1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/export.h> 9 #include <linux/thread_info.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/bitmap.h> 13 #include <linux/bitops.h> 14 #include <linux/bug.h> 15 #include <asm/uaccess.h> 16 17 /* 18 * bitmaps provide an array of bits, implemented using an an 19 * array of unsigned longs. The number of valid bits in a 20 * given bitmap does _not_ need to be an exact multiple of 21 * BITS_PER_LONG. 22 * 23 * The possible unused bits in the last, partially used word 24 * of a bitmap are 'don't care'. The implementation makes 25 * no particular effort to keep them zero. It ensures that 26 * their value will not affect the results of any operation. 27 * The bitmap operations that return Boolean (bitmap_empty, 28 * for example) or scalar (bitmap_weight, for example) results 29 * carefully filter out these unused bits from impacting their 30 * results. 31 * 32 * These operations actually hold to a slightly stronger rule: 33 * if you don't input any bitmaps to these ops that have some 34 * unused bits set, then they won't output any set unused bits 35 * in output bitmaps. 36 * 37 * The byte ordering of bitmaps is more natural on little 38 * endian architectures. See the big-endian headers 39 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 40 * for the best explanations of this ordering. 41 */ 42 43 int __bitmap_empty(const unsigned long *bitmap, unsigned int bits) 44 { 45 unsigned int k, lim = bits/BITS_PER_LONG; 46 for (k = 0; k < lim; ++k) 47 if (bitmap[k]) 48 return 0; 49 50 if (bits % BITS_PER_LONG) 51 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 52 return 0; 53 54 return 1; 55 } 56 EXPORT_SYMBOL(__bitmap_empty); 57 58 int __bitmap_full(const unsigned long *bitmap, unsigned int bits) 59 { 60 unsigned int k, lim = bits/BITS_PER_LONG; 61 for (k = 0; k < lim; ++k) 62 if (~bitmap[k]) 63 return 0; 64 65 if (bits % BITS_PER_LONG) 66 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) 67 return 0; 68 69 return 1; 70 } 71 EXPORT_SYMBOL(__bitmap_full); 72 73 int __bitmap_equal(const unsigned long *bitmap1, 74 const unsigned long *bitmap2, unsigned int bits) 75 { 76 unsigned int k, lim = bits/BITS_PER_LONG; 77 for (k = 0; k < lim; ++k) 78 if (bitmap1[k] != bitmap2[k]) 79 return 0; 80 81 if (bits % BITS_PER_LONG) 82 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 83 return 0; 84 85 return 1; 86 } 87 EXPORT_SYMBOL(__bitmap_equal); 88 89 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 90 { 91 unsigned int k, lim = bits/BITS_PER_LONG; 92 for (k = 0; k < lim; ++k) 93 dst[k] = ~src[k]; 94 95 if (bits % BITS_PER_LONG) 96 dst[k] = ~src[k]; 97 } 98 EXPORT_SYMBOL(__bitmap_complement); 99 100 /** 101 * __bitmap_shift_right - logical right shift of the bits in a bitmap 102 * @dst : destination bitmap 103 * @src : source bitmap 104 * @shift : shift by this many bits 105 * @bits : bitmap size, in bits 106 * 107 * Shifting right (dividing) means moving bits in the MS -> LS bit 108 * direction. Zeros are fed into the vacated MS positions and the 109 * LS bits shifted off the bottom are lost. 110 */ 111 void __bitmap_shift_right(unsigned long *dst, 112 const unsigned long *src, int shift, int bits) 113 { 114 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 115 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 116 unsigned long mask = (1UL << left) - 1; 117 for (k = 0; off + k < lim; ++k) { 118 unsigned long upper, lower; 119 120 /* 121 * If shift is not word aligned, take lower rem bits of 122 * word above and make them the top rem bits of result. 123 */ 124 if (!rem || off + k + 1 >= lim) 125 upper = 0; 126 else { 127 upper = src[off + k + 1]; 128 if (off + k + 1 == lim - 1 && left) 129 upper &= mask; 130 } 131 lower = src[off + k]; 132 if (left && off + k == lim - 1) 133 lower &= mask; 134 dst[k] = lower >> rem; 135 if (rem) 136 dst[k] |= upper << (BITS_PER_LONG - rem); 137 if (left && k == lim - 1) 138 dst[k] &= mask; 139 } 140 if (off) 141 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 142 } 143 EXPORT_SYMBOL(__bitmap_shift_right); 144 145 146 /** 147 * __bitmap_shift_left - logical left shift of the bits in a bitmap 148 * @dst : destination bitmap 149 * @src : source bitmap 150 * @shift : shift by this many bits 151 * @bits : bitmap size, in bits 152 * 153 * Shifting left (multiplying) means moving bits in the LS -> MS 154 * direction. Zeros are fed into the vacated LS bit positions 155 * and those MS bits shifted off the top are lost. 156 */ 157 158 void __bitmap_shift_left(unsigned long *dst, 159 const unsigned long *src, int shift, int bits) 160 { 161 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; 162 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 163 for (k = lim - off - 1; k >= 0; --k) { 164 unsigned long upper, lower; 165 166 /* 167 * If shift is not word aligned, take upper rem bits of 168 * word below and make them the bottom rem bits of result. 169 */ 170 if (rem && k > 0) 171 lower = src[k - 1]; 172 else 173 lower = 0; 174 upper = src[k]; 175 if (left && k == lim - 1) 176 upper &= (1UL << left) - 1; 177 dst[k + off] = upper << rem; 178 if (rem) 179 dst[k + off] |= lower >> (BITS_PER_LONG - rem); 180 if (left && k + off == lim - 1) 181 dst[k + off] &= (1UL << left) - 1; 182 } 183 if (off) 184 memset(dst, 0, off*sizeof(unsigned long)); 185 } 186 EXPORT_SYMBOL(__bitmap_shift_left); 187 188 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 189 const unsigned long *bitmap2, unsigned int bits) 190 { 191 unsigned int k; 192 unsigned int lim = bits/BITS_PER_LONG; 193 unsigned long result = 0; 194 195 for (k = 0; k < lim; k++) 196 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 197 if (bits % BITS_PER_LONG) 198 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 199 BITMAP_LAST_WORD_MASK(bits)); 200 return result != 0; 201 } 202 EXPORT_SYMBOL(__bitmap_and); 203 204 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 205 const unsigned long *bitmap2, unsigned int bits) 206 { 207 unsigned int k; 208 unsigned int nr = BITS_TO_LONGS(bits); 209 210 for (k = 0; k < nr; k++) 211 dst[k] = bitmap1[k] | bitmap2[k]; 212 } 213 EXPORT_SYMBOL(__bitmap_or); 214 215 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 216 const unsigned long *bitmap2, unsigned int bits) 217 { 218 unsigned int k; 219 unsigned int nr = BITS_TO_LONGS(bits); 220 221 for (k = 0; k < nr; k++) 222 dst[k] = bitmap1[k] ^ bitmap2[k]; 223 } 224 EXPORT_SYMBOL(__bitmap_xor); 225 226 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 227 const unsigned long *bitmap2, unsigned int bits) 228 { 229 unsigned int k; 230 unsigned int lim = bits/BITS_PER_LONG; 231 unsigned long result = 0; 232 233 for (k = 0; k < lim; k++) 234 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 235 if (bits % BITS_PER_LONG) 236 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 237 BITMAP_LAST_WORD_MASK(bits)); 238 return result != 0; 239 } 240 EXPORT_SYMBOL(__bitmap_andnot); 241 242 int __bitmap_intersects(const unsigned long *bitmap1, 243 const unsigned long *bitmap2, unsigned int bits) 244 { 245 unsigned int k, lim = bits/BITS_PER_LONG; 246 for (k = 0; k < lim; ++k) 247 if (bitmap1[k] & bitmap2[k]) 248 return 1; 249 250 if (bits % BITS_PER_LONG) 251 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 252 return 1; 253 return 0; 254 } 255 EXPORT_SYMBOL(__bitmap_intersects); 256 257 int __bitmap_subset(const unsigned long *bitmap1, 258 const unsigned long *bitmap2, unsigned int bits) 259 { 260 unsigned int k, lim = bits/BITS_PER_LONG; 261 for (k = 0; k < lim; ++k) 262 if (bitmap1[k] & ~bitmap2[k]) 263 return 0; 264 265 if (bits % BITS_PER_LONG) 266 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 267 return 0; 268 return 1; 269 } 270 EXPORT_SYMBOL(__bitmap_subset); 271 272 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 273 { 274 unsigned int k, lim = bits/BITS_PER_LONG; 275 int w = 0; 276 277 for (k = 0; k < lim; k++) 278 w += hweight_long(bitmap[k]); 279 280 if (bits % BITS_PER_LONG) 281 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 282 283 return w; 284 } 285 EXPORT_SYMBOL(__bitmap_weight); 286 287 void bitmap_set(unsigned long *map, unsigned int start, int len) 288 { 289 unsigned long *p = map + BIT_WORD(start); 290 const unsigned int size = start + len; 291 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 292 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 293 294 while (len - bits_to_set >= 0) { 295 *p |= mask_to_set; 296 len -= bits_to_set; 297 bits_to_set = BITS_PER_LONG; 298 mask_to_set = ~0UL; 299 p++; 300 } 301 if (len) { 302 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 303 *p |= mask_to_set; 304 } 305 } 306 EXPORT_SYMBOL(bitmap_set); 307 308 void bitmap_clear(unsigned long *map, unsigned int start, int len) 309 { 310 unsigned long *p = map + BIT_WORD(start); 311 const unsigned int size = start + len; 312 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 313 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 314 315 while (len - bits_to_clear >= 0) { 316 *p &= ~mask_to_clear; 317 len -= bits_to_clear; 318 bits_to_clear = BITS_PER_LONG; 319 mask_to_clear = ~0UL; 320 p++; 321 } 322 if (len) { 323 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 324 *p &= ~mask_to_clear; 325 } 326 } 327 EXPORT_SYMBOL(bitmap_clear); 328 329 /** 330 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 331 * @map: The address to base the search on 332 * @size: The bitmap size in bits 333 * @start: The bitnumber to start searching at 334 * @nr: The number of zeroed bits we're looking for 335 * @align_mask: Alignment mask for zero area 336 * @align_offset: Alignment offset for zero area. 337 * 338 * The @align_mask should be one less than a power of 2; the effect is that 339 * the bit offset of all zero areas this function finds plus @align_offset 340 * is multiple of that power of 2. 341 */ 342 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 343 unsigned long size, 344 unsigned long start, 345 unsigned int nr, 346 unsigned long align_mask, 347 unsigned long align_offset) 348 { 349 unsigned long index, end, i; 350 again: 351 index = find_next_zero_bit(map, size, start); 352 353 /* Align allocation */ 354 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 355 356 end = index + nr; 357 if (end > size) 358 return end; 359 i = find_next_bit(map, end, index); 360 if (i < end) { 361 start = i + 1; 362 goto again; 363 } 364 return index; 365 } 366 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 367 368 /* 369 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 370 * second version by Paul Jackson, third by Joe Korty. 371 */ 372 373 #define CHUNKSZ 32 374 #define nbits_to_hold_value(val) fls(val) 375 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 376 377 /** 378 * bitmap_scnprintf - convert bitmap to an ASCII hex string. 379 * @buf: byte buffer into which string is placed 380 * @buflen: reserved size of @buf, in bytes 381 * @maskp: pointer to bitmap to convert 382 * @nmaskbits: size of bitmap, in bits 383 * 384 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into 385 * comma-separated sets of eight digits per set. Returns the number of 386 * characters which were written to *buf, excluding the trailing \0. 387 */ 388 int bitmap_scnprintf(char *buf, unsigned int buflen, 389 const unsigned long *maskp, int nmaskbits) 390 { 391 int i, word, bit, len = 0; 392 unsigned long val; 393 const char *sep = ""; 394 int chunksz; 395 u32 chunkmask; 396 397 chunksz = nmaskbits & (CHUNKSZ - 1); 398 if (chunksz == 0) 399 chunksz = CHUNKSZ; 400 401 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; 402 for (; i >= 0; i -= CHUNKSZ) { 403 chunkmask = ((1ULL << chunksz) - 1); 404 word = i / BITS_PER_LONG; 405 bit = i % BITS_PER_LONG; 406 val = (maskp[word] >> bit) & chunkmask; 407 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, 408 (chunksz+3)/4, val); 409 chunksz = CHUNKSZ; 410 sep = ","; 411 } 412 return len; 413 } 414 EXPORT_SYMBOL(bitmap_scnprintf); 415 416 /** 417 * __bitmap_parse - convert an ASCII hex string into a bitmap. 418 * @buf: pointer to buffer containing string. 419 * @buflen: buffer size in bytes. If string is smaller than this 420 * then it must be terminated with a \0. 421 * @is_user: location of buffer, 0 indicates kernel space 422 * @maskp: pointer to bitmap array that will contain result. 423 * @nmaskbits: size of bitmap, in bits. 424 * 425 * Commas group hex digits into chunks. Each chunk defines exactly 32 426 * bits of the resultant bitmask. No chunk may specify a value larger 427 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 428 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 429 * characters and for grouping errors such as "1,,5", ",44", "," and "". 430 * Leading and trailing whitespace accepted, but not embedded whitespace. 431 */ 432 int __bitmap_parse(const char *buf, unsigned int buflen, 433 int is_user, unsigned long *maskp, 434 int nmaskbits) 435 { 436 int c, old_c, totaldigits, ndigits, nchunks, nbits; 437 u32 chunk; 438 const char __user __force *ubuf = (const char __user __force *)buf; 439 440 bitmap_zero(maskp, nmaskbits); 441 442 nchunks = nbits = totaldigits = c = 0; 443 do { 444 chunk = ndigits = 0; 445 446 /* Get the next chunk of the bitmap */ 447 while (buflen) { 448 old_c = c; 449 if (is_user) { 450 if (__get_user(c, ubuf++)) 451 return -EFAULT; 452 } 453 else 454 c = *buf++; 455 buflen--; 456 if (isspace(c)) 457 continue; 458 459 /* 460 * If the last character was a space and the current 461 * character isn't '\0', we've got embedded whitespace. 462 * This is a no-no, so throw an error. 463 */ 464 if (totaldigits && c && isspace(old_c)) 465 return -EINVAL; 466 467 /* A '\0' or a ',' signal the end of the chunk */ 468 if (c == '\0' || c == ',') 469 break; 470 471 if (!isxdigit(c)) 472 return -EINVAL; 473 474 /* 475 * Make sure there are at least 4 free bits in 'chunk'. 476 * If not, this hexdigit will overflow 'chunk', so 477 * throw an error. 478 */ 479 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 480 return -EOVERFLOW; 481 482 chunk = (chunk << 4) | hex_to_bin(c); 483 ndigits++; totaldigits++; 484 } 485 if (ndigits == 0) 486 return -EINVAL; 487 if (nchunks == 0 && chunk == 0) 488 continue; 489 490 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 491 *maskp |= chunk; 492 nchunks++; 493 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 494 if (nbits > nmaskbits) 495 return -EOVERFLOW; 496 } while (buflen && c == ','); 497 498 return 0; 499 } 500 EXPORT_SYMBOL(__bitmap_parse); 501 502 /** 503 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 504 * 505 * @ubuf: pointer to user buffer containing string. 506 * @ulen: buffer size in bytes. If string is smaller than this 507 * then it must be terminated with a \0. 508 * @maskp: pointer to bitmap array that will contain result. 509 * @nmaskbits: size of bitmap, in bits. 510 * 511 * Wrapper for __bitmap_parse(), providing it with user buffer. 512 * 513 * We cannot have this as an inline function in bitmap.h because it needs 514 * linux/uaccess.h to get the access_ok() declaration and this causes 515 * cyclic dependencies. 516 */ 517 int bitmap_parse_user(const char __user *ubuf, 518 unsigned int ulen, unsigned long *maskp, 519 int nmaskbits) 520 { 521 if (!access_ok(VERIFY_READ, ubuf, ulen)) 522 return -EFAULT; 523 return __bitmap_parse((const char __force *)ubuf, 524 ulen, 1, maskp, nmaskbits); 525 526 } 527 EXPORT_SYMBOL(bitmap_parse_user); 528 529 /* 530 * bscnl_emit(buf, buflen, rbot, rtop, bp) 531 * 532 * Helper routine for bitmap_scnlistprintf(). Write decimal number 533 * or range to buf, suppressing output past buf+buflen, with optional 534 * comma-prefix. Return len of what was written to *buf, excluding the 535 * trailing \0. 536 */ 537 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) 538 { 539 if (len > 0) 540 len += scnprintf(buf + len, buflen - len, ","); 541 if (rbot == rtop) 542 len += scnprintf(buf + len, buflen - len, "%d", rbot); 543 else 544 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); 545 return len; 546 } 547 548 /** 549 * bitmap_scnlistprintf - convert bitmap to list format ASCII string 550 * @buf: byte buffer into which string is placed 551 * @buflen: reserved size of @buf, in bytes 552 * @maskp: pointer to bitmap to convert 553 * @nmaskbits: size of bitmap, in bits 554 * 555 * Output format is a comma-separated list of decimal numbers and 556 * ranges. Consecutively set bits are shown as two hyphen-separated 557 * decimal numbers, the smallest and largest bit numbers set in 558 * the range. Output format is compatible with the format 559 * accepted as input by bitmap_parselist(). 560 * 561 * The return value is the number of characters which were written to *buf 562 * excluding the trailing '\0', as per ISO C99's scnprintf. 563 */ 564 int bitmap_scnlistprintf(char *buf, unsigned int buflen, 565 const unsigned long *maskp, int nmaskbits) 566 { 567 int len = 0; 568 /* current bit is 'cur', most recently seen range is [rbot, rtop] */ 569 int cur, rbot, rtop; 570 571 if (buflen == 0) 572 return 0; 573 buf[0] = 0; 574 575 rbot = cur = find_first_bit(maskp, nmaskbits); 576 while (cur < nmaskbits) { 577 rtop = cur; 578 cur = find_next_bit(maskp, nmaskbits, cur+1); 579 if (cur >= nmaskbits || cur > rtop + 1) { 580 len = bscnl_emit(buf, buflen, rbot, rtop, len); 581 rbot = cur; 582 } 583 } 584 return len; 585 } 586 EXPORT_SYMBOL(bitmap_scnlistprintf); 587 588 /** 589 * __bitmap_parselist - convert list format ASCII string to bitmap 590 * @buf: read nul-terminated user string from this buffer 591 * @buflen: buffer size in bytes. If string is smaller than this 592 * then it must be terminated with a \0. 593 * @is_user: location of buffer, 0 indicates kernel space 594 * @maskp: write resulting mask here 595 * @nmaskbits: number of bits in mask to be written 596 * 597 * Input format is a comma-separated list of decimal numbers and 598 * ranges. Consecutively set bits are shown as two hyphen-separated 599 * decimal numbers, the smallest and largest bit numbers set in 600 * the range. 601 * 602 * Returns 0 on success, -errno on invalid input strings. 603 * Error values: 604 * %-EINVAL: second number in range smaller than first 605 * %-EINVAL: invalid character in string 606 * %-ERANGE: bit number specified too large for mask 607 */ 608 static int __bitmap_parselist(const char *buf, unsigned int buflen, 609 int is_user, unsigned long *maskp, 610 int nmaskbits) 611 { 612 unsigned a, b; 613 int c, old_c, totaldigits; 614 const char __user __force *ubuf = (const char __user __force *)buf; 615 int exp_digit, in_range; 616 617 totaldigits = c = 0; 618 bitmap_zero(maskp, nmaskbits); 619 do { 620 exp_digit = 1; 621 in_range = 0; 622 a = b = 0; 623 624 /* Get the next cpu# or a range of cpu#'s */ 625 while (buflen) { 626 old_c = c; 627 if (is_user) { 628 if (__get_user(c, ubuf++)) 629 return -EFAULT; 630 } else 631 c = *buf++; 632 buflen--; 633 if (isspace(c)) 634 continue; 635 636 /* 637 * If the last character was a space and the current 638 * character isn't '\0', we've got embedded whitespace. 639 * This is a no-no, so throw an error. 640 */ 641 if (totaldigits && c && isspace(old_c)) 642 return -EINVAL; 643 644 /* A '\0' or a ',' signal the end of a cpu# or range */ 645 if (c == '\0' || c == ',') 646 break; 647 648 if (c == '-') { 649 if (exp_digit || in_range) 650 return -EINVAL; 651 b = 0; 652 in_range = 1; 653 exp_digit = 1; 654 continue; 655 } 656 657 if (!isdigit(c)) 658 return -EINVAL; 659 660 b = b * 10 + (c - '0'); 661 if (!in_range) 662 a = b; 663 exp_digit = 0; 664 totaldigits++; 665 } 666 if (!(a <= b)) 667 return -EINVAL; 668 if (b >= nmaskbits) 669 return -ERANGE; 670 while (a <= b) { 671 set_bit(a, maskp); 672 a++; 673 } 674 } while (buflen && c == ','); 675 return 0; 676 } 677 678 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 679 { 680 char *nl = strchrnul(bp, '\n'); 681 int len = nl - bp; 682 683 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); 684 } 685 EXPORT_SYMBOL(bitmap_parselist); 686 687 688 /** 689 * bitmap_parselist_user() 690 * 691 * @ubuf: pointer to user buffer containing string. 692 * @ulen: buffer size in bytes. If string is smaller than this 693 * then it must be terminated with a \0. 694 * @maskp: pointer to bitmap array that will contain result. 695 * @nmaskbits: size of bitmap, in bits. 696 * 697 * Wrapper for bitmap_parselist(), providing it with user buffer. 698 * 699 * We cannot have this as an inline function in bitmap.h because it needs 700 * linux/uaccess.h to get the access_ok() declaration and this causes 701 * cyclic dependencies. 702 */ 703 int bitmap_parselist_user(const char __user *ubuf, 704 unsigned int ulen, unsigned long *maskp, 705 int nmaskbits) 706 { 707 if (!access_ok(VERIFY_READ, ubuf, ulen)) 708 return -EFAULT; 709 return __bitmap_parselist((const char __force *)ubuf, 710 ulen, 1, maskp, nmaskbits); 711 } 712 EXPORT_SYMBOL(bitmap_parselist_user); 713 714 715 /** 716 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 717 * @buf: pointer to a bitmap 718 * @pos: a bit position in @buf (0 <= @pos < @bits) 719 * @bits: number of valid bit positions in @buf 720 * 721 * Map the bit at position @pos in @buf (of length @bits) to the 722 * ordinal of which set bit it is. If it is not set or if @pos 723 * is not a valid bit position, map to -1. 724 * 725 * If for example, just bits 4 through 7 are set in @buf, then @pos 726 * values 4 through 7 will get mapped to 0 through 3, respectively, 727 * and other @pos values will get mapped to -1. When @pos value 7 728 * gets mapped to (returns) @ord value 3 in this example, that means 729 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 730 * 731 * The bit positions 0 through @bits are valid positions in @buf. 732 */ 733 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) 734 { 735 int i, ord; 736 737 if (pos < 0 || pos >= bits || !test_bit(pos, buf)) 738 return -1; 739 740 i = find_first_bit(buf, bits); 741 ord = 0; 742 while (i < pos) { 743 i = find_next_bit(buf, bits, i + 1); 744 ord++; 745 } 746 BUG_ON(i != pos); 747 748 return ord; 749 } 750 751 /** 752 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 753 * @buf: pointer to bitmap 754 * @ord: ordinal bit position (n-th set bit, n >= 0) 755 * @bits: number of valid bit positions in @buf 756 * 757 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 758 * Value of @ord should be in range 0 <= @ord < weight(buf), else 759 * results are undefined. 760 * 761 * If for example, just bits 4 through 7 are set in @buf, then @ord 762 * values 0 through 3 will get mapped to 4 through 7, respectively, 763 * and all other @ord values return undefined values. When @ord value 3 764 * gets mapped to (returns) @pos value 7 in this example, that means 765 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 766 * 767 * The bit positions 0 through @bits are valid positions in @buf. 768 */ 769 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) 770 { 771 int pos = 0; 772 773 if (ord >= 0 && ord < bits) { 774 int i; 775 776 for (i = find_first_bit(buf, bits); 777 i < bits && ord > 0; 778 i = find_next_bit(buf, bits, i + 1)) 779 ord--; 780 if (i < bits && ord == 0) 781 pos = i; 782 } 783 784 return pos; 785 } 786 787 /** 788 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 789 * @dst: remapped result 790 * @src: subset to be remapped 791 * @old: defines domain of map 792 * @new: defines range of map 793 * @bits: number of bits in each of these bitmaps 794 * 795 * Let @old and @new define a mapping of bit positions, such that 796 * whatever position is held by the n-th set bit in @old is mapped 797 * to the n-th set bit in @new. In the more general case, allowing 798 * for the possibility that the weight 'w' of @new is less than the 799 * weight of @old, map the position of the n-th set bit in @old to 800 * the position of the m-th set bit in @new, where m == n % w. 801 * 802 * If either of the @old and @new bitmaps are empty, or if @src and 803 * @dst point to the same location, then this routine copies @src 804 * to @dst. 805 * 806 * The positions of unset bits in @old are mapped to themselves 807 * (the identify map). 808 * 809 * Apply the above specified mapping to @src, placing the result in 810 * @dst, clearing any bits previously set in @dst. 811 * 812 * For example, lets say that @old has bits 4 through 7 set, and 813 * @new has bits 12 through 15 set. This defines the mapping of bit 814 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 815 * bit positions unchanged. So if say @src comes into this routine 816 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 817 * 13 and 15 set. 818 */ 819 void bitmap_remap(unsigned long *dst, const unsigned long *src, 820 const unsigned long *old, const unsigned long *new, 821 int bits) 822 { 823 int oldbit, w; 824 825 if (dst == src) /* following doesn't handle inplace remaps */ 826 return; 827 bitmap_zero(dst, bits); 828 829 w = bitmap_weight(new, bits); 830 for_each_set_bit(oldbit, src, bits) { 831 int n = bitmap_pos_to_ord(old, oldbit, bits); 832 833 if (n < 0 || w == 0) 834 set_bit(oldbit, dst); /* identity map */ 835 else 836 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); 837 } 838 } 839 EXPORT_SYMBOL(bitmap_remap); 840 841 /** 842 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 843 * @oldbit: bit position to be mapped 844 * @old: defines domain of map 845 * @new: defines range of map 846 * @bits: number of bits in each of these bitmaps 847 * 848 * Let @old and @new define a mapping of bit positions, such that 849 * whatever position is held by the n-th set bit in @old is mapped 850 * to the n-th set bit in @new. In the more general case, allowing 851 * for the possibility that the weight 'w' of @new is less than the 852 * weight of @old, map the position of the n-th set bit in @old to 853 * the position of the m-th set bit in @new, where m == n % w. 854 * 855 * The positions of unset bits in @old are mapped to themselves 856 * (the identify map). 857 * 858 * Apply the above specified mapping to bit position @oldbit, returning 859 * the new bit position. 860 * 861 * For example, lets say that @old has bits 4 through 7 set, and 862 * @new has bits 12 through 15 set. This defines the mapping of bit 863 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 864 * bit positions unchanged. So if say @oldbit is 5, then this routine 865 * returns 13. 866 */ 867 int bitmap_bitremap(int oldbit, const unsigned long *old, 868 const unsigned long *new, int bits) 869 { 870 int w = bitmap_weight(new, bits); 871 int n = bitmap_pos_to_ord(old, oldbit, bits); 872 if (n < 0 || w == 0) 873 return oldbit; 874 else 875 return bitmap_ord_to_pos(new, n % w, bits); 876 } 877 EXPORT_SYMBOL(bitmap_bitremap); 878 879 /** 880 * bitmap_onto - translate one bitmap relative to another 881 * @dst: resulting translated bitmap 882 * @orig: original untranslated bitmap 883 * @relmap: bitmap relative to which translated 884 * @bits: number of bits in each of these bitmaps 885 * 886 * Set the n-th bit of @dst iff there exists some m such that the 887 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 888 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 889 * (If you understood the previous sentence the first time your 890 * read it, you're overqualified for your current job.) 891 * 892 * In other words, @orig is mapped onto (surjectively) @dst, 893 * using the map { <n, m> | the n-th bit of @relmap is the 894 * m-th set bit of @relmap }. 895 * 896 * Any set bits in @orig above bit number W, where W is the 897 * weight of (number of set bits in) @relmap are mapped nowhere. 898 * In particular, if for all bits m set in @orig, m >= W, then 899 * @dst will end up empty. In situations where the possibility 900 * of such an empty result is not desired, one way to avoid it is 901 * to use the bitmap_fold() operator, below, to first fold the 902 * @orig bitmap over itself so that all its set bits x are in the 903 * range 0 <= x < W. The bitmap_fold() operator does this by 904 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 905 * 906 * Example [1] for bitmap_onto(): 907 * Let's say @relmap has bits 30-39 set, and @orig has bits 908 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 909 * @dst will have bits 31, 33, 35, 37 and 39 set. 910 * 911 * When bit 0 is set in @orig, it means turn on the bit in 912 * @dst corresponding to whatever is the first bit (if any) 913 * that is turned on in @relmap. Since bit 0 was off in the 914 * above example, we leave off that bit (bit 30) in @dst. 915 * 916 * When bit 1 is set in @orig (as in the above example), it 917 * means turn on the bit in @dst corresponding to whatever 918 * is the second bit that is turned on in @relmap. The second 919 * bit in @relmap that was turned on in the above example was 920 * bit 31, so we turned on bit 31 in @dst. 921 * 922 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 923 * because they were the 4th, 6th, 8th and 10th set bits 924 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 925 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 926 * 927 * When bit 11 is set in @orig, it means turn on the bit in 928 * @dst corresponding to whatever is the twelfth bit that is 929 * turned on in @relmap. In the above example, there were 930 * only ten bits turned on in @relmap (30..39), so that bit 931 * 11 was set in @orig had no affect on @dst. 932 * 933 * Example [2] for bitmap_fold() + bitmap_onto(): 934 * Let's say @relmap has these ten bits set: 935 * 40 41 42 43 45 48 53 61 74 95 936 * (for the curious, that's 40 plus the first ten terms of the 937 * Fibonacci sequence.) 938 * 939 * Further lets say we use the following code, invoking 940 * bitmap_fold() then bitmap_onto, as suggested above to 941 * avoid the possibility of an empty @dst result: 942 * 943 * unsigned long *tmp; // a temporary bitmap's bits 944 * 945 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 946 * bitmap_onto(dst, tmp, relmap, bits); 947 * 948 * Then this table shows what various values of @dst would be, for 949 * various @orig's. I list the zero-based positions of each set bit. 950 * The tmp column shows the intermediate result, as computed by 951 * using bitmap_fold() to fold the @orig bitmap modulo ten 952 * (the weight of @relmap). 953 * 954 * @orig tmp @dst 955 * 0 0 40 956 * 1 1 41 957 * 9 9 95 958 * 10 0 40 (*) 959 * 1 3 5 7 1 3 5 7 41 43 48 61 960 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 961 * 0 9 18 27 0 9 8 7 40 61 74 95 962 * 0 10 20 30 0 40 963 * 0 11 22 33 0 1 2 3 40 41 42 43 964 * 0 12 24 36 0 2 4 6 40 42 45 53 965 * 78 102 211 1 2 8 41 42 74 (*) 966 * 967 * (*) For these marked lines, if we hadn't first done bitmap_fold() 968 * into tmp, then the @dst result would have been empty. 969 * 970 * If either of @orig or @relmap is empty (no set bits), then @dst 971 * will be returned empty. 972 * 973 * If (as explained above) the only set bits in @orig are in positions 974 * m where m >= W, (where W is the weight of @relmap) then @dst will 975 * once again be returned empty. 976 * 977 * All bits in @dst not set by the above rule are cleared. 978 */ 979 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 980 const unsigned long *relmap, int bits) 981 { 982 int n, m; /* same meaning as in above comment */ 983 984 if (dst == orig) /* following doesn't handle inplace mappings */ 985 return; 986 bitmap_zero(dst, bits); 987 988 /* 989 * The following code is a more efficient, but less 990 * obvious, equivalent to the loop: 991 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 992 * n = bitmap_ord_to_pos(orig, m, bits); 993 * if (test_bit(m, orig)) 994 * set_bit(n, dst); 995 * } 996 */ 997 998 m = 0; 999 for_each_set_bit(n, relmap, bits) { 1000 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 1001 if (test_bit(m, orig)) 1002 set_bit(n, dst); 1003 m++; 1004 } 1005 } 1006 EXPORT_SYMBOL(bitmap_onto); 1007 1008 /** 1009 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 1010 * @dst: resulting smaller bitmap 1011 * @orig: original larger bitmap 1012 * @sz: specified size 1013 * @bits: number of bits in each of these bitmaps 1014 * 1015 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1016 * Clear all other bits in @dst. See further the comment and 1017 * Example [2] for bitmap_onto() for why and how to use this. 1018 */ 1019 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1020 int sz, int bits) 1021 { 1022 int oldbit; 1023 1024 if (dst == orig) /* following doesn't handle inplace mappings */ 1025 return; 1026 bitmap_zero(dst, bits); 1027 1028 for_each_set_bit(oldbit, orig, bits) 1029 set_bit(oldbit % sz, dst); 1030 } 1031 EXPORT_SYMBOL(bitmap_fold); 1032 1033 /* 1034 * Common code for bitmap_*_region() routines. 1035 * bitmap: array of unsigned longs corresponding to the bitmap 1036 * pos: the beginning of the region 1037 * order: region size (log base 2 of number of bits) 1038 * reg_op: operation(s) to perform on that region of bitmap 1039 * 1040 * Can set, verify and/or release a region of bits in a bitmap, 1041 * depending on which combination of REG_OP_* flag bits is set. 1042 * 1043 * A region of a bitmap is a sequence of bits in the bitmap, of 1044 * some size '1 << order' (a power of two), aligned to that same 1045 * '1 << order' power of two. 1046 * 1047 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1048 * Returns 0 in all other cases and reg_ops. 1049 */ 1050 1051 enum { 1052 REG_OP_ISFREE, /* true if region is all zero bits */ 1053 REG_OP_ALLOC, /* set all bits in region */ 1054 REG_OP_RELEASE, /* clear all bits in region */ 1055 }; 1056 1057 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1058 { 1059 int nbits_reg; /* number of bits in region */ 1060 int index; /* index first long of region in bitmap */ 1061 int offset; /* bit offset region in bitmap[index] */ 1062 int nlongs_reg; /* num longs spanned by region in bitmap */ 1063 int nbitsinlong; /* num bits of region in each spanned long */ 1064 unsigned long mask; /* bitmask for one long of region */ 1065 int i; /* scans bitmap by longs */ 1066 int ret = 0; /* return value */ 1067 1068 /* 1069 * Either nlongs_reg == 1 (for small orders that fit in one long) 1070 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1071 */ 1072 nbits_reg = 1 << order; 1073 index = pos / BITS_PER_LONG; 1074 offset = pos - (index * BITS_PER_LONG); 1075 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1076 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1077 1078 /* 1079 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1080 * overflows if nbitsinlong == BITS_PER_LONG. 1081 */ 1082 mask = (1UL << (nbitsinlong - 1)); 1083 mask += mask - 1; 1084 mask <<= offset; 1085 1086 switch (reg_op) { 1087 case REG_OP_ISFREE: 1088 for (i = 0; i < nlongs_reg; i++) { 1089 if (bitmap[index + i] & mask) 1090 goto done; 1091 } 1092 ret = 1; /* all bits in region free (zero) */ 1093 break; 1094 1095 case REG_OP_ALLOC: 1096 for (i = 0; i < nlongs_reg; i++) 1097 bitmap[index + i] |= mask; 1098 break; 1099 1100 case REG_OP_RELEASE: 1101 for (i = 0; i < nlongs_reg; i++) 1102 bitmap[index + i] &= ~mask; 1103 break; 1104 } 1105 done: 1106 return ret; 1107 } 1108 1109 /** 1110 * bitmap_find_free_region - find a contiguous aligned mem region 1111 * @bitmap: array of unsigned longs corresponding to the bitmap 1112 * @bits: number of bits in the bitmap 1113 * @order: region size (log base 2 of number of bits) to find 1114 * 1115 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1116 * allocate them (set them to one). Only consider regions of length 1117 * a power (@order) of two, aligned to that power of two, which 1118 * makes the search algorithm much faster. 1119 * 1120 * Return the bit offset in bitmap of the allocated region, 1121 * or -errno on failure. 1122 */ 1123 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1124 { 1125 unsigned int pos, end; /* scans bitmap by regions of size order */ 1126 1127 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1128 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1129 continue; 1130 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1131 return pos; 1132 } 1133 return -ENOMEM; 1134 } 1135 EXPORT_SYMBOL(bitmap_find_free_region); 1136 1137 /** 1138 * bitmap_release_region - release allocated bitmap region 1139 * @bitmap: array of unsigned longs corresponding to the bitmap 1140 * @pos: beginning of bit region to release 1141 * @order: region size (log base 2 of number of bits) to release 1142 * 1143 * This is the complement to __bitmap_find_free_region() and releases 1144 * the found region (by clearing it in the bitmap). 1145 * 1146 * No return value. 1147 */ 1148 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1149 { 1150 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1151 } 1152 EXPORT_SYMBOL(bitmap_release_region); 1153 1154 /** 1155 * bitmap_allocate_region - allocate bitmap region 1156 * @bitmap: array of unsigned longs corresponding to the bitmap 1157 * @pos: beginning of bit region to allocate 1158 * @order: region size (log base 2 of number of bits) to allocate 1159 * 1160 * Allocate (set bits in) a specified region of a bitmap. 1161 * 1162 * Return 0 on success, or %-EBUSY if specified region wasn't 1163 * free (not all bits were zero). 1164 */ 1165 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1166 { 1167 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1168 return -EBUSY; 1169 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1170 } 1171 EXPORT_SYMBOL(bitmap_allocate_region); 1172 1173 /** 1174 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1175 * @dst: destination buffer 1176 * @src: bitmap to copy 1177 * @nbits: number of bits in the bitmap 1178 * 1179 * Require nbits % BITS_PER_LONG == 0. 1180 */ 1181 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits) 1182 { 1183 unsigned long *d = dst; 1184 int i; 1185 1186 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1187 if (BITS_PER_LONG == 64) 1188 d[i] = cpu_to_le64(src[i]); 1189 else 1190 d[i] = cpu_to_le32(src[i]); 1191 } 1192 } 1193 EXPORT_SYMBOL(bitmap_copy_le); 1194