xref: /linux/lib/reed_solomon/reed_solomon.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * lib/reed_solomon/rslib.c
3  *
4  * Overview:
5  *   Generic Reed Solomon encoder / decoder library
6  *
7  * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
8  *
9  * Reed Solomon code lifted from reed solomon library written by Phil Karn
10  * Copyright 2002 Phil Karn, KA9Q
11  *
12  * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  *
18  * Description:
19  *
20  * The generic Reed Solomon library provides runtime configurable
21  * encoding / decoding of RS codes.
22  * Each user must call init_rs to get a pointer to a rs_control
23  * structure for the given rs parameters. This structure is either
24  * generated or a already available matching control structure is used.
25  * If a structure is generated then the polynomial arrays for
26  * fast encoding / decoding are built. This can take some time so
27  * make sure not to call this function from a time critical path.
28  * Usually a module / driver should initialize the necessary
29  * rs_control structure on module / driver init and release it
30  * on exit.
31  * The encoding puts the calculated syndrome into a given syndrome
32  * buffer.
33  * The decoding is a two step process. The first step calculates
34  * the syndrome over the received (data + syndrome) and calls the
35  * second stage, which does the decoding / error correction itself.
36  * Many hw encoders provide a syndrome calculation over the received
37  * data + syndrome and can call the second stage directly.
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/module.h>
45 #include <linux/rslib.h>
46 #include <linux/slab.h>
47 #include <linux/mutex.h>
48 #include <asm/semaphore.h>
49 
50 /* This list holds all currently allocated rs control structures */
51 static LIST_HEAD (rslist);
52 /* Protection for the list */
53 static DEFINE_MUTEX(rslistlock);
54 
55 /**
56  * rs_init - Initialize a Reed-Solomon codec
57  *
58  * @symsize:	symbol size, bits (1-8)
59  * @gfpoly:	Field generator polynomial coefficients
60  * @fcr:	first root of RS code generator polynomial, index form
61  * @prim:	primitive element to generate polynomial roots
62  * @nroots:	RS code generator polynomial degree (number of roots)
63  *
64  * Allocate a control structure and the polynom arrays for faster
65  * en/decoding. Fill the arrays according to the given parameters
66  */
67 static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
68 				   int prim, int nroots)
69 {
70 	struct rs_control *rs;
71 	int i, j, sr, root, iprim;
72 
73 	/* Allocate the control structure */
74 	rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL);
75 	if (rs == NULL)
76 		return NULL;
77 
78 	INIT_LIST_HEAD(&rs->list);
79 
80 	rs->mm = symsize;
81 	rs->nn = (1 << symsize) - 1;
82 	rs->fcr = fcr;
83 	rs->prim = prim;
84 	rs->nroots = nroots;
85 	rs->gfpoly = gfpoly;
86 
87 	/* Allocate the arrays */
88 	rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
89 	if (rs->alpha_to == NULL)
90 		goto errrs;
91 
92 	rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
93 	if (rs->index_of == NULL)
94 		goto erralp;
95 
96 	rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL);
97 	if(rs->genpoly == NULL)
98 		goto erridx;
99 
100 	/* Generate Galois field lookup tables */
101 	rs->index_of[0] = rs->nn;	/* log(zero) = -inf */
102 	rs->alpha_to[rs->nn] = 0;	/* alpha**-inf = 0 */
103 	sr = 1;
104 	for (i = 0; i < rs->nn; i++) {
105 		rs->index_of[sr] = i;
106 		rs->alpha_to[i] = sr;
107 		sr <<= 1;
108 		if (sr & (1 << symsize))
109 			sr ^= gfpoly;
110 		sr &= rs->nn;
111 	}
112 	/* If it's not primitive, exit */
113 	if(sr != 1)
114 		goto errpol;
115 
116 	/* Find prim-th root of 1, used in decoding */
117 	for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
118 	/* prim-th root of 1, index form */
119 	rs->iprim = iprim / prim;
120 
121 	/* Form RS code generator polynomial from its roots */
122 	rs->genpoly[0] = 1;
123 	for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
124 		rs->genpoly[i + 1] = 1;
125 		/* Multiply rs->genpoly[] by  @**(root + x) */
126 		for (j = i; j > 0; j--) {
127 			if (rs->genpoly[j] != 0) {
128 				rs->genpoly[j] = rs->genpoly[j -1] ^
129 					rs->alpha_to[rs_modnn(rs,
130 					rs->index_of[rs->genpoly[j]] + root)];
131 			} else
132 				rs->genpoly[j] = rs->genpoly[j - 1];
133 		}
134 		/* rs->genpoly[0] can never be zero */
135 		rs->genpoly[0] =
136 			rs->alpha_to[rs_modnn(rs,
137 				rs->index_of[rs->genpoly[0]] + root)];
138 	}
139 	/* convert rs->genpoly[] to index form for quicker encoding */
140 	for (i = 0; i <= nroots; i++)
141 		rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
142 	return rs;
143 
144 	/* Error exit */
145 errpol:
146 	kfree(rs->genpoly);
147 erridx:
148 	kfree(rs->index_of);
149 erralp:
150 	kfree(rs->alpha_to);
151 errrs:
152 	kfree(rs);
153 	return NULL;
154 }
155 
156 
157 /**
158  *  free_rs - Free the rs control structure, if its not longer used
159  *
160  *  @rs:	the control structure which is not longer used by the
161  *		caller
162  */
163 void free_rs(struct rs_control *rs)
164 {
165 	mutex_lock(&rslistlock);
166 	rs->users--;
167 	if(!rs->users) {
168 		list_del(&rs->list);
169 		kfree(rs->alpha_to);
170 		kfree(rs->index_of);
171 		kfree(rs->genpoly);
172 		kfree(rs);
173 	}
174 	mutex_unlock(&rslistlock);
175 }
176 
177 /**
178  * init_rs - Find a matching or allocate a new rs control structure
179  *
180  *  @symsize:	the symbol size (number of bits)
181  *  @gfpoly:	the extended Galois field generator polynomial coefficients,
182  *		with the 0th coefficient in the low order bit. The polynomial
183  *		must be primitive;
184  *  @fcr:  	the first consecutive root of the rs code generator polynomial
185  *		in index form
186  *  @prim:	primitive element to generate polynomial roots
187  *  @nroots:	RS code generator polynomial degree (number of roots)
188  */
189 struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
190 			   int nroots)
191 {
192 	struct list_head	*tmp;
193 	struct rs_control	*rs;
194 
195 	/* Sanity checks */
196 	if (symsize < 1)
197 		return NULL;
198 	if (fcr < 0 || fcr >= (1<<symsize))
199     		return NULL;
200 	if (prim <= 0 || prim >= (1<<symsize))
201     		return NULL;
202 	if (nroots < 0 || nroots >= (1<<symsize))
203 		return NULL;
204 
205 	mutex_lock(&rslistlock);
206 
207 	/* Walk through the list and look for a matching entry */
208 	list_for_each(tmp, &rslist) {
209 		rs = list_entry(tmp, struct rs_control, list);
210 		if (symsize != rs->mm)
211 			continue;
212 		if (gfpoly != rs->gfpoly)
213 			continue;
214 		if (fcr != rs->fcr)
215 			continue;
216 		if (prim != rs->prim)
217 			continue;
218 		if (nroots != rs->nroots)
219 			continue;
220 		/* We have a matching one already */
221 		rs->users++;
222 		goto out;
223 	}
224 
225 	/* Create a new one */
226 	rs = rs_init(symsize, gfpoly, fcr, prim, nroots);
227 	if (rs) {
228 		rs->users = 1;
229 		list_add(&rs->list, &rslist);
230 	}
231 out:
232 	mutex_unlock(&rslistlock);
233 	return rs;
234 }
235 
236 #ifdef CONFIG_REED_SOLOMON_ENC8
237 /**
238  *  encode_rs8 - Calculate the parity for data values (8bit data width)
239  *
240  *  @rs:	the rs control structure
241  *  @data:	data field of a given type
242  *  @len:	data length
243  *  @par:	parity data, must be initialized by caller (usually all 0)
244  *  @invmsk:	invert data mask (will be xored on data)
245  *
246  *  The parity uses a uint16_t data type to enable
247  *  symbol size > 8. The calling code must take care of encoding of the
248  *  syndrome result for storage itself.
249  */
250 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
251 	       uint16_t invmsk)
252 {
253 #include "encode_rs.c"
254 }
255 EXPORT_SYMBOL_GPL(encode_rs8);
256 #endif
257 
258 #ifdef CONFIG_REED_SOLOMON_DEC8
259 /**
260  *  decode_rs8 - Decode codeword (8bit data width)
261  *
262  *  @rs:	the rs control structure
263  *  @data:	data field of a given type
264  *  @par:	received parity data field
265  *  @len:	data length
266  *  @s:		syndrome data field (if NULL, syndrome is calculated)
267  *  @no_eras:	number of erasures
268  *  @eras_pos:	position of erasures, can be NULL
269  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
270  *  @corr:	buffer to store correction bitmask on eras_pos
271  *
272  *  The syndrome and parity uses a uint16_t data type to enable
273  *  symbol size > 8. The calling code must take care of decoding of the
274  *  syndrome result and the received parity before calling this code.
275  */
276 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
277 	       uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
278 	       uint16_t *corr)
279 {
280 #include "decode_rs.c"
281 }
282 EXPORT_SYMBOL_GPL(decode_rs8);
283 #endif
284 
285 #ifdef CONFIG_REED_SOLOMON_ENC16
286 /**
287  *  encode_rs16 - Calculate the parity for data values (16bit data width)
288  *
289  *  @rs:	the rs control structure
290  *  @data:	data field of a given type
291  *  @len:	data length
292  *  @par:	parity data, must be initialized by caller (usually all 0)
293  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
294  *
295  *  Each field in the data array contains up to symbol size bits of valid data.
296  */
297 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
298 	uint16_t invmsk)
299 {
300 #include "encode_rs.c"
301 }
302 EXPORT_SYMBOL_GPL(encode_rs16);
303 #endif
304 
305 #ifdef CONFIG_REED_SOLOMON_DEC16
306 /**
307  *  decode_rs16 - Decode codeword (16bit data width)
308  *
309  *  @rs:	the rs control structure
310  *  @data:	data field of a given type
311  *  @par:	received parity data field
312  *  @len:	data length
313  *  @s:		syndrome data field (if NULL, syndrome is calculated)
314  *  @no_eras:	number of erasures
315  *  @eras_pos:	position of erasures, can be NULL
316  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
317  *  @corr:	buffer to store correction bitmask on eras_pos
318  *
319  *  Each field in the data array contains up to symbol size bits of valid data.
320  */
321 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
322 		uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
323 		uint16_t *corr)
324 {
325 #include "decode_rs.c"
326 }
327 EXPORT_SYMBOL_GPL(decode_rs16);
328 #endif
329 
330 EXPORT_SYMBOL_GPL(init_rs);
331 EXPORT_SYMBOL_GPL(free_rs);
332 
333 MODULE_LICENSE("GPL");
334 MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
335 MODULE_AUTHOR("Phil Karn, Thomas Gleixner");
336 
337