alloc_hook(page, order, __GFP_MOVABLE); 79 if (order) 80 split_page(page, order); 81 82 for (i = 0; i < nr_pages; i++) { 83 list_add(&page->lru, &tmp_list); 84 page++; 85 } 86 } 87 88 list_splice(&tmp_list, list); 89 } 90 91 static inline bool migrate_async_suitable(int migratetype) 92 { 93 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 94 } 95 96 #ifdef CONFIG_COMPACTION 97 98 int PageMovable(struct page *page) 99 { 100 struct address_space *mapping; 101 102 VM_BUG_ON_PAGE(!PageLocked(page), page); 103 if (!__PageMovable(page)) 104 return 0; 105 106 mapping = page_mapping(page); 107 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 108 return 1; 109 110 return 0; 111 } 112 EXPORT_SYMBOL(PageMovable); 113 114 void __SetPageMovable(struct page *page, struct address_space *mapping) 115 { 116 VM_BUG_ON_PAGE(!PageLocked(page), page); 117 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 118 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 119 } 120 EXPORT_SYMBOL(__SetPageMovable); 121 122 void __ClearPageMovable(struct page *page) 123 { 124 VM_BUG_ON_PAGE(!PageLocked(page), page); 125 VM_BUG_ON_PAGE(!PageMovable(page), page); 126 /* 127 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 128 * flag so that VM can catch up released page by driver after isolation. 129 * With it, VM migration doesn't try to put it back. 130 */ 131 page->mapping = (void *)((unsigned long)page->mapping & 132 PAGE_MAPPING_MOVABLE); 133 } 134 EXPORT_SYMBOL(__ClearPageMovable); 135 136 /* Do not skip compaction more than 64 times */ 137 #define COMPACT_MAX_DEFER_SHIFT 6 138 139 /* 140 * Compaction is deferred when compaction fails to result in a page 141 * allocation success. 1 << compact_defer_limit compactions are skipped up 142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 143 */ 144 void defer_compaction(struct zone *zone, int order) 145 { 146 zone->compact_considered = 0; 147 zone->compact_defer_shift++; 148 149 if (order < zone->compact_order_failed) 150 zone->compact_order_failed = order; 151 152 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 153 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 154 155 trace_mm_compaction_defer_compaction(zone, order); 156 } 157 158 /* Returns true if compaction should be skipped this time */ 159 bool compaction_deferred(struct zone *zone, int order) 160 { 161 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 162 163 if (order < zone->compact_order_failed) 164 return false; 165 166 /* Avoid possible overflow */ 167 if (++zone->compact_considered > defer_limit) 168 zone->compact_considered = defer_limit; 169 170 if (zone->compact_considered >= defer_limit) 171 return false; 172 173 trace_mm_compaction_deferred(zone, order); 174 175 return true; 176 } 177 178 /* 179 * Update defer tracking counters after successful compaction of given order, 180 * which means an allocation either succeeded (alloc_success == true) or is 181 * expected to succeed. 182 */ 183 void compaction_defer_reset(struct zone *zone, int order, 184 bool alloc_success) 185 { 186 if (alloc_success) { 187 zone->compact_considered = 0; 188 zone->compact_defer_shift = 0; 189 } 190 if (order >= zone->compact_order_failed) 191 zone->compact_order_failed = order + 1; 192 193 trace_mm_compaction_defer_reset(zone, order); 194 } 195 196 /* Returns true if restarting compaction after many failures */ 197 bool compaction_restarting(struct zone *zone, int order) 198 { 199 if (order < zone->compact_order_failed) 200 return false; 201 202 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 203 zone->compact_considered >= 1UL << zone->compact_defer_shift; 204 } 205 206 /* Returns true if the pageblock should be scanned for pages to isolate. */ 207 static inline bool isolation_suitable(struct compact_control *cc, 208 struct page *page) 209 { 210 if (cc->ignore_skip_hint) 211 return true; 212 213 return !get_pageblock_skip(page); 214 } 215 216 static void reset_cached_positions(struct zone *zone) 217 { 218 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 219 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 220 zone->compact_cached_free_pfn = 221 pageblock_start_pfn(zone_end_pfn(zone) - 1); 222 } 223 224 /* 225 * This function is called to clear all cached information on pageblocks that 226 * should be skipped for page isolation when the migrate and free page scanner 227 * meet. 228 */ 229 static void __reset_isolation_suitable(struct zone *zone) 230 { 231 unsigned long start_pfn = zone->zone_start_pfn; 232 unsigned long end_pfn = zone_end_pfn(zone); 233 unsigned long pfn; 234 235 zone->compact_blockskip_flush = false; 236 237 /* Walk the zone and mark every pageblock as suitable for isolation */ 238 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 239 struct page *page; 240 241 cond_resched(); 242 243 if (!pfn_valid(pfn)) 244 continue; 245 246 page = pfn_to_page(pfn); 247 if (zone != page_zone(page)) 248 continue; 249 250 clear_pageblock_skip(page); 251 } 252 253 reset_cached_positions(zone); 254 } 255 256 void reset_isolation_suitable(pg_data_t *pgdat) 257 { 258 int zoneid; 259 260 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 261 struct zone *zone = &pgdat->node_zones[zoneid]; 262 if (!populated_zone(zone)) 263 continue; 264 265 /* Only flush if a full compaction finished recently */ 266 if (zone->compact_blockskip_flush) 267 __reset_isolation_suitable(zone); 268 } 269 } 270 271 /* 272 * If no pages were isolated then mark this pageblock to be skipped in the 273 * future. The information is later cleared by __reset_isolation_suitable(). 274 */ 275 static void update_pageblock_skip(struct compact_control *cc, 276 struct page *page, unsigned long nr_isolated, 277 bool migrate_scanner) 278 { 279 struct zone *zone = cc->zone; 280 unsigned long pfn; 281 282 if (cc->ignore_skip_hint) 283 return; 284 285 if (!page) 286 return; 287 288 if (nr_isolated) 289 return; 290 291 set_pageblock_skip(page); 292 293 pfn = page_to_pfn(page); 294 295 /* Update where async and sync compaction should restart */ 296 if (migrate_scanner) { 297 if (pfn > zone->compact_cached_migrate_pfn[0]) 298 zone->compact_cached_migrate_pfn[0] = pfn; 299 if (cc->mode != MIGRATE_ASYNC && 300 pfn > zone->compact_cached_migrate_pfn[1]) 301 zone->compact_cached_migrate_pfn[1] = pfn; 302 } else { 303 if (pfn < zone->compact_cached_free_pfn) 304 zone->compact_cached_free_pfn = pfn; 305 } 306 } 307 #else 308 static inline bool isolation_suitable(struct compact_control *cc, 309 struct page *page) 310 { 311 return true; 312 } 313 314 static void update_pageblock_skip(struct compact_control *cc, 315 struct page *page, unsigned long nr_isolated, 316 bool migrate_scanner) 317 { 318 } 319 #endif /* CONFIG_COMPACTION */ 320 321 /* 322 * Compaction requires the taking of some coarse locks that are potentially 323 * very heavily contended. For async compaction, back out if the lock cannot 324 * be taken immediately. For sync compaction, spin on the lock if needed. 325 * 326 * Returns true if the lock is held 327 * Returns false if the lock is not held and compaction should abort 328 */ 329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 330 struct compact_control *cc) 331 { 332 if (cc->mode == MIGRATE_ASYNC) { 333 if (!spin_trylock_irqsave(lock, *flags)) { 334 cc->contended = true; 335 return false; 336 } 337 } else { 338 spin_lock_irqsave(lock, *flags); 339 } 340 341 return true; 342 } 343 344 /* 345 * Compaction requires the taking of some coarse locks that are potentially 346 * very heavily contended. The lock should be periodically unlocked to avoid 347 * having disabled IRQs for a long time, even when there is nobody waiting on 348 * the lock. It might also be that allowing the IRQs will result in 349 * need_resched() becoming true. If scheduling is needed, async compaction 350 * aborts. Sync compaction schedules. 351 * Either compaction type will also abort if a fatal signal is pending. 352 * In either case if the lock was locked, it is dropped and not regained. 353 * 354 * Returns true if compaction should abort due to fatal signal pending, or 355 * async compaction due to need_resched() 356 * Returns false when compaction can continue (sync compaction might have 357 * scheduled) 358 */ 359 static bool compact_unlock_should_abort(spinlock_t *lock, 360 unsigned long flags, bool *locked, struct compact_control *cc) 361 { 362 if (*locked) { 363 spin_unlock_irqrestore(lock, flags); 364 *locked = false; 365 } 366 367 if (fatal_signal_pending(current)) { 368 cc->contended = true; 369 return true; 370 } 371 372 if (need_resched()) { 373 if (cc->mode == MIGRATE_ASYNC) { 374 cc->contended = true; 375 return true; 376 } 377 cond_resched(); 378 } 379 380 return false; 381 } 382 383 /* 384 * Aside from avoiding lock contention, compaction also periodically checks 385 * need_resched() and either schedules in sync compaction or aborts async 386 * compaction. This is similar to what compact_unlock_should_abort() does, but 387 * is used where no lock is concerned. 388 * 389 * Returns false when no scheduling was needed, or sync compaction scheduled. 390 * Returns true when async compaction should abort. 391 */ 392 static inline bool compact_should_abort(struct compact_control *cc) 393 { 394 /* async compaction aborts if contended */ 395 if (need_resched()) { 396 if (cc->mode == MIGRATE_ASYNC) { 397 cc->contended = true; 398 return true; 399 } 400 401 cond_resched(); 402 } 403 404 return false; 405 } 406 407 /* 408 * Isolate free pages onto a private freelist. If @strict is true, will abort 409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 410 * (even though it may still end up isolating some pages). 411 */ 412 static unsigned long isolate_freepages_block(struct compact_control *cc, 413 unsigned long *start_pfn, 414 unsigned long end_pfn, 415 struct list_head *freelist, 416 bool strict) 417 { 418 int nr_scanned = 0, total_isolated = 0; 419 struct page *cursor, *valid_page = NULL; 420 unsigned long flags = 0; 421 bool locked = false; 422 unsigned long blockpfn = *start_pfn; 423 unsigned int order; 424 425 cursor = pfn_to_page(blockpfn); 426 427 /* Isolate free pages. */ 428 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 429 int isolated; 430 struct page *page = cursor; 431 432 /* 433 * Periodically drop the lock (if held) regardless of its 434 * contention, to give chance to IRQs. Abort if fatal signal 435 * pending or async compaction detects need_resched() 436 */ 437 if (!(blockpfn % SWAP_CLUSTER_MAX) 438 && compact_unlock_should_abort(&cc->zone->lock, flags, 439 &locked, cc)) 440 break; 441 442 nr_scanned++; 443 if (!pfn_valid_within(blockpfn)) 444 goto isolate_fail; 445 446 if (!valid_page) 447 valid_page = page; 448 449 /* 450 * For compound pages such as THP and hugetlbfs, we can save 451 * potentially a lot of iterations if we skip them at once. 452 * The check is racy, but we can consider only valid values 453 * and the only danger is skipping too much. 454 */ 455 if (PageCompound(page)) { 456 unsigned int comp_order = compound_order(page); 457 458 if (likely(comp_order < MAX_ORDER)) { 459 blockpfn += (1UL << comp_order) - 1; 460 cursor += (1UL << comp_order) - 1; 461 } 462 463 goto isolate_fail; 464 } 465 466 if (!PageBuddy(page)) 467 goto isolate_fail; 468 469 /* 470 * If we already hold the lock, we can skip some rechecking. 471 * Note that if we hold the lock now, checked_pageblock was 472 * already set in some previous iteration (or strict is true), 473 * so it is correct to skip the suitable migration target 474 * recheck as well. 475 */ 476 if (!locked) { 477 /* 478 * The zone lock must be held to isolate freepages. 479 * Unfortunately this is a very coarse lock and can be 480 * heavily contended if there are parallel allocations 481 * or parallel compactions. For async compaction do not 482 * spin on the lock and we acquire the lock as late as 483 * possible. 484 */ 485 locked = compact_trylock_irqsave(&cc->zone->lock, 486 &flags, cc); 487 if (!locked) 488 break; 489 490 /* Recheck this is a buddy page under lock */ 491 if (!PageBuddy(page)) 492 goto isolate_fail; 493 } 494 495 /* Found a free page, will break it into order-0 pages */ 496 order = page_order(page); 497 isolated = __isolate_free_page(page, order); 498 if (!isolated) 499 break; 500 set_page_private(page, order); 501 502 total_isolated += isolated; 503 cc->nr_freepages += isolated; 504 list_add_tail(&page->lru, freelist); 505 506 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 507 blockpfn += isolated; 508 break; 509 } 510 /* Advance to the end of split page */ 511 blockpfn += isolated - 1; 512 cursor += isolated - 1; 513 continue; 514 515 isolate_fail: 516 if (strict) 517 break; 518 else 519 continue; 520 521 } 522 523 if (locked) 524 spin_unlock_irqrestore(&cc->zone->lock, flags); 525 526 /* 527 * There is a tiny chance that we have read bogus compound_order(), 528 * so be careful to not go outside of the pageblock. 529 */ 530 if (unlikely(blockpfn > end_pfn)) 531 blockpfn = end_pfn; 532 533 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 534 nr_scanned, total_isolated); 535 536 /* Record how far we have got within the block */ 537 *start_pfn = blockpfn; 538 539 /* 540 * If strict isolation is requested by CMA then check that all the 541 * pages requested were isolated. If there were any failures, 0 is 542 * returned and CMA will fail. 543 */ 544 if (strict && blockpfn < end_pfn) 545 total_isolated = 0; 546 547 /* Update the pageblock-skip if the whole pageblock was scanned */ 548 if (blockpfn == end_pfn) 549 update_pageblock_skip(cc, valid_page, total_isolated, false); 550 551 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 552 if (total_isolated) 553 count_compact_events(COMPACTISOLATED, total_isolated); 554 return total_isolated; 555 } 556 557 /** 558 * isolate_freepages_range() - isolate free pages. 559 * @start_pfn: The first PFN to start isolating. 560 * @end_pfn: The one-past-last PFN. 561 * 562 * Non-free pages, invalid PFNs, or zone boundaries within the 563 * [start_pfn, end_pfn) range are considered errors, cause function to 564 * undo its actions and return zero. 565 * 566 * Otherwise, function returns one-past-the-last PFN of isolated page 567 * (which may be greater then end_pfn if end fell in a middle of 568 * a free page). 569 */ 570 unsigned long 571 isolate_freepages_range(struct compact_control *cc, 572 unsigned long start_pfn, unsigned long end_pfn) 573 { 574 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 575 LIST_HEAD(freelist); 576 577 pfn = start_pfn; 578 block_start_pfn = pageblock_start_pfn(pfn); 579 if (block_start_pfn < cc->zone->zone_start_pfn) 580 block_start_pfn = cc->zone->zone_start_pfn; 581 block_end_pfn = pageblock_end_pfn(pfn); 582 583 for (; pfn < end_pfn; pfn += isolated, 584 block_start_pfn = block_end_pfn, 585 block_end_pfn += pageblock_nr_pages) { 586 /* Protect pfn from changing by isolate_freepages_block */ 587 unsigned long isolate_start_pfn = pfn; 588 589 block_end_pfn = min(block_end_pfn, end_pfn); 590 591 /* 592 * pfn could pass the block_end_pfn if isolated freepage 593 * is more than pageblock order. In this case, we adjust 594 * scanning range to right one. 595 */ 596 if (pfn >= block_end_pfn) { 597 block_start_pfn = pageblock_start_pfn(pfn); 598 block_end_pfn = pageblock_end_pfn(pfn); 599 block_end_pfn = min(block_end_pfn, end_pfn); 600 } 601 602 if (!pageblock_pfn_to_page(block_start_pfn, 603 block_end_pfn, cc->zone)) 604 break; 605 606 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 607 block_end_pfn, &freelist, true); 608 609 /* 610 * In strict mode, isolate_freepages_block() returns 0 if 611 * there are any holes in the block (ie. invalid PFNs or 612 * non-free pages). 613 */ 614 if (!isolated) 615 break; 616 617 /* 618 * If we managed to isolate pages, it is always (1 << n) * 619 * pageblock_nr_pages for some non-negative n. (Max order 620 * page may span two pageblocks). 621 */ 622 } 623 624 /* __isolate_free_page() does not map the pages */ 625 map_pages(&freelist); 626 627 if (pfn < end_pfn) { 628 /* Loop terminated early, cleanup. */ 629 release_freepages(&freelist); 630 return 0; 631 } 632 633 /* We don't use freelists for anything. */ 634 return pfn; 635 } 636 637 /* Similar to reclaim, but different enough that they don't share logic */ 638 static bool too_many_isolated(struct zone *zone) 639 { 640 unsigned long active, inactive, isolated; 641 642 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) + 643 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON); 644 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) + 645 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON); 646 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) + 647 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON); 648 649 return isolated > (inactive + active) / 2; 650 } 651 652 /** 653 * isolate_migratepages_block() - isolate all migrate-able pages within 654 * a single pageblock 655 * @cc: Compaction control structure. 656 * @low_pfn: The first PFN to isolate 657 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 658 * @isolate_mode: Isolation mode to be used. 659 * 660 * Isolate all pages that can be migrated from the range specified by 661 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 662 * Returns zero if there is a fatal signal pending, otherwise PFN of the 663 * first page that was not scanned (which may be both less, equal to or more 664 * than end_pfn). 665 * 666 * The pages are isolated on cc->migratepages list (not required to be empty), 667 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 668 * is neither read nor updated. 669 */ 670 static unsigned long 671 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 672 unsigned long end_pfn, isolate_mode_t isolate_mode) 673 { 674 struct zone *zone = cc->zone; 675 unsigned long nr_scanned = 0, nr_isolated = 0; 676 struct lruvec *lruvec; 677 unsigned long flags = 0; 678 bool locked = false; 679 struct page *page = NULL, *valid_page = NULL; 680 unsigned long start_pfn = low_pfn; 681 bool skip_on_failure = false; 682 unsigned long next_skip_pfn = 0; 683 684 /* 685 * Ensure that there are not too many pages isolated from the LRU 686 * list by either parallel reclaimers or compaction. If there are, 687 * delay for some time until fewer pages are isolated 688 */ 689 while (unlikely(too_many_isolated(zone))) { 690 /* async migration should just abort */ 691 if (cc->mode == MIGRATE_ASYNC) 692 return 0; 693 694 congestion_wait(BLK_RW_ASYNC, HZ/10); 695 696 if (fatal_signal_pending(current)) 697 return 0; 698 } 699 700 if (compact_should_abort(cc)) 701 return 0; 702 703 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 704 skip_on_failure = true; 705 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 706 } 707 708 /* Time to isolate some pages for migration */ 709 for (; low_pfn < end_pfn; low_pfn++) { 710 711 if (skip_on_failure && low_pfn >= next_skip_pfn) { 712 /* 713 * We have isolated all migration candidates in the 714 * previous order-aligned block, and did not skip it due 715 * to failure. We should migrate the pages now and 716 * hopefully succeed compaction. 717 */ 718 if (nr_isolated) 719 break; 720 721 /* 722 * We failed to isolate in the previous order-aligned 723 * block. Set the new boundary to the end of the 724 * current block. Note we can't simply increase 725 * next_skip_pfn by 1 << order, as low_pfn might have 726 * been incremented by a higher number due to skipping 727 * a compound or a high-order buddy page in the 728 * previous loop iteration. 729 */ 730 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 731 } 732 733 /* 734 * Periodically drop the lock (if held) regardless of its 735 * contention, to give chance to IRQs. Abort async compaction 736 * if contended. 737 */ 738 if (!(low_pfn % SWAP_CLUSTER_MAX) 739 && compact_unlock_should_abort(zone_lru_lock(zone), flags, 740 &locked, cc)) 741 break; 742 743 if (!pfn_valid_within(low_pfn)) 744 goto isolate_fail; 745 nr_scanned++; 746 747 page = pfn_to_page(low_pfn); 748 749 if (!valid_page) 750 valid_page = page; 751 752 /* 753 * Skip if free. We read page order here without zone lock 754 * which is generally unsafe, but the race window is small and 755 * the worst thing that can happen is that we skip some 756 * potential isolation targets. 757 */ 758 if (PageBuddy(page)) { 759 unsigned long freepage_order = page_order_unsafe(page); 760 761 /* 762 * Without lock, we cannot be sure that what we got is 763 * a valid page order. Consider only values in the 764 * valid order range to prevent low_pfn overflow. 765 */ 766 if (freepage_order > 0 && freepage_order < MAX_ORDER) 767 low_pfn += (1UL << freepage_order) - 1; 768 continue; 769 } 770 771 /* 772 * Regardless of being on LRU, compound pages such as THP and 773 * hugetlbfs are not to be compacted. We can potentially save 774 * a lot of iterations if we skip them at once. The check is 775 * racy, but we can consider only valid values and the only 776 * danger is skipping too much. 777 */ 778 if (PageCompound(page)) { 779 unsigned int comp_order = compound_order(page); 780 781 if (likely(comp_order < MAX_ORDER)) 782 low_pfn += (1UL << comp_order) - 1; 783 784 goto isolate_fail; 785 } 786 787 /* 788 * Check may be lockless but that's ok as we recheck later. 789 * It's possible to migrate LRU and non-lru movable pages. 790 * Skip any other type of page 791 */ 792 if (!PageLRU(page)) { 793 /* 794 * __PageMovable can return false positive so we need 795 * to verify it under page_lock. 796 */ 797 if (unlikely(__PageMovable(page)) && 798 !PageIsolated(page)) { 799 if (locked) { 800 spin_unlock_irqrestore(zone_lru_lock(zone), 801 flags); 802 locked = false; 803 } 804 805 if (isolate_movable_page(page, isolate_mode)) 806 goto isolate_success; 807 } 808 809 goto isolate_fail; 810 } 811 812 /* 813 * Migration will fail if an anonymous page is pinned in memory, 814 * so avoid taking lru_lock and isolating it unnecessarily in an 815 * admittedly racy check. 816 */ 817 if (!page_mapping(page) && 818 page_count(page) > page_mapcount(page)) 819 goto isolate_fail; 820 821 /* If we already hold the lock, we can skip some rechecking */ 822 if (!locked) { 823 locked = compact_trylock_irqsave(zone_lru_lock(zone), 824 &flags, cc); 825 if (!locked) 826 break; 827 828 /* Recheck PageLRU and PageCompound under lock */ 829 if (!PageLRU(page)) 830 goto isolate_fail; 831 832 /* 833 * Page become compound since the non-locked check, 834 * and it's on LRU. It can only be a THP so the order 835 * is safe to read and it's 0 for tail pages. 836 */ 837 if (unlikely(PageCompound(page))) { 838 low_pfn += (1UL << compound_order(page)) - 1; 839 goto isolate_fail; 840 } 841 } 842 843 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 844 845 /* Try isolate the page */ 846 if (__isolate_lru_page(page, isolate_mode) != 0) 847 goto isolate_fail; 848 849 VM_BUG_ON_PAGE(PageCompound(page), page); 850 851 /* Successfully isolated */ 852 del_page_from_lru_list(page, lruvec, page_lru(page)); 853 inc_node_page_state(page, 854 NR_ISOLATED_ANON + page_is_file_cache(page)); 855 856 isolate_success: 857 list_add(&page->lru, &cc->migratepages); 858 cc->nr_migratepages++; 859 nr_isolated++; 860 861 /* 862 * Record where we could have freed pages by migration and not 863 * yet flushed them to buddy allocator. 864 * - this is the lowest page that was isolated and likely be 865 * then freed by migration. 866 */ 867 if (!cc->last_migrated_pfn) 868 cc->last_migrated_pfn = low_pfn; 869 870 /* Avoid isolating too much */ 871 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 872 ++low_pfn; 873 break; 874 } 875 876 continue; 877 isolate_fail: 878 if (!skip_on_failure) 879 continue; 880 881 /* 882 * We have isolated some pages, but then failed. Release them 883 * instead of migrating, as we cannot form the cc->order buddy 884 * page anyway. 885 */ 886 if (nr_isolated) { 887 if (locked) { 888 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 889 locked = false; 890 } 891 putback_movable_pages(&cc->migratepages); 892 cc->nr_migratepages = 0; 893 cc->last_migrated_pfn = 0; 894 nr_isolated = 0; 895 } 896 897 if (low_pfn < next_skip_pfn) { 898 low_pfn = next_skip_pfn - 1; 899 /* 900 * The check near the loop beginning would have updated 901 * next_skip_pfn too, but this is a bit simpler. 902 */ 903 next_skip_pfn += 1UL << cc->order; 904 } 905 } 906 907 /* 908 * The PageBuddy() check could have potentially brought us outside 909 * the range to be scanned. 910 */ 911 if (unlikely(low_pfn > end_pfn)) 912 low_pfn = end_pfn; 913 914 if (locked) 915 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 916 917 /* 918 * Update the pageblock-skip information and cached scanner pfn, 919 * if the whole pageblock was scanned without isolating any page. 920 */ 921 if (low_pfn == end_pfn) 922 update_pageblock_skip(cc, valid_page, nr_isolated, true); 923 924 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 925 nr_scanned, nr_isolated); 926 927 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 928 if (nr_isolated) 929 count_compact_events(COMPACTISOLATED, nr_isolated); 930 931 return low_pfn; 932 } 933 934 /** 935 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 936 * @cc: Compaction control structure. 937 * @start_pfn: The first PFN to start isolating. 938 * @end_pfn: The one-past-last PFN. 939 * 940 * Returns zero if isolation fails fatally due to e.g. pending signal. 941 * Otherwise, function returns one-past-the-last PFN of isolated page 942 * (which may be greater than end_pfn if end fell in a middle of a THP page). 943 */ 944 unsigned long 945 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 946 unsigned long end_pfn) 947 { 948 unsigned long pfn, block_start_pfn, block_end_pfn; 949 950 /* Scan block by block. First and last block may be incomplete */ 951 pfn = start_pfn; 952 block_start_pfn = pageblock_start_pfn(pfn); 953 if (block_start_pfn < cc->zone->zone_start_pfn) 954 block_start_pfn = cc->zone->zone_start_pfn; 955 block_end_pfn = pageblock_end_pfn(pfn); 956 957 for (; pfn < end_pfn; pfn = block_end_pfn, 958 block_start_pfn = block_end_pfn, 959 block_end_pfn += pageblock_nr_pages) { 960 961 block_end_pfn = min(block_end_pfn, end_pfn); 962 963 if (!pageblock_pfn_to_page(block_start_pfn, 964 block_end_pfn, cc->zone)) 965 continue; 966 967 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 968 ISOLATE_UNEVICTABLE); 969 970 if (!pfn) 971 break; 972 973 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 974 break; 975 } 976 977 return pfn; 978 } 979 980 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 981 #ifdef CONFIG_COMPACTION 982 983 /* Returns true if the page is within a block suitable for migration to */ 984 static bool suitable_migration_target(struct compact_control *cc, 985 struct page *page) 986 { 987 if (cc->ignore_block_suitable) 988 return true; 989 990 /* If the page is a large free page, then disallow migration */ 991 if (PageBuddy(page)) { 992 /* 993 * We are checking page_order without zone->lock taken. But 994 * the only small danger is that we skip a potentially suitable 995 * pageblock, so it's not worth to check order for valid range. 996 */ 997 if (page_order_unsafe(page) >= pageblock_order) 998 return false; 999 } 1000 1001 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1002 if (migrate_async_suitable(get_pageblock_migratetype(page))) 1003 return true; 1004 1005 /* Otherwise skip the block */ 1006 return false; 1007 } 1008 1009 /* 1010 * Test whether the free scanner has reached the same or lower pageblock than 1011 * the migration scanner, and compaction should thus terminate. 1012 */ 1013 static inline bool compact_scanners_met(struct compact_control *cc) 1014 { 1015 return (cc->free_pfn >> pageblock_order) 1016 <= (cc->migrate_pfn >> pageblock_order); 1017 } 1018 1019 /* 1020 * Based on information in the current compact_control, find blocks 1021 * suitable for isolating free pages from and then isolate them. 1022 */ 1023 static void isolate_freepages(struct compact_control *cc) 1024 { 1025 struct zone *zone = cc->zone; 1026 struct page *page; 1027 unsigned long block_start_pfn; /* start of current pageblock */ 1028 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1029 unsigned long block_end_pfn; /* end of current pageblock */ 1030 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1031 struct list_head *freelist = &cc->freepages; 1032 1033 /* 1034 * Initialise the free scanner. The starting point is where we last 1035 * successfully isolated from, zone-cached value, or the end of the 1036 * zone when isolating for the first time. For looping we also need 1037 * this pfn aligned down to the pageblock boundary, because we do 1038 * block_start_pfn -= pageblock_nr_pages in the for loop. 1039 * For ending point, take care when isolating in last pageblock of a 1040 * a zone which ends in the middle of a pageblock. 1041 * The low boundary is the end of the pageblock the migration scanner 1042 * is using. 1043 */ 1044 isolate_start_pfn = cc->free_pfn; 1045 block_start_pfn = pageblock_start_pfn(cc->free_pfn); 1046 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1047 zone_end_pfn(zone)); 1048 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1049 1050 /* 1051 * Isolate free pages until enough are available to migrate the 1052 * pages on cc->migratepages. We stop searching if the migrate 1053 * and free page scanners meet or enough free pages are isolated. 1054 */ 1055 for (; block_start_pfn >= low_pfn; 1056 block_end_pfn = block_start_pfn, 1057 block_start_pfn -= pageblock_nr_pages, 1058 isolate_start_pfn = block_start_pfn) { 1059 /* 1060 * This can iterate a massively long zone without finding any 1061 * suitable migration targets, so periodically check if we need 1062 * to schedule, or even abort async compaction. 1063 */ 1064 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1065 && compact_should_abort(cc)) 1066 break; 1067 1068 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1069 zone); 1070 if (!page) 1071 continue; 1072 1073 /* Check the block is suitable for migration */ 1074 if (!suitable_migration_target(cc, page)) 1075 continue; 1076 1077 /* If isolation recently failed, do not retry */ 1078 if (!isolation_suitable(cc, page)) 1079 continue; 1080 1081 /* Found a block suitable for isolating free pages from. */ 1082 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn, 1083 freelist, false); 1084 1085 /* 1086 * If we isolated enough freepages, or aborted due to lock 1087 * contention, terminate. 1088 */ 1089 if ((cc->nr_freepages >= cc->nr_migratepages) 1090 || cc->contended) { 1091 if (isolate_start_pfn >= block_end_pfn) { 1092 /* 1093 * Restart at previous pageblock if more 1094 * freepages can be isolated next time. 1095 */ 1096 isolate_start_pfn = 1097 block_start_pfn - pageblock_nr_pages; 1098 } 1099 break; 1100 } else if (isolate_start_pfn < block_end_pfn) { 1101 /* 1102 * If isolation failed early, do not continue 1103 * needlessly. 1104 */ 1105 break; 1106 } 1107 } 1108 1109 /* __isolate_free_page() does not map the pages */ 1110 map_pages(freelist); 1111 1112 /* 1113 * Record where the free scanner will restart next time. Either we 1114 * broke from the loop and set isolate_start_pfn based on the last 1115 * call to isolate_freepages_block(), or we met the migration scanner 1116 * and the loop terminated due to isolate_start_pfn < low_pfn 1117 */ 1118 cc->free_pfn = isolate_start_pfn; 1119 } 1120 1121 /* 1122 * This is a migrate-callback that "allocates" freepages by taking pages 1123 * from the isolated freelists in the block we are migrating to. 1124 */ 1125 static struct page *compaction_alloc(struct page *migratepage, 1126 unsigned long data, 1127 int **result) 1128 { 1129 struct compact_control *cc = (struct compact_control *)data; 1130 struct page *freepage; 1131 1132 /* 1133 * Isolate free pages if necessary, and if we are not aborting due to 1134 * contention. 1135 */ 1136 if (list_empty(&cc->freepages)) { 1137 if (!cc->contended) 1138 isolate_freepages(cc); 1139 1140 if (list_empty(&cc->freepages)) 1141 return NULL; 1142 } 1143 1144 freepage = list_entry(cc->freepages.next, struct page, lru); 1145 list_del(&freepage->lru); 1146 cc->nr_freepages--; 1147 1148 return freepage; 1149 } 1150 1151 /* 1152 * This is a migrate-callback that "frees" freepages back to the isolated 1153 * freelist. All pages on the freelist are from the same zone, so there is no 1154 * special handling needed for NUMA. 1155 */ 1156 static void compaction_free(struct page *page, unsigned long data) 1157 { 1158 struct compact_control *cc = (struct compact_control *)data; 1159 1160 list_add(&page->lru, &cc->freepages); 1161 cc->nr_freepages++; 1162 } 1163 1164 /* possible outcome of isolate_migratepages */ 1165 typedef enum { 1166 ISOLATE_ABORT, /* Abort compaction now */ 1167 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1168 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1169 } isolate_migrate_t; 1170 1171 /* 1172 * Allow userspace to control policy on scanning the unevictable LRU for 1173 * compactable pages. 1174 */ 1175 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1176 1177 /* 1178 * Isolate all pages that can be migrated from the first suitable block, 1179 * starting at the block pointed to by the migrate scanner pfn within 1180 * compact_control. 1181 */ 1182 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1183 struct compact_control *cc) 1184 { 1185 unsigned long block_start_pfn; 1186 unsigned long block_end_pfn; 1187 unsigned long low_pfn; 1188 struct page *page; 1189 const isolate_mode_t isolate_mode = 1190 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1191 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1192 1193 /* 1194 * Start at where we last stopped, or beginning of the zone as 1195 * initialized by compact_zone() 1196 */ 1197 low_pfn = cc->migrate_pfn; 1198 block_start_pfn = pageblock_start_pfn(low_pfn); 1199 if (block_start_pfn < zone->zone_start_pfn) 1200 block_start_pfn = zone->zone_start_pfn; 1201 1202 /* Only scan within a pageblock boundary */ 1203 block_end_pfn = pageblock_end_pfn(low_pfn); 1204 1205 /* 1206 * Iterate over whole pageblocks until we find the first suitable. 1207 * Do not cross the free scanner. 1208 */ 1209 for (; block_end_pfn <= cc->free_pfn; 1210 low_pfn = block_end_pfn, 1211 block_start_pfn = block_end_pfn, 1212 block_end_pfn += pageblock_nr_pages) { 1213 1214 /* 1215 * This can potentially iterate a massively long zone with 1216 * many pageblocks unsuitable, so periodically check if we 1217 * need to schedule, or even abort async compaction. 1218 */ 1219 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1220 && compact_should_abort(cc)) 1221 break; 1222 1223 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1224 zone); 1225 if (!page) 1226 continue; 1227 1228 /* If isolation recently failed, do not retry */ 1229 if (!isolation_suitable(cc, page)) 1230 continue; 1231 1232 /* 1233 * For async compaction, also only scan in MOVABLE blocks. 1234 * Async compaction is optimistic to see if the minimum amount 1235 * of work satisfies the allocation. 1236 */ 1237 if (cc->mode == MIGRATE_ASYNC && 1238 !migrate_async_suitable(get_pageblock_migratetype(page))) 1239 continue; 1240 1241 /* Perform the isolation */ 1242 low_pfn = isolate_migratepages_block(cc, low_pfn, 1243 block_end_pfn, isolate_mode); 1244 1245 if (!low_pfn || cc->contended) 1246 return ISOLATE_ABORT; 1247 1248 /* 1249 * Either we isolated something and proceed with migration. Or 1250 * we failed and compact_zone should decide if we should 1251 * continue or not. 1252 */ 1253 break; 1254 } 1255 1256 /* Record where migration scanner will be restarted. */ 1257 cc->migrate_pfn = low_pfn; 1258 1259 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1260 } 1261 1262 /* 1263 * order == -1 is expected when compacting via 1264 * /proc/sys/vm/compact_memory 1265 */ 1266 static inline bool is_via_compact_memory(int order) 1267 { 1268 return order == -1; 1269 } 1270 1271 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc, 1272 const int migratetype) 1273 { 1274 unsigned int order; 1275 unsigned long watermark; 1276 1277 if (cc->contended || fatal_signal_pending(current)) 1278 return COMPACT_CONTENDED; 1279 1280 /* Compaction run completes if the migrate and free scanner meet */ 1281 if (compact_scanners_met(cc)) { 1282 /* Let the next compaction start anew. */ 1283 reset_cached_positions(zone); 1284 1285 /* 1286 * Mark that the PG_migrate_skip information should be cleared 1287 * by kswapd when it goes to sleep. kcompactd does not set the 1288 * flag itself as the decision to be clear should be directly 1289 * based on an allocation request. 1290 */ 1291 if (cc->direct_compaction) 1292 zone->compact_blockskip_flush = true; 1293 1294 if (cc->whole_zone) 1295 return COMPACT_COMPLETE; 1296 else 1297 return COMPACT_PARTIAL_SKIPPED; 1298 } 1299 1300 if (is_via_compact_memory(cc->order)) 1301 return COMPACT_CONTINUE; 1302 1303 /* Compaction run is not finished if the watermark is not met */ 1304 watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK]; 1305 1306 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx, 1307 cc->alloc_flags)) 1308 return COMPACT_CONTINUE; 1309 1310 /* Direct compactor: Is a suitable page free? */ 1311 for (order = cc->order; order < MAX_ORDER; order++) { 1312 struct free_area *area = &zone->free_area[order]; 1313 bool can_steal; 1314 1315 /* Job done if page is free of the right migratetype */ 1316 if (!list_empty(&area->free_list[migratetype])) 1317 return COMPACT_SUCCESS; 1318 1319 #ifdef CONFIG_CMA 1320 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1321 if (migratetype == MIGRATE_MOVABLE && 1322 !list_empty(&area->free_list[MIGRATE_CMA])) 1323 return COMPACT_SUCCESS; 1324 #endif 1325 /* 1326 * Job done if allocation would steal freepages from 1327 * other migratetype buddy lists. 1328 */ 1329 if (find_suitable_fallback(area, order, migratetype, 1330 true, &can_steal) != -1) 1331 return COMPACT_SUCCESS; 1332 } 1333 1334 return COMPACT_NO_SUITABLE_PAGE; 1335 } 1336 1337 static enum compact_result compact_finished(struct zone *zone, 1338 struct compact_control *cc, 1339 const int migratetype) 1340 { 1341 int ret; 1342 1343 ret = __compact_finished(zone, cc, migratetype); 1344 trace_mm_compaction_finished(zone, cc->order, ret); 1345 if (ret == COMPACT_NO_SUITABLE_PAGE) 1346 ret = COMPACT_CONTINUE; 1347 1348 return ret; 1349 } 1350 1351 /* 1352 * compaction_suitable: Is this suitable to run compaction on this zone now? 1353 * Returns 1354 * COMPACT_SKIPPED - If there are too few free pages for compaction 1355 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1356 * COMPACT_CONTINUE - If compaction should run now 1357 */ 1358 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1359 unsigned int alloc_flags, 1360 int classzone_idx, 1361 unsigned long wmark_target) 1362 { 1363 unsigned long watermark; 1364 1365 if (is_via_compact_memory(order)) 1366 return COMPACT_CONTINUE; 1367 1368 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1369 /* 1370 * If watermarks for high-order allocation are already met, there 1371 * should be no need for compaction at all. 1372 */ 1373 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1374 alloc_flags)) 1375 return COMPACT_SUCCESS; 1376 1377 /* 1378 * Watermarks for order-0 must be met for compaction to be able to 1379 * isolate free pages for migration targets. This means that the 1380 * watermark and alloc_flags have to match, or be more pessimistic than 1381 * the check in __isolate_free_page(). We don't use the direct 1382 * compactor's alloc_flags, as they are not relevant for freepage 1383 * isolation. We however do use the direct compactor's classzone_idx to 1384 * skip over zones where lowmem reserves would prevent allocation even 1385 * if compaction succeeds. 1386 * For costly orders, we require low watermark instead of min for 1387 * compaction to proceed to increase its chances. 1388 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1389 * suitable migration targets 1390 */ 1391 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1392 low_wmark_pages(zone) : min_wmark_pages(zone); 1393 watermark += compact_gap(order); 1394 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1395 ALLOC_CMA, wmark_target)) 1396 return COMPACT_SKIPPED; 1397 1398 return COMPACT_CONTINUE; 1399 } 1400 1401 enum compact_result compaction_suitable(struct zone *zone, int order, 1402 unsigned int alloc_flags, 1403 int classzone_idx) 1404 { 1405 enum compact_result ret; 1406 int fragindex; 1407 1408 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 1409 zone_page_state(zone, NR_FREE_PAGES)); 1410 /* 1411 * fragmentation index determines if allocation failures are due to 1412 * low memory or external fragmentation 1413 * 1414 * index of -1000 would imply allocations might succeed depending on 1415 * watermarks, but we already failed the high-order watermark check 1416 * index towards 0 implies failure is due to lack of memory 1417 * index towards 1000 implies failure is due to fragmentation 1418 * 1419 * Only compact if a failure would be due to fragmentation. Also 1420 * ignore fragindex for non-costly orders where the alternative to 1421 * a successful reclaim/compaction is OOM. Fragindex and the 1422 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 1423 * excessive compaction for costly orders, but it should not be at the 1424 * expense of system stability. 1425 */ 1426 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 1427 fragindex = fragmentation_index(zone, order); 1428 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1429 ret = COMPACT_NOT_SUITABLE_ZONE; 1430 } 1431 1432 trace_mm_compaction_suitable(zone, order, ret); 1433 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1434 ret = COMPACT_SKIPPED; 1435 1436 return ret; 1437 } 1438 1439 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 1440 int alloc_flags) 1441 { 1442 struct zone *zone; 1443 struct zoneref *z; 1444 1445 /* 1446 * Make sure at least one zone would pass __compaction_suitable if we continue 1447 * retrying the reclaim. 1448 */ 1449 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1450 ac->nodemask) { 1451 unsigned long available; 1452 enum compact_result compact_result; 1453 1454 /* 1455 * Do not consider all the reclaimable memory because we do not 1456 * want to trash just for a single high order allocation which 1457 * is even not guaranteed to appear even if __compaction_suitable 1458 * is happy about the watermark check. 1459 */ 1460 available = zone_reclaimable_pages(zone) / order; 1461 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 1462 compact_result = __compaction_suitable(zone, order, alloc_flags, 1463 ac_classzone_idx(ac), available); 1464 if (compact_result != COMPACT_SKIPPED) 1465 return true; 1466 } 1467 1468 return false; 1469 } 1470 1471 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc) 1472 { 1473 enum compact_result ret; 1474 unsigned long start_pfn = zone->zone_start_pfn; 1475 unsigned long end_pfn = zone_end_pfn(zone); 1476 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1477 const bool sync = cc->mode != MIGRATE_ASYNC; 1478 1479 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1480 cc->classzone_idx); 1481 /* Compaction is likely to fail */ 1482 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 1483 return ret; 1484 1485 /* huh, compaction_suitable is returning something unexpected */ 1486 VM_BUG_ON(ret != COMPACT_CONTINUE); 1487 1488 /* 1489 * Clear pageblock skip if there were failures recently and compaction 1490 * is about to be retried after being deferred. 1491 */ 1492 if (compaction_restarting(zone, cc->order)) 1493 __reset_isolation_suitable(zone); 1494 1495 /* 1496 * Setup to move all movable pages to the end of the zone. Used cached 1497 * information on where the scanners should start (unless we explicitly 1498 * want to compact the whole zone), but check that it is initialised 1499 * by ensuring the values are within zone boundaries. 1500 */ 1501 if (cc->whole_zone) { 1502 cc->migrate_pfn = start_pfn; 1503 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1504 } else { 1505 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1506 cc->free_pfn = zone->compact_cached_free_pfn; 1507 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1508 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1509 zone->compact_cached_free_pfn = cc->free_pfn; 1510 } 1511 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1512 cc->migrate_pfn = start_pfn; 1513 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1514 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1515 } 1516 1517 if (cc->migrate_pfn == start_pfn) 1518 cc->whole_zone = true; 1519 } 1520 1521 cc->last_migrated_pfn = 0; 1522 1523 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1524 cc->free_pfn, end_pfn, sync); 1525 1526 migrate_prep_local(); 1527 1528 while ((ret = compact_finished(zone, cc, migratetype)) == 1529 COMPACT_CONTINUE) { 1530 int err; 1531 1532 switch (isolate_migratepages(zone, cc)) { 1533 case ISOLATE_ABORT: 1534 ret = COMPACT_CONTENDED; 1535 putback_movable_pages(&cc->migratepages); 1536 cc->nr_migratepages = 0; 1537 goto out; 1538 case ISOLATE_NONE: 1539 /* 1540 * We haven't isolated and migrated anything, but 1541 * there might still be unflushed migrations from 1542 * previous cc->order aligned block. 1543 */ 1544 goto check_drain; 1545 case ISOLATE_SUCCESS: 1546 ; 1547 } 1548 1549 err = migrate_pages(&cc->migratepages, compaction_alloc, 1550 compaction_free, (unsigned long)cc, cc->mode, 1551 MR_COMPACTION); 1552 1553 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1554 &cc->migratepages); 1555 1556 /* All pages were either migrated or will be released */ 1557 cc->nr_migratepages = 0; 1558 if (err) { 1559 putback_movable_pages(&cc->migratepages); 1560 /* 1561 * migrate_pages() may return -ENOMEM when scanners meet 1562 * and we want compact_finished() to detect it 1563 */ 1564 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1565 ret = COMPACT_CONTENDED; 1566 goto out; 1567 } 1568 /* 1569 * We failed to migrate at least one page in the current 1570 * order-aligned block, so skip the rest of it. 1571 */ 1572 if (cc->direct_compaction && 1573 (cc->mode == MIGRATE_ASYNC)) { 1574 cc->migrate_pfn = block_end_pfn( 1575 cc->migrate_pfn - 1, cc->order); 1576 /* Draining pcplists is useless in this case */ 1577 cc->last_migrated_pfn = 0; 1578 1579 } 1580 } 1581 1582 check_drain: 1583 /* 1584 * Has the migration scanner moved away from the previous 1585 * cc->order aligned block where we migrated from? If yes, 1586 * flush the pages that were freed, so that they can merge and 1587 * compact_finished() can detect immediately if allocation 1588 * would succeed. 1589 */ 1590 if (cc->order > 0 && cc->last_migrated_pfn) { 1591 int cpu; 1592 unsigned long current_block_start = 1593 block_start_pfn(cc->migrate_pfn, cc->order); 1594 1595 if (cc->last_migrated_pfn < current_block_start) { 1596 cpu = get_cpu(); 1597 lru_add_drain_cpu(cpu); 1598 drain_local_pages(zone); 1599 put_cpu(); 1600 /* No more flushing until we migrate again */ 1601 cc->last_migrated_pfn = 0; 1602 } 1603 } 1604 1605 } 1606 1607 out: 1608 /* 1609 * Release free pages and update where the free scanner should restart, 1610 * so we don't leave any returned pages behind in the next attempt. 1611 */ 1612 if (cc->nr_freepages > 0) { 1613 unsigned long free_pfn = release_freepages(&cc->freepages); 1614 1615 cc->nr_freepages = 0; 1616 VM_BUG_ON(free_pfn == 0); 1617 /* The cached pfn is always the first in a pageblock */ 1618 free_pfn = pageblock_start_pfn(free_pfn); 1619 /* 1620 * Only go back, not forward. The cached pfn might have been 1621 * already reset to zone end in compact_finished() 1622 */ 1623 if (free_pfn > zone->compact_cached_free_pfn) 1624 zone->compact_cached_free_pfn = free_pfn; 1625 } 1626 1627 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1628 cc->free_pfn, end_pfn, sync, ret); 1629 1630 return ret; 1631 } 1632 1633 static enum compact_result compact_zone_order(struct zone *zone, int order, 1634 gfp_t gfp_mask, enum compact_priority prio, 1635 unsigned int alloc_flags, int classzone_idx) 1636 { 1637 enum compact_result ret; 1638 struct compact_control cc = { 1639 .nr_freepages = 0, 1640 .nr_migratepages = 0, 1641 .order = order, 1642 .gfp_mask = gfp_mask, 1643 .zone = zone, 1644 .mode = (prio == COMPACT_PRIO_ASYNC) ? 1645 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 1646 .alloc_flags = alloc_flags, 1647 .classzone_idx = classzone_idx, 1648 .direct_compaction = true, 1649 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 1650 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 1651 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 1652 }; 1653 INIT_LIST_HEAD(&cc.freepages); 1654 INIT_LIST_HEAD(&cc.migratepages); 1655 1656 ret = compact_zone(zone, &cc); 1657 1658 VM_BUG_ON(!list_empty(&cc.freepages)); 1659 VM_BUG_ON(!list_empty(&cc.migratepages)); 1660 1661 return ret; 1662 } 1663 1664 int sysctl_extfrag_threshold = 500; 1665 1666 /** 1667 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1668 * @gfp_mask: The GFP mask of the current allocation 1669 * @order: The order of the current allocation 1670 * @alloc_flags: The allocation flags of the current allocation 1671 * @ac: The context of current allocation 1672 * @mode: The migration mode for async, sync light, or sync migration 1673 * 1674 * This is the main entry point for direct page compaction. 1675 */ 1676 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1677 unsigned int alloc_flags, const struct alloc_context *ac, 1678 enum compact_priority prio) 1679 { 1680 int may_enter_fs = gfp_mask & __GFP_FS; 1681 int may_perform_io = gfp_mask & __GFP_IO; 1682 struct zoneref *z; 1683 struct zone *zone; 1684 enum compact_result rc = COMPACT_SKIPPED; 1685 1686 /* Check if the GFP flags allow compaction */ 1687 if (!may_enter_fs || !may_perform_io) 1688 return COMPACT_SKIPPED; 1689 1690 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 1691 1692 /* Compact each zone in the list */ 1693 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1694 ac->nodemask) { 1695 enum compact_result status; 1696 1697 if (prio > MIN_COMPACT_PRIORITY 1698 && compaction_deferred(zone, order)) { 1699 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 1700 continue; 1701 } 1702 1703 status = compact_zone_order(zone, order, gfp_mask, prio, 1704 alloc_flags, ac_classzone_idx(ac)); 1705 rc = max(status, rc); 1706 1707 /* The allocation should succeed, stop compacting */ 1708 if (status == COMPACT_SUCCESS) { 1709 /* 1710 * We think the allocation will succeed in this zone, 1711 * but it is not certain, hence the false. The caller 1712 * will repeat this with true if allocation indeed 1713 * succeeds in this zone. 1714 */ 1715 compaction_defer_reset(zone, order, false); 1716 1717 break; 1718 } 1719 1720 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 1721 status == COMPACT_PARTIAL_SKIPPED)) 1722 /* 1723 * We think that allocation won't succeed in this zone 1724 * so we defer compaction there. If it ends up 1725 * succeeding after all, it will be reset. 1726 */ 1727 defer_compaction(zone, order); 1728 1729 /* 1730 * We might have stopped compacting due to need_resched() in 1731 * async compaction, or due to a fatal signal detected. In that 1732 * case do not try further zones 1733 */ 1734 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 1735 || fatal_signal_pending(current)) 1736 break; 1737 } 1738 1739 return rc; 1740 } 1741 1742 1743 /* Compact all zones within a node */ 1744 static void compact_node(int nid) 1745 { 1746 pg_data_t *pgdat = NODE_DATA(nid); 1747 int zoneid; 1748 struct zone *zone; 1749 struct compact_control cc = { 1750 .order = -1, 1751 .mode = MIGRATE_SYNC, 1752 .ignore_skip_hint = true, 1753 .whole_zone = true, 1754 }; 1755 1756 1757 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1758 1759 zone = &pgdat->node_zones[zoneid]; 1760 if (!populated_zone(zone)) 1761 continue; 1762 1763 cc.nr_freepages = 0; 1764 cc.nr_migratepages = 0; 1765 cc.zone = zone; 1766 INIT_LIST_HEAD(&cc.freepages); 1767 INIT_LIST_HEAD(&cc.migratepages); 1768 1769 compact_zone(zone, &cc); 1770 1771 VM_BUG_ON(!list_empty(&cc.freepages)); 1772 VM_BUG_ON(!list_empty(&cc.migratepages)); 1773 } 1774 } 1775 1776 /* Compact all nodes in the system */ 1777 static void compact_nodes(void) 1778 { 1779 int nid; 1780 1781 /* Flush pending updates to the LRU lists */ 1782 lru_add_drain_all(); 1783 1784 for_each_online_node(nid) 1785 compact_node(nid); 1786 } 1787 1788 /* The written value is actually unused, all memory is compacted */ 1789 int sysctl_compact_memory; 1790 1791 /* 1792 * This is the entry point for compacting all nodes via 1793 * /proc/sys/vm/compact_memory 1794 */ 1795 int sysctl_compaction_handler(struct ctl_table *table, int write, 1796 void __user *buffer, size_t *length, loff_t *ppos) 1797 { 1798 if (write) 1799 compact_nodes(); 1800 1801 return 0; 1802 } 1803 1804 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1805 void __user *buffer, size_t *length, loff_t *ppos) 1806 { 1807 proc_dointvec_minmax(table, write, buffer, length, ppos); 1808 1809 return 0; 1810 } 1811 1812 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1813 static ssize_t sysfs_compact_node(struct device *dev, 1814 struct device_attribute *attr, 1815 const char *buf, size_t count) 1816 { 1817 int nid = dev->id; 1818 1819 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1820 /* Flush pending updates to the LRU lists */ 1821 lru_add_drain_all(); 1822 1823 compact_node(nid); 1824 } 1825 1826 return count; 1827 } 1828 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1829 1830 int compaction_register_node(struct node *node) 1831 { 1832 return device_create_file(&node->dev, &dev_attr_compact); 1833 } 1834 1835 void compaction_unregister_node(struct node *node) 1836 { 1837 return device_remove_file(&node->dev, &dev_attr_compact); 1838 } 1839 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1840 1841 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 1842 { 1843 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 1844 } 1845 1846 static bool kcompactd_node_suitable(pg_data_t *pgdat) 1847 { 1848 int zoneid; 1849 struct zone *zone; 1850 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 1851 1852 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 1853 zone = &pgdat->node_zones[zoneid]; 1854 1855 if (!populated_zone(zone)) 1856 continue; 1857 1858 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 1859 classzone_idx) == COMPACT_CONTINUE) 1860 return true; 1861 } 1862 1863 return false; 1864 } 1865 1866 static void kcompactd_do_work(pg_data_t *pgdat) 1867 { 1868 /* 1869 * With no special task, compact all zones so that a page of requested 1870 * order is allocatable. 1871 */ 1872 int zoneid; 1873 struct zone *zone; 1874 struct compact_control cc = { 1875 .order = pgdat->kcompactd_max_order, 1876 .classzone_idx = pgdat->kcompactd_classzone_idx, 1877 .mode = MIGRATE_SYNC_LIGHT, 1878 .ignore_skip_hint = true, 1879 1880 }; 1881 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 1882 cc.classzone_idx); 1883 count_vm_event(KCOMPACTD_WAKE); 1884 1885 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 1886 int status; 1887 1888 zone = &pgdat->node_zones[zoneid]; 1889 if (!populated_zone(zone)) 1890 continue; 1891 1892 if (compaction_deferred(zone, cc.order)) 1893 continue; 1894 1895 if (compaction_suitable(zone, cc.order, 0, zoneid) != 1896 COMPACT_CONTINUE) 1897 continue; 1898 1899 cc.nr_freepages = 0; 1900 cc.nr_migratepages = 0; 1901 cc.zone = zone; 1902 INIT_LIST_HEAD(&cc.freepages); 1903 INIT_LIST_HEAD(&cc.migratepages); 1904 1905 if (kthread_should_stop()) 1906 return; 1907 status = compact_zone(zone, &cc); 1908 1909 if (status == COMPACT_SUCCESS) { 1910 compaction_defer_reset(zone, cc.order, false); 1911 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 1912 /* 1913 * We use sync migration mode here, so we defer like 1914 * sync direct compaction does. 1915 */ 1916 defer_compaction(zone, cc.order); 1917 } 1918 1919 VM_BUG_ON(!list_empty(&cc.freepages)); 1920 VM_BUG_ON(!list_empty(&cc.migratepages)); 1921 } 1922 1923 /* 1924 * Regardless of success, we are done until woken up next. But remember 1925 * the requested order/classzone_idx in case it was higher/tighter than 1926 * our current ones 1927 */ 1928 if (pgdat->kcompactd_max_order <= cc.order) 1929 pgdat->kcompactd_max_order = 0; 1930 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 1931 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1932 } 1933 1934 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 1935 { 1936 if (!order) 1937 return; 1938 1939 if (pgdat->kcompactd_max_order < order) 1940 pgdat->kcompactd_max_order = order; 1941 1942 if (pgdat->kcompactd_classzone_idx > classzone_idx) 1943 pgdat->kcompactd_classzone_idx = classzone_idx; 1944 1945 if (!waitqueue_active(&pgdat->kcompactd_wait)) 1946 return; 1947 1948 if (!kcompactd_node_suitable(pgdat)) 1949 return; 1950 1951 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 1952 classzone_idx); 1953 wake_up_interruptible(&pgdat->kcompactd_wait); 1954 } 1955 1956 /* 1957 * The background compaction daemon, started as a kernel thread 1958 * from the init process. 1959 */ 1960 static int kcompactd(void *p) 1961 { 1962 pg_data_t *pgdat = (pg_data_t*)p; 1963 struct task_struct *tsk = current; 1964 1965 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1966 1967 if (!cpumask_empty(cpumask)) 1968 set_cpus_allowed_ptr(tsk, cpumask); 1969 1970 set_freezable(); 1971 1972 pgdat->kcompactd_max_order = 0; 1973 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1974 1975 while (!kthread_should_stop()) { 1976 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 1977 wait_event_freezable(pgdat->kcompactd_wait, 1978 kcompactd_work_requested(pgdat)); 1979 1980 kcompactd_do_work(pgdat); 1981 } 1982 1983 return 0; 1984 } 1985 1986 /* 1987 * This kcompactd start function will be called by init and node-hot-add. 1988 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 1989 */ 1990 int kcompactd_run(int nid) 1991 { 1992 pg_data_t *pgdat = NODE_DATA(nid); 1993 int ret = 0; 1994 1995 if (pgdat->kcompactd) 1996 return 0; 1997 1998 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 1999 if (IS_ERR(pgdat->kcompactd)) { 2000 pr_err("Failed to start kcompactd on node %d\n", nid); 2001 ret = PTR_ERR(pgdat->kcompactd); 2002 pgdat->kcompactd = NULL; 2003 } 2004 return ret; 2005 } 2006 2007 /* 2008 * Called by memory hotplug when all memory in a node is offlined. Caller must 2009 * hold mem_hotplug_begin/end(). 2010 */ 2011 void kcompactd_stop(int nid) 2012 { 2013 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2014 2015 if (kcompactd) { 2016 kthread_stop(kcompactd); 2017 NODE_DATA(nid)->kcompactd = NULL; 2018 } 2019 } 2020 2021 /* 2022 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2023 * not required for correctness. So if the last cpu in a node goes 2024 * away, we get changed to run anywhere: as the first one comes back, 2025 * restore their cpu bindings. 2026 */ 2027 static int kcompactd_cpu_online(unsigned int cpu) 2028 { 2029 int nid; 2030 2031 for_each_node_state(nid, N_MEMORY) { 2032 pg_data_t *pgdat = NODE_DATA(nid); 2033 const struct cpumask *mask; 2034 2035 mask = cpumask_of_node(pgdat->node_id); 2036 2037 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2038 /* One of our CPUs online: restore mask */ 2039 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2040 } 2041 return 0; 2042 } 2043 2044 static int __init kcompactd_init(void) 2045 { 2046 int nid; 2047 int ret; 2048 2049 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2050 "mm/compaction:online", 2051 kcompactd_cpu_online, NULL); 2052 if (ret < 0) { 2053 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2054 return ret; 2055 } 2056 2057 for_each_node_state(nid, N_MEMORY) 2058 kcompactd_run(nid); 2059 return 0; 2060 } 2061 subsys_initcall(kcompactd_init) 2062 2063 #endif /* CONFIG_COMPACTION */ 2064