xref: /linux/lib/bitmap.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <asm/uaccess.h>
16 
17 /*
18  * bitmaps provide an array of bits, implemented using an an
19  * array of unsigned longs.  The number of valid bits in a
20  * given bitmap does _not_ need to be an exact multiple of
21  * BITS_PER_LONG.
22  *
23  * The possible unused bits in the last, partially used word
24  * of a bitmap are 'don't care'.  The implementation makes
25  * no particular effort to keep them zero.  It ensures that
26  * their value will not affect the results of any operation.
27  * The bitmap operations that return Boolean (bitmap_empty,
28  * for example) or scalar (bitmap_weight, for example) results
29  * carefully filter out these unused bits from impacting their
30  * results.
31  *
32  * These operations actually hold to a slightly stronger rule:
33  * if you don't input any bitmaps to these ops that have some
34  * unused bits set, then they won't output any set unused bits
35  * in output bitmaps.
36  *
37  * The byte ordering of bitmaps is more natural on little
38  * endian architectures.  See the big-endian headers
39  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
40  * for the best explanations of this ordering.
41  */
42 
43 int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
44 {
45 	unsigned int k, lim = bits/BITS_PER_LONG;
46 	for (k = 0; k < lim; ++k)
47 		if (bitmap[k])
48 			return 0;
49 
50 	if (bits % BITS_PER_LONG)
51 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
52 			return 0;
53 
54 	return 1;
55 }
56 EXPORT_SYMBOL(__bitmap_empty);
57 
58 int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
59 {
60 	unsigned int k, lim = bits/BITS_PER_LONG;
61 	for (k = 0; k < lim; ++k)
62 		if (~bitmap[k])
63 			return 0;
64 
65 	if (bits % BITS_PER_LONG)
66 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
67 			return 0;
68 
69 	return 1;
70 }
71 EXPORT_SYMBOL(__bitmap_full);
72 
73 int __bitmap_equal(const unsigned long *bitmap1,
74 		const unsigned long *bitmap2, unsigned int bits)
75 {
76 	unsigned int k, lim = bits/BITS_PER_LONG;
77 	for (k = 0; k < lim; ++k)
78 		if (bitmap1[k] != bitmap2[k])
79 			return 0;
80 
81 	if (bits % BITS_PER_LONG)
82 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
83 			return 0;
84 
85 	return 1;
86 }
87 EXPORT_SYMBOL(__bitmap_equal);
88 
89 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
90 {
91 	unsigned int k, lim = bits/BITS_PER_LONG;
92 	for (k = 0; k < lim; ++k)
93 		dst[k] = ~src[k];
94 
95 	if (bits % BITS_PER_LONG)
96 		dst[k] = ~src[k];
97 }
98 EXPORT_SYMBOL(__bitmap_complement);
99 
100 /**
101  * __bitmap_shift_right - logical right shift of the bits in a bitmap
102  *   @dst : destination bitmap
103  *   @src : source bitmap
104  *   @shift : shift by this many bits
105  *   @bits : bitmap size, in bits
106  *
107  * Shifting right (dividing) means moving bits in the MS -> LS bit
108  * direction.  Zeros are fed into the vacated MS positions and the
109  * LS bits shifted off the bottom are lost.
110  */
111 void __bitmap_shift_right(unsigned long *dst,
112 			const unsigned long *src, int shift, int bits)
113 {
114 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
115 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
116 	unsigned long mask = (1UL << left) - 1;
117 	for (k = 0; off + k < lim; ++k) {
118 		unsigned long upper, lower;
119 
120 		/*
121 		 * If shift is not word aligned, take lower rem bits of
122 		 * word above and make them the top rem bits of result.
123 		 */
124 		if (!rem || off + k + 1 >= lim)
125 			upper = 0;
126 		else {
127 			upper = src[off + k + 1];
128 			if (off + k + 1 == lim - 1 && left)
129 				upper &= mask;
130 		}
131 		lower = src[off + k];
132 		if (left && off + k == lim - 1)
133 			lower &= mask;
134 		dst[k] = lower >> rem;
135 		if (rem)
136 			dst[k] |= upper << (BITS_PER_LONG - rem);
137 		if (left && k == lim - 1)
138 			dst[k] &= mask;
139 	}
140 	if (off)
141 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
142 }
143 EXPORT_SYMBOL(__bitmap_shift_right);
144 
145 
146 /**
147  * __bitmap_shift_left - logical left shift of the bits in a bitmap
148  *   @dst : destination bitmap
149  *   @src : source bitmap
150  *   @shift : shift by this many bits
151  *   @bits : bitmap size, in bits
152  *
153  * Shifting left (multiplying) means moving bits in the LS -> MS
154  * direction.  Zeros are fed into the vacated LS bit positions
155  * and those MS bits shifted off the top are lost.
156  */
157 
158 void __bitmap_shift_left(unsigned long *dst,
159 			const unsigned long *src, int shift, int bits)
160 {
161 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
162 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
163 	for (k = lim - off - 1; k >= 0; --k) {
164 		unsigned long upper, lower;
165 
166 		/*
167 		 * If shift is not word aligned, take upper rem bits of
168 		 * word below and make them the bottom rem bits of result.
169 		 */
170 		if (rem && k > 0)
171 			lower = src[k - 1];
172 		else
173 			lower = 0;
174 		upper = src[k];
175 		if (left && k == lim - 1)
176 			upper &= (1UL << left) - 1;
177 		dst[k + off] = upper << rem;
178 		if (rem)
179 			dst[k + off] |= lower >> (BITS_PER_LONG - rem);
180 		if (left && k + off == lim - 1)
181 			dst[k + off] &= (1UL << left) - 1;
182 	}
183 	if (off)
184 		memset(dst, 0, off*sizeof(unsigned long));
185 }
186 EXPORT_SYMBOL(__bitmap_shift_left);
187 
188 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
189 				const unsigned long *bitmap2, unsigned int bits)
190 {
191 	unsigned int k;
192 	unsigned int lim = bits/BITS_PER_LONG;
193 	unsigned long result = 0;
194 
195 	for (k = 0; k < lim; k++)
196 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
197 	if (bits % BITS_PER_LONG)
198 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
199 			   BITMAP_LAST_WORD_MASK(bits));
200 	return result != 0;
201 }
202 EXPORT_SYMBOL(__bitmap_and);
203 
204 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
205 				const unsigned long *bitmap2, unsigned int bits)
206 {
207 	unsigned int k;
208 	unsigned int nr = BITS_TO_LONGS(bits);
209 
210 	for (k = 0; k < nr; k++)
211 		dst[k] = bitmap1[k] | bitmap2[k];
212 }
213 EXPORT_SYMBOL(__bitmap_or);
214 
215 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
216 				const unsigned long *bitmap2, unsigned int bits)
217 {
218 	unsigned int k;
219 	unsigned int nr = BITS_TO_LONGS(bits);
220 
221 	for (k = 0; k < nr; k++)
222 		dst[k] = bitmap1[k] ^ bitmap2[k];
223 }
224 EXPORT_SYMBOL(__bitmap_xor);
225 
226 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
227 				const unsigned long *bitmap2, unsigned int bits)
228 {
229 	unsigned int k;
230 	unsigned int lim = bits/BITS_PER_LONG;
231 	unsigned long result = 0;
232 
233 	for (k = 0; k < lim; k++)
234 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
235 	if (bits % BITS_PER_LONG)
236 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
237 			   BITMAP_LAST_WORD_MASK(bits));
238 	return result != 0;
239 }
240 EXPORT_SYMBOL(__bitmap_andnot);
241 
242 int __bitmap_intersects(const unsigned long *bitmap1,
243 			const unsigned long *bitmap2, unsigned int bits)
244 {
245 	unsigned int k, lim = bits/BITS_PER_LONG;
246 	for (k = 0; k < lim; ++k)
247 		if (bitmap1[k] & bitmap2[k])
248 			return 1;
249 
250 	if (bits % BITS_PER_LONG)
251 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
252 			return 1;
253 	return 0;
254 }
255 EXPORT_SYMBOL(__bitmap_intersects);
256 
257 int __bitmap_subset(const unsigned long *bitmap1,
258 		    const unsigned long *bitmap2, unsigned int bits)
259 {
260 	unsigned int k, lim = bits/BITS_PER_LONG;
261 	for (k = 0; k < lim; ++k)
262 		if (bitmap1[k] & ~bitmap2[k])
263 			return 0;
264 
265 	if (bits % BITS_PER_LONG)
266 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
267 			return 0;
268 	return 1;
269 }
270 EXPORT_SYMBOL(__bitmap_subset);
271 
272 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
273 {
274 	unsigned int k, lim = bits/BITS_PER_LONG;
275 	int w = 0;
276 
277 	for (k = 0; k < lim; k++)
278 		w += hweight_long(bitmap[k]);
279 
280 	if (bits % BITS_PER_LONG)
281 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
282 
283 	return w;
284 }
285 EXPORT_SYMBOL(__bitmap_weight);
286 
287 void bitmap_set(unsigned long *map, unsigned int start, int len)
288 {
289 	unsigned long *p = map + BIT_WORD(start);
290 	const unsigned int size = start + len;
291 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
292 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
293 
294 	while (len - bits_to_set >= 0) {
295 		*p |= mask_to_set;
296 		len -= bits_to_set;
297 		bits_to_set = BITS_PER_LONG;
298 		mask_to_set = ~0UL;
299 		p++;
300 	}
301 	if (len) {
302 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
303 		*p |= mask_to_set;
304 	}
305 }
306 EXPORT_SYMBOL(bitmap_set);
307 
308 void bitmap_clear(unsigned long *map, unsigned int start, int len)
309 {
310 	unsigned long *p = map + BIT_WORD(start);
311 	const unsigned int size = start + len;
312 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
313 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
314 
315 	while (len - bits_to_clear >= 0) {
316 		*p &= ~mask_to_clear;
317 		len -= bits_to_clear;
318 		bits_to_clear = BITS_PER_LONG;
319 		mask_to_clear = ~0UL;
320 		p++;
321 	}
322 	if (len) {
323 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
324 		*p &= ~mask_to_clear;
325 	}
326 }
327 EXPORT_SYMBOL(bitmap_clear);
328 
329 /**
330  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
331  * @map: The address to base the search on
332  * @size: The bitmap size in bits
333  * @start: The bitnumber to start searching at
334  * @nr: The number of zeroed bits we're looking for
335  * @align_mask: Alignment mask for zero area
336  * @align_offset: Alignment offset for zero area.
337  *
338  * The @align_mask should be one less than a power of 2; the effect is that
339  * the bit offset of all zero areas this function finds plus @align_offset
340  * is multiple of that power of 2.
341  */
342 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
343 					     unsigned long size,
344 					     unsigned long start,
345 					     unsigned int nr,
346 					     unsigned long align_mask,
347 					     unsigned long align_offset)
348 {
349 	unsigned long index, end, i;
350 again:
351 	index = find_next_zero_bit(map, size, start);
352 
353 	/* Align allocation */
354 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
355 
356 	end = index + nr;
357 	if (end > size)
358 		return end;
359 	i = find_next_bit(map, end, index);
360 	if (i < end) {
361 		start = i + 1;
362 		goto again;
363 	}
364 	return index;
365 }
366 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
367 
368 /*
369  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
370  * second version by Paul Jackson, third by Joe Korty.
371  */
372 
373 #define CHUNKSZ				32
374 #define nbits_to_hold_value(val)	fls(val)
375 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
376 
377 /**
378  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
379  * @buf: byte buffer into which string is placed
380  * @buflen: reserved size of @buf, in bytes
381  * @maskp: pointer to bitmap to convert
382  * @nmaskbits: size of bitmap, in bits
383  *
384  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
385  * comma-separated sets of eight digits per set.  Returns the number of
386  * characters which were written to *buf, excluding the trailing \0.
387  */
388 int bitmap_scnprintf(char *buf, unsigned int buflen,
389 	const unsigned long *maskp, int nmaskbits)
390 {
391 	int i, word, bit, len = 0;
392 	unsigned long val;
393 	const char *sep = "";
394 	int chunksz;
395 	u32 chunkmask;
396 
397 	chunksz = nmaskbits & (CHUNKSZ - 1);
398 	if (chunksz == 0)
399 		chunksz = CHUNKSZ;
400 
401 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
402 	for (; i >= 0; i -= CHUNKSZ) {
403 		chunkmask = ((1ULL << chunksz) - 1);
404 		word = i / BITS_PER_LONG;
405 		bit = i % BITS_PER_LONG;
406 		val = (maskp[word] >> bit) & chunkmask;
407 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
408 			(chunksz+3)/4, val);
409 		chunksz = CHUNKSZ;
410 		sep = ",";
411 	}
412 	return len;
413 }
414 EXPORT_SYMBOL(bitmap_scnprintf);
415 
416 /**
417  * __bitmap_parse - convert an ASCII hex string into a bitmap.
418  * @buf: pointer to buffer containing string.
419  * @buflen: buffer size in bytes.  If string is smaller than this
420  *    then it must be terminated with a \0.
421  * @is_user: location of buffer, 0 indicates kernel space
422  * @maskp: pointer to bitmap array that will contain result.
423  * @nmaskbits: size of bitmap, in bits.
424  *
425  * Commas group hex digits into chunks.  Each chunk defines exactly 32
426  * bits of the resultant bitmask.  No chunk may specify a value larger
427  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
428  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
429  * characters and for grouping errors such as "1,,5", ",44", "," and "".
430  * Leading and trailing whitespace accepted, but not embedded whitespace.
431  */
432 int __bitmap_parse(const char *buf, unsigned int buflen,
433 		int is_user, unsigned long *maskp,
434 		int nmaskbits)
435 {
436 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
437 	u32 chunk;
438 	const char __user __force *ubuf = (const char __user __force *)buf;
439 
440 	bitmap_zero(maskp, nmaskbits);
441 
442 	nchunks = nbits = totaldigits = c = 0;
443 	do {
444 		chunk = ndigits = 0;
445 
446 		/* Get the next chunk of the bitmap */
447 		while (buflen) {
448 			old_c = c;
449 			if (is_user) {
450 				if (__get_user(c, ubuf++))
451 					return -EFAULT;
452 			}
453 			else
454 				c = *buf++;
455 			buflen--;
456 			if (isspace(c))
457 				continue;
458 
459 			/*
460 			 * If the last character was a space and the current
461 			 * character isn't '\0', we've got embedded whitespace.
462 			 * This is a no-no, so throw an error.
463 			 */
464 			if (totaldigits && c && isspace(old_c))
465 				return -EINVAL;
466 
467 			/* A '\0' or a ',' signal the end of the chunk */
468 			if (c == '\0' || c == ',')
469 				break;
470 
471 			if (!isxdigit(c))
472 				return -EINVAL;
473 
474 			/*
475 			 * Make sure there are at least 4 free bits in 'chunk'.
476 			 * If not, this hexdigit will overflow 'chunk', so
477 			 * throw an error.
478 			 */
479 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
480 				return -EOVERFLOW;
481 
482 			chunk = (chunk << 4) | hex_to_bin(c);
483 			ndigits++; totaldigits++;
484 		}
485 		if (ndigits == 0)
486 			return -EINVAL;
487 		if (nchunks == 0 && chunk == 0)
488 			continue;
489 
490 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
491 		*maskp |= chunk;
492 		nchunks++;
493 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
494 		if (nbits > nmaskbits)
495 			return -EOVERFLOW;
496 	} while (buflen && c == ',');
497 
498 	return 0;
499 }
500 EXPORT_SYMBOL(__bitmap_parse);
501 
502 /**
503  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
504  *
505  * @ubuf: pointer to user buffer containing string.
506  * @ulen: buffer size in bytes.  If string is smaller than this
507  *    then it must be terminated with a \0.
508  * @maskp: pointer to bitmap array that will contain result.
509  * @nmaskbits: size of bitmap, in bits.
510  *
511  * Wrapper for __bitmap_parse(), providing it with user buffer.
512  *
513  * We cannot have this as an inline function in bitmap.h because it needs
514  * linux/uaccess.h to get the access_ok() declaration and this causes
515  * cyclic dependencies.
516  */
517 int bitmap_parse_user(const char __user *ubuf,
518 			unsigned int ulen, unsigned long *maskp,
519 			int nmaskbits)
520 {
521 	if (!access_ok(VERIFY_READ, ubuf, ulen))
522 		return -EFAULT;
523 	return __bitmap_parse((const char __force *)ubuf,
524 				ulen, 1, maskp, nmaskbits);
525 
526 }
527 EXPORT_SYMBOL(bitmap_parse_user);
528 
529 /*
530  * bscnl_emit(buf, buflen, rbot, rtop, bp)
531  *
532  * Helper routine for bitmap_scnlistprintf().  Write decimal number
533  * or range to buf, suppressing output past buf+buflen, with optional
534  * comma-prefix.  Return len of what was written to *buf, excluding the
535  * trailing \0.
536  */
537 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
538 {
539 	if (len > 0)
540 		len += scnprintf(buf + len, buflen - len, ",");
541 	if (rbot == rtop)
542 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
543 	else
544 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
545 	return len;
546 }
547 
548 /**
549  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
550  * @buf: byte buffer into which string is placed
551  * @buflen: reserved size of @buf, in bytes
552  * @maskp: pointer to bitmap to convert
553  * @nmaskbits: size of bitmap, in bits
554  *
555  * Output format is a comma-separated list of decimal numbers and
556  * ranges.  Consecutively set bits are shown as two hyphen-separated
557  * decimal numbers, the smallest and largest bit numbers set in
558  * the range.  Output format is compatible with the format
559  * accepted as input by bitmap_parselist().
560  *
561  * The return value is the number of characters which were written to *buf
562  * excluding the trailing '\0', as per ISO C99's scnprintf.
563  */
564 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
565 	const unsigned long *maskp, int nmaskbits)
566 {
567 	int len = 0;
568 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
569 	int cur, rbot, rtop;
570 
571 	if (buflen == 0)
572 		return 0;
573 	buf[0] = 0;
574 
575 	rbot = cur = find_first_bit(maskp, nmaskbits);
576 	while (cur < nmaskbits) {
577 		rtop = cur;
578 		cur = find_next_bit(maskp, nmaskbits, cur+1);
579 		if (cur >= nmaskbits || cur > rtop + 1) {
580 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
581 			rbot = cur;
582 		}
583 	}
584 	return len;
585 }
586 EXPORT_SYMBOL(bitmap_scnlistprintf);
587 
588 /**
589  * __bitmap_parselist - convert list format ASCII string to bitmap
590  * @buf: read nul-terminated user string from this buffer
591  * @buflen: buffer size in bytes.  If string is smaller than this
592  *    then it must be terminated with a \0.
593  * @is_user: location of buffer, 0 indicates kernel space
594  * @maskp: write resulting mask here
595  * @nmaskbits: number of bits in mask to be written
596  *
597  * Input format is a comma-separated list of decimal numbers and
598  * ranges.  Consecutively set bits are shown as two hyphen-separated
599  * decimal numbers, the smallest and largest bit numbers set in
600  * the range.
601  *
602  * Returns 0 on success, -errno on invalid input strings.
603  * Error values:
604  *    %-EINVAL: second number in range smaller than first
605  *    %-EINVAL: invalid character in string
606  *    %-ERANGE: bit number specified too large for mask
607  */
608 static int __bitmap_parselist(const char *buf, unsigned int buflen,
609 		int is_user, unsigned long *maskp,
610 		int nmaskbits)
611 {
612 	unsigned a, b;
613 	int c, old_c, totaldigits;
614 	const char __user __force *ubuf = (const char __user __force *)buf;
615 	int exp_digit, in_range;
616 
617 	totaldigits = c = 0;
618 	bitmap_zero(maskp, nmaskbits);
619 	do {
620 		exp_digit = 1;
621 		in_range = 0;
622 		a = b = 0;
623 
624 		/* Get the next cpu# or a range of cpu#'s */
625 		while (buflen) {
626 			old_c = c;
627 			if (is_user) {
628 				if (__get_user(c, ubuf++))
629 					return -EFAULT;
630 			} else
631 				c = *buf++;
632 			buflen--;
633 			if (isspace(c))
634 				continue;
635 
636 			/*
637 			 * If the last character was a space and the current
638 			 * character isn't '\0', we've got embedded whitespace.
639 			 * This is a no-no, so throw an error.
640 			 */
641 			if (totaldigits && c && isspace(old_c))
642 				return -EINVAL;
643 
644 			/* A '\0' or a ',' signal the end of a cpu# or range */
645 			if (c == '\0' || c == ',')
646 				break;
647 
648 			if (c == '-') {
649 				if (exp_digit || in_range)
650 					return -EINVAL;
651 				b = 0;
652 				in_range = 1;
653 				exp_digit = 1;
654 				continue;
655 			}
656 
657 			if (!isdigit(c))
658 				return -EINVAL;
659 
660 			b = b * 10 + (c - '0');
661 			if (!in_range)
662 				a = b;
663 			exp_digit = 0;
664 			totaldigits++;
665 		}
666 		if (!(a <= b))
667 			return -EINVAL;
668 		if (b >= nmaskbits)
669 			return -ERANGE;
670 		while (a <= b) {
671 			set_bit(a, maskp);
672 			a++;
673 		}
674 	} while (buflen && c == ',');
675 	return 0;
676 }
677 
678 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
679 {
680 	char *nl  = strchrnul(bp, '\n');
681 	int len = nl - bp;
682 
683 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
684 }
685 EXPORT_SYMBOL(bitmap_parselist);
686 
687 
688 /**
689  * bitmap_parselist_user()
690  *
691  * @ubuf: pointer to user buffer containing string.
692  * @ulen: buffer size in bytes.  If string is smaller than this
693  *    then it must be terminated with a \0.
694  * @maskp: pointer to bitmap array that will contain result.
695  * @nmaskbits: size of bitmap, in bits.
696  *
697  * Wrapper for bitmap_parselist(), providing it with user buffer.
698  *
699  * We cannot have this as an inline function in bitmap.h because it needs
700  * linux/uaccess.h to get the access_ok() declaration and this causes
701  * cyclic dependencies.
702  */
703 int bitmap_parselist_user(const char __user *ubuf,
704 			unsigned int ulen, unsigned long *maskp,
705 			int nmaskbits)
706 {
707 	if (!access_ok(VERIFY_READ, ubuf, ulen))
708 		return -EFAULT;
709 	return __bitmap_parselist((const char __force *)ubuf,
710 					ulen, 1, maskp, nmaskbits);
711 }
712 EXPORT_SYMBOL(bitmap_parselist_user);
713 
714 
715 /**
716  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
717  *	@buf: pointer to a bitmap
718  *	@pos: a bit position in @buf (0 <= @pos < @bits)
719  *	@bits: number of valid bit positions in @buf
720  *
721  * Map the bit at position @pos in @buf (of length @bits) to the
722  * ordinal of which set bit it is.  If it is not set or if @pos
723  * is not a valid bit position, map to -1.
724  *
725  * If for example, just bits 4 through 7 are set in @buf, then @pos
726  * values 4 through 7 will get mapped to 0 through 3, respectively,
727  * and other @pos values will get mapped to -1.  When @pos value 7
728  * gets mapped to (returns) @ord value 3 in this example, that means
729  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
730  *
731  * The bit positions 0 through @bits are valid positions in @buf.
732  */
733 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
734 {
735 	int i, ord;
736 
737 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
738 		return -1;
739 
740 	i = find_first_bit(buf, bits);
741 	ord = 0;
742 	while (i < pos) {
743 		i = find_next_bit(buf, bits, i + 1);
744 	     	ord++;
745 	}
746 	BUG_ON(i != pos);
747 
748 	return ord;
749 }
750 
751 /**
752  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
753  *	@buf: pointer to bitmap
754  *	@ord: ordinal bit position (n-th set bit, n >= 0)
755  *	@bits: number of valid bit positions in @buf
756  *
757  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
758  * Value of @ord should be in range 0 <= @ord < weight(buf), else
759  * results are undefined.
760  *
761  * If for example, just bits 4 through 7 are set in @buf, then @ord
762  * values 0 through 3 will get mapped to 4 through 7, respectively,
763  * and all other @ord values return undefined values.  When @ord value 3
764  * gets mapped to (returns) @pos value 7 in this example, that means
765  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
766  *
767  * The bit positions 0 through @bits are valid positions in @buf.
768  */
769 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
770 {
771 	int pos = 0;
772 
773 	if (ord >= 0 && ord < bits) {
774 		int i;
775 
776 		for (i = find_first_bit(buf, bits);
777 		     i < bits && ord > 0;
778 		     i = find_next_bit(buf, bits, i + 1))
779 	     		ord--;
780 		if (i < bits && ord == 0)
781 			pos = i;
782 	}
783 
784 	return pos;
785 }
786 
787 /**
788  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
789  *	@dst: remapped result
790  *	@src: subset to be remapped
791  *	@old: defines domain of map
792  *	@new: defines range of map
793  *	@bits: number of bits in each of these bitmaps
794  *
795  * Let @old and @new define a mapping of bit positions, such that
796  * whatever position is held by the n-th set bit in @old is mapped
797  * to the n-th set bit in @new.  In the more general case, allowing
798  * for the possibility that the weight 'w' of @new is less than the
799  * weight of @old, map the position of the n-th set bit in @old to
800  * the position of the m-th set bit in @new, where m == n % w.
801  *
802  * If either of the @old and @new bitmaps are empty, or if @src and
803  * @dst point to the same location, then this routine copies @src
804  * to @dst.
805  *
806  * The positions of unset bits in @old are mapped to themselves
807  * (the identify map).
808  *
809  * Apply the above specified mapping to @src, placing the result in
810  * @dst, clearing any bits previously set in @dst.
811  *
812  * For example, lets say that @old has bits 4 through 7 set, and
813  * @new has bits 12 through 15 set.  This defines the mapping of bit
814  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
815  * bit positions unchanged.  So if say @src comes into this routine
816  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
817  * 13 and 15 set.
818  */
819 void bitmap_remap(unsigned long *dst, const unsigned long *src,
820 		const unsigned long *old, const unsigned long *new,
821 		int bits)
822 {
823 	int oldbit, w;
824 
825 	if (dst == src)		/* following doesn't handle inplace remaps */
826 		return;
827 	bitmap_zero(dst, bits);
828 
829 	w = bitmap_weight(new, bits);
830 	for_each_set_bit(oldbit, src, bits) {
831 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
832 
833 		if (n < 0 || w == 0)
834 			set_bit(oldbit, dst);	/* identity map */
835 		else
836 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
837 	}
838 }
839 EXPORT_SYMBOL(bitmap_remap);
840 
841 /**
842  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
843  *	@oldbit: bit position to be mapped
844  *	@old: defines domain of map
845  *	@new: defines range of map
846  *	@bits: number of bits in each of these bitmaps
847  *
848  * Let @old and @new define a mapping of bit positions, such that
849  * whatever position is held by the n-th set bit in @old is mapped
850  * to the n-th set bit in @new.  In the more general case, allowing
851  * for the possibility that the weight 'w' of @new is less than the
852  * weight of @old, map the position of the n-th set bit in @old to
853  * the position of the m-th set bit in @new, where m == n % w.
854  *
855  * The positions of unset bits in @old are mapped to themselves
856  * (the identify map).
857  *
858  * Apply the above specified mapping to bit position @oldbit, returning
859  * the new bit position.
860  *
861  * For example, lets say that @old has bits 4 through 7 set, and
862  * @new has bits 12 through 15 set.  This defines the mapping of bit
863  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
864  * bit positions unchanged.  So if say @oldbit is 5, then this routine
865  * returns 13.
866  */
867 int bitmap_bitremap(int oldbit, const unsigned long *old,
868 				const unsigned long *new, int bits)
869 {
870 	int w = bitmap_weight(new, bits);
871 	int n = bitmap_pos_to_ord(old, oldbit, bits);
872 	if (n < 0 || w == 0)
873 		return oldbit;
874 	else
875 		return bitmap_ord_to_pos(new, n % w, bits);
876 }
877 EXPORT_SYMBOL(bitmap_bitremap);
878 
879 /**
880  * bitmap_onto - translate one bitmap relative to another
881  *	@dst: resulting translated bitmap
882  * 	@orig: original untranslated bitmap
883  * 	@relmap: bitmap relative to which translated
884  *	@bits: number of bits in each of these bitmaps
885  *
886  * Set the n-th bit of @dst iff there exists some m such that the
887  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
888  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
889  * (If you understood the previous sentence the first time your
890  * read it, you're overqualified for your current job.)
891  *
892  * In other words, @orig is mapped onto (surjectively) @dst,
893  * using the map { <n, m> | the n-th bit of @relmap is the
894  * m-th set bit of @relmap }.
895  *
896  * Any set bits in @orig above bit number W, where W is the
897  * weight of (number of set bits in) @relmap are mapped nowhere.
898  * In particular, if for all bits m set in @orig, m >= W, then
899  * @dst will end up empty.  In situations where the possibility
900  * of such an empty result is not desired, one way to avoid it is
901  * to use the bitmap_fold() operator, below, to first fold the
902  * @orig bitmap over itself so that all its set bits x are in the
903  * range 0 <= x < W.  The bitmap_fold() operator does this by
904  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
905  *
906  * Example [1] for bitmap_onto():
907  *  Let's say @relmap has bits 30-39 set, and @orig has bits
908  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
909  *  @dst will have bits 31, 33, 35, 37 and 39 set.
910  *
911  *  When bit 0 is set in @orig, it means turn on the bit in
912  *  @dst corresponding to whatever is the first bit (if any)
913  *  that is turned on in @relmap.  Since bit 0 was off in the
914  *  above example, we leave off that bit (bit 30) in @dst.
915  *
916  *  When bit 1 is set in @orig (as in the above example), it
917  *  means turn on the bit in @dst corresponding to whatever
918  *  is the second bit that is turned on in @relmap.  The second
919  *  bit in @relmap that was turned on in the above example was
920  *  bit 31, so we turned on bit 31 in @dst.
921  *
922  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
923  *  because they were the 4th, 6th, 8th and 10th set bits
924  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
925  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
926  *
927  *  When bit 11 is set in @orig, it means turn on the bit in
928  *  @dst corresponding to whatever is the twelfth bit that is
929  *  turned on in @relmap.  In the above example, there were
930  *  only ten bits turned on in @relmap (30..39), so that bit
931  *  11 was set in @orig had no affect on @dst.
932  *
933  * Example [2] for bitmap_fold() + bitmap_onto():
934  *  Let's say @relmap has these ten bits set:
935  *		40 41 42 43 45 48 53 61 74 95
936  *  (for the curious, that's 40 plus the first ten terms of the
937  *  Fibonacci sequence.)
938  *
939  *  Further lets say we use the following code, invoking
940  *  bitmap_fold() then bitmap_onto, as suggested above to
941  *  avoid the possibility of an empty @dst result:
942  *
943  *	unsigned long *tmp;	// a temporary bitmap's bits
944  *
945  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
946  *	bitmap_onto(dst, tmp, relmap, bits);
947  *
948  *  Then this table shows what various values of @dst would be, for
949  *  various @orig's.  I list the zero-based positions of each set bit.
950  *  The tmp column shows the intermediate result, as computed by
951  *  using bitmap_fold() to fold the @orig bitmap modulo ten
952  *  (the weight of @relmap).
953  *
954  *      @orig           tmp            @dst
955  *      0                0             40
956  *      1                1             41
957  *      9                9             95
958  *      10               0             40 (*)
959  *      1 3 5 7          1 3 5 7       41 43 48 61
960  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
961  *      0 9 18 27        0 9 8 7       40 61 74 95
962  *      0 10 20 30       0             40
963  *      0 11 22 33       0 1 2 3       40 41 42 43
964  *      0 12 24 36       0 2 4 6       40 42 45 53
965  *      78 102 211       1 2 8         41 42 74 (*)
966  *
967  * (*) For these marked lines, if we hadn't first done bitmap_fold()
968  *     into tmp, then the @dst result would have been empty.
969  *
970  * If either of @orig or @relmap is empty (no set bits), then @dst
971  * will be returned empty.
972  *
973  * If (as explained above) the only set bits in @orig are in positions
974  * m where m >= W, (where W is the weight of @relmap) then @dst will
975  * once again be returned empty.
976  *
977  * All bits in @dst not set by the above rule are cleared.
978  */
979 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
980 			const unsigned long *relmap, int bits)
981 {
982 	int n, m;       	/* same meaning as in above comment */
983 
984 	if (dst == orig)	/* following doesn't handle inplace mappings */
985 		return;
986 	bitmap_zero(dst, bits);
987 
988 	/*
989 	 * The following code is a more efficient, but less
990 	 * obvious, equivalent to the loop:
991 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
992 	 *		n = bitmap_ord_to_pos(orig, m, bits);
993 	 *		if (test_bit(m, orig))
994 	 *			set_bit(n, dst);
995 	 *	}
996 	 */
997 
998 	m = 0;
999 	for_each_set_bit(n, relmap, bits) {
1000 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
1001 		if (test_bit(m, orig))
1002 			set_bit(n, dst);
1003 		m++;
1004 	}
1005 }
1006 EXPORT_SYMBOL(bitmap_onto);
1007 
1008 /**
1009  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1010  *	@dst: resulting smaller bitmap
1011  *	@orig: original larger bitmap
1012  *	@sz: specified size
1013  *	@bits: number of bits in each of these bitmaps
1014  *
1015  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1016  * Clear all other bits in @dst.  See further the comment and
1017  * Example [2] for bitmap_onto() for why and how to use this.
1018  */
1019 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1020 			int sz, int bits)
1021 {
1022 	int oldbit;
1023 
1024 	if (dst == orig)	/* following doesn't handle inplace mappings */
1025 		return;
1026 	bitmap_zero(dst, bits);
1027 
1028 	for_each_set_bit(oldbit, orig, bits)
1029 		set_bit(oldbit % sz, dst);
1030 }
1031 EXPORT_SYMBOL(bitmap_fold);
1032 
1033 /*
1034  * Common code for bitmap_*_region() routines.
1035  *	bitmap: array of unsigned longs corresponding to the bitmap
1036  *	pos: the beginning of the region
1037  *	order: region size (log base 2 of number of bits)
1038  *	reg_op: operation(s) to perform on that region of bitmap
1039  *
1040  * Can set, verify and/or release a region of bits in a bitmap,
1041  * depending on which combination of REG_OP_* flag bits is set.
1042  *
1043  * A region of a bitmap is a sequence of bits in the bitmap, of
1044  * some size '1 << order' (a power of two), aligned to that same
1045  * '1 << order' power of two.
1046  *
1047  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1048  * Returns 0 in all other cases and reg_ops.
1049  */
1050 
1051 enum {
1052 	REG_OP_ISFREE,		/* true if region is all zero bits */
1053 	REG_OP_ALLOC,		/* set all bits in region */
1054 	REG_OP_RELEASE,		/* clear all bits in region */
1055 };
1056 
1057 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1058 {
1059 	int nbits_reg;		/* number of bits in region */
1060 	int index;		/* index first long of region in bitmap */
1061 	int offset;		/* bit offset region in bitmap[index] */
1062 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1063 	int nbitsinlong;	/* num bits of region in each spanned long */
1064 	unsigned long mask;	/* bitmask for one long of region */
1065 	int i;			/* scans bitmap by longs */
1066 	int ret = 0;		/* return value */
1067 
1068 	/*
1069 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1070 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1071 	 */
1072 	nbits_reg = 1 << order;
1073 	index = pos / BITS_PER_LONG;
1074 	offset = pos - (index * BITS_PER_LONG);
1075 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1076 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1077 
1078 	/*
1079 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1080 	 * overflows if nbitsinlong == BITS_PER_LONG.
1081 	 */
1082 	mask = (1UL << (nbitsinlong - 1));
1083 	mask += mask - 1;
1084 	mask <<= offset;
1085 
1086 	switch (reg_op) {
1087 	case REG_OP_ISFREE:
1088 		for (i = 0; i < nlongs_reg; i++) {
1089 			if (bitmap[index + i] & mask)
1090 				goto done;
1091 		}
1092 		ret = 1;	/* all bits in region free (zero) */
1093 		break;
1094 
1095 	case REG_OP_ALLOC:
1096 		for (i = 0; i < nlongs_reg; i++)
1097 			bitmap[index + i] |= mask;
1098 		break;
1099 
1100 	case REG_OP_RELEASE:
1101 		for (i = 0; i < nlongs_reg; i++)
1102 			bitmap[index + i] &= ~mask;
1103 		break;
1104 	}
1105 done:
1106 	return ret;
1107 }
1108 
1109 /**
1110  * bitmap_find_free_region - find a contiguous aligned mem region
1111  *	@bitmap: array of unsigned longs corresponding to the bitmap
1112  *	@bits: number of bits in the bitmap
1113  *	@order: region size (log base 2 of number of bits) to find
1114  *
1115  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1116  * allocate them (set them to one).  Only consider regions of length
1117  * a power (@order) of two, aligned to that power of two, which
1118  * makes the search algorithm much faster.
1119  *
1120  * Return the bit offset in bitmap of the allocated region,
1121  * or -errno on failure.
1122  */
1123 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1124 {
1125 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1126 
1127 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1128 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1129 			continue;
1130 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1131 		return pos;
1132 	}
1133 	return -ENOMEM;
1134 }
1135 EXPORT_SYMBOL(bitmap_find_free_region);
1136 
1137 /**
1138  * bitmap_release_region - release allocated bitmap region
1139  *	@bitmap: array of unsigned longs corresponding to the bitmap
1140  *	@pos: beginning of bit region to release
1141  *	@order: region size (log base 2 of number of bits) to release
1142  *
1143  * This is the complement to __bitmap_find_free_region() and releases
1144  * the found region (by clearing it in the bitmap).
1145  *
1146  * No return value.
1147  */
1148 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1149 {
1150 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1151 }
1152 EXPORT_SYMBOL(bitmap_release_region);
1153 
1154 /**
1155  * bitmap_allocate_region - allocate bitmap region
1156  *	@bitmap: array of unsigned longs corresponding to the bitmap
1157  *	@pos: beginning of bit region to allocate
1158  *	@order: region size (log base 2 of number of bits) to allocate
1159  *
1160  * Allocate (set bits in) a specified region of a bitmap.
1161  *
1162  * Return 0 on success, or %-EBUSY if specified region wasn't
1163  * free (not all bits were zero).
1164  */
1165 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1166 {
1167 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1168 		return -EBUSY;
1169 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1170 }
1171 EXPORT_SYMBOL(bitmap_allocate_region);
1172 
1173 /**
1174  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1175  * @dst:   destination buffer
1176  * @src:   bitmap to copy
1177  * @nbits: number of bits in the bitmap
1178  *
1179  * Require nbits % BITS_PER_LONG == 0.
1180  */
1181 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1182 {
1183 	unsigned long *d = dst;
1184 	int i;
1185 
1186 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1187 		if (BITS_PER_LONG == 64)
1188 			d[i] = cpu_to_le64(src[i]);
1189 		else
1190 			d[i] = cpu_to_le32(src[i]);
1191 	}
1192 }
1193 EXPORT_SYMBOL(bitmap_copy_le);
1194