xref: /linux/kernel/workqueue.c (revision eb3d3ec567e868c8a3bfbfdfc9465ffd52983d11)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * manager_mutex to avoid changing binding state while
69 	 * create_worker() is in progress.
70 	 */
71 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74 
75 	/* worker flags */
76 	WORKER_STARTED		= 1 << 0,	/* started */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give MIN_NICE.
104 	 */
105 	RESCUER_NICE_LEVEL	= MIN_NICE,
106 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * MG: pool->manager_mutex and pool->lock protected.  Writes require both
128  *     locks.  Reads can happen under either lock.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * WQ: wq->mutex protected.
135  *
136  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137  *
138  * MD: wq_mayday_lock protected.
139  */
140 
141 /* struct worker is defined in workqueue_internal.h */
142 
143 struct worker_pool {
144 	spinlock_t		lock;		/* the pool lock */
145 	int			cpu;		/* I: the associated cpu */
146 	int			node;		/* I: the associated node ID */
147 	int			id;		/* I: pool ID */
148 	unsigned int		flags;		/* X: flags */
149 
150 	struct list_head	worklist;	/* L: list of pending works */
151 	int			nr_workers;	/* L: total number of workers */
152 
153 	/* nr_idle includes the ones off idle_list for rebinding */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	struct list_head	idle_list;	/* X: list of idle workers */
157 	struct timer_list	idle_timer;	/* L: worker idle timeout */
158 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
159 
160 	/* a workers is either on busy_hash or idle_list, or the manager */
161 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 						/* L: hash of busy workers */
163 
164 	/* see manage_workers() for details on the two manager mutexes */
165 	struct mutex		manager_arb;	/* manager arbitration */
166 	struct mutex		manager_mutex;	/* manager exclusion */
167 	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168 
169 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
171 	int			refcnt;		/* PL: refcnt for unbound pools */
172 
173 	/*
174 	 * The current concurrency level.  As it's likely to be accessed
175 	 * from other CPUs during try_to_wake_up(), put it in a separate
176 	 * cacheline.
177 	 */
178 	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 
180 	/*
181 	 * Destruction of pool is sched-RCU protected to allow dereferences
182 	 * from get_work_pool().
183 	 */
184 	struct rcu_head		rcu;
185 } ____cacheline_aligned_in_smp;
186 
187 /*
188  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
189  * of work_struct->data are used for flags and the remaining high bits
190  * point to the pwq; thus, pwqs need to be aligned at two's power of the
191  * number of flag bits.
192  */
193 struct pool_workqueue {
194 	struct worker_pool	*pool;		/* I: the associated pool */
195 	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 	int			work_color;	/* L: current color */
197 	int			flush_color;	/* L: flushing color */
198 	int			refcnt;		/* L: reference count */
199 	int			nr_in_flight[WORK_NR_COLORS];
200 						/* L: nr of in_flight works */
201 	int			nr_active;	/* L: nr of active works */
202 	int			max_active;	/* L: max active works */
203 	struct list_head	delayed_works;	/* L: delayed works */
204 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
206 
207 	/*
208 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
209 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
210 	 * itself is also sched-RCU protected so that the first pwq can be
211 	 * determined without grabbing wq->mutex.
212 	 */
213 	struct work_struct	unbound_release_work;
214 	struct rcu_head		rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216 
217 /*
218  * Structure used to wait for workqueue flush.
219  */
220 struct wq_flusher {
221 	struct list_head	list;		/* WQ: list of flushers */
222 	int			flush_color;	/* WQ: flush color waiting for */
223 	struct completion	done;		/* flush completion */
224 };
225 
226 struct wq_device;
227 
228 /*
229  * The externally visible workqueue.  It relays the issued work items to
230  * the appropriate worker_pool through its pool_workqueues.
231  */
232 struct workqueue_struct {
233 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234 	struct list_head	list;		/* PL: list of all workqueues */
235 
236 	struct mutex		mutex;		/* protects this wq */
237 	int			work_color;	/* WQ: current work color */
238 	int			flush_color;	/* WQ: current flush color */
239 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
241 	struct list_head	flusher_queue;	/* WQ: flush waiters */
242 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243 
244 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 	struct worker		*rescuer;	/* I: rescue worker */
246 
247 	int			nr_drainers;	/* WQ: drain in progress */
248 	int			saved_max_active; /* WQ: saved pwq max_active */
249 
250 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252 
253 #ifdef CONFIG_SYSFS
254 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 	struct lockdep_map	lockdep_map;
258 #endif
259 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 
261 	/* hot fields used during command issue, aligned to cacheline */
262 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266 
267 static struct kmem_cache *pwq_cache;
268 
269 static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 					/* possible CPUs of each node */
272 
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275 
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282 
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284 
285 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
286 
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289 
290 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292 
293 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
294 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 				     cpu_worker_pools);
299 
300 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301 
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304 
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307 
308 /* I: attributes used when instantiating ordered pools on demand */
309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310 
311 struct workqueue_struct *system_wq __read_mostly;
312 EXPORT_SYMBOL(system_wq);
313 struct workqueue_struct *system_highpri_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_highpri_wq);
315 struct workqueue_struct *system_long_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_long_wq);
317 struct workqueue_struct *system_unbound_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_unbound_wq);
319 struct workqueue_struct *system_freezable_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_wq);
321 struct workqueue_struct *system_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325 
326 static int worker_thread(void *__worker);
327 static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 				 const struct workqueue_attrs *from);
329 
330 #define CREATE_TRACE_POINTS
331 #include <trace/events/workqueue.h>
332 
333 #define assert_rcu_or_pool_mutex()					\
334 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 			   lockdep_is_held(&wq_pool_mutex),		\
336 			   "sched RCU or wq_pool_mutex should be held")
337 
338 #define assert_rcu_or_wq_mutex(wq)					\
339 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340 			   lockdep_is_held(&wq->mutex),			\
341 			   "sched RCU or wq->mutex should be held")
342 
343 #ifdef CONFIG_LOCKDEP
344 #define assert_manager_or_pool_lock(pool)				\
345 	WARN_ONCE(debug_locks &&					\
346 		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
347 		  !lockdep_is_held(&(pool)->lock),			\
348 		  "pool->manager_mutex or ->lock should be held")
349 #else
350 #define assert_manager_or_pool_lock(pool)	do { } while (0)
351 #endif
352 
353 #define for_each_cpu_worker_pool(pool, cpu)				\
354 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
355 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356 	     (pool)++)
357 
358 /**
359  * for_each_pool - iterate through all worker_pools in the system
360  * @pool: iteration cursor
361  * @pi: integer used for iteration
362  *
363  * This must be called either with wq_pool_mutex held or sched RCU read
364  * locked.  If the pool needs to be used beyond the locking in effect, the
365  * caller is responsible for guaranteeing that the pool stays online.
366  *
367  * The if/else clause exists only for the lockdep assertion and can be
368  * ignored.
369  */
370 #define for_each_pool(pool, pi)						\
371 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
372 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
373 		else
374 
375 /**
376  * for_each_pool_worker - iterate through all workers of a worker_pool
377  * @worker: iteration cursor
378  * @wi: integer used for iteration
379  * @pool: worker_pool to iterate workers of
380  *
381  * This must be called with either @pool->manager_mutex or ->lock held.
382  *
383  * The if/else clause exists only for the lockdep assertion and can be
384  * ignored.
385  */
386 #define for_each_pool_worker(worker, wi, pool)				\
387 	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
388 		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 		else
390 
391 /**
392  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393  * @pwq: iteration cursor
394  * @wq: the target workqueue
395  *
396  * This must be called either with wq->mutex held or sched RCU read locked.
397  * If the pwq needs to be used beyond the locking in effect, the caller is
398  * responsible for guaranteeing that the pwq stays online.
399  *
400  * The if/else clause exists only for the lockdep assertion and can be
401  * ignored.
402  */
403 #define for_each_pwq(pwq, wq)						\
404 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
405 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
406 		else
407 
408 #ifdef CONFIG_DEBUG_OBJECTS_WORK
409 
410 static struct debug_obj_descr work_debug_descr;
411 
412 static void *work_debug_hint(void *addr)
413 {
414 	return ((struct work_struct *) addr)->func;
415 }
416 
417 /*
418  * fixup_init is called when:
419  * - an active object is initialized
420  */
421 static int work_fixup_init(void *addr, enum debug_obj_state state)
422 {
423 	struct work_struct *work = addr;
424 
425 	switch (state) {
426 	case ODEBUG_STATE_ACTIVE:
427 		cancel_work_sync(work);
428 		debug_object_init(work, &work_debug_descr);
429 		return 1;
430 	default:
431 		return 0;
432 	}
433 }
434 
435 /*
436  * fixup_activate is called when:
437  * - an active object is activated
438  * - an unknown object is activated (might be a statically initialized object)
439  */
440 static int work_fixup_activate(void *addr, enum debug_obj_state state)
441 {
442 	struct work_struct *work = addr;
443 
444 	switch (state) {
445 
446 	case ODEBUG_STATE_NOTAVAILABLE:
447 		/*
448 		 * This is not really a fixup. The work struct was
449 		 * statically initialized. We just make sure that it
450 		 * is tracked in the object tracker.
451 		 */
452 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 			debug_object_init(work, &work_debug_descr);
454 			debug_object_activate(work, &work_debug_descr);
455 			return 0;
456 		}
457 		WARN_ON_ONCE(1);
458 		return 0;
459 
460 	case ODEBUG_STATE_ACTIVE:
461 		WARN_ON(1);
462 
463 	default:
464 		return 0;
465 	}
466 }
467 
468 /*
469  * fixup_free is called when:
470  * - an active object is freed
471  */
472 static int work_fixup_free(void *addr, enum debug_obj_state state)
473 {
474 	struct work_struct *work = addr;
475 
476 	switch (state) {
477 	case ODEBUG_STATE_ACTIVE:
478 		cancel_work_sync(work);
479 		debug_object_free(work, &work_debug_descr);
480 		return 1;
481 	default:
482 		return 0;
483 	}
484 }
485 
486 static struct debug_obj_descr work_debug_descr = {
487 	.name		= "work_struct",
488 	.debug_hint	= work_debug_hint,
489 	.fixup_init	= work_fixup_init,
490 	.fixup_activate	= work_fixup_activate,
491 	.fixup_free	= work_fixup_free,
492 };
493 
494 static inline void debug_work_activate(struct work_struct *work)
495 {
496 	debug_object_activate(work, &work_debug_descr);
497 }
498 
499 static inline void debug_work_deactivate(struct work_struct *work)
500 {
501 	debug_object_deactivate(work, &work_debug_descr);
502 }
503 
504 void __init_work(struct work_struct *work, int onstack)
505 {
506 	if (onstack)
507 		debug_object_init_on_stack(work, &work_debug_descr);
508 	else
509 		debug_object_init(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(__init_work);
512 
513 void destroy_work_on_stack(struct work_struct *work)
514 {
515 	debug_object_free(work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518 
519 void destroy_delayed_work_on_stack(struct delayed_work *work)
520 {
521 	destroy_timer_on_stack(&work->timer);
522 	debug_object_free(&work->work, &work_debug_descr);
523 }
524 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
525 
526 #else
527 static inline void debug_work_activate(struct work_struct *work) { }
528 static inline void debug_work_deactivate(struct work_struct *work) { }
529 #endif
530 
531 /**
532  * worker_pool_assign_id - allocate ID and assing it to @pool
533  * @pool: the pool pointer of interest
534  *
535  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
536  * successfully, -errno on failure.
537  */
538 static int worker_pool_assign_id(struct worker_pool *pool)
539 {
540 	int ret;
541 
542 	lockdep_assert_held(&wq_pool_mutex);
543 
544 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
545 			GFP_KERNEL);
546 	if (ret >= 0) {
547 		pool->id = ret;
548 		return 0;
549 	}
550 	return ret;
551 }
552 
553 /**
554  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
555  * @wq: the target workqueue
556  * @node: the node ID
557  *
558  * This must be called either with pwq_lock held or sched RCU read locked.
559  * If the pwq needs to be used beyond the locking in effect, the caller is
560  * responsible for guaranteeing that the pwq stays online.
561  *
562  * Return: The unbound pool_workqueue for @node.
563  */
564 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
565 						  int node)
566 {
567 	assert_rcu_or_wq_mutex(wq);
568 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
569 }
570 
571 static unsigned int work_color_to_flags(int color)
572 {
573 	return color << WORK_STRUCT_COLOR_SHIFT;
574 }
575 
576 static int get_work_color(struct work_struct *work)
577 {
578 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
579 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
580 }
581 
582 static int work_next_color(int color)
583 {
584 	return (color + 1) % WORK_NR_COLORS;
585 }
586 
587 /*
588  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
589  * contain the pointer to the queued pwq.  Once execution starts, the flag
590  * is cleared and the high bits contain OFFQ flags and pool ID.
591  *
592  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
593  * and clear_work_data() can be used to set the pwq, pool or clear
594  * work->data.  These functions should only be called while the work is
595  * owned - ie. while the PENDING bit is set.
596  *
597  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
598  * corresponding to a work.  Pool is available once the work has been
599  * queued anywhere after initialization until it is sync canceled.  pwq is
600  * available only while the work item is queued.
601  *
602  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
603  * canceled.  While being canceled, a work item may have its PENDING set
604  * but stay off timer and worklist for arbitrarily long and nobody should
605  * try to steal the PENDING bit.
606  */
607 static inline void set_work_data(struct work_struct *work, unsigned long data,
608 				 unsigned long flags)
609 {
610 	WARN_ON_ONCE(!work_pending(work));
611 	atomic_long_set(&work->data, data | flags | work_static(work));
612 }
613 
614 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
615 			 unsigned long extra_flags)
616 {
617 	set_work_data(work, (unsigned long)pwq,
618 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
619 }
620 
621 static void set_work_pool_and_keep_pending(struct work_struct *work,
622 					   int pool_id)
623 {
624 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
625 		      WORK_STRUCT_PENDING);
626 }
627 
628 static void set_work_pool_and_clear_pending(struct work_struct *work,
629 					    int pool_id)
630 {
631 	/*
632 	 * The following wmb is paired with the implied mb in
633 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
634 	 * here are visible to and precede any updates by the next PENDING
635 	 * owner.
636 	 */
637 	smp_wmb();
638 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
639 }
640 
641 static void clear_work_data(struct work_struct *work)
642 {
643 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
644 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
645 }
646 
647 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
648 {
649 	unsigned long data = atomic_long_read(&work->data);
650 
651 	if (data & WORK_STRUCT_PWQ)
652 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
653 	else
654 		return NULL;
655 }
656 
657 /**
658  * get_work_pool - return the worker_pool a given work was associated with
659  * @work: the work item of interest
660  *
661  * Pools are created and destroyed under wq_pool_mutex, and allows read
662  * access under sched-RCU read lock.  As such, this function should be
663  * called under wq_pool_mutex or with preemption disabled.
664  *
665  * All fields of the returned pool are accessible as long as the above
666  * mentioned locking is in effect.  If the returned pool needs to be used
667  * beyond the critical section, the caller is responsible for ensuring the
668  * returned pool is and stays online.
669  *
670  * Return: The worker_pool @work was last associated with.  %NULL if none.
671  */
672 static struct worker_pool *get_work_pool(struct work_struct *work)
673 {
674 	unsigned long data = atomic_long_read(&work->data);
675 	int pool_id;
676 
677 	assert_rcu_or_pool_mutex();
678 
679 	if (data & WORK_STRUCT_PWQ)
680 		return ((struct pool_workqueue *)
681 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
682 
683 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
684 	if (pool_id == WORK_OFFQ_POOL_NONE)
685 		return NULL;
686 
687 	return idr_find(&worker_pool_idr, pool_id);
688 }
689 
690 /**
691  * get_work_pool_id - return the worker pool ID a given work is associated with
692  * @work: the work item of interest
693  *
694  * Return: The worker_pool ID @work was last associated with.
695  * %WORK_OFFQ_POOL_NONE if none.
696  */
697 static int get_work_pool_id(struct work_struct *work)
698 {
699 	unsigned long data = atomic_long_read(&work->data);
700 
701 	if (data & WORK_STRUCT_PWQ)
702 		return ((struct pool_workqueue *)
703 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
704 
705 	return data >> WORK_OFFQ_POOL_SHIFT;
706 }
707 
708 static void mark_work_canceling(struct work_struct *work)
709 {
710 	unsigned long pool_id = get_work_pool_id(work);
711 
712 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
713 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
714 }
715 
716 static bool work_is_canceling(struct work_struct *work)
717 {
718 	unsigned long data = atomic_long_read(&work->data);
719 
720 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
721 }
722 
723 /*
724  * Policy functions.  These define the policies on how the global worker
725  * pools are managed.  Unless noted otherwise, these functions assume that
726  * they're being called with pool->lock held.
727  */
728 
729 static bool __need_more_worker(struct worker_pool *pool)
730 {
731 	return !atomic_read(&pool->nr_running);
732 }
733 
734 /*
735  * Need to wake up a worker?  Called from anything but currently
736  * running workers.
737  *
738  * Note that, because unbound workers never contribute to nr_running, this
739  * function will always return %true for unbound pools as long as the
740  * worklist isn't empty.
741  */
742 static bool need_more_worker(struct worker_pool *pool)
743 {
744 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
745 }
746 
747 /* Can I start working?  Called from busy but !running workers. */
748 static bool may_start_working(struct worker_pool *pool)
749 {
750 	return pool->nr_idle;
751 }
752 
753 /* Do I need to keep working?  Called from currently running workers. */
754 static bool keep_working(struct worker_pool *pool)
755 {
756 	return !list_empty(&pool->worklist) &&
757 		atomic_read(&pool->nr_running) <= 1;
758 }
759 
760 /* Do we need a new worker?  Called from manager. */
761 static bool need_to_create_worker(struct worker_pool *pool)
762 {
763 	return need_more_worker(pool) && !may_start_working(pool);
764 }
765 
766 /* Do I need to be the manager? */
767 static bool need_to_manage_workers(struct worker_pool *pool)
768 {
769 	return need_to_create_worker(pool) ||
770 		(pool->flags & POOL_MANAGE_WORKERS);
771 }
772 
773 /* Do we have too many workers and should some go away? */
774 static bool too_many_workers(struct worker_pool *pool)
775 {
776 	bool managing = mutex_is_locked(&pool->manager_arb);
777 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
778 	int nr_busy = pool->nr_workers - nr_idle;
779 
780 	/*
781 	 * nr_idle and idle_list may disagree if idle rebinding is in
782 	 * progress.  Never return %true if idle_list is empty.
783 	 */
784 	if (list_empty(&pool->idle_list))
785 		return false;
786 
787 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
788 }
789 
790 /*
791  * Wake up functions.
792  */
793 
794 /* Return the first worker.  Safe with preemption disabled */
795 static struct worker *first_worker(struct worker_pool *pool)
796 {
797 	if (unlikely(list_empty(&pool->idle_list)))
798 		return NULL;
799 
800 	return list_first_entry(&pool->idle_list, struct worker, entry);
801 }
802 
803 /**
804  * wake_up_worker - wake up an idle worker
805  * @pool: worker pool to wake worker from
806  *
807  * Wake up the first idle worker of @pool.
808  *
809  * CONTEXT:
810  * spin_lock_irq(pool->lock).
811  */
812 static void wake_up_worker(struct worker_pool *pool)
813 {
814 	struct worker *worker = first_worker(pool);
815 
816 	if (likely(worker))
817 		wake_up_process(worker->task);
818 }
819 
820 /**
821  * wq_worker_waking_up - a worker is waking up
822  * @task: task waking up
823  * @cpu: CPU @task is waking up to
824  *
825  * This function is called during try_to_wake_up() when a worker is
826  * being awoken.
827  *
828  * CONTEXT:
829  * spin_lock_irq(rq->lock)
830  */
831 void wq_worker_waking_up(struct task_struct *task, int cpu)
832 {
833 	struct worker *worker = kthread_data(task);
834 
835 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
836 		WARN_ON_ONCE(worker->pool->cpu != cpu);
837 		atomic_inc(&worker->pool->nr_running);
838 	}
839 }
840 
841 /**
842  * wq_worker_sleeping - a worker is going to sleep
843  * @task: task going to sleep
844  * @cpu: CPU in question, must be the current CPU number
845  *
846  * This function is called during schedule() when a busy worker is
847  * going to sleep.  Worker on the same cpu can be woken up by
848  * returning pointer to its task.
849  *
850  * CONTEXT:
851  * spin_lock_irq(rq->lock)
852  *
853  * Return:
854  * Worker task on @cpu to wake up, %NULL if none.
855  */
856 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
857 {
858 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
859 	struct worker_pool *pool;
860 
861 	/*
862 	 * Rescuers, which may not have all the fields set up like normal
863 	 * workers, also reach here, let's not access anything before
864 	 * checking NOT_RUNNING.
865 	 */
866 	if (worker->flags & WORKER_NOT_RUNNING)
867 		return NULL;
868 
869 	pool = worker->pool;
870 
871 	/* this can only happen on the local cpu */
872 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
873 		return NULL;
874 
875 	/*
876 	 * The counterpart of the following dec_and_test, implied mb,
877 	 * worklist not empty test sequence is in insert_work().
878 	 * Please read comment there.
879 	 *
880 	 * NOT_RUNNING is clear.  This means that we're bound to and
881 	 * running on the local cpu w/ rq lock held and preemption
882 	 * disabled, which in turn means that none else could be
883 	 * manipulating idle_list, so dereferencing idle_list without pool
884 	 * lock is safe.
885 	 */
886 	if (atomic_dec_and_test(&pool->nr_running) &&
887 	    !list_empty(&pool->worklist))
888 		to_wakeup = first_worker(pool);
889 	return to_wakeup ? to_wakeup->task : NULL;
890 }
891 
892 /**
893  * worker_set_flags - set worker flags and adjust nr_running accordingly
894  * @worker: self
895  * @flags: flags to set
896  * @wakeup: wakeup an idle worker if necessary
897  *
898  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
899  * nr_running becomes zero and @wakeup is %true, an idle worker is
900  * woken up.
901  *
902  * CONTEXT:
903  * spin_lock_irq(pool->lock)
904  */
905 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
906 				    bool wakeup)
907 {
908 	struct worker_pool *pool = worker->pool;
909 
910 	WARN_ON_ONCE(worker->task != current);
911 
912 	/*
913 	 * If transitioning into NOT_RUNNING, adjust nr_running and
914 	 * wake up an idle worker as necessary if requested by
915 	 * @wakeup.
916 	 */
917 	if ((flags & WORKER_NOT_RUNNING) &&
918 	    !(worker->flags & WORKER_NOT_RUNNING)) {
919 		if (wakeup) {
920 			if (atomic_dec_and_test(&pool->nr_running) &&
921 			    !list_empty(&pool->worklist))
922 				wake_up_worker(pool);
923 		} else
924 			atomic_dec(&pool->nr_running);
925 	}
926 
927 	worker->flags |= flags;
928 }
929 
930 /**
931  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
932  * @worker: self
933  * @flags: flags to clear
934  *
935  * Clear @flags in @worker->flags and adjust nr_running accordingly.
936  *
937  * CONTEXT:
938  * spin_lock_irq(pool->lock)
939  */
940 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
941 {
942 	struct worker_pool *pool = worker->pool;
943 	unsigned int oflags = worker->flags;
944 
945 	WARN_ON_ONCE(worker->task != current);
946 
947 	worker->flags &= ~flags;
948 
949 	/*
950 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
951 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
952 	 * of multiple flags, not a single flag.
953 	 */
954 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
955 		if (!(worker->flags & WORKER_NOT_RUNNING))
956 			atomic_inc(&pool->nr_running);
957 }
958 
959 /**
960  * find_worker_executing_work - find worker which is executing a work
961  * @pool: pool of interest
962  * @work: work to find worker for
963  *
964  * Find a worker which is executing @work on @pool by searching
965  * @pool->busy_hash which is keyed by the address of @work.  For a worker
966  * to match, its current execution should match the address of @work and
967  * its work function.  This is to avoid unwanted dependency between
968  * unrelated work executions through a work item being recycled while still
969  * being executed.
970  *
971  * This is a bit tricky.  A work item may be freed once its execution
972  * starts and nothing prevents the freed area from being recycled for
973  * another work item.  If the same work item address ends up being reused
974  * before the original execution finishes, workqueue will identify the
975  * recycled work item as currently executing and make it wait until the
976  * current execution finishes, introducing an unwanted dependency.
977  *
978  * This function checks the work item address and work function to avoid
979  * false positives.  Note that this isn't complete as one may construct a
980  * work function which can introduce dependency onto itself through a
981  * recycled work item.  Well, if somebody wants to shoot oneself in the
982  * foot that badly, there's only so much we can do, and if such deadlock
983  * actually occurs, it should be easy to locate the culprit work function.
984  *
985  * CONTEXT:
986  * spin_lock_irq(pool->lock).
987  *
988  * Return:
989  * Pointer to worker which is executing @work if found, %NULL
990  * otherwise.
991  */
992 static struct worker *find_worker_executing_work(struct worker_pool *pool,
993 						 struct work_struct *work)
994 {
995 	struct worker *worker;
996 
997 	hash_for_each_possible(pool->busy_hash, worker, hentry,
998 			       (unsigned long)work)
999 		if (worker->current_work == work &&
1000 		    worker->current_func == work->func)
1001 			return worker;
1002 
1003 	return NULL;
1004 }
1005 
1006 /**
1007  * move_linked_works - move linked works to a list
1008  * @work: start of series of works to be scheduled
1009  * @head: target list to append @work to
1010  * @nextp: out paramter for nested worklist walking
1011  *
1012  * Schedule linked works starting from @work to @head.  Work series to
1013  * be scheduled starts at @work and includes any consecutive work with
1014  * WORK_STRUCT_LINKED set in its predecessor.
1015  *
1016  * If @nextp is not NULL, it's updated to point to the next work of
1017  * the last scheduled work.  This allows move_linked_works() to be
1018  * nested inside outer list_for_each_entry_safe().
1019  *
1020  * CONTEXT:
1021  * spin_lock_irq(pool->lock).
1022  */
1023 static void move_linked_works(struct work_struct *work, struct list_head *head,
1024 			      struct work_struct **nextp)
1025 {
1026 	struct work_struct *n;
1027 
1028 	/*
1029 	 * Linked worklist will always end before the end of the list,
1030 	 * use NULL for list head.
1031 	 */
1032 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1033 		list_move_tail(&work->entry, head);
1034 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1035 			break;
1036 	}
1037 
1038 	/*
1039 	 * If we're already inside safe list traversal and have moved
1040 	 * multiple works to the scheduled queue, the next position
1041 	 * needs to be updated.
1042 	 */
1043 	if (nextp)
1044 		*nextp = n;
1045 }
1046 
1047 /**
1048  * get_pwq - get an extra reference on the specified pool_workqueue
1049  * @pwq: pool_workqueue to get
1050  *
1051  * Obtain an extra reference on @pwq.  The caller should guarantee that
1052  * @pwq has positive refcnt and be holding the matching pool->lock.
1053  */
1054 static void get_pwq(struct pool_workqueue *pwq)
1055 {
1056 	lockdep_assert_held(&pwq->pool->lock);
1057 	WARN_ON_ONCE(pwq->refcnt <= 0);
1058 	pwq->refcnt++;
1059 }
1060 
1061 /**
1062  * put_pwq - put a pool_workqueue reference
1063  * @pwq: pool_workqueue to put
1064  *
1065  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1066  * destruction.  The caller should be holding the matching pool->lock.
1067  */
1068 static void put_pwq(struct pool_workqueue *pwq)
1069 {
1070 	lockdep_assert_held(&pwq->pool->lock);
1071 	if (likely(--pwq->refcnt))
1072 		return;
1073 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1074 		return;
1075 	/*
1076 	 * @pwq can't be released under pool->lock, bounce to
1077 	 * pwq_unbound_release_workfn().  This never recurses on the same
1078 	 * pool->lock as this path is taken only for unbound workqueues and
1079 	 * the release work item is scheduled on a per-cpu workqueue.  To
1080 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1081 	 * subclass of 1 in get_unbound_pool().
1082 	 */
1083 	schedule_work(&pwq->unbound_release_work);
1084 }
1085 
1086 /**
1087  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1088  * @pwq: pool_workqueue to put (can be %NULL)
1089  *
1090  * put_pwq() with locking.  This function also allows %NULL @pwq.
1091  */
1092 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1093 {
1094 	if (pwq) {
1095 		/*
1096 		 * As both pwqs and pools are sched-RCU protected, the
1097 		 * following lock operations are safe.
1098 		 */
1099 		spin_lock_irq(&pwq->pool->lock);
1100 		put_pwq(pwq);
1101 		spin_unlock_irq(&pwq->pool->lock);
1102 	}
1103 }
1104 
1105 static void pwq_activate_delayed_work(struct work_struct *work)
1106 {
1107 	struct pool_workqueue *pwq = get_work_pwq(work);
1108 
1109 	trace_workqueue_activate_work(work);
1110 	move_linked_works(work, &pwq->pool->worklist, NULL);
1111 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1112 	pwq->nr_active++;
1113 }
1114 
1115 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1116 {
1117 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1118 						    struct work_struct, entry);
1119 
1120 	pwq_activate_delayed_work(work);
1121 }
1122 
1123 /**
1124  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1125  * @pwq: pwq of interest
1126  * @color: color of work which left the queue
1127  *
1128  * A work either has completed or is removed from pending queue,
1129  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1130  *
1131  * CONTEXT:
1132  * spin_lock_irq(pool->lock).
1133  */
1134 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1135 {
1136 	/* uncolored work items don't participate in flushing or nr_active */
1137 	if (color == WORK_NO_COLOR)
1138 		goto out_put;
1139 
1140 	pwq->nr_in_flight[color]--;
1141 
1142 	pwq->nr_active--;
1143 	if (!list_empty(&pwq->delayed_works)) {
1144 		/* one down, submit a delayed one */
1145 		if (pwq->nr_active < pwq->max_active)
1146 			pwq_activate_first_delayed(pwq);
1147 	}
1148 
1149 	/* is flush in progress and are we at the flushing tip? */
1150 	if (likely(pwq->flush_color != color))
1151 		goto out_put;
1152 
1153 	/* are there still in-flight works? */
1154 	if (pwq->nr_in_flight[color])
1155 		goto out_put;
1156 
1157 	/* this pwq is done, clear flush_color */
1158 	pwq->flush_color = -1;
1159 
1160 	/*
1161 	 * If this was the last pwq, wake up the first flusher.  It
1162 	 * will handle the rest.
1163 	 */
1164 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1165 		complete(&pwq->wq->first_flusher->done);
1166 out_put:
1167 	put_pwq(pwq);
1168 }
1169 
1170 /**
1171  * try_to_grab_pending - steal work item from worklist and disable irq
1172  * @work: work item to steal
1173  * @is_dwork: @work is a delayed_work
1174  * @flags: place to store irq state
1175  *
1176  * Try to grab PENDING bit of @work.  This function can handle @work in any
1177  * stable state - idle, on timer or on worklist.
1178  *
1179  * Return:
1180  *  1		if @work was pending and we successfully stole PENDING
1181  *  0		if @work was idle and we claimed PENDING
1182  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1183  *  -ENOENT	if someone else is canceling @work, this state may persist
1184  *		for arbitrarily long
1185  *
1186  * Note:
1187  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1188  * interrupted while holding PENDING and @work off queue, irq must be
1189  * disabled on entry.  This, combined with delayed_work->timer being
1190  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1191  *
1192  * On successful return, >= 0, irq is disabled and the caller is
1193  * responsible for releasing it using local_irq_restore(*@flags).
1194  *
1195  * This function is safe to call from any context including IRQ handler.
1196  */
1197 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1198 			       unsigned long *flags)
1199 {
1200 	struct worker_pool *pool;
1201 	struct pool_workqueue *pwq;
1202 
1203 	local_irq_save(*flags);
1204 
1205 	/* try to steal the timer if it exists */
1206 	if (is_dwork) {
1207 		struct delayed_work *dwork = to_delayed_work(work);
1208 
1209 		/*
1210 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1211 		 * guaranteed that the timer is not queued anywhere and not
1212 		 * running on the local CPU.
1213 		 */
1214 		if (likely(del_timer(&dwork->timer)))
1215 			return 1;
1216 	}
1217 
1218 	/* try to claim PENDING the normal way */
1219 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1220 		return 0;
1221 
1222 	/*
1223 	 * The queueing is in progress, or it is already queued. Try to
1224 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1225 	 */
1226 	pool = get_work_pool(work);
1227 	if (!pool)
1228 		goto fail;
1229 
1230 	spin_lock(&pool->lock);
1231 	/*
1232 	 * work->data is guaranteed to point to pwq only while the work
1233 	 * item is queued on pwq->wq, and both updating work->data to point
1234 	 * to pwq on queueing and to pool on dequeueing are done under
1235 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1236 	 * points to pwq which is associated with a locked pool, the work
1237 	 * item is currently queued on that pool.
1238 	 */
1239 	pwq = get_work_pwq(work);
1240 	if (pwq && pwq->pool == pool) {
1241 		debug_work_deactivate(work);
1242 
1243 		/*
1244 		 * A delayed work item cannot be grabbed directly because
1245 		 * it might have linked NO_COLOR work items which, if left
1246 		 * on the delayed_list, will confuse pwq->nr_active
1247 		 * management later on and cause stall.  Make sure the work
1248 		 * item is activated before grabbing.
1249 		 */
1250 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1251 			pwq_activate_delayed_work(work);
1252 
1253 		list_del_init(&work->entry);
1254 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1255 
1256 		/* work->data points to pwq iff queued, point to pool */
1257 		set_work_pool_and_keep_pending(work, pool->id);
1258 
1259 		spin_unlock(&pool->lock);
1260 		return 1;
1261 	}
1262 	spin_unlock(&pool->lock);
1263 fail:
1264 	local_irq_restore(*flags);
1265 	if (work_is_canceling(work))
1266 		return -ENOENT;
1267 	cpu_relax();
1268 	return -EAGAIN;
1269 }
1270 
1271 /**
1272  * insert_work - insert a work into a pool
1273  * @pwq: pwq @work belongs to
1274  * @work: work to insert
1275  * @head: insertion point
1276  * @extra_flags: extra WORK_STRUCT_* flags to set
1277  *
1278  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1279  * work_struct flags.
1280  *
1281  * CONTEXT:
1282  * spin_lock_irq(pool->lock).
1283  */
1284 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1285 			struct list_head *head, unsigned int extra_flags)
1286 {
1287 	struct worker_pool *pool = pwq->pool;
1288 
1289 	/* we own @work, set data and link */
1290 	set_work_pwq(work, pwq, extra_flags);
1291 	list_add_tail(&work->entry, head);
1292 	get_pwq(pwq);
1293 
1294 	/*
1295 	 * Ensure either wq_worker_sleeping() sees the above
1296 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1297 	 * around lazily while there are works to be processed.
1298 	 */
1299 	smp_mb();
1300 
1301 	if (__need_more_worker(pool))
1302 		wake_up_worker(pool);
1303 }
1304 
1305 /*
1306  * Test whether @work is being queued from another work executing on the
1307  * same workqueue.
1308  */
1309 static bool is_chained_work(struct workqueue_struct *wq)
1310 {
1311 	struct worker *worker;
1312 
1313 	worker = current_wq_worker();
1314 	/*
1315 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1316 	 * I'm @worker, it's safe to dereference it without locking.
1317 	 */
1318 	return worker && worker->current_pwq->wq == wq;
1319 }
1320 
1321 static void __queue_work(int cpu, struct workqueue_struct *wq,
1322 			 struct work_struct *work)
1323 {
1324 	struct pool_workqueue *pwq;
1325 	struct worker_pool *last_pool;
1326 	struct list_head *worklist;
1327 	unsigned int work_flags;
1328 	unsigned int req_cpu = cpu;
1329 
1330 	/*
1331 	 * While a work item is PENDING && off queue, a task trying to
1332 	 * steal the PENDING will busy-loop waiting for it to either get
1333 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1334 	 * happen with IRQ disabled.
1335 	 */
1336 	WARN_ON_ONCE(!irqs_disabled());
1337 
1338 	debug_work_activate(work);
1339 
1340 	/* if draining, only works from the same workqueue are allowed */
1341 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1342 	    WARN_ON_ONCE(!is_chained_work(wq)))
1343 		return;
1344 retry:
1345 	if (req_cpu == WORK_CPU_UNBOUND)
1346 		cpu = raw_smp_processor_id();
1347 
1348 	/* pwq which will be used unless @work is executing elsewhere */
1349 	if (!(wq->flags & WQ_UNBOUND))
1350 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1351 	else
1352 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1353 
1354 	/*
1355 	 * If @work was previously on a different pool, it might still be
1356 	 * running there, in which case the work needs to be queued on that
1357 	 * pool to guarantee non-reentrancy.
1358 	 */
1359 	last_pool = get_work_pool(work);
1360 	if (last_pool && last_pool != pwq->pool) {
1361 		struct worker *worker;
1362 
1363 		spin_lock(&last_pool->lock);
1364 
1365 		worker = find_worker_executing_work(last_pool, work);
1366 
1367 		if (worker && worker->current_pwq->wq == wq) {
1368 			pwq = worker->current_pwq;
1369 		} else {
1370 			/* meh... not running there, queue here */
1371 			spin_unlock(&last_pool->lock);
1372 			spin_lock(&pwq->pool->lock);
1373 		}
1374 	} else {
1375 		spin_lock(&pwq->pool->lock);
1376 	}
1377 
1378 	/*
1379 	 * pwq is determined and locked.  For unbound pools, we could have
1380 	 * raced with pwq release and it could already be dead.  If its
1381 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1382 	 * without another pwq replacing it in the numa_pwq_tbl or while
1383 	 * work items are executing on it, so the retrying is guaranteed to
1384 	 * make forward-progress.
1385 	 */
1386 	if (unlikely(!pwq->refcnt)) {
1387 		if (wq->flags & WQ_UNBOUND) {
1388 			spin_unlock(&pwq->pool->lock);
1389 			cpu_relax();
1390 			goto retry;
1391 		}
1392 		/* oops */
1393 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1394 			  wq->name, cpu);
1395 	}
1396 
1397 	/* pwq determined, queue */
1398 	trace_workqueue_queue_work(req_cpu, pwq, work);
1399 
1400 	if (WARN_ON(!list_empty(&work->entry))) {
1401 		spin_unlock(&pwq->pool->lock);
1402 		return;
1403 	}
1404 
1405 	pwq->nr_in_flight[pwq->work_color]++;
1406 	work_flags = work_color_to_flags(pwq->work_color);
1407 
1408 	if (likely(pwq->nr_active < pwq->max_active)) {
1409 		trace_workqueue_activate_work(work);
1410 		pwq->nr_active++;
1411 		worklist = &pwq->pool->worklist;
1412 	} else {
1413 		work_flags |= WORK_STRUCT_DELAYED;
1414 		worklist = &pwq->delayed_works;
1415 	}
1416 
1417 	insert_work(pwq, work, worklist, work_flags);
1418 
1419 	spin_unlock(&pwq->pool->lock);
1420 }
1421 
1422 /**
1423  * queue_work_on - queue work on specific cpu
1424  * @cpu: CPU number to execute work on
1425  * @wq: workqueue to use
1426  * @work: work to queue
1427  *
1428  * We queue the work to a specific CPU, the caller must ensure it
1429  * can't go away.
1430  *
1431  * Return: %false if @work was already on a queue, %true otherwise.
1432  */
1433 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1434 		   struct work_struct *work)
1435 {
1436 	bool ret = false;
1437 	unsigned long flags;
1438 
1439 	local_irq_save(flags);
1440 
1441 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1442 		__queue_work(cpu, wq, work);
1443 		ret = true;
1444 	}
1445 
1446 	local_irq_restore(flags);
1447 	return ret;
1448 }
1449 EXPORT_SYMBOL(queue_work_on);
1450 
1451 void delayed_work_timer_fn(unsigned long __data)
1452 {
1453 	struct delayed_work *dwork = (struct delayed_work *)__data;
1454 
1455 	/* should have been called from irqsafe timer with irq already off */
1456 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1457 }
1458 EXPORT_SYMBOL(delayed_work_timer_fn);
1459 
1460 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1461 				struct delayed_work *dwork, unsigned long delay)
1462 {
1463 	struct timer_list *timer = &dwork->timer;
1464 	struct work_struct *work = &dwork->work;
1465 
1466 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1467 		     timer->data != (unsigned long)dwork);
1468 	WARN_ON_ONCE(timer_pending(timer));
1469 	WARN_ON_ONCE(!list_empty(&work->entry));
1470 
1471 	/*
1472 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1473 	 * both optimization and correctness.  The earliest @timer can
1474 	 * expire is on the closest next tick and delayed_work users depend
1475 	 * on that there's no such delay when @delay is 0.
1476 	 */
1477 	if (!delay) {
1478 		__queue_work(cpu, wq, &dwork->work);
1479 		return;
1480 	}
1481 
1482 	timer_stats_timer_set_start_info(&dwork->timer);
1483 
1484 	dwork->wq = wq;
1485 	dwork->cpu = cpu;
1486 	timer->expires = jiffies + delay;
1487 
1488 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1489 		add_timer_on(timer, cpu);
1490 	else
1491 		add_timer(timer);
1492 }
1493 
1494 /**
1495  * queue_delayed_work_on - queue work on specific CPU after delay
1496  * @cpu: CPU number to execute work on
1497  * @wq: workqueue to use
1498  * @dwork: work to queue
1499  * @delay: number of jiffies to wait before queueing
1500  *
1501  * Return: %false if @work was already on a queue, %true otherwise.  If
1502  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1503  * execution.
1504  */
1505 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1506 			   struct delayed_work *dwork, unsigned long delay)
1507 {
1508 	struct work_struct *work = &dwork->work;
1509 	bool ret = false;
1510 	unsigned long flags;
1511 
1512 	/* read the comment in __queue_work() */
1513 	local_irq_save(flags);
1514 
1515 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1516 		__queue_delayed_work(cpu, wq, dwork, delay);
1517 		ret = true;
1518 	}
1519 
1520 	local_irq_restore(flags);
1521 	return ret;
1522 }
1523 EXPORT_SYMBOL(queue_delayed_work_on);
1524 
1525 /**
1526  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1527  * @cpu: CPU number to execute work on
1528  * @wq: workqueue to use
1529  * @dwork: work to queue
1530  * @delay: number of jiffies to wait before queueing
1531  *
1532  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1533  * modify @dwork's timer so that it expires after @delay.  If @delay is
1534  * zero, @work is guaranteed to be scheduled immediately regardless of its
1535  * current state.
1536  *
1537  * Return: %false if @dwork was idle and queued, %true if @dwork was
1538  * pending and its timer was modified.
1539  *
1540  * This function is safe to call from any context including IRQ handler.
1541  * See try_to_grab_pending() for details.
1542  */
1543 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1544 			 struct delayed_work *dwork, unsigned long delay)
1545 {
1546 	unsigned long flags;
1547 	int ret;
1548 
1549 	do {
1550 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1551 	} while (unlikely(ret == -EAGAIN));
1552 
1553 	if (likely(ret >= 0)) {
1554 		__queue_delayed_work(cpu, wq, dwork, delay);
1555 		local_irq_restore(flags);
1556 	}
1557 
1558 	/* -ENOENT from try_to_grab_pending() becomes %true */
1559 	return ret;
1560 }
1561 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1562 
1563 /**
1564  * worker_enter_idle - enter idle state
1565  * @worker: worker which is entering idle state
1566  *
1567  * @worker is entering idle state.  Update stats and idle timer if
1568  * necessary.
1569  *
1570  * LOCKING:
1571  * spin_lock_irq(pool->lock).
1572  */
1573 static void worker_enter_idle(struct worker *worker)
1574 {
1575 	struct worker_pool *pool = worker->pool;
1576 
1577 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1578 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1579 			 (worker->hentry.next || worker->hentry.pprev)))
1580 		return;
1581 
1582 	/* can't use worker_set_flags(), also called from start_worker() */
1583 	worker->flags |= WORKER_IDLE;
1584 	pool->nr_idle++;
1585 	worker->last_active = jiffies;
1586 
1587 	/* idle_list is LIFO */
1588 	list_add(&worker->entry, &pool->idle_list);
1589 
1590 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1591 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1592 
1593 	/*
1594 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1595 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1596 	 * nr_running, the warning may trigger spuriously.  Check iff
1597 	 * unbind is not in progress.
1598 	 */
1599 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1600 		     pool->nr_workers == pool->nr_idle &&
1601 		     atomic_read(&pool->nr_running));
1602 }
1603 
1604 /**
1605  * worker_leave_idle - leave idle state
1606  * @worker: worker which is leaving idle state
1607  *
1608  * @worker is leaving idle state.  Update stats.
1609  *
1610  * LOCKING:
1611  * spin_lock_irq(pool->lock).
1612  */
1613 static void worker_leave_idle(struct worker *worker)
1614 {
1615 	struct worker_pool *pool = worker->pool;
1616 
1617 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1618 		return;
1619 	worker_clr_flags(worker, WORKER_IDLE);
1620 	pool->nr_idle--;
1621 	list_del_init(&worker->entry);
1622 }
1623 
1624 /**
1625  * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1626  * @pool: target worker_pool
1627  *
1628  * Bind %current to the cpu of @pool if it is associated and lock @pool.
1629  *
1630  * Works which are scheduled while the cpu is online must at least be
1631  * scheduled to a worker which is bound to the cpu so that if they are
1632  * flushed from cpu callbacks while cpu is going down, they are
1633  * guaranteed to execute on the cpu.
1634  *
1635  * This function is to be used by unbound workers and rescuers to bind
1636  * themselves to the target cpu and may race with cpu going down or
1637  * coming online.  kthread_bind() can't be used because it may put the
1638  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1639  * verbatim as it's best effort and blocking and pool may be
1640  * [dis]associated in the meantime.
1641  *
1642  * This function tries set_cpus_allowed() and locks pool and verifies the
1643  * binding against %POOL_DISASSOCIATED which is set during
1644  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1645  * enters idle state or fetches works without dropping lock, it can
1646  * guarantee the scheduling requirement described in the first paragraph.
1647  *
1648  * CONTEXT:
1649  * Might sleep.  Called without any lock but returns with pool->lock
1650  * held.
1651  *
1652  * Return:
1653  * %true if the associated pool is online (@worker is successfully
1654  * bound), %false if offline.
1655  */
1656 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1657 __acquires(&pool->lock)
1658 {
1659 	while (true) {
1660 		/*
1661 		 * The following call may fail, succeed or succeed
1662 		 * without actually migrating the task to the cpu if
1663 		 * it races with cpu hotunplug operation.  Verify
1664 		 * against POOL_DISASSOCIATED.
1665 		 */
1666 		if (!(pool->flags & POOL_DISASSOCIATED))
1667 			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1668 
1669 		spin_lock_irq(&pool->lock);
1670 		if (pool->flags & POOL_DISASSOCIATED)
1671 			return false;
1672 		if (task_cpu(current) == pool->cpu &&
1673 		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1674 			return true;
1675 		spin_unlock_irq(&pool->lock);
1676 
1677 		/*
1678 		 * We've raced with CPU hot[un]plug.  Give it a breather
1679 		 * and retry migration.  cond_resched() is required here;
1680 		 * otherwise, we might deadlock against cpu_stop trying to
1681 		 * bring down the CPU on non-preemptive kernel.
1682 		 */
1683 		cpu_relax();
1684 		cond_resched();
1685 	}
1686 }
1687 
1688 static struct worker *alloc_worker(void)
1689 {
1690 	struct worker *worker;
1691 
1692 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1693 	if (worker) {
1694 		INIT_LIST_HEAD(&worker->entry);
1695 		INIT_LIST_HEAD(&worker->scheduled);
1696 		/* on creation a worker is in !idle && prep state */
1697 		worker->flags = WORKER_PREP;
1698 	}
1699 	return worker;
1700 }
1701 
1702 /**
1703  * create_worker - create a new workqueue worker
1704  * @pool: pool the new worker will belong to
1705  *
1706  * Create a new worker which is bound to @pool.  The returned worker
1707  * can be started by calling start_worker() or destroyed using
1708  * destroy_worker().
1709  *
1710  * CONTEXT:
1711  * Might sleep.  Does GFP_KERNEL allocations.
1712  *
1713  * Return:
1714  * Pointer to the newly created worker.
1715  */
1716 static struct worker *create_worker(struct worker_pool *pool)
1717 {
1718 	struct worker *worker = NULL;
1719 	int id = -1;
1720 	char id_buf[16];
1721 
1722 	lockdep_assert_held(&pool->manager_mutex);
1723 
1724 	/*
1725 	 * ID is needed to determine kthread name.  Allocate ID first
1726 	 * without installing the pointer.
1727 	 */
1728 	idr_preload(GFP_KERNEL);
1729 	spin_lock_irq(&pool->lock);
1730 
1731 	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1732 
1733 	spin_unlock_irq(&pool->lock);
1734 	idr_preload_end();
1735 	if (id < 0)
1736 		goto fail;
1737 
1738 	worker = alloc_worker();
1739 	if (!worker)
1740 		goto fail;
1741 
1742 	worker->pool = pool;
1743 	worker->id = id;
1744 
1745 	if (pool->cpu >= 0)
1746 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1747 			 pool->attrs->nice < 0  ? "H" : "");
1748 	else
1749 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1750 
1751 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1752 					      "kworker/%s", id_buf);
1753 	if (IS_ERR(worker->task))
1754 		goto fail;
1755 
1756 	set_user_nice(worker->task, pool->attrs->nice);
1757 
1758 	/* prevent userland from meddling with cpumask of workqueue workers */
1759 	worker->task->flags |= PF_NO_SETAFFINITY;
1760 
1761 	/*
1762 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1763 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1764 	 */
1765 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1766 
1767 	/*
1768 	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1769 	 * remains stable across this function.  See the comments above the
1770 	 * flag definition for details.
1771 	 */
1772 	if (pool->flags & POOL_DISASSOCIATED)
1773 		worker->flags |= WORKER_UNBOUND;
1774 
1775 	/* successful, commit the pointer to idr */
1776 	spin_lock_irq(&pool->lock);
1777 	idr_replace(&pool->worker_idr, worker, worker->id);
1778 	spin_unlock_irq(&pool->lock);
1779 
1780 	return worker;
1781 
1782 fail:
1783 	if (id >= 0) {
1784 		spin_lock_irq(&pool->lock);
1785 		idr_remove(&pool->worker_idr, id);
1786 		spin_unlock_irq(&pool->lock);
1787 	}
1788 	kfree(worker);
1789 	return NULL;
1790 }
1791 
1792 /**
1793  * start_worker - start a newly created worker
1794  * @worker: worker to start
1795  *
1796  * Make the pool aware of @worker and start it.
1797  *
1798  * CONTEXT:
1799  * spin_lock_irq(pool->lock).
1800  */
1801 static void start_worker(struct worker *worker)
1802 {
1803 	worker->flags |= WORKER_STARTED;
1804 	worker->pool->nr_workers++;
1805 	worker_enter_idle(worker);
1806 	wake_up_process(worker->task);
1807 }
1808 
1809 /**
1810  * create_and_start_worker - create and start a worker for a pool
1811  * @pool: the target pool
1812  *
1813  * Grab the managership of @pool and create and start a new worker for it.
1814  *
1815  * Return: 0 on success. A negative error code otherwise.
1816  */
1817 static int create_and_start_worker(struct worker_pool *pool)
1818 {
1819 	struct worker *worker;
1820 
1821 	mutex_lock(&pool->manager_mutex);
1822 
1823 	worker = create_worker(pool);
1824 	if (worker) {
1825 		spin_lock_irq(&pool->lock);
1826 		start_worker(worker);
1827 		spin_unlock_irq(&pool->lock);
1828 	}
1829 
1830 	mutex_unlock(&pool->manager_mutex);
1831 
1832 	return worker ? 0 : -ENOMEM;
1833 }
1834 
1835 /**
1836  * destroy_worker - destroy a workqueue worker
1837  * @worker: worker to be destroyed
1838  *
1839  * Destroy @worker and adjust @pool stats accordingly.
1840  *
1841  * CONTEXT:
1842  * spin_lock_irq(pool->lock) which is released and regrabbed.
1843  */
1844 static void destroy_worker(struct worker *worker)
1845 {
1846 	struct worker_pool *pool = worker->pool;
1847 
1848 	lockdep_assert_held(&pool->manager_mutex);
1849 	lockdep_assert_held(&pool->lock);
1850 
1851 	/* sanity check frenzy */
1852 	if (WARN_ON(worker->current_work) ||
1853 	    WARN_ON(!list_empty(&worker->scheduled)))
1854 		return;
1855 
1856 	if (worker->flags & WORKER_STARTED)
1857 		pool->nr_workers--;
1858 	if (worker->flags & WORKER_IDLE)
1859 		pool->nr_idle--;
1860 
1861 	/*
1862 	 * Once WORKER_DIE is set, the kworker may destroy itself at any
1863 	 * point.  Pin to ensure the task stays until we're done with it.
1864 	 */
1865 	get_task_struct(worker->task);
1866 
1867 	list_del_init(&worker->entry);
1868 	worker->flags |= WORKER_DIE;
1869 
1870 	idr_remove(&pool->worker_idr, worker->id);
1871 
1872 	spin_unlock_irq(&pool->lock);
1873 
1874 	kthread_stop(worker->task);
1875 	put_task_struct(worker->task);
1876 	kfree(worker);
1877 
1878 	spin_lock_irq(&pool->lock);
1879 }
1880 
1881 static void idle_worker_timeout(unsigned long __pool)
1882 {
1883 	struct worker_pool *pool = (void *)__pool;
1884 
1885 	spin_lock_irq(&pool->lock);
1886 
1887 	if (too_many_workers(pool)) {
1888 		struct worker *worker;
1889 		unsigned long expires;
1890 
1891 		/* idle_list is kept in LIFO order, check the last one */
1892 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1893 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1894 
1895 		if (time_before(jiffies, expires))
1896 			mod_timer(&pool->idle_timer, expires);
1897 		else {
1898 			/* it's been idle for too long, wake up manager */
1899 			pool->flags |= POOL_MANAGE_WORKERS;
1900 			wake_up_worker(pool);
1901 		}
1902 	}
1903 
1904 	spin_unlock_irq(&pool->lock);
1905 }
1906 
1907 static void send_mayday(struct work_struct *work)
1908 {
1909 	struct pool_workqueue *pwq = get_work_pwq(work);
1910 	struct workqueue_struct *wq = pwq->wq;
1911 
1912 	lockdep_assert_held(&wq_mayday_lock);
1913 
1914 	if (!wq->rescuer)
1915 		return;
1916 
1917 	/* mayday mayday mayday */
1918 	if (list_empty(&pwq->mayday_node)) {
1919 		/*
1920 		 * If @pwq is for an unbound wq, its base ref may be put at
1921 		 * any time due to an attribute change.  Pin @pwq until the
1922 		 * rescuer is done with it.
1923 		 */
1924 		get_pwq(pwq);
1925 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1926 		wake_up_process(wq->rescuer->task);
1927 	}
1928 }
1929 
1930 static void pool_mayday_timeout(unsigned long __pool)
1931 {
1932 	struct worker_pool *pool = (void *)__pool;
1933 	struct work_struct *work;
1934 
1935 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1936 	spin_lock(&pool->lock);
1937 
1938 	if (need_to_create_worker(pool)) {
1939 		/*
1940 		 * We've been trying to create a new worker but
1941 		 * haven't been successful.  We might be hitting an
1942 		 * allocation deadlock.  Send distress signals to
1943 		 * rescuers.
1944 		 */
1945 		list_for_each_entry(work, &pool->worklist, entry)
1946 			send_mayday(work);
1947 	}
1948 
1949 	spin_unlock(&pool->lock);
1950 	spin_unlock_irq(&wq_mayday_lock);
1951 
1952 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1953 }
1954 
1955 /**
1956  * maybe_create_worker - create a new worker if necessary
1957  * @pool: pool to create a new worker for
1958  *
1959  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1960  * have at least one idle worker on return from this function.  If
1961  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1962  * sent to all rescuers with works scheduled on @pool to resolve
1963  * possible allocation deadlock.
1964  *
1965  * On return, need_to_create_worker() is guaranteed to be %false and
1966  * may_start_working() %true.
1967  *
1968  * LOCKING:
1969  * spin_lock_irq(pool->lock) which may be released and regrabbed
1970  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1971  * manager.
1972  *
1973  * Return:
1974  * %false if no action was taken and pool->lock stayed locked, %true
1975  * otherwise.
1976  */
1977 static bool maybe_create_worker(struct worker_pool *pool)
1978 __releases(&pool->lock)
1979 __acquires(&pool->lock)
1980 {
1981 	if (!need_to_create_worker(pool))
1982 		return false;
1983 restart:
1984 	spin_unlock_irq(&pool->lock);
1985 
1986 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1987 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1988 
1989 	while (true) {
1990 		struct worker *worker;
1991 
1992 		worker = create_worker(pool);
1993 		if (worker) {
1994 			del_timer_sync(&pool->mayday_timer);
1995 			spin_lock_irq(&pool->lock);
1996 			start_worker(worker);
1997 			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1998 				goto restart;
1999 			return true;
2000 		}
2001 
2002 		if (!need_to_create_worker(pool))
2003 			break;
2004 
2005 		__set_current_state(TASK_INTERRUPTIBLE);
2006 		schedule_timeout(CREATE_COOLDOWN);
2007 
2008 		if (!need_to_create_worker(pool))
2009 			break;
2010 	}
2011 
2012 	del_timer_sync(&pool->mayday_timer);
2013 	spin_lock_irq(&pool->lock);
2014 	if (need_to_create_worker(pool))
2015 		goto restart;
2016 	return true;
2017 }
2018 
2019 /**
2020  * maybe_destroy_worker - destroy workers which have been idle for a while
2021  * @pool: pool to destroy workers for
2022  *
2023  * Destroy @pool workers which have been idle for longer than
2024  * IDLE_WORKER_TIMEOUT.
2025  *
2026  * LOCKING:
2027  * spin_lock_irq(pool->lock) which may be released and regrabbed
2028  * multiple times.  Called only from manager.
2029  *
2030  * Return:
2031  * %false if no action was taken and pool->lock stayed locked, %true
2032  * otherwise.
2033  */
2034 static bool maybe_destroy_workers(struct worker_pool *pool)
2035 {
2036 	bool ret = false;
2037 
2038 	while (too_many_workers(pool)) {
2039 		struct worker *worker;
2040 		unsigned long expires;
2041 
2042 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2043 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2044 
2045 		if (time_before(jiffies, expires)) {
2046 			mod_timer(&pool->idle_timer, expires);
2047 			break;
2048 		}
2049 
2050 		destroy_worker(worker);
2051 		ret = true;
2052 	}
2053 
2054 	return ret;
2055 }
2056 
2057 /**
2058  * manage_workers - manage worker pool
2059  * @worker: self
2060  *
2061  * Assume the manager role and manage the worker pool @worker belongs
2062  * to.  At any given time, there can be only zero or one manager per
2063  * pool.  The exclusion is handled automatically by this function.
2064  *
2065  * The caller can safely start processing works on false return.  On
2066  * true return, it's guaranteed that need_to_create_worker() is false
2067  * and may_start_working() is true.
2068  *
2069  * CONTEXT:
2070  * spin_lock_irq(pool->lock) which may be released and regrabbed
2071  * multiple times.  Does GFP_KERNEL allocations.
2072  *
2073  * Return:
2074  * %false if the pool don't need management and the caller can safely start
2075  * processing works, %true indicates that the function released pool->lock
2076  * and reacquired it to perform some management function and that the
2077  * conditions that the caller verified while holding the lock before
2078  * calling the function might no longer be true.
2079  */
2080 static bool manage_workers(struct worker *worker)
2081 {
2082 	struct worker_pool *pool = worker->pool;
2083 	bool ret = false;
2084 
2085 	/*
2086 	 * Managership is governed by two mutexes - manager_arb and
2087 	 * manager_mutex.  manager_arb handles arbitration of manager role.
2088 	 * Anyone who successfully grabs manager_arb wins the arbitration
2089 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2090 	 * failure while holding pool->lock reliably indicates that someone
2091 	 * else is managing the pool and the worker which failed trylock
2092 	 * can proceed to executing work items.  This means that anyone
2093 	 * grabbing manager_arb is responsible for actually performing
2094 	 * manager duties.  If manager_arb is grabbed and released without
2095 	 * actual management, the pool may stall indefinitely.
2096 	 *
2097 	 * manager_mutex is used for exclusion of actual management
2098 	 * operations.  The holder of manager_mutex can be sure that none
2099 	 * of management operations, including creation and destruction of
2100 	 * workers, won't take place until the mutex is released.  Because
2101 	 * manager_mutex doesn't interfere with manager role arbitration,
2102 	 * it is guaranteed that the pool's management, while may be
2103 	 * delayed, won't be disturbed by someone else grabbing
2104 	 * manager_mutex.
2105 	 */
2106 	if (!mutex_trylock(&pool->manager_arb))
2107 		return ret;
2108 
2109 	/*
2110 	 * With manager arbitration won, manager_mutex would be free in
2111 	 * most cases.  trylock first without dropping @pool->lock.
2112 	 */
2113 	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2114 		spin_unlock_irq(&pool->lock);
2115 		mutex_lock(&pool->manager_mutex);
2116 		spin_lock_irq(&pool->lock);
2117 		ret = true;
2118 	}
2119 
2120 	pool->flags &= ~POOL_MANAGE_WORKERS;
2121 
2122 	/*
2123 	 * Destroy and then create so that may_start_working() is true
2124 	 * on return.
2125 	 */
2126 	ret |= maybe_destroy_workers(pool);
2127 	ret |= maybe_create_worker(pool);
2128 
2129 	mutex_unlock(&pool->manager_mutex);
2130 	mutex_unlock(&pool->manager_arb);
2131 	return ret;
2132 }
2133 
2134 /**
2135  * process_one_work - process single work
2136  * @worker: self
2137  * @work: work to process
2138  *
2139  * Process @work.  This function contains all the logics necessary to
2140  * process a single work including synchronization against and
2141  * interaction with other workers on the same cpu, queueing and
2142  * flushing.  As long as context requirement is met, any worker can
2143  * call this function to process a work.
2144  *
2145  * CONTEXT:
2146  * spin_lock_irq(pool->lock) which is released and regrabbed.
2147  */
2148 static void process_one_work(struct worker *worker, struct work_struct *work)
2149 __releases(&pool->lock)
2150 __acquires(&pool->lock)
2151 {
2152 	struct pool_workqueue *pwq = get_work_pwq(work);
2153 	struct worker_pool *pool = worker->pool;
2154 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2155 	int work_color;
2156 	struct worker *collision;
2157 #ifdef CONFIG_LOCKDEP
2158 	/*
2159 	 * It is permissible to free the struct work_struct from
2160 	 * inside the function that is called from it, this we need to
2161 	 * take into account for lockdep too.  To avoid bogus "held
2162 	 * lock freed" warnings as well as problems when looking into
2163 	 * work->lockdep_map, make a copy and use that here.
2164 	 */
2165 	struct lockdep_map lockdep_map;
2166 
2167 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2168 #endif
2169 	/*
2170 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2171 	 * necessary to avoid spurious warnings from rescuers servicing the
2172 	 * unbound or a disassociated pool.
2173 	 */
2174 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2175 		     !(pool->flags & POOL_DISASSOCIATED) &&
2176 		     raw_smp_processor_id() != pool->cpu);
2177 
2178 	/*
2179 	 * A single work shouldn't be executed concurrently by
2180 	 * multiple workers on a single cpu.  Check whether anyone is
2181 	 * already processing the work.  If so, defer the work to the
2182 	 * currently executing one.
2183 	 */
2184 	collision = find_worker_executing_work(pool, work);
2185 	if (unlikely(collision)) {
2186 		move_linked_works(work, &collision->scheduled, NULL);
2187 		return;
2188 	}
2189 
2190 	/* claim and dequeue */
2191 	debug_work_deactivate(work);
2192 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2193 	worker->current_work = work;
2194 	worker->current_func = work->func;
2195 	worker->current_pwq = pwq;
2196 	work_color = get_work_color(work);
2197 
2198 	list_del_init(&work->entry);
2199 
2200 	/*
2201 	 * CPU intensive works don't participate in concurrency
2202 	 * management.  They're the scheduler's responsibility.
2203 	 */
2204 	if (unlikely(cpu_intensive))
2205 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2206 
2207 	/*
2208 	 * Unbound pool isn't concurrency managed and work items should be
2209 	 * executed ASAP.  Wake up another worker if necessary.
2210 	 */
2211 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2212 		wake_up_worker(pool);
2213 
2214 	/*
2215 	 * Record the last pool and clear PENDING which should be the last
2216 	 * update to @work.  Also, do this inside @pool->lock so that
2217 	 * PENDING and queued state changes happen together while IRQ is
2218 	 * disabled.
2219 	 */
2220 	set_work_pool_and_clear_pending(work, pool->id);
2221 
2222 	spin_unlock_irq(&pool->lock);
2223 
2224 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2225 	lock_map_acquire(&lockdep_map);
2226 	trace_workqueue_execute_start(work);
2227 	worker->current_func(work);
2228 	/*
2229 	 * While we must be careful to not use "work" after this, the trace
2230 	 * point will only record its address.
2231 	 */
2232 	trace_workqueue_execute_end(work);
2233 	lock_map_release(&lockdep_map);
2234 	lock_map_release(&pwq->wq->lockdep_map);
2235 
2236 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2237 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2238 		       "     last function: %pf\n",
2239 		       current->comm, preempt_count(), task_pid_nr(current),
2240 		       worker->current_func);
2241 		debug_show_held_locks(current);
2242 		dump_stack();
2243 	}
2244 
2245 	/*
2246 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2247 	 * kernels, where a requeueing work item waiting for something to
2248 	 * happen could deadlock with stop_machine as such work item could
2249 	 * indefinitely requeue itself while all other CPUs are trapped in
2250 	 * stop_machine.
2251 	 */
2252 	cond_resched();
2253 
2254 	spin_lock_irq(&pool->lock);
2255 
2256 	/* clear cpu intensive status */
2257 	if (unlikely(cpu_intensive))
2258 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2259 
2260 	/* we're done with it, release */
2261 	hash_del(&worker->hentry);
2262 	worker->current_work = NULL;
2263 	worker->current_func = NULL;
2264 	worker->current_pwq = NULL;
2265 	worker->desc_valid = false;
2266 	pwq_dec_nr_in_flight(pwq, work_color);
2267 }
2268 
2269 /**
2270  * process_scheduled_works - process scheduled works
2271  * @worker: self
2272  *
2273  * Process all scheduled works.  Please note that the scheduled list
2274  * may change while processing a work, so this function repeatedly
2275  * fetches a work from the top and executes it.
2276  *
2277  * CONTEXT:
2278  * spin_lock_irq(pool->lock) which may be released and regrabbed
2279  * multiple times.
2280  */
2281 static void process_scheduled_works(struct worker *worker)
2282 {
2283 	while (!list_empty(&worker->scheduled)) {
2284 		struct work_struct *work = list_first_entry(&worker->scheduled,
2285 						struct work_struct, entry);
2286 		process_one_work(worker, work);
2287 	}
2288 }
2289 
2290 /**
2291  * worker_thread - the worker thread function
2292  * @__worker: self
2293  *
2294  * The worker thread function.  All workers belong to a worker_pool -
2295  * either a per-cpu one or dynamic unbound one.  These workers process all
2296  * work items regardless of their specific target workqueue.  The only
2297  * exception is work items which belong to workqueues with a rescuer which
2298  * will be explained in rescuer_thread().
2299  *
2300  * Return: 0
2301  */
2302 static int worker_thread(void *__worker)
2303 {
2304 	struct worker *worker = __worker;
2305 	struct worker_pool *pool = worker->pool;
2306 
2307 	/* tell the scheduler that this is a workqueue worker */
2308 	worker->task->flags |= PF_WQ_WORKER;
2309 woke_up:
2310 	spin_lock_irq(&pool->lock);
2311 
2312 	/* am I supposed to die? */
2313 	if (unlikely(worker->flags & WORKER_DIE)) {
2314 		spin_unlock_irq(&pool->lock);
2315 		WARN_ON_ONCE(!list_empty(&worker->entry));
2316 		worker->task->flags &= ~PF_WQ_WORKER;
2317 		return 0;
2318 	}
2319 
2320 	worker_leave_idle(worker);
2321 recheck:
2322 	/* no more worker necessary? */
2323 	if (!need_more_worker(pool))
2324 		goto sleep;
2325 
2326 	/* do we need to manage? */
2327 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2328 		goto recheck;
2329 
2330 	/*
2331 	 * ->scheduled list can only be filled while a worker is
2332 	 * preparing to process a work or actually processing it.
2333 	 * Make sure nobody diddled with it while I was sleeping.
2334 	 */
2335 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2336 
2337 	/*
2338 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2339 	 * worker or that someone else has already assumed the manager
2340 	 * role.  This is where @worker starts participating in concurrency
2341 	 * management if applicable and concurrency management is restored
2342 	 * after being rebound.  See rebind_workers() for details.
2343 	 */
2344 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2345 
2346 	do {
2347 		struct work_struct *work =
2348 			list_first_entry(&pool->worklist,
2349 					 struct work_struct, entry);
2350 
2351 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2352 			/* optimization path, not strictly necessary */
2353 			process_one_work(worker, work);
2354 			if (unlikely(!list_empty(&worker->scheduled)))
2355 				process_scheduled_works(worker);
2356 		} else {
2357 			move_linked_works(work, &worker->scheduled, NULL);
2358 			process_scheduled_works(worker);
2359 		}
2360 	} while (keep_working(pool));
2361 
2362 	worker_set_flags(worker, WORKER_PREP, false);
2363 sleep:
2364 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2365 		goto recheck;
2366 
2367 	/*
2368 	 * pool->lock is held and there's no work to process and no need to
2369 	 * manage, sleep.  Workers are woken up only while holding
2370 	 * pool->lock or from local cpu, so setting the current state
2371 	 * before releasing pool->lock is enough to prevent losing any
2372 	 * event.
2373 	 */
2374 	worker_enter_idle(worker);
2375 	__set_current_state(TASK_INTERRUPTIBLE);
2376 	spin_unlock_irq(&pool->lock);
2377 	schedule();
2378 	goto woke_up;
2379 }
2380 
2381 /**
2382  * rescuer_thread - the rescuer thread function
2383  * @__rescuer: self
2384  *
2385  * Workqueue rescuer thread function.  There's one rescuer for each
2386  * workqueue which has WQ_MEM_RECLAIM set.
2387  *
2388  * Regular work processing on a pool may block trying to create a new
2389  * worker which uses GFP_KERNEL allocation which has slight chance of
2390  * developing into deadlock if some works currently on the same queue
2391  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2392  * the problem rescuer solves.
2393  *
2394  * When such condition is possible, the pool summons rescuers of all
2395  * workqueues which have works queued on the pool and let them process
2396  * those works so that forward progress can be guaranteed.
2397  *
2398  * This should happen rarely.
2399  *
2400  * Return: 0
2401  */
2402 static int rescuer_thread(void *__rescuer)
2403 {
2404 	struct worker *rescuer = __rescuer;
2405 	struct workqueue_struct *wq = rescuer->rescue_wq;
2406 	struct list_head *scheduled = &rescuer->scheduled;
2407 	bool should_stop;
2408 
2409 	set_user_nice(current, RESCUER_NICE_LEVEL);
2410 
2411 	/*
2412 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2413 	 * doesn't participate in concurrency management.
2414 	 */
2415 	rescuer->task->flags |= PF_WQ_WORKER;
2416 repeat:
2417 	set_current_state(TASK_INTERRUPTIBLE);
2418 
2419 	/*
2420 	 * By the time the rescuer is requested to stop, the workqueue
2421 	 * shouldn't have any work pending, but @wq->maydays may still have
2422 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2423 	 * all the work items before the rescuer got to them.  Go through
2424 	 * @wq->maydays processing before acting on should_stop so that the
2425 	 * list is always empty on exit.
2426 	 */
2427 	should_stop = kthread_should_stop();
2428 
2429 	/* see whether any pwq is asking for help */
2430 	spin_lock_irq(&wq_mayday_lock);
2431 
2432 	while (!list_empty(&wq->maydays)) {
2433 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2434 					struct pool_workqueue, mayday_node);
2435 		struct worker_pool *pool = pwq->pool;
2436 		struct work_struct *work, *n;
2437 
2438 		__set_current_state(TASK_RUNNING);
2439 		list_del_init(&pwq->mayday_node);
2440 
2441 		spin_unlock_irq(&wq_mayday_lock);
2442 
2443 		/* migrate to the target cpu if possible */
2444 		worker_maybe_bind_and_lock(pool);
2445 		rescuer->pool = pool;
2446 
2447 		/*
2448 		 * Slurp in all works issued via this workqueue and
2449 		 * process'em.
2450 		 */
2451 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2452 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2453 			if (get_work_pwq(work) == pwq)
2454 				move_linked_works(work, scheduled, &n);
2455 
2456 		process_scheduled_works(rescuer);
2457 
2458 		/*
2459 		 * Put the reference grabbed by send_mayday().  @pool won't
2460 		 * go away while we're holding its lock.
2461 		 */
2462 		put_pwq(pwq);
2463 
2464 		/*
2465 		 * Leave this pool.  If keep_working() is %true, notify a
2466 		 * regular worker; otherwise, we end up with 0 concurrency
2467 		 * and stalling the execution.
2468 		 */
2469 		if (keep_working(pool))
2470 			wake_up_worker(pool);
2471 
2472 		rescuer->pool = NULL;
2473 		spin_unlock(&pool->lock);
2474 		spin_lock(&wq_mayday_lock);
2475 	}
2476 
2477 	spin_unlock_irq(&wq_mayday_lock);
2478 
2479 	if (should_stop) {
2480 		__set_current_state(TASK_RUNNING);
2481 		rescuer->task->flags &= ~PF_WQ_WORKER;
2482 		return 0;
2483 	}
2484 
2485 	/* rescuers should never participate in concurrency management */
2486 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2487 	schedule();
2488 	goto repeat;
2489 }
2490 
2491 struct wq_barrier {
2492 	struct work_struct	work;
2493 	struct completion	done;
2494 };
2495 
2496 static void wq_barrier_func(struct work_struct *work)
2497 {
2498 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2499 	complete(&barr->done);
2500 }
2501 
2502 /**
2503  * insert_wq_barrier - insert a barrier work
2504  * @pwq: pwq to insert barrier into
2505  * @barr: wq_barrier to insert
2506  * @target: target work to attach @barr to
2507  * @worker: worker currently executing @target, NULL if @target is not executing
2508  *
2509  * @barr is linked to @target such that @barr is completed only after
2510  * @target finishes execution.  Please note that the ordering
2511  * guarantee is observed only with respect to @target and on the local
2512  * cpu.
2513  *
2514  * Currently, a queued barrier can't be canceled.  This is because
2515  * try_to_grab_pending() can't determine whether the work to be
2516  * grabbed is at the head of the queue and thus can't clear LINKED
2517  * flag of the previous work while there must be a valid next work
2518  * after a work with LINKED flag set.
2519  *
2520  * Note that when @worker is non-NULL, @target may be modified
2521  * underneath us, so we can't reliably determine pwq from @target.
2522  *
2523  * CONTEXT:
2524  * spin_lock_irq(pool->lock).
2525  */
2526 static void insert_wq_barrier(struct pool_workqueue *pwq,
2527 			      struct wq_barrier *barr,
2528 			      struct work_struct *target, struct worker *worker)
2529 {
2530 	struct list_head *head;
2531 	unsigned int linked = 0;
2532 
2533 	/*
2534 	 * debugobject calls are safe here even with pool->lock locked
2535 	 * as we know for sure that this will not trigger any of the
2536 	 * checks and call back into the fixup functions where we
2537 	 * might deadlock.
2538 	 */
2539 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2540 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2541 	init_completion(&barr->done);
2542 
2543 	/*
2544 	 * If @target is currently being executed, schedule the
2545 	 * barrier to the worker; otherwise, put it after @target.
2546 	 */
2547 	if (worker)
2548 		head = worker->scheduled.next;
2549 	else {
2550 		unsigned long *bits = work_data_bits(target);
2551 
2552 		head = target->entry.next;
2553 		/* there can already be other linked works, inherit and set */
2554 		linked = *bits & WORK_STRUCT_LINKED;
2555 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2556 	}
2557 
2558 	debug_work_activate(&barr->work);
2559 	insert_work(pwq, &barr->work, head,
2560 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2561 }
2562 
2563 /**
2564  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2565  * @wq: workqueue being flushed
2566  * @flush_color: new flush color, < 0 for no-op
2567  * @work_color: new work color, < 0 for no-op
2568  *
2569  * Prepare pwqs for workqueue flushing.
2570  *
2571  * If @flush_color is non-negative, flush_color on all pwqs should be
2572  * -1.  If no pwq has in-flight commands at the specified color, all
2573  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2574  * has in flight commands, its pwq->flush_color is set to
2575  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2576  * wakeup logic is armed and %true is returned.
2577  *
2578  * The caller should have initialized @wq->first_flusher prior to
2579  * calling this function with non-negative @flush_color.  If
2580  * @flush_color is negative, no flush color update is done and %false
2581  * is returned.
2582  *
2583  * If @work_color is non-negative, all pwqs should have the same
2584  * work_color which is previous to @work_color and all will be
2585  * advanced to @work_color.
2586  *
2587  * CONTEXT:
2588  * mutex_lock(wq->mutex).
2589  *
2590  * Return:
2591  * %true if @flush_color >= 0 and there's something to flush.  %false
2592  * otherwise.
2593  */
2594 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2595 				      int flush_color, int work_color)
2596 {
2597 	bool wait = false;
2598 	struct pool_workqueue *pwq;
2599 
2600 	if (flush_color >= 0) {
2601 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2602 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2603 	}
2604 
2605 	for_each_pwq(pwq, wq) {
2606 		struct worker_pool *pool = pwq->pool;
2607 
2608 		spin_lock_irq(&pool->lock);
2609 
2610 		if (flush_color >= 0) {
2611 			WARN_ON_ONCE(pwq->flush_color != -1);
2612 
2613 			if (pwq->nr_in_flight[flush_color]) {
2614 				pwq->flush_color = flush_color;
2615 				atomic_inc(&wq->nr_pwqs_to_flush);
2616 				wait = true;
2617 			}
2618 		}
2619 
2620 		if (work_color >= 0) {
2621 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2622 			pwq->work_color = work_color;
2623 		}
2624 
2625 		spin_unlock_irq(&pool->lock);
2626 	}
2627 
2628 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2629 		complete(&wq->first_flusher->done);
2630 
2631 	return wait;
2632 }
2633 
2634 /**
2635  * flush_workqueue - ensure that any scheduled work has run to completion.
2636  * @wq: workqueue to flush
2637  *
2638  * This function sleeps until all work items which were queued on entry
2639  * have finished execution, but it is not livelocked by new incoming ones.
2640  */
2641 void flush_workqueue(struct workqueue_struct *wq)
2642 {
2643 	struct wq_flusher this_flusher = {
2644 		.list = LIST_HEAD_INIT(this_flusher.list),
2645 		.flush_color = -1,
2646 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2647 	};
2648 	int next_color;
2649 
2650 	lock_map_acquire(&wq->lockdep_map);
2651 	lock_map_release(&wq->lockdep_map);
2652 
2653 	mutex_lock(&wq->mutex);
2654 
2655 	/*
2656 	 * Start-to-wait phase
2657 	 */
2658 	next_color = work_next_color(wq->work_color);
2659 
2660 	if (next_color != wq->flush_color) {
2661 		/*
2662 		 * Color space is not full.  The current work_color
2663 		 * becomes our flush_color and work_color is advanced
2664 		 * by one.
2665 		 */
2666 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2667 		this_flusher.flush_color = wq->work_color;
2668 		wq->work_color = next_color;
2669 
2670 		if (!wq->first_flusher) {
2671 			/* no flush in progress, become the first flusher */
2672 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2673 
2674 			wq->first_flusher = &this_flusher;
2675 
2676 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2677 						       wq->work_color)) {
2678 				/* nothing to flush, done */
2679 				wq->flush_color = next_color;
2680 				wq->first_flusher = NULL;
2681 				goto out_unlock;
2682 			}
2683 		} else {
2684 			/* wait in queue */
2685 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2686 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2687 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2688 		}
2689 	} else {
2690 		/*
2691 		 * Oops, color space is full, wait on overflow queue.
2692 		 * The next flush completion will assign us
2693 		 * flush_color and transfer to flusher_queue.
2694 		 */
2695 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2696 	}
2697 
2698 	mutex_unlock(&wq->mutex);
2699 
2700 	wait_for_completion(&this_flusher.done);
2701 
2702 	/*
2703 	 * Wake-up-and-cascade phase
2704 	 *
2705 	 * First flushers are responsible for cascading flushes and
2706 	 * handling overflow.  Non-first flushers can simply return.
2707 	 */
2708 	if (wq->first_flusher != &this_flusher)
2709 		return;
2710 
2711 	mutex_lock(&wq->mutex);
2712 
2713 	/* we might have raced, check again with mutex held */
2714 	if (wq->first_flusher != &this_flusher)
2715 		goto out_unlock;
2716 
2717 	wq->first_flusher = NULL;
2718 
2719 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2720 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2721 
2722 	while (true) {
2723 		struct wq_flusher *next, *tmp;
2724 
2725 		/* complete all the flushers sharing the current flush color */
2726 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2727 			if (next->flush_color != wq->flush_color)
2728 				break;
2729 			list_del_init(&next->list);
2730 			complete(&next->done);
2731 		}
2732 
2733 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2734 			     wq->flush_color != work_next_color(wq->work_color));
2735 
2736 		/* this flush_color is finished, advance by one */
2737 		wq->flush_color = work_next_color(wq->flush_color);
2738 
2739 		/* one color has been freed, handle overflow queue */
2740 		if (!list_empty(&wq->flusher_overflow)) {
2741 			/*
2742 			 * Assign the same color to all overflowed
2743 			 * flushers, advance work_color and append to
2744 			 * flusher_queue.  This is the start-to-wait
2745 			 * phase for these overflowed flushers.
2746 			 */
2747 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2748 				tmp->flush_color = wq->work_color;
2749 
2750 			wq->work_color = work_next_color(wq->work_color);
2751 
2752 			list_splice_tail_init(&wq->flusher_overflow,
2753 					      &wq->flusher_queue);
2754 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2755 		}
2756 
2757 		if (list_empty(&wq->flusher_queue)) {
2758 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2759 			break;
2760 		}
2761 
2762 		/*
2763 		 * Need to flush more colors.  Make the next flusher
2764 		 * the new first flusher and arm pwqs.
2765 		 */
2766 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2767 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2768 
2769 		list_del_init(&next->list);
2770 		wq->first_flusher = next;
2771 
2772 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2773 			break;
2774 
2775 		/*
2776 		 * Meh... this color is already done, clear first
2777 		 * flusher and repeat cascading.
2778 		 */
2779 		wq->first_flusher = NULL;
2780 	}
2781 
2782 out_unlock:
2783 	mutex_unlock(&wq->mutex);
2784 }
2785 EXPORT_SYMBOL_GPL(flush_workqueue);
2786 
2787 /**
2788  * drain_workqueue - drain a workqueue
2789  * @wq: workqueue to drain
2790  *
2791  * Wait until the workqueue becomes empty.  While draining is in progress,
2792  * only chain queueing is allowed.  IOW, only currently pending or running
2793  * work items on @wq can queue further work items on it.  @wq is flushed
2794  * repeatedly until it becomes empty.  The number of flushing is detemined
2795  * by the depth of chaining and should be relatively short.  Whine if it
2796  * takes too long.
2797  */
2798 void drain_workqueue(struct workqueue_struct *wq)
2799 {
2800 	unsigned int flush_cnt = 0;
2801 	struct pool_workqueue *pwq;
2802 
2803 	/*
2804 	 * __queue_work() needs to test whether there are drainers, is much
2805 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2806 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2807 	 */
2808 	mutex_lock(&wq->mutex);
2809 	if (!wq->nr_drainers++)
2810 		wq->flags |= __WQ_DRAINING;
2811 	mutex_unlock(&wq->mutex);
2812 reflush:
2813 	flush_workqueue(wq);
2814 
2815 	mutex_lock(&wq->mutex);
2816 
2817 	for_each_pwq(pwq, wq) {
2818 		bool drained;
2819 
2820 		spin_lock_irq(&pwq->pool->lock);
2821 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2822 		spin_unlock_irq(&pwq->pool->lock);
2823 
2824 		if (drained)
2825 			continue;
2826 
2827 		if (++flush_cnt == 10 ||
2828 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2829 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2830 				wq->name, flush_cnt);
2831 
2832 		mutex_unlock(&wq->mutex);
2833 		goto reflush;
2834 	}
2835 
2836 	if (!--wq->nr_drainers)
2837 		wq->flags &= ~__WQ_DRAINING;
2838 	mutex_unlock(&wq->mutex);
2839 }
2840 EXPORT_SYMBOL_GPL(drain_workqueue);
2841 
2842 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2843 {
2844 	struct worker *worker = NULL;
2845 	struct worker_pool *pool;
2846 	struct pool_workqueue *pwq;
2847 
2848 	might_sleep();
2849 
2850 	local_irq_disable();
2851 	pool = get_work_pool(work);
2852 	if (!pool) {
2853 		local_irq_enable();
2854 		return false;
2855 	}
2856 
2857 	spin_lock(&pool->lock);
2858 	/* see the comment in try_to_grab_pending() with the same code */
2859 	pwq = get_work_pwq(work);
2860 	if (pwq) {
2861 		if (unlikely(pwq->pool != pool))
2862 			goto already_gone;
2863 	} else {
2864 		worker = find_worker_executing_work(pool, work);
2865 		if (!worker)
2866 			goto already_gone;
2867 		pwq = worker->current_pwq;
2868 	}
2869 
2870 	insert_wq_barrier(pwq, barr, work, worker);
2871 	spin_unlock_irq(&pool->lock);
2872 
2873 	/*
2874 	 * If @max_active is 1 or rescuer is in use, flushing another work
2875 	 * item on the same workqueue may lead to deadlock.  Make sure the
2876 	 * flusher is not running on the same workqueue by verifying write
2877 	 * access.
2878 	 */
2879 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2880 		lock_map_acquire(&pwq->wq->lockdep_map);
2881 	else
2882 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2883 	lock_map_release(&pwq->wq->lockdep_map);
2884 
2885 	return true;
2886 already_gone:
2887 	spin_unlock_irq(&pool->lock);
2888 	return false;
2889 }
2890 
2891 /**
2892  * flush_work - wait for a work to finish executing the last queueing instance
2893  * @work: the work to flush
2894  *
2895  * Wait until @work has finished execution.  @work is guaranteed to be idle
2896  * on return if it hasn't been requeued since flush started.
2897  *
2898  * Return:
2899  * %true if flush_work() waited for the work to finish execution,
2900  * %false if it was already idle.
2901  */
2902 bool flush_work(struct work_struct *work)
2903 {
2904 	struct wq_barrier barr;
2905 
2906 	lock_map_acquire(&work->lockdep_map);
2907 	lock_map_release(&work->lockdep_map);
2908 
2909 	if (start_flush_work(work, &barr)) {
2910 		wait_for_completion(&barr.done);
2911 		destroy_work_on_stack(&barr.work);
2912 		return true;
2913 	} else {
2914 		return false;
2915 	}
2916 }
2917 EXPORT_SYMBOL_GPL(flush_work);
2918 
2919 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2920 {
2921 	unsigned long flags;
2922 	int ret;
2923 
2924 	do {
2925 		ret = try_to_grab_pending(work, is_dwork, &flags);
2926 		/*
2927 		 * If someone else is canceling, wait for the same event it
2928 		 * would be waiting for before retrying.
2929 		 */
2930 		if (unlikely(ret == -ENOENT))
2931 			flush_work(work);
2932 	} while (unlikely(ret < 0));
2933 
2934 	/* tell other tasks trying to grab @work to back off */
2935 	mark_work_canceling(work);
2936 	local_irq_restore(flags);
2937 
2938 	flush_work(work);
2939 	clear_work_data(work);
2940 	return ret;
2941 }
2942 
2943 /**
2944  * cancel_work_sync - cancel a work and wait for it to finish
2945  * @work: the work to cancel
2946  *
2947  * Cancel @work and wait for its execution to finish.  This function
2948  * can be used even if the work re-queues itself or migrates to
2949  * another workqueue.  On return from this function, @work is
2950  * guaranteed to be not pending or executing on any CPU.
2951  *
2952  * cancel_work_sync(&delayed_work->work) must not be used for
2953  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2954  *
2955  * The caller must ensure that the workqueue on which @work was last
2956  * queued can't be destroyed before this function returns.
2957  *
2958  * Return:
2959  * %true if @work was pending, %false otherwise.
2960  */
2961 bool cancel_work_sync(struct work_struct *work)
2962 {
2963 	return __cancel_work_timer(work, false);
2964 }
2965 EXPORT_SYMBOL_GPL(cancel_work_sync);
2966 
2967 /**
2968  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2969  * @dwork: the delayed work to flush
2970  *
2971  * Delayed timer is cancelled and the pending work is queued for
2972  * immediate execution.  Like flush_work(), this function only
2973  * considers the last queueing instance of @dwork.
2974  *
2975  * Return:
2976  * %true if flush_work() waited for the work to finish execution,
2977  * %false if it was already idle.
2978  */
2979 bool flush_delayed_work(struct delayed_work *dwork)
2980 {
2981 	local_irq_disable();
2982 	if (del_timer_sync(&dwork->timer))
2983 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2984 	local_irq_enable();
2985 	return flush_work(&dwork->work);
2986 }
2987 EXPORT_SYMBOL(flush_delayed_work);
2988 
2989 /**
2990  * cancel_delayed_work - cancel a delayed work
2991  * @dwork: delayed_work to cancel
2992  *
2993  * Kill off a pending delayed_work.
2994  *
2995  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2996  * pending.
2997  *
2998  * Note:
2999  * The work callback function may still be running on return, unless
3000  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3001  * use cancel_delayed_work_sync() to wait on it.
3002  *
3003  * This function is safe to call from any context including IRQ handler.
3004  */
3005 bool cancel_delayed_work(struct delayed_work *dwork)
3006 {
3007 	unsigned long flags;
3008 	int ret;
3009 
3010 	do {
3011 		ret = try_to_grab_pending(&dwork->work, true, &flags);
3012 	} while (unlikely(ret == -EAGAIN));
3013 
3014 	if (unlikely(ret < 0))
3015 		return false;
3016 
3017 	set_work_pool_and_clear_pending(&dwork->work,
3018 					get_work_pool_id(&dwork->work));
3019 	local_irq_restore(flags);
3020 	return ret;
3021 }
3022 EXPORT_SYMBOL(cancel_delayed_work);
3023 
3024 /**
3025  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3026  * @dwork: the delayed work cancel
3027  *
3028  * This is cancel_work_sync() for delayed works.
3029  *
3030  * Return:
3031  * %true if @dwork was pending, %false otherwise.
3032  */
3033 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3034 {
3035 	return __cancel_work_timer(&dwork->work, true);
3036 }
3037 EXPORT_SYMBOL(cancel_delayed_work_sync);
3038 
3039 /**
3040  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3041  * @func: the function to call
3042  *
3043  * schedule_on_each_cpu() executes @func on each online CPU using the
3044  * system workqueue and blocks until all CPUs have completed.
3045  * schedule_on_each_cpu() is very slow.
3046  *
3047  * Return:
3048  * 0 on success, -errno on failure.
3049  */
3050 int schedule_on_each_cpu(work_func_t func)
3051 {
3052 	int cpu;
3053 	struct work_struct __percpu *works;
3054 
3055 	works = alloc_percpu(struct work_struct);
3056 	if (!works)
3057 		return -ENOMEM;
3058 
3059 	get_online_cpus();
3060 
3061 	for_each_online_cpu(cpu) {
3062 		struct work_struct *work = per_cpu_ptr(works, cpu);
3063 
3064 		INIT_WORK(work, func);
3065 		schedule_work_on(cpu, work);
3066 	}
3067 
3068 	for_each_online_cpu(cpu)
3069 		flush_work(per_cpu_ptr(works, cpu));
3070 
3071 	put_online_cpus();
3072 	free_percpu(works);
3073 	return 0;
3074 }
3075 
3076 /**
3077  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3078  *
3079  * Forces execution of the kernel-global workqueue and blocks until its
3080  * completion.
3081  *
3082  * Think twice before calling this function!  It's very easy to get into
3083  * trouble if you don't take great care.  Either of the following situations
3084  * will lead to deadlock:
3085  *
3086  *	One of the work items currently on the workqueue needs to acquire
3087  *	a lock held by your code or its caller.
3088  *
3089  *	Your code is running in the context of a work routine.
3090  *
3091  * They will be detected by lockdep when they occur, but the first might not
3092  * occur very often.  It depends on what work items are on the workqueue and
3093  * what locks they need, which you have no control over.
3094  *
3095  * In most situations flushing the entire workqueue is overkill; you merely
3096  * need to know that a particular work item isn't queued and isn't running.
3097  * In such cases you should use cancel_delayed_work_sync() or
3098  * cancel_work_sync() instead.
3099  */
3100 void flush_scheduled_work(void)
3101 {
3102 	flush_workqueue(system_wq);
3103 }
3104 EXPORT_SYMBOL(flush_scheduled_work);
3105 
3106 /**
3107  * execute_in_process_context - reliably execute the routine with user context
3108  * @fn:		the function to execute
3109  * @ew:		guaranteed storage for the execute work structure (must
3110  *		be available when the work executes)
3111  *
3112  * Executes the function immediately if process context is available,
3113  * otherwise schedules the function for delayed execution.
3114  *
3115  * Return:	0 - function was executed
3116  *		1 - function was scheduled for execution
3117  */
3118 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3119 {
3120 	if (!in_interrupt()) {
3121 		fn(&ew->work);
3122 		return 0;
3123 	}
3124 
3125 	INIT_WORK(&ew->work, fn);
3126 	schedule_work(&ew->work);
3127 
3128 	return 1;
3129 }
3130 EXPORT_SYMBOL_GPL(execute_in_process_context);
3131 
3132 #ifdef CONFIG_SYSFS
3133 /*
3134  * Workqueues with WQ_SYSFS flag set is visible to userland via
3135  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3136  * following attributes.
3137  *
3138  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3139  *  max_active	RW int	: maximum number of in-flight work items
3140  *
3141  * Unbound workqueues have the following extra attributes.
3142  *
3143  *  id		RO int	: the associated pool ID
3144  *  nice	RW int	: nice value of the workers
3145  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3146  */
3147 struct wq_device {
3148 	struct workqueue_struct		*wq;
3149 	struct device			dev;
3150 };
3151 
3152 static struct workqueue_struct *dev_to_wq(struct device *dev)
3153 {
3154 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3155 
3156 	return wq_dev->wq;
3157 }
3158 
3159 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3160 			    char *buf)
3161 {
3162 	struct workqueue_struct *wq = dev_to_wq(dev);
3163 
3164 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3165 }
3166 static DEVICE_ATTR_RO(per_cpu);
3167 
3168 static ssize_t max_active_show(struct device *dev,
3169 			       struct device_attribute *attr, char *buf)
3170 {
3171 	struct workqueue_struct *wq = dev_to_wq(dev);
3172 
3173 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3174 }
3175 
3176 static ssize_t max_active_store(struct device *dev,
3177 				struct device_attribute *attr, const char *buf,
3178 				size_t count)
3179 {
3180 	struct workqueue_struct *wq = dev_to_wq(dev);
3181 	int val;
3182 
3183 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3184 		return -EINVAL;
3185 
3186 	workqueue_set_max_active(wq, val);
3187 	return count;
3188 }
3189 static DEVICE_ATTR_RW(max_active);
3190 
3191 static struct attribute *wq_sysfs_attrs[] = {
3192 	&dev_attr_per_cpu.attr,
3193 	&dev_attr_max_active.attr,
3194 	NULL,
3195 };
3196 ATTRIBUTE_GROUPS(wq_sysfs);
3197 
3198 static ssize_t wq_pool_ids_show(struct device *dev,
3199 				struct device_attribute *attr, char *buf)
3200 {
3201 	struct workqueue_struct *wq = dev_to_wq(dev);
3202 	const char *delim = "";
3203 	int node, written = 0;
3204 
3205 	rcu_read_lock_sched();
3206 	for_each_node(node) {
3207 		written += scnprintf(buf + written, PAGE_SIZE - written,
3208 				     "%s%d:%d", delim, node,
3209 				     unbound_pwq_by_node(wq, node)->pool->id);
3210 		delim = " ";
3211 	}
3212 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3213 	rcu_read_unlock_sched();
3214 
3215 	return written;
3216 }
3217 
3218 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3219 			    char *buf)
3220 {
3221 	struct workqueue_struct *wq = dev_to_wq(dev);
3222 	int written;
3223 
3224 	mutex_lock(&wq->mutex);
3225 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3226 	mutex_unlock(&wq->mutex);
3227 
3228 	return written;
3229 }
3230 
3231 /* prepare workqueue_attrs for sysfs store operations */
3232 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3233 {
3234 	struct workqueue_attrs *attrs;
3235 
3236 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3237 	if (!attrs)
3238 		return NULL;
3239 
3240 	mutex_lock(&wq->mutex);
3241 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3242 	mutex_unlock(&wq->mutex);
3243 	return attrs;
3244 }
3245 
3246 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3247 			     const char *buf, size_t count)
3248 {
3249 	struct workqueue_struct *wq = dev_to_wq(dev);
3250 	struct workqueue_attrs *attrs;
3251 	int ret;
3252 
3253 	attrs = wq_sysfs_prep_attrs(wq);
3254 	if (!attrs)
3255 		return -ENOMEM;
3256 
3257 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3258 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3259 		ret = apply_workqueue_attrs(wq, attrs);
3260 	else
3261 		ret = -EINVAL;
3262 
3263 	free_workqueue_attrs(attrs);
3264 	return ret ?: count;
3265 }
3266 
3267 static ssize_t wq_cpumask_show(struct device *dev,
3268 			       struct device_attribute *attr, char *buf)
3269 {
3270 	struct workqueue_struct *wq = dev_to_wq(dev);
3271 	int written;
3272 
3273 	mutex_lock(&wq->mutex);
3274 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3275 	mutex_unlock(&wq->mutex);
3276 
3277 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3278 	return written;
3279 }
3280 
3281 static ssize_t wq_cpumask_store(struct device *dev,
3282 				struct device_attribute *attr,
3283 				const char *buf, size_t count)
3284 {
3285 	struct workqueue_struct *wq = dev_to_wq(dev);
3286 	struct workqueue_attrs *attrs;
3287 	int ret;
3288 
3289 	attrs = wq_sysfs_prep_attrs(wq);
3290 	if (!attrs)
3291 		return -ENOMEM;
3292 
3293 	ret = cpumask_parse(buf, attrs->cpumask);
3294 	if (!ret)
3295 		ret = apply_workqueue_attrs(wq, attrs);
3296 
3297 	free_workqueue_attrs(attrs);
3298 	return ret ?: count;
3299 }
3300 
3301 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3302 			    char *buf)
3303 {
3304 	struct workqueue_struct *wq = dev_to_wq(dev);
3305 	int written;
3306 
3307 	mutex_lock(&wq->mutex);
3308 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3309 			    !wq->unbound_attrs->no_numa);
3310 	mutex_unlock(&wq->mutex);
3311 
3312 	return written;
3313 }
3314 
3315 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3316 			     const char *buf, size_t count)
3317 {
3318 	struct workqueue_struct *wq = dev_to_wq(dev);
3319 	struct workqueue_attrs *attrs;
3320 	int v, ret;
3321 
3322 	attrs = wq_sysfs_prep_attrs(wq);
3323 	if (!attrs)
3324 		return -ENOMEM;
3325 
3326 	ret = -EINVAL;
3327 	if (sscanf(buf, "%d", &v) == 1) {
3328 		attrs->no_numa = !v;
3329 		ret = apply_workqueue_attrs(wq, attrs);
3330 	}
3331 
3332 	free_workqueue_attrs(attrs);
3333 	return ret ?: count;
3334 }
3335 
3336 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3337 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3338 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3339 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3340 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3341 	__ATTR_NULL,
3342 };
3343 
3344 static struct bus_type wq_subsys = {
3345 	.name				= "workqueue",
3346 	.dev_groups			= wq_sysfs_groups,
3347 };
3348 
3349 static int __init wq_sysfs_init(void)
3350 {
3351 	return subsys_virtual_register(&wq_subsys, NULL);
3352 }
3353 core_initcall(wq_sysfs_init);
3354 
3355 static void wq_device_release(struct device *dev)
3356 {
3357 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3358 
3359 	kfree(wq_dev);
3360 }
3361 
3362 /**
3363  * workqueue_sysfs_register - make a workqueue visible in sysfs
3364  * @wq: the workqueue to register
3365  *
3366  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3367  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3368  * which is the preferred method.
3369  *
3370  * Workqueue user should use this function directly iff it wants to apply
3371  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3372  * apply_workqueue_attrs() may race against userland updating the
3373  * attributes.
3374  *
3375  * Return: 0 on success, -errno on failure.
3376  */
3377 int workqueue_sysfs_register(struct workqueue_struct *wq)
3378 {
3379 	struct wq_device *wq_dev;
3380 	int ret;
3381 
3382 	/*
3383 	 * Adjusting max_active or creating new pwqs by applyting
3384 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3385 	 * workqueues.
3386 	 */
3387 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3388 		return -EINVAL;
3389 
3390 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3391 	if (!wq_dev)
3392 		return -ENOMEM;
3393 
3394 	wq_dev->wq = wq;
3395 	wq_dev->dev.bus = &wq_subsys;
3396 	wq_dev->dev.init_name = wq->name;
3397 	wq_dev->dev.release = wq_device_release;
3398 
3399 	/*
3400 	 * unbound_attrs are created separately.  Suppress uevent until
3401 	 * everything is ready.
3402 	 */
3403 	dev_set_uevent_suppress(&wq_dev->dev, true);
3404 
3405 	ret = device_register(&wq_dev->dev);
3406 	if (ret) {
3407 		kfree(wq_dev);
3408 		wq->wq_dev = NULL;
3409 		return ret;
3410 	}
3411 
3412 	if (wq->flags & WQ_UNBOUND) {
3413 		struct device_attribute *attr;
3414 
3415 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3416 			ret = device_create_file(&wq_dev->dev, attr);
3417 			if (ret) {
3418 				device_unregister(&wq_dev->dev);
3419 				wq->wq_dev = NULL;
3420 				return ret;
3421 			}
3422 		}
3423 	}
3424 
3425 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3426 	return 0;
3427 }
3428 
3429 /**
3430  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3431  * @wq: the workqueue to unregister
3432  *
3433  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3434  */
3435 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3436 {
3437 	struct wq_device *wq_dev = wq->wq_dev;
3438 
3439 	if (!wq->wq_dev)
3440 		return;
3441 
3442 	wq->wq_dev = NULL;
3443 	device_unregister(&wq_dev->dev);
3444 }
3445 #else	/* CONFIG_SYSFS */
3446 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3447 #endif	/* CONFIG_SYSFS */
3448 
3449 /**
3450  * free_workqueue_attrs - free a workqueue_attrs
3451  * @attrs: workqueue_attrs to free
3452  *
3453  * Undo alloc_workqueue_attrs().
3454  */
3455 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3456 {
3457 	if (attrs) {
3458 		free_cpumask_var(attrs->cpumask);
3459 		kfree(attrs);
3460 	}
3461 }
3462 
3463 /**
3464  * alloc_workqueue_attrs - allocate a workqueue_attrs
3465  * @gfp_mask: allocation mask to use
3466  *
3467  * Allocate a new workqueue_attrs, initialize with default settings and
3468  * return it.
3469  *
3470  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3471  */
3472 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3473 {
3474 	struct workqueue_attrs *attrs;
3475 
3476 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3477 	if (!attrs)
3478 		goto fail;
3479 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3480 		goto fail;
3481 
3482 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3483 	return attrs;
3484 fail:
3485 	free_workqueue_attrs(attrs);
3486 	return NULL;
3487 }
3488 
3489 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3490 				 const struct workqueue_attrs *from)
3491 {
3492 	to->nice = from->nice;
3493 	cpumask_copy(to->cpumask, from->cpumask);
3494 	/*
3495 	 * Unlike hash and equality test, this function doesn't ignore
3496 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3497 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3498 	 */
3499 	to->no_numa = from->no_numa;
3500 }
3501 
3502 /* hash value of the content of @attr */
3503 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3504 {
3505 	u32 hash = 0;
3506 
3507 	hash = jhash_1word(attrs->nice, hash);
3508 	hash = jhash(cpumask_bits(attrs->cpumask),
3509 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3510 	return hash;
3511 }
3512 
3513 /* content equality test */
3514 static bool wqattrs_equal(const struct workqueue_attrs *a,
3515 			  const struct workqueue_attrs *b)
3516 {
3517 	if (a->nice != b->nice)
3518 		return false;
3519 	if (!cpumask_equal(a->cpumask, b->cpumask))
3520 		return false;
3521 	return true;
3522 }
3523 
3524 /**
3525  * init_worker_pool - initialize a newly zalloc'd worker_pool
3526  * @pool: worker_pool to initialize
3527  *
3528  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3529  *
3530  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3531  * inside @pool proper are initialized and put_unbound_pool() can be called
3532  * on @pool safely to release it.
3533  */
3534 static int init_worker_pool(struct worker_pool *pool)
3535 {
3536 	spin_lock_init(&pool->lock);
3537 	pool->id = -1;
3538 	pool->cpu = -1;
3539 	pool->node = NUMA_NO_NODE;
3540 	pool->flags |= POOL_DISASSOCIATED;
3541 	INIT_LIST_HEAD(&pool->worklist);
3542 	INIT_LIST_HEAD(&pool->idle_list);
3543 	hash_init(pool->busy_hash);
3544 
3545 	init_timer_deferrable(&pool->idle_timer);
3546 	pool->idle_timer.function = idle_worker_timeout;
3547 	pool->idle_timer.data = (unsigned long)pool;
3548 
3549 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3550 		    (unsigned long)pool);
3551 
3552 	mutex_init(&pool->manager_arb);
3553 	mutex_init(&pool->manager_mutex);
3554 	idr_init(&pool->worker_idr);
3555 
3556 	INIT_HLIST_NODE(&pool->hash_node);
3557 	pool->refcnt = 1;
3558 
3559 	/* shouldn't fail above this point */
3560 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3561 	if (!pool->attrs)
3562 		return -ENOMEM;
3563 	return 0;
3564 }
3565 
3566 static void rcu_free_pool(struct rcu_head *rcu)
3567 {
3568 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3569 
3570 	idr_destroy(&pool->worker_idr);
3571 	free_workqueue_attrs(pool->attrs);
3572 	kfree(pool);
3573 }
3574 
3575 /**
3576  * put_unbound_pool - put a worker_pool
3577  * @pool: worker_pool to put
3578  *
3579  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3580  * safe manner.  get_unbound_pool() calls this function on its failure path
3581  * and this function should be able to release pools which went through,
3582  * successfully or not, init_worker_pool().
3583  *
3584  * Should be called with wq_pool_mutex held.
3585  */
3586 static void put_unbound_pool(struct worker_pool *pool)
3587 {
3588 	struct worker *worker;
3589 
3590 	lockdep_assert_held(&wq_pool_mutex);
3591 
3592 	if (--pool->refcnt)
3593 		return;
3594 
3595 	/* sanity checks */
3596 	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3597 	    WARN_ON(!list_empty(&pool->worklist)))
3598 		return;
3599 
3600 	/* release id and unhash */
3601 	if (pool->id >= 0)
3602 		idr_remove(&worker_pool_idr, pool->id);
3603 	hash_del(&pool->hash_node);
3604 
3605 	/*
3606 	 * Become the manager and destroy all workers.  Grabbing
3607 	 * manager_arb prevents @pool's workers from blocking on
3608 	 * manager_mutex.
3609 	 */
3610 	mutex_lock(&pool->manager_arb);
3611 	mutex_lock(&pool->manager_mutex);
3612 	spin_lock_irq(&pool->lock);
3613 
3614 	while ((worker = first_worker(pool)))
3615 		destroy_worker(worker);
3616 	WARN_ON(pool->nr_workers || pool->nr_idle);
3617 
3618 	spin_unlock_irq(&pool->lock);
3619 	mutex_unlock(&pool->manager_mutex);
3620 	mutex_unlock(&pool->manager_arb);
3621 
3622 	/* shut down the timers */
3623 	del_timer_sync(&pool->idle_timer);
3624 	del_timer_sync(&pool->mayday_timer);
3625 
3626 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3627 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3628 }
3629 
3630 /**
3631  * get_unbound_pool - get a worker_pool with the specified attributes
3632  * @attrs: the attributes of the worker_pool to get
3633  *
3634  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3635  * reference count and return it.  If there already is a matching
3636  * worker_pool, it will be used; otherwise, this function attempts to
3637  * create a new one.
3638  *
3639  * Should be called with wq_pool_mutex held.
3640  *
3641  * Return: On success, a worker_pool with the same attributes as @attrs.
3642  * On failure, %NULL.
3643  */
3644 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3645 {
3646 	u32 hash = wqattrs_hash(attrs);
3647 	struct worker_pool *pool;
3648 	int node;
3649 
3650 	lockdep_assert_held(&wq_pool_mutex);
3651 
3652 	/* do we already have a matching pool? */
3653 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3654 		if (wqattrs_equal(pool->attrs, attrs)) {
3655 			pool->refcnt++;
3656 			goto out_unlock;
3657 		}
3658 	}
3659 
3660 	/* nope, create a new one */
3661 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3662 	if (!pool || init_worker_pool(pool) < 0)
3663 		goto fail;
3664 
3665 	if (workqueue_freezing)
3666 		pool->flags |= POOL_FREEZING;
3667 
3668 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3669 	copy_workqueue_attrs(pool->attrs, attrs);
3670 
3671 	/*
3672 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3673 	 * 'struct workqueue_attrs' comments for detail.
3674 	 */
3675 	pool->attrs->no_numa = false;
3676 
3677 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3678 	if (wq_numa_enabled) {
3679 		for_each_node(node) {
3680 			if (cpumask_subset(pool->attrs->cpumask,
3681 					   wq_numa_possible_cpumask[node])) {
3682 				pool->node = node;
3683 				break;
3684 			}
3685 		}
3686 	}
3687 
3688 	if (worker_pool_assign_id(pool) < 0)
3689 		goto fail;
3690 
3691 	/* create and start the initial worker */
3692 	if (create_and_start_worker(pool) < 0)
3693 		goto fail;
3694 
3695 	/* install */
3696 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3697 out_unlock:
3698 	return pool;
3699 fail:
3700 	if (pool)
3701 		put_unbound_pool(pool);
3702 	return NULL;
3703 }
3704 
3705 static void rcu_free_pwq(struct rcu_head *rcu)
3706 {
3707 	kmem_cache_free(pwq_cache,
3708 			container_of(rcu, struct pool_workqueue, rcu));
3709 }
3710 
3711 /*
3712  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3713  * and needs to be destroyed.
3714  */
3715 static void pwq_unbound_release_workfn(struct work_struct *work)
3716 {
3717 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3718 						  unbound_release_work);
3719 	struct workqueue_struct *wq = pwq->wq;
3720 	struct worker_pool *pool = pwq->pool;
3721 	bool is_last;
3722 
3723 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3724 		return;
3725 
3726 	/*
3727 	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3728 	 * necessary on release but do it anyway.  It's easier to verify
3729 	 * and consistent with the linking path.
3730 	 */
3731 	mutex_lock(&wq->mutex);
3732 	list_del_rcu(&pwq->pwqs_node);
3733 	is_last = list_empty(&wq->pwqs);
3734 	mutex_unlock(&wq->mutex);
3735 
3736 	mutex_lock(&wq_pool_mutex);
3737 	put_unbound_pool(pool);
3738 	mutex_unlock(&wq_pool_mutex);
3739 
3740 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3741 
3742 	/*
3743 	 * If we're the last pwq going away, @wq is already dead and no one
3744 	 * is gonna access it anymore.  Free it.
3745 	 */
3746 	if (is_last) {
3747 		free_workqueue_attrs(wq->unbound_attrs);
3748 		kfree(wq);
3749 	}
3750 }
3751 
3752 /**
3753  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3754  * @pwq: target pool_workqueue
3755  *
3756  * If @pwq isn't freezing, set @pwq->max_active to the associated
3757  * workqueue's saved_max_active and activate delayed work items
3758  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3759  */
3760 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3761 {
3762 	struct workqueue_struct *wq = pwq->wq;
3763 	bool freezable = wq->flags & WQ_FREEZABLE;
3764 
3765 	/* for @wq->saved_max_active */
3766 	lockdep_assert_held(&wq->mutex);
3767 
3768 	/* fast exit for non-freezable wqs */
3769 	if (!freezable && pwq->max_active == wq->saved_max_active)
3770 		return;
3771 
3772 	spin_lock_irq(&pwq->pool->lock);
3773 
3774 	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3775 		pwq->max_active = wq->saved_max_active;
3776 
3777 		while (!list_empty(&pwq->delayed_works) &&
3778 		       pwq->nr_active < pwq->max_active)
3779 			pwq_activate_first_delayed(pwq);
3780 
3781 		/*
3782 		 * Need to kick a worker after thawed or an unbound wq's
3783 		 * max_active is bumped.  It's a slow path.  Do it always.
3784 		 */
3785 		wake_up_worker(pwq->pool);
3786 	} else {
3787 		pwq->max_active = 0;
3788 	}
3789 
3790 	spin_unlock_irq(&pwq->pool->lock);
3791 }
3792 
3793 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3794 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3795 		     struct worker_pool *pool)
3796 {
3797 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3798 
3799 	memset(pwq, 0, sizeof(*pwq));
3800 
3801 	pwq->pool = pool;
3802 	pwq->wq = wq;
3803 	pwq->flush_color = -1;
3804 	pwq->refcnt = 1;
3805 	INIT_LIST_HEAD(&pwq->delayed_works);
3806 	INIT_LIST_HEAD(&pwq->pwqs_node);
3807 	INIT_LIST_HEAD(&pwq->mayday_node);
3808 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3809 }
3810 
3811 /* sync @pwq with the current state of its associated wq and link it */
3812 static void link_pwq(struct pool_workqueue *pwq)
3813 {
3814 	struct workqueue_struct *wq = pwq->wq;
3815 
3816 	lockdep_assert_held(&wq->mutex);
3817 
3818 	/* may be called multiple times, ignore if already linked */
3819 	if (!list_empty(&pwq->pwqs_node))
3820 		return;
3821 
3822 	/*
3823 	 * Set the matching work_color.  This is synchronized with
3824 	 * wq->mutex to avoid confusing flush_workqueue().
3825 	 */
3826 	pwq->work_color = wq->work_color;
3827 
3828 	/* sync max_active to the current setting */
3829 	pwq_adjust_max_active(pwq);
3830 
3831 	/* link in @pwq */
3832 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3833 }
3834 
3835 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3836 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3837 					const struct workqueue_attrs *attrs)
3838 {
3839 	struct worker_pool *pool;
3840 	struct pool_workqueue *pwq;
3841 
3842 	lockdep_assert_held(&wq_pool_mutex);
3843 
3844 	pool = get_unbound_pool(attrs);
3845 	if (!pool)
3846 		return NULL;
3847 
3848 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3849 	if (!pwq) {
3850 		put_unbound_pool(pool);
3851 		return NULL;
3852 	}
3853 
3854 	init_pwq(pwq, wq, pool);
3855 	return pwq;
3856 }
3857 
3858 /* undo alloc_unbound_pwq(), used only in the error path */
3859 static void free_unbound_pwq(struct pool_workqueue *pwq)
3860 {
3861 	lockdep_assert_held(&wq_pool_mutex);
3862 
3863 	if (pwq) {
3864 		put_unbound_pool(pwq->pool);
3865 		kmem_cache_free(pwq_cache, pwq);
3866 	}
3867 }
3868 
3869 /**
3870  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3871  * @attrs: the wq_attrs of interest
3872  * @node: the target NUMA node
3873  * @cpu_going_down: if >= 0, the CPU to consider as offline
3874  * @cpumask: outarg, the resulting cpumask
3875  *
3876  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3877  * @cpu_going_down is >= 0, that cpu is considered offline during
3878  * calculation.  The result is stored in @cpumask.
3879  *
3880  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3881  * enabled and @node has online CPUs requested by @attrs, the returned
3882  * cpumask is the intersection of the possible CPUs of @node and
3883  * @attrs->cpumask.
3884  *
3885  * The caller is responsible for ensuring that the cpumask of @node stays
3886  * stable.
3887  *
3888  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3889  * %false if equal.
3890  */
3891 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3892 				 int cpu_going_down, cpumask_t *cpumask)
3893 {
3894 	if (!wq_numa_enabled || attrs->no_numa)
3895 		goto use_dfl;
3896 
3897 	/* does @node have any online CPUs @attrs wants? */
3898 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3899 	if (cpu_going_down >= 0)
3900 		cpumask_clear_cpu(cpu_going_down, cpumask);
3901 
3902 	if (cpumask_empty(cpumask))
3903 		goto use_dfl;
3904 
3905 	/* yeap, return possible CPUs in @node that @attrs wants */
3906 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3907 	return !cpumask_equal(cpumask, attrs->cpumask);
3908 
3909 use_dfl:
3910 	cpumask_copy(cpumask, attrs->cpumask);
3911 	return false;
3912 }
3913 
3914 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3915 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3916 						   int node,
3917 						   struct pool_workqueue *pwq)
3918 {
3919 	struct pool_workqueue *old_pwq;
3920 
3921 	lockdep_assert_held(&wq->mutex);
3922 
3923 	/* link_pwq() can handle duplicate calls */
3924 	link_pwq(pwq);
3925 
3926 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3927 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3928 	return old_pwq;
3929 }
3930 
3931 /**
3932  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3933  * @wq: the target workqueue
3934  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3935  *
3936  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3937  * machines, this function maps a separate pwq to each NUMA node with
3938  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3939  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3940  * items finish.  Note that a work item which repeatedly requeues itself
3941  * back-to-back will stay on its current pwq.
3942  *
3943  * Performs GFP_KERNEL allocations.
3944  *
3945  * Return: 0 on success and -errno on failure.
3946  */
3947 int apply_workqueue_attrs(struct workqueue_struct *wq,
3948 			  const struct workqueue_attrs *attrs)
3949 {
3950 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3951 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3952 	int node, ret;
3953 
3954 	/* only unbound workqueues can change attributes */
3955 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3956 		return -EINVAL;
3957 
3958 	/* creating multiple pwqs breaks ordering guarantee */
3959 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3960 		return -EINVAL;
3961 
3962 	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3963 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3964 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3965 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3966 		goto enomem;
3967 
3968 	/* make a copy of @attrs and sanitize it */
3969 	copy_workqueue_attrs(new_attrs, attrs);
3970 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3971 
3972 	/*
3973 	 * We may create multiple pwqs with differing cpumasks.  Make a
3974 	 * copy of @new_attrs which will be modified and used to obtain
3975 	 * pools.
3976 	 */
3977 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3978 
3979 	/*
3980 	 * CPUs should stay stable across pwq creations and installations.
3981 	 * Pin CPUs, determine the target cpumask for each node and create
3982 	 * pwqs accordingly.
3983 	 */
3984 	get_online_cpus();
3985 
3986 	mutex_lock(&wq_pool_mutex);
3987 
3988 	/*
3989 	 * If something goes wrong during CPU up/down, we'll fall back to
3990 	 * the default pwq covering whole @attrs->cpumask.  Always create
3991 	 * it even if we don't use it immediately.
3992 	 */
3993 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3994 	if (!dfl_pwq)
3995 		goto enomem_pwq;
3996 
3997 	for_each_node(node) {
3998 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3999 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4000 			if (!pwq_tbl[node])
4001 				goto enomem_pwq;
4002 		} else {
4003 			dfl_pwq->refcnt++;
4004 			pwq_tbl[node] = dfl_pwq;
4005 		}
4006 	}
4007 
4008 	mutex_unlock(&wq_pool_mutex);
4009 
4010 	/* all pwqs have been created successfully, let's install'em */
4011 	mutex_lock(&wq->mutex);
4012 
4013 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4014 
4015 	/* save the previous pwq and install the new one */
4016 	for_each_node(node)
4017 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
4018 
4019 	/* @dfl_pwq might not have been used, ensure it's linked */
4020 	link_pwq(dfl_pwq);
4021 	swap(wq->dfl_pwq, dfl_pwq);
4022 
4023 	mutex_unlock(&wq->mutex);
4024 
4025 	/* put the old pwqs */
4026 	for_each_node(node)
4027 		put_pwq_unlocked(pwq_tbl[node]);
4028 	put_pwq_unlocked(dfl_pwq);
4029 
4030 	put_online_cpus();
4031 	ret = 0;
4032 	/* fall through */
4033 out_free:
4034 	free_workqueue_attrs(tmp_attrs);
4035 	free_workqueue_attrs(new_attrs);
4036 	kfree(pwq_tbl);
4037 	return ret;
4038 
4039 enomem_pwq:
4040 	free_unbound_pwq(dfl_pwq);
4041 	for_each_node(node)
4042 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4043 			free_unbound_pwq(pwq_tbl[node]);
4044 	mutex_unlock(&wq_pool_mutex);
4045 	put_online_cpus();
4046 enomem:
4047 	ret = -ENOMEM;
4048 	goto out_free;
4049 }
4050 
4051 /**
4052  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4053  * @wq: the target workqueue
4054  * @cpu: the CPU coming up or going down
4055  * @online: whether @cpu is coming up or going down
4056  *
4057  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4058  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4059  * @wq accordingly.
4060  *
4061  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4062  * falls back to @wq->dfl_pwq which may not be optimal but is always
4063  * correct.
4064  *
4065  * Note that when the last allowed CPU of a NUMA node goes offline for a
4066  * workqueue with a cpumask spanning multiple nodes, the workers which were
4067  * already executing the work items for the workqueue will lose their CPU
4068  * affinity and may execute on any CPU.  This is similar to how per-cpu
4069  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4070  * affinity, it's the user's responsibility to flush the work item from
4071  * CPU_DOWN_PREPARE.
4072  */
4073 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4074 				   bool online)
4075 {
4076 	int node = cpu_to_node(cpu);
4077 	int cpu_off = online ? -1 : cpu;
4078 	struct pool_workqueue *old_pwq = NULL, *pwq;
4079 	struct workqueue_attrs *target_attrs;
4080 	cpumask_t *cpumask;
4081 
4082 	lockdep_assert_held(&wq_pool_mutex);
4083 
4084 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4085 		return;
4086 
4087 	/*
4088 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4089 	 * Let's use a preallocated one.  The following buf is protected by
4090 	 * CPU hotplug exclusion.
4091 	 */
4092 	target_attrs = wq_update_unbound_numa_attrs_buf;
4093 	cpumask = target_attrs->cpumask;
4094 
4095 	mutex_lock(&wq->mutex);
4096 	if (wq->unbound_attrs->no_numa)
4097 		goto out_unlock;
4098 
4099 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4100 	pwq = unbound_pwq_by_node(wq, node);
4101 
4102 	/*
4103 	 * Let's determine what needs to be done.  If the target cpumask is
4104 	 * different from wq's, we need to compare it to @pwq's and create
4105 	 * a new one if they don't match.  If the target cpumask equals
4106 	 * wq's, the default pwq should be used.  If @pwq is already the
4107 	 * default one, nothing to do; otherwise, install the default one.
4108 	 */
4109 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4110 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4111 			goto out_unlock;
4112 	} else {
4113 		if (pwq == wq->dfl_pwq)
4114 			goto out_unlock;
4115 		else
4116 			goto use_dfl_pwq;
4117 	}
4118 
4119 	mutex_unlock(&wq->mutex);
4120 
4121 	/* create a new pwq */
4122 	pwq = alloc_unbound_pwq(wq, target_attrs);
4123 	if (!pwq) {
4124 		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4125 			   wq->name);
4126 		mutex_lock(&wq->mutex);
4127 		goto use_dfl_pwq;
4128 	}
4129 
4130 	/*
4131 	 * Install the new pwq.  As this function is called only from CPU
4132 	 * hotplug callbacks and applying a new attrs is wrapped with
4133 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4134 	 * inbetween.
4135 	 */
4136 	mutex_lock(&wq->mutex);
4137 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4138 	goto out_unlock;
4139 
4140 use_dfl_pwq:
4141 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4142 	get_pwq(wq->dfl_pwq);
4143 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4144 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4145 out_unlock:
4146 	mutex_unlock(&wq->mutex);
4147 	put_pwq_unlocked(old_pwq);
4148 }
4149 
4150 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4151 {
4152 	bool highpri = wq->flags & WQ_HIGHPRI;
4153 	int cpu, ret;
4154 
4155 	if (!(wq->flags & WQ_UNBOUND)) {
4156 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4157 		if (!wq->cpu_pwqs)
4158 			return -ENOMEM;
4159 
4160 		for_each_possible_cpu(cpu) {
4161 			struct pool_workqueue *pwq =
4162 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4163 			struct worker_pool *cpu_pools =
4164 				per_cpu(cpu_worker_pools, cpu);
4165 
4166 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4167 
4168 			mutex_lock(&wq->mutex);
4169 			link_pwq(pwq);
4170 			mutex_unlock(&wq->mutex);
4171 		}
4172 		return 0;
4173 	} else if (wq->flags & __WQ_ORDERED) {
4174 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4175 		/* there should only be single pwq for ordering guarantee */
4176 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4177 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4178 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4179 		return ret;
4180 	} else {
4181 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4182 	}
4183 }
4184 
4185 static int wq_clamp_max_active(int max_active, unsigned int flags,
4186 			       const char *name)
4187 {
4188 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4189 
4190 	if (max_active < 1 || max_active > lim)
4191 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4192 			max_active, name, 1, lim);
4193 
4194 	return clamp_val(max_active, 1, lim);
4195 }
4196 
4197 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4198 					       unsigned int flags,
4199 					       int max_active,
4200 					       struct lock_class_key *key,
4201 					       const char *lock_name, ...)
4202 {
4203 	size_t tbl_size = 0;
4204 	va_list args;
4205 	struct workqueue_struct *wq;
4206 	struct pool_workqueue *pwq;
4207 
4208 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4209 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4210 		flags |= WQ_UNBOUND;
4211 
4212 	/* allocate wq and format name */
4213 	if (flags & WQ_UNBOUND)
4214 		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4215 
4216 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4217 	if (!wq)
4218 		return NULL;
4219 
4220 	if (flags & WQ_UNBOUND) {
4221 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4222 		if (!wq->unbound_attrs)
4223 			goto err_free_wq;
4224 	}
4225 
4226 	va_start(args, lock_name);
4227 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4228 	va_end(args);
4229 
4230 	max_active = max_active ?: WQ_DFL_ACTIVE;
4231 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4232 
4233 	/* init wq */
4234 	wq->flags = flags;
4235 	wq->saved_max_active = max_active;
4236 	mutex_init(&wq->mutex);
4237 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4238 	INIT_LIST_HEAD(&wq->pwqs);
4239 	INIT_LIST_HEAD(&wq->flusher_queue);
4240 	INIT_LIST_HEAD(&wq->flusher_overflow);
4241 	INIT_LIST_HEAD(&wq->maydays);
4242 
4243 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4244 	INIT_LIST_HEAD(&wq->list);
4245 
4246 	if (alloc_and_link_pwqs(wq) < 0)
4247 		goto err_free_wq;
4248 
4249 	/*
4250 	 * Workqueues which may be used during memory reclaim should
4251 	 * have a rescuer to guarantee forward progress.
4252 	 */
4253 	if (flags & WQ_MEM_RECLAIM) {
4254 		struct worker *rescuer;
4255 
4256 		rescuer = alloc_worker();
4257 		if (!rescuer)
4258 			goto err_destroy;
4259 
4260 		rescuer->rescue_wq = wq;
4261 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4262 					       wq->name);
4263 		if (IS_ERR(rescuer->task)) {
4264 			kfree(rescuer);
4265 			goto err_destroy;
4266 		}
4267 
4268 		wq->rescuer = rescuer;
4269 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4270 		wake_up_process(rescuer->task);
4271 	}
4272 
4273 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4274 		goto err_destroy;
4275 
4276 	/*
4277 	 * wq_pool_mutex protects global freeze state and workqueues list.
4278 	 * Grab it, adjust max_active and add the new @wq to workqueues
4279 	 * list.
4280 	 */
4281 	mutex_lock(&wq_pool_mutex);
4282 
4283 	mutex_lock(&wq->mutex);
4284 	for_each_pwq(pwq, wq)
4285 		pwq_adjust_max_active(pwq);
4286 	mutex_unlock(&wq->mutex);
4287 
4288 	list_add(&wq->list, &workqueues);
4289 
4290 	mutex_unlock(&wq_pool_mutex);
4291 
4292 	return wq;
4293 
4294 err_free_wq:
4295 	free_workqueue_attrs(wq->unbound_attrs);
4296 	kfree(wq);
4297 	return NULL;
4298 err_destroy:
4299 	destroy_workqueue(wq);
4300 	return NULL;
4301 }
4302 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4303 
4304 /**
4305  * destroy_workqueue - safely terminate a workqueue
4306  * @wq: target workqueue
4307  *
4308  * Safely destroy a workqueue. All work currently pending will be done first.
4309  */
4310 void destroy_workqueue(struct workqueue_struct *wq)
4311 {
4312 	struct pool_workqueue *pwq;
4313 	int node;
4314 
4315 	/* drain it before proceeding with destruction */
4316 	drain_workqueue(wq);
4317 
4318 	/* sanity checks */
4319 	mutex_lock(&wq->mutex);
4320 	for_each_pwq(pwq, wq) {
4321 		int i;
4322 
4323 		for (i = 0; i < WORK_NR_COLORS; i++) {
4324 			if (WARN_ON(pwq->nr_in_flight[i])) {
4325 				mutex_unlock(&wq->mutex);
4326 				return;
4327 			}
4328 		}
4329 
4330 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4331 		    WARN_ON(pwq->nr_active) ||
4332 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4333 			mutex_unlock(&wq->mutex);
4334 			return;
4335 		}
4336 	}
4337 	mutex_unlock(&wq->mutex);
4338 
4339 	/*
4340 	 * wq list is used to freeze wq, remove from list after
4341 	 * flushing is complete in case freeze races us.
4342 	 */
4343 	mutex_lock(&wq_pool_mutex);
4344 	list_del_init(&wq->list);
4345 	mutex_unlock(&wq_pool_mutex);
4346 
4347 	workqueue_sysfs_unregister(wq);
4348 
4349 	if (wq->rescuer) {
4350 		kthread_stop(wq->rescuer->task);
4351 		kfree(wq->rescuer);
4352 		wq->rescuer = NULL;
4353 	}
4354 
4355 	if (!(wq->flags & WQ_UNBOUND)) {
4356 		/*
4357 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4358 		 * free the pwqs and wq.
4359 		 */
4360 		free_percpu(wq->cpu_pwqs);
4361 		kfree(wq);
4362 	} else {
4363 		/*
4364 		 * We're the sole accessor of @wq at this point.  Directly
4365 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4366 		 * @wq will be freed when the last pwq is released.
4367 		 */
4368 		for_each_node(node) {
4369 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4370 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4371 			put_pwq_unlocked(pwq);
4372 		}
4373 
4374 		/*
4375 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4376 		 * put.  Don't access it afterwards.
4377 		 */
4378 		pwq = wq->dfl_pwq;
4379 		wq->dfl_pwq = NULL;
4380 		put_pwq_unlocked(pwq);
4381 	}
4382 }
4383 EXPORT_SYMBOL_GPL(destroy_workqueue);
4384 
4385 /**
4386  * workqueue_set_max_active - adjust max_active of a workqueue
4387  * @wq: target workqueue
4388  * @max_active: new max_active value.
4389  *
4390  * Set max_active of @wq to @max_active.
4391  *
4392  * CONTEXT:
4393  * Don't call from IRQ context.
4394  */
4395 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4396 {
4397 	struct pool_workqueue *pwq;
4398 
4399 	/* disallow meddling with max_active for ordered workqueues */
4400 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4401 		return;
4402 
4403 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4404 
4405 	mutex_lock(&wq->mutex);
4406 
4407 	wq->saved_max_active = max_active;
4408 
4409 	for_each_pwq(pwq, wq)
4410 		pwq_adjust_max_active(pwq);
4411 
4412 	mutex_unlock(&wq->mutex);
4413 }
4414 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4415 
4416 /**
4417  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4418  *
4419  * Determine whether %current is a workqueue rescuer.  Can be used from
4420  * work functions to determine whether it's being run off the rescuer task.
4421  *
4422  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4423  */
4424 bool current_is_workqueue_rescuer(void)
4425 {
4426 	struct worker *worker = current_wq_worker();
4427 
4428 	return worker && worker->rescue_wq;
4429 }
4430 
4431 /**
4432  * workqueue_congested - test whether a workqueue is congested
4433  * @cpu: CPU in question
4434  * @wq: target workqueue
4435  *
4436  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4437  * no synchronization around this function and the test result is
4438  * unreliable and only useful as advisory hints or for debugging.
4439  *
4440  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4441  * Note that both per-cpu and unbound workqueues may be associated with
4442  * multiple pool_workqueues which have separate congested states.  A
4443  * workqueue being congested on one CPU doesn't mean the workqueue is also
4444  * contested on other CPUs / NUMA nodes.
4445  *
4446  * Return:
4447  * %true if congested, %false otherwise.
4448  */
4449 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4450 {
4451 	struct pool_workqueue *pwq;
4452 	bool ret;
4453 
4454 	rcu_read_lock_sched();
4455 
4456 	if (cpu == WORK_CPU_UNBOUND)
4457 		cpu = smp_processor_id();
4458 
4459 	if (!(wq->flags & WQ_UNBOUND))
4460 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4461 	else
4462 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4463 
4464 	ret = !list_empty(&pwq->delayed_works);
4465 	rcu_read_unlock_sched();
4466 
4467 	return ret;
4468 }
4469 EXPORT_SYMBOL_GPL(workqueue_congested);
4470 
4471 /**
4472  * work_busy - test whether a work is currently pending or running
4473  * @work: the work to be tested
4474  *
4475  * Test whether @work is currently pending or running.  There is no
4476  * synchronization around this function and the test result is
4477  * unreliable and only useful as advisory hints or for debugging.
4478  *
4479  * Return:
4480  * OR'd bitmask of WORK_BUSY_* bits.
4481  */
4482 unsigned int work_busy(struct work_struct *work)
4483 {
4484 	struct worker_pool *pool;
4485 	unsigned long flags;
4486 	unsigned int ret = 0;
4487 
4488 	if (work_pending(work))
4489 		ret |= WORK_BUSY_PENDING;
4490 
4491 	local_irq_save(flags);
4492 	pool = get_work_pool(work);
4493 	if (pool) {
4494 		spin_lock(&pool->lock);
4495 		if (find_worker_executing_work(pool, work))
4496 			ret |= WORK_BUSY_RUNNING;
4497 		spin_unlock(&pool->lock);
4498 	}
4499 	local_irq_restore(flags);
4500 
4501 	return ret;
4502 }
4503 EXPORT_SYMBOL_GPL(work_busy);
4504 
4505 /**
4506  * set_worker_desc - set description for the current work item
4507  * @fmt: printf-style format string
4508  * @...: arguments for the format string
4509  *
4510  * This function can be called by a running work function to describe what
4511  * the work item is about.  If the worker task gets dumped, this
4512  * information will be printed out together to help debugging.  The
4513  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4514  */
4515 void set_worker_desc(const char *fmt, ...)
4516 {
4517 	struct worker *worker = current_wq_worker();
4518 	va_list args;
4519 
4520 	if (worker) {
4521 		va_start(args, fmt);
4522 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4523 		va_end(args);
4524 		worker->desc_valid = true;
4525 	}
4526 }
4527 
4528 /**
4529  * print_worker_info - print out worker information and description
4530  * @log_lvl: the log level to use when printing
4531  * @task: target task
4532  *
4533  * If @task is a worker and currently executing a work item, print out the
4534  * name of the workqueue being serviced and worker description set with
4535  * set_worker_desc() by the currently executing work item.
4536  *
4537  * This function can be safely called on any task as long as the
4538  * task_struct itself is accessible.  While safe, this function isn't
4539  * synchronized and may print out mixups or garbages of limited length.
4540  */
4541 void print_worker_info(const char *log_lvl, struct task_struct *task)
4542 {
4543 	work_func_t *fn = NULL;
4544 	char name[WQ_NAME_LEN] = { };
4545 	char desc[WORKER_DESC_LEN] = { };
4546 	struct pool_workqueue *pwq = NULL;
4547 	struct workqueue_struct *wq = NULL;
4548 	bool desc_valid = false;
4549 	struct worker *worker;
4550 
4551 	if (!(task->flags & PF_WQ_WORKER))
4552 		return;
4553 
4554 	/*
4555 	 * This function is called without any synchronization and @task
4556 	 * could be in any state.  Be careful with dereferences.
4557 	 */
4558 	worker = probe_kthread_data(task);
4559 
4560 	/*
4561 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4562 	 * the original last '\0' in case the original contains garbage.
4563 	 */
4564 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4565 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4566 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4567 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4568 
4569 	/* copy worker description */
4570 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4571 	if (desc_valid)
4572 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4573 
4574 	if (fn || name[0] || desc[0]) {
4575 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4576 		if (desc[0])
4577 			pr_cont(" (%s)", desc);
4578 		pr_cont("\n");
4579 	}
4580 }
4581 
4582 /*
4583  * CPU hotplug.
4584  *
4585  * There are two challenges in supporting CPU hotplug.  Firstly, there
4586  * are a lot of assumptions on strong associations among work, pwq and
4587  * pool which make migrating pending and scheduled works very
4588  * difficult to implement without impacting hot paths.  Secondly,
4589  * worker pools serve mix of short, long and very long running works making
4590  * blocked draining impractical.
4591  *
4592  * This is solved by allowing the pools to be disassociated from the CPU
4593  * running as an unbound one and allowing it to be reattached later if the
4594  * cpu comes back online.
4595  */
4596 
4597 static void wq_unbind_fn(struct work_struct *work)
4598 {
4599 	int cpu = smp_processor_id();
4600 	struct worker_pool *pool;
4601 	struct worker *worker;
4602 	int wi;
4603 
4604 	for_each_cpu_worker_pool(pool, cpu) {
4605 		WARN_ON_ONCE(cpu != smp_processor_id());
4606 
4607 		mutex_lock(&pool->manager_mutex);
4608 		spin_lock_irq(&pool->lock);
4609 
4610 		/*
4611 		 * We've blocked all manager operations.  Make all workers
4612 		 * unbound and set DISASSOCIATED.  Before this, all workers
4613 		 * except for the ones which are still executing works from
4614 		 * before the last CPU down must be on the cpu.  After
4615 		 * this, they may become diasporas.
4616 		 */
4617 		for_each_pool_worker(worker, wi, pool)
4618 			worker->flags |= WORKER_UNBOUND;
4619 
4620 		pool->flags |= POOL_DISASSOCIATED;
4621 
4622 		spin_unlock_irq(&pool->lock);
4623 		mutex_unlock(&pool->manager_mutex);
4624 
4625 		/*
4626 		 * Call schedule() so that we cross rq->lock and thus can
4627 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4628 		 * This is necessary as scheduler callbacks may be invoked
4629 		 * from other cpus.
4630 		 */
4631 		schedule();
4632 
4633 		/*
4634 		 * Sched callbacks are disabled now.  Zap nr_running.
4635 		 * After this, nr_running stays zero and need_more_worker()
4636 		 * and keep_working() are always true as long as the
4637 		 * worklist is not empty.  This pool now behaves as an
4638 		 * unbound (in terms of concurrency management) pool which
4639 		 * are served by workers tied to the pool.
4640 		 */
4641 		atomic_set(&pool->nr_running, 0);
4642 
4643 		/*
4644 		 * With concurrency management just turned off, a busy
4645 		 * worker blocking could lead to lengthy stalls.  Kick off
4646 		 * unbound chain execution of currently pending work items.
4647 		 */
4648 		spin_lock_irq(&pool->lock);
4649 		wake_up_worker(pool);
4650 		spin_unlock_irq(&pool->lock);
4651 	}
4652 }
4653 
4654 /**
4655  * rebind_workers - rebind all workers of a pool to the associated CPU
4656  * @pool: pool of interest
4657  *
4658  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4659  */
4660 static void rebind_workers(struct worker_pool *pool)
4661 {
4662 	struct worker *worker;
4663 	int wi;
4664 
4665 	lockdep_assert_held(&pool->manager_mutex);
4666 
4667 	/*
4668 	 * Restore CPU affinity of all workers.  As all idle workers should
4669 	 * be on the run-queue of the associated CPU before any local
4670 	 * wake-ups for concurrency management happen, restore CPU affinty
4671 	 * of all workers first and then clear UNBOUND.  As we're called
4672 	 * from CPU_ONLINE, the following shouldn't fail.
4673 	 */
4674 	for_each_pool_worker(worker, wi, pool)
4675 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4676 						  pool->attrs->cpumask) < 0);
4677 
4678 	spin_lock_irq(&pool->lock);
4679 
4680 	for_each_pool_worker(worker, wi, pool) {
4681 		unsigned int worker_flags = worker->flags;
4682 
4683 		/*
4684 		 * A bound idle worker should actually be on the runqueue
4685 		 * of the associated CPU for local wake-ups targeting it to
4686 		 * work.  Kick all idle workers so that they migrate to the
4687 		 * associated CPU.  Doing this in the same loop as
4688 		 * replacing UNBOUND with REBOUND is safe as no worker will
4689 		 * be bound before @pool->lock is released.
4690 		 */
4691 		if (worker_flags & WORKER_IDLE)
4692 			wake_up_process(worker->task);
4693 
4694 		/*
4695 		 * We want to clear UNBOUND but can't directly call
4696 		 * worker_clr_flags() or adjust nr_running.  Atomically
4697 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4698 		 * @worker will clear REBOUND using worker_clr_flags() when
4699 		 * it initiates the next execution cycle thus restoring
4700 		 * concurrency management.  Note that when or whether
4701 		 * @worker clears REBOUND doesn't affect correctness.
4702 		 *
4703 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4704 		 * tested without holding any lock in
4705 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4706 		 * fail incorrectly leading to premature concurrency
4707 		 * management operations.
4708 		 */
4709 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4710 		worker_flags |= WORKER_REBOUND;
4711 		worker_flags &= ~WORKER_UNBOUND;
4712 		ACCESS_ONCE(worker->flags) = worker_flags;
4713 	}
4714 
4715 	spin_unlock_irq(&pool->lock);
4716 }
4717 
4718 /**
4719  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4720  * @pool: unbound pool of interest
4721  * @cpu: the CPU which is coming up
4722  *
4723  * An unbound pool may end up with a cpumask which doesn't have any online
4724  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4725  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4726  * online CPU before, cpus_allowed of all its workers should be restored.
4727  */
4728 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4729 {
4730 	static cpumask_t cpumask;
4731 	struct worker *worker;
4732 	int wi;
4733 
4734 	lockdep_assert_held(&pool->manager_mutex);
4735 
4736 	/* is @cpu allowed for @pool? */
4737 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4738 		return;
4739 
4740 	/* is @cpu the only online CPU? */
4741 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4742 	if (cpumask_weight(&cpumask) != 1)
4743 		return;
4744 
4745 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4746 	for_each_pool_worker(worker, wi, pool)
4747 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4748 						  pool->attrs->cpumask) < 0);
4749 }
4750 
4751 /*
4752  * Workqueues should be brought up before normal priority CPU notifiers.
4753  * This will be registered high priority CPU notifier.
4754  */
4755 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4756 					       unsigned long action,
4757 					       void *hcpu)
4758 {
4759 	int cpu = (unsigned long)hcpu;
4760 	struct worker_pool *pool;
4761 	struct workqueue_struct *wq;
4762 	int pi;
4763 
4764 	switch (action & ~CPU_TASKS_FROZEN) {
4765 	case CPU_UP_PREPARE:
4766 		for_each_cpu_worker_pool(pool, cpu) {
4767 			if (pool->nr_workers)
4768 				continue;
4769 			if (create_and_start_worker(pool) < 0)
4770 				return NOTIFY_BAD;
4771 		}
4772 		break;
4773 
4774 	case CPU_DOWN_FAILED:
4775 	case CPU_ONLINE:
4776 		mutex_lock(&wq_pool_mutex);
4777 
4778 		for_each_pool(pool, pi) {
4779 			mutex_lock(&pool->manager_mutex);
4780 
4781 			if (pool->cpu == cpu) {
4782 				spin_lock_irq(&pool->lock);
4783 				pool->flags &= ~POOL_DISASSOCIATED;
4784 				spin_unlock_irq(&pool->lock);
4785 
4786 				rebind_workers(pool);
4787 			} else if (pool->cpu < 0) {
4788 				restore_unbound_workers_cpumask(pool, cpu);
4789 			}
4790 
4791 			mutex_unlock(&pool->manager_mutex);
4792 		}
4793 
4794 		/* update NUMA affinity of unbound workqueues */
4795 		list_for_each_entry(wq, &workqueues, list)
4796 			wq_update_unbound_numa(wq, cpu, true);
4797 
4798 		mutex_unlock(&wq_pool_mutex);
4799 		break;
4800 	}
4801 	return NOTIFY_OK;
4802 }
4803 
4804 /*
4805  * Workqueues should be brought down after normal priority CPU notifiers.
4806  * This will be registered as low priority CPU notifier.
4807  */
4808 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4809 						 unsigned long action,
4810 						 void *hcpu)
4811 {
4812 	int cpu = (unsigned long)hcpu;
4813 	struct work_struct unbind_work;
4814 	struct workqueue_struct *wq;
4815 
4816 	switch (action & ~CPU_TASKS_FROZEN) {
4817 	case CPU_DOWN_PREPARE:
4818 		/* unbinding per-cpu workers should happen on the local CPU */
4819 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4820 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4821 
4822 		/* update NUMA affinity of unbound workqueues */
4823 		mutex_lock(&wq_pool_mutex);
4824 		list_for_each_entry(wq, &workqueues, list)
4825 			wq_update_unbound_numa(wq, cpu, false);
4826 		mutex_unlock(&wq_pool_mutex);
4827 
4828 		/* wait for per-cpu unbinding to finish */
4829 		flush_work(&unbind_work);
4830 		destroy_work_on_stack(&unbind_work);
4831 		break;
4832 	}
4833 	return NOTIFY_OK;
4834 }
4835 
4836 #ifdef CONFIG_SMP
4837 
4838 struct work_for_cpu {
4839 	struct work_struct work;
4840 	long (*fn)(void *);
4841 	void *arg;
4842 	long ret;
4843 };
4844 
4845 static void work_for_cpu_fn(struct work_struct *work)
4846 {
4847 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4848 
4849 	wfc->ret = wfc->fn(wfc->arg);
4850 }
4851 
4852 /**
4853  * work_on_cpu - run a function in user context on a particular cpu
4854  * @cpu: the cpu to run on
4855  * @fn: the function to run
4856  * @arg: the function arg
4857  *
4858  * It is up to the caller to ensure that the cpu doesn't go offline.
4859  * The caller must not hold any locks which would prevent @fn from completing.
4860  *
4861  * Return: The value @fn returns.
4862  */
4863 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4864 {
4865 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4866 
4867 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4868 	schedule_work_on(cpu, &wfc.work);
4869 	flush_work(&wfc.work);
4870 	destroy_work_on_stack(&wfc.work);
4871 	return wfc.ret;
4872 }
4873 EXPORT_SYMBOL_GPL(work_on_cpu);
4874 #endif /* CONFIG_SMP */
4875 
4876 #ifdef CONFIG_FREEZER
4877 
4878 /**
4879  * freeze_workqueues_begin - begin freezing workqueues
4880  *
4881  * Start freezing workqueues.  After this function returns, all freezable
4882  * workqueues will queue new works to their delayed_works list instead of
4883  * pool->worklist.
4884  *
4885  * CONTEXT:
4886  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4887  */
4888 void freeze_workqueues_begin(void)
4889 {
4890 	struct worker_pool *pool;
4891 	struct workqueue_struct *wq;
4892 	struct pool_workqueue *pwq;
4893 	int pi;
4894 
4895 	mutex_lock(&wq_pool_mutex);
4896 
4897 	WARN_ON_ONCE(workqueue_freezing);
4898 	workqueue_freezing = true;
4899 
4900 	/* set FREEZING */
4901 	for_each_pool(pool, pi) {
4902 		spin_lock_irq(&pool->lock);
4903 		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4904 		pool->flags |= POOL_FREEZING;
4905 		spin_unlock_irq(&pool->lock);
4906 	}
4907 
4908 	list_for_each_entry(wq, &workqueues, list) {
4909 		mutex_lock(&wq->mutex);
4910 		for_each_pwq(pwq, wq)
4911 			pwq_adjust_max_active(pwq);
4912 		mutex_unlock(&wq->mutex);
4913 	}
4914 
4915 	mutex_unlock(&wq_pool_mutex);
4916 }
4917 
4918 /**
4919  * freeze_workqueues_busy - are freezable workqueues still busy?
4920  *
4921  * Check whether freezing is complete.  This function must be called
4922  * between freeze_workqueues_begin() and thaw_workqueues().
4923  *
4924  * CONTEXT:
4925  * Grabs and releases wq_pool_mutex.
4926  *
4927  * Return:
4928  * %true if some freezable workqueues are still busy.  %false if freezing
4929  * is complete.
4930  */
4931 bool freeze_workqueues_busy(void)
4932 {
4933 	bool busy = false;
4934 	struct workqueue_struct *wq;
4935 	struct pool_workqueue *pwq;
4936 
4937 	mutex_lock(&wq_pool_mutex);
4938 
4939 	WARN_ON_ONCE(!workqueue_freezing);
4940 
4941 	list_for_each_entry(wq, &workqueues, list) {
4942 		if (!(wq->flags & WQ_FREEZABLE))
4943 			continue;
4944 		/*
4945 		 * nr_active is monotonically decreasing.  It's safe
4946 		 * to peek without lock.
4947 		 */
4948 		rcu_read_lock_sched();
4949 		for_each_pwq(pwq, wq) {
4950 			WARN_ON_ONCE(pwq->nr_active < 0);
4951 			if (pwq->nr_active) {
4952 				busy = true;
4953 				rcu_read_unlock_sched();
4954 				goto out_unlock;
4955 			}
4956 		}
4957 		rcu_read_unlock_sched();
4958 	}
4959 out_unlock:
4960 	mutex_unlock(&wq_pool_mutex);
4961 	return busy;
4962 }
4963 
4964 /**
4965  * thaw_workqueues - thaw workqueues
4966  *
4967  * Thaw workqueues.  Normal queueing is restored and all collected
4968  * frozen works are transferred to their respective pool worklists.
4969  *
4970  * CONTEXT:
4971  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4972  */
4973 void thaw_workqueues(void)
4974 {
4975 	struct workqueue_struct *wq;
4976 	struct pool_workqueue *pwq;
4977 	struct worker_pool *pool;
4978 	int pi;
4979 
4980 	mutex_lock(&wq_pool_mutex);
4981 
4982 	if (!workqueue_freezing)
4983 		goto out_unlock;
4984 
4985 	/* clear FREEZING */
4986 	for_each_pool(pool, pi) {
4987 		spin_lock_irq(&pool->lock);
4988 		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4989 		pool->flags &= ~POOL_FREEZING;
4990 		spin_unlock_irq(&pool->lock);
4991 	}
4992 
4993 	/* restore max_active and repopulate worklist */
4994 	list_for_each_entry(wq, &workqueues, list) {
4995 		mutex_lock(&wq->mutex);
4996 		for_each_pwq(pwq, wq)
4997 			pwq_adjust_max_active(pwq);
4998 		mutex_unlock(&wq->mutex);
4999 	}
5000 
5001 	workqueue_freezing = false;
5002 out_unlock:
5003 	mutex_unlock(&wq_pool_mutex);
5004 }
5005 #endif /* CONFIG_FREEZER */
5006 
5007 static void __init wq_numa_init(void)
5008 {
5009 	cpumask_var_t *tbl;
5010 	int node, cpu;
5011 
5012 	/* determine NUMA pwq table len - highest node id + 1 */
5013 	for_each_node(node)
5014 		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
5015 
5016 	if (num_possible_nodes() <= 1)
5017 		return;
5018 
5019 	if (wq_disable_numa) {
5020 		pr_info("workqueue: NUMA affinity support disabled\n");
5021 		return;
5022 	}
5023 
5024 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5025 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5026 
5027 	/*
5028 	 * We want masks of possible CPUs of each node which isn't readily
5029 	 * available.  Build one from cpu_to_node() which should have been
5030 	 * fully initialized by now.
5031 	 */
5032 	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5033 	BUG_ON(!tbl);
5034 
5035 	for_each_node(node)
5036 		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5037 				node_online(node) ? node : NUMA_NO_NODE));
5038 
5039 	for_each_possible_cpu(cpu) {
5040 		node = cpu_to_node(cpu);
5041 		if (WARN_ON(node == NUMA_NO_NODE)) {
5042 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5043 			/* happens iff arch is bonkers, let's just proceed */
5044 			return;
5045 		}
5046 		cpumask_set_cpu(cpu, tbl[node]);
5047 	}
5048 
5049 	wq_numa_possible_cpumask = tbl;
5050 	wq_numa_enabled = true;
5051 }
5052 
5053 static int __init init_workqueues(void)
5054 {
5055 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5056 	int i, cpu;
5057 
5058 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5059 
5060 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5061 
5062 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5063 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5064 
5065 	wq_numa_init();
5066 
5067 	/* initialize CPU pools */
5068 	for_each_possible_cpu(cpu) {
5069 		struct worker_pool *pool;
5070 
5071 		i = 0;
5072 		for_each_cpu_worker_pool(pool, cpu) {
5073 			BUG_ON(init_worker_pool(pool));
5074 			pool->cpu = cpu;
5075 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5076 			pool->attrs->nice = std_nice[i++];
5077 			pool->node = cpu_to_node(cpu);
5078 
5079 			/* alloc pool ID */
5080 			mutex_lock(&wq_pool_mutex);
5081 			BUG_ON(worker_pool_assign_id(pool));
5082 			mutex_unlock(&wq_pool_mutex);
5083 		}
5084 	}
5085 
5086 	/* create the initial worker */
5087 	for_each_online_cpu(cpu) {
5088 		struct worker_pool *pool;
5089 
5090 		for_each_cpu_worker_pool(pool, cpu) {
5091 			pool->flags &= ~POOL_DISASSOCIATED;
5092 			BUG_ON(create_and_start_worker(pool) < 0);
5093 		}
5094 	}
5095 
5096 	/* create default unbound and ordered wq attrs */
5097 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5098 		struct workqueue_attrs *attrs;
5099 
5100 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5101 		attrs->nice = std_nice[i];
5102 		unbound_std_wq_attrs[i] = attrs;
5103 
5104 		/*
5105 		 * An ordered wq should have only one pwq as ordering is
5106 		 * guaranteed by max_active which is enforced by pwqs.
5107 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5108 		 */
5109 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5110 		attrs->nice = std_nice[i];
5111 		attrs->no_numa = true;
5112 		ordered_wq_attrs[i] = attrs;
5113 	}
5114 
5115 	system_wq = alloc_workqueue("events", 0, 0);
5116 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5117 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5118 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5119 					    WQ_UNBOUND_MAX_ACTIVE);
5120 	system_freezable_wq = alloc_workqueue("events_freezable",
5121 					      WQ_FREEZABLE, 0);
5122 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5123 					      WQ_POWER_EFFICIENT, 0);
5124 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5125 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5126 					      0);
5127 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5128 	       !system_unbound_wq || !system_freezable_wq ||
5129 	       !system_power_efficient_wq ||
5130 	       !system_freezable_power_efficient_wq);
5131 	return 0;
5132 }
5133 early_initcall(init_workqueues);
5134