1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 131 * 132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 133 * sched-RCU for reads. 134 * 135 * WQ: wq->mutex protected. 136 * 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 138 * 139 * MD: wq_mayday_lock protected. 140 */ 141 142 /* struct worker is defined in workqueue_internal.h */ 143 144 struct worker_pool { 145 spinlock_t lock; /* the pool lock */ 146 int cpu; /* I: the associated cpu */ 147 int node; /* I: the associated node ID */ 148 int id; /* I: pool ID */ 149 unsigned int flags; /* X: flags */ 150 151 struct list_head worklist; /* L: list of pending works */ 152 int nr_workers; /* L: total number of workers */ 153 154 /* nr_idle includes the ones off idle_list for rebinding */ 155 int nr_idle; /* L: currently idle ones */ 156 157 struct list_head idle_list; /* X: list of idle workers */ 158 struct timer_list idle_timer; /* L: worker idle timeout */ 159 struct timer_list mayday_timer; /* L: SOS timer for workers */ 160 161 /* a workers is either on busy_hash or idle_list, or the manager */ 162 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 163 /* L: hash of busy workers */ 164 165 /* see manage_workers() for details on the two manager mutexes */ 166 struct mutex manager_arb; /* manager arbitration */ 167 struct worker *manager; /* L: purely informational */ 168 struct mutex attach_mutex; /* attach/detach exclusion */ 169 struct list_head workers; /* A: attached workers */ 170 struct completion *detach_completion; /* all workers detached */ 171 172 struct ida worker_ida; /* worker IDs for task name */ 173 174 struct workqueue_attrs *attrs; /* I: worker attributes */ 175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 176 int refcnt; /* PL: refcnt for unbound pools */ 177 178 /* 179 * The current concurrency level. As it's likely to be accessed 180 * from other CPUs during try_to_wake_up(), put it in a separate 181 * cacheline. 182 */ 183 atomic_t nr_running ____cacheline_aligned_in_smp; 184 185 /* 186 * Destruction of pool is sched-RCU protected to allow dereferences 187 * from get_work_pool(). 188 */ 189 struct rcu_head rcu; 190 } ____cacheline_aligned_in_smp; 191 192 /* 193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 194 * of work_struct->data are used for flags and the remaining high bits 195 * point to the pwq; thus, pwqs need to be aligned at two's power of the 196 * number of flag bits. 197 */ 198 struct pool_workqueue { 199 struct worker_pool *pool; /* I: the associated pool */ 200 struct workqueue_struct *wq; /* I: the owning workqueue */ 201 int work_color; /* L: current color */ 202 int flush_color; /* L: flushing color */ 203 int refcnt; /* L: reference count */ 204 int nr_in_flight[WORK_NR_COLORS]; 205 /* L: nr of in_flight works */ 206 int nr_active; /* L: nr of active works */ 207 int max_active; /* L: max active works */ 208 struct list_head delayed_works; /* L: delayed works */ 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 210 struct list_head mayday_node; /* MD: node on wq->maydays */ 211 212 /* 213 * Release of unbound pwq is punted to system_wq. See put_pwq() 214 * and pwq_unbound_release_workfn() for details. pool_workqueue 215 * itself is also sched-RCU protected so that the first pwq can be 216 * determined without grabbing wq->mutex. 217 */ 218 struct work_struct unbound_release_work; 219 struct rcu_head rcu; 220 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 221 222 /* 223 * Structure used to wait for workqueue flush. 224 */ 225 struct wq_flusher { 226 struct list_head list; /* WQ: list of flushers */ 227 int flush_color; /* WQ: flush color waiting for */ 228 struct completion done; /* flush completion */ 229 }; 230 231 struct wq_device; 232 233 /* 234 * The externally visible workqueue. It relays the issued work items to 235 * the appropriate worker_pool through its pool_workqueues. 236 */ 237 struct workqueue_struct { 238 struct list_head pwqs; /* WR: all pwqs of this wq */ 239 struct list_head list; /* PR: list of all workqueues */ 240 241 struct mutex mutex; /* protects this wq */ 242 int work_color; /* WQ: current work color */ 243 int flush_color; /* WQ: current flush color */ 244 atomic_t nr_pwqs_to_flush; /* flush in progress */ 245 struct wq_flusher *first_flusher; /* WQ: first flusher */ 246 struct list_head flusher_queue; /* WQ: flush waiters */ 247 struct list_head flusher_overflow; /* WQ: flush overflow list */ 248 249 struct list_head maydays; /* MD: pwqs requesting rescue */ 250 struct worker *rescuer; /* I: rescue worker */ 251 252 int nr_drainers; /* WQ: drain in progress */ 253 int saved_max_active; /* WQ: saved pwq max_active */ 254 255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 257 258 #ifdef CONFIG_SYSFS 259 struct wq_device *wq_dev; /* I: for sysfs interface */ 260 #endif 261 #ifdef CONFIG_LOCKDEP 262 struct lockdep_map lockdep_map; 263 #endif 264 char name[WQ_NAME_LEN]; /* I: workqueue name */ 265 266 /* 267 * Destruction of workqueue_struct is sched-RCU protected to allow 268 * walking the workqueues list without grabbing wq_pool_mutex. 269 * This is used to dump all workqueues from sysrq. 270 */ 271 struct rcu_head rcu; 272 273 /* hot fields used during command issue, aligned to cacheline */ 274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 277 }; 278 279 static struct kmem_cache *pwq_cache; 280 281 static cpumask_var_t *wq_numa_possible_cpumask; 282 /* possible CPUs of each node */ 283 284 static bool wq_disable_numa; 285 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 286 287 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 288 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 289 static bool wq_power_efficient = true; 290 #else 291 static bool wq_power_efficient; 292 #endif 293 294 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 303 304 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 305 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 306 307 static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */ 308 309 /* the per-cpu worker pools */ 310 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 311 cpu_worker_pools); 312 313 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 314 315 /* PL: hash of all unbound pools keyed by pool->attrs */ 316 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 317 318 /* I: attributes used when instantiating standard unbound pools on demand */ 319 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 320 321 /* I: attributes used when instantiating ordered pools on demand */ 322 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 323 324 struct workqueue_struct *system_wq __read_mostly; 325 EXPORT_SYMBOL(system_wq); 326 struct workqueue_struct *system_highpri_wq __read_mostly; 327 EXPORT_SYMBOL_GPL(system_highpri_wq); 328 struct workqueue_struct *system_long_wq __read_mostly; 329 EXPORT_SYMBOL_GPL(system_long_wq); 330 struct workqueue_struct *system_unbound_wq __read_mostly; 331 EXPORT_SYMBOL_GPL(system_unbound_wq); 332 struct workqueue_struct *system_freezable_wq __read_mostly; 333 EXPORT_SYMBOL_GPL(system_freezable_wq); 334 struct workqueue_struct *system_power_efficient_wq __read_mostly; 335 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 336 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 337 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 338 339 static int worker_thread(void *__worker); 340 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 341 342 #define CREATE_TRACE_POINTS 343 #include <trace/events/workqueue.h> 344 345 #define assert_rcu_or_pool_mutex() \ 346 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 347 lockdep_is_held(&wq_pool_mutex), \ 348 "sched RCU or wq_pool_mutex should be held") 349 350 #define assert_rcu_or_wq_mutex(wq) \ 351 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 352 lockdep_is_held(&wq->mutex), \ 353 "sched RCU or wq->mutex should be held") 354 355 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 356 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 357 lockdep_is_held(&wq->mutex) || \ 358 lockdep_is_held(&wq_pool_mutex), \ 359 "sched RCU, wq->mutex or wq_pool_mutex should be held") 360 361 #define for_each_cpu_worker_pool(pool, cpu) \ 362 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 363 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 364 (pool)++) 365 366 /** 367 * for_each_pool - iterate through all worker_pools in the system 368 * @pool: iteration cursor 369 * @pi: integer used for iteration 370 * 371 * This must be called either with wq_pool_mutex held or sched RCU read 372 * locked. If the pool needs to be used beyond the locking in effect, the 373 * caller is responsible for guaranteeing that the pool stays online. 374 * 375 * The if/else clause exists only for the lockdep assertion and can be 376 * ignored. 377 */ 378 #define for_each_pool(pool, pi) \ 379 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 380 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 381 else 382 383 /** 384 * for_each_pool_worker - iterate through all workers of a worker_pool 385 * @worker: iteration cursor 386 * @pool: worker_pool to iterate workers of 387 * 388 * This must be called with @pool->attach_mutex. 389 * 390 * The if/else clause exists only for the lockdep assertion and can be 391 * ignored. 392 */ 393 #define for_each_pool_worker(worker, pool) \ 394 list_for_each_entry((worker), &(pool)->workers, node) \ 395 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 396 else 397 398 /** 399 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 400 * @pwq: iteration cursor 401 * @wq: the target workqueue 402 * 403 * This must be called either with wq->mutex held or sched RCU read locked. 404 * If the pwq needs to be used beyond the locking in effect, the caller is 405 * responsible for guaranteeing that the pwq stays online. 406 * 407 * The if/else clause exists only for the lockdep assertion and can be 408 * ignored. 409 */ 410 #define for_each_pwq(pwq, wq) \ 411 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 412 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 413 else 414 415 #ifdef CONFIG_DEBUG_OBJECTS_WORK 416 417 static struct debug_obj_descr work_debug_descr; 418 419 static void *work_debug_hint(void *addr) 420 { 421 return ((struct work_struct *) addr)->func; 422 } 423 424 /* 425 * fixup_init is called when: 426 * - an active object is initialized 427 */ 428 static int work_fixup_init(void *addr, enum debug_obj_state state) 429 { 430 struct work_struct *work = addr; 431 432 switch (state) { 433 case ODEBUG_STATE_ACTIVE: 434 cancel_work_sync(work); 435 debug_object_init(work, &work_debug_descr); 436 return 1; 437 default: 438 return 0; 439 } 440 } 441 442 /* 443 * fixup_activate is called when: 444 * - an active object is activated 445 * - an unknown object is activated (might be a statically initialized object) 446 */ 447 static int work_fixup_activate(void *addr, enum debug_obj_state state) 448 { 449 struct work_struct *work = addr; 450 451 switch (state) { 452 453 case ODEBUG_STATE_NOTAVAILABLE: 454 /* 455 * This is not really a fixup. The work struct was 456 * statically initialized. We just make sure that it 457 * is tracked in the object tracker. 458 */ 459 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 460 debug_object_init(work, &work_debug_descr); 461 debug_object_activate(work, &work_debug_descr); 462 return 0; 463 } 464 WARN_ON_ONCE(1); 465 return 0; 466 467 case ODEBUG_STATE_ACTIVE: 468 WARN_ON(1); 469 470 default: 471 return 0; 472 } 473 } 474 475 /* 476 * fixup_free is called when: 477 * - an active object is freed 478 */ 479 static int work_fixup_free(void *addr, enum debug_obj_state state) 480 { 481 struct work_struct *work = addr; 482 483 switch (state) { 484 case ODEBUG_STATE_ACTIVE: 485 cancel_work_sync(work); 486 debug_object_free(work, &work_debug_descr); 487 return 1; 488 default: 489 return 0; 490 } 491 } 492 493 static struct debug_obj_descr work_debug_descr = { 494 .name = "work_struct", 495 .debug_hint = work_debug_hint, 496 .fixup_init = work_fixup_init, 497 .fixup_activate = work_fixup_activate, 498 .fixup_free = work_fixup_free, 499 }; 500 501 static inline void debug_work_activate(struct work_struct *work) 502 { 503 debug_object_activate(work, &work_debug_descr); 504 } 505 506 static inline void debug_work_deactivate(struct work_struct *work) 507 { 508 debug_object_deactivate(work, &work_debug_descr); 509 } 510 511 void __init_work(struct work_struct *work, int onstack) 512 { 513 if (onstack) 514 debug_object_init_on_stack(work, &work_debug_descr); 515 else 516 debug_object_init(work, &work_debug_descr); 517 } 518 EXPORT_SYMBOL_GPL(__init_work); 519 520 void destroy_work_on_stack(struct work_struct *work) 521 { 522 debug_object_free(work, &work_debug_descr); 523 } 524 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 525 526 void destroy_delayed_work_on_stack(struct delayed_work *work) 527 { 528 destroy_timer_on_stack(&work->timer); 529 debug_object_free(&work->work, &work_debug_descr); 530 } 531 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 532 533 #else 534 static inline void debug_work_activate(struct work_struct *work) { } 535 static inline void debug_work_deactivate(struct work_struct *work) { } 536 #endif 537 538 /** 539 * worker_pool_assign_id - allocate ID and assing it to @pool 540 * @pool: the pool pointer of interest 541 * 542 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 543 * successfully, -errno on failure. 544 */ 545 static int worker_pool_assign_id(struct worker_pool *pool) 546 { 547 int ret; 548 549 lockdep_assert_held(&wq_pool_mutex); 550 551 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 552 GFP_KERNEL); 553 if (ret >= 0) { 554 pool->id = ret; 555 return 0; 556 } 557 return ret; 558 } 559 560 /** 561 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 562 * @wq: the target workqueue 563 * @node: the node ID 564 * 565 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 566 * read locked. 567 * If the pwq needs to be used beyond the locking in effect, the caller is 568 * responsible for guaranteeing that the pwq stays online. 569 * 570 * Return: The unbound pool_workqueue for @node. 571 */ 572 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 573 int node) 574 { 575 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 577 } 578 579 static unsigned int work_color_to_flags(int color) 580 { 581 return color << WORK_STRUCT_COLOR_SHIFT; 582 } 583 584 static int get_work_color(struct work_struct *work) 585 { 586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 587 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 588 } 589 590 static int work_next_color(int color) 591 { 592 return (color + 1) % WORK_NR_COLORS; 593 } 594 595 /* 596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 597 * contain the pointer to the queued pwq. Once execution starts, the flag 598 * is cleared and the high bits contain OFFQ flags and pool ID. 599 * 600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 601 * and clear_work_data() can be used to set the pwq, pool or clear 602 * work->data. These functions should only be called while the work is 603 * owned - ie. while the PENDING bit is set. 604 * 605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 606 * corresponding to a work. Pool is available once the work has been 607 * queued anywhere after initialization until it is sync canceled. pwq is 608 * available only while the work item is queued. 609 * 610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 611 * canceled. While being canceled, a work item may have its PENDING set 612 * but stay off timer and worklist for arbitrarily long and nobody should 613 * try to steal the PENDING bit. 614 */ 615 static inline void set_work_data(struct work_struct *work, unsigned long data, 616 unsigned long flags) 617 { 618 WARN_ON_ONCE(!work_pending(work)); 619 atomic_long_set(&work->data, data | flags | work_static(work)); 620 } 621 622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 623 unsigned long extra_flags) 624 { 625 set_work_data(work, (unsigned long)pwq, 626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 627 } 628 629 static void set_work_pool_and_keep_pending(struct work_struct *work, 630 int pool_id) 631 { 632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 633 WORK_STRUCT_PENDING); 634 } 635 636 static void set_work_pool_and_clear_pending(struct work_struct *work, 637 int pool_id) 638 { 639 /* 640 * The following wmb is paired with the implied mb in 641 * test_and_set_bit(PENDING) and ensures all updates to @work made 642 * here are visible to and precede any updates by the next PENDING 643 * owner. 644 */ 645 smp_wmb(); 646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 647 } 648 649 static void clear_work_data(struct work_struct *work) 650 { 651 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 652 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 653 } 654 655 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 656 { 657 unsigned long data = atomic_long_read(&work->data); 658 659 if (data & WORK_STRUCT_PWQ) 660 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 661 else 662 return NULL; 663 } 664 665 /** 666 * get_work_pool - return the worker_pool a given work was associated with 667 * @work: the work item of interest 668 * 669 * Pools are created and destroyed under wq_pool_mutex, and allows read 670 * access under sched-RCU read lock. As such, this function should be 671 * called under wq_pool_mutex or with preemption disabled. 672 * 673 * All fields of the returned pool are accessible as long as the above 674 * mentioned locking is in effect. If the returned pool needs to be used 675 * beyond the critical section, the caller is responsible for ensuring the 676 * returned pool is and stays online. 677 * 678 * Return: The worker_pool @work was last associated with. %NULL if none. 679 */ 680 static struct worker_pool *get_work_pool(struct work_struct *work) 681 { 682 unsigned long data = atomic_long_read(&work->data); 683 int pool_id; 684 685 assert_rcu_or_pool_mutex(); 686 687 if (data & WORK_STRUCT_PWQ) 688 return ((struct pool_workqueue *) 689 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 690 691 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 692 if (pool_id == WORK_OFFQ_POOL_NONE) 693 return NULL; 694 695 return idr_find(&worker_pool_idr, pool_id); 696 } 697 698 /** 699 * get_work_pool_id - return the worker pool ID a given work is associated with 700 * @work: the work item of interest 701 * 702 * Return: The worker_pool ID @work was last associated with. 703 * %WORK_OFFQ_POOL_NONE if none. 704 */ 705 static int get_work_pool_id(struct work_struct *work) 706 { 707 unsigned long data = atomic_long_read(&work->data); 708 709 if (data & WORK_STRUCT_PWQ) 710 return ((struct pool_workqueue *) 711 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 712 713 return data >> WORK_OFFQ_POOL_SHIFT; 714 } 715 716 static void mark_work_canceling(struct work_struct *work) 717 { 718 unsigned long pool_id = get_work_pool_id(work); 719 720 pool_id <<= WORK_OFFQ_POOL_SHIFT; 721 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 722 } 723 724 static bool work_is_canceling(struct work_struct *work) 725 { 726 unsigned long data = atomic_long_read(&work->data); 727 728 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 729 } 730 731 /* 732 * Policy functions. These define the policies on how the global worker 733 * pools are managed. Unless noted otherwise, these functions assume that 734 * they're being called with pool->lock held. 735 */ 736 737 static bool __need_more_worker(struct worker_pool *pool) 738 { 739 return !atomic_read(&pool->nr_running); 740 } 741 742 /* 743 * Need to wake up a worker? Called from anything but currently 744 * running workers. 745 * 746 * Note that, because unbound workers never contribute to nr_running, this 747 * function will always return %true for unbound pools as long as the 748 * worklist isn't empty. 749 */ 750 static bool need_more_worker(struct worker_pool *pool) 751 { 752 return !list_empty(&pool->worklist) && __need_more_worker(pool); 753 } 754 755 /* Can I start working? Called from busy but !running workers. */ 756 static bool may_start_working(struct worker_pool *pool) 757 { 758 return pool->nr_idle; 759 } 760 761 /* Do I need to keep working? Called from currently running workers. */ 762 static bool keep_working(struct worker_pool *pool) 763 { 764 return !list_empty(&pool->worklist) && 765 atomic_read(&pool->nr_running) <= 1; 766 } 767 768 /* Do we need a new worker? Called from manager. */ 769 static bool need_to_create_worker(struct worker_pool *pool) 770 { 771 return need_more_worker(pool) && !may_start_working(pool); 772 } 773 774 /* Do we have too many workers and should some go away? */ 775 static bool too_many_workers(struct worker_pool *pool) 776 { 777 bool managing = mutex_is_locked(&pool->manager_arb); 778 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 779 int nr_busy = pool->nr_workers - nr_idle; 780 781 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 782 } 783 784 /* 785 * Wake up functions. 786 */ 787 788 /* Return the first idle worker. Safe with preemption disabled */ 789 static struct worker *first_idle_worker(struct worker_pool *pool) 790 { 791 if (unlikely(list_empty(&pool->idle_list))) 792 return NULL; 793 794 return list_first_entry(&pool->idle_list, struct worker, entry); 795 } 796 797 /** 798 * wake_up_worker - wake up an idle worker 799 * @pool: worker pool to wake worker from 800 * 801 * Wake up the first idle worker of @pool. 802 * 803 * CONTEXT: 804 * spin_lock_irq(pool->lock). 805 */ 806 static void wake_up_worker(struct worker_pool *pool) 807 { 808 struct worker *worker = first_idle_worker(pool); 809 810 if (likely(worker)) 811 wake_up_process(worker->task); 812 } 813 814 /** 815 * wq_worker_waking_up - a worker is waking up 816 * @task: task waking up 817 * @cpu: CPU @task is waking up to 818 * 819 * This function is called during try_to_wake_up() when a worker is 820 * being awoken. 821 * 822 * CONTEXT: 823 * spin_lock_irq(rq->lock) 824 */ 825 void wq_worker_waking_up(struct task_struct *task, int cpu) 826 { 827 struct worker *worker = kthread_data(task); 828 829 if (!(worker->flags & WORKER_NOT_RUNNING)) { 830 WARN_ON_ONCE(worker->pool->cpu != cpu); 831 atomic_inc(&worker->pool->nr_running); 832 } 833 } 834 835 /** 836 * wq_worker_sleeping - a worker is going to sleep 837 * @task: task going to sleep 838 * @cpu: CPU in question, must be the current CPU number 839 * 840 * This function is called during schedule() when a busy worker is 841 * going to sleep. Worker on the same cpu can be woken up by 842 * returning pointer to its task. 843 * 844 * CONTEXT: 845 * spin_lock_irq(rq->lock) 846 * 847 * Return: 848 * Worker task on @cpu to wake up, %NULL if none. 849 */ 850 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 851 { 852 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 853 struct worker_pool *pool; 854 855 /* 856 * Rescuers, which may not have all the fields set up like normal 857 * workers, also reach here, let's not access anything before 858 * checking NOT_RUNNING. 859 */ 860 if (worker->flags & WORKER_NOT_RUNNING) 861 return NULL; 862 863 pool = worker->pool; 864 865 /* this can only happen on the local cpu */ 866 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu)) 867 return NULL; 868 869 /* 870 * The counterpart of the following dec_and_test, implied mb, 871 * worklist not empty test sequence is in insert_work(). 872 * Please read comment there. 873 * 874 * NOT_RUNNING is clear. This means that we're bound to and 875 * running on the local cpu w/ rq lock held and preemption 876 * disabled, which in turn means that none else could be 877 * manipulating idle_list, so dereferencing idle_list without pool 878 * lock is safe. 879 */ 880 if (atomic_dec_and_test(&pool->nr_running) && 881 !list_empty(&pool->worklist)) 882 to_wakeup = first_idle_worker(pool); 883 return to_wakeup ? to_wakeup->task : NULL; 884 } 885 886 /** 887 * worker_set_flags - set worker flags and adjust nr_running accordingly 888 * @worker: self 889 * @flags: flags to set 890 * 891 * Set @flags in @worker->flags and adjust nr_running accordingly. 892 * 893 * CONTEXT: 894 * spin_lock_irq(pool->lock) 895 */ 896 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 897 { 898 struct worker_pool *pool = worker->pool; 899 900 WARN_ON_ONCE(worker->task != current); 901 902 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 903 if ((flags & WORKER_NOT_RUNNING) && 904 !(worker->flags & WORKER_NOT_RUNNING)) { 905 atomic_dec(&pool->nr_running); 906 } 907 908 worker->flags |= flags; 909 } 910 911 /** 912 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 913 * @worker: self 914 * @flags: flags to clear 915 * 916 * Clear @flags in @worker->flags and adjust nr_running accordingly. 917 * 918 * CONTEXT: 919 * spin_lock_irq(pool->lock) 920 */ 921 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 922 { 923 struct worker_pool *pool = worker->pool; 924 unsigned int oflags = worker->flags; 925 926 WARN_ON_ONCE(worker->task != current); 927 928 worker->flags &= ~flags; 929 930 /* 931 * If transitioning out of NOT_RUNNING, increment nr_running. Note 932 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 933 * of multiple flags, not a single flag. 934 */ 935 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 936 if (!(worker->flags & WORKER_NOT_RUNNING)) 937 atomic_inc(&pool->nr_running); 938 } 939 940 /** 941 * find_worker_executing_work - find worker which is executing a work 942 * @pool: pool of interest 943 * @work: work to find worker for 944 * 945 * Find a worker which is executing @work on @pool by searching 946 * @pool->busy_hash which is keyed by the address of @work. For a worker 947 * to match, its current execution should match the address of @work and 948 * its work function. This is to avoid unwanted dependency between 949 * unrelated work executions through a work item being recycled while still 950 * being executed. 951 * 952 * This is a bit tricky. A work item may be freed once its execution 953 * starts and nothing prevents the freed area from being recycled for 954 * another work item. If the same work item address ends up being reused 955 * before the original execution finishes, workqueue will identify the 956 * recycled work item as currently executing and make it wait until the 957 * current execution finishes, introducing an unwanted dependency. 958 * 959 * This function checks the work item address and work function to avoid 960 * false positives. Note that this isn't complete as one may construct a 961 * work function which can introduce dependency onto itself through a 962 * recycled work item. Well, if somebody wants to shoot oneself in the 963 * foot that badly, there's only so much we can do, and if such deadlock 964 * actually occurs, it should be easy to locate the culprit work function. 965 * 966 * CONTEXT: 967 * spin_lock_irq(pool->lock). 968 * 969 * Return: 970 * Pointer to worker which is executing @work if found, %NULL 971 * otherwise. 972 */ 973 static struct worker *find_worker_executing_work(struct worker_pool *pool, 974 struct work_struct *work) 975 { 976 struct worker *worker; 977 978 hash_for_each_possible(pool->busy_hash, worker, hentry, 979 (unsigned long)work) 980 if (worker->current_work == work && 981 worker->current_func == work->func) 982 return worker; 983 984 return NULL; 985 } 986 987 /** 988 * move_linked_works - move linked works to a list 989 * @work: start of series of works to be scheduled 990 * @head: target list to append @work to 991 * @nextp: out parameter for nested worklist walking 992 * 993 * Schedule linked works starting from @work to @head. Work series to 994 * be scheduled starts at @work and includes any consecutive work with 995 * WORK_STRUCT_LINKED set in its predecessor. 996 * 997 * If @nextp is not NULL, it's updated to point to the next work of 998 * the last scheduled work. This allows move_linked_works() to be 999 * nested inside outer list_for_each_entry_safe(). 1000 * 1001 * CONTEXT: 1002 * spin_lock_irq(pool->lock). 1003 */ 1004 static void move_linked_works(struct work_struct *work, struct list_head *head, 1005 struct work_struct **nextp) 1006 { 1007 struct work_struct *n; 1008 1009 /* 1010 * Linked worklist will always end before the end of the list, 1011 * use NULL for list head. 1012 */ 1013 list_for_each_entry_safe_from(work, n, NULL, entry) { 1014 list_move_tail(&work->entry, head); 1015 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1016 break; 1017 } 1018 1019 /* 1020 * If we're already inside safe list traversal and have moved 1021 * multiple works to the scheduled queue, the next position 1022 * needs to be updated. 1023 */ 1024 if (nextp) 1025 *nextp = n; 1026 } 1027 1028 /** 1029 * get_pwq - get an extra reference on the specified pool_workqueue 1030 * @pwq: pool_workqueue to get 1031 * 1032 * Obtain an extra reference on @pwq. The caller should guarantee that 1033 * @pwq has positive refcnt and be holding the matching pool->lock. 1034 */ 1035 static void get_pwq(struct pool_workqueue *pwq) 1036 { 1037 lockdep_assert_held(&pwq->pool->lock); 1038 WARN_ON_ONCE(pwq->refcnt <= 0); 1039 pwq->refcnt++; 1040 } 1041 1042 /** 1043 * put_pwq - put a pool_workqueue reference 1044 * @pwq: pool_workqueue to put 1045 * 1046 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1047 * destruction. The caller should be holding the matching pool->lock. 1048 */ 1049 static void put_pwq(struct pool_workqueue *pwq) 1050 { 1051 lockdep_assert_held(&pwq->pool->lock); 1052 if (likely(--pwq->refcnt)) 1053 return; 1054 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1055 return; 1056 /* 1057 * @pwq can't be released under pool->lock, bounce to 1058 * pwq_unbound_release_workfn(). This never recurses on the same 1059 * pool->lock as this path is taken only for unbound workqueues and 1060 * the release work item is scheduled on a per-cpu workqueue. To 1061 * avoid lockdep warning, unbound pool->locks are given lockdep 1062 * subclass of 1 in get_unbound_pool(). 1063 */ 1064 schedule_work(&pwq->unbound_release_work); 1065 } 1066 1067 /** 1068 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1069 * @pwq: pool_workqueue to put (can be %NULL) 1070 * 1071 * put_pwq() with locking. This function also allows %NULL @pwq. 1072 */ 1073 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1074 { 1075 if (pwq) { 1076 /* 1077 * As both pwqs and pools are sched-RCU protected, the 1078 * following lock operations are safe. 1079 */ 1080 spin_lock_irq(&pwq->pool->lock); 1081 put_pwq(pwq); 1082 spin_unlock_irq(&pwq->pool->lock); 1083 } 1084 } 1085 1086 static void pwq_activate_delayed_work(struct work_struct *work) 1087 { 1088 struct pool_workqueue *pwq = get_work_pwq(work); 1089 1090 trace_workqueue_activate_work(work); 1091 move_linked_works(work, &pwq->pool->worklist, NULL); 1092 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1093 pwq->nr_active++; 1094 } 1095 1096 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1097 { 1098 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1099 struct work_struct, entry); 1100 1101 pwq_activate_delayed_work(work); 1102 } 1103 1104 /** 1105 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1106 * @pwq: pwq of interest 1107 * @color: color of work which left the queue 1108 * 1109 * A work either has completed or is removed from pending queue, 1110 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1111 * 1112 * CONTEXT: 1113 * spin_lock_irq(pool->lock). 1114 */ 1115 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1116 { 1117 /* uncolored work items don't participate in flushing or nr_active */ 1118 if (color == WORK_NO_COLOR) 1119 goto out_put; 1120 1121 pwq->nr_in_flight[color]--; 1122 1123 pwq->nr_active--; 1124 if (!list_empty(&pwq->delayed_works)) { 1125 /* one down, submit a delayed one */ 1126 if (pwq->nr_active < pwq->max_active) 1127 pwq_activate_first_delayed(pwq); 1128 } 1129 1130 /* is flush in progress and are we at the flushing tip? */ 1131 if (likely(pwq->flush_color != color)) 1132 goto out_put; 1133 1134 /* are there still in-flight works? */ 1135 if (pwq->nr_in_flight[color]) 1136 goto out_put; 1137 1138 /* this pwq is done, clear flush_color */ 1139 pwq->flush_color = -1; 1140 1141 /* 1142 * If this was the last pwq, wake up the first flusher. It 1143 * will handle the rest. 1144 */ 1145 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1146 complete(&pwq->wq->first_flusher->done); 1147 out_put: 1148 put_pwq(pwq); 1149 } 1150 1151 /** 1152 * try_to_grab_pending - steal work item from worklist and disable irq 1153 * @work: work item to steal 1154 * @is_dwork: @work is a delayed_work 1155 * @flags: place to store irq state 1156 * 1157 * Try to grab PENDING bit of @work. This function can handle @work in any 1158 * stable state - idle, on timer or on worklist. 1159 * 1160 * Return: 1161 * 1 if @work was pending and we successfully stole PENDING 1162 * 0 if @work was idle and we claimed PENDING 1163 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1164 * -ENOENT if someone else is canceling @work, this state may persist 1165 * for arbitrarily long 1166 * 1167 * Note: 1168 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1169 * interrupted while holding PENDING and @work off queue, irq must be 1170 * disabled on entry. This, combined with delayed_work->timer being 1171 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1172 * 1173 * On successful return, >= 0, irq is disabled and the caller is 1174 * responsible for releasing it using local_irq_restore(*@flags). 1175 * 1176 * This function is safe to call from any context including IRQ handler. 1177 */ 1178 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1179 unsigned long *flags) 1180 { 1181 struct worker_pool *pool; 1182 struct pool_workqueue *pwq; 1183 1184 local_irq_save(*flags); 1185 1186 /* try to steal the timer if it exists */ 1187 if (is_dwork) { 1188 struct delayed_work *dwork = to_delayed_work(work); 1189 1190 /* 1191 * dwork->timer is irqsafe. If del_timer() fails, it's 1192 * guaranteed that the timer is not queued anywhere and not 1193 * running on the local CPU. 1194 */ 1195 if (likely(del_timer(&dwork->timer))) 1196 return 1; 1197 } 1198 1199 /* try to claim PENDING the normal way */ 1200 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1201 return 0; 1202 1203 /* 1204 * The queueing is in progress, or it is already queued. Try to 1205 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1206 */ 1207 pool = get_work_pool(work); 1208 if (!pool) 1209 goto fail; 1210 1211 spin_lock(&pool->lock); 1212 /* 1213 * work->data is guaranteed to point to pwq only while the work 1214 * item is queued on pwq->wq, and both updating work->data to point 1215 * to pwq on queueing and to pool on dequeueing are done under 1216 * pwq->pool->lock. This in turn guarantees that, if work->data 1217 * points to pwq which is associated with a locked pool, the work 1218 * item is currently queued on that pool. 1219 */ 1220 pwq = get_work_pwq(work); 1221 if (pwq && pwq->pool == pool) { 1222 debug_work_deactivate(work); 1223 1224 /* 1225 * A delayed work item cannot be grabbed directly because 1226 * it might have linked NO_COLOR work items which, if left 1227 * on the delayed_list, will confuse pwq->nr_active 1228 * management later on and cause stall. Make sure the work 1229 * item is activated before grabbing. 1230 */ 1231 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1232 pwq_activate_delayed_work(work); 1233 1234 list_del_init(&work->entry); 1235 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1236 1237 /* work->data points to pwq iff queued, point to pool */ 1238 set_work_pool_and_keep_pending(work, pool->id); 1239 1240 spin_unlock(&pool->lock); 1241 return 1; 1242 } 1243 spin_unlock(&pool->lock); 1244 fail: 1245 local_irq_restore(*flags); 1246 if (work_is_canceling(work)) 1247 return -ENOENT; 1248 cpu_relax(); 1249 return -EAGAIN; 1250 } 1251 1252 /** 1253 * insert_work - insert a work into a pool 1254 * @pwq: pwq @work belongs to 1255 * @work: work to insert 1256 * @head: insertion point 1257 * @extra_flags: extra WORK_STRUCT_* flags to set 1258 * 1259 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1260 * work_struct flags. 1261 * 1262 * CONTEXT: 1263 * spin_lock_irq(pool->lock). 1264 */ 1265 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1266 struct list_head *head, unsigned int extra_flags) 1267 { 1268 struct worker_pool *pool = pwq->pool; 1269 1270 /* we own @work, set data and link */ 1271 set_work_pwq(work, pwq, extra_flags); 1272 list_add_tail(&work->entry, head); 1273 get_pwq(pwq); 1274 1275 /* 1276 * Ensure either wq_worker_sleeping() sees the above 1277 * list_add_tail() or we see zero nr_running to avoid workers lying 1278 * around lazily while there are works to be processed. 1279 */ 1280 smp_mb(); 1281 1282 if (__need_more_worker(pool)) 1283 wake_up_worker(pool); 1284 } 1285 1286 /* 1287 * Test whether @work is being queued from another work executing on the 1288 * same workqueue. 1289 */ 1290 static bool is_chained_work(struct workqueue_struct *wq) 1291 { 1292 struct worker *worker; 1293 1294 worker = current_wq_worker(); 1295 /* 1296 * Return %true iff I'm a worker execuing a work item on @wq. If 1297 * I'm @worker, it's safe to dereference it without locking. 1298 */ 1299 return worker && worker->current_pwq->wq == wq; 1300 } 1301 1302 static void __queue_work(int cpu, struct workqueue_struct *wq, 1303 struct work_struct *work) 1304 { 1305 struct pool_workqueue *pwq; 1306 struct worker_pool *last_pool; 1307 struct list_head *worklist; 1308 unsigned int work_flags; 1309 unsigned int req_cpu = cpu; 1310 1311 /* 1312 * While a work item is PENDING && off queue, a task trying to 1313 * steal the PENDING will busy-loop waiting for it to either get 1314 * queued or lose PENDING. Grabbing PENDING and queueing should 1315 * happen with IRQ disabled. 1316 */ 1317 WARN_ON_ONCE(!irqs_disabled()); 1318 1319 debug_work_activate(work); 1320 1321 /* if draining, only works from the same workqueue are allowed */ 1322 if (unlikely(wq->flags & __WQ_DRAINING) && 1323 WARN_ON_ONCE(!is_chained_work(wq))) 1324 return; 1325 retry: 1326 if (req_cpu == WORK_CPU_UNBOUND) 1327 cpu = raw_smp_processor_id(); 1328 1329 /* pwq which will be used unless @work is executing elsewhere */ 1330 if (!(wq->flags & WQ_UNBOUND)) 1331 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1332 else 1333 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1334 1335 /* 1336 * If @work was previously on a different pool, it might still be 1337 * running there, in which case the work needs to be queued on that 1338 * pool to guarantee non-reentrancy. 1339 */ 1340 last_pool = get_work_pool(work); 1341 if (last_pool && last_pool != pwq->pool) { 1342 struct worker *worker; 1343 1344 spin_lock(&last_pool->lock); 1345 1346 worker = find_worker_executing_work(last_pool, work); 1347 1348 if (worker && worker->current_pwq->wq == wq) { 1349 pwq = worker->current_pwq; 1350 } else { 1351 /* meh... not running there, queue here */ 1352 spin_unlock(&last_pool->lock); 1353 spin_lock(&pwq->pool->lock); 1354 } 1355 } else { 1356 spin_lock(&pwq->pool->lock); 1357 } 1358 1359 /* 1360 * pwq is determined and locked. For unbound pools, we could have 1361 * raced with pwq release and it could already be dead. If its 1362 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1363 * without another pwq replacing it in the numa_pwq_tbl or while 1364 * work items are executing on it, so the retrying is guaranteed to 1365 * make forward-progress. 1366 */ 1367 if (unlikely(!pwq->refcnt)) { 1368 if (wq->flags & WQ_UNBOUND) { 1369 spin_unlock(&pwq->pool->lock); 1370 cpu_relax(); 1371 goto retry; 1372 } 1373 /* oops */ 1374 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1375 wq->name, cpu); 1376 } 1377 1378 /* pwq determined, queue */ 1379 trace_workqueue_queue_work(req_cpu, pwq, work); 1380 1381 if (WARN_ON(!list_empty(&work->entry))) { 1382 spin_unlock(&pwq->pool->lock); 1383 return; 1384 } 1385 1386 pwq->nr_in_flight[pwq->work_color]++; 1387 work_flags = work_color_to_flags(pwq->work_color); 1388 1389 if (likely(pwq->nr_active < pwq->max_active)) { 1390 trace_workqueue_activate_work(work); 1391 pwq->nr_active++; 1392 worklist = &pwq->pool->worklist; 1393 } else { 1394 work_flags |= WORK_STRUCT_DELAYED; 1395 worklist = &pwq->delayed_works; 1396 } 1397 1398 insert_work(pwq, work, worklist, work_flags); 1399 1400 spin_unlock(&pwq->pool->lock); 1401 } 1402 1403 /** 1404 * queue_work_on - queue work on specific cpu 1405 * @cpu: CPU number to execute work on 1406 * @wq: workqueue to use 1407 * @work: work to queue 1408 * 1409 * We queue the work to a specific CPU, the caller must ensure it 1410 * can't go away. 1411 * 1412 * Return: %false if @work was already on a queue, %true otherwise. 1413 */ 1414 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1415 struct work_struct *work) 1416 { 1417 bool ret = false; 1418 unsigned long flags; 1419 1420 local_irq_save(flags); 1421 1422 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1423 __queue_work(cpu, wq, work); 1424 ret = true; 1425 } 1426 1427 local_irq_restore(flags); 1428 return ret; 1429 } 1430 EXPORT_SYMBOL(queue_work_on); 1431 1432 void delayed_work_timer_fn(unsigned long __data) 1433 { 1434 struct delayed_work *dwork = (struct delayed_work *)__data; 1435 1436 /* should have been called from irqsafe timer with irq already off */ 1437 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1438 } 1439 EXPORT_SYMBOL(delayed_work_timer_fn); 1440 1441 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1442 struct delayed_work *dwork, unsigned long delay) 1443 { 1444 struct timer_list *timer = &dwork->timer; 1445 struct work_struct *work = &dwork->work; 1446 1447 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1448 timer->data != (unsigned long)dwork); 1449 WARN_ON_ONCE(timer_pending(timer)); 1450 WARN_ON_ONCE(!list_empty(&work->entry)); 1451 1452 /* 1453 * If @delay is 0, queue @dwork->work immediately. This is for 1454 * both optimization and correctness. The earliest @timer can 1455 * expire is on the closest next tick and delayed_work users depend 1456 * on that there's no such delay when @delay is 0. 1457 */ 1458 if (!delay) { 1459 __queue_work(cpu, wq, &dwork->work); 1460 return; 1461 } 1462 1463 timer_stats_timer_set_start_info(&dwork->timer); 1464 1465 dwork->wq = wq; 1466 dwork->cpu = cpu; 1467 timer->expires = jiffies + delay; 1468 1469 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1470 add_timer_on(timer, cpu); 1471 else 1472 add_timer(timer); 1473 } 1474 1475 /** 1476 * queue_delayed_work_on - queue work on specific CPU after delay 1477 * @cpu: CPU number to execute work on 1478 * @wq: workqueue to use 1479 * @dwork: work to queue 1480 * @delay: number of jiffies to wait before queueing 1481 * 1482 * Return: %false if @work was already on a queue, %true otherwise. If 1483 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1484 * execution. 1485 */ 1486 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1487 struct delayed_work *dwork, unsigned long delay) 1488 { 1489 struct work_struct *work = &dwork->work; 1490 bool ret = false; 1491 unsigned long flags; 1492 1493 /* read the comment in __queue_work() */ 1494 local_irq_save(flags); 1495 1496 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1497 __queue_delayed_work(cpu, wq, dwork, delay); 1498 ret = true; 1499 } 1500 1501 local_irq_restore(flags); 1502 return ret; 1503 } 1504 EXPORT_SYMBOL(queue_delayed_work_on); 1505 1506 /** 1507 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1508 * @cpu: CPU number to execute work on 1509 * @wq: workqueue to use 1510 * @dwork: work to queue 1511 * @delay: number of jiffies to wait before queueing 1512 * 1513 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1514 * modify @dwork's timer so that it expires after @delay. If @delay is 1515 * zero, @work is guaranteed to be scheduled immediately regardless of its 1516 * current state. 1517 * 1518 * Return: %false if @dwork was idle and queued, %true if @dwork was 1519 * pending and its timer was modified. 1520 * 1521 * This function is safe to call from any context including IRQ handler. 1522 * See try_to_grab_pending() for details. 1523 */ 1524 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1525 struct delayed_work *dwork, unsigned long delay) 1526 { 1527 unsigned long flags; 1528 int ret; 1529 1530 do { 1531 ret = try_to_grab_pending(&dwork->work, true, &flags); 1532 } while (unlikely(ret == -EAGAIN)); 1533 1534 if (likely(ret >= 0)) { 1535 __queue_delayed_work(cpu, wq, dwork, delay); 1536 local_irq_restore(flags); 1537 } 1538 1539 /* -ENOENT from try_to_grab_pending() becomes %true */ 1540 return ret; 1541 } 1542 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1543 1544 /** 1545 * worker_enter_idle - enter idle state 1546 * @worker: worker which is entering idle state 1547 * 1548 * @worker is entering idle state. Update stats and idle timer if 1549 * necessary. 1550 * 1551 * LOCKING: 1552 * spin_lock_irq(pool->lock). 1553 */ 1554 static void worker_enter_idle(struct worker *worker) 1555 { 1556 struct worker_pool *pool = worker->pool; 1557 1558 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1559 WARN_ON_ONCE(!list_empty(&worker->entry) && 1560 (worker->hentry.next || worker->hentry.pprev))) 1561 return; 1562 1563 /* can't use worker_set_flags(), also called from create_worker() */ 1564 worker->flags |= WORKER_IDLE; 1565 pool->nr_idle++; 1566 worker->last_active = jiffies; 1567 1568 /* idle_list is LIFO */ 1569 list_add(&worker->entry, &pool->idle_list); 1570 1571 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1572 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1573 1574 /* 1575 * Sanity check nr_running. Because wq_unbind_fn() releases 1576 * pool->lock between setting %WORKER_UNBOUND and zapping 1577 * nr_running, the warning may trigger spuriously. Check iff 1578 * unbind is not in progress. 1579 */ 1580 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1581 pool->nr_workers == pool->nr_idle && 1582 atomic_read(&pool->nr_running)); 1583 } 1584 1585 /** 1586 * worker_leave_idle - leave idle state 1587 * @worker: worker which is leaving idle state 1588 * 1589 * @worker is leaving idle state. Update stats. 1590 * 1591 * LOCKING: 1592 * spin_lock_irq(pool->lock). 1593 */ 1594 static void worker_leave_idle(struct worker *worker) 1595 { 1596 struct worker_pool *pool = worker->pool; 1597 1598 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1599 return; 1600 worker_clr_flags(worker, WORKER_IDLE); 1601 pool->nr_idle--; 1602 list_del_init(&worker->entry); 1603 } 1604 1605 static struct worker *alloc_worker(int node) 1606 { 1607 struct worker *worker; 1608 1609 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1610 if (worker) { 1611 INIT_LIST_HEAD(&worker->entry); 1612 INIT_LIST_HEAD(&worker->scheduled); 1613 INIT_LIST_HEAD(&worker->node); 1614 /* on creation a worker is in !idle && prep state */ 1615 worker->flags = WORKER_PREP; 1616 } 1617 return worker; 1618 } 1619 1620 /** 1621 * worker_attach_to_pool() - attach a worker to a pool 1622 * @worker: worker to be attached 1623 * @pool: the target pool 1624 * 1625 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1626 * cpu-binding of @worker are kept coordinated with the pool across 1627 * cpu-[un]hotplugs. 1628 */ 1629 static void worker_attach_to_pool(struct worker *worker, 1630 struct worker_pool *pool) 1631 { 1632 mutex_lock(&pool->attach_mutex); 1633 1634 /* 1635 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1636 * online CPUs. It'll be re-applied when any of the CPUs come up. 1637 */ 1638 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1639 1640 /* 1641 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1642 * stable across this function. See the comments above the 1643 * flag definition for details. 1644 */ 1645 if (pool->flags & POOL_DISASSOCIATED) 1646 worker->flags |= WORKER_UNBOUND; 1647 1648 list_add_tail(&worker->node, &pool->workers); 1649 1650 mutex_unlock(&pool->attach_mutex); 1651 } 1652 1653 /** 1654 * worker_detach_from_pool() - detach a worker from its pool 1655 * @worker: worker which is attached to its pool 1656 * @pool: the pool @worker is attached to 1657 * 1658 * Undo the attaching which had been done in worker_attach_to_pool(). The 1659 * caller worker shouldn't access to the pool after detached except it has 1660 * other reference to the pool. 1661 */ 1662 static void worker_detach_from_pool(struct worker *worker, 1663 struct worker_pool *pool) 1664 { 1665 struct completion *detach_completion = NULL; 1666 1667 mutex_lock(&pool->attach_mutex); 1668 list_del(&worker->node); 1669 if (list_empty(&pool->workers)) 1670 detach_completion = pool->detach_completion; 1671 mutex_unlock(&pool->attach_mutex); 1672 1673 /* clear leftover flags without pool->lock after it is detached */ 1674 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1675 1676 if (detach_completion) 1677 complete(detach_completion); 1678 } 1679 1680 /** 1681 * create_worker - create a new workqueue worker 1682 * @pool: pool the new worker will belong to 1683 * 1684 * Create and start a new worker which is attached to @pool. 1685 * 1686 * CONTEXT: 1687 * Might sleep. Does GFP_KERNEL allocations. 1688 * 1689 * Return: 1690 * Pointer to the newly created worker. 1691 */ 1692 static struct worker *create_worker(struct worker_pool *pool) 1693 { 1694 struct worker *worker = NULL; 1695 int id = -1; 1696 char id_buf[16]; 1697 1698 /* ID is needed to determine kthread name */ 1699 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1700 if (id < 0) 1701 goto fail; 1702 1703 worker = alloc_worker(pool->node); 1704 if (!worker) 1705 goto fail; 1706 1707 worker->pool = pool; 1708 worker->id = id; 1709 1710 if (pool->cpu >= 0) 1711 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1712 pool->attrs->nice < 0 ? "H" : ""); 1713 else 1714 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1715 1716 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1717 "kworker/%s", id_buf); 1718 if (IS_ERR(worker->task)) 1719 goto fail; 1720 1721 set_user_nice(worker->task, pool->attrs->nice); 1722 1723 /* prevent userland from meddling with cpumask of workqueue workers */ 1724 worker->task->flags |= PF_NO_SETAFFINITY; 1725 1726 /* successful, attach the worker to the pool */ 1727 worker_attach_to_pool(worker, pool); 1728 1729 /* start the newly created worker */ 1730 spin_lock_irq(&pool->lock); 1731 worker->pool->nr_workers++; 1732 worker_enter_idle(worker); 1733 wake_up_process(worker->task); 1734 spin_unlock_irq(&pool->lock); 1735 1736 return worker; 1737 1738 fail: 1739 if (id >= 0) 1740 ida_simple_remove(&pool->worker_ida, id); 1741 kfree(worker); 1742 return NULL; 1743 } 1744 1745 /** 1746 * destroy_worker - destroy a workqueue worker 1747 * @worker: worker to be destroyed 1748 * 1749 * Destroy @worker and adjust @pool stats accordingly. The worker should 1750 * be idle. 1751 * 1752 * CONTEXT: 1753 * spin_lock_irq(pool->lock). 1754 */ 1755 static void destroy_worker(struct worker *worker) 1756 { 1757 struct worker_pool *pool = worker->pool; 1758 1759 lockdep_assert_held(&pool->lock); 1760 1761 /* sanity check frenzy */ 1762 if (WARN_ON(worker->current_work) || 1763 WARN_ON(!list_empty(&worker->scheduled)) || 1764 WARN_ON(!(worker->flags & WORKER_IDLE))) 1765 return; 1766 1767 pool->nr_workers--; 1768 pool->nr_idle--; 1769 1770 list_del_init(&worker->entry); 1771 worker->flags |= WORKER_DIE; 1772 wake_up_process(worker->task); 1773 } 1774 1775 static void idle_worker_timeout(unsigned long __pool) 1776 { 1777 struct worker_pool *pool = (void *)__pool; 1778 1779 spin_lock_irq(&pool->lock); 1780 1781 while (too_many_workers(pool)) { 1782 struct worker *worker; 1783 unsigned long expires; 1784 1785 /* idle_list is kept in LIFO order, check the last one */ 1786 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1787 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1788 1789 if (time_before(jiffies, expires)) { 1790 mod_timer(&pool->idle_timer, expires); 1791 break; 1792 } 1793 1794 destroy_worker(worker); 1795 } 1796 1797 spin_unlock_irq(&pool->lock); 1798 } 1799 1800 static void send_mayday(struct work_struct *work) 1801 { 1802 struct pool_workqueue *pwq = get_work_pwq(work); 1803 struct workqueue_struct *wq = pwq->wq; 1804 1805 lockdep_assert_held(&wq_mayday_lock); 1806 1807 if (!wq->rescuer) 1808 return; 1809 1810 /* mayday mayday mayday */ 1811 if (list_empty(&pwq->mayday_node)) { 1812 /* 1813 * If @pwq is for an unbound wq, its base ref may be put at 1814 * any time due to an attribute change. Pin @pwq until the 1815 * rescuer is done with it. 1816 */ 1817 get_pwq(pwq); 1818 list_add_tail(&pwq->mayday_node, &wq->maydays); 1819 wake_up_process(wq->rescuer->task); 1820 } 1821 } 1822 1823 static void pool_mayday_timeout(unsigned long __pool) 1824 { 1825 struct worker_pool *pool = (void *)__pool; 1826 struct work_struct *work; 1827 1828 spin_lock_irq(&pool->lock); 1829 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1830 1831 if (need_to_create_worker(pool)) { 1832 /* 1833 * We've been trying to create a new worker but 1834 * haven't been successful. We might be hitting an 1835 * allocation deadlock. Send distress signals to 1836 * rescuers. 1837 */ 1838 list_for_each_entry(work, &pool->worklist, entry) 1839 send_mayday(work); 1840 } 1841 1842 spin_unlock(&wq_mayday_lock); 1843 spin_unlock_irq(&pool->lock); 1844 1845 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1846 } 1847 1848 /** 1849 * maybe_create_worker - create a new worker if necessary 1850 * @pool: pool to create a new worker for 1851 * 1852 * Create a new worker for @pool if necessary. @pool is guaranteed to 1853 * have at least one idle worker on return from this function. If 1854 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1855 * sent to all rescuers with works scheduled on @pool to resolve 1856 * possible allocation deadlock. 1857 * 1858 * On return, need_to_create_worker() is guaranteed to be %false and 1859 * may_start_working() %true. 1860 * 1861 * LOCKING: 1862 * spin_lock_irq(pool->lock) which may be released and regrabbed 1863 * multiple times. Does GFP_KERNEL allocations. Called only from 1864 * manager. 1865 */ 1866 static void maybe_create_worker(struct worker_pool *pool) 1867 __releases(&pool->lock) 1868 __acquires(&pool->lock) 1869 { 1870 restart: 1871 spin_unlock_irq(&pool->lock); 1872 1873 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1874 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1875 1876 while (true) { 1877 if (create_worker(pool) || !need_to_create_worker(pool)) 1878 break; 1879 1880 schedule_timeout_interruptible(CREATE_COOLDOWN); 1881 1882 if (!need_to_create_worker(pool)) 1883 break; 1884 } 1885 1886 del_timer_sync(&pool->mayday_timer); 1887 spin_lock_irq(&pool->lock); 1888 /* 1889 * This is necessary even after a new worker was just successfully 1890 * created as @pool->lock was dropped and the new worker might have 1891 * already become busy. 1892 */ 1893 if (need_to_create_worker(pool)) 1894 goto restart; 1895 } 1896 1897 /** 1898 * manage_workers - manage worker pool 1899 * @worker: self 1900 * 1901 * Assume the manager role and manage the worker pool @worker belongs 1902 * to. At any given time, there can be only zero or one manager per 1903 * pool. The exclusion is handled automatically by this function. 1904 * 1905 * The caller can safely start processing works on false return. On 1906 * true return, it's guaranteed that need_to_create_worker() is false 1907 * and may_start_working() is true. 1908 * 1909 * CONTEXT: 1910 * spin_lock_irq(pool->lock) which may be released and regrabbed 1911 * multiple times. Does GFP_KERNEL allocations. 1912 * 1913 * Return: 1914 * %false if the pool doesn't need management and the caller can safely 1915 * start processing works, %true if management function was performed and 1916 * the conditions that the caller verified before calling the function may 1917 * no longer be true. 1918 */ 1919 static bool manage_workers(struct worker *worker) 1920 { 1921 struct worker_pool *pool = worker->pool; 1922 1923 /* 1924 * Anyone who successfully grabs manager_arb wins the arbitration 1925 * and becomes the manager. mutex_trylock() on pool->manager_arb 1926 * failure while holding pool->lock reliably indicates that someone 1927 * else is managing the pool and the worker which failed trylock 1928 * can proceed to executing work items. This means that anyone 1929 * grabbing manager_arb is responsible for actually performing 1930 * manager duties. If manager_arb is grabbed and released without 1931 * actual management, the pool may stall indefinitely. 1932 */ 1933 if (!mutex_trylock(&pool->manager_arb)) 1934 return false; 1935 pool->manager = worker; 1936 1937 maybe_create_worker(pool); 1938 1939 pool->manager = NULL; 1940 mutex_unlock(&pool->manager_arb); 1941 return true; 1942 } 1943 1944 /** 1945 * process_one_work - process single work 1946 * @worker: self 1947 * @work: work to process 1948 * 1949 * Process @work. This function contains all the logics necessary to 1950 * process a single work including synchronization against and 1951 * interaction with other workers on the same cpu, queueing and 1952 * flushing. As long as context requirement is met, any worker can 1953 * call this function to process a work. 1954 * 1955 * CONTEXT: 1956 * spin_lock_irq(pool->lock) which is released and regrabbed. 1957 */ 1958 static void process_one_work(struct worker *worker, struct work_struct *work) 1959 __releases(&pool->lock) 1960 __acquires(&pool->lock) 1961 { 1962 struct pool_workqueue *pwq = get_work_pwq(work); 1963 struct worker_pool *pool = worker->pool; 1964 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 1965 int work_color; 1966 struct worker *collision; 1967 #ifdef CONFIG_LOCKDEP 1968 /* 1969 * It is permissible to free the struct work_struct from 1970 * inside the function that is called from it, this we need to 1971 * take into account for lockdep too. To avoid bogus "held 1972 * lock freed" warnings as well as problems when looking into 1973 * work->lockdep_map, make a copy and use that here. 1974 */ 1975 struct lockdep_map lockdep_map; 1976 1977 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 1978 #endif 1979 /* ensure we're on the correct CPU */ 1980 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1981 raw_smp_processor_id() != pool->cpu); 1982 1983 /* 1984 * A single work shouldn't be executed concurrently by 1985 * multiple workers on a single cpu. Check whether anyone is 1986 * already processing the work. If so, defer the work to the 1987 * currently executing one. 1988 */ 1989 collision = find_worker_executing_work(pool, work); 1990 if (unlikely(collision)) { 1991 move_linked_works(work, &collision->scheduled, NULL); 1992 return; 1993 } 1994 1995 /* claim and dequeue */ 1996 debug_work_deactivate(work); 1997 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 1998 worker->current_work = work; 1999 worker->current_func = work->func; 2000 worker->current_pwq = pwq; 2001 work_color = get_work_color(work); 2002 2003 list_del_init(&work->entry); 2004 2005 /* 2006 * CPU intensive works don't participate in concurrency management. 2007 * They're the scheduler's responsibility. This takes @worker out 2008 * of concurrency management and the next code block will chain 2009 * execution of the pending work items. 2010 */ 2011 if (unlikely(cpu_intensive)) 2012 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2013 2014 /* 2015 * Wake up another worker if necessary. The condition is always 2016 * false for normal per-cpu workers since nr_running would always 2017 * be >= 1 at this point. This is used to chain execution of the 2018 * pending work items for WORKER_NOT_RUNNING workers such as the 2019 * UNBOUND and CPU_INTENSIVE ones. 2020 */ 2021 if (need_more_worker(pool)) 2022 wake_up_worker(pool); 2023 2024 /* 2025 * Record the last pool and clear PENDING which should be the last 2026 * update to @work. Also, do this inside @pool->lock so that 2027 * PENDING and queued state changes happen together while IRQ is 2028 * disabled. 2029 */ 2030 set_work_pool_and_clear_pending(work, pool->id); 2031 2032 spin_unlock_irq(&pool->lock); 2033 2034 lock_map_acquire_read(&pwq->wq->lockdep_map); 2035 lock_map_acquire(&lockdep_map); 2036 trace_workqueue_execute_start(work); 2037 worker->current_func(work); 2038 /* 2039 * While we must be careful to not use "work" after this, the trace 2040 * point will only record its address. 2041 */ 2042 trace_workqueue_execute_end(work); 2043 lock_map_release(&lockdep_map); 2044 lock_map_release(&pwq->wq->lockdep_map); 2045 2046 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2047 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2048 " last function: %pf\n", 2049 current->comm, preempt_count(), task_pid_nr(current), 2050 worker->current_func); 2051 debug_show_held_locks(current); 2052 dump_stack(); 2053 } 2054 2055 /* 2056 * The following prevents a kworker from hogging CPU on !PREEMPT 2057 * kernels, where a requeueing work item waiting for something to 2058 * happen could deadlock with stop_machine as such work item could 2059 * indefinitely requeue itself while all other CPUs are trapped in 2060 * stop_machine. At the same time, report a quiescent RCU state so 2061 * the same condition doesn't freeze RCU. 2062 */ 2063 cond_resched_rcu_qs(); 2064 2065 spin_lock_irq(&pool->lock); 2066 2067 /* clear cpu intensive status */ 2068 if (unlikely(cpu_intensive)) 2069 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2070 2071 /* we're done with it, release */ 2072 hash_del(&worker->hentry); 2073 worker->current_work = NULL; 2074 worker->current_func = NULL; 2075 worker->current_pwq = NULL; 2076 worker->desc_valid = false; 2077 pwq_dec_nr_in_flight(pwq, work_color); 2078 } 2079 2080 /** 2081 * process_scheduled_works - process scheduled works 2082 * @worker: self 2083 * 2084 * Process all scheduled works. Please note that the scheduled list 2085 * may change while processing a work, so this function repeatedly 2086 * fetches a work from the top and executes it. 2087 * 2088 * CONTEXT: 2089 * spin_lock_irq(pool->lock) which may be released and regrabbed 2090 * multiple times. 2091 */ 2092 static void process_scheduled_works(struct worker *worker) 2093 { 2094 while (!list_empty(&worker->scheduled)) { 2095 struct work_struct *work = list_first_entry(&worker->scheduled, 2096 struct work_struct, entry); 2097 process_one_work(worker, work); 2098 } 2099 } 2100 2101 /** 2102 * worker_thread - the worker thread function 2103 * @__worker: self 2104 * 2105 * The worker thread function. All workers belong to a worker_pool - 2106 * either a per-cpu one or dynamic unbound one. These workers process all 2107 * work items regardless of their specific target workqueue. The only 2108 * exception is work items which belong to workqueues with a rescuer which 2109 * will be explained in rescuer_thread(). 2110 * 2111 * Return: 0 2112 */ 2113 static int worker_thread(void *__worker) 2114 { 2115 struct worker *worker = __worker; 2116 struct worker_pool *pool = worker->pool; 2117 2118 /* tell the scheduler that this is a workqueue worker */ 2119 worker->task->flags |= PF_WQ_WORKER; 2120 woke_up: 2121 spin_lock_irq(&pool->lock); 2122 2123 /* am I supposed to die? */ 2124 if (unlikely(worker->flags & WORKER_DIE)) { 2125 spin_unlock_irq(&pool->lock); 2126 WARN_ON_ONCE(!list_empty(&worker->entry)); 2127 worker->task->flags &= ~PF_WQ_WORKER; 2128 2129 set_task_comm(worker->task, "kworker/dying"); 2130 ida_simple_remove(&pool->worker_ida, worker->id); 2131 worker_detach_from_pool(worker, pool); 2132 kfree(worker); 2133 return 0; 2134 } 2135 2136 worker_leave_idle(worker); 2137 recheck: 2138 /* no more worker necessary? */ 2139 if (!need_more_worker(pool)) 2140 goto sleep; 2141 2142 /* do we need to manage? */ 2143 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2144 goto recheck; 2145 2146 /* 2147 * ->scheduled list can only be filled while a worker is 2148 * preparing to process a work or actually processing it. 2149 * Make sure nobody diddled with it while I was sleeping. 2150 */ 2151 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2152 2153 /* 2154 * Finish PREP stage. We're guaranteed to have at least one idle 2155 * worker or that someone else has already assumed the manager 2156 * role. This is where @worker starts participating in concurrency 2157 * management if applicable and concurrency management is restored 2158 * after being rebound. See rebind_workers() for details. 2159 */ 2160 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2161 2162 do { 2163 struct work_struct *work = 2164 list_first_entry(&pool->worklist, 2165 struct work_struct, entry); 2166 2167 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2168 /* optimization path, not strictly necessary */ 2169 process_one_work(worker, work); 2170 if (unlikely(!list_empty(&worker->scheduled))) 2171 process_scheduled_works(worker); 2172 } else { 2173 move_linked_works(work, &worker->scheduled, NULL); 2174 process_scheduled_works(worker); 2175 } 2176 } while (keep_working(pool)); 2177 2178 worker_set_flags(worker, WORKER_PREP); 2179 sleep: 2180 /* 2181 * pool->lock is held and there's no work to process and no need to 2182 * manage, sleep. Workers are woken up only while holding 2183 * pool->lock or from local cpu, so setting the current state 2184 * before releasing pool->lock is enough to prevent losing any 2185 * event. 2186 */ 2187 worker_enter_idle(worker); 2188 __set_current_state(TASK_INTERRUPTIBLE); 2189 spin_unlock_irq(&pool->lock); 2190 schedule(); 2191 goto woke_up; 2192 } 2193 2194 /** 2195 * rescuer_thread - the rescuer thread function 2196 * @__rescuer: self 2197 * 2198 * Workqueue rescuer thread function. There's one rescuer for each 2199 * workqueue which has WQ_MEM_RECLAIM set. 2200 * 2201 * Regular work processing on a pool may block trying to create a new 2202 * worker which uses GFP_KERNEL allocation which has slight chance of 2203 * developing into deadlock if some works currently on the same queue 2204 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2205 * the problem rescuer solves. 2206 * 2207 * When such condition is possible, the pool summons rescuers of all 2208 * workqueues which have works queued on the pool and let them process 2209 * those works so that forward progress can be guaranteed. 2210 * 2211 * This should happen rarely. 2212 * 2213 * Return: 0 2214 */ 2215 static int rescuer_thread(void *__rescuer) 2216 { 2217 struct worker *rescuer = __rescuer; 2218 struct workqueue_struct *wq = rescuer->rescue_wq; 2219 struct list_head *scheduled = &rescuer->scheduled; 2220 bool should_stop; 2221 2222 set_user_nice(current, RESCUER_NICE_LEVEL); 2223 2224 /* 2225 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2226 * doesn't participate in concurrency management. 2227 */ 2228 rescuer->task->flags |= PF_WQ_WORKER; 2229 repeat: 2230 set_current_state(TASK_INTERRUPTIBLE); 2231 2232 /* 2233 * By the time the rescuer is requested to stop, the workqueue 2234 * shouldn't have any work pending, but @wq->maydays may still have 2235 * pwq(s) queued. This can happen by non-rescuer workers consuming 2236 * all the work items before the rescuer got to them. Go through 2237 * @wq->maydays processing before acting on should_stop so that the 2238 * list is always empty on exit. 2239 */ 2240 should_stop = kthread_should_stop(); 2241 2242 /* see whether any pwq is asking for help */ 2243 spin_lock_irq(&wq_mayday_lock); 2244 2245 while (!list_empty(&wq->maydays)) { 2246 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2247 struct pool_workqueue, mayday_node); 2248 struct worker_pool *pool = pwq->pool; 2249 struct work_struct *work, *n; 2250 2251 __set_current_state(TASK_RUNNING); 2252 list_del_init(&pwq->mayday_node); 2253 2254 spin_unlock_irq(&wq_mayday_lock); 2255 2256 worker_attach_to_pool(rescuer, pool); 2257 2258 spin_lock_irq(&pool->lock); 2259 rescuer->pool = pool; 2260 2261 /* 2262 * Slurp in all works issued via this workqueue and 2263 * process'em. 2264 */ 2265 WARN_ON_ONCE(!list_empty(scheduled)); 2266 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2267 if (get_work_pwq(work) == pwq) 2268 move_linked_works(work, scheduled, &n); 2269 2270 if (!list_empty(scheduled)) { 2271 process_scheduled_works(rescuer); 2272 2273 /* 2274 * The above execution of rescued work items could 2275 * have created more to rescue through 2276 * pwq_activate_first_delayed() or chained 2277 * queueing. Let's put @pwq back on mayday list so 2278 * that such back-to-back work items, which may be 2279 * being used to relieve memory pressure, don't 2280 * incur MAYDAY_INTERVAL delay inbetween. 2281 */ 2282 if (need_to_create_worker(pool)) { 2283 spin_lock(&wq_mayday_lock); 2284 get_pwq(pwq); 2285 list_move_tail(&pwq->mayday_node, &wq->maydays); 2286 spin_unlock(&wq_mayday_lock); 2287 } 2288 } 2289 2290 /* 2291 * Put the reference grabbed by send_mayday(). @pool won't 2292 * go away while we're still attached to it. 2293 */ 2294 put_pwq(pwq); 2295 2296 /* 2297 * Leave this pool. If need_more_worker() is %true, notify a 2298 * regular worker; otherwise, we end up with 0 concurrency 2299 * and stalling the execution. 2300 */ 2301 if (need_more_worker(pool)) 2302 wake_up_worker(pool); 2303 2304 rescuer->pool = NULL; 2305 spin_unlock_irq(&pool->lock); 2306 2307 worker_detach_from_pool(rescuer, pool); 2308 2309 spin_lock_irq(&wq_mayday_lock); 2310 } 2311 2312 spin_unlock_irq(&wq_mayday_lock); 2313 2314 if (should_stop) { 2315 __set_current_state(TASK_RUNNING); 2316 rescuer->task->flags &= ~PF_WQ_WORKER; 2317 return 0; 2318 } 2319 2320 /* rescuers should never participate in concurrency management */ 2321 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2322 schedule(); 2323 goto repeat; 2324 } 2325 2326 struct wq_barrier { 2327 struct work_struct work; 2328 struct completion done; 2329 struct task_struct *task; /* purely informational */ 2330 }; 2331 2332 static void wq_barrier_func(struct work_struct *work) 2333 { 2334 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2335 complete(&barr->done); 2336 } 2337 2338 /** 2339 * insert_wq_barrier - insert a barrier work 2340 * @pwq: pwq to insert barrier into 2341 * @barr: wq_barrier to insert 2342 * @target: target work to attach @barr to 2343 * @worker: worker currently executing @target, NULL if @target is not executing 2344 * 2345 * @barr is linked to @target such that @barr is completed only after 2346 * @target finishes execution. Please note that the ordering 2347 * guarantee is observed only with respect to @target and on the local 2348 * cpu. 2349 * 2350 * Currently, a queued barrier can't be canceled. This is because 2351 * try_to_grab_pending() can't determine whether the work to be 2352 * grabbed is at the head of the queue and thus can't clear LINKED 2353 * flag of the previous work while there must be a valid next work 2354 * after a work with LINKED flag set. 2355 * 2356 * Note that when @worker is non-NULL, @target may be modified 2357 * underneath us, so we can't reliably determine pwq from @target. 2358 * 2359 * CONTEXT: 2360 * spin_lock_irq(pool->lock). 2361 */ 2362 static void insert_wq_barrier(struct pool_workqueue *pwq, 2363 struct wq_barrier *barr, 2364 struct work_struct *target, struct worker *worker) 2365 { 2366 struct list_head *head; 2367 unsigned int linked = 0; 2368 2369 /* 2370 * debugobject calls are safe here even with pool->lock locked 2371 * as we know for sure that this will not trigger any of the 2372 * checks and call back into the fixup functions where we 2373 * might deadlock. 2374 */ 2375 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2376 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2377 init_completion(&barr->done); 2378 barr->task = current; 2379 2380 /* 2381 * If @target is currently being executed, schedule the 2382 * barrier to the worker; otherwise, put it after @target. 2383 */ 2384 if (worker) 2385 head = worker->scheduled.next; 2386 else { 2387 unsigned long *bits = work_data_bits(target); 2388 2389 head = target->entry.next; 2390 /* there can already be other linked works, inherit and set */ 2391 linked = *bits & WORK_STRUCT_LINKED; 2392 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2393 } 2394 2395 debug_work_activate(&barr->work); 2396 insert_work(pwq, &barr->work, head, 2397 work_color_to_flags(WORK_NO_COLOR) | linked); 2398 } 2399 2400 /** 2401 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2402 * @wq: workqueue being flushed 2403 * @flush_color: new flush color, < 0 for no-op 2404 * @work_color: new work color, < 0 for no-op 2405 * 2406 * Prepare pwqs for workqueue flushing. 2407 * 2408 * If @flush_color is non-negative, flush_color on all pwqs should be 2409 * -1. If no pwq has in-flight commands at the specified color, all 2410 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2411 * has in flight commands, its pwq->flush_color is set to 2412 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2413 * wakeup logic is armed and %true is returned. 2414 * 2415 * The caller should have initialized @wq->first_flusher prior to 2416 * calling this function with non-negative @flush_color. If 2417 * @flush_color is negative, no flush color update is done and %false 2418 * is returned. 2419 * 2420 * If @work_color is non-negative, all pwqs should have the same 2421 * work_color which is previous to @work_color and all will be 2422 * advanced to @work_color. 2423 * 2424 * CONTEXT: 2425 * mutex_lock(wq->mutex). 2426 * 2427 * Return: 2428 * %true if @flush_color >= 0 and there's something to flush. %false 2429 * otherwise. 2430 */ 2431 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2432 int flush_color, int work_color) 2433 { 2434 bool wait = false; 2435 struct pool_workqueue *pwq; 2436 2437 if (flush_color >= 0) { 2438 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2439 atomic_set(&wq->nr_pwqs_to_flush, 1); 2440 } 2441 2442 for_each_pwq(pwq, wq) { 2443 struct worker_pool *pool = pwq->pool; 2444 2445 spin_lock_irq(&pool->lock); 2446 2447 if (flush_color >= 0) { 2448 WARN_ON_ONCE(pwq->flush_color != -1); 2449 2450 if (pwq->nr_in_flight[flush_color]) { 2451 pwq->flush_color = flush_color; 2452 atomic_inc(&wq->nr_pwqs_to_flush); 2453 wait = true; 2454 } 2455 } 2456 2457 if (work_color >= 0) { 2458 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2459 pwq->work_color = work_color; 2460 } 2461 2462 spin_unlock_irq(&pool->lock); 2463 } 2464 2465 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2466 complete(&wq->first_flusher->done); 2467 2468 return wait; 2469 } 2470 2471 /** 2472 * flush_workqueue - ensure that any scheduled work has run to completion. 2473 * @wq: workqueue to flush 2474 * 2475 * This function sleeps until all work items which were queued on entry 2476 * have finished execution, but it is not livelocked by new incoming ones. 2477 */ 2478 void flush_workqueue(struct workqueue_struct *wq) 2479 { 2480 struct wq_flusher this_flusher = { 2481 .list = LIST_HEAD_INIT(this_flusher.list), 2482 .flush_color = -1, 2483 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2484 }; 2485 int next_color; 2486 2487 lock_map_acquire(&wq->lockdep_map); 2488 lock_map_release(&wq->lockdep_map); 2489 2490 mutex_lock(&wq->mutex); 2491 2492 /* 2493 * Start-to-wait phase 2494 */ 2495 next_color = work_next_color(wq->work_color); 2496 2497 if (next_color != wq->flush_color) { 2498 /* 2499 * Color space is not full. The current work_color 2500 * becomes our flush_color and work_color is advanced 2501 * by one. 2502 */ 2503 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2504 this_flusher.flush_color = wq->work_color; 2505 wq->work_color = next_color; 2506 2507 if (!wq->first_flusher) { 2508 /* no flush in progress, become the first flusher */ 2509 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2510 2511 wq->first_flusher = &this_flusher; 2512 2513 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2514 wq->work_color)) { 2515 /* nothing to flush, done */ 2516 wq->flush_color = next_color; 2517 wq->first_flusher = NULL; 2518 goto out_unlock; 2519 } 2520 } else { 2521 /* wait in queue */ 2522 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2523 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2524 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2525 } 2526 } else { 2527 /* 2528 * Oops, color space is full, wait on overflow queue. 2529 * The next flush completion will assign us 2530 * flush_color and transfer to flusher_queue. 2531 */ 2532 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2533 } 2534 2535 mutex_unlock(&wq->mutex); 2536 2537 wait_for_completion(&this_flusher.done); 2538 2539 /* 2540 * Wake-up-and-cascade phase 2541 * 2542 * First flushers are responsible for cascading flushes and 2543 * handling overflow. Non-first flushers can simply return. 2544 */ 2545 if (wq->first_flusher != &this_flusher) 2546 return; 2547 2548 mutex_lock(&wq->mutex); 2549 2550 /* we might have raced, check again with mutex held */ 2551 if (wq->first_flusher != &this_flusher) 2552 goto out_unlock; 2553 2554 wq->first_flusher = NULL; 2555 2556 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2557 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2558 2559 while (true) { 2560 struct wq_flusher *next, *tmp; 2561 2562 /* complete all the flushers sharing the current flush color */ 2563 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2564 if (next->flush_color != wq->flush_color) 2565 break; 2566 list_del_init(&next->list); 2567 complete(&next->done); 2568 } 2569 2570 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2571 wq->flush_color != work_next_color(wq->work_color)); 2572 2573 /* this flush_color is finished, advance by one */ 2574 wq->flush_color = work_next_color(wq->flush_color); 2575 2576 /* one color has been freed, handle overflow queue */ 2577 if (!list_empty(&wq->flusher_overflow)) { 2578 /* 2579 * Assign the same color to all overflowed 2580 * flushers, advance work_color and append to 2581 * flusher_queue. This is the start-to-wait 2582 * phase for these overflowed flushers. 2583 */ 2584 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2585 tmp->flush_color = wq->work_color; 2586 2587 wq->work_color = work_next_color(wq->work_color); 2588 2589 list_splice_tail_init(&wq->flusher_overflow, 2590 &wq->flusher_queue); 2591 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2592 } 2593 2594 if (list_empty(&wq->flusher_queue)) { 2595 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2596 break; 2597 } 2598 2599 /* 2600 * Need to flush more colors. Make the next flusher 2601 * the new first flusher and arm pwqs. 2602 */ 2603 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2604 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2605 2606 list_del_init(&next->list); 2607 wq->first_flusher = next; 2608 2609 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2610 break; 2611 2612 /* 2613 * Meh... this color is already done, clear first 2614 * flusher and repeat cascading. 2615 */ 2616 wq->first_flusher = NULL; 2617 } 2618 2619 out_unlock: 2620 mutex_unlock(&wq->mutex); 2621 } 2622 EXPORT_SYMBOL_GPL(flush_workqueue); 2623 2624 /** 2625 * drain_workqueue - drain a workqueue 2626 * @wq: workqueue to drain 2627 * 2628 * Wait until the workqueue becomes empty. While draining is in progress, 2629 * only chain queueing is allowed. IOW, only currently pending or running 2630 * work items on @wq can queue further work items on it. @wq is flushed 2631 * repeatedly until it becomes empty. The number of flushing is determined 2632 * by the depth of chaining and should be relatively short. Whine if it 2633 * takes too long. 2634 */ 2635 void drain_workqueue(struct workqueue_struct *wq) 2636 { 2637 unsigned int flush_cnt = 0; 2638 struct pool_workqueue *pwq; 2639 2640 /* 2641 * __queue_work() needs to test whether there are drainers, is much 2642 * hotter than drain_workqueue() and already looks at @wq->flags. 2643 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2644 */ 2645 mutex_lock(&wq->mutex); 2646 if (!wq->nr_drainers++) 2647 wq->flags |= __WQ_DRAINING; 2648 mutex_unlock(&wq->mutex); 2649 reflush: 2650 flush_workqueue(wq); 2651 2652 mutex_lock(&wq->mutex); 2653 2654 for_each_pwq(pwq, wq) { 2655 bool drained; 2656 2657 spin_lock_irq(&pwq->pool->lock); 2658 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2659 spin_unlock_irq(&pwq->pool->lock); 2660 2661 if (drained) 2662 continue; 2663 2664 if (++flush_cnt == 10 || 2665 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2666 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2667 wq->name, flush_cnt); 2668 2669 mutex_unlock(&wq->mutex); 2670 goto reflush; 2671 } 2672 2673 if (!--wq->nr_drainers) 2674 wq->flags &= ~__WQ_DRAINING; 2675 mutex_unlock(&wq->mutex); 2676 } 2677 EXPORT_SYMBOL_GPL(drain_workqueue); 2678 2679 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2680 { 2681 struct worker *worker = NULL; 2682 struct worker_pool *pool; 2683 struct pool_workqueue *pwq; 2684 2685 might_sleep(); 2686 2687 local_irq_disable(); 2688 pool = get_work_pool(work); 2689 if (!pool) { 2690 local_irq_enable(); 2691 return false; 2692 } 2693 2694 spin_lock(&pool->lock); 2695 /* see the comment in try_to_grab_pending() with the same code */ 2696 pwq = get_work_pwq(work); 2697 if (pwq) { 2698 if (unlikely(pwq->pool != pool)) 2699 goto already_gone; 2700 } else { 2701 worker = find_worker_executing_work(pool, work); 2702 if (!worker) 2703 goto already_gone; 2704 pwq = worker->current_pwq; 2705 } 2706 2707 insert_wq_barrier(pwq, barr, work, worker); 2708 spin_unlock_irq(&pool->lock); 2709 2710 /* 2711 * If @max_active is 1 or rescuer is in use, flushing another work 2712 * item on the same workqueue may lead to deadlock. Make sure the 2713 * flusher is not running on the same workqueue by verifying write 2714 * access. 2715 */ 2716 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2717 lock_map_acquire(&pwq->wq->lockdep_map); 2718 else 2719 lock_map_acquire_read(&pwq->wq->lockdep_map); 2720 lock_map_release(&pwq->wq->lockdep_map); 2721 2722 return true; 2723 already_gone: 2724 spin_unlock_irq(&pool->lock); 2725 return false; 2726 } 2727 2728 /** 2729 * flush_work - wait for a work to finish executing the last queueing instance 2730 * @work: the work to flush 2731 * 2732 * Wait until @work has finished execution. @work is guaranteed to be idle 2733 * on return if it hasn't been requeued since flush started. 2734 * 2735 * Return: 2736 * %true if flush_work() waited for the work to finish execution, 2737 * %false if it was already idle. 2738 */ 2739 bool flush_work(struct work_struct *work) 2740 { 2741 struct wq_barrier barr; 2742 2743 lock_map_acquire(&work->lockdep_map); 2744 lock_map_release(&work->lockdep_map); 2745 2746 if (start_flush_work(work, &barr)) { 2747 wait_for_completion(&barr.done); 2748 destroy_work_on_stack(&barr.work); 2749 return true; 2750 } else { 2751 return false; 2752 } 2753 } 2754 EXPORT_SYMBOL_GPL(flush_work); 2755 2756 struct cwt_wait { 2757 wait_queue_t wait; 2758 struct work_struct *work; 2759 }; 2760 2761 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2762 { 2763 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2764 2765 if (cwait->work != key) 2766 return 0; 2767 return autoremove_wake_function(wait, mode, sync, key); 2768 } 2769 2770 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2771 { 2772 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2773 unsigned long flags; 2774 int ret; 2775 2776 do { 2777 ret = try_to_grab_pending(work, is_dwork, &flags); 2778 /* 2779 * If someone else is already canceling, wait for it to 2780 * finish. flush_work() doesn't work for PREEMPT_NONE 2781 * because we may get scheduled between @work's completion 2782 * and the other canceling task resuming and clearing 2783 * CANCELING - flush_work() will return false immediately 2784 * as @work is no longer busy, try_to_grab_pending() will 2785 * return -ENOENT as @work is still being canceled and the 2786 * other canceling task won't be able to clear CANCELING as 2787 * we're hogging the CPU. 2788 * 2789 * Let's wait for completion using a waitqueue. As this 2790 * may lead to the thundering herd problem, use a custom 2791 * wake function which matches @work along with exclusive 2792 * wait and wakeup. 2793 */ 2794 if (unlikely(ret == -ENOENT)) { 2795 struct cwt_wait cwait; 2796 2797 init_wait(&cwait.wait); 2798 cwait.wait.func = cwt_wakefn; 2799 cwait.work = work; 2800 2801 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2802 TASK_UNINTERRUPTIBLE); 2803 if (work_is_canceling(work)) 2804 schedule(); 2805 finish_wait(&cancel_waitq, &cwait.wait); 2806 } 2807 } while (unlikely(ret < 0)); 2808 2809 /* tell other tasks trying to grab @work to back off */ 2810 mark_work_canceling(work); 2811 local_irq_restore(flags); 2812 2813 flush_work(work); 2814 clear_work_data(work); 2815 2816 /* 2817 * Paired with prepare_to_wait() above so that either 2818 * waitqueue_active() is visible here or !work_is_canceling() is 2819 * visible there. 2820 */ 2821 smp_mb(); 2822 if (waitqueue_active(&cancel_waitq)) 2823 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2824 2825 return ret; 2826 } 2827 2828 /** 2829 * cancel_work_sync - cancel a work and wait for it to finish 2830 * @work: the work to cancel 2831 * 2832 * Cancel @work and wait for its execution to finish. This function 2833 * can be used even if the work re-queues itself or migrates to 2834 * another workqueue. On return from this function, @work is 2835 * guaranteed to be not pending or executing on any CPU. 2836 * 2837 * cancel_work_sync(&delayed_work->work) must not be used for 2838 * delayed_work's. Use cancel_delayed_work_sync() instead. 2839 * 2840 * The caller must ensure that the workqueue on which @work was last 2841 * queued can't be destroyed before this function returns. 2842 * 2843 * Return: 2844 * %true if @work was pending, %false otherwise. 2845 */ 2846 bool cancel_work_sync(struct work_struct *work) 2847 { 2848 return __cancel_work_timer(work, false); 2849 } 2850 EXPORT_SYMBOL_GPL(cancel_work_sync); 2851 2852 /** 2853 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2854 * @dwork: the delayed work to flush 2855 * 2856 * Delayed timer is cancelled and the pending work is queued for 2857 * immediate execution. Like flush_work(), this function only 2858 * considers the last queueing instance of @dwork. 2859 * 2860 * Return: 2861 * %true if flush_work() waited for the work to finish execution, 2862 * %false if it was already idle. 2863 */ 2864 bool flush_delayed_work(struct delayed_work *dwork) 2865 { 2866 local_irq_disable(); 2867 if (del_timer_sync(&dwork->timer)) 2868 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2869 local_irq_enable(); 2870 return flush_work(&dwork->work); 2871 } 2872 EXPORT_SYMBOL(flush_delayed_work); 2873 2874 /** 2875 * cancel_delayed_work - cancel a delayed work 2876 * @dwork: delayed_work to cancel 2877 * 2878 * Kill off a pending delayed_work. 2879 * 2880 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2881 * pending. 2882 * 2883 * Note: 2884 * The work callback function may still be running on return, unless 2885 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2886 * use cancel_delayed_work_sync() to wait on it. 2887 * 2888 * This function is safe to call from any context including IRQ handler. 2889 */ 2890 bool cancel_delayed_work(struct delayed_work *dwork) 2891 { 2892 unsigned long flags; 2893 int ret; 2894 2895 do { 2896 ret = try_to_grab_pending(&dwork->work, true, &flags); 2897 } while (unlikely(ret == -EAGAIN)); 2898 2899 if (unlikely(ret < 0)) 2900 return false; 2901 2902 set_work_pool_and_clear_pending(&dwork->work, 2903 get_work_pool_id(&dwork->work)); 2904 local_irq_restore(flags); 2905 return ret; 2906 } 2907 EXPORT_SYMBOL(cancel_delayed_work); 2908 2909 /** 2910 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2911 * @dwork: the delayed work cancel 2912 * 2913 * This is cancel_work_sync() for delayed works. 2914 * 2915 * Return: 2916 * %true if @dwork was pending, %false otherwise. 2917 */ 2918 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2919 { 2920 return __cancel_work_timer(&dwork->work, true); 2921 } 2922 EXPORT_SYMBOL(cancel_delayed_work_sync); 2923 2924 /** 2925 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2926 * @func: the function to call 2927 * 2928 * schedule_on_each_cpu() executes @func on each online CPU using the 2929 * system workqueue and blocks until all CPUs have completed. 2930 * schedule_on_each_cpu() is very slow. 2931 * 2932 * Return: 2933 * 0 on success, -errno on failure. 2934 */ 2935 int schedule_on_each_cpu(work_func_t func) 2936 { 2937 int cpu; 2938 struct work_struct __percpu *works; 2939 2940 works = alloc_percpu(struct work_struct); 2941 if (!works) 2942 return -ENOMEM; 2943 2944 get_online_cpus(); 2945 2946 for_each_online_cpu(cpu) { 2947 struct work_struct *work = per_cpu_ptr(works, cpu); 2948 2949 INIT_WORK(work, func); 2950 schedule_work_on(cpu, work); 2951 } 2952 2953 for_each_online_cpu(cpu) 2954 flush_work(per_cpu_ptr(works, cpu)); 2955 2956 put_online_cpus(); 2957 free_percpu(works); 2958 return 0; 2959 } 2960 2961 /** 2962 * execute_in_process_context - reliably execute the routine with user context 2963 * @fn: the function to execute 2964 * @ew: guaranteed storage for the execute work structure (must 2965 * be available when the work executes) 2966 * 2967 * Executes the function immediately if process context is available, 2968 * otherwise schedules the function for delayed execution. 2969 * 2970 * Return: 0 - function was executed 2971 * 1 - function was scheduled for execution 2972 */ 2973 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2974 { 2975 if (!in_interrupt()) { 2976 fn(&ew->work); 2977 return 0; 2978 } 2979 2980 INIT_WORK(&ew->work, fn); 2981 schedule_work(&ew->work); 2982 2983 return 1; 2984 } 2985 EXPORT_SYMBOL_GPL(execute_in_process_context); 2986 2987 /** 2988 * free_workqueue_attrs - free a workqueue_attrs 2989 * @attrs: workqueue_attrs to free 2990 * 2991 * Undo alloc_workqueue_attrs(). 2992 */ 2993 void free_workqueue_attrs(struct workqueue_attrs *attrs) 2994 { 2995 if (attrs) { 2996 free_cpumask_var(attrs->cpumask); 2997 kfree(attrs); 2998 } 2999 } 3000 3001 /** 3002 * alloc_workqueue_attrs - allocate a workqueue_attrs 3003 * @gfp_mask: allocation mask to use 3004 * 3005 * Allocate a new workqueue_attrs, initialize with default settings and 3006 * return it. 3007 * 3008 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3009 */ 3010 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3011 { 3012 struct workqueue_attrs *attrs; 3013 3014 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3015 if (!attrs) 3016 goto fail; 3017 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3018 goto fail; 3019 3020 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3021 return attrs; 3022 fail: 3023 free_workqueue_attrs(attrs); 3024 return NULL; 3025 } 3026 3027 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3028 const struct workqueue_attrs *from) 3029 { 3030 to->nice = from->nice; 3031 cpumask_copy(to->cpumask, from->cpumask); 3032 /* 3033 * Unlike hash and equality test, this function doesn't ignore 3034 * ->no_numa as it is used for both pool and wq attrs. Instead, 3035 * get_unbound_pool() explicitly clears ->no_numa after copying. 3036 */ 3037 to->no_numa = from->no_numa; 3038 } 3039 3040 /* hash value of the content of @attr */ 3041 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3042 { 3043 u32 hash = 0; 3044 3045 hash = jhash_1word(attrs->nice, hash); 3046 hash = jhash(cpumask_bits(attrs->cpumask), 3047 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3048 return hash; 3049 } 3050 3051 /* content equality test */ 3052 static bool wqattrs_equal(const struct workqueue_attrs *a, 3053 const struct workqueue_attrs *b) 3054 { 3055 if (a->nice != b->nice) 3056 return false; 3057 if (!cpumask_equal(a->cpumask, b->cpumask)) 3058 return false; 3059 return true; 3060 } 3061 3062 /** 3063 * init_worker_pool - initialize a newly zalloc'd worker_pool 3064 * @pool: worker_pool to initialize 3065 * 3066 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3067 * 3068 * Return: 0 on success, -errno on failure. Even on failure, all fields 3069 * inside @pool proper are initialized and put_unbound_pool() can be called 3070 * on @pool safely to release it. 3071 */ 3072 static int init_worker_pool(struct worker_pool *pool) 3073 { 3074 spin_lock_init(&pool->lock); 3075 pool->id = -1; 3076 pool->cpu = -1; 3077 pool->node = NUMA_NO_NODE; 3078 pool->flags |= POOL_DISASSOCIATED; 3079 INIT_LIST_HEAD(&pool->worklist); 3080 INIT_LIST_HEAD(&pool->idle_list); 3081 hash_init(pool->busy_hash); 3082 3083 init_timer_deferrable(&pool->idle_timer); 3084 pool->idle_timer.function = idle_worker_timeout; 3085 pool->idle_timer.data = (unsigned long)pool; 3086 3087 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3088 (unsigned long)pool); 3089 3090 mutex_init(&pool->manager_arb); 3091 mutex_init(&pool->attach_mutex); 3092 INIT_LIST_HEAD(&pool->workers); 3093 3094 ida_init(&pool->worker_ida); 3095 INIT_HLIST_NODE(&pool->hash_node); 3096 pool->refcnt = 1; 3097 3098 /* shouldn't fail above this point */ 3099 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3100 if (!pool->attrs) 3101 return -ENOMEM; 3102 return 0; 3103 } 3104 3105 static void rcu_free_wq(struct rcu_head *rcu) 3106 { 3107 struct workqueue_struct *wq = 3108 container_of(rcu, struct workqueue_struct, rcu); 3109 3110 if (!(wq->flags & WQ_UNBOUND)) 3111 free_percpu(wq->cpu_pwqs); 3112 else 3113 free_workqueue_attrs(wq->unbound_attrs); 3114 3115 kfree(wq->rescuer); 3116 kfree(wq); 3117 } 3118 3119 static void rcu_free_pool(struct rcu_head *rcu) 3120 { 3121 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3122 3123 ida_destroy(&pool->worker_ida); 3124 free_workqueue_attrs(pool->attrs); 3125 kfree(pool); 3126 } 3127 3128 /** 3129 * put_unbound_pool - put a worker_pool 3130 * @pool: worker_pool to put 3131 * 3132 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3133 * safe manner. get_unbound_pool() calls this function on its failure path 3134 * and this function should be able to release pools which went through, 3135 * successfully or not, init_worker_pool(). 3136 * 3137 * Should be called with wq_pool_mutex held. 3138 */ 3139 static void put_unbound_pool(struct worker_pool *pool) 3140 { 3141 DECLARE_COMPLETION_ONSTACK(detach_completion); 3142 struct worker *worker; 3143 3144 lockdep_assert_held(&wq_pool_mutex); 3145 3146 if (--pool->refcnt) 3147 return; 3148 3149 /* sanity checks */ 3150 if (WARN_ON(!(pool->cpu < 0)) || 3151 WARN_ON(!list_empty(&pool->worklist))) 3152 return; 3153 3154 /* release id and unhash */ 3155 if (pool->id >= 0) 3156 idr_remove(&worker_pool_idr, pool->id); 3157 hash_del(&pool->hash_node); 3158 3159 /* 3160 * Become the manager and destroy all workers. Grabbing 3161 * manager_arb prevents @pool's workers from blocking on 3162 * attach_mutex. 3163 */ 3164 mutex_lock(&pool->manager_arb); 3165 3166 spin_lock_irq(&pool->lock); 3167 while ((worker = first_idle_worker(pool))) 3168 destroy_worker(worker); 3169 WARN_ON(pool->nr_workers || pool->nr_idle); 3170 spin_unlock_irq(&pool->lock); 3171 3172 mutex_lock(&pool->attach_mutex); 3173 if (!list_empty(&pool->workers)) 3174 pool->detach_completion = &detach_completion; 3175 mutex_unlock(&pool->attach_mutex); 3176 3177 if (pool->detach_completion) 3178 wait_for_completion(pool->detach_completion); 3179 3180 mutex_unlock(&pool->manager_arb); 3181 3182 /* shut down the timers */ 3183 del_timer_sync(&pool->idle_timer); 3184 del_timer_sync(&pool->mayday_timer); 3185 3186 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3187 call_rcu_sched(&pool->rcu, rcu_free_pool); 3188 } 3189 3190 /** 3191 * get_unbound_pool - get a worker_pool with the specified attributes 3192 * @attrs: the attributes of the worker_pool to get 3193 * 3194 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3195 * reference count and return it. If there already is a matching 3196 * worker_pool, it will be used; otherwise, this function attempts to 3197 * create a new one. 3198 * 3199 * Should be called with wq_pool_mutex held. 3200 * 3201 * Return: On success, a worker_pool with the same attributes as @attrs. 3202 * On failure, %NULL. 3203 */ 3204 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3205 { 3206 u32 hash = wqattrs_hash(attrs); 3207 struct worker_pool *pool; 3208 int node; 3209 3210 lockdep_assert_held(&wq_pool_mutex); 3211 3212 /* do we already have a matching pool? */ 3213 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3214 if (wqattrs_equal(pool->attrs, attrs)) { 3215 pool->refcnt++; 3216 return pool; 3217 } 3218 } 3219 3220 /* nope, create a new one */ 3221 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3222 if (!pool || init_worker_pool(pool) < 0) 3223 goto fail; 3224 3225 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3226 copy_workqueue_attrs(pool->attrs, attrs); 3227 3228 /* 3229 * no_numa isn't a worker_pool attribute, always clear it. See 3230 * 'struct workqueue_attrs' comments for detail. 3231 */ 3232 pool->attrs->no_numa = false; 3233 3234 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3235 if (wq_numa_enabled) { 3236 for_each_node(node) { 3237 if (cpumask_subset(pool->attrs->cpumask, 3238 wq_numa_possible_cpumask[node])) { 3239 pool->node = node; 3240 break; 3241 } 3242 } 3243 } 3244 3245 if (worker_pool_assign_id(pool) < 0) 3246 goto fail; 3247 3248 /* create and start the initial worker */ 3249 if (!create_worker(pool)) 3250 goto fail; 3251 3252 /* install */ 3253 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3254 3255 return pool; 3256 fail: 3257 if (pool) 3258 put_unbound_pool(pool); 3259 return NULL; 3260 } 3261 3262 static void rcu_free_pwq(struct rcu_head *rcu) 3263 { 3264 kmem_cache_free(pwq_cache, 3265 container_of(rcu, struct pool_workqueue, rcu)); 3266 } 3267 3268 /* 3269 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3270 * and needs to be destroyed. 3271 */ 3272 static void pwq_unbound_release_workfn(struct work_struct *work) 3273 { 3274 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3275 unbound_release_work); 3276 struct workqueue_struct *wq = pwq->wq; 3277 struct worker_pool *pool = pwq->pool; 3278 bool is_last; 3279 3280 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3281 return; 3282 3283 mutex_lock(&wq->mutex); 3284 list_del_rcu(&pwq->pwqs_node); 3285 is_last = list_empty(&wq->pwqs); 3286 mutex_unlock(&wq->mutex); 3287 3288 mutex_lock(&wq_pool_mutex); 3289 put_unbound_pool(pool); 3290 mutex_unlock(&wq_pool_mutex); 3291 3292 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3293 3294 /* 3295 * If we're the last pwq going away, @wq is already dead and no one 3296 * is gonna access it anymore. Schedule RCU free. 3297 */ 3298 if (is_last) 3299 call_rcu_sched(&wq->rcu, rcu_free_wq); 3300 } 3301 3302 /** 3303 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3304 * @pwq: target pool_workqueue 3305 * 3306 * If @pwq isn't freezing, set @pwq->max_active to the associated 3307 * workqueue's saved_max_active and activate delayed work items 3308 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3309 */ 3310 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3311 { 3312 struct workqueue_struct *wq = pwq->wq; 3313 bool freezable = wq->flags & WQ_FREEZABLE; 3314 3315 /* for @wq->saved_max_active */ 3316 lockdep_assert_held(&wq->mutex); 3317 3318 /* fast exit for non-freezable wqs */ 3319 if (!freezable && pwq->max_active == wq->saved_max_active) 3320 return; 3321 3322 spin_lock_irq(&pwq->pool->lock); 3323 3324 /* 3325 * During [un]freezing, the caller is responsible for ensuring that 3326 * this function is called at least once after @workqueue_freezing 3327 * is updated and visible. 3328 */ 3329 if (!freezable || !workqueue_freezing) { 3330 pwq->max_active = wq->saved_max_active; 3331 3332 while (!list_empty(&pwq->delayed_works) && 3333 pwq->nr_active < pwq->max_active) 3334 pwq_activate_first_delayed(pwq); 3335 3336 /* 3337 * Need to kick a worker after thawed or an unbound wq's 3338 * max_active is bumped. It's a slow path. Do it always. 3339 */ 3340 wake_up_worker(pwq->pool); 3341 } else { 3342 pwq->max_active = 0; 3343 } 3344 3345 spin_unlock_irq(&pwq->pool->lock); 3346 } 3347 3348 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3349 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3350 struct worker_pool *pool) 3351 { 3352 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3353 3354 memset(pwq, 0, sizeof(*pwq)); 3355 3356 pwq->pool = pool; 3357 pwq->wq = wq; 3358 pwq->flush_color = -1; 3359 pwq->refcnt = 1; 3360 INIT_LIST_HEAD(&pwq->delayed_works); 3361 INIT_LIST_HEAD(&pwq->pwqs_node); 3362 INIT_LIST_HEAD(&pwq->mayday_node); 3363 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3364 } 3365 3366 /* sync @pwq with the current state of its associated wq and link it */ 3367 static void link_pwq(struct pool_workqueue *pwq) 3368 { 3369 struct workqueue_struct *wq = pwq->wq; 3370 3371 lockdep_assert_held(&wq->mutex); 3372 3373 /* may be called multiple times, ignore if already linked */ 3374 if (!list_empty(&pwq->pwqs_node)) 3375 return; 3376 3377 /* set the matching work_color */ 3378 pwq->work_color = wq->work_color; 3379 3380 /* sync max_active to the current setting */ 3381 pwq_adjust_max_active(pwq); 3382 3383 /* link in @pwq */ 3384 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3385 } 3386 3387 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3388 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3389 const struct workqueue_attrs *attrs) 3390 { 3391 struct worker_pool *pool; 3392 struct pool_workqueue *pwq; 3393 3394 lockdep_assert_held(&wq_pool_mutex); 3395 3396 pool = get_unbound_pool(attrs); 3397 if (!pool) 3398 return NULL; 3399 3400 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3401 if (!pwq) { 3402 put_unbound_pool(pool); 3403 return NULL; 3404 } 3405 3406 init_pwq(pwq, wq, pool); 3407 return pwq; 3408 } 3409 3410 /** 3411 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3412 * @attrs: the wq_attrs of the default pwq of the target workqueue 3413 * @node: the target NUMA node 3414 * @cpu_going_down: if >= 0, the CPU to consider as offline 3415 * @cpumask: outarg, the resulting cpumask 3416 * 3417 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3418 * @cpu_going_down is >= 0, that cpu is considered offline during 3419 * calculation. The result is stored in @cpumask. 3420 * 3421 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3422 * enabled and @node has online CPUs requested by @attrs, the returned 3423 * cpumask is the intersection of the possible CPUs of @node and 3424 * @attrs->cpumask. 3425 * 3426 * The caller is responsible for ensuring that the cpumask of @node stays 3427 * stable. 3428 * 3429 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3430 * %false if equal. 3431 */ 3432 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3433 int cpu_going_down, cpumask_t *cpumask) 3434 { 3435 if (!wq_numa_enabled || attrs->no_numa) 3436 goto use_dfl; 3437 3438 /* does @node have any online CPUs @attrs wants? */ 3439 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3440 if (cpu_going_down >= 0) 3441 cpumask_clear_cpu(cpu_going_down, cpumask); 3442 3443 if (cpumask_empty(cpumask)) 3444 goto use_dfl; 3445 3446 /* yeap, return possible CPUs in @node that @attrs wants */ 3447 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3448 return !cpumask_equal(cpumask, attrs->cpumask); 3449 3450 use_dfl: 3451 cpumask_copy(cpumask, attrs->cpumask); 3452 return false; 3453 } 3454 3455 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3456 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3457 int node, 3458 struct pool_workqueue *pwq) 3459 { 3460 struct pool_workqueue *old_pwq; 3461 3462 lockdep_assert_held(&wq_pool_mutex); 3463 lockdep_assert_held(&wq->mutex); 3464 3465 /* link_pwq() can handle duplicate calls */ 3466 link_pwq(pwq); 3467 3468 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3469 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3470 return old_pwq; 3471 } 3472 3473 /* context to store the prepared attrs & pwqs before applying */ 3474 struct apply_wqattrs_ctx { 3475 struct workqueue_struct *wq; /* target workqueue */ 3476 struct workqueue_attrs *attrs; /* attrs to apply */ 3477 struct list_head list; /* queued for batching commit */ 3478 struct pool_workqueue *dfl_pwq; 3479 struct pool_workqueue *pwq_tbl[]; 3480 }; 3481 3482 /* free the resources after success or abort */ 3483 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3484 { 3485 if (ctx) { 3486 int node; 3487 3488 for_each_node(node) 3489 put_pwq_unlocked(ctx->pwq_tbl[node]); 3490 put_pwq_unlocked(ctx->dfl_pwq); 3491 3492 free_workqueue_attrs(ctx->attrs); 3493 3494 kfree(ctx); 3495 } 3496 } 3497 3498 /* allocate the attrs and pwqs for later installation */ 3499 static struct apply_wqattrs_ctx * 3500 apply_wqattrs_prepare(struct workqueue_struct *wq, 3501 const struct workqueue_attrs *attrs) 3502 { 3503 struct apply_wqattrs_ctx *ctx; 3504 struct workqueue_attrs *new_attrs, *tmp_attrs; 3505 int node; 3506 3507 lockdep_assert_held(&wq_pool_mutex); 3508 3509 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3510 GFP_KERNEL); 3511 3512 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3513 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3514 if (!ctx || !new_attrs || !tmp_attrs) 3515 goto out_free; 3516 3517 /* 3518 * Calculate the attrs of the default pwq. 3519 * If the user configured cpumask doesn't overlap with the 3520 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3521 */ 3522 copy_workqueue_attrs(new_attrs, attrs); 3523 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3524 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3525 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3526 3527 /* 3528 * We may create multiple pwqs with differing cpumasks. Make a 3529 * copy of @new_attrs which will be modified and used to obtain 3530 * pools. 3531 */ 3532 copy_workqueue_attrs(tmp_attrs, new_attrs); 3533 3534 /* 3535 * If something goes wrong during CPU up/down, we'll fall back to 3536 * the default pwq covering whole @attrs->cpumask. Always create 3537 * it even if we don't use it immediately. 3538 */ 3539 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3540 if (!ctx->dfl_pwq) 3541 goto out_free; 3542 3543 for_each_node(node) { 3544 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3545 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3546 if (!ctx->pwq_tbl[node]) 3547 goto out_free; 3548 } else { 3549 ctx->dfl_pwq->refcnt++; 3550 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3551 } 3552 } 3553 3554 /* save the user configured attrs and sanitize it. */ 3555 copy_workqueue_attrs(new_attrs, attrs); 3556 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3557 ctx->attrs = new_attrs; 3558 3559 ctx->wq = wq; 3560 free_workqueue_attrs(tmp_attrs); 3561 return ctx; 3562 3563 out_free: 3564 free_workqueue_attrs(tmp_attrs); 3565 free_workqueue_attrs(new_attrs); 3566 apply_wqattrs_cleanup(ctx); 3567 return NULL; 3568 } 3569 3570 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3571 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3572 { 3573 int node; 3574 3575 /* all pwqs have been created successfully, let's install'em */ 3576 mutex_lock(&ctx->wq->mutex); 3577 3578 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3579 3580 /* save the previous pwq and install the new one */ 3581 for_each_node(node) 3582 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3583 ctx->pwq_tbl[node]); 3584 3585 /* @dfl_pwq might not have been used, ensure it's linked */ 3586 link_pwq(ctx->dfl_pwq); 3587 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3588 3589 mutex_unlock(&ctx->wq->mutex); 3590 } 3591 3592 static void apply_wqattrs_lock(void) 3593 { 3594 /* CPUs should stay stable across pwq creations and installations */ 3595 get_online_cpus(); 3596 mutex_lock(&wq_pool_mutex); 3597 } 3598 3599 static void apply_wqattrs_unlock(void) 3600 { 3601 mutex_unlock(&wq_pool_mutex); 3602 put_online_cpus(); 3603 } 3604 3605 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3606 const struct workqueue_attrs *attrs) 3607 { 3608 struct apply_wqattrs_ctx *ctx; 3609 int ret = -ENOMEM; 3610 3611 /* only unbound workqueues can change attributes */ 3612 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3613 return -EINVAL; 3614 3615 /* creating multiple pwqs breaks ordering guarantee */ 3616 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3617 return -EINVAL; 3618 3619 ctx = apply_wqattrs_prepare(wq, attrs); 3620 3621 /* the ctx has been prepared successfully, let's commit it */ 3622 if (ctx) { 3623 apply_wqattrs_commit(ctx); 3624 ret = 0; 3625 } 3626 3627 apply_wqattrs_cleanup(ctx); 3628 3629 return ret; 3630 } 3631 3632 /** 3633 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3634 * @wq: the target workqueue 3635 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3636 * 3637 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3638 * machines, this function maps a separate pwq to each NUMA node with 3639 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3640 * NUMA node it was issued on. Older pwqs are released as in-flight work 3641 * items finish. Note that a work item which repeatedly requeues itself 3642 * back-to-back will stay on its current pwq. 3643 * 3644 * Performs GFP_KERNEL allocations. 3645 * 3646 * Return: 0 on success and -errno on failure. 3647 */ 3648 int apply_workqueue_attrs(struct workqueue_struct *wq, 3649 const struct workqueue_attrs *attrs) 3650 { 3651 int ret; 3652 3653 apply_wqattrs_lock(); 3654 ret = apply_workqueue_attrs_locked(wq, attrs); 3655 apply_wqattrs_unlock(); 3656 3657 return ret; 3658 } 3659 3660 /** 3661 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3662 * @wq: the target workqueue 3663 * @cpu: the CPU coming up or going down 3664 * @online: whether @cpu is coming up or going down 3665 * 3666 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3667 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3668 * @wq accordingly. 3669 * 3670 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3671 * falls back to @wq->dfl_pwq which may not be optimal but is always 3672 * correct. 3673 * 3674 * Note that when the last allowed CPU of a NUMA node goes offline for a 3675 * workqueue with a cpumask spanning multiple nodes, the workers which were 3676 * already executing the work items for the workqueue will lose their CPU 3677 * affinity and may execute on any CPU. This is similar to how per-cpu 3678 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3679 * affinity, it's the user's responsibility to flush the work item from 3680 * CPU_DOWN_PREPARE. 3681 */ 3682 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3683 bool online) 3684 { 3685 int node = cpu_to_node(cpu); 3686 int cpu_off = online ? -1 : cpu; 3687 struct pool_workqueue *old_pwq = NULL, *pwq; 3688 struct workqueue_attrs *target_attrs; 3689 cpumask_t *cpumask; 3690 3691 lockdep_assert_held(&wq_pool_mutex); 3692 3693 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3694 wq->unbound_attrs->no_numa) 3695 return; 3696 3697 /* 3698 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3699 * Let's use a preallocated one. The following buf is protected by 3700 * CPU hotplug exclusion. 3701 */ 3702 target_attrs = wq_update_unbound_numa_attrs_buf; 3703 cpumask = target_attrs->cpumask; 3704 3705 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3706 pwq = unbound_pwq_by_node(wq, node); 3707 3708 /* 3709 * Let's determine what needs to be done. If the target cpumask is 3710 * different from the default pwq's, we need to compare it to @pwq's 3711 * and create a new one if they don't match. If the target cpumask 3712 * equals the default pwq's, the default pwq should be used. 3713 */ 3714 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3715 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3716 return; 3717 } else { 3718 goto use_dfl_pwq; 3719 } 3720 3721 /* create a new pwq */ 3722 pwq = alloc_unbound_pwq(wq, target_attrs); 3723 if (!pwq) { 3724 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3725 wq->name); 3726 goto use_dfl_pwq; 3727 } 3728 3729 /* Install the new pwq. */ 3730 mutex_lock(&wq->mutex); 3731 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3732 goto out_unlock; 3733 3734 use_dfl_pwq: 3735 mutex_lock(&wq->mutex); 3736 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3737 get_pwq(wq->dfl_pwq); 3738 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3739 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3740 out_unlock: 3741 mutex_unlock(&wq->mutex); 3742 put_pwq_unlocked(old_pwq); 3743 } 3744 3745 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3746 { 3747 bool highpri = wq->flags & WQ_HIGHPRI; 3748 int cpu, ret; 3749 3750 if (!(wq->flags & WQ_UNBOUND)) { 3751 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3752 if (!wq->cpu_pwqs) 3753 return -ENOMEM; 3754 3755 for_each_possible_cpu(cpu) { 3756 struct pool_workqueue *pwq = 3757 per_cpu_ptr(wq->cpu_pwqs, cpu); 3758 struct worker_pool *cpu_pools = 3759 per_cpu(cpu_worker_pools, cpu); 3760 3761 init_pwq(pwq, wq, &cpu_pools[highpri]); 3762 3763 mutex_lock(&wq->mutex); 3764 link_pwq(pwq); 3765 mutex_unlock(&wq->mutex); 3766 } 3767 return 0; 3768 } else if (wq->flags & __WQ_ORDERED) { 3769 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3770 /* there should only be single pwq for ordering guarantee */ 3771 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3772 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3773 "ordering guarantee broken for workqueue %s\n", wq->name); 3774 return ret; 3775 } else { 3776 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3777 } 3778 } 3779 3780 static int wq_clamp_max_active(int max_active, unsigned int flags, 3781 const char *name) 3782 { 3783 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3784 3785 if (max_active < 1 || max_active > lim) 3786 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3787 max_active, name, 1, lim); 3788 3789 return clamp_val(max_active, 1, lim); 3790 } 3791 3792 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3793 unsigned int flags, 3794 int max_active, 3795 struct lock_class_key *key, 3796 const char *lock_name, ...) 3797 { 3798 size_t tbl_size = 0; 3799 va_list args; 3800 struct workqueue_struct *wq; 3801 struct pool_workqueue *pwq; 3802 3803 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3804 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3805 flags |= WQ_UNBOUND; 3806 3807 /* allocate wq and format name */ 3808 if (flags & WQ_UNBOUND) 3809 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3810 3811 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3812 if (!wq) 3813 return NULL; 3814 3815 if (flags & WQ_UNBOUND) { 3816 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3817 if (!wq->unbound_attrs) 3818 goto err_free_wq; 3819 } 3820 3821 va_start(args, lock_name); 3822 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3823 va_end(args); 3824 3825 max_active = max_active ?: WQ_DFL_ACTIVE; 3826 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3827 3828 /* init wq */ 3829 wq->flags = flags; 3830 wq->saved_max_active = max_active; 3831 mutex_init(&wq->mutex); 3832 atomic_set(&wq->nr_pwqs_to_flush, 0); 3833 INIT_LIST_HEAD(&wq->pwqs); 3834 INIT_LIST_HEAD(&wq->flusher_queue); 3835 INIT_LIST_HEAD(&wq->flusher_overflow); 3836 INIT_LIST_HEAD(&wq->maydays); 3837 3838 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3839 INIT_LIST_HEAD(&wq->list); 3840 3841 if (alloc_and_link_pwqs(wq) < 0) 3842 goto err_free_wq; 3843 3844 /* 3845 * Workqueues which may be used during memory reclaim should 3846 * have a rescuer to guarantee forward progress. 3847 */ 3848 if (flags & WQ_MEM_RECLAIM) { 3849 struct worker *rescuer; 3850 3851 rescuer = alloc_worker(NUMA_NO_NODE); 3852 if (!rescuer) 3853 goto err_destroy; 3854 3855 rescuer->rescue_wq = wq; 3856 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3857 wq->name); 3858 if (IS_ERR(rescuer->task)) { 3859 kfree(rescuer); 3860 goto err_destroy; 3861 } 3862 3863 wq->rescuer = rescuer; 3864 rescuer->task->flags |= PF_NO_SETAFFINITY; 3865 wake_up_process(rescuer->task); 3866 } 3867 3868 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 3869 goto err_destroy; 3870 3871 /* 3872 * wq_pool_mutex protects global freeze state and workqueues list. 3873 * Grab it, adjust max_active and add the new @wq to workqueues 3874 * list. 3875 */ 3876 mutex_lock(&wq_pool_mutex); 3877 3878 mutex_lock(&wq->mutex); 3879 for_each_pwq(pwq, wq) 3880 pwq_adjust_max_active(pwq); 3881 mutex_unlock(&wq->mutex); 3882 3883 list_add_tail_rcu(&wq->list, &workqueues); 3884 3885 mutex_unlock(&wq_pool_mutex); 3886 3887 return wq; 3888 3889 err_free_wq: 3890 free_workqueue_attrs(wq->unbound_attrs); 3891 kfree(wq); 3892 return NULL; 3893 err_destroy: 3894 destroy_workqueue(wq); 3895 return NULL; 3896 } 3897 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3898 3899 /** 3900 * destroy_workqueue - safely terminate a workqueue 3901 * @wq: target workqueue 3902 * 3903 * Safely destroy a workqueue. All work currently pending will be done first. 3904 */ 3905 void destroy_workqueue(struct workqueue_struct *wq) 3906 { 3907 struct pool_workqueue *pwq; 3908 int node; 3909 3910 /* drain it before proceeding with destruction */ 3911 drain_workqueue(wq); 3912 3913 /* sanity checks */ 3914 mutex_lock(&wq->mutex); 3915 for_each_pwq(pwq, wq) { 3916 int i; 3917 3918 for (i = 0; i < WORK_NR_COLORS; i++) { 3919 if (WARN_ON(pwq->nr_in_flight[i])) { 3920 mutex_unlock(&wq->mutex); 3921 return; 3922 } 3923 } 3924 3925 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 3926 WARN_ON(pwq->nr_active) || 3927 WARN_ON(!list_empty(&pwq->delayed_works))) { 3928 mutex_unlock(&wq->mutex); 3929 return; 3930 } 3931 } 3932 mutex_unlock(&wq->mutex); 3933 3934 /* 3935 * wq list is used to freeze wq, remove from list after 3936 * flushing is complete in case freeze races us. 3937 */ 3938 mutex_lock(&wq_pool_mutex); 3939 list_del_rcu(&wq->list); 3940 mutex_unlock(&wq_pool_mutex); 3941 3942 workqueue_sysfs_unregister(wq); 3943 3944 if (wq->rescuer) 3945 kthread_stop(wq->rescuer->task); 3946 3947 if (!(wq->flags & WQ_UNBOUND)) { 3948 /* 3949 * The base ref is never dropped on per-cpu pwqs. Directly 3950 * schedule RCU free. 3951 */ 3952 call_rcu_sched(&wq->rcu, rcu_free_wq); 3953 } else { 3954 /* 3955 * We're the sole accessor of @wq at this point. Directly 3956 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 3957 * @wq will be freed when the last pwq is released. 3958 */ 3959 for_each_node(node) { 3960 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3961 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 3962 put_pwq_unlocked(pwq); 3963 } 3964 3965 /* 3966 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 3967 * put. Don't access it afterwards. 3968 */ 3969 pwq = wq->dfl_pwq; 3970 wq->dfl_pwq = NULL; 3971 put_pwq_unlocked(pwq); 3972 } 3973 } 3974 EXPORT_SYMBOL_GPL(destroy_workqueue); 3975 3976 /** 3977 * workqueue_set_max_active - adjust max_active of a workqueue 3978 * @wq: target workqueue 3979 * @max_active: new max_active value. 3980 * 3981 * Set max_active of @wq to @max_active. 3982 * 3983 * CONTEXT: 3984 * Don't call from IRQ context. 3985 */ 3986 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3987 { 3988 struct pool_workqueue *pwq; 3989 3990 /* disallow meddling with max_active for ordered workqueues */ 3991 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3992 return; 3993 3994 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3995 3996 mutex_lock(&wq->mutex); 3997 3998 wq->saved_max_active = max_active; 3999 4000 for_each_pwq(pwq, wq) 4001 pwq_adjust_max_active(pwq); 4002 4003 mutex_unlock(&wq->mutex); 4004 } 4005 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4006 4007 /** 4008 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4009 * 4010 * Determine whether %current is a workqueue rescuer. Can be used from 4011 * work functions to determine whether it's being run off the rescuer task. 4012 * 4013 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4014 */ 4015 bool current_is_workqueue_rescuer(void) 4016 { 4017 struct worker *worker = current_wq_worker(); 4018 4019 return worker && worker->rescue_wq; 4020 } 4021 4022 /** 4023 * workqueue_congested - test whether a workqueue is congested 4024 * @cpu: CPU in question 4025 * @wq: target workqueue 4026 * 4027 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4028 * no synchronization around this function and the test result is 4029 * unreliable and only useful as advisory hints or for debugging. 4030 * 4031 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4032 * Note that both per-cpu and unbound workqueues may be associated with 4033 * multiple pool_workqueues which have separate congested states. A 4034 * workqueue being congested on one CPU doesn't mean the workqueue is also 4035 * contested on other CPUs / NUMA nodes. 4036 * 4037 * Return: 4038 * %true if congested, %false otherwise. 4039 */ 4040 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4041 { 4042 struct pool_workqueue *pwq; 4043 bool ret; 4044 4045 rcu_read_lock_sched(); 4046 4047 if (cpu == WORK_CPU_UNBOUND) 4048 cpu = smp_processor_id(); 4049 4050 if (!(wq->flags & WQ_UNBOUND)) 4051 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4052 else 4053 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4054 4055 ret = !list_empty(&pwq->delayed_works); 4056 rcu_read_unlock_sched(); 4057 4058 return ret; 4059 } 4060 EXPORT_SYMBOL_GPL(workqueue_congested); 4061 4062 /** 4063 * work_busy - test whether a work is currently pending or running 4064 * @work: the work to be tested 4065 * 4066 * Test whether @work is currently pending or running. There is no 4067 * synchronization around this function and the test result is 4068 * unreliable and only useful as advisory hints or for debugging. 4069 * 4070 * Return: 4071 * OR'd bitmask of WORK_BUSY_* bits. 4072 */ 4073 unsigned int work_busy(struct work_struct *work) 4074 { 4075 struct worker_pool *pool; 4076 unsigned long flags; 4077 unsigned int ret = 0; 4078 4079 if (work_pending(work)) 4080 ret |= WORK_BUSY_PENDING; 4081 4082 local_irq_save(flags); 4083 pool = get_work_pool(work); 4084 if (pool) { 4085 spin_lock(&pool->lock); 4086 if (find_worker_executing_work(pool, work)) 4087 ret |= WORK_BUSY_RUNNING; 4088 spin_unlock(&pool->lock); 4089 } 4090 local_irq_restore(flags); 4091 4092 return ret; 4093 } 4094 EXPORT_SYMBOL_GPL(work_busy); 4095 4096 /** 4097 * set_worker_desc - set description for the current work item 4098 * @fmt: printf-style format string 4099 * @...: arguments for the format string 4100 * 4101 * This function can be called by a running work function to describe what 4102 * the work item is about. If the worker task gets dumped, this 4103 * information will be printed out together to help debugging. The 4104 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4105 */ 4106 void set_worker_desc(const char *fmt, ...) 4107 { 4108 struct worker *worker = current_wq_worker(); 4109 va_list args; 4110 4111 if (worker) { 4112 va_start(args, fmt); 4113 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4114 va_end(args); 4115 worker->desc_valid = true; 4116 } 4117 } 4118 4119 /** 4120 * print_worker_info - print out worker information and description 4121 * @log_lvl: the log level to use when printing 4122 * @task: target task 4123 * 4124 * If @task is a worker and currently executing a work item, print out the 4125 * name of the workqueue being serviced and worker description set with 4126 * set_worker_desc() by the currently executing work item. 4127 * 4128 * This function can be safely called on any task as long as the 4129 * task_struct itself is accessible. While safe, this function isn't 4130 * synchronized and may print out mixups or garbages of limited length. 4131 */ 4132 void print_worker_info(const char *log_lvl, struct task_struct *task) 4133 { 4134 work_func_t *fn = NULL; 4135 char name[WQ_NAME_LEN] = { }; 4136 char desc[WORKER_DESC_LEN] = { }; 4137 struct pool_workqueue *pwq = NULL; 4138 struct workqueue_struct *wq = NULL; 4139 bool desc_valid = false; 4140 struct worker *worker; 4141 4142 if (!(task->flags & PF_WQ_WORKER)) 4143 return; 4144 4145 /* 4146 * This function is called without any synchronization and @task 4147 * could be in any state. Be careful with dereferences. 4148 */ 4149 worker = probe_kthread_data(task); 4150 4151 /* 4152 * Carefully copy the associated workqueue's workfn and name. Keep 4153 * the original last '\0' in case the original contains garbage. 4154 */ 4155 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4156 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4157 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4158 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4159 4160 /* copy worker description */ 4161 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4162 if (desc_valid) 4163 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4164 4165 if (fn || name[0] || desc[0]) { 4166 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4167 if (desc[0]) 4168 pr_cont(" (%s)", desc); 4169 pr_cont("\n"); 4170 } 4171 } 4172 4173 static void pr_cont_pool_info(struct worker_pool *pool) 4174 { 4175 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4176 if (pool->node != NUMA_NO_NODE) 4177 pr_cont(" node=%d", pool->node); 4178 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4179 } 4180 4181 static void pr_cont_work(bool comma, struct work_struct *work) 4182 { 4183 if (work->func == wq_barrier_func) { 4184 struct wq_barrier *barr; 4185 4186 barr = container_of(work, struct wq_barrier, work); 4187 4188 pr_cont("%s BAR(%d)", comma ? "," : "", 4189 task_pid_nr(barr->task)); 4190 } else { 4191 pr_cont("%s %pf", comma ? "," : "", work->func); 4192 } 4193 } 4194 4195 static void show_pwq(struct pool_workqueue *pwq) 4196 { 4197 struct worker_pool *pool = pwq->pool; 4198 struct work_struct *work; 4199 struct worker *worker; 4200 bool has_in_flight = false, has_pending = false; 4201 int bkt; 4202 4203 pr_info(" pwq %d:", pool->id); 4204 pr_cont_pool_info(pool); 4205 4206 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4207 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4208 4209 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4210 if (worker->current_pwq == pwq) { 4211 has_in_flight = true; 4212 break; 4213 } 4214 } 4215 if (has_in_flight) { 4216 bool comma = false; 4217 4218 pr_info(" in-flight:"); 4219 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4220 if (worker->current_pwq != pwq) 4221 continue; 4222 4223 pr_cont("%s %d%s:%pf", comma ? "," : "", 4224 task_pid_nr(worker->task), 4225 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4226 worker->current_func); 4227 list_for_each_entry(work, &worker->scheduled, entry) 4228 pr_cont_work(false, work); 4229 comma = true; 4230 } 4231 pr_cont("\n"); 4232 } 4233 4234 list_for_each_entry(work, &pool->worklist, entry) { 4235 if (get_work_pwq(work) == pwq) { 4236 has_pending = true; 4237 break; 4238 } 4239 } 4240 if (has_pending) { 4241 bool comma = false; 4242 4243 pr_info(" pending:"); 4244 list_for_each_entry(work, &pool->worklist, entry) { 4245 if (get_work_pwq(work) != pwq) 4246 continue; 4247 4248 pr_cont_work(comma, work); 4249 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4250 } 4251 pr_cont("\n"); 4252 } 4253 4254 if (!list_empty(&pwq->delayed_works)) { 4255 bool comma = false; 4256 4257 pr_info(" delayed:"); 4258 list_for_each_entry(work, &pwq->delayed_works, entry) { 4259 pr_cont_work(comma, work); 4260 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4261 } 4262 pr_cont("\n"); 4263 } 4264 } 4265 4266 /** 4267 * show_workqueue_state - dump workqueue state 4268 * 4269 * Called from a sysrq handler and prints out all busy workqueues and 4270 * pools. 4271 */ 4272 void show_workqueue_state(void) 4273 { 4274 struct workqueue_struct *wq; 4275 struct worker_pool *pool; 4276 unsigned long flags; 4277 int pi; 4278 4279 rcu_read_lock_sched(); 4280 4281 pr_info("Showing busy workqueues and worker pools:\n"); 4282 4283 list_for_each_entry_rcu(wq, &workqueues, list) { 4284 struct pool_workqueue *pwq; 4285 bool idle = true; 4286 4287 for_each_pwq(pwq, wq) { 4288 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4289 idle = false; 4290 break; 4291 } 4292 } 4293 if (idle) 4294 continue; 4295 4296 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4297 4298 for_each_pwq(pwq, wq) { 4299 spin_lock_irqsave(&pwq->pool->lock, flags); 4300 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4301 show_pwq(pwq); 4302 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4303 } 4304 } 4305 4306 for_each_pool(pool, pi) { 4307 struct worker *worker; 4308 bool first = true; 4309 4310 spin_lock_irqsave(&pool->lock, flags); 4311 if (pool->nr_workers == pool->nr_idle) 4312 goto next_pool; 4313 4314 pr_info("pool %d:", pool->id); 4315 pr_cont_pool_info(pool); 4316 pr_cont(" workers=%d", pool->nr_workers); 4317 if (pool->manager) 4318 pr_cont(" manager: %d", 4319 task_pid_nr(pool->manager->task)); 4320 list_for_each_entry(worker, &pool->idle_list, entry) { 4321 pr_cont(" %s%d", first ? "idle: " : "", 4322 task_pid_nr(worker->task)); 4323 first = false; 4324 } 4325 pr_cont("\n"); 4326 next_pool: 4327 spin_unlock_irqrestore(&pool->lock, flags); 4328 } 4329 4330 rcu_read_unlock_sched(); 4331 } 4332 4333 /* 4334 * CPU hotplug. 4335 * 4336 * There are two challenges in supporting CPU hotplug. Firstly, there 4337 * are a lot of assumptions on strong associations among work, pwq and 4338 * pool which make migrating pending and scheduled works very 4339 * difficult to implement without impacting hot paths. Secondly, 4340 * worker pools serve mix of short, long and very long running works making 4341 * blocked draining impractical. 4342 * 4343 * This is solved by allowing the pools to be disassociated from the CPU 4344 * running as an unbound one and allowing it to be reattached later if the 4345 * cpu comes back online. 4346 */ 4347 4348 static void wq_unbind_fn(struct work_struct *work) 4349 { 4350 int cpu = smp_processor_id(); 4351 struct worker_pool *pool; 4352 struct worker *worker; 4353 4354 for_each_cpu_worker_pool(pool, cpu) { 4355 mutex_lock(&pool->attach_mutex); 4356 spin_lock_irq(&pool->lock); 4357 4358 /* 4359 * We've blocked all attach/detach operations. Make all workers 4360 * unbound and set DISASSOCIATED. Before this, all workers 4361 * except for the ones which are still executing works from 4362 * before the last CPU down must be on the cpu. After 4363 * this, they may become diasporas. 4364 */ 4365 for_each_pool_worker(worker, pool) 4366 worker->flags |= WORKER_UNBOUND; 4367 4368 pool->flags |= POOL_DISASSOCIATED; 4369 4370 spin_unlock_irq(&pool->lock); 4371 mutex_unlock(&pool->attach_mutex); 4372 4373 /* 4374 * Call schedule() so that we cross rq->lock and thus can 4375 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4376 * This is necessary as scheduler callbacks may be invoked 4377 * from other cpus. 4378 */ 4379 schedule(); 4380 4381 /* 4382 * Sched callbacks are disabled now. Zap nr_running. 4383 * After this, nr_running stays zero and need_more_worker() 4384 * and keep_working() are always true as long as the 4385 * worklist is not empty. This pool now behaves as an 4386 * unbound (in terms of concurrency management) pool which 4387 * are served by workers tied to the pool. 4388 */ 4389 atomic_set(&pool->nr_running, 0); 4390 4391 /* 4392 * With concurrency management just turned off, a busy 4393 * worker blocking could lead to lengthy stalls. Kick off 4394 * unbound chain execution of currently pending work items. 4395 */ 4396 spin_lock_irq(&pool->lock); 4397 wake_up_worker(pool); 4398 spin_unlock_irq(&pool->lock); 4399 } 4400 } 4401 4402 /** 4403 * rebind_workers - rebind all workers of a pool to the associated CPU 4404 * @pool: pool of interest 4405 * 4406 * @pool->cpu is coming online. Rebind all workers to the CPU. 4407 */ 4408 static void rebind_workers(struct worker_pool *pool) 4409 { 4410 struct worker *worker; 4411 4412 lockdep_assert_held(&pool->attach_mutex); 4413 4414 /* 4415 * Restore CPU affinity of all workers. As all idle workers should 4416 * be on the run-queue of the associated CPU before any local 4417 * wake-ups for concurrency management happen, restore CPU affinity 4418 * of all workers first and then clear UNBOUND. As we're called 4419 * from CPU_ONLINE, the following shouldn't fail. 4420 */ 4421 for_each_pool_worker(worker, pool) 4422 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4423 pool->attrs->cpumask) < 0); 4424 4425 spin_lock_irq(&pool->lock); 4426 pool->flags &= ~POOL_DISASSOCIATED; 4427 4428 for_each_pool_worker(worker, pool) { 4429 unsigned int worker_flags = worker->flags; 4430 4431 /* 4432 * A bound idle worker should actually be on the runqueue 4433 * of the associated CPU for local wake-ups targeting it to 4434 * work. Kick all idle workers so that they migrate to the 4435 * associated CPU. Doing this in the same loop as 4436 * replacing UNBOUND with REBOUND is safe as no worker will 4437 * be bound before @pool->lock is released. 4438 */ 4439 if (worker_flags & WORKER_IDLE) 4440 wake_up_process(worker->task); 4441 4442 /* 4443 * We want to clear UNBOUND but can't directly call 4444 * worker_clr_flags() or adjust nr_running. Atomically 4445 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4446 * @worker will clear REBOUND using worker_clr_flags() when 4447 * it initiates the next execution cycle thus restoring 4448 * concurrency management. Note that when or whether 4449 * @worker clears REBOUND doesn't affect correctness. 4450 * 4451 * ACCESS_ONCE() is necessary because @worker->flags may be 4452 * tested without holding any lock in 4453 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4454 * fail incorrectly leading to premature concurrency 4455 * management operations. 4456 */ 4457 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4458 worker_flags |= WORKER_REBOUND; 4459 worker_flags &= ~WORKER_UNBOUND; 4460 ACCESS_ONCE(worker->flags) = worker_flags; 4461 } 4462 4463 spin_unlock_irq(&pool->lock); 4464 } 4465 4466 /** 4467 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4468 * @pool: unbound pool of interest 4469 * @cpu: the CPU which is coming up 4470 * 4471 * An unbound pool may end up with a cpumask which doesn't have any online 4472 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4473 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4474 * online CPU before, cpus_allowed of all its workers should be restored. 4475 */ 4476 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4477 { 4478 static cpumask_t cpumask; 4479 struct worker *worker; 4480 4481 lockdep_assert_held(&pool->attach_mutex); 4482 4483 /* is @cpu allowed for @pool? */ 4484 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4485 return; 4486 4487 /* is @cpu the only online CPU? */ 4488 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4489 if (cpumask_weight(&cpumask) != 1) 4490 return; 4491 4492 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4493 for_each_pool_worker(worker, pool) 4494 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4495 pool->attrs->cpumask) < 0); 4496 } 4497 4498 /* 4499 * Workqueues should be brought up before normal priority CPU notifiers. 4500 * This will be registered high priority CPU notifier. 4501 */ 4502 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4503 unsigned long action, 4504 void *hcpu) 4505 { 4506 int cpu = (unsigned long)hcpu; 4507 struct worker_pool *pool; 4508 struct workqueue_struct *wq; 4509 int pi; 4510 4511 switch (action & ~CPU_TASKS_FROZEN) { 4512 case CPU_UP_PREPARE: 4513 for_each_cpu_worker_pool(pool, cpu) { 4514 if (pool->nr_workers) 4515 continue; 4516 if (!create_worker(pool)) 4517 return NOTIFY_BAD; 4518 } 4519 break; 4520 4521 case CPU_DOWN_FAILED: 4522 case CPU_ONLINE: 4523 mutex_lock(&wq_pool_mutex); 4524 4525 for_each_pool(pool, pi) { 4526 mutex_lock(&pool->attach_mutex); 4527 4528 if (pool->cpu == cpu) 4529 rebind_workers(pool); 4530 else if (pool->cpu < 0) 4531 restore_unbound_workers_cpumask(pool, cpu); 4532 4533 mutex_unlock(&pool->attach_mutex); 4534 } 4535 4536 /* update NUMA affinity of unbound workqueues */ 4537 list_for_each_entry(wq, &workqueues, list) 4538 wq_update_unbound_numa(wq, cpu, true); 4539 4540 mutex_unlock(&wq_pool_mutex); 4541 break; 4542 } 4543 return NOTIFY_OK; 4544 } 4545 4546 /* 4547 * Workqueues should be brought down after normal priority CPU notifiers. 4548 * This will be registered as low priority CPU notifier. 4549 */ 4550 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4551 unsigned long action, 4552 void *hcpu) 4553 { 4554 int cpu = (unsigned long)hcpu; 4555 struct work_struct unbind_work; 4556 struct workqueue_struct *wq; 4557 4558 switch (action & ~CPU_TASKS_FROZEN) { 4559 case CPU_DOWN_PREPARE: 4560 /* unbinding per-cpu workers should happen on the local CPU */ 4561 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4562 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4563 4564 /* update NUMA affinity of unbound workqueues */ 4565 mutex_lock(&wq_pool_mutex); 4566 list_for_each_entry(wq, &workqueues, list) 4567 wq_update_unbound_numa(wq, cpu, false); 4568 mutex_unlock(&wq_pool_mutex); 4569 4570 /* wait for per-cpu unbinding to finish */ 4571 flush_work(&unbind_work); 4572 destroy_work_on_stack(&unbind_work); 4573 break; 4574 } 4575 return NOTIFY_OK; 4576 } 4577 4578 #ifdef CONFIG_SMP 4579 4580 struct work_for_cpu { 4581 struct work_struct work; 4582 long (*fn)(void *); 4583 void *arg; 4584 long ret; 4585 }; 4586 4587 static void work_for_cpu_fn(struct work_struct *work) 4588 { 4589 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4590 4591 wfc->ret = wfc->fn(wfc->arg); 4592 } 4593 4594 /** 4595 * work_on_cpu - run a function in user context on a particular cpu 4596 * @cpu: the cpu to run on 4597 * @fn: the function to run 4598 * @arg: the function arg 4599 * 4600 * It is up to the caller to ensure that the cpu doesn't go offline. 4601 * The caller must not hold any locks which would prevent @fn from completing. 4602 * 4603 * Return: The value @fn returns. 4604 */ 4605 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4606 { 4607 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4608 4609 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4610 schedule_work_on(cpu, &wfc.work); 4611 flush_work(&wfc.work); 4612 destroy_work_on_stack(&wfc.work); 4613 return wfc.ret; 4614 } 4615 EXPORT_SYMBOL_GPL(work_on_cpu); 4616 #endif /* CONFIG_SMP */ 4617 4618 #ifdef CONFIG_FREEZER 4619 4620 /** 4621 * freeze_workqueues_begin - begin freezing workqueues 4622 * 4623 * Start freezing workqueues. After this function returns, all freezable 4624 * workqueues will queue new works to their delayed_works list instead of 4625 * pool->worklist. 4626 * 4627 * CONTEXT: 4628 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4629 */ 4630 void freeze_workqueues_begin(void) 4631 { 4632 struct workqueue_struct *wq; 4633 struct pool_workqueue *pwq; 4634 4635 mutex_lock(&wq_pool_mutex); 4636 4637 WARN_ON_ONCE(workqueue_freezing); 4638 workqueue_freezing = true; 4639 4640 list_for_each_entry(wq, &workqueues, list) { 4641 mutex_lock(&wq->mutex); 4642 for_each_pwq(pwq, wq) 4643 pwq_adjust_max_active(pwq); 4644 mutex_unlock(&wq->mutex); 4645 } 4646 4647 mutex_unlock(&wq_pool_mutex); 4648 } 4649 4650 /** 4651 * freeze_workqueues_busy - are freezable workqueues still busy? 4652 * 4653 * Check whether freezing is complete. This function must be called 4654 * between freeze_workqueues_begin() and thaw_workqueues(). 4655 * 4656 * CONTEXT: 4657 * Grabs and releases wq_pool_mutex. 4658 * 4659 * Return: 4660 * %true if some freezable workqueues are still busy. %false if freezing 4661 * is complete. 4662 */ 4663 bool freeze_workqueues_busy(void) 4664 { 4665 bool busy = false; 4666 struct workqueue_struct *wq; 4667 struct pool_workqueue *pwq; 4668 4669 mutex_lock(&wq_pool_mutex); 4670 4671 WARN_ON_ONCE(!workqueue_freezing); 4672 4673 list_for_each_entry(wq, &workqueues, list) { 4674 if (!(wq->flags & WQ_FREEZABLE)) 4675 continue; 4676 /* 4677 * nr_active is monotonically decreasing. It's safe 4678 * to peek without lock. 4679 */ 4680 rcu_read_lock_sched(); 4681 for_each_pwq(pwq, wq) { 4682 WARN_ON_ONCE(pwq->nr_active < 0); 4683 if (pwq->nr_active) { 4684 busy = true; 4685 rcu_read_unlock_sched(); 4686 goto out_unlock; 4687 } 4688 } 4689 rcu_read_unlock_sched(); 4690 } 4691 out_unlock: 4692 mutex_unlock(&wq_pool_mutex); 4693 return busy; 4694 } 4695 4696 /** 4697 * thaw_workqueues - thaw workqueues 4698 * 4699 * Thaw workqueues. Normal queueing is restored and all collected 4700 * frozen works are transferred to their respective pool worklists. 4701 * 4702 * CONTEXT: 4703 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4704 */ 4705 void thaw_workqueues(void) 4706 { 4707 struct workqueue_struct *wq; 4708 struct pool_workqueue *pwq; 4709 4710 mutex_lock(&wq_pool_mutex); 4711 4712 if (!workqueue_freezing) 4713 goto out_unlock; 4714 4715 workqueue_freezing = false; 4716 4717 /* restore max_active and repopulate worklist */ 4718 list_for_each_entry(wq, &workqueues, list) { 4719 mutex_lock(&wq->mutex); 4720 for_each_pwq(pwq, wq) 4721 pwq_adjust_max_active(pwq); 4722 mutex_unlock(&wq->mutex); 4723 } 4724 4725 out_unlock: 4726 mutex_unlock(&wq_pool_mutex); 4727 } 4728 #endif /* CONFIG_FREEZER */ 4729 4730 static int workqueue_apply_unbound_cpumask(void) 4731 { 4732 LIST_HEAD(ctxs); 4733 int ret = 0; 4734 struct workqueue_struct *wq; 4735 struct apply_wqattrs_ctx *ctx, *n; 4736 4737 lockdep_assert_held(&wq_pool_mutex); 4738 4739 list_for_each_entry(wq, &workqueues, list) { 4740 if (!(wq->flags & WQ_UNBOUND)) 4741 continue; 4742 /* creating multiple pwqs breaks ordering guarantee */ 4743 if (wq->flags & __WQ_ORDERED) 4744 continue; 4745 4746 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4747 if (!ctx) { 4748 ret = -ENOMEM; 4749 break; 4750 } 4751 4752 list_add_tail(&ctx->list, &ctxs); 4753 } 4754 4755 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4756 if (!ret) 4757 apply_wqattrs_commit(ctx); 4758 apply_wqattrs_cleanup(ctx); 4759 } 4760 4761 return ret; 4762 } 4763 4764 /** 4765 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4766 * @cpumask: the cpumask to set 4767 * 4768 * The low-level workqueues cpumask is a global cpumask that limits 4769 * the affinity of all unbound workqueues. This function check the @cpumask 4770 * and apply it to all unbound workqueues and updates all pwqs of them. 4771 * 4772 * Retun: 0 - Success 4773 * -EINVAL - Invalid @cpumask 4774 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4775 */ 4776 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4777 { 4778 int ret = -EINVAL; 4779 cpumask_var_t saved_cpumask; 4780 4781 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4782 return -ENOMEM; 4783 4784 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4785 if (!cpumask_empty(cpumask)) { 4786 apply_wqattrs_lock(); 4787 4788 /* save the old wq_unbound_cpumask. */ 4789 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4790 4791 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4792 cpumask_copy(wq_unbound_cpumask, cpumask); 4793 ret = workqueue_apply_unbound_cpumask(); 4794 4795 /* restore the wq_unbound_cpumask when failed. */ 4796 if (ret < 0) 4797 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4798 4799 apply_wqattrs_unlock(); 4800 } 4801 4802 free_cpumask_var(saved_cpumask); 4803 return ret; 4804 } 4805 4806 #ifdef CONFIG_SYSFS 4807 /* 4808 * Workqueues with WQ_SYSFS flag set is visible to userland via 4809 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4810 * following attributes. 4811 * 4812 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4813 * max_active RW int : maximum number of in-flight work items 4814 * 4815 * Unbound workqueues have the following extra attributes. 4816 * 4817 * id RO int : the associated pool ID 4818 * nice RW int : nice value of the workers 4819 * cpumask RW mask : bitmask of allowed CPUs for the workers 4820 */ 4821 struct wq_device { 4822 struct workqueue_struct *wq; 4823 struct device dev; 4824 }; 4825 4826 static struct workqueue_struct *dev_to_wq(struct device *dev) 4827 { 4828 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4829 4830 return wq_dev->wq; 4831 } 4832 4833 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 4834 char *buf) 4835 { 4836 struct workqueue_struct *wq = dev_to_wq(dev); 4837 4838 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 4839 } 4840 static DEVICE_ATTR_RO(per_cpu); 4841 4842 static ssize_t max_active_show(struct device *dev, 4843 struct device_attribute *attr, char *buf) 4844 { 4845 struct workqueue_struct *wq = dev_to_wq(dev); 4846 4847 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 4848 } 4849 4850 static ssize_t max_active_store(struct device *dev, 4851 struct device_attribute *attr, const char *buf, 4852 size_t count) 4853 { 4854 struct workqueue_struct *wq = dev_to_wq(dev); 4855 int val; 4856 4857 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 4858 return -EINVAL; 4859 4860 workqueue_set_max_active(wq, val); 4861 return count; 4862 } 4863 static DEVICE_ATTR_RW(max_active); 4864 4865 static struct attribute *wq_sysfs_attrs[] = { 4866 &dev_attr_per_cpu.attr, 4867 &dev_attr_max_active.attr, 4868 NULL, 4869 }; 4870 ATTRIBUTE_GROUPS(wq_sysfs); 4871 4872 static ssize_t wq_pool_ids_show(struct device *dev, 4873 struct device_attribute *attr, char *buf) 4874 { 4875 struct workqueue_struct *wq = dev_to_wq(dev); 4876 const char *delim = ""; 4877 int node, written = 0; 4878 4879 rcu_read_lock_sched(); 4880 for_each_node(node) { 4881 written += scnprintf(buf + written, PAGE_SIZE - written, 4882 "%s%d:%d", delim, node, 4883 unbound_pwq_by_node(wq, node)->pool->id); 4884 delim = " "; 4885 } 4886 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 4887 rcu_read_unlock_sched(); 4888 4889 return written; 4890 } 4891 4892 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 4893 char *buf) 4894 { 4895 struct workqueue_struct *wq = dev_to_wq(dev); 4896 int written; 4897 4898 mutex_lock(&wq->mutex); 4899 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 4900 mutex_unlock(&wq->mutex); 4901 4902 return written; 4903 } 4904 4905 /* prepare workqueue_attrs for sysfs store operations */ 4906 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 4907 { 4908 struct workqueue_attrs *attrs; 4909 4910 lockdep_assert_held(&wq_pool_mutex); 4911 4912 attrs = alloc_workqueue_attrs(GFP_KERNEL); 4913 if (!attrs) 4914 return NULL; 4915 4916 copy_workqueue_attrs(attrs, wq->unbound_attrs); 4917 return attrs; 4918 } 4919 4920 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 4921 const char *buf, size_t count) 4922 { 4923 struct workqueue_struct *wq = dev_to_wq(dev); 4924 struct workqueue_attrs *attrs; 4925 int ret = -ENOMEM; 4926 4927 apply_wqattrs_lock(); 4928 4929 attrs = wq_sysfs_prep_attrs(wq); 4930 if (!attrs) 4931 goto out_unlock; 4932 4933 if (sscanf(buf, "%d", &attrs->nice) == 1 && 4934 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 4935 ret = apply_workqueue_attrs_locked(wq, attrs); 4936 else 4937 ret = -EINVAL; 4938 4939 out_unlock: 4940 apply_wqattrs_unlock(); 4941 free_workqueue_attrs(attrs); 4942 return ret ?: count; 4943 } 4944 4945 static ssize_t wq_cpumask_show(struct device *dev, 4946 struct device_attribute *attr, char *buf) 4947 { 4948 struct workqueue_struct *wq = dev_to_wq(dev); 4949 int written; 4950 4951 mutex_lock(&wq->mutex); 4952 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 4953 cpumask_pr_args(wq->unbound_attrs->cpumask)); 4954 mutex_unlock(&wq->mutex); 4955 return written; 4956 } 4957 4958 static ssize_t wq_cpumask_store(struct device *dev, 4959 struct device_attribute *attr, 4960 const char *buf, size_t count) 4961 { 4962 struct workqueue_struct *wq = dev_to_wq(dev); 4963 struct workqueue_attrs *attrs; 4964 int ret = -ENOMEM; 4965 4966 apply_wqattrs_lock(); 4967 4968 attrs = wq_sysfs_prep_attrs(wq); 4969 if (!attrs) 4970 goto out_unlock; 4971 4972 ret = cpumask_parse(buf, attrs->cpumask); 4973 if (!ret) 4974 ret = apply_workqueue_attrs_locked(wq, attrs); 4975 4976 out_unlock: 4977 apply_wqattrs_unlock(); 4978 free_workqueue_attrs(attrs); 4979 return ret ?: count; 4980 } 4981 4982 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 4983 char *buf) 4984 { 4985 struct workqueue_struct *wq = dev_to_wq(dev); 4986 int written; 4987 4988 mutex_lock(&wq->mutex); 4989 written = scnprintf(buf, PAGE_SIZE, "%d\n", 4990 !wq->unbound_attrs->no_numa); 4991 mutex_unlock(&wq->mutex); 4992 4993 return written; 4994 } 4995 4996 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 4997 const char *buf, size_t count) 4998 { 4999 struct workqueue_struct *wq = dev_to_wq(dev); 5000 struct workqueue_attrs *attrs; 5001 int v, ret = -ENOMEM; 5002 5003 apply_wqattrs_lock(); 5004 5005 attrs = wq_sysfs_prep_attrs(wq); 5006 if (!attrs) 5007 goto out_unlock; 5008 5009 ret = -EINVAL; 5010 if (sscanf(buf, "%d", &v) == 1) { 5011 attrs->no_numa = !v; 5012 ret = apply_workqueue_attrs_locked(wq, attrs); 5013 } 5014 5015 out_unlock: 5016 apply_wqattrs_unlock(); 5017 free_workqueue_attrs(attrs); 5018 return ret ?: count; 5019 } 5020 5021 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5022 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5023 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5024 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5025 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5026 __ATTR_NULL, 5027 }; 5028 5029 static struct bus_type wq_subsys = { 5030 .name = "workqueue", 5031 .dev_groups = wq_sysfs_groups, 5032 }; 5033 5034 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5035 struct device_attribute *attr, char *buf) 5036 { 5037 int written; 5038 5039 mutex_lock(&wq_pool_mutex); 5040 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5041 cpumask_pr_args(wq_unbound_cpumask)); 5042 mutex_unlock(&wq_pool_mutex); 5043 5044 return written; 5045 } 5046 5047 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5048 struct device_attribute *attr, const char *buf, size_t count) 5049 { 5050 cpumask_var_t cpumask; 5051 int ret; 5052 5053 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5054 return -ENOMEM; 5055 5056 ret = cpumask_parse(buf, cpumask); 5057 if (!ret) 5058 ret = workqueue_set_unbound_cpumask(cpumask); 5059 5060 free_cpumask_var(cpumask); 5061 return ret ? ret : count; 5062 } 5063 5064 static struct device_attribute wq_sysfs_cpumask_attr = 5065 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5066 wq_unbound_cpumask_store); 5067 5068 static int __init wq_sysfs_init(void) 5069 { 5070 int err; 5071 5072 err = subsys_virtual_register(&wq_subsys, NULL); 5073 if (err) 5074 return err; 5075 5076 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5077 } 5078 core_initcall(wq_sysfs_init); 5079 5080 static void wq_device_release(struct device *dev) 5081 { 5082 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5083 5084 kfree(wq_dev); 5085 } 5086 5087 /** 5088 * workqueue_sysfs_register - make a workqueue visible in sysfs 5089 * @wq: the workqueue to register 5090 * 5091 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5092 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5093 * which is the preferred method. 5094 * 5095 * Workqueue user should use this function directly iff it wants to apply 5096 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5097 * apply_workqueue_attrs() may race against userland updating the 5098 * attributes. 5099 * 5100 * Return: 0 on success, -errno on failure. 5101 */ 5102 int workqueue_sysfs_register(struct workqueue_struct *wq) 5103 { 5104 struct wq_device *wq_dev; 5105 int ret; 5106 5107 /* 5108 * Adjusting max_active or creating new pwqs by applying 5109 * attributes breaks ordering guarantee. Disallow exposing ordered 5110 * workqueues. 5111 */ 5112 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5113 return -EINVAL; 5114 5115 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5116 if (!wq_dev) 5117 return -ENOMEM; 5118 5119 wq_dev->wq = wq; 5120 wq_dev->dev.bus = &wq_subsys; 5121 wq_dev->dev.init_name = wq->name; 5122 wq_dev->dev.release = wq_device_release; 5123 5124 /* 5125 * unbound_attrs are created separately. Suppress uevent until 5126 * everything is ready. 5127 */ 5128 dev_set_uevent_suppress(&wq_dev->dev, true); 5129 5130 ret = device_register(&wq_dev->dev); 5131 if (ret) { 5132 kfree(wq_dev); 5133 wq->wq_dev = NULL; 5134 return ret; 5135 } 5136 5137 if (wq->flags & WQ_UNBOUND) { 5138 struct device_attribute *attr; 5139 5140 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5141 ret = device_create_file(&wq_dev->dev, attr); 5142 if (ret) { 5143 device_unregister(&wq_dev->dev); 5144 wq->wq_dev = NULL; 5145 return ret; 5146 } 5147 } 5148 } 5149 5150 dev_set_uevent_suppress(&wq_dev->dev, false); 5151 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5152 return 0; 5153 } 5154 5155 /** 5156 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5157 * @wq: the workqueue to unregister 5158 * 5159 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5160 */ 5161 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5162 { 5163 struct wq_device *wq_dev = wq->wq_dev; 5164 5165 if (!wq->wq_dev) 5166 return; 5167 5168 wq->wq_dev = NULL; 5169 device_unregister(&wq_dev->dev); 5170 } 5171 #else /* CONFIG_SYSFS */ 5172 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5173 #endif /* CONFIG_SYSFS */ 5174 5175 static void __init wq_numa_init(void) 5176 { 5177 cpumask_var_t *tbl; 5178 int node, cpu; 5179 5180 if (num_possible_nodes() <= 1) 5181 return; 5182 5183 if (wq_disable_numa) { 5184 pr_info("workqueue: NUMA affinity support disabled\n"); 5185 return; 5186 } 5187 5188 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5189 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5190 5191 /* 5192 * We want masks of possible CPUs of each node which isn't readily 5193 * available. Build one from cpu_to_node() which should have been 5194 * fully initialized by now. 5195 */ 5196 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5197 BUG_ON(!tbl); 5198 5199 for_each_node(node) 5200 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5201 node_online(node) ? node : NUMA_NO_NODE)); 5202 5203 for_each_possible_cpu(cpu) { 5204 node = cpu_to_node(cpu); 5205 if (WARN_ON(node == NUMA_NO_NODE)) { 5206 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5207 /* happens iff arch is bonkers, let's just proceed */ 5208 return; 5209 } 5210 cpumask_set_cpu(cpu, tbl[node]); 5211 } 5212 5213 wq_numa_possible_cpumask = tbl; 5214 wq_numa_enabled = true; 5215 } 5216 5217 static int __init init_workqueues(void) 5218 { 5219 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5220 int i, cpu; 5221 5222 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5223 5224 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5225 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5226 5227 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5228 5229 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5230 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5231 5232 wq_numa_init(); 5233 5234 /* initialize CPU pools */ 5235 for_each_possible_cpu(cpu) { 5236 struct worker_pool *pool; 5237 5238 i = 0; 5239 for_each_cpu_worker_pool(pool, cpu) { 5240 BUG_ON(init_worker_pool(pool)); 5241 pool->cpu = cpu; 5242 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5243 pool->attrs->nice = std_nice[i++]; 5244 pool->node = cpu_to_node(cpu); 5245 5246 /* alloc pool ID */ 5247 mutex_lock(&wq_pool_mutex); 5248 BUG_ON(worker_pool_assign_id(pool)); 5249 mutex_unlock(&wq_pool_mutex); 5250 } 5251 } 5252 5253 /* create the initial worker */ 5254 for_each_online_cpu(cpu) { 5255 struct worker_pool *pool; 5256 5257 for_each_cpu_worker_pool(pool, cpu) { 5258 pool->flags &= ~POOL_DISASSOCIATED; 5259 BUG_ON(!create_worker(pool)); 5260 } 5261 } 5262 5263 /* create default unbound and ordered wq attrs */ 5264 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5265 struct workqueue_attrs *attrs; 5266 5267 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5268 attrs->nice = std_nice[i]; 5269 unbound_std_wq_attrs[i] = attrs; 5270 5271 /* 5272 * An ordered wq should have only one pwq as ordering is 5273 * guaranteed by max_active which is enforced by pwqs. 5274 * Turn off NUMA so that dfl_pwq is used for all nodes. 5275 */ 5276 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5277 attrs->nice = std_nice[i]; 5278 attrs->no_numa = true; 5279 ordered_wq_attrs[i] = attrs; 5280 } 5281 5282 system_wq = alloc_workqueue("events", 0, 0); 5283 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5284 system_long_wq = alloc_workqueue("events_long", 0, 0); 5285 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5286 WQ_UNBOUND_MAX_ACTIVE); 5287 system_freezable_wq = alloc_workqueue("events_freezable", 5288 WQ_FREEZABLE, 0); 5289 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5290 WQ_POWER_EFFICIENT, 0); 5291 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5292 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5293 0); 5294 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5295 !system_unbound_wq || !system_freezable_wq || 5296 !system_power_efficient_wq || 5297 !system_freezable_power_efficient_wq); 5298 return 0; 5299 } 5300 early_initcall(init_workqueues); 5301