xref: /linux/kernel/workqueue.c (revision 3e44c471a2dab210f7e9b1e5f7d4d54d52df59eb)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
131  *
132  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
133  *      sched-RCU for reads.
134  *
135  * WQ: wq->mutex protected.
136  *
137  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138  *
139  * MD: wq_mayday_lock protected.
140  */
141 
142 /* struct worker is defined in workqueue_internal.h */
143 
144 struct worker_pool {
145 	spinlock_t		lock;		/* the pool lock */
146 	int			cpu;		/* I: the associated cpu */
147 	int			node;		/* I: the associated node ID */
148 	int			id;		/* I: pool ID */
149 	unsigned int		flags;		/* X: flags */
150 
151 	struct list_head	worklist;	/* L: list of pending works */
152 	int			nr_workers;	/* L: total number of workers */
153 
154 	/* nr_idle includes the ones off idle_list for rebinding */
155 	int			nr_idle;	/* L: currently idle ones */
156 
157 	struct list_head	idle_list;	/* X: list of idle workers */
158 	struct timer_list	idle_timer;	/* L: worker idle timeout */
159 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
160 
161 	/* a workers is either on busy_hash or idle_list, or the manager */
162 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
163 						/* L: hash of busy workers */
164 
165 	/* see manage_workers() for details on the two manager mutexes */
166 	struct mutex		manager_arb;	/* manager arbitration */
167 	struct worker		*manager;	/* L: purely informational */
168 	struct mutex		attach_mutex;	/* attach/detach exclusion */
169 	struct list_head	workers;	/* A: attached workers */
170 	struct completion	*detach_completion; /* all workers detached */
171 
172 	struct ida		worker_ida;	/* worker IDs for task name */
173 
174 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
176 	int			refcnt;		/* PL: refcnt for unbound pools */
177 
178 	/*
179 	 * The current concurrency level.  As it's likely to be accessed
180 	 * from other CPUs during try_to_wake_up(), put it in a separate
181 	 * cacheline.
182 	 */
183 	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 
185 	/*
186 	 * Destruction of pool is sched-RCU protected to allow dereferences
187 	 * from get_work_pool().
188 	 */
189 	struct rcu_head		rcu;
190 } ____cacheline_aligned_in_smp;
191 
192 /*
193  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
194  * of work_struct->data are used for flags and the remaining high bits
195  * point to the pwq; thus, pwqs need to be aligned at two's power of the
196  * number of flag bits.
197  */
198 struct pool_workqueue {
199 	struct worker_pool	*pool;		/* I: the associated pool */
200 	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 	int			work_color;	/* L: current color */
202 	int			flush_color;	/* L: flushing color */
203 	int			refcnt;		/* L: reference count */
204 	int			nr_in_flight[WORK_NR_COLORS];
205 						/* L: nr of in_flight works */
206 	int			nr_active;	/* L: nr of active works */
207 	int			max_active;	/* L: max active works */
208 	struct list_head	delayed_works;	/* L: delayed works */
209 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
211 
212 	/*
213 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
214 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
215 	 * itself is also sched-RCU protected so that the first pwq can be
216 	 * determined without grabbing wq->mutex.
217 	 */
218 	struct work_struct	unbound_release_work;
219 	struct rcu_head		rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221 
222 /*
223  * Structure used to wait for workqueue flush.
224  */
225 struct wq_flusher {
226 	struct list_head	list;		/* WQ: list of flushers */
227 	int			flush_color;	/* WQ: flush color waiting for */
228 	struct completion	done;		/* flush completion */
229 };
230 
231 struct wq_device;
232 
233 /*
234  * The externally visible workqueue.  It relays the issued work items to
235  * the appropriate worker_pool through its pool_workqueues.
236  */
237 struct workqueue_struct {
238 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239 	struct list_head	list;		/* PR: list of all workqueues */
240 
241 	struct mutex		mutex;		/* protects this wq */
242 	int			work_color;	/* WQ: current work color */
243 	int			flush_color;	/* WQ: current flush color */
244 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
246 	struct list_head	flusher_queue;	/* WQ: flush waiters */
247 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248 
249 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 	struct worker		*rescuer;	/* I: rescue worker */
251 
252 	int			nr_drainers;	/* WQ: drain in progress */
253 	int			saved_max_active; /* WQ: saved pwq max_active */
254 
255 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
256 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257 
258 #ifdef CONFIG_SYSFS
259 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 	struct lockdep_map	lockdep_map;
263 #endif
264 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
265 
266 	/*
267 	 * Destruction of workqueue_struct is sched-RCU protected to allow
268 	 * walking the workqueues list without grabbing wq_pool_mutex.
269 	 * This is used to dump all workqueues from sysrq.
270 	 */
271 	struct rcu_head		rcu;
272 
273 	/* hot fields used during command issue, aligned to cacheline */
274 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
277 };
278 
279 static struct kmem_cache *pwq_cache;
280 
281 static cpumask_var_t *wq_numa_possible_cpumask;
282 					/* possible CPUs of each node */
283 
284 static bool wq_disable_numa;
285 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286 
287 /* see the comment above the definition of WQ_POWER_EFFICIENT */
288 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
289 static bool wq_power_efficient = true;
290 #else
291 static bool wq_power_efficient;
292 #endif
293 
294 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
303 
304 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
305 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
306 
307 static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
308 
309 /* the per-cpu worker pools */
310 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
311 				     cpu_worker_pools);
312 
313 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
314 
315 /* PL: hash of all unbound pools keyed by pool->attrs */
316 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
317 
318 /* I: attributes used when instantiating standard unbound pools on demand */
319 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
320 
321 /* I: attributes used when instantiating ordered pools on demand */
322 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
323 
324 struct workqueue_struct *system_wq __read_mostly;
325 EXPORT_SYMBOL(system_wq);
326 struct workqueue_struct *system_highpri_wq __read_mostly;
327 EXPORT_SYMBOL_GPL(system_highpri_wq);
328 struct workqueue_struct *system_long_wq __read_mostly;
329 EXPORT_SYMBOL_GPL(system_long_wq);
330 struct workqueue_struct *system_unbound_wq __read_mostly;
331 EXPORT_SYMBOL_GPL(system_unbound_wq);
332 struct workqueue_struct *system_freezable_wq __read_mostly;
333 EXPORT_SYMBOL_GPL(system_freezable_wq);
334 struct workqueue_struct *system_power_efficient_wq __read_mostly;
335 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
336 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
337 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
338 
339 static int worker_thread(void *__worker);
340 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
341 
342 #define CREATE_TRACE_POINTS
343 #include <trace/events/workqueue.h>
344 
345 #define assert_rcu_or_pool_mutex()					\
346 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
347 			   lockdep_is_held(&wq_pool_mutex),		\
348 			   "sched RCU or wq_pool_mutex should be held")
349 
350 #define assert_rcu_or_wq_mutex(wq)					\
351 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
352 			   lockdep_is_held(&wq->mutex),			\
353 			   "sched RCU or wq->mutex should be held")
354 
355 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
356 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
357 			   lockdep_is_held(&wq->mutex) ||		\
358 			   lockdep_is_held(&wq_pool_mutex),		\
359 			   "sched RCU, wq->mutex or wq_pool_mutex should be held")
360 
361 #define for_each_cpu_worker_pool(pool, cpu)				\
362 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
363 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
364 	     (pool)++)
365 
366 /**
367  * for_each_pool - iterate through all worker_pools in the system
368  * @pool: iteration cursor
369  * @pi: integer used for iteration
370  *
371  * This must be called either with wq_pool_mutex held or sched RCU read
372  * locked.  If the pool needs to be used beyond the locking in effect, the
373  * caller is responsible for guaranteeing that the pool stays online.
374  *
375  * The if/else clause exists only for the lockdep assertion and can be
376  * ignored.
377  */
378 #define for_each_pool(pool, pi)						\
379 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
380 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
381 		else
382 
383 /**
384  * for_each_pool_worker - iterate through all workers of a worker_pool
385  * @worker: iteration cursor
386  * @pool: worker_pool to iterate workers of
387  *
388  * This must be called with @pool->attach_mutex.
389  *
390  * The if/else clause exists only for the lockdep assertion and can be
391  * ignored.
392  */
393 #define for_each_pool_worker(worker, pool)				\
394 	list_for_each_entry((worker), &(pool)->workers, node)		\
395 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
396 		else
397 
398 /**
399  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
400  * @pwq: iteration cursor
401  * @wq: the target workqueue
402  *
403  * This must be called either with wq->mutex held or sched RCU read locked.
404  * If the pwq needs to be used beyond the locking in effect, the caller is
405  * responsible for guaranteeing that the pwq stays online.
406  *
407  * The if/else clause exists only for the lockdep assertion and can be
408  * ignored.
409  */
410 #define for_each_pwq(pwq, wq)						\
411 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
412 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
413 		else
414 
415 #ifdef CONFIG_DEBUG_OBJECTS_WORK
416 
417 static struct debug_obj_descr work_debug_descr;
418 
419 static void *work_debug_hint(void *addr)
420 {
421 	return ((struct work_struct *) addr)->func;
422 }
423 
424 /*
425  * fixup_init is called when:
426  * - an active object is initialized
427  */
428 static int work_fixup_init(void *addr, enum debug_obj_state state)
429 {
430 	struct work_struct *work = addr;
431 
432 	switch (state) {
433 	case ODEBUG_STATE_ACTIVE:
434 		cancel_work_sync(work);
435 		debug_object_init(work, &work_debug_descr);
436 		return 1;
437 	default:
438 		return 0;
439 	}
440 }
441 
442 /*
443  * fixup_activate is called when:
444  * - an active object is activated
445  * - an unknown object is activated (might be a statically initialized object)
446  */
447 static int work_fixup_activate(void *addr, enum debug_obj_state state)
448 {
449 	struct work_struct *work = addr;
450 
451 	switch (state) {
452 
453 	case ODEBUG_STATE_NOTAVAILABLE:
454 		/*
455 		 * This is not really a fixup. The work struct was
456 		 * statically initialized. We just make sure that it
457 		 * is tracked in the object tracker.
458 		 */
459 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
460 			debug_object_init(work, &work_debug_descr);
461 			debug_object_activate(work, &work_debug_descr);
462 			return 0;
463 		}
464 		WARN_ON_ONCE(1);
465 		return 0;
466 
467 	case ODEBUG_STATE_ACTIVE:
468 		WARN_ON(1);
469 
470 	default:
471 		return 0;
472 	}
473 }
474 
475 /*
476  * fixup_free is called when:
477  * - an active object is freed
478  */
479 static int work_fixup_free(void *addr, enum debug_obj_state state)
480 {
481 	struct work_struct *work = addr;
482 
483 	switch (state) {
484 	case ODEBUG_STATE_ACTIVE:
485 		cancel_work_sync(work);
486 		debug_object_free(work, &work_debug_descr);
487 		return 1;
488 	default:
489 		return 0;
490 	}
491 }
492 
493 static struct debug_obj_descr work_debug_descr = {
494 	.name		= "work_struct",
495 	.debug_hint	= work_debug_hint,
496 	.fixup_init	= work_fixup_init,
497 	.fixup_activate	= work_fixup_activate,
498 	.fixup_free	= work_fixup_free,
499 };
500 
501 static inline void debug_work_activate(struct work_struct *work)
502 {
503 	debug_object_activate(work, &work_debug_descr);
504 }
505 
506 static inline void debug_work_deactivate(struct work_struct *work)
507 {
508 	debug_object_deactivate(work, &work_debug_descr);
509 }
510 
511 void __init_work(struct work_struct *work, int onstack)
512 {
513 	if (onstack)
514 		debug_object_init_on_stack(work, &work_debug_descr);
515 	else
516 		debug_object_init(work, &work_debug_descr);
517 }
518 EXPORT_SYMBOL_GPL(__init_work);
519 
520 void destroy_work_on_stack(struct work_struct *work)
521 {
522 	debug_object_free(work, &work_debug_descr);
523 }
524 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
525 
526 void destroy_delayed_work_on_stack(struct delayed_work *work)
527 {
528 	destroy_timer_on_stack(&work->timer);
529 	debug_object_free(&work->work, &work_debug_descr);
530 }
531 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
532 
533 #else
534 static inline void debug_work_activate(struct work_struct *work) { }
535 static inline void debug_work_deactivate(struct work_struct *work) { }
536 #endif
537 
538 /**
539  * worker_pool_assign_id - allocate ID and assing it to @pool
540  * @pool: the pool pointer of interest
541  *
542  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
543  * successfully, -errno on failure.
544  */
545 static int worker_pool_assign_id(struct worker_pool *pool)
546 {
547 	int ret;
548 
549 	lockdep_assert_held(&wq_pool_mutex);
550 
551 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
552 			GFP_KERNEL);
553 	if (ret >= 0) {
554 		pool->id = ret;
555 		return 0;
556 	}
557 	return ret;
558 }
559 
560 /**
561  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
562  * @wq: the target workqueue
563  * @node: the node ID
564  *
565  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
566  * read locked.
567  * If the pwq needs to be used beyond the locking in effect, the caller is
568  * responsible for guaranteeing that the pwq stays online.
569  *
570  * Return: The unbound pool_workqueue for @node.
571  */
572 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
573 						  int node)
574 {
575 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
576 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578 
579 static unsigned int work_color_to_flags(int color)
580 {
581 	return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583 
584 static int get_work_color(struct work_struct *work)
585 {
586 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589 
590 static int work_next_color(int color)
591 {
592 	return (color + 1) % WORK_NR_COLORS;
593 }
594 
595 /*
596  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597  * contain the pointer to the queued pwq.  Once execution starts, the flag
598  * is cleared and the high bits contain OFFQ flags and pool ID.
599  *
600  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601  * and clear_work_data() can be used to set the pwq, pool or clear
602  * work->data.  These functions should only be called while the work is
603  * owned - ie. while the PENDING bit is set.
604  *
605  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606  * corresponding to a work.  Pool is available once the work has been
607  * queued anywhere after initialization until it is sync canceled.  pwq is
608  * available only while the work item is queued.
609  *
610  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611  * canceled.  While being canceled, a work item may have its PENDING set
612  * but stay off timer and worklist for arbitrarily long and nobody should
613  * try to steal the PENDING bit.
614  */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 				 unsigned long flags)
617 {
618 	WARN_ON_ONCE(!work_pending(work));
619 	atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621 
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 			 unsigned long extra_flags)
624 {
625 	set_work_data(work, (unsigned long)pwq,
626 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628 
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 					   int pool_id)
631 {
632 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 		      WORK_STRUCT_PENDING);
634 }
635 
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 					    int pool_id)
638 {
639 	/*
640 	 * The following wmb is paired with the implied mb in
641 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 	 * here are visible to and precede any updates by the next PENDING
643 	 * owner.
644 	 */
645 	smp_wmb();
646 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 }
648 
649 static void clear_work_data(struct work_struct *work)
650 {
651 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
652 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
653 }
654 
655 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
656 {
657 	unsigned long data = atomic_long_read(&work->data);
658 
659 	if (data & WORK_STRUCT_PWQ)
660 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
661 	else
662 		return NULL;
663 }
664 
665 /**
666  * get_work_pool - return the worker_pool a given work was associated with
667  * @work: the work item of interest
668  *
669  * Pools are created and destroyed under wq_pool_mutex, and allows read
670  * access under sched-RCU read lock.  As such, this function should be
671  * called under wq_pool_mutex or with preemption disabled.
672  *
673  * All fields of the returned pool are accessible as long as the above
674  * mentioned locking is in effect.  If the returned pool needs to be used
675  * beyond the critical section, the caller is responsible for ensuring the
676  * returned pool is and stays online.
677  *
678  * Return: The worker_pool @work was last associated with.  %NULL if none.
679  */
680 static struct worker_pool *get_work_pool(struct work_struct *work)
681 {
682 	unsigned long data = atomic_long_read(&work->data);
683 	int pool_id;
684 
685 	assert_rcu_or_pool_mutex();
686 
687 	if (data & WORK_STRUCT_PWQ)
688 		return ((struct pool_workqueue *)
689 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
690 
691 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
692 	if (pool_id == WORK_OFFQ_POOL_NONE)
693 		return NULL;
694 
695 	return idr_find(&worker_pool_idr, pool_id);
696 }
697 
698 /**
699  * get_work_pool_id - return the worker pool ID a given work is associated with
700  * @work: the work item of interest
701  *
702  * Return: The worker_pool ID @work was last associated with.
703  * %WORK_OFFQ_POOL_NONE if none.
704  */
705 static int get_work_pool_id(struct work_struct *work)
706 {
707 	unsigned long data = atomic_long_read(&work->data);
708 
709 	if (data & WORK_STRUCT_PWQ)
710 		return ((struct pool_workqueue *)
711 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
712 
713 	return data >> WORK_OFFQ_POOL_SHIFT;
714 }
715 
716 static void mark_work_canceling(struct work_struct *work)
717 {
718 	unsigned long pool_id = get_work_pool_id(work);
719 
720 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
721 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
722 }
723 
724 static bool work_is_canceling(struct work_struct *work)
725 {
726 	unsigned long data = atomic_long_read(&work->data);
727 
728 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
729 }
730 
731 /*
732  * Policy functions.  These define the policies on how the global worker
733  * pools are managed.  Unless noted otherwise, these functions assume that
734  * they're being called with pool->lock held.
735  */
736 
737 static bool __need_more_worker(struct worker_pool *pool)
738 {
739 	return !atomic_read(&pool->nr_running);
740 }
741 
742 /*
743  * Need to wake up a worker?  Called from anything but currently
744  * running workers.
745  *
746  * Note that, because unbound workers never contribute to nr_running, this
747  * function will always return %true for unbound pools as long as the
748  * worklist isn't empty.
749  */
750 static bool need_more_worker(struct worker_pool *pool)
751 {
752 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
753 }
754 
755 /* Can I start working?  Called from busy but !running workers. */
756 static bool may_start_working(struct worker_pool *pool)
757 {
758 	return pool->nr_idle;
759 }
760 
761 /* Do I need to keep working?  Called from currently running workers. */
762 static bool keep_working(struct worker_pool *pool)
763 {
764 	return !list_empty(&pool->worklist) &&
765 		atomic_read(&pool->nr_running) <= 1;
766 }
767 
768 /* Do we need a new worker?  Called from manager. */
769 static bool need_to_create_worker(struct worker_pool *pool)
770 {
771 	return need_more_worker(pool) && !may_start_working(pool);
772 }
773 
774 /* Do we have too many workers and should some go away? */
775 static bool too_many_workers(struct worker_pool *pool)
776 {
777 	bool managing = mutex_is_locked(&pool->manager_arb);
778 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
779 	int nr_busy = pool->nr_workers - nr_idle;
780 
781 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
782 }
783 
784 /*
785  * Wake up functions.
786  */
787 
788 /* Return the first idle worker.  Safe with preemption disabled */
789 static struct worker *first_idle_worker(struct worker_pool *pool)
790 {
791 	if (unlikely(list_empty(&pool->idle_list)))
792 		return NULL;
793 
794 	return list_first_entry(&pool->idle_list, struct worker, entry);
795 }
796 
797 /**
798  * wake_up_worker - wake up an idle worker
799  * @pool: worker pool to wake worker from
800  *
801  * Wake up the first idle worker of @pool.
802  *
803  * CONTEXT:
804  * spin_lock_irq(pool->lock).
805  */
806 static void wake_up_worker(struct worker_pool *pool)
807 {
808 	struct worker *worker = first_idle_worker(pool);
809 
810 	if (likely(worker))
811 		wake_up_process(worker->task);
812 }
813 
814 /**
815  * wq_worker_waking_up - a worker is waking up
816  * @task: task waking up
817  * @cpu: CPU @task is waking up to
818  *
819  * This function is called during try_to_wake_up() when a worker is
820  * being awoken.
821  *
822  * CONTEXT:
823  * spin_lock_irq(rq->lock)
824  */
825 void wq_worker_waking_up(struct task_struct *task, int cpu)
826 {
827 	struct worker *worker = kthread_data(task);
828 
829 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
830 		WARN_ON_ONCE(worker->pool->cpu != cpu);
831 		atomic_inc(&worker->pool->nr_running);
832 	}
833 }
834 
835 /**
836  * wq_worker_sleeping - a worker is going to sleep
837  * @task: task going to sleep
838  * @cpu: CPU in question, must be the current CPU number
839  *
840  * This function is called during schedule() when a busy worker is
841  * going to sleep.  Worker on the same cpu can be woken up by
842  * returning pointer to its task.
843  *
844  * CONTEXT:
845  * spin_lock_irq(rq->lock)
846  *
847  * Return:
848  * Worker task on @cpu to wake up, %NULL if none.
849  */
850 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
851 {
852 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
853 	struct worker_pool *pool;
854 
855 	/*
856 	 * Rescuers, which may not have all the fields set up like normal
857 	 * workers, also reach here, let's not access anything before
858 	 * checking NOT_RUNNING.
859 	 */
860 	if (worker->flags & WORKER_NOT_RUNNING)
861 		return NULL;
862 
863 	pool = worker->pool;
864 
865 	/* this can only happen on the local cpu */
866 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
867 		return NULL;
868 
869 	/*
870 	 * The counterpart of the following dec_and_test, implied mb,
871 	 * worklist not empty test sequence is in insert_work().
872 	 * Please read comment there.
873 	 *
874 	 * NOT_RUNNING is clear.  This means that we're bound to and
875 	 * running on the local cpu w/ rq lock held and preemption
876 	 * disabled, which in turn means that none else could be
877 	 * manipulating idle_list, so dereferencing idle_list without pool
878 	 * lock is safe.
879 	 */
880 	if (atomic_dec_and_test(&pool->nr_running) &&
881 	    !list_empty(&pool->worklist))
882 		to_wakeup = first_idle_worker(pool);
883 	return to_wakeup ? to_wakeup->task : NULL;
884 }
885 
886 /**
887  * worker_set_flags - set worker flags and adjust nr_running accordingly
888  * @worker: self
889  * @flags: flags to set
890  *
891  * Set @flags in @worker->flags and adjust nr_running accordingly.
892  *
893  * CONTEXT:
894  * spin_lock_irq(pool->lock)
895  */
896 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
897 {
898 	struct worker_pool *pool = worker->pool;
899 
900 	WARN_ON_ONCE(worker->task != current);
901 
902 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
903 	if ((flags & WORKER_NOT_RUNNING) &&
904 	    !(worker->flags & WORKER_NOT_RUNNING)) {
905 		atomic_dec(&pool->nr_running);
906 	}
907 
908 	worker->flags |= flags;
909 }
910 
911 /**
912  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
913  * @worker: self
914  * @flags: flags to clear
915  *
916  * Clear @flags in @worker->flags and adjust nr_running accordingly.
917  *
918  * CONTEXT:
919  * spin_lock_irq(pool->lock)
920  */
921 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
922 {
923 	struct worker_pool *pool = worker->pool;
924 	unsigned int oflags = worker->flags;
925 
926 	WARN_ON_ONCE(worker->task != current);
927 
928 	worker->flags &= ~flags;
929 
930 	/*
931 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
932 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
933 	 * of multiple flags, not a single flag.
934 	 */
935 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
936 		if (!(worker->flags & WORKER_NOT_RUNNING))
937 			atomic_inc(&pool->nr_running);
938 }
939 
940 /**
941  * find_worker_executing_work - find worker which is executing a work
942  * @pool: pool of interest
943  * @work: work to find worker for
944  *
945  * Find a worker which is executing @work on @pool by searching
946  * @pool->busy_hash which is keyed by the address of @work.  For a worker
947  * to match, its current execution should match the address of @work and
948  * its work function.  This is to avoid unwanted dependency between
949  * unrelated work executions through a work item being recycled while still
950  * being executed.
951  *
952  * This is a bit tricky.  A work item may be freed once its execution
953  * starts and nothing prevents the freed area from being recycled for
954  * another work item.  If the same work item address ends up being reused
955  * before the original execution finishes, workqueue will identify the
956  * recycled work item as currently executing and make it wait until the
957  * current execution finishes, introducing an unwanted dependency.
958  *
959  * This function checks the work item address and work function to avoid
960  * false positives.  Note that this isn't complete as one may construct a
961  * work function which can introduce dependency onto itself through a
962  * recycled work item.  Well, if somebody wants to shoot oneself in the
963  * foot that badly, there's only so much we can do, and if such deadlock
964  * actually occurs, it should be easy to locate the culprit work function.
965  *
966  * CONTEXT:
967  * spin_lock_irq(pool->lock).
968  *
969  * Return:
970  * Pointer to worker which is executing @work if found, %NULL
971  * otherwise.
972  */
973 static struct worker *find_worker_executing_work(struct worker_pool *pool,
974 						 struct work_struct *work)
975 {
976 	struct worker *worker;
977 
978 	hash_for_each_possible(pool->busy_hash, worker, hentry,
979 			       (unsigned long)work)
980 		if (worker->current_work == work &&
981 		    worker->current_func == work->func)
982 			return worker;
983 
984 	return NULL;
985 }
986 
987 /**
988  * move_linked_works - move linked works to a list
989  * @work: start of series of works to be scheduled
990  * @head: target list to append @work to
991  * @nextp: out parameter for nested worklist walking
992  *
993  * Schedule linked works starting from @work to @head.  Work series to
994  * be scheduled starts at @work and includes any consecutive work with
995  * WORK_STRUCT_LINKED set in its predecessor.
996  *
997  * If @nextp is not NULL, it's updated to point to the next work of
998  * the last scheduled work.  This allows move_linked_works() to be
999  * nested inside outer list_for_each_entry_safe().
1000  *
1001  * CONTEXT:
1002  * spin_lock_irq(pool->lock).
1003  */
1004 static void move_linked_works(struct work_struct *work, struct list_head *head,
1005 			      struct work_struct **nextp)
1006 {
1007 	struct work_struct *n;
1008 
1009 	/*
1010 	 * Linked worklist will always end before the end of the list,
1011 	 * use NULL for list head.
1012 	 */
1013 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1014 		list_move_tail(&work->entry, head);
1015 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1016 			break;
1017 	}
1018 
1019 	/*
1020 	 * If we're already inside safe list traversal and have moved
1021 	 * multiple works to the scheduled queue, the next position
1022 	 * needs to be updated.
1023 	 */
1024 	if (nextp)
1025 		*nextp = n;
1026 }
1027 
1028 /**
1029  * get_pwq - get an extra reference on the specified pool_workqueue
1030  * @pwq: pool_workqueue to get
1031  *
1032  * Obtain an extra reference on @pwq.  The caller should guarantee that
1033  * @pwq has positive refcnt and be holding the matching pool->lock.
1034  */
1035 static void get_pwq(struct pool_workqueue *pwq)
1036 {
1037 	lockdep_assert_held(&pwq->pool->lock);
1038 	WARN_ON_ONCE(pwq->refcnt <= 0);
1039 	pwq->refcnt++;
1040 }
1041 
1042 /**
1043  * put_pwq - put a pool_workqueue reference
1044  * @pwq: pool_workqueue to put
1045  *
1046  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1047  * destruction.  The caller should be holding the matching pool->lock.
1048  */
1049 static void put_pwq(struct pool_workqueue *pwq)
1050 {
1051 	lockdep_assert_held(&pwq->pool->lock);
1052 	if (likely(--pwq->refcnt))
1053 		return;
1054 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1055 		return;
1056 	/*
1057 	 * @pwq can't be released under pool->lock, bounce to
1058 	 * pwq_unbound_release_workfn().  This never recurses on the same
1059 	 * pool->lock as this path is taken only for unbound workqueues and
1060 	 * the release work item is scheduled on a per-cpu workqueue.  To
1061 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1062 	 * subclass of 1 in get_unbound_pool().
1063 	 */
1064 	schedule_work(&pwq->unbound_release_work);
1065 }
1066 
1067 /**
1068  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1069  * @pwq: pool_workqueue to put (can be %NULL)
1070  *
1071  * put_pwq() with locking.  This function also allows %NULL @pwq.
1072  */
1073 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1074 {
1075 	if (pwq) {
1076 		/*
1077 		 * As both pwqs and pools are sched-RCU protected, the
1078 		 * following lock operations are safe.
1079 		 */
1080 		spin_lock_irq(&pwq->pool->lock);
1081 		put_pwq(pwq);
1082 		spin_unlock_irq(&pwq->pool->lock);
1083 	}
1084 }
1085 
1086 static void pwq_activate_delayed_work(struct work_struct *work)
1087 {
1088 	struct pool_workqueue *pwq = get_work_pwq(work);
1089 
1090 	trace_workqueue_activate_work(work);
1091 	move_linked_works(work, &pwq->pool->worklist, NULL);
1092 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1093 	pwq->nr_active++;
1094 }
1095 
1096 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1097 {
1098 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1099 						    struct work_struct, entry);
1100 
1101 	pwq_activate_delayed_work(work);
1102 }
1103 
1104 /**
1105  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1106  * @pwq: pwq of interest
1107  * @color: color of work which left the queue
1108  *
1109  * A work either has completed or is removed from pending queue,
1110  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1111  *
1112  * CONTEXT:
1113  * spin_lock_irq(pool->lock).
1114  */
1115 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1116 {
1117 	/* uncolored work items don't participate in flushing or nr_active */
1118 	if (color == WORK_NO_COLOR)
1119 		goto out_put;
1120 
1121 	pwq->nr_in_flight[color]--;
1122 
1123 	pwq->nr_active--;
1124 	if (!list_empty(&pwq->delayed_works)) {
1125 		/* one down, submit a delayed one */
1126 		if (pwq->nr_active < pwq->max_active)
1127 			pwq_activate_first_delayed(pwq);
1128 	}
1129 
1130 	/* is flush in progress and are we at the flushing tip? */
1131 	if (likely(pwq->flush_color != color))
1132 		goto out_put;
1133 
1134 	/* are there still in-flight works? */
1135 	if (pwq->nr_in_flight[color])
1136 		goto out_put;
1137 
1138 	/* this pwq is done, clear flush_color */
1139 	pwq->flush_color = -1;
1140 
1141 	/*
1142 	 * If this was the last pwq, wake up the first flusher.  It
1143 	 * will handle the rest.
1144 	 */
1145 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1146 		complete(&pwq->wq->first_flusher->done);
1147 out_put:
1148 	put_pwq(pwq);
1149 }
1150 
1151 /**
1152  * try_to_grab_pending - steal work item from worklist and disable irq
1153  * @work: work item to steal
1154  * @is_dwork: @work is a delayed_work
1155  * @flags: place to store irq state
1156  *
1157  * Try to grab PENDING bit of @work.  This function can handle @work in any
1158  * stable state - idle, on timer or on worklist.
1159  *
1160  * Return:
1161  *  1		if @work was pending and we successfully stole PENDING
1162  *  0		if @work was idle and we claimed PENDING
1163  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1164  *  -ENOENT	if someone else is canceling @work, this state may persist
1165  *		for arbitrarily long
1166  *
1167  * Note:
1168  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1169  * interrupted while holding PENDING and @work off queue, irq must be
1170  * disabled on entry.  This, combined with delayed_work->timer being
1171  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1172  *
1173  * On successful return, >= 0, irq is disabled and the caller is
1174  * responsible for releasing it using local_irq_restore(*@flags).
1175  *
1176  * This function is safe to call from any context including IRQ handler.
1177  */
1178 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1179 			       unsigned long *flags)
1180 {
1181 	struct worker_pool *pool;
1182 	struct pool_workqueue *pwq;
1183 
1184 	local_irq_save(*flags);
1185 
1186 	/* try to steal the timer if it exists */
1187 	if (is_dwork) {
1188 		struct delayed_work *dwork = to_delayed_work(work);
1189 
1190 		/*
1191 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1192 		 * guaranteed that the timer is not queued anywhere and not
1193 		 * running on the local CPU.
1194 		 */
1195 		if (likely(del_timer(&dwork->timer)))
1196 			return 1;
1197 	}
1198 
1199 	/* try to claim PENDING the normal way */
1200 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1201 		return 0;
1202 
1203 	/*
1204 	 * The queueing is in progress, or it is already queued. Try to
1205 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1206 	 */
1207 	pool = get_work_pool(work);
1208 	if (!pool)
1209 		goto fail;
1210 
1211 	spin_lock(&pool->lock);
1212 	/*
1213 	 * work->data is guaranteed to point to pwq only while the work
1214 	 * item is queued on pwq->wq, and both updating work->data to point
1215 	 * to pwq on queueing and to pool on dequeueing are done under
1216 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1217 	 * points to pwq which is associated with a locked pool, the work
1218 	 * item is currently queued on that pool.
1219 	 */
1220 	pwq = get_work_pwq(work);
1221 	if (pwq && pwq->pool == pool) {
1222 		debug_work_deactivate(work);
1223 
1224 		/*
1225 		 * A delayed work item cannot be grabbed directly because
1226 		 * it might have linked NO_COLOR work items which, if left
1227 		 * on the delayed_list, will confuse pwq->nr_active
1228 		 * management later on and cause stall.  Make sure the work
1229 		 * item is activated before grabbing.
1230 		 */
1231 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1232 			pwq_activate_delayed_work(work);
1233 
1234 		list_del_init(&work->entry);
1235 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1236 
1237 		/* work->data points to pwq iff queued, point to pool */
1238 		set_work_pool_and_keep_pending(work, pool->id);
1239 
1240 		spin_unlock(&pool->lock);
1241 		return 1;
1242 	}
1243 	spin_unlock(&pool->lock);
1244 fail:
1245 	local_irq_restore(*flags);
1246 	if (work_is_canceling(work))
1247 		return -ENOENT;
1248 	cpu_relax();
1249 	return -EAGAIN;
1250 }
1251 
1252 /**
1253  * insert_work - insert a work into a pool
1254  * @pwq: pwq @work belongs to
1255  * @work: work to insert
1256  * @head: insertion point
1257  * @extra_flags: extra WORK_STRUCT_* flags to set
1258  *
1259  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1260  * work_struct flags.
1261  *
1262  * CONTEXT:
1263  * spin_lock_irq(pool->lock).
1264  */
1265 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1266 			struct list_head *head, unsigned int extra_flags)
1267 {
1268 	struct worker_pool *pool = pwq->pool;
1269 
1270 	/* we own @work, set data and link */
1271 	set_work_pwq(work, pwq, extra_flags);
1272 	list_add_tail(&work->entry, head);
1273 	get_pwq(pwq);
1274 
1275 	/*
1276 	 * Ensure either wq_worker_sleeping() sees the above
1277 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1278 	 * around lazily while there are works to be processed.
1279 	 */
1280 	smp_mb();
1281 
1282 	if (__need_more_worker(pool))
1283 		wake_up_worker(pool);
1284 }
1285 
1286 /*
1287  * Test whether @work is being queued from another work executing on the
1288  * same workqueue.
1289  */
1290 static bool is_chained_work(struct workqueue_struct *wq)
1291 {
1292 	struct worker *worker;
1293 
1294 	worker = current_wq_worker();
1295 	/*
1296 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1297 	 * I'm @worker, it's safe to dereference it without locking.
1298 	 */
1299 	return worker && worker->current_pwq->wq == wq;
1300 }
1301 
1302 static void __queue_work(int cpu, struct workqueue_struct *wq,
1303 			 struct work_struct *work)
1304 {
1305 	struct pool_workqueue *pwq;
1306 	struct worker_pool *last_pool;
1307 	struct list_head *worklist;
1308 	unsigned int work_flags;
1309 	unsigned int req_cpu = cpu;
1310 
1311 	/*
1312 	 * While a work item is PENDING && off queue, a task trying to
1313 	 * steal the PENDING will busy-loop waiting for it to either get
1314 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1315 	 * happen with IRQ disabled.
1316 	 */
1317 	WARN_ON_ONCE(!irqs_disabled());
1318 
1319 	debug_work_activate(work);
1320 
1321 	/* if draining, only works from the same workqueue are allowed */
1322 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1323 	    WARN_ON_ONCE(!is_chained_work(wq)))
1324 		return;
1325 retry:
1326 	if (req_cpu == WORK_CPU_UNBOUND)
1327 		cpu = raw_smp_processor_id();
1328 
1329 	/* pwq which will be used unless @work is executing elsewhere */
1330 	if (!(wq->flags & WQ_UNBOUND))
1331 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1332 	else
1333 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1334 
1335 	/*
1336 	 * If @work was previously on a different pool, it might still be
1337 	 * running there, in which case the work needs to be queued on that
1338 	 * pool to guarantee non-reentrancy.
1339 	 */
1340 	last_pool = get_work_pool(work);
1341 	if (last_pool && last_pool != pwq->pool) {
1342 		struct worker *worker;
1343 
1344 		spin_lock(&last_pool->lock);
1345 
1346 		worker = find_worker_executing_work(last_pool, work);
1347 
1348 		if (worker && worker->current_pwq->wq == wq) {
1349 			pwq = worker->current_pwq;
1350 		} else {
1351 			/* meh... not running there, queue here */
1352 			spin_unlock(&last_pool->lock);
1353 			spin_lock(&pwq->pool->lock);
1354 		}
1355 	} else {
1356 		spin_lock(&pwq->pool->lock);
1357 	}
1358 
1359 	/*
1360 	 * pwq is determined and locked.  For unbound pools, we could have
1361 	 * raced with pwq release and it could already be dead.  If its
1362 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1363 	 * without another pwq replacing it in the numa_pwq_tbl or while
1364 	 * work items are executing on it, so the retrying is guaranteed to
1365 	 * make forward-progress.
1366 	 */
1367 	if (unlikely(!pwq->refcnt)) {
1368 		if (wq->flags & WQ_UNBOUND) {
1369 			spin_unlock(&pwq->pool->lock);
1370 			cpu_relax();
1371 			goto retry;
1372 		}
1373 		/* oops */
1374 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1375 			  wq->name, cpu);
1376 	}
1377 
1378 	/* pwq determined, queue */
1379 	trace_workqueue_queue_work(req_cpu, pwq, work);
1380 
1381 	if (WARN_ON(!list_empty(&work->entry))) {
1382 		spin_unlock(&pwq->pool->lock);
1383 		return;
1384 	}
1385 
1386 	pwq->nr_in_flight[pwq->work_color]++;
1387 	work_flags = work_color_to_flags(pwq->work_color);
1388 
1389 	if (likely(pwq->nr_active < pwq->max_active)) {
1390 		trace_workqueue_activate_work(work);
1391 		pwq->nr_active++;
1392 		worklist = &pwq->pool->worklist;
1393 	} else {
1394 		work_flags |= WORK_STRUCT_DELAYED;
1395 		worklist = &pwq->delayed_works;
1396 	}
1397 
1398 	insert_work(pwq, work, worklist, work_flags);
1399 
1400 	spin_unlock(&pwq->pool->lock);
1401 }
1402 
1403 /**
1404  * queue_work_on - queue work on specific cpu
1405  * @cpu: CPU number to execute work on
1406  * @wq: workqueue to use
1407  * @work: work to queue
1408  *
1409  * We queue the work to a specific CPU, the caller must ensure it
1410  * can't go away.
1411  *
1412  * Return: %false if @work was already on a queue, %true otherwise.
1413  */
1414 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1415 		   struct work_struct *work)
1416 {
1417 	bool ret = false;
1418 	unsigned long flags;
1419 
1420 	local_irq_save(flags);
1421 
1422 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1423 		__queue_work(cpu, wq, work);
1424 		ret = true;
1425 	}
1426 
1427 	local_irq_restore(flags);
1428 	return ret;
1429 }
1430 EXPORT_SYMBOL(queue_work_on);
1431 
1432 void delayed_work_timer_fn(unsigned long __data)
1433 {
1434 	struct delayed_work *dwork = (struct delayed_work *)__data;
1435 
1436 	/* should have been called from irqsafe timer with irq already off */
1437 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1438 }
1439 EXPORT_SYMBOL(delayed_work_timer_fn);
1440 
1441 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1442 				struct delayed_work *dwork, unsigned long delay)
1443 {
1444 	struct timer_list *timer = &dwork->timer;
1445 	struct work_struct *work = &dwork->work;
1446 
1447 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1448 		     timer->data != (unsigned long)dwork);
1449 	WARN_ON_ONCE(timer_pending(timer));
1450 	WARN_ON_ONCE(!list_empty(&work->entry));
1451 
1452 	/*
1453 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1454 	 * both optimization and correctness.  The earliest @timer can
1455 	 * expire is on the closest next tick and delayed_work users depend
1456 	 * on that there's no such delay when @delay is 0.
1457 	 */
1458 	if (!delay) {
1459 		__queue_work(cpu, wq, &dwork->work);
1460 		return;
1461 	}
1462 
1463 	timer_stats_timer_set_start_info(&dwork->timer);
1464 
1465 	dwork->wq = wq;
1466 	dwork->cpu = cpu;
1467 	timer->expires = jiffies + delay;
1468 
1469 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1470 		add_timer_on(timer, cpu);
1471 	else
1472 		add_timer(timer);
1473 }
1474 
1475 /**
1476  * queue_delayed_work_on - queue work on specific CPU after delay
1477  * @cpu: CPU number to execute work on
1478  * @wq: workqueue to use
1479  * @dwork: work to queue
1480  * @delay: number of jiffies to wait before queueing
1481  *
1482  * Return: %false if @work was already on a queue, %true otherwise.  If
1483  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1484  * execution.
1485  */
1486 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1487 			   struct delayed_work *dwork, unsigned long delay)
1488 {
1489 	struct work_struct *work = &dwork->work;
1490 	bool ret = false;
1491 	unsigned long flags;
1492 
1493 	/* read the comment in __queue_work() */
1494 	local_irq_save(flags);
1495 
1496 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1497 		__queue_delayed_work(cpu, wq, dwork, delay);
1498 		ret = true;
1499 	}
1500 
1501 	local_irq_restore(flags);
1502 	return ret;
1503 }
1504 EXPORT_SYMBOL(queue_delayed_work_on);
1505 
1506 /**
1507  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1508  * @cpu: CPU number to execute work on
1509  * @wq: workqueue to use
1510  * @dwork: work to queue
1511  * @delay: number of jiffies to wait before queueing
1512  *
1513  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1514  * modify @dwork's timer so that it expires after @delay.  If @delay is
1515  * zero, @work is guaranteed to be scheduled immediately regardless of its
1516  * current state.
1517  *
1518  * Return: %false if @dwork was idle and queued, %true if @dwork was
1519  * pending and its timer was modified.
1520  *
1521  * This function is safe to call from any context including IRQ handler.
1522  * See try_to_grab_pending() for details.
1523  */
1524 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1525 			 struct delayed_work *dwork, unsigned long delay)
1526 {
1527 	unsigned long flags;
1528 	int ret;
1529 
1530 	do {
1531 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1532 	} while (unlikely(ret == -EAGAIN));
1533 
1534 	if (likely(ret >= 0)) {
1535 		__queue_delayed_work(cpu, wq, dwork, delay);
1536 		local_irq_restore(flags);
1537 	}
1538 
1539 	/* -ENOENT from try_to_grab_pending() becomes %true */
1540 	return ret;
1541 }
1542 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1543 
1544 /**
1545  * worker_enter_idle - enter idle state
1546  * @worker: worker which is entering idle state
1547  *
1548  * @worker is entering idle state.  Update stats and idle timer if
1549  * necessary.
1550  *
1551  * LOCKING:
1552  * spin_lock_irq(pool->lock).
1553  */
1554 static void worker_enter_idle(struct worker *worker)
1555 {
1556 	struct worker_pool *pool = worker->pool;
1557 
1558 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1559 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1560 			 (worker->hentry.next || worker->hentry.pprev)))
1561 		return;
1562 
1563 	/* can't use worker_set_flags(), also called from create_worker() */
1564 	worker->flags |= WORKER_IDLE;
1565 	pool->nr_idle++;
1566 	worker->last_active = jiffies;
1567 
1568 	/* idle_list is LIFO */
1569 	list_add(&worker->entry, &pool->idle_list);
1570 
1571 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1572 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1573 
1574 	/*
1575 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1576 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1577 	 * nr_running, the warning may trigger spuriously.  Check iff
1578 	 * unbind is not in progress.
1579 	 */
1580 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1581 		     pool->nr_workers == pool->nr_idle &&
1582 		     atomic_read(&pool->nr_running));
1583 }
1584 
1585 /**
1586  * worker_leave_idle - leave idle state
1587  * @worker: worker which is leaving idle state
1588  *
1589  * @worker is leaving idle state.  Update stats.
1590  *
1591  * LOCKING:
1592  * spin_lock_irq(pool->lock).
1593  */
1594 static void worker_leave_idle(struct worker *worker)
1595 {
1596 	struct worker_pool *pool = worker->pool;
1597 
1598 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1599 		return;
1600 	worker_clr_flags(worker, WORKER_IDLE);
1601 	pool->nr_idle--;
1602 	list_del_init(&worker->entry);
1603 }
1604 
1605 static struct worker *alloc_worker(int node)
1606 {
1607 	struct worker *worker;
1608 
1609 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1610 	if (worker) {
1611 		INIT_LIST_HEAD(&worker->entry);
1612 		INIT_LIST_HEAD(&worker->scheduled);
1613 		INIT_LIST_HEAD(&worker->node);
1614 		/* on creation a worker is in !idle && prep state */
1615 		worker->flags = WORKER_PREP;
1616 	}
1617 	return worker;
1618 }
1619 
1620 /**
1621  * worker_attach_to_pool() - attach a worker to a pool
1622  * @worker: worker to be attached
1623  * @pool: the target pool
1624  *
1625  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1626  * cpu-binding of @worker are kept coordinated with the pool across
1627  * cpu-[un]hotplugs.
1628  */
1629 static void worker_attach_to_pool(struct worker *worker,
1630 				   struct worker_pool *pool)
1631 {
1632 	mutex_lock(&pool->attach_mutex);
1633 
1634 	/*
1635 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1636 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1637 	 */
1638 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1639 
1640 	/*
1641 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1642 	 * stable across this function.  See the comments above the
1643 	 * flag definition for details.
1644 	 */
1645 	if (pool->flags & POOL_DISASSOCIATED)
1646 		worker->flags |= WORKER_UNBOUND;
1647 
1648 	list_add_tail(&worker->node, &pool->workers);
1649 
1650 	mutex_unlock(&pool->attach_mutex);
1651 }
1652 
1653 /**
1654  * worker_detach_from_pool() - detach a worker from its pool
1655  * @worker: worker which is attached to its pool
1656  * @pool: the pool @worker is attached to
1657  *
1658  * Undo the attaching which had been done in worker_attach_to_pool().  The
1659  * caller worker shouldn't access to the pool after detached except it has
1660  * other reference to the pool.
1661  */
1662 static void worker_detach_from_pool(struct worker *worker,
1663 				    struct worker_pool *pool)
1664 {
1665 	struct completion *detach_completion = NULL;
1666 
1667 	mutex_lock(&pool->attach_mutex);
1668 	list_del(&worker->node);
1669 	if (list_empty(&pool->workers))
1670 		detach_completion = pool->detach_completion;
1671 	mutex_unlock(&pool->attach_mutex);
1672 
1673 	/* clear leftover flags without pool->lock after it is detached */
1674 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1675 
1676 	if (detach_completion)
1677 		complete(detach_completion);
1678 }
1679 
1680 /**
1681  * create_worker - create a new workqueue worker
1682  * @pool: pool the new worker will belong to
1683  *
1684  * Create and start a new worker which is attached to @pool.
1685  *
1686  * CONTEXT:
1687  * Might sleep.  Does GFP_KERNEL allocations.
1688  *
1689  * Return:
1690  * Pointer to the newly created worker.
1691  */
1692 static struct worker *create_worker(struct worker_pool *pool)
1693 {
1694 	struct worker *worker = NULL;
1695 	int id = -1;
1696 	char id_buf[16];
1697 
1698 	/* ID is needed to determine kthread name */
1699 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1700 	if (id < 0)
1701 		goto fail;
1702 
1703 	worker = alloc_worker(pool->node);
1704 	if (!worker)
1705 		goto fail;
1706 
1707 	worker->pool = pool;
1708 	worker->id = id;
1709 
1710 	if (pool->cpu >= 0)
1711 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1712 			 pool->attrs->nice < 0  ? "H" : "");
1713 	else
1714 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1715 
1716 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1717 					      "kworker/%s", id_buf);
1718 	if (IS_ERR(worker->task))
1719 		goto fail;
1720 
1721 	set_user_nice(worker->task, pool->attrs->nice);
1722 
1723 	/* prevent userland from meddling with cpumask of workqueue workers */
1724 	worker->task->flags |= PF_NO_SETAFFINITY;
1725 
1726 	/* successful, attach the worker to the pool */
1727 	worker_attach_to_pool(worker, pool);
1728 
1729 	/* start the newly created worker */
1730 	spin_lock_irq(&pool->lock);
1731 	worker->pool->nr_workers++;
1732 	worker_enter_idle(worker);
1733 	wake_up_process(worker->task);
1734 	spin_unlock_irq(&pool->lock);
1735 
1736 	return worker;
1737 
1738 fail:
1739 	if (id >= 0)
1740 		ida_simple_remove(&pool->worker_ida, id);
1741 	kfree(worker);
1742 	return NULL;
1743 }
1744 
1745 /**
1746  * destroy_worker - destroy a workqueue worker
1747  * @worker: worker to be destroyed
1748  *
1749  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1750  * be idle.
1751  *
1752  * CONTEXT:
1753  * spin_lock_irq(pool->lock).
1754  */
1755 static void destroy_worker(struct worker *worker)
1756 {
1757 	struct worker_pool *pool = worker->pool;
1758 
1759 	lockdep_assert_held(&pool->lock);
1760 
1761 	/* sanity check frenzy */
1762 	if (WARN_ON(worker->current_work) ||
1763 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1764 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1765 		return;
1766 
1767 	pool->nr_workers--;
1768 	pool->nr_idle--;
1769 
1770 	list_del_init(&worker->entry);
1771 	worker->flags |= WORKER_DIE;
1772 	wake_up_process(worker->task);
1773 }
1774 
1775 static void idle_worker_timeout(unsigned long __pool)
1776 {
1777 	struct worker_pool *pool = (void *)__pool;
1778 
1779 	spin_lock_irq(&pool->lock);
1780 
1781 	while (too_many_workers(pool)) {
1782 		struct worker *worker;
1783 		unsigned long expires;
1784 
1785 		/* idle_list is kept in LIFO order, check the last one */
1786 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1787 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1788 
1789 		if (time_before(jiffies, expires)) {
1790 			mod_timer(&pool->idle_timer, expires);
1791 			break;
1792 		}
1793 
1794 		destroy_worker(worker);
1795 	}
1796 
1797 	spin_unlock_irq(&pool->lock);
1798 }
1799 
1800 static void send_mayday(struct work_struct *work)
1801 {
1802 	struct pool_workqueue *pwq = get_work_pwq(work);
1803 	struct workqueue_struct *wq = pwq->wq;
1804 
1805 	lockdep_assert_held(&wq_mayday_lock);
1806 
1807 	if (!wq->rescuer)
1808 		return;
1809 
1810 	/* mayday mayday mayday */
1811 	if (list_empty(&pwq->mayday_node)) {
1812 		/*
1813 		 * If @pwq is for an unbound wq, its base ref may be put at
1814 		 * any time due to an attribute change.  Pin @pwq until the
1815 		 * rescuer is done with it.
1816 		 */
1817 		get_pwq(pwq);
1818 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1819 		wake_up_process(wq->rescuer->task);
1820 	}
1821 }
1822 
1823 static void pool_mayday_timeout(unsigned long __pool)
1824 {
1825 	struct worker_pool *pool = (void *)__pool;
1826 	struct work_struct *work;
1827 
1828 	spin_lock_irq(&pool->lock);
1829 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1830 
1831 	if (need_to_create_worker(pool)) {
1832 		/*
1833 		 * We've been trying to create a new worker but
1834 		 * haven't been successful.  We might be hitting an
1835 		 * allocation deadlock.  Send distress signals to
1836 		 * rescuers.
1837 		 */
1838 		list_for_each_entry(work, &pool->worklist, entry)
1839 			send_mayday(work);
1840 	}
1841 
1842 	spin_unlock(&wq_mayday_lock);
1843 	spin_unlock_irq(&pool->lock);
1844 
1845 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1846 }
1847 
1848 /**
1849  * maybe_create_worker - create a new worker if necessary
1850  * @pool: pool to create a new worker for
1851  *
1852  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1853  * have at least one idle worker on return from this function.  If
1854  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1855  * sent to all rescuers with works scheduled on @pool to resolve
1856  * possible allocation deadlock.
1857  *
1858  * On return, need_to_create_worker() is guaranteed to be %false and
1859  * may_start_working() %true.
1860  *
1861  * LOCKING:
1862  * spin_lock_irq(pool->lock) which may be released and regrabbed
1863  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1864  * manager.
1865  */
1866 static void maybe_create_worker(struct worker_pool *pool)
1867 __releases(&pool->lock)
1868 __acquires(&pool->lock)
1869 {
1870 restart:
1871 	spin_unlock_irq(&pool->lock);
1872 
1873 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1874 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1875 
1876 	while (true) {
1877 		if (create_worker(pool) || !need_to_create_worker(pool))
1878 			break;
1879 
1880 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1881 
1882 		if (!need_to_create_worker(pool))
1883 			break;
1884 	}
1885 
1886 	del_timer_sync(&pool->mayday_timer);
1887 	spin_lock_irq(&pool->lock);
1888 	/*
1889 	 * This is necessary even after a new worker was just successfully
1890 	 * created as @pool->lock was dropped and the new worker might have
1891 	 * already become busy.
1892 	 */
1893 	if (need_to_create_worker(pool))
1894 		goto restart;
1895 }
1896 
1897 /**
1898  * manage_workers - manage worker pool
1899  * @worker: self
1900  *
1901  * Assume the manager role and manage the worker pool @worker belongs
1902  * to.  At any given time, there can be only zero or one manager per
1903  * pool.  The exclusion is handled automatically by this function.
1904  *
1905  * The caller can safely start processing works on false return.  On
1906  * true return, it's guaranteed that need_to_create_worker() is false
1907  * and may_start_working() is true.
1908  *
1909  * CONTEXT:
1910  * spin_lock_irq(pool->lock) which may be released and regrabbed
1911  * multiple times.  Does GFP_KERNEL allocations.
1912  *
1913  * Return:
1914  * %false if the pool doesn't need management and the caller can safely
1915  * start processing works, %true if management function was performed and
1916  * the conditions that the caller verified before calling the function may
1917  * no longer be true.
1918  */
1919 static bool manage_workers(struct worker *worker)
1920 {
1921 	struct worker_pool *pool = worker->pool;
1922 
1923 	/*
1924 	 * Anyone who successfully grabs manager_arb wins the arbitration
1925 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1926 	 * failure while holding pool->lock reliably indicates that someone
1927 	 * else is managing the pool and the worker which failed trylock
1928 	 * can proceed to executing work items.  This means that anyone
1929 	 * grabbing manager_arb is responsible for actually performing
1930 	 * manager duties.  If manager_arb is grabbed and released without
1931 	 * actual management, the pool may stall indefinitely.
1932 	 */
1933 	if (!mutex_trylock(&pool->manager_arb))
1934 		return false;
1935 	pool->manager = worker;
1936 
1937 	maybe_create_worker(pool);
1938 
1939 	pool->manager = NULL;
1940 	mutex_unlock(&pool->manager_arb);
1941 	return true;
1942 }
1943 
1944 /**
1945  * process_one_work - process single work
1946  * @worker: self
1947  * @work: work to process
1948  *
1949  * Process @work.  This function contains all the logics necessary to
1950  * process a single work including synchronization against and
1951  * interaction with other workers on the same cpu, queueing and
1952  * flushing.  As long as context requirement is met, any worker can
1953  * call this function to process a work.
1954  *
1955  * CONTEXT:
1956  * spin_lock_irq(pool->lock) which is released and regrabbed.
1957  */
1958 static void process_one_work(struct worker *worker, struct work_struct *work)
1959 __releases(&pool->lock)
1960 __acquires(&pool->lock)
1961 {
1962 	struct pool_workqueue *pwq = get_work_pwq(work);
1963 	struct worker_pool *pool = worker->pool;
1964 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1965 	int work_color;
1966 	struct worker *collision;
1967 #ifdef CONFIG_LOCKDEP
1968 	/*
1969 	 * It is permissible to free the struct work_struct from
1970 	 * inside the function that is called from it, this we need to
1971 	 * take into account for lockdep too.  To avoid bogus "held
1972 	 * lock freed" warnings as well as problems when looking into
1973 	 * work->lockdep_map, make a copy and use that here.
1974 	 */
1975 	struct lockdep_map lockdep_map;
1976 
1977 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1978 #endif
1979 	/* ensure we're on the correct CPU */
1980 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1981 		     raw_smp_processor_id() != pool->cpu);
1982 
1983 	/*
1984 	 * A single work shouldn't be executed concurrently by
1985 	 * multiple workers on a single cpu.  Check whether anyone is
1986 	 * already processing the work.  If so, defer the work to the
1987 	 * currently executing one.
1988 	 */
1989 	collision = find_worker_executing_work(pool, work);
1990 	if (unlikely(collision)) {
1991 		move_linked_works(work, &collision->scheduled, NULL);
1992 		return;
1993 	}
1994 
1995 	/* claim and dequeue */
1996 	debug_work_deactivate(work);
1997 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
1998 	worker->current_work = work;
1999 	worker->current_func = work->func;
2000 	worker->current_pwq = pwq;
2001 	work_color = get_work_color(work);
2002 
2003 	list_del_init(&work->entry);
2004 
2005 	/*
2006 	 * CPU intensive works don't participate in concurrency management.
2007 	 * They're the scheduler's responsibility.  This takes @worker out
2008 	 * of concurrency management and the next code block will chain
2009 	 * execution of the pending work items.
2010 	 */
2011 	if (unlikely(cpu_intensive))
2012 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2013 
2014 	/*
2015 	 * Wake up another worker if necessary.  The condition is always
2016 	 * false for normal per-cpu workers since nr_running would always
2017 	 * be >= 1 at this point.  This is used to chain execution of the
2018 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2019 	 * UNBOUND and CPU_INTENSIVE ones.
2020 	 */
2021 	if (need_more_worker(pool))
2022 		wake_up_worker(pool);
2023 
2024 	/*
2025 	 * Record the last pool and clear PENDING which should be the last
2026 	 * update to @work.  Also, do this inside @pool->lock so that
2027 	 * PENDING and queued state changes happen together while IRQ is
2028 	 * disabled.
2029 	 */
2030 	set_work_pool_and_clear_pending(work, pool->id);
2031 
2032 	spin_unlock_irq(&pool->lock);
2033 
2034 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2035 	lock_map_acquire(&lockdep_map);
2036 	trace_workqueue_execute_start(work);
2037 	worker->current_func(work);
2038 	/*
2039 	 * While we must be careful to not use "work" after this, the trace
2040 	 * point will only record its address.
2041 	 */
2042 	trace_workqueue_execute_end(work);
2043 	lock_map_release(&lockdep_map);
2044 	lock_map_release(&pwq->wq->lockdep_map);
2045 
2046 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2047 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2048 		       "     last function: %pf\n",
2049 		       current->comm, preempt_count(), task_pid_nr(current),
2050 		       worker->current_func);
2051 		debug_show_held_locks(current);
2052 		dump_stack();
2053 	}
2054 
2055 	/*
2056 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2057 	 * kernels, where a requeueing work item waiting for something to
2058 	 * happen could deadlock with stop_machine as such work item could
2059 	 * indefinitely requeue itself while all other CPUs are trapped in
2060 	 * stop_machine. At the same time, report a quiescent RCU state so
2061 	 * the same condition doesn't freeze RCU.
2062 	 */
2063 	cond_resched_rcu_qs();
2064 
2065 	spin_lock_irq(&pool->lock);
2066 
2067 	/* clear cpu intensive status */
2068 	if (unlikely(cpu_intensive))
2069 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2070 
2071 	/* we're done with it, release */
2072 	hash_del(&worker->hentry);
2073 	worker->current_work = NULL;
2074 	worker->current_func = NULL;
2075 	worker->current_pwq = NULL;
2076 	worker->desc_valid = false;
2077 	pwq_dec_nr_in_flight(pwq, work_color);
2078 }
2079 
2080 /**
2081  * process_scheduled_works - process scheduled works
2082  * @worker: self
2083  *
2084  * Process all scheduled works.  Please note that the scheduled list
2085  * may change while processing a work, so this function repeatedly
2086  * fetches a work from the top and executes it.
2087  *
2088  * CONTEXT:
2089  * spin_lock_irq(pool->lock) which may be released and regrabbed
2090  * multiple times.
2091  */
2092 static void process_scheduled_works(struct worker *worker)
2093 {
2094 	while (!list_empty(&worker->scheduled)) {
2095 		struct work_struct *work = list_first_entry(&worker->scheduled,
2096 						struct work_struct, entry);
2097 		process_one_work(worker, work);
2098 	}
2099 }
2100 
2101 /**
2102  * worker_thread - the worker thread function
2103  * @__worker: self
2104  *
2105  * The worker thread function.  All workers belong to a worker_pool -
2106  * either a per-cpu one or dynamic unbound one.  These workers process all
2107  * work items regardless of their specific target workqueue.  The only
2108  * exception is work items which belong to workqueues with a rescuer which
2109  * will be explained in rescuer_thread().
2110  *
2111  * Return: 0
2112  */
2113 static int worker_thread(void *__worker)
2114 {
2115 	struct worker *worker = __worker;
2116 	struct worker_pool *pool = worker->pool;
2117 
2118 	/* tell the scheduler that this is a workqueue worker */
2119 	worker->task->flags |= PF_WQ_WORKER;
2120 woke_up:
2121 	spin_lock_irq(&pool->lock);
2122 
2123 	/* am I supposed to die? */
2124 	if (unlikely(worker->flags & WORKER_DIE)) {
2125 		spin_unlock_irq(&pool->lock);
2126 		WARN_ON_ONCE(!list_empty(&worker->entry));
2127 		worker->task->flags &= ~PF_WQ_WORKER;
2128 
2129 		set_task_comm(worker->task, "kworker/dying");
2130 		ida_simple_remove(&pool->worker_ida, worker->id);
2131 		worker_detach_from_pool(worker, pool);
2132 		kfree(worker);
2133 		return 0;
2134 	}
2135 
2136 	worker_leave_idle(worker);
2137 recheck:
2138 	/* no more worker necessary? */
2139 	if (!need_more_worker(pool))
2140 		goto sleep;
2141 
2142 	/* do we need to manage? */
2143 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2144 		goto recheck;
2145 
2146 	/*
2147 	 * ->scheduled list can only be filled while a worker is
2148 	 * preparing to process a work or actually processing it.
2149 	 * Make sure nobody diddled with it while I was sleeping.
2150 	 */
2151 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2152 
2153 	/*
2154 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2155 	 * worker or that someone else has already assumed the manager
2156 	 * role.  This is where @worker starts participating in concurrency
2157 	 * management if applicable and concurrency management is restored
2158 	 * after being rebound.  See rebind_workers() for details.
2159 	 */
2160 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2161 
2162 	do {
2163 		struct work_struct *work =
2164 			list_first_entry(&pool->worklist,
2165 					 struct work_struct, entry);
2166 
2167 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2168 			/* optimization path, not strictly necessary */
2169 			process_one_work(worker, work);
2170 			if (unlikely(!list_empty(&worker->scheduled)))
2171 				process_scheduled_works(worker);
2172 		} else {
2173 			move_linked_works(work, &worker->scheduled, NULL);
2174 			process_scheduled_works(worker);
2175 		}
2176 	} while (keep_working(pool));
2177 
2178 	worker_set_flags(worker, WORKER_PREP);
2179 sleep:
2180 	/*
2181 	 * pool->lock is held and there's no work to process and no need to
2182 	 * manage, sleep.  Workers are woken up only while holding
2183 	 * pool->lock or from local cpu, so setting the current state
2184 	 * before releasing pool->lock is enough to prevent losing any
2185 	 * event.
2186 	 */
2187 	worker_enter_idle(worker);
2188 	__set_current_state(TASK_INTERRUPTIBLE);
2189 	spin_unlock_irq(&pool->lock);
2190 	schedule();
2191 	goto woke_up;
2192 }
2193 
2194 /**
2195  * rescuer_thread - the rescuer thread function
2196  * @__rescuer: self
2197  *
2198  * Workqueue rescuer thread function.  There's one rescuer for each
2199  * workqueue which has WQ_MEM_RECLAIM set.
2200  *
2201  * Regular work processing on a pool may block trying to create a new
2202  * worker which uses GFP_KERNEL allocation which has slight chance of
2203  * developing into deadlock if some works currently on the same queue
2204  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2205  * the problem rescuer solves.
2206  *
2207  * When such condition is possible, the pool summons rescuers of all
2208  * workqueues which have works queued on the pool and let them process
2209  * those works so that forward progress can be guaranteed.
2210  *
2211  * This should happen rarely.
2212  *
2213  * Return: 0
2214  */
2215 static int rescuer_thread(void *__rescuer)
2216 {
2217 	struct worker *rescuer = __rescuer;
2218 	struct workqueue_struct *wq = rescuer->rescue_wq;
2219 	struct list_head *scheduled = &rescuer->scheduled;
2220 	bool should_stop;
2221 
2222 	set_user_nice(current, RESCUER_NICE_LEVEL);
2223 
2224 	/*
2225 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2226 	 * doesn't participate in concurrency management.
2227 	 */
2228 	rescuer->task->flags |= PF_WQ_WORKER;
2229 repeat:
2230 	set_current_state(TASK_INTERRUPTIBLE);
2231 
2232 	/*
2233 	 * By the time the rescuer is requested to stop, the workqueue
2234 	 * shouldn't have any work pending, but @wq->maydays may still have
2235 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2236 	 * all the work items before the rescuer got to them.  Go through
2237 	 * @wq->maydays processing before acting on should_stop so that the
2238 	 * list is always empty on exit.
2239 	 */
2240 	should_stop = kthread_should_stop();
2241 
2242 	/* see whether any pwq is asking for help */
2243 	spin_lock_irq(&wq_mayday_lock);
2244 
2245 	while (!list_empty(&wq->maydays)) {
2246 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2247 					struct pool_workqueue, mayday_node);
2248 		struct worker_pool *pool = pwq->pool;
2249 		struct work_struct *work, *n;
2250 
2251 		__set_current_state(TASK_RUNNING);
2252 		list_del_init(&pwq->mayday_node);
2253 
2254 		spin_unlock_irq(&wq_mayday_lock);
2255 
2256 		worker_attach_to_pool(rescuer, pool);
2257 
2258 		spin_lock_irq(&pool->lock);
2259 		rescuer->pool = pool;
2260 
2261 		/*
2262 		 * Slurp in all works issued via this workqueue and
2263 		 * process'em.
2264 		 */
2265 		WARN_ON_ONCE(!list_empty(scheduled));
2266 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2267 			if (get_work_pwq(work) == pwq)
2268 				move_linked_works(work, scheduled, &n);
2269 
2270 		if (!list_empty(scheduled)) {
2271 			process_scheduled_works(rescuer);
2272 
2273 			/*
2274 			 * The above execution of rescued work items could
2275 			 * have created more to rescue through
2276 			 * pwq_activate_first_delayed() or chained
2277 			 * queueing.  Let's put @pwq back on mayday list so
2278 			 * that such back-to-back work items, which may be
2279 			 * being used to relieve memory pressure, don't
2280 			 * incur MAYDAY_INTERVAL delay inbetween.
2281 			 */
2282 			if (need_to_create_worker(pool)) {
2283 				spin_lock(&wq_mayday_lock);
2284 				get_pwq(pwq);
2285 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2286 				spin_unlock(&wq_mayday_lock);
2287 			}
2288 		}
2289 
2290 		/*
2291 		 * Put the reference grabbed by send_mayday().  @pool won't
2292 		 * go away while we're still attached to it.
2293 		 */
2294 		put_pwq(pwq);
2295 
2296 		/*
2297 		 * Leave this pool.  If need_more_worker() is %true, notify a
2298 		 * regular worker; otherwise, we end up with 0 concurrency
2299 		 * and stalling the execution.
2300 		 */
2301 		if (need_more_worker(pool))
2302 			wake_up_worker(pool);
2303 
2304 		rescuer->pool = NULL;
2305 		spin_unlock_irq(&pool->lock);
2306 
2307 		worker_detach_from_pool(rescuer, pool);
2308 
2309 		spin_lock_irq(&wq_mayday_lock);
2310 	}
2311 
2312 	spin_unlock_irq(&wq_mayday_lock);
2313 
2314 	if (should_stop) {
2315 		__set_current_state(TASK_RUNNING);
2316 		rescuer->task->flags &= ~PF_WQ_WORKER;
2317 		return 0;
2318 	}
2319 
2320 	/* rescuers should never participate in concurrency management */
2321 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2322 	schedule();
2323 	goto repeat;
2324 }
2325 
2326 struct wq_barrier {
2327 	struct work_struct	work;
2328 	struct completion	done;
2329 	struct task_struct	*task;	/* purely informational */
2330 };
2331 
2332 static void wq_barrier_func(struct work_struct *work)
2333 {
2334 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2335 	complete(&barr->done);
2336 }
2337 
2338 /**
2339  * insert_wq_barrier - insert a barrier work
2340  * @pwq: pwq to insert barrier into
2341  * @barr: wq_barrier to insert
2342  * @target: target work to attach @barr to
2343  * @worker: worker currently executing @target, NULL if @target is not executing
2344  *
2345  * @barr is linked to @target such that @barr is completed only after
2346  * @target finishes execution.  Please note that the ordering
2347  * guarantee is observed only with respect to @target and on the local
2348  * cpu.
2349  *
2350  * Currently, a queued barrier can't be canceled.  This is because
2351  * try_to_grab_pending() can't determine whether the work to be
2352  * grabbed is at the head of the queue and thus can't clear LINKED
2353  * flag of the previous work while there must be a valid next work
2354  * after a work with LINKED flag set.
2355  *
2356  * Note that when @worker is non-NULL, @target may be modified
2357  * underneath us, so we can't reliably determine pwq from @target.
2358  *
2359  * CONTEXT:
2360  * spin_lock_irq(pool->lock).
2361  */
2362 static void insert_wq_barrier(struct pool_workqueue *pwq,
2363 			      struct wq_barrier *barr,
2364 			      struct work_struct *target, struct worker *worker)
2365 {
2366 	struct list_head *head;
2367 	unsigned int linked = 0;
2368 
2369 	/*
2370 	 * debugobject calls are safe here even with pool->lock locked
2371 	 * as we know for sure that this will not trigger any of the
2372 	 * checks and call back into the fixup functions where we
2373 	 * might deadlock.
2374 	 */
2375 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2376 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2377 	init_completion(&barr->done);
2378 	barr->task = current;
2379 
2380 	/*
2381 	 * If @target is currently being executed, schedule the
2382 	 * barrier to the worker; otherwise, put it after @target.
2383 	 */
2384 	if (worker)
2385 		head = worker->scheduled.next;
2386 	else {
2387 		unsigned long *bits = work_data_bits(target);
2388 
2389 		head = target->entry.next;
2390 		/* there can already be other linked works, inherit and set */
2391 		linked = *bits & WORK_STRUCT_LINKED;
2392 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2393 	}
2394 
2395 	debug_work_activate(&barr->work);
2396 	insert_work(pwq, &barr->work, head,
2397 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2398 }
2399 
2400 /**
2401  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2402  * @wq: workqueue being flushed
2403  * @flush_color: new flush color, < 0 for no-op
2404  * @work_color: new work color, < 0 for no-op
2405  *
2406  * Prepare pwqs for workqueue flushing.
2407  *
2408  * If @flush_color is non-negative, flush_color on all pwqs should be
2409  * -1.  If no pwq has in-flight commands at the specified color, all
2410  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2411  * has in flight commands, its pwq->flush_color is set to
2412  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2413  * wakeup logic is armed and %true is returned.
2414  *
2415  * The caller should have initialized @wq->first_flusher prior to
2416  * calling this function with non-negative @flush_color.  If
2417  * @flush_color is negative, no flush color update is done and %false
2418  * is returned.
2419  *
2420  * If @work_color is non-negative, all pwqs should have the same
2421  * work_color which is previous to @work_color and all will be
2422  * advanced to @work_color.
2423  *
2424  * CONTEXT:
2425  * mutex_lock(wq->mutex).
2426  *
2427  * Return:
2428  * %true if @flush_color >= 0 and there's something to flush.  %false
2429  * otherwise.
2430  */
2431 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2432 				      int flush_color, int work_color)
2433 {
2434 	bool wait = false;
2435 	struct pool_workqueue *pwq;
2436 
2437 	if (flush_color >= 0) {
2438 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2439 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2440 	}
2441 
2442 	for_each_pwq(pwq, wq) {
2443 		struct worker_pool *pool = pwq->pool;
2444 
2445 		spin_lock_irq(&pool->lock);
2446 
2447 		if (flush_color >= 0) {
2448 			WARN_ON_ONCE(pwq->flush_color != -1);
2449 
2450 			if (pwq->nr_in_flight[flush_color]) {
2451 				pwq->flush_color = flush_color;
2452 				atomic_inc(&wq->nr_pwqs_to_flush);
2453 				wait = true;
2454 			}
2455 		}
2456 
2457 		if (work_color >= 0) {
2458 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2459 			pwq->work_color = work_color;
2460 		}
2461 
2462 		spin_unlock_irq(&pool->lock);
2463 	}
2464 
2465 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2466 		complete(&wq->first_flusher->done);
2467 
2468 	return wait;
2469 }
2470 
2471 /**
2472  * flush_workqueue - ensure that any scheduled work has run to completion.
2473  * @wq: workqueue to flush
2474  *
2475  * This function sleeps until all work items which were queued on entry
2476  * have finished execution, but it is not livelocked by new incoming ones.
2477  */
2478 void flush_workqueue(struct workqueue_struct *wq)
2479 {
2480 	struct wq_flusher this_flusher = {
2481 		.list = LIST_HEAD_INIT(this_flusher.list),
2482 		.flush_color = -1,
2483 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2484 	};
2485 	int next_color;
2486 
2487 	lock_map_acquire(&wq->lockdep_map);
2488 	lock_map_release(&wq->lockdep_map);
2489 
2490 	mutex_lock(&wq->mutex);
2491 
2492 	/*
2493 	 * Start-to-wait phase
2494 	 */
2495 	next_color = work_next_color(wq->work_color);
2496 
2497 	if (next_color != wq->flush_color) {
2498 		/*
2499 		 * Color space is not full.  The current work_color
2500 		 * becomes our flush_color and work_color is advanced
2501 		 * by one.
2502 		 */
2503 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2504 		this_flusher.flush_color = wq->work_color;
2505 		wq->work_color = next_color;
2506 
2507 		if (!wq->first_flusher) {
2508 			/* no flush in progress, become the first flusher */
2509 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2510 
2511 			wq->first_flusher = &this_flusher;
2512 
2513 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2514 						       wq->work_color)) {
2515 				/* nothing to flush, done */
2516 				wq->flush_color = next_color;
2517 				wq->first_flusher = NULL;
2518 				goto out_unlock;
2519 			}
2520 		} else {
2521 			/* wait in queue */
2522 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2523 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2524 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2525 		}
2526 	} else {
2527 		/*
2528 		 * Oops, color space is full, wait on overflow queue.
2529 		 * The next flush completion will assign us
2530 		 * flush_color and transfer to flusher_queue.
2531 		 */
2532 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2533 	}
2534 
2535 	mutex_unlock(&wq->mutex);
2536 
2537 	wait_for_completion(&this_flusher.done);
2538 
2539 	/*
2540 	 * Wake-up-and-cascade phase
2541 	 *
2542 	 * First flushers are responsible for cascading flushes and
2543 	 * handling overflow.  Non-first flushers can simply return.
2544 	 */
2545 	if (wq->first_flusher != &this_flusher)
2546 		return;
2547 
2548 	mutex_lock(&wq->mutex);
2549 
2550 	/* we might have raced, check again with mutex held */
2551 	if (wq->first_flusher != &this_flusher)
2552 		goto out_unlock;
2553 
2554 	wq->first_flusher = NULL;
2555 
2556 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2557 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2558 
2559 	while (true) {
2560 		struct wq_flusher *next, *tmp;
2561 
2562 		/* complete all the flushers sharing the current flush color */
2563 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2564 			if (next->flush_color != wq->flush_color)
2565 				break;
2566 			list_del_init(&next->list);
2567 			complete(&next->done);
2568 		}
2569 
2570 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2571 			     wq->flush_color != work_next_color(wq->work_color));
2572 
2573 		/* this flush_color is finished, advance by one */
2574 		wq->flush_color = work_next_color(wq->flush_color);
2575 
2576 		/* one color has been freed, handle overflow queue */
2577 		if (!list_empty(&wq->flusher_overflow)) {
2578 			/*
2579 			 * Assign the same color to all overflowed
2580 			 * flushers, advance work_color and append to
2581 			 * flusher_queue.  This is the start-to-wait
2582 			 * phase for these overflowed flushers.
2583 			 */
2584 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2585 				tmp->flush_color = wq->work_color;
2586 
2587 			wq->work_color = work_next_color(wq->work_color);
2588 
2589 			list_splice_tail_init(&wq->flusher_overflow,
2590 					      &wq->flusher_queue);
2591 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2592 		}
2593 
2594 		if (list_empty(&wq->flusher_queue)) {
2595 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2596 			break;
2597 		}
2598 
2599 		/*
2600 		 * Need to flush more colors.  Make the next flusher
2601 		 * the new first flusher and arm pwqs.
2602 		 */
2603 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2604 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2605 
2606 		list_del_init(&next->list);
2607 		wq->first_flusher = next;
2608 
2609 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2610 			break;
2611 
2612 		/*
2613 		 * Meh... this color is already done, clear first
2614 		 * flusher and repeat cascading.
2615 		 */
2616 		wq->first_flusher = NULL;
2617 	}
2618 
2619 out_unlock:
2620 	mutex_unlock(&wq->mutex);
2621 }
2622 EXPORT_SYMBOL_GPL(flush_workqueue);
2623 
2624 /**
2625  * drain_workqueue - drain a workqueue
2626  * @wq: workqueue to drain
2627  *
2628  * Wait until the workqueue becomes empty.  While draining is in progress,
2629  * only chain queueing is allowed.  IOW, only currently pending or running
2630  * work items on @wq can queue further work items on it.  @wq is flushed
2631  * repeatedly until it becomes empty.  The number of flushing is determined
2632  * by the depth of chaining and should be relatively short.  Whine if it
2633  * takes too long.
2634  */
2635 void drain_workqueue(struct workqueue_struct *wq)
2636 {
2637 	unsigned int flush_cnt = 0;
2638 	struct pool_workqueue *pwq;
2639 
2640 	/*
2641 	 * __queue_work() needs to test whether there are drainers, is much
2642 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2643 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2644 	 */
2645 	mutex_lock(&wq->mutex);
2646 	if (!wq->nr_drainers++)
2647 		wq->flags |= __WQ_DRAINING;
2648 	mutex_unlock(&wq->mutex);
2649 reflush:
2650 	flush_workqueue(wq);
2651 
2652 	mutex_lock(&wq->mutex);
2653 
2654 	for_each_pwq(pwq, wq) {
2655 		bool drained;
2656 
2657 		spin_lock_irq(&pwq->pool->lock);
2658 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2659 		spin_unlock_irq(&pwq->pool->lock);
2660 
2661 		if (drained)
2662 			continue;
2663 
2664 		if (++flush_cnt == 10 ||
2665 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2666 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2667 				wq->name, flush_cnt);
2668 
2669 		mutex_unlock(&wq->mutex);
2670 		goto reflush;
2671 	}
2672 
2673 	if (!--wq->nr_drainers)
2674 		wq->flags &= ~__WQ_DRAINING;
2675 	mutex_unlock(&wq->mutex);
2676 }
2677 EXPORT_SYMBOL_GPL(drain_workqueue);
2678 
2679 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2680 {
2681 	struct worker *worker = NULL;
2682 	struct worker_pool *pool;
2683 	struct pool_workqueue *pwq;
2684 
2685 	might_sleep();
2686 
2687 	local_irq_disable();
2688 	pool = get_work_pool(work);
2689 	if (!pool) {
2690 		local_irq_enable();
2691 		return false;
2692 	}
2693 
2694 	spin_lock(&pool->lock);
2695 	/* see the comment in try_to_grab_pending() with the same code */
2696 	pwq = get_work_pwq(work);
2697 	if (pwq) {
2698 		if (unlikely(pwq->pool != pool))
2699 			goto already_gone;
2700 	} else {
2701 		worker = find_worker_executing_work(pool, work);
2702 		if (!worker)
2703 			goto already_gone;
2704 		pwq = worker->current_pwq;
2705 	}
2706 
2707 	insert_wq_barrier(pwq, barr, work, worker);
2708 	spin_unlock_irq(&pool->lock);
2709 
2710 	/*
2711 	 * If @max_active is 1 or rescuer is in use, flushing another work
2712 	 * item on the same workqueue may lead to deadlock.  Make sure the
2713 	 * flusher is not running on the same workqueue by verifying write
2714 	 * access.
2715 	 */
2716 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2717 		lock_map_acquire(&pwq->wq->lockdep_map);
2718 	else
2719 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2720 	lock_map_release(&pwq->wq->lockdep_map);
2721 
2722 	return true;
2723 already_gone:
2724 	spin_unlock_irq(&pool->lock);
2725 	return false;
2726 }
2727 
2728 /**
2729  * flush_work - wait for a work to finish executing the last queueing instance
2730  * @work: the work to flush
2731  *
2732  * Wait until @work has finished execution.  @work is guaranteed to be idle
2733  * on return if it hasn't been requeued since flush started.
2734  *
2735  * Return:
2736  * %true if flush_work() waited for the work to finish execution,
2737  * %false if it was already idle.
2738  */
2739 bool flush_work(struct work_struct *work)
2740 {
2741 	struct wq_barrier barr;
2742 
2743 	lock_map_acquire(&work->lockdep_map);
2744 	lock_map_release(&work->lockdep_map);
2745 
2746 	if (start_flush_work(work, &barr)) {
2747 		wait_for_completion(&barr.done);
2748 		destroy_work_on_stack(&barr.work);
2749 		return true;
2750 	} else {
2751 		return false;
2752 	}
2753 }
2754 EXPORT_SYMBOL_GPL(flush_work);
2755 
2756 struct cwt_wait {
2757 	wait_queue_t		wait;
2758 	struct work_struct	*work;
2759 };
2760 
2761 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2762 {
2763 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2764 
2765 	if (cwait->work != key)
2766 		return 0;
2767 	return autoremove_wake_function(wait, mode, sync, key);
2768 }
2769 
2770 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2771 {
2772 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2773 	unsigned long flags;
2774 	int ret;
2775 
2776 	do {
2777 		ret = try_to_grab_pending(work, is_dwork, &flags);
2778 		/*
2779 		 * If someone else is already canceling, wait for it to
2780 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2781 		 * because we may get scheduled between @work's completion
2782 		 * and the other canceling task resuming and clearing
2783 		 * CANCELING - flush_work() will return false immediately
2784 		 * as @work is no longer busy, try_to_grab_pending() will
2785 		 * return -ENOENT as @work is still being canceled and the
2786 		 * other canceling task won't be able to clear CANCELING as
2787 		 * we're hogging the CPU.
2788 		 *
2789 		 * Let's wait for completion using a waitqueue.  As this
2790 		 * may lead to the thundering herd problem, use a custom
2791 		 * wake function which matches @work along with exclusive
2792 		 * wait and wakeup.
2793 		 */
2794 		if (unlikely(ret == -ENOENT)) {
2795 			struct cwt_wait cwait;
2796 
2797 			init_wait(&cwait.wait);
2798 			cwait.wait.func = cwt_wakefn;
2799 			cwait.work = work;
2800 
2801 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2802 						  TASK_UNINTERRUPTIBLE);
2803 			if (work_is_canceling(work))
2804 				schedule();
2805 			finish_wait(&cancel_waitq, &cwait.wait);
2806 		}
2807 	} while (unlikely(ret < 0));
2808 
2809 	/* tell other tasks trying to grab @work to back off */
2810 	mark_work_canceling(work);
2811 	local_irq_restore(flags);
2812 
2813 	flush_work(work);
2814 	clear_work_data(work);
2815 
2816 	/*
2817 	 * Paired with prepare_to_wait() above so that either
2818 	 * waitqueue_active() is visible here or !work_is_canceling() is
2819 	 * visible there.
2820 	 */
2821 	smp_mb();
2822 	if (waitqueue_active(&cancel_waitq))
2823 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2824 
2825 	return ret;
2826 }
2827 
2828 /**
2829  * cancel_work_sync - cancel a work and wait for it to finish
2830  * @work: the work to cancel
2831  *
2832  * Cancel @work and wait for its execution to finish.  This function
2833  * can be used even if the work re-queues itself or migrates to
2834  * another workqueue.  On return from this function, @work is
2835  * guaranteed to be not pending or executing on any CPU.
2836  *
2837  * cancel_work_sync(&delayed_work->work) must not be used for
2838  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2839  *
2840  * The caller must ensure that the workqueue on which @work was last
2841  * queued can't be destroyed before this function returns.
2842  *
2843  * Return:
2844  * %true if @work was pending, %false otherwise.
2845  */
2846 bool cancel_work_sync(struct work_struct *work)
2847 {
2848 	return __cancel_work_timer(work, false);
2849 }
2850 EXPORT_SYMBOL_GPL(cancel_work_sync);
2851 
2852 /**
2853  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2854  * @dwork: the delayed work to flush
2855  *
2856  * Delayed timer is cancelled and the pending work is queued for
2857  * immediate execution.  Like flush_work(), this function only
2858  * considers the last queueing instance of @dwork.
2859  *
2860  * Return:
2861  * %true if flush_work() waited for the work to finish execution,
2862  * %false if it was already idle.
2863  */
2864 bool flush_delayed_work(struct delayed_work *dwork)
2865 {
2866 	local_irq_disable();
2867 	if (del_timer_sync(&dwork->timer))
2868 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2869 	local_irq_enable();
2870 	return flush_work(&dwork->work);
2871 }
2872 EXPORT_SYMBOL(flush_delayed_work);
2873 
2874 /**
2875  * cancel_delayed_work - cancel a delayed work
2876  * @dwork: delayed_work to cancel
2877  *
2878  * Kill off a pending delayed_work.
2879  *
2880  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2881  * pending.
2882  *
2883  * Note:
2884  * The work callback function may still be running on return, unless
2885  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2886  * use cancel_delayed_work_sync() to wait on it.
2887  *
2888  * This function is safe to call from any context including IRQ handler.
2889  */
2890 bool cancel_delayed_work(struct delayed_work *dwork)
2891 {
2892 	unsigned long flags;
2893 	int ret;
2894 
2895 	do {
2896 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2897 	} while (unlikely(ret == -EAGAIN));
2898 
2899 	if (unlikely(ret < 0))
2900 		return false;
2901 
2902 	set_work_pool_and_clear_pending(&dwork->work,
2903 					get_work_pool_id(&dwork->work));
2904 	local_irq_restore(flags);
2905 	return ret;
2906 }
2907 EXPORT_SYMBOL(cancel_delayed_work);
2908 
2909 /**
2910  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2911  * @dwork: the delayed work cancel
2912  *
2913  * This is cancel_work_sync() for delayed works.
2914  *
2915  * Return:
2916  * %true if @dwork was pending, %false otherwise.
2917  */
2918 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2919 {
2920 	return __cancel_work_timer(&dwork->work, true);
2921 }
2922 EXPORT_SYMBOL(cancel_delayed_work_sync);
2923 
2924 /**
2925  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2926  * @func: the function to call
2927  *
2928  * schedule_on_each_cpu() executes @func on each online CPU using the
2929  * system workqueue and blocks until all CPUs have completed.
2930  * schedule_on_each_cpu() is very slow.
2931  *
2932  * Return:
2933  * 0 on success, -errno on failure.
2934  */
2935 int schedule_on_each_cpu(work_func_t func)
2936 {
2937 	int cpu;
2938 	struct work_struct __percpu *works;
2939 
2940 	works = alloc_percpu(struct work_struct);
2941 	if (!works)
2942 		return -ENOMEM;
2943 
2944 	get_online_cpus();
2945 
2946 	for_each_online_cpu(cpu) {
2947 		struct work_struct *work = per_cpu_ptr(works, cpu);
2948 
2949 		INIT_WORK(work, func);
2950 		schedule_work_on(cpu, work);
2951 	}
2952 
2953 	for_each_online_cpu(cpu)
2954 		flush_work(per_cpu_ptr(works, cpu));
2955 
2956 	put_online_cpus();
2957 	free_percpu(works);
2958 	return 0;
2959 }
2960 
2961 /**
2962  * execute_in_process_context - reliably execute the routine with user context
2963  * @fn:		the function to execute
2964  * @ew:		guaranteed storage for the execute work structure (must
2965  *		be available when the work executes)
2966  *
2967  * Executes the function immediately if process context is available,
2968  * otherwise schedules the function for delayed execution.
2969  *
2970  * Return:	0 - function was executed
2971  *		1 - function was scheduled for execution
2972  */
2973 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2974 {
2975 	if (!in_interrupt()) {
2976 		fn(&ew->work);
2977 		return 0;
2978 	}
2979 
2980 	INIT_WORK(&ew->work, fn);
2981 	schedule_work(&ew->work);
2982 
2983 	return 1;
2984 }
2985 EXPORT_SYMBOL_GPL(execute_in_process_context);
2986 
2987 /**
2988  * free_workqueue_attrs - free a workqueue_attrs
2989  * @attrs: workqueue_attrs to free
2990  *
2991  * Undo alloc_workqueue_attrs().
2992  */
2993 void free_workqueue_attrs(struct workqueue_attrs *attrs)
2994 {
2995 	if (attrs) {
2996 		free_cpumask_var(attrs->cpumask);
2997 		kfree(attrs);
2998 	}
2999 }
3000 
3001 /**
3002  * alloc_workqueue_attrs - allocate a workqueue_attrs
3003  * @gfp_mask: allocation mask to use
3004  *
3005  * Allocate a new workqueue_attrs, initialize with default settings and
3006  * return it.
3007  *
3008  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3009  */
3010 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3011 {
3012 	struct workqueue_attrs *attrs;
3013 
3014 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3015 	if (!attrs)
3016 		goto fail;
3017 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3018 		goto fail;
3019 
3020 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3021 	return attrs;
3022 fail:
3023 	free_workqueue_attrs(attrs);
3024 	return NULL;
3025 }
3026 
3027 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3028 				 const struct workqueue_attrs *from)
3029 {
3030 	to->nice = from->nice;
3031 	cpumask_copy(to->cpumask, from->cpumask);
3032 	/*
3033 	 * Unlike hash and equality test, this function doesn't ignore
3034 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3035 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3036 	 */
3037 	to->no_numa = from->no_numa;
3038 }
3039 
3040 /* hash value of the content of @attr */
3041 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3042 {
3043 	u32 hash = 0;
3044 
3045 	hash = jhash_1word(attrs->nice, hash);
3046 	hash = jhash(cpumask_bits(attrs->cpumask),
3047 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3048 	return hash;
3049 }
3050 
3051 /* content equality test */
3052 static bool wqattrs_equal(const struct workqueue_attrs *a,
3053 			  const struct workqueue_attrs *b)
3054 {
3055 	if (a->nice != b->nice)
3056 		return false;
3057 	if (!cpumask_equal(a->cpumask, b->cpumask))
3058 		return false;
3059 	return true;
3060 }
3061 
3062 /**
3063  * init_worker_pool - initialize a newly zalloc'd worker_pool
3064  * @pool: worker_pool to initialize
3065  *
3066  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3067  *
3068  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3069  * inside @pool proper are initialized and put_unbound_pool() can be called
3070  * on @pool safely to release it.
3071  */
3072 static int init_worker_pool(struct worker_pool *pool)
3073 {
3074 	spin_lock_init(&pool->lock);
3075 	pool->id = -1;
3076 	pool->cpu = -1;
3077 	pool->node = NUMA_NO_NODE;
3078 	pool->flags |= POOL_DISASSOCIATED;
3079 	INIT_LIST_HEAD(&pool->worklist);
3080 	INIT_LIST_HEAD(&pool->idle_list);
3081 	hash_init(pool->busy_hash);
3082 
3083 	init_timer_deferrable(&pool->idle_timer);
3084 	pool->idle_timer.function = idle_worker_timeout;
3085 	pool->idle_timer.data = (unsigned long)pool;
3086 
3087 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3088 		    (unsigned long)pool);
3089 
3090 	mutex_init(&pool->manager_arb);
3091 	mutex_init(&pool->attach_mutex);
3092 	INIT_LIST_HEAD(&pool->workers);
3093 
3094 	ida_init(&pool->worker_ida);
3095 	INIT_HLIST_NODE(&pool->hash_node);
3096 	pool->refcnt = 1;
3097 
3098 	/* shouldn't fail above this point */
3099 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3100 	if (!pool->attrs)
3101 		return -ENOMEM;
3102 	return 0;
3103 }
3104 
3105 static void rcu_free_wq(struct rcu_head *rcu)
3106 {
3107 	struct workqueue_struct *wq =
3108 		container_of(rcu, struct workqueue_struct, rcu);
3109 
3110 	if (!(wq->flags & WQ_UNBOUND))
3111 		free_percpu(wq->cpu_pwqs);
3112 	else
3113 		free_workqueue_attrs(wq->unbound_attrs);
3114 
3115 	kfree(wq->rescuer);
3116 	kfree(wq);
3117 }
3118 
3119 static void rcu_free_pool(struct rcu_head *rcu)
3120 {
3121 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3122 
3123 	ida_destroy(&pool->worker_ida);
3124 	free_workqueue_attrs(pool->attrs);
3125 	kfree(pool);
3126 }
3127 
3128 /**
3129  * put_unbound_pool - put a worker_pool
3130  * @pool: worker_pool to put
3131  *
3132  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3133  * safe manner.  get_unbound_pool() calls this function on its failure path
3134  * and this function should be able to release pools which went through,
3135  * successfully or not, init_worker_pool().
3136  *
3137  * Should be called with wq_pool_mutex held.
3138  */
3139 static void put_unbound_pool(struct worker_pool *pool)
3140 {
3141 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3142 	struct worker *worker;
3143 
3144 	lockdep_assert_held(&wq_pool_mutex);
3145 
3146 	if (--pool->refcnt)
3147 		return;
3148 
3149 	/* sanity checks */
3150 	if (WARN_ON(!(pool->cpu < 0)) ||
3151 	    WARN_ON(!list_empty(&pool->worklist)))
3152 		return;
3153 
3154 	/* release id and unhash */
3155 	if (pool->id >= 0)
3156 		idr_remove(&worker_pool_idr, pool->id);
3157 	hash_del(&pool->hash_node);
3158 
3159 	/*
3160 	 * Become the manager and destroy all workers.  Grabbing
3161 	 * manager_arb prevents @pool's workers from blocking on
3162 	 * attach_mutex.
3163 	 */
3164 	mutex_lock(&pool->manager_arb);
3165 
3166 	spin_lock_irq(&pool->lock);
3167 	while ((worker = first_idle_worker(pool)))
3168 		destroy_worker(worker);
3169 	WARN_ON(pool->nr_workers || pool->nr_idle);
3170 	spin_unlock_irq(&pool->lock);
3171 
3172 	mutex_lock(&pool->attach_mutex);
3173 	if (!list_empty(&pool->workers))
3174 		pool->detach_completion = &detach_completion;
3175 	mutex_unlock(&pool->attach_mutex);
3176 
3177 	if (pool->detach_completion)
3178 		wait_for_completion(pool->detach_completion);
3179 
3180 	mutex_unlock(&pool->manager_arb);
3181 
3182 	/* shut down the timers */
3183 	del_timer_sync(&pool->idle_timer);
3184 	del_timer_sync(&pool->mayday_timer);
3185 
3186 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3187 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3188 }
3189 
3190 /**
3191  * get_unbound_pool - get a worker_pool with the specified attributes
3192  * @attrs: the attributes of the worker_pool to get
3193  *
3194  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3195  * reference count and return it.  If there already is a matching
3196  * worker_pool, it will be used; otherwise, this function attempts to
3197  * create a new one.
3198  *
3199  * Should be called with wq_pool_mutex held.
3200  *
3201  * Return: On success, a worker_pool with the same attributes as @attrs.
3202  * On failure, %NULL.
3203  */
3204 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3205 {
3206 	u32 hash = wqattrs_hash(attrs);
3207 	struct worker_pool *pool;
3208 	int node;
3209 
3210 	lockdep_assert_held(&wq_pool_mutex);
3211 
3212 	/* do we already have a matching pool? */
3213 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3214 		if (wqattrs_equal(pool->attrs, attrs)) {
3215 			pool->refcnt++;
3216 			return pool;
3217 		}
3218 	}
3219 
3220 	/* nope, create a new one */
3221 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3222 	if (!pool || init_worker_pool(pool) < 0)
3223 		goto fail;
3224 
3225 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3226 	copy_workqueue_attrs(pool->attrs, attrs);
3227 
3228 	/*
3229 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3230 	 * 'struct workqueue_attrs' comments for detail.
3231 	 */
3232 	pool->attrs->no_numa = false;
3233 
3234 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3235 	if (wq_numa_enabled) {
3236 		for_each_node(node) {
3237 			if (cpumask_subset(pool->attrs->cpumask,
3238 					   wq_numa_possible_cpumask[node])) {
3239 				pool->node = node;
3240 				break;
3241 			}
3242 		}
3243 	}
3244 
3245 	if (worker_pool_assign_id(pool) < 0)
3246 		goto fail;
3247 
3248 	/* create and start the initial worker */
3249 	if (!create_worker(pool))
3250 		goto fail;
3251 
3252 	/* install */
3253 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3254 
3255 	return pool;
3256 fail:
3257 	if (pool)
3258 		put_unbound_pool(pool);
3259 	return NULL;
3260 }
3261 
3262 static void rcu_free_pwq(struct rcu_head *rcu)
3263 {
3264 	kmem_cache_free(pwq_cache,
3265 			container_of(rcu, struct pool_workqueue, rcu));
3266 }
3267 
3268 /*
3269  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3270  * and needs to be destroyed.
3271  */
3272 static void pwq_unbound_release_workfn(struct work_struct *work)
3273 {
3274 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3275 						  unbound_release_work);
3276 	struct workqueue_struct *wq = pwq->wq;
3277 	struct worker_pool *pool = pwq->pool;
3278 	bool is_last;
3279 
3280 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3281 		return;
3282 
3283 	mutex_lock(&wq->mutex);
3284 	list_del_rcu(&pwq->pwqs_node);
3285 	is_last = list_empty(&wq->pwqs);
3286 	mutex_unlock(&wq->mutex);
3287 
3288 	mutex_lock(&wq_pool_mutex);
3289 	put_unbound_pool(pool);
3290 	mutex_unlock(&wq_pool_mutex);
3291 
3292 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3293 
3294 	/*
3295 	 * If we're the last pwq going away, @wq is already dead and no one
3296 	 * is gonna access it anymore.  Schedule RCU free.
3297 	 */
3298 	if (is_last)
3299 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3300 }
3301 
3302 /**
3303  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3304  * @pwq: target pool_workqueue
3305  *
3306  * If @pwq isn't freezing, set @pwq->max_active to the associated
3307  * workqueue's saved_max_active and activate delayed work items
3308  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3309  */
3310 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3311 {
3312 	struct workqueue_struct *wq = pwq->wq;
3313 	bool freezable = wq->flags & WQ_FREEZABLE;
3314 
3315 	/* for @wq->saved_max_active */
3316 	lockdep_assert_held(&wq->mutex);
3317 
3318 	/* fast exit for non-freezable wqs */
3319 	if (!freezable && pwq->max_active == wq->saved_max_active)
3320 		return;
3321 
3322 	spin_lock_irq(&pwq->pool->lock);
3323 
3324 	/*
3325 	 * During [un]freezing, the caller is responsible for ensuring that
3326 	 * this function is called at least once after @workqueue_freezing
3327 	 * is updated and visible.
3328 	 */
3329 	if (!freezable || !workqueue_freezing) {
3330 		pwq->max_active = wq->saved_max_active;
3331 
3332 		while (!list_empty(&pwq->delayed_works) &&
3333 		       pwq->nr_active < pwq->max_active)
3334 			pwq_activate_first_delayed(pwq);
3335 
3336 		/*
3337 		 * Need to kick a worker after thawed or an unbound wq's
3338 		 * max_active is bumped.  It's a slow path.  Do it always.
3339 		 */
3340 		wake_up_worker(pwq->pool);
3341 	} else {
3342 		pwq->max_active = 0;
3343 	}
3344 
3345 	spin_unlock_irq(&pwq->pool->lock);
3346 }
3347 
3348 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3349 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3350 		     struct worker_pool *pool)
3351 {
3352 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3353 
3354 	memset(pwq, 0, sizeof(*pwq));
3355 
3356 	pwq->pool = pool;
3357 	pwq->wq = wq;
3358 	pwq->flush_color = -1;
3359 	pwq->refcnt = 1;
3360 	INIT_LIST_HEAD(&pwq->delayed_works);
3361 	INIT_LIST_HEAD(&pwq->pwqs_node);
3362 	INIT_LIST_HEAD(&pwq->mayday_node);
3363 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3364 }
3365 
3366 /* sync @pwq with the current state of its associated wq and link it */
3367 static void link_pwq(struct pool_workqueue *pwq)
3368 {
3369 	struct workqueue_struct *wq = pwq->wq;
3370 
3371 	lockdep_assert_held(&wq->mutex);
3372 
3373 	/* may be called multiple times, ignore if already linked */
3374 	if (!list_empty(&pwq->pwqs_node))
3375 		return;
3376 
3377 	/* set the matching work_color */
3378 	pwq->work_color = wq->work_color;
3379 
3380 	/* sync max_active to the current setting */
3381 	pwq_adjust_max_active(pwq);
3382 
3383 	/* link in @pwq */
3384 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3385 }
3386 
3387 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3388 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3389 					const struct workqueue_attrs *attrs)
3390 {
3391 	struct worker_pool *pool;
3392 	struct pool_workqueue *pwq;
3393 
3394 	lockdep_assert_held(&wq_pool_mutex);
3395 
3396 	pool = get_unbound_pool(attrs);
3397 	if (!pool)
3398 		return NULL;
3399 
3400 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3401 	if (!pwq) {
3402 		put_unbound_pool(pool);
3403 		return NULL;
3404 	}
3405 
3406 	init_pwq(pwq, wq, pool);
3407 	return pwq;
3408 }
3409 
3410 /**
3411  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3412  * @attrs: the wq_attrs of the default pwq of the target workqueue
3413  * @node: the target NUMA node
3414  * @cpu_going_down: if >= 0, the CPU to consider as offline
3415  * @cpumask: outarg, the resulting cpumask
3416  *
3417  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3418  * @cpu_going_down is >= 0, that cpu is considered offline during
3419  * calculation.  The result is stored in @cpumask.
3420  *
3421  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3422  * enabled and @node has online CPUs requested by @attrs, the returned
3423  * cpumask is the intersection of the possible CPUs of @node and
3424  * @attrs->cpumask.
3425  *
3426  * The caller is responsible for ensuring that the cpumask of @node stays
3427  * stable.
3428  *
3429  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3430  * %false if equal.
3431  */
3432 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3433 				 int cpu_going_down, cpumask_t *cpumask)
3434 {
3435 	if (!wq_numa_enabled || attrs->no_numa)
3436 		goto use_dfl;
3437 
3438 	/* does @node have any online CPUs @attrs wants? */
3439 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3440 	if (cpu_going_down >= 0)
3441 		cpumask_clear_cpu(cpu_going_down, cpumask);
3442 
3443 	if (cpumask_empty(cpumask))
3444 		goto use_dfl;
3445 
3446 	/* yeap, return possible CPUs in @node that @attrs wants */
3447 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3448 	return !cpumask_equal(cpumask, attrs->cpumask);
3449 
3450 use_dfl:
3451 	cpumask_copy(cpumask, attrs->cpumask);
3452 	return false;
3453 }
3454 
3455 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3456 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3457 						   int node,
3458 						   struct pool_workqueue *pwq)
3459 {
3460 	struct pool_workqueue *old_pwq;
3461 
3462 	lockdep_assert_held(&wq_pool_mutex);
3463 	lockdep_assert_held(&wq->mutex);
3464 
3465 	/* link_pwq() can handle duplicate calls */
3466 	link_pwq(pwq);
3467 
3468 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3469 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3470 	return old_pwq;
3471 }
3472 
3473 /* context to store the prepared attrs & pwqs before applying */
3474 struct apply_wqattrs_ctx {
3475 	struct workqueue_struct	*wq;		/* target workqueue */
3476 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3477 	struct list_head	list;		/* queued for batching commit */
3478 	struct pool_workqueue	*dfl_pwq;
3479 	struct pool_workqueue	*pwq_tbl[];
3480 };
3481 
3482 /* free the resources after success or abort */
3483 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3484 {
3485 	if (ctx) {
3486 		int node;
3487 
3488 		for_each_node(node)
3489 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3490 		put_pwq_unlocked(ctx->dfl_pwq);
3491 
3492 		free_workqueue_attrs(ctx->attrs);
3493 
3494 		kfree(ctx);
3495 	}
3496 }
3497 
3498 /* allocate the attrs and pwqs for later installation */
3499 static struct apply_wqattrs_ctx *
3500 apply_wqattrs_prepare(struct workqueue_struct *wq,
3501 		      const struct workqueue_attrs *attrs)
3502 {
3503 	struct apply_wqattrs_ctx *ctx;
3504 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3505 	int node;
3506 
3507 	lockdep_assert_held(&wq_pool_mutex);
3508 
3509 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3510 		      GFP_KERNEL);
3511 
3512 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3513 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3514 	if (!ctx || !new_attrs || !tmp_attrs)
3515 		goto out_free;
3516 
3517 	/*
3518 	 * Calculate the attrs of the default pwq.
3519 	 * If the user configured cpumask doesn't overlap with the
3520 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3521 	 */
3522 	copy_workqueue_attrs(new_attrs, attrs);
3523 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3524 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3525 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3526 
3527 	/*
3528 	 * We may create multiple pwqs with differing cpumasks.  Make a
3529 	 * copy of @new_attrs which will be modified and used to obtain
3530 	 * pools.
3531 	 */
3532 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3533 
3534 	/*
3535 	 * If something goes wrong during CPU up/down, we'll fall back to
3536 	 * the default pwq covering whole @attrs->cpumask.  Always create
3537 	 * it even if we don't use it immediately.
3538 	 */
3539 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3540 	if (!ctx->dfl_pwq)
3541 		goto out_free;
3542 
3543 	for_each_node(node) {
3544 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3545 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3546 			if (!ctx->pwq_tbl[node])
3547 				goto out_free;
3548 		} else {
3549 			ctx->dfl_pwq->refcnt++;
3550 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3551 		}
3552 	}
3553 
3554 	/* save the user configured attrs and sanitize it. */
3555 	copy_workqueue_attrs(new_attrs, attrs);
3556 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3557 	ctx->attrs = new_attrs;
3558 
3559 	ctx->wq = wq;
3560 	free_workqueue_attrs(tmp_attrs);
3561 	return ctx;
3562 
3563 out_free:
3564 	free_workqueue_attrs(tmp_attrs);
3565 	free_workqueue_attrs(new_attrs);
3566 	apply_wqattrs_cleanup(ctx);
3567 	return NULL;
3568 }
3569 
3570 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3571 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3572 {
3573 	int node;
3574 
3575 	/* all pwqs have been created successfully, let's install'em */
3576 	mutex_lock(&ctx->wq->mutex);
3577 
3578 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3579 
3580 	/* save the previous pwq and install the new one */
3581 	for_each_node(node)
3582 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3583 							  ctx->pwq_tbl[node]);
3584 
3585 	/* @dfl_pwq might not have been used, ensure it's linked */
3586 	link_pwq(ctx->dfl_pwq);
3587 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3588 
3589 	mutex_unlock(&ctx->wq->mutex);
3590 }
3591 
3592 static void apply_wqattrs_lock(void)
3593 {
3594 	/* CPUs should stay stable across pwq creations and installations */
3595 	get_online_cpus();
3596 	mutex_lock(&wq_pool_mutex);
3597 }
3598 
3599 static void apply_wqattrs_unlock(void)
3600 {
3601 	mutex_unlock(&wq_pool_mutex);
3602 	put_online_cpus();
3603 }
3604 
3605 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3606 					const struct workqueue_attrs *attrs)
3607 {
3608 	struct apply_wqattrs_ctx *ctx;
3609 	int ret = -ENOMEM;
3610 
3611 	/* only unbound workqueues can change attributes */
3612 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3613 		return -EINVAL;
3614 
3615 	/* creating multiple pwqs breaks ordering guarantee */
3616 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3617 		return -EINVAL;
3618 
3619 	ctx = apply_wqattrs_prepare(wq, attrs);
3620 
3621 	/* the ctx has been prepared successfully, let's commit it */
3622 	if (ctx) {
3623 		apply_wqattrs_commit(ctx);
3624 		ret = 0;
3625 	}
3626 
3627 	apply_wqattrs_cleanup(ctx);
3628 
3629 	return ret;
3630 }
3631 
3632 /**
3633  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3634  * @wq: the target workqueue
3635  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3636  *
3637  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3638  * machines, this function maps a separate pwq to each NUMA node with
3639  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3640  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3641  * items finish.  Note that a work item which repeatedly requeues itself
3642  * back-to-back will stay on its current pwq.
3643  *
3644  * Performs GFP_KERNEL allocations.
3645  *
3646  * Return: 0 on success and -errno on failure.
3647  */
3648 int apply_workqueue_attrs(struct workqueue_struct *wq,
3649 			  const struct workqueue_attrs *attrs)
3650 {
3651 	int ret;
3652 
3653 	apply_wqattrs_lock();
3654 	ret = apply_workqueue_attrs_locked(wq, attrs);
3655 	apply_wqattrs_unlock();
3656 
3657 	return ret;
3658 }
3659 
3660 /**
3661  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3662  * @wq: the target workqueue
3663  * @cpu: the CPU coming up or going down
3664  * @online: whether @cpu is coming up or going down
3665  *
3666  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3667  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3668  * @wq accordingly.
3669  *
3670  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3671  * falls back to @wq->dfl_pwq which may not be optimal but is always
3672  * correct.
3673  *
3674  * Note that when the last allowed CPU of a NUMA node goes offline for a
3675  * workqueue with a cpumask spanning multiple nodes, the workers which were
3676  * already executing the work items for the workqueue will lose their CPU
3677  * affinity and may execute on any CPU.  This is similar to how per-cpu
3678  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3679  * affinity, it's the user's responsibility to flush the work item from
3680  * CPU_DOWN_PREPARE.
3681  */
3682 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3683 				   bool online)
3684 {
3685 	int node = cpu_to_node(cpu);
3686 	int cpu_off = online ? -1 : cpu;
3687 	struct pool_workqueue *old_pwq = NULL, *pwq;
3688 	struct workqueue_attrs *target_attrs;
3689 	cpumask_t *cpumask;
3690 
3691 	lockdep_assert_held(&wq_pool_mutex);
3692 
3693 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3694 	    wq->unbound_attrs->no_numa)
3695 		return;
3696 
3697 	/*
3698 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3699 	 * Let's use a preallocated one.  The following buf is protected by
3700 	 * CPU hotplug exclusion.
3701 	 */
3702 	target_attrs = wq_update_unbound_numa_attrs_buf;
3703 	cpumask = target_attrs->cpumask;
3704 
3705 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3706 	pwq = unbound_pwq_by_node(wq, node);
3707 
3708 	/*
3709 	 * Let's determine what needs to be done.  If the target cpumask is
3710 	 * different from the default pwq's, we need to compare it to @pwq's
3711 	 * and create a new one if they don't match.  If the target cpumask
3712 	 * equals the default pwq's, the default pwq should be used.
3713 	 */
3714 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3715 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3716 			return;
3717 	} else {
3718 		goto use_dfl_pwq;
3719 	}
3720 
3721 	/* create a new pwq */
3722 	pwq = alloc_unbound_pwq(wq, target_attrs);
3723 	if (!pwq) {
3724 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3725 			wq->name);
3726 		goto use_dfl_pwq;
3727 	}
3728 
3729 	/* Install the new pwq. */
3730 	mutex_lock(&wq->mutex);
3731 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3732 	goto out_unlock;
3733 
3734 use_dfl_pwq:
3735 	mutex_lock(&wq->mutex);
3736 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3737 	get_pwq(wq->dfl_pwq);
3738 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3739 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3740 out_unlock:
3741 	mutex_unlock(&wq->mutex);
3742 	put_pwq_unlocked(old_pwq);
3743 }
3744 
3745 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3746 {
3747 	bool highpri = wq->flags & WQ_HIGHPRI;
3748 	int cpu, ret;
3749 
3750 	if (!(wq->flags & WQ_UNBOUND)) {
3751 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3752 		if (!wq->cpu_pwqs)
3753 			return -ENOMEM;
3754 
3755 		for_each_possible_cpu(cpu) {
3756 			struct pool_workqueue *pwq =
3757 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3758 			struct worker_pool *cpu_pools =
3759 				per_cpu(cpu_worker_pools, cpu);
3760 
3761 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3762 
3763 			mutex_lock(&wq->mutex);
3764 			link_pwq(pwq);
3765 			mutex_unlock(&wq->mutex);
3766 		}
3767 		return 0;
3768 	} else if (wq->flags & __WQ_ORDERED) {
3769 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3770 		/* there should only be single pwq for ordering guarantee */
3771 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3772 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3773 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3774 		return ret;
3775 	} else {
3776 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3777 	}
3778 }
3779 
3780 static int wq_clamp_max_active(int max_active, unsigned int flags,
3781 			       const char *name)
3782 {
3783 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3784 
3785 	if (max_active < 1 || max_active > lim)
3786 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3787 			max_active, name, 1, lim);
3788 
3789 	return clamp_val(max_active, 1, lim);
3790 }
3791 
3792 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3793 					       unsigned int flags,
3794 					       int max_active,
3795 					       struct lock_class_key *key,
3796 					       const char *lock_name, ...)
3797 {
3798 	size_t tbl_size = 0;
3799 	va_list args;
3800 	struct workqueue_struct *wq;
3801 	struct pool_workqueue *pwq;
3802 
3803 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3804 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3805 		flags |= WQ_UNBOUND;
3806 
3807 	/* allocate wq and format name */
3808 	if (flags & WQ_UNBOUND)
3809 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3810 
3811 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3812 	if (!wq)
3813 		return NULL;
3814 
3815 	if (flags & WQ_UNBOUND) {
3816 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3817 		if (!wq->unbound_attrs)
3818 			goto err_free_wq;
3819 	}
3820 
3821 	va_start(args, lock_name);
3822 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3823 	va_end(args);
3824 
3825 	max_active = max_active ?: WQ_DFL_ACTIVE;
3826 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3827 
3828 	/* init wq */
3829 	wq->flags = flags;
3830 	wq->saved_max_active = max_active;
3831 	mutex_init(&wq->mutex);
3832 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3833 	INIT_LIST_HEAD(&wq->pwqs);
3834 	INIT_LIST_HEAD(&wq->flusher_queue);
3835 	INIT_LIST_HEAD(&wq->flusher_overflow);
3836 	INIT_LIST_HEAD(&wq->maydays);
3837 
3838 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3839 	INIT_LIST_HEAD(&wq->list);
3840 
3841 	if (alloc_and_link_pwqs(wq) < 0)
3842 		goto err_free_wq;
3843 
3844 	/*
3845 	 * Workqueues which may be used during memory reclaim should
3846 	 * have a rescuer to guarantee forward progress.
3847 	 */
3848 	if (flags & WQ_MEM_RECLAIM) {
3849 		struct worker *rescuer;
3850 
3851 		rescuer = alloc_worker(NUMA_NO_NODE);
3852 		if (!rescuer)
3853 			goto err_destroy;
3854 
3855 		rescuer->rescue_wq = wq;
3856 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3857 					       wq->name);
3858 		if (IS_ERR(rescuer->task)) {
3859 			kfree(rescuer);
3860 			goto err_destroy;
3861 		}
3862 
3863 		wq->rescuer = rescuer;
3864 		rescuer->task->flags |= PF_NO_SETAFFINITY;
3865 		wake_up_process(rescuer->task);
3866 	}
3867 
3868 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3869 		goto err_destroy;
3870 
3871 	/*
3872 	 * wq_pool_mutex protects global freeze state and workqueues list.
3873 	 * Grab it, adjust max_active and add the new @wq to workqueues
3874 	 * list.
3875 	 */
3876 	mutex_lock(&wq_pool_mutex);
3877 
3878 	mutex_lock(&wq->mutex);
3879 	for_each_pwq(pwq, wq)
3880 		pwq_adjust_max_active(pwq);
3881 	mutex_unlock(&wq->mutex);
3882 
3883 	list_add_tail_rcu(&wq->list, &workqueues);
3884 
3885 	mutex_unlock(&wq_pool_mutex);
3886 
3887 	return wq;
3888 
3889 err_free_wq:
3890 	free_workqueue_attrs(wq->unbound_attrs);
3891 	kfree(wq);
3892 	return NULL;
3893 err_destroy:
3894 	destroy_workqueue(wq);
3895 	return NULL;
3896 }
3897 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3898 
3899 /**
3900  * destroy_workqueue - safely terminate a workqueue
3901  * @wq: target workqueue
3902  *
3903  * Safely destroy a workqueue. All work currently pending will be done first.
3904  */
3905 void destroy_workqueue(struct workqueue_struct *wq)
3906 {
3907 	struct pool_workqueue *pwq;
3908 	int node;
3909 
3910 	/* drain it before proceeding with destruction */
3911 	drain_workqueue(wq);
3912 
3913 	/* sanity checks */
3914 	mutex_lock(&wq->mutex);
3915 	for_each_pwq(pwq, wq) {
3916 		int i;
3917 
3918 		for (i = 0; i < WORK_NR_COLORS; i++) {
3919 			if (WARN_ON(pwq->nr_in_flight[i])) {
3920 				mutex_unlock(&wq->mutex);
3921 				return;
3922 			}
3923 		}
3924 
3925 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
3926 		    WARN_ON(pwq->nr_active) ||
3927 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3928 			mutex_unlock(&wq->mutex);
3929 			return;
3930 		}
3931 	}
3932 	mutex_unlock(&wq->mutex);
3933 
3934 	/*
3935 	 * wq list is used to freeze wq, remove from list after
3936 	 * flushing is complete in case freeze races us.
3937 	 */
3938 	mutex_lock(&wq_pool_mutex);
3939 	list_del_rcu(&wq->list);
3940 	mutex_unlock(&wq_pool_mutex);
3941 
3942 	workqueue_sysfs_unregister(wq);
3943 
3944 	if (wq->rescuer)
3945 		kthread_stop(wq->rescuer->task);
3946 
3947 	if (!(wq->flags & WQ_UNBOUND)) {
3948 		/*
3949 		 * The base ref is never dropped on per-cpu pwqs.  Directly
3950 		 * schedule RCU free.
3951 		 */
3952 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3953 	} else {
3954 		/*
3955 		 * We're the sole accessor of @wq at this point.  Directly
3956 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
3957 		 * @wq will be freed when the last pwq is released.
3958 		 */
3959 		for_each_node(node) {
3960 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3961 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
3962 			put_pwq_unlocked(pwq);
3963 		}
3964 
3965 		/*
3966 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
3967 		 * put.  Don't access it afterwards.
3968 		 */
3969 		pwq = wq->dfl_pwq;
3970 		wq->dfl_pwq = NULL;
3971 		put_pwq_unlocked(pwq);
3972 	}
3973 }
3974 EXPORT_SYMBOL_GPL(destroy_workqueue);
3975 
3976 /**
3977  * workqueue_set_max_active - adjust max_active of a workqueue
3978  * @wq: target workqueue
3979  * @max_active: new max_active value.
3980  *
3981  * Set max_active of @wq to @max_active.
3982  *
3983  * CONTEXT:
3984  * Don't call from IRQ context.
3985  */
3986 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3987 {
3988 	struct pool_workqueue *pwq;
3989 
3990 	/* disallow meddling with max_active for ordered workqueues */
3991 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3992 		return;
3993 
3994 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3995 
3996 	mutex_lock(&wq->mutex);
3997 
3998 	wq->saved_max_active = max_active;
3999 
4000 	for_each_pwq(pwq, wq)
4001 		pwq_adjust_max_active(pwq);
4002 
4003 	mutex_unlock(&wq->mutex);
4004 }
4005 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4006 
4007 /**
4008  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4009  *
4010  * Determine whether %current is a workqueue rescuer.  Can be used from
4011  * work functions to determine whether it's being run off the rescuer task.
4012  *
4013  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4014  */
4015 bool current_is_workqueue_rescuer(void)
4016 {
4017 	struct worker *worker = current_wq_worker();
4018 
4019 	return worker && worker->rescue_wq;
4020 }
4021 
4022 /**
4023  * workqueue_congested - test whether a workqueue is congested
4024  * @cpu: CPU in question
4025  * @wq: target workqueue
4026  *
4027  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4028  * no synchronization around this function and the test result is
4029  * unreliable and only useful as advisory hints or for debugging.
4030  *
4031  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4032  * Note that both per-cpu and unbound workqueues may be associated with
4033  * multiple pool_workqueues which have separate congested states.  A
4034  * workqueue being congested on one CPU doesn't mean the workqueue is also
4035  * contested on other CPUs / NUMA nodes.
4036  *
4037  * Return:
4038  * %true if congested, %false otherwise.
4039  */
4040 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4041 {
4042 	struct pool_workqueue *pwq;
4043 	bool ret;
4044 
4045 	rcu_read_lock_sched();
4046 
4047 	if (cpu == WORK_CPU_UNBOUND)
4048 		cpu = smp_processor_id();
4049 
4050 	if (!(wq->flags & WQ_UNBOUND))
4051 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4052 	else
4053 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4054 
4055 	ret = !list_empty(&pwq->delayed_works);
4056 	rcu_read_unlock_sched();
4057 
4058 	return ret;
4059 }
4060 EXPORT_SYMBOL_GPL(workqueue_congested);
4061 
4062 /**
4063  * work_busy - test whether a work is currently pending or running
4064  * @work: the work to be tested
4065  *
4066  * Test whether @work is currently pending or running.  There is no
4067  * synchronization around this function and the test result is
4068  * unreliable and only useful as advisory hints or for debugging.
4069  *
4070  * Return:
4071  * OR'd bitmask of WORK_BUSY_* bits.
4072  */
4073 unsigned int work_busy(struct work_struct *work)
4074 {
4075 	struct worker_pool *pool;
4076 	unsigned long flags;
4077 	unsigned int ret = 0;
4078 
4079 	if (work_pending(work))
4080 		ret |= WORK_BUSY_PENDING;
4081 
4082 	local_irq_save(flags);
4083 	pool = get_work_pool(work);
4084 	if (pool) {
4085 		spin_lock(&pool->lock);
4086 		if (find_worker_executing_work(pool, work))
4087 			ret |= WORK_BUSY_RUNNING;
4088 		spin_unlock(&pool->lock);
4089 	}
4090 	local_irq_restore(flags);
4091 
4092 	return ret;
4093 }
4094 EXPORT_SYMBOL_GPL(work_busy);
4095 
4096 /**
4097  * set_worker_desc - set description for the current work item
4098  * @fmt: printf-style format string
4099  * @...: arguments for the format string
4100  *
4101  * This function can be called by a running work function to describe what
4102  * the work item is about.  If the worker task gets dumped, this
4103  * information will be printed out together to help debugging.  The
4104  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4105  */
4106 void set_worker_desc(const char *fmt, ...)
4107 {
4108 	struct worker *worker = current_wq_worker();
4109 	va_list args;
4110 
4111 	if (worker) {
4112 		va_start(args, fmt);
4113 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4114 		va_end(args);
4115 		worker->desc_valid = true;
4116 	}
4117 }
4118 
4119 /**
4120  * print_worker_info - print out worker information and description
4121  * @log_lvl: the log level to use when printing
4122  * @task: target task
4123  *
4124  * If @task is a worker and currently executing a work item, print out the
4125  * name of the workqueue being serviced and worker description set with
4126  * set_worker_desc() by the currently executing work item.
4127  *
4128  * This function can be safely called on any task as long as the
4129  * task_struct itself is accessible.  While safe, this function isn't
4130  * synchronized and may print out mixups or garbages of limited length.
4131  */
4132 void print_worker_info(const char *log_lvl, struct task_struct *task)
4133 {
4134 	work_func_t *fn = NULL;
4135 	char name[WQ_NAME_LEN] = { };
4136 	char desc[WORKER_DESC_LEN] = { };
4137 	struct pool_workqueue *pwq = NULL;
4138 	struct workqueue_struct *wq = NULL;
4139 	bool desc_valid = false;
4140 	struct worker *worker;
4141 
4142 	if (!(task->flags & PF_WQ_WORKER))
4143 		return;
4144 
4145 	/*
4146 	 * This function is called without any synchronization and @task
4147 	 * could be in any state.  Be careful with dereferences.
4148 	 */
4149 	worker = probe_kthread_data(task);
4150 
4151 	/*
4152 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4153 	 * the original last '\0' in case the original contains garbage.
4154 	 */
4155 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4156 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4157 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4158 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4159 
4160 	/* copy worker description */
4161 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4162 	if (desc_valid)
4163 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4164 
4165 	if (fn || name[0] || desc[0]) {
4166 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4167 		if (desc[0])
4168 			pr_cont(" (%s)", desc);
4169 		pr_cont("\n");
4170 	}
4171 }
4172 
4173 static void pr_cont_pool_info(struct worker_pool *pool)
4174 {
4175 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4176 	if (pool->node != NUMA_NO_NODE)
4177 		pr_cont(" node=%d", pool->node);
4178 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4179 }
4180 
4181 static void pr_cont_work(bool comma, struct work_struct *work)
4182 {
4183 	if (work->func == wq_barrier_func) {
4184 		struct wq_barrier *barr;
4185 
4186 		barr = container_of(work, struct wq_barrier, work);
4187 
4188 		pr_cont("%s BAR(%d)", comma ? "," : "",
4189 			task_pid_nr(barr->task));
4190 	} else {
4191 		pr_cont("%s %pf", comma ? "," : "", work->func);
4192 	}
4193 }
4194 
4195 static void show_pwq(struct pool_workqueue *pwq)
4196 {
4197 	struct worker_pool *pool = pwq->pool;
4198 	struct work_struct *work;
4199 	struct worker *worker;
4200 	bool has_in_flight = false, has_pending = false;
4201 	int bkt;
4202 
4203 	pr_info("  pwq %d:", pool->id);
4204 	pr_cont_pool_info(pool);
4205 
4206 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4207 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4208 
4209 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4210 		if (worker->current_pwq == pwq) {
4211 			has_in_flight = true;
4212 			break;
4213 		}
4214 	}
4215 	if (has_in_flight) {
4216 		bool comma = false;
4217 
4218 		pr_info("    in-flight:");
4219 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4220 			if (worker->current_pwq != pwq)
4221 				continue;
4222 
4223 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4224 				task_pid_nr(worker->task),
4225 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4226 				worker->current_func);
4227 			list_for_each_entry(work, &worker->scheduled, entry)
4228 				pr_cont_work(false, work);
4229 			comma = true;
4230 		}
4231 		pr_cont("\n");
4232 	}
4233 
4234 	list_for_each_entry(work, &pool->worklist, entry) {
4235 		if (get_work_pwq(work) == pwq) {
4236 			has_pending = true;
4237 			break;
4238 		}
4239 	}
4240 	if (has_pending) {
4241 		bool comma = false;
4242 
4243 		pr_info("    pending:");
4244 		list_for_each_entry(work, &pool->worklist, entry) {
4245 			if (get_work_pwq(work) != pwq)
4246 				continue;
4247 
4248 			pr_cont_work(comma, work);
4249 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4250 		}
4251 		pr_cont("\n");
4252 	}
4253 
4254 	if (!list_empty(&pwq->delayed_works)) {
4255 		bool comma = false;
4256 
4257 		pr_info("    delayed:");
4258 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4259 			pr_cont_work(comma, work);
4260 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4261 		}
4262 		pr_cont("\n");
4263 	}
4264 }
4265 
4266 /**
4267  * show_workqueue_state - dump workqueue state
4268  *
4269  * Called from a sysrq handler and prints out all busy workqueues and
4270  * pools.
4271  */
4272 void show_workqueue_state(void)
4273 {
4274 	struct workqueue_struct *wq;
4275 	struct worker_pool *pool;
4276 	unsigned long flags;
4277 	int pi;
4278 
4279 	rcu_read_lock_sched();
4280 
4281 	pr_info("Showing busy workqueues and worker pools:\n");
4282 
4283 	list_for_each_entry_rcu(wq, &workqueues, list) {
4284 		struct pool_workqueue *pwq;
4285 		bool idle = true;
4286 
4287 		for_each_pwq(pwq, wq) {
4288 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4289 				idle = false;
4290 				break;
4291 			}
4292 		}
4293 		if (idle)
4294 			continue;
4295 
4296 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4297 
4298 		for_each_pwq(pwq, wq) {
4299 			spin_lock_irqsave(&pwq->pool->lock, flags);
4300 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4301 				show_pwq(pwq);
4302 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4303 		}
4304 	}
4305 
4306 	for_each_pool(pool, pi) {
4307 		struct worker *worker;
4308 		bool first = true;
4309 
4310 		spin_lock_irqsave(&pool->lock, flags);
4311 		if (pool->nr_workers == pool->nr_idle)
4312 			goto next_pool;
4313 
4314 		pr_info("pool %d:", pool->id);
4315 		pr_cont_pool_info(pool);
4316 		pr_cont(" workers=%d", pool->nr_workers);
4317 		if (pool->manager)
4318 			pr_cont(" manager: %d",
4319 				task_pid_nr(pool->manager->task));
4320 		list_for_each_entry(worker, &pool->idle_list, entry) {
4321 			pr_cont(" %s%d", first ? "idle: " : "",
4322 				task_pid_nr(worker->task));
4323 			first = false;
4324 		}
4325 		pr_cont("\n");
4326 	next_pool:
4327 		spin_unlock_irqrestore(&pool->lock, flags);
4328 	}
4329 
4330 	rcu_read_unlock_sched();
4331 }
4332 
4333 /*
4334  * CPU hotplug.
4335  *
4336  * There are two challenges in supporting CPU hotplug.  Firstly, there
4337  * are a lot of assumptions on strong associations among work, pwq and
4338  * pool which make migrating pending and scheduled works very
4339  * difficult to implement without impacting hot paths.  Secondly,
4340  * worker pools serve mix of short, long and very long running works making
4341  * blocked draining impractical.
4342  *
4343  * This is solved by allowing the pools to be disassociated from the CPU
4344  * running as an unbound one and allowing it to be reattached later if the
4345  * cpu comes back online.
4346  */
4347 
4348 static void wq_unbind_fn(struct work_struct *work)
4349 {
4350 	int cpu = smp_processor_id();
4351 	struct worker_pool *pool;
4352 	struct worker *worker;
4353 
4354 	for_each_cpu_worker_pool(pool, cpu) {
4355 		mutex_lock(&pool->attach_mutex);
4356 		spin_lock_irq(&pool->lock);
4357 
4358 		/*
4359 		 * We've blocked all attach/detach operations. Make all workers
4360 		 * unbound and set DISASSOCIATED.  Before this, all workers
4361 		 * except for the ones which are still executing works from
4362 		 * before the last CPU down must be on the cpu.  After
4363 		 * this, they may become diasporas.
4364 		 */
4365 		for_each_pool_worker(worker, pool)
4366 			worker->flags |= WORKER_UNBOUND;
4367 
4368 		pool->flags |= POOL_DISASSOCIATED;
4369 
4370 		spin_unlock_irq(&pool->lock);
4371 		mutex_unlock(&pool->attach_mutex);
4372 
4373 		/*
4374 		 * Call schedule() so that we cross rq->lock and thus can
4375 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4376 		 * This is necessary as scheduler callbacks may be invoked
4377 		 * from other cpus.
4378 		 */
4379 		schedule();
4380 
4381 		/*
4382 		 * Sched callbacks are disabled now.  Zap nr_running.
4383 		 * After this, nr_running stays zero and need_more_worker()
4384 		 * and keep_working() are always true as long as the
4385 		 * worklist is not empty.  This pool now behaves as an
4386 		 * unbound (in terms of concurrency management) pool which
4387 		 * are served by workers tied to the pool.
4388 		 */
4389 		atomic_set(&pool->nr_running, 0);
4390 
4391 		/*
4392 		 * With concurrency management just turned off, a busy
4393 		 * worker blocking could lead to lengthy stalls.  Kick off
4394 		 * unbound chain execution of currently pending work items.
4395 		 */
4396 		spin_lock_irq(&pool->lock);
4397 		wake_up_worker(pool);
4398 		spin_unlock_irq(&pool->lock);
4399 	}
4400 }
4401 
4402 /**
4403  * rebind_workers - rebind all workers of a pool to the associated CPU
4404  * @pool: pool of interest
4405  *
4406  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4407  */
4408 static void rebind_workers(struct worker_pool *pool)
4409 {
4410 	struct worker *worker;
4411 
4412 	lockdep_assert_held(&pool->attach_mutex);
4413 
4414 	/*
4415 	 * Restore CPU affinity of all workers.  As all idle workers should
4416 	 * be on the run-queue of the associated CPU before any local
4417 	 * wake-ups for concurrency management happen, restore CPU affinity
4418 	 * of all workers first and then clear UNBOUND.  As we're called
4419 	 * from CPU_ONLINE, the following shouldn't fail.
4420 	 */
4421 	for_each_pool_worker(worker, pool)
4422 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4423 						  pool->attrs->cpumask) < 0);
4424 
4425 	spin_lock_irq(&pool->lock);
4426 	pool->flags &= ~POOL_DISASSOCIATED;
4427 
4428 	for_each_pool_worker(worker, pool) {
4429 		unsigned int worker_flags = worker->flags;
4430 
4431 		/*
4432 		 * A bound idle worker should actually be on the runqueue
4433 		 * of the associated CPU for local wake-ups targeting it to
4434 		 * work.  Kick all idle workers so that they migrate to the
4435 		 * associated CPU.  Doing this in the same loop as
4436 		 * replacing UNBOUND with REBOUND is safe as no worker will
4437 		 * be bound before @pool->lock is released.
4438 		 */
4439 		if (worker_flags & WORKER_IDLE)
4440 			wake_up_process(worker->task);
4441 
4442 		/*
4443 		 * We want to clear UNBOUND but can't directly call
4444 		 * worker_clr_flags() or adjust nr_running.  Atomically
4445 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4446 		 * @worker will clear REBOUND using worker_clr_flags() when
4447 		 * it initiates the next execution cycle thus restoring
4448 		 * concurrency management.  Note that when or whether
4449 		 * @worker clears REBOUND doesn't affect correctness.
4450 		 *
4451 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4452 		 * tested without holding any lock in
4453 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4454 		 * fail incorrectly leading to premature concurrency
4455 		 * management operations.
4456 		 */
4457 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4458 		worker_flags |= WORKER_REBOUND;
4459 		worker_flags &= ~WORKER_UNBOUND;
4460 		ACCESS_ONCE(worker->flags) = worker_flags;
4461 	}
4462 
4463 	spin_unlock_irq(&pool->lock);
4464 }
4465 
4466 /**
4467  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4468  * @pool: unbound pool of interest
4469  * @cpu: the CPU which is coming up
4470  *
4471  * An unbound pool may end up with a cpumask which doesn't have any online
4472  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4473  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4474  * online CPU before, cpus_allowed of all its workers should be restored.
4475  */
4476 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4477 {
4478 	static cpumask_t cpumask;
4479 	struct worker *worker;
4480 
4481 	lockdep_assert_held(&pool->attach_mutex);
4482 
4483 	/* is @cpu allowed for @pool? */
4484 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4485 		return;
4486 
4487 	/* is @cpu the only online CPU? */
4488 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4489 	if (cpumask_weight(&cpumask) != 1)
4490 		return;
4491 
4492 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4493 	for_each_pool_worker(worker, pool)
4494 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4495 						  pool->attrs->cpumask) < 0);
4496 }
4497 
4498 /*
4499  * Workqueues should be brought up before normal priority CPU notifiers.
4500  * This will be registered high priority CPU notifier.
4501  */
4502 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4503 					       unsigned long action,
4504 					       void *hcpu)
4505 {
4506 	int cpu = (unsigned long)hcpu;
4507 	struct worker_pool *pool;
4508 	struct workqueue_struct *wq;
4509 	int pi;
4510 
4511 	switch (action & ~CPU_TASKS_FROZEN) {
4512 	case CPU_UP_PREPARE:
4513 		for_each_cpu_worker_pool(pool, cpu) {
4514 			if (pool->nr_workers)
4515 				continue;
4516 			if (!create_worker(pool))
4517 				return NOTIFY_BAD;
4518 		}
4519 		break;
4520 
4521 	case CPU_DOWN_FAILED:
4522 	case CPU_ONLINE:
4523 		mutex_lock(&wq_pool_mutex);
4524 
4525 		for_each_pool(pool, pi) {
4526 			mutex_lock(&pool->attach_mutex);
4527 
4528 			if (pool->cpu == cpu)
4529 				rebind_workers(pool);
4530 			else if (pool->cpu < 0)
4531 				restore_unbound_workers_cpumask(pool, cpu);
4532 
4533 			mutex_unlock(&pool->attach_mutex);
4534 		}
4535 
4536 		/* update NUMA affinity of unbound workqueues */
4537 		list_for_each_entry(wq, &workqueues, list)
4538 			wq_update_unbound_numa(wq, cpu, true);
4539 
4540 		mutex_unlock(&wq_pool_mutex);
4541 		break;
4542 	}
4543 	return NOTIFY_OK;
4544 }
4545 
4546 /*
4547  * Workqueues should be brought down after normal priority CPU notifiers.
4548  * This will be registered as low priority CPU notifier.
4549  */
4550 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4551 						 unsigned long action,
4552 						 void *hcpu)
4553 {
4554 	int cpu = (unsigned long)hcpu;
4555 	struct work_struct unbind_work;
4556 	struct workqueue_struct *wq;
4557 
4558 	switch (action & ~CPU_TASKS_FROZEN) {
4559 	case CPU_DOWN_PREPARE:
4560 		/* unbinding per-cpu workers should happen on the local CPU */
4561 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4562 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4563 
4564 		/* update NUMA affinity of unbound workqueues */
4565 		mutex_lock(&wq_pool_mutex);
4566 		list_for_each_entry(wq, &workqueues, list)
4567 			wq_update_unbound_numa(wq, cpu, false);
4568 		mutex_unlock(&wq_pool_mutex);
4569 
4570 		/* wait for per-cpu unbinding to finish */
4571 		flush_work(&unbind_work);
4572 		destroy_work_on_stack(&unbind_work);
4573 		break;
4574 	}
4575 	return NOTIFY_OK;
4576 }
4577 
4578 #ifdef CONFIG_SMP
4579 
4580 struct work_for_cpu {
4581 	struct work_struct work;
4582 	long (*fn)(void *);
4583 	void *arg;
4584 	long ret;
4585 };
4586 
4587 static void work_for_cpu_fn(struct work_struct *work)
4588 {
4589 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4590 
4591 	wfc->ret = wfc->fn(wfc->arg);
4592 }
4593 
4594 /**
4595  * work_on_cpu - run a function in user context on a particular cpu
4596  * @cpu: the cpu to run on
4597  * @fn: the function to run
4598  * @arg: the function arg
4599  *
4600  * It is up to the caller to ensure that the cpu doesn't go offline.
4601  * The caller must not hold any locks which would prevent @fn from completing.
4602  *
4603  * Return: The value @fn returns.
4604  */
4605 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4606 {
4607 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4608 
4609 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4610 	schedule_work_on(cpu, &wfc.work);
4611 	flush_work(&wfc.work);
4612 	destroy_work_on_stack(&wfc.work);
4613 	return wfc.ret;
4614 }
4615 EXPORT_SYMBOL_GPL(work_on_cpu);
4616 #endif /* CONFIG_SMP */
4617 
4618 #ifdef CONFIG_FREEZER
4619 
4620 /**
4621  * freeze_workqueues_begin - begin freezing workqueues
4622  *
4623  * Start freezing workqueues.  After this function returns, all freezable
4624  * workqueues will queue new works to their delayed_works list instead of
4625  * pool->worklist.
4626  *
4627  * CONTEXT:
4628  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4629  */
4630 void freeze_workqueues_begin(void)
4631 {
4632 	struct workqueue_struct *wq;
4633 	struct pool_workqueue *pwq;
4634 
4635 	mutex_lock(&wq_pool_mutex);
4636 
4637 	WARN_ON_ONCE(workqueue_freezing);
4638 	workqueue_freezing = true;
4639 
4640 	list_for_each_entry(wq, &workqueues, list) {
4641 		mutex_lock(&wq->mutex);
4642 		for_each_pwq(pwq, wq)
4643 			pwq_adjust_max_active(pwq);
4644 		mutex_unlock(&wq->mutex);
4645 	}
4646 
4647 	mutex_unlock(&wq_pool_mutex);
4648 }
4649 
4650 /**
4651  * freeze_workqueues_busy - are freezable workqueues still busy?
4652  *
4653  * Check whether freezing is complete.  This function must be called
4654  * between freeze_workqueues_begin() and thaw_workqueues().
4655  *
4656  * CONTEXT:
4657  * Grabs and releases wq_pool_mutex.
4658  *
4659  * Return:
4660  * %true if some freezable workqueues are still busy.  %false if freezing
4661  * is complete.
4662  */
4663 bool freeze_workqueues_busy(void)
4664 {
4665 	bool busy = false;
4666 	struct workqueue_struct *wq;
4667 	struct pool_workqueue *pwq;
4668 
4669 	mutex_lock(&wq_pool_mutex);
4670 
4671 	WARN_ON_ONCE(!workqueue_freezing);
4672 
4673 	list_for_each_entry(wq, &workqueues, list) {
4674 		if (!(wq->flags & WQ_FREEZABLE))
4675 			continue;
4676 		/*
4677 		 * nr_active is monotonically decreasing.  It's safe
4678 		 * to peek without lock.
4679 		 */
4680 		rcu_read_lock_sched();
4681 		for_each_pwq(pwq, wq) {
4682 			WARN_ON_ONCE(pwq->nr_active < 0);
4683 			if (pwq->nr_active) {
4684 				busy = true;
4685 				rcu_read_unlock_sched();
4686 				goto out_unlock;
4687 			}
4688 		}
4689 		rcu_read_unlock_sched();
4690 	}
4691 out_unlock:
4692 	mutex_unlock(&wq_pool_mutex);
4693 	return busy;
4694 }
4695 
4696 /**
4697  * thaw_workqueues - thaw workqueues
4698  *
4699  * Thaw workqueues.  Normal queueing is restored and all collected
4700  * frozen works are transferred to their respective pool worklists.
4701  *
4702  * CONTEXT:
4703  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4704  */
4705 void thaw_workqueues(void)
4706 {
4707 	struct workqueue_struct *wq;
4708 	struct pool_workqueue *pwq;
4709 
4710 	mutex_lock(&wq_pool_mutex);
4711 
4712 	if (!workqueue_freezing)
4713 		goto out_unlock;
4714 
4715 	workqueue_freezing = false;
4716 
4717 	/* restore max_active and repopulate worklist */
4718 	list_for_each_entry(wq, &workqueues, list) {
4719 		mutex_lock(&wq->mutex);
4720 		for_each_pwq(pwq, wq)
4721 			pwq_adjust_max_active(pwq);
4722 		mutex_unlock(&wq->mutex);
4723 	}
4724 
4725 out_unlock:
4726 	mutex_unlock(&wq_pool_mutex);
4727 }
4728 #endif /* CONFIG_FREEZER */
4729 
4730 static int workqueue_apply_unbound_cpumask(void)
4731 {
4732 	LIST_HEAD(ctxs);
4733 	int ret = 0;
4734 	struct workqueue_struct *wq;
4735 	struct apply_wqattrs_ctx *ctx, *n;
4736 
4737 	lockdep_assert_held(&wq_pool_mutex);
4738 
4739 	list_for_each_entry(wq, &workqueues, list) {
4740 		if (!(wq->flags & WQ_UNBOUND))
4741 			continue;
4742 		/* creating multiple pwqs breaks ordering guarantee */
4743 		if (wq->flags & __WQ_ORDERED)
4744 			continue;
4745 
4746 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4747 		if (!ctx) {
4748 			ret = -ENOMEM;
4749 			break;
4750 		}
4751 
4752 		list_add_tail(&ctx->list, &ctxs);
4753 	}
4754 
4755 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4756 		if (!ret)
4757 			apply_wqattrs_commit(ctx);
4758 		apply_wqattrs_cleanup(ctx);
4759 	}
4760 
4761 	return ret;
4762 }
4763 
4764 /**
4765  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4766  *  @cpumask: the cpumask to set
4767  *
4768  *  The low-level workqueues cpumask is a global cpumask that limits
4769  *  the affinity of all unbound workqueues.  This function check the @cpumask
4770  *  and apply it to all unbound workqueues and updates all pwqs of them.
4771  *
4772  *  Retun:	0	- Success
4773  *  		-EINVAL	- Invalid @cpumask
4774  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4775  */
4776 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4777 {
4778 	int ret = -EINVAL;
4779 	cpumask_var_t saved_cpumask;
4780 
4781 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4782 		return -ENOMEM;
4783 
4784 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4785 	if (!cpumask_empty(cpumask)) {
4786 		apply_wqattrs_lock();
4787 
4788 		/* save the old wq_unbound_cpumask. */
4789 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4790 
4791 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4792 		cpumask_copy(wq_unbound_cpumask, cpumask);
4793 		ret = workqueue_apply_unbound_cpumask();
4794 
4795 		/* restore the wq_unbound_cpumask when failed. */
4796 		if (ret < 0)
4797 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4798 
4799 		apply_wqattrs_unlock();
4800 	}
4801 
4802 	free_cpumask_var(saved_cpumask);
4803 	return ret;
4804 }
4805 
4806 #ifdef CONFIG_SYSFS
4807 /*
4808  * Workqueues with WQ_SYSFS flag set is visible to userland via
4809  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4810  * following attributes.
4811  *
4812  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4813  *  max_active	RW int	: maximum number of in-flight work items
4814  *
4815  * Unbound workqueues have the following extra attributes.
4816  *
4817  *  id		RO int	: the associated pool ID
4818  *  nice	RW int	: nice value of the workers
4819  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4820  */
4821 struct wq_device {
4822 	struct workqueue_struct		*wq;
4823 	struct device			dev;
4824 };
4825 
4826 static struct workqueue_struct *dev_to_wq(struct device *dev)
4827 {
4828 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4829 
4830 	return wq_dev->wq;
4831 }
4832 
4833 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4834 			    char *buf)
4835 {
4836 	struct workqueue_struct *wq = dev_to_wq(dev);
4837 
4838 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4839 }
4840 static DEVICE_ATTR_RO(per_cpu);
4841 
4842 static ssize_t max_active_show(struct device *dev,
4843 			       struct device_attribute *attr, char *buf)
4844 {
4845 	struct workqueue_struct *wq = dev_to_wq(dev);
4846 
4847 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4848 }
4849 
4850 static ssize_t max_active_store(struct device *dev,
4851 				struct device_attribute *attr, const char *buf,
4852 				size_t count)
4853 {
4854 	struct workqueue_struct *wq = dev_to_wq(dev);
4855 	int val;
4856 
4857 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4858 		return -EINVAL;
4859 
4860 	workqueue_set_max_active(wq, val);
4861 	return count;
4862 }
4863 static DEVICE_ATTR_RW(max_active);
4864 
4865 static struct attribute *wq_sysfs_attrs[] = {
4866 	&dev_attr_per_cpu.attr,
4867 	&dev_attr_max_active.attr,
4868 	NULL,
4869 };
4870 ATTRIBUTE_GROUPS(wq_sysfs);
4871 
4872 static ssize_t wq_pool_ids_show(struct device *dev,
4873 				struct device_attribute *attr, char *buf)
4874 {
4875 	struct workqueue_struct *wq = dev_to_wq(dev);
4876 	const char *delim = "";
4877 	int node, written = 0;
4878 
4879 	rcu_read_lock_sched();
4880 	for_each_node(node) {
4881 		written += scnprintf(buf + written, PAGE_SIZE - written,
4882 				     "%s%d:%d", delim, node,
4883 				     unbound_pwq_by_node(wq, node)->pool->id);
4884 		delim = " ";
4885 	}
4886 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4887 	rcu_read_unlock_sched();
4888 
4889 	return written;
4890 }
4891 
4892 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4893 			    char *buf)
4894 {
4895 	struct workqueue_struct *wq = dev_to_wq(dev);
4896 	int written;
4897 
4898 	mutex_lock(&wq->mutex);
4899 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4900 	mutex_unlock(&wq->mutex);
4901 
4902 	return written;
4903 }
4904 
4905 /* prepare workqueue_attrs for sysfs store operations */
4906 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4907 {
4908 	struct workqueue_attrs *attrs;
4909 
4910 	lockdep_assert_held(&wq_pool_mutex);
4911 
4912 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
4913 	if (!attrs)
4914 		return NULL;
4915 
4916 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
4917 	return attrs;
4918 }
4919 
4920 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4921 			     const char *buf, size_t count)
4922 {
4923 	struct workqueue_struct *wq = dev_to_wq(dev);
4924 	struct workqueue_attrs *attrs;
4925 	int ret = -ENOMEM;
4926 
4927 	apply_wqattrs_lock();
4928 
4929 	attrs = wq_sysfs_prep_attrs(wq);
4930 	if (!attrs)
4931 		goto out_unlock;
4932 
4933 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
4934 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4935 		ret = apply_workqueue_attrs_locked(wq, attrs);
4936 	else
4937 		ret = -EINVAL;
4938 
4939 out_unlock:
4940 	apply_wqattrs_unlock();
4941 	free_workqueue_attrs(attrs);
4942 	return ret ?: count;
4943 }
4944 
4945 static ssize_t wq_cpumask_show(struct device *dev,
4946 			       struct device_attribute *attr, char *buf)
4947 {
4948 	struct workqueue_struct *wq = dev_to_wq(dev);
4949 	int written;
4950 
4951 	mutex_lock(&wq->mutex);
4952 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
4953 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
4954 	mutex_unlock(&wq->mutex);
4955 	return written;
4956 }
4957 
4958 static ssize_t wq_cpumask_store(struct device *dev,
4959 				struct device_attribute *attr,
4960 				const char *buf, size_t count)
4961 {
4962 	struct workqueue_struct *wq = dev_to_wq(dev);
4963 	struct workqueue_attrs *attrs;
4964 	int ret = -ENOMEM;
4965 
4966 	apply_wqattrs_lock();
4967 
4968 	attrs = wq_sysfs_prep_attrs(wq);
4969 	if (!attrs)
4970 		goto out_unlock;
4971 
4972 	ret = cpumask_parse(buf, attrs->cpumask);
4973 	if (!ret)
4974 		ret = apply_workqueue_attrs_locked(wq, attrs);
4975 
4976 out_unlock:
4977 	apply_wqattrs_unlock();
4978 	free_workqueue_attrs(attrs);
4979 	return ret ?: count;
4980 }
4981 
4982 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
4983 			    char *buf)
4984 {
4985 	struct workqueue_struct *wq = dev_to_wq(dev);
4986 	int written;
4987 
4988 	mutex_lock(&wq->mutex);
4989 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
4990 			    !wq->unbound_attrs->no_numa);
4991 	mutex_unlock(&wq->mutex);
4992 
4993 	return written;
4994 }
4995 
4996 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
4997 			     const char *buf, size_t count)
4998 {
4999 	struct workqueue_struct *wq = dev_to_wq(dev);
5000 	struct workqueue_attrs *attrs;
5001 	int v, ret = -ENOMEM;
5002 
5003 	apply_wqattrs_lock();
5004 
5005 	attrs = wq_sysfs_prep_attrs(wq);
5006 	if (!attrs)
5007 		goto out_unlock;
5008 
5009 	ret = -EINVAL;
5010 	if (sscanf(buf, "%d", &v) == 1) {
5011 		attrs->no_numa = !v;
5012 		ret = apply_workqueue_attrs_locked(wq, attrs);
5013 	}
5014 
5015 out_unlock:
5016 	apply_wqattrs_unlock();
5017 	free_workqueue_attrs(attrs);
5018 	return ret ?: count;
5019 }
5020 
5021 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5022 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5023 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5024 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5025 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5026 	__ATTR_NULL,
5027 };
5028 
5029 static struct bus_type wq_subsys = {
5030 	.name				= "workqueue",
5031 	.dev_groups			= wq_sysfs_groups,
5032 };
5033 
5034 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5035 		struct device_attribute *attr, char *buf)
5036 {
5037 	int written;
5038 
5039 	mutex_lock(&wq_pool_mutex);
5040 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5041 			    cpumask_pr_args(wq_unbound_cpumask));
5042 	mutex_unlock(&wq_pool_mutex);
5043 
5044 	return written;
5045 }
5046 
5047 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5048 		struct device_attribute *attr, const char *buf, size_t count)
5049 {
5050 	cpumask_var_t cpumask;
5051 	int ret;
5052 
5053 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5054 		return -ENOMEM;
5055 
5056 	ret = cpumask_parse(buf, cpumask);
5057 	if (!ret)
5058 		ret = workqueue_set_unbound_cpumask(cpumask);
5059 
5060 	free_cpumask_var(cpumask);
5061 	return ret ? ret : count;
5062 }
5063 
5064 static struct device_attribute wq_sysfs_cpumask_attr =
5065 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5066 	       wq_unbound_cpumask_store);
5067 
5068 static int __init wq_sysfs_init(void)
5069 {
5070 	int err;
5071 
5072 	err = subsys_virtual_register(&wq_subsys, NULL);
5073 	if (err)
5074 		return err;
5075 
5076 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5077 }
5078 core_initcall(wq_sysfs_init);
5079 
5080 static void wq_device_release(struct device *dev)
5081 {
5082 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5083 
5084 	kfree(wq_dev);
5085 }
5086 
5087 /**
5088  * workqueue_sysfs_register - make a workqueue visible in sysfs
5089  * @wq: the workqueue to register
5090  *
5091  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5092  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5093  * which is the preferred method.
5094  *
5095  * Workqueue user should use this function directly iff it wants to apply
5096  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5097  * apply_workqueue_attrs() may race against userland updating the
5098  * attributes.
5099  *
5100  * Return: 0 on success, -errno on failure.
5101  */
5102 int workqueue_sysfs_register(struct workqueue_struct *wq)
5103 {
5104 	struct wq_device *wq_dev;
5105 	int ret;
5106 
5107 	/*
5108 	 * Adjusting max_active or creating new pwqs by applying
5109 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5110 	 * workqueues.
5111 	 */
5112 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5113 		return -EINVAL;
5114 
5115 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5116 	if (!wq_dev)
5117 		return -ENOMEM;
5118 
5119 	wq_dev->wq = wq;
5120 	wq_dev->dev.bus = &wq_subsys;
5121 	wq_dev->dev.init_name = wq->name;
5122 	wq_dev->dev.release = wq_device_release;
5123 
5124 	/*
5125 	 * unbound_attrs are created separately.  Suppress uevent until
5126 	 * everything is ready.
5127 	 */
5128 	dev_set_uevent_suppress(&wq_dev->dev, true);
5129 
5130 	ret = device_register(&wq_dev->dev);
5131 	if (ret) {
5132 		kfree(wq_dev);
5133 		wq->wq_dev = NULL;
5134 		return ret;
5135 	}
5136 
5137 	if (wq->flags & WQ_UNBOUND) {
5138 		struct device_attribute *attr;
5139 
5140 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5141 			ret = device_create_file(&wq_dev->dev, attr);
5142 			if (ret) {
5143 				device_unregister(&wq_dev->dev);
5144 				wq->wq_dev = NULL;
5145 				return ret;
5146 			}
5147 		}
5148 	}
5149 
5150 	dev_set_uevent_suppress(&wq_dev->dev, false);
5151 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5152 	return 0;
5153 }
5154 
5155 /**
5156  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5157  * @wq: the workqueue to unregister
5158  *
5159  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5160  */
5161 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5162 {
5163 	struct wq_device *wq_dev = wq->wq_dev;
5164 
5165 	if (!wq->wq_dev)
5166 		return;
5167 
5168 	wq->wq_dev = NULL;
5169 	device_unregister(&wq_dev->dev);
5170 }
5171 #else	/* CONFIG_SYSFS */
5172 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5173 #endif	/* CONFIG_SYSFS */
5174 
5175 static void __init wq_numa_init(void)
5176 {
5177 	cpumask_var_t *tbl;
5178 	int node, cpu;
5179 
5180 	if (num_possible_nodes() <= 1)
5181 		return;
5182 
5183 	if (wq_disable_numa) {
5184 		pr_info("workqueue: NUMA affinity support disabled\n");
5185 		return;
5186 	}
5187 
5188 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5189 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5190 
5191 	/*
5192 	 * We want masks of possible CPUs of each node which isn't readily
5193 	 * available.  Build one from cpu_to_node() which should have been
5194 	 * fully initialized by now.
5195 	 */
5196 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5197 	BUG_ON(!tbl);
5198 
5199 	for_each_node(node)
5200 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5201 				node_online(node) ? node : NUMA_NO_NODE));
5202 
5203 	for_each_possible_cpu(cpu) {
5204 		node = cpu_to_node(cpu);
5205 		if (WARN_ON(node == NUMA_NO_NODE)) {
5206 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5207 			/* happens iff arch is bonkers, let's just proceed */
5208 			return;
5209 		}
5210 		cpumask_set_cpu(cpu, tbl[node]);
5211 	}
5212 
5213 	wq_numa_possible_cpumask = tbl;
5214 	wq_numa_enabled = true;
5215 }
5216 
5217 static int __init init_workqueues(void)
5218 {
5219 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5220 	int i, cpu;
5221 
5222 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5223 
5224 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5225 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5226 
5227 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5228 
5229 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5230 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5231 
5232 	wq_numa_init();
5233 
5234 	/* initialize CPU pools */
5235 	for_each_possible_cpu(cpu) {
5236 		struct worker_pool *pool;
5237 
5238 		i = 0;
5239 		for_each_cpu_worker_pool(pool, cpu) {
5240 			BUG_ON(init_worker_pool(pool));
5241 			pool->cpu = cpu;
5242 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5243 			pool->attrs->nice = std_nice[i++];
5244 			pool->node = cpu_to_node(cpu);
5245 
5246 			/* alloc pool ID */
5247 			mutex_lock(&wq_pool_mutex);
5248 			BUG_ON(worker_pool_assign_id(pool));
5249 			mutex_unlock(&wq_pool_mutex);
5250 		}
5251 	}
5252 
5253 	/* create the initial worker */
5254 	for_each_online_cpu(cpu) {
5255 		struct worker_pool *pool;
5256 
5257 		for_each_cpu_worker_pool(pool, cpu) {
5258 			pool->flags &= ~POOL_DISASSOCIATED;
5259 			BUG_ON(!create_worker(pool));
5260 		}
5261 	}
5262 
5263 	/* create default unbound and ordered wq attrs */
5264 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5265 		struct workqueue_attrs *attrs;
5266 
5267 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5268 		attrs->nice = std_nice[i];
5269 		unbound_std_wq_attrs[i] = attrs;
5270 
5271 		/*
5272 		 * An ordered wq should have only one pwq as ordering is
5273 		 * guaranteed by max_active which is enforced by pwqs.
5274 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5275 		 */
5276 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5277 		attrs->nice = std_nice[i];
5278 		attrs->no_numa = true;
5279 		ordered_wq_attrs[i] = attrs;
5280 	}
5281 
5282 	system_wq = alloc_workqueue("events", 0, 0);
5283 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5284 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5285 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5286 					    WQ_UNBOUND_MAX_ACTIVE);
5287 	system_freezable_wq = alloc_workqueue("events_freezable",
5288 					      WQ_FREEZABLE, 0);
5289 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5290 					      WQ_POWER_EFFICIENT, 0);
5291 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5292 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5293 					      0);
5294 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5295 	       !system_unbound_wq || !system_freezable_wq ||
5296 	       !system_power_efficient_wq ||
5297 	       !system_freezable_power_efficient_wq);
5298 	return 0;
5299 }
5300 early_initcall(init_workqueues);
5301