xref: /linux/kernel/user.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * The "user cache".
3  *
4  * (C) Copyright 1991-2000 Linus Torvalds
5  *
6  * We have a per-user structure to keep track of how many
7  * processes, files etc the user has claimed, in order to be
8  * able to have per-user limits for system resources.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/bitops.h>
15 #include <linux/key.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/user_namespace.h>
19 
20 /*
21  * UID task count cache, to get fast user lookup in "alloc_uid"
22  * when changing user ID's (ie setuid() and friends).
23  */
24 
25 #define UIDHASH_MASK		(UIDHASH_SZ - 1)
26 #define __uidhashfn(uid)	(((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK)
27 #define uidhashentry(ns, uid)	((ns)->uidhash_table + __uidhashfn((uid)))
28 
29 static struct kmem_cache *uid_cachep;
30 
31 /*
32  * The uidhash_lock is mostly taken from process context, but it is
33  * occasionally also taken from softirq/tasklet context, when
34  * task-structs get RCU-freed. Hence all locking must be softirq-safe.
35  * But free_uid() is also called with local interrupts disabled, and running
36  * local_bh_enable() with local interrupts disabled is an error - we'll run
37  * softirq callbacks, and they can unconditionally enable interrupts, and
38  * the caller of free_uid() didn't expect that..
39  */
40 static DEFINE_SPINLOCK(uidhash_lock);
41 
42 struct user_struct root_user = {
43 	.__count	= ATOMIC_INIT(1),
44 	.processes	= ATOMIC_INIT(1),
45 	.files		= ATOMIC_INIT(0),
46 	.sigpending	= ATOMIC_INIT(0),
47 	.mq_bytes	= 0,
48 	.locked_shm     = 0,
49 #ifdef CONFIG_KEYS
50 	.uid_keyring	= &root_user_keyring,
51 	.session_keyring = &root_session_keyring,
52 #endif
53 #ifdef CONFIG_FAIR_USER_SCHED
54 	.tg		= &init_task_group,
55 #endif
56 };
57 
58 /*
59  * These routines must be called with the uidhash spinlock held!
60  */
61 static inline void uid_hash_insert(struct user_struct *up,
62 						struct hlist_head *hashent)
63 {
64 	hlist_add_head(&up->uidhash_node, hashent);
65 }
66 
67 static inline void uid_hash_remove(struct user_struct *up)
68 {
69 	hlist_del_init(&up->uidhash_node);
70 }
71 
72 static inline struct user_struct *uid_hash_find(uid_t uid,
73 						struct hlist_head *hashent)
74 {
75 	struct user_struct *user;
76 	struct hlist_node *h;
77 
78 	hlist_for_each_entry(user, h, hashent, uidhash_node) {
79 		if (user->uid == uid) {
80 			atomic_inc(&user->__count);
81 			return user;
82 		}
83 	}
84 
85 	return NULL;
86 }
87 
88 #ifdef CONFIG_FAIR_USER_SCHED
89 
90 static struct kobject uids_kobject; /* represents /sys/kernel/uids directory */
91 static DEFINE_MUTEX(uids_mutex);
92 
93 static void sched_destroy_user(struct user_struct *up)
94 {
95 	sched_destroy_group(up->tg);
96 }
97 
98 static int sched_create_user(struct user_struct *up)
99 {
100 	int rc = 0;
101 
102 	up->tg = sched_create_group();
103 	if (IS_ERR(up->tg))
104 		rc = -ENOMEM;
105 
106 	return rc;
107 }
108 
109 static void sched_switch_user(struct task_struct *p)
110 {
111 	sched_move_task(p);
112 }
113 
114 static inline void uids_mutex_lock(void)
115 {
116 	mutex_lock(&uids_mutex);
117 }
118 
119 static inline void uids_mutex_unlock(void)
120 {
121 	mutex_unlock(&uids_mutex);
122 }
123 
124 /* return cpu shares held by the user */
125 ssize_t cpu_shares_show(struct kset *kset, char *buffer)
126 {
127 	struct user_struct *up = container_of(kset, struct user_struct, kset);
128 
129 	return sprintf(buffer, "%lu\n", sched_group_shares(up->tg));
130 }
131 
132 /* modify cpu shares held by the user */
133 ssize_t cpu_shares_store(struct kset *kset, const char *buffer, size_t size)
134 {
135 	struct user_struct *up = container_of(kset, struct user_struct, kset);
136 	unsigned long shares;
137 	int rc;
138 
139 	sscanf(buffer, "%lu", &shares);
140 
141 	rc = sched_group_set_shares(up->tg, shares);
142 
143 	return (rc ? rc : size);
144 }
145 
146 static void user_attr_init(struct subsys_attribute *sa, char *name, int mode)
147 {
148 	sa->attr.name = name;
149 	sa->attr.mode = mode;
150 	sa->show = cpu_shares_show;
151 	sa->store = cpu_shares_store;
152 }
153 
154 /* Create "/sys/kernel/uids/<uid>" directory and
155  *  "/sys/kernel/uids/<uid>/cpu_share" file for this user.
156  */
157 static int user_kobject_create(struct user_struct *up)
158 {
159 	struct kset *kset = &up->kset;
160 	struct kobject *kobj = &kset->kobj;
161 	int error;
162 
163 	memset(kset, 0, sizeof(struct kset));
164 	kobj->parent = &uids_kobject;	/* create under /sys/kernel/uids dir */
165 	kobject_set_name(kobj, "%d", up->uid);
166 	kset_init(kset);
167 	user_attr_init(&up->user_attr, "cpu_share", 0644);
168 
169 	error = kobject_add(kobj);
170 	if (error)
171 		goto done;
172 
173 	error = sysfs_create_file(kobj, &up->user_attr.attr);
174 	if (error)
175 		kobject_del(kobj);
176 
177 	kobject_uevent(kobj, KOBJ_ADD);
178 
179 done:
180 	return error;
181 }
182 
183 /* create these in sysfs filesystem:
184  * 	"/sys/kernel/uids" directory
185  * 	"/sys/kernel/uids/0" directory (for root user)
186  * 	"/sys/kernel/uids/0/cpu_share" file (for root user)
187  */
188 int __init uids_kobject_init(void)
189 {
190 	int error;
191 
192 	/* create under /sys/kernel dir */
193 	uids_kobject.parent = &kernel_subsys.kobj;
194 	uids_kobject.kset = &kernel_subsys;
195 	kobject_set_name(&uids_kobject, "uids");
196 	kobject_init(&uids_kobject);
197 
198 	error = kobject_add(&uids_kobject);
199 	if (!error)
200 		error = user_kobject_create(&root_user);
201 
202 	return error;
203 }
204 
205 /* work function to remove sysfs directory for a user and free up
206  * corresponding structures.
207  */
208 static void remove_user_sysfs_dir(struct work_struct *w)
209 {
210 	struct user_struct *up = container_of(w, struct user_struct, work);
211 	struct kobject *kobj = &up->kset.kobj;
212 	unsigned long flags;
213 	int remove_user = 0;
214 
215 	/* Make uid_hash_remove() + sysfs_remove_file() + kobject_del()
216 	 * atomic.
217 	 */
218 	uids_mutex_lock();
219 
220 	local_irq_save(flags);
221 
222 	if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) {
223 		uid_hash_remove(up);
224 		remove_user = 1;
225 		spin_unlock_irqrestore(&uidhash_lock, flags);
226 	} else {
227 		local_irq_restore(flags);
228 	}
229 
230 	if (!remove_user)
231 		goto done;
232 
233 	sysfs_remove_file(kobj, &up->user_attr.attr);
234 	kobject_uevent(kobj, KOBJ_REMOVE);
235 	kobject_del(kobj);
236 
237 	sched_destroy_user(up);
238 	key_put(up->uid_keyring);
239 	key_put(up->session_keyring);
240 	kmem_cache_free(uid_cachep, up);
241 
242 done:
243 	uids_mutex_unlock();
244 }
245 
246 /* IRQs are disabled and uidhash_lock is held upon function entry.
247  * IRQ state (as stored in flags) is restored and uidhash_lock released
248  * upon function exit.
249  */
250 static inline void free_user(struct user_struct *up, unsigned long flags)
251 {
252 	/* restore back the count */
253 	atomic_inc(&up->__count);
254 	spin_unlock_irqrestore(&uidhash_lock, flags);
255 
256 	INIT_WORK(&up->work, remove_user_sysfs_dir);
257 	schedule_work(&up->work);
258 }
259 
260 #else	/* CONFIG_FAIR_USER_SCHED */
261 
262 static void sched_destroy_user(struct user_struct *up) { }
263 static int sched_create_user(struct user_struct *up) { return 0; }
264 static void sched_switch_user(struct task_struct *p) { }
265 static inline int user_kobject_create(struct user_struct *up) { return 0; }
266 static inline void uids_mutex_lock(void) { }
267 static inline void uids_mutex_unlock(void) { }
268 
269 /* IRQs are disabled and uidhash_lock is held upon function entry.
270  * IRQ state (as stored in flags) is restored and uidhash_lock released
271  * upon function exit.
272  */
273 static inline void free_user(struct user_struct *up, unsigned long flags)
274 {
275 	uid_hash_remove(up);
276 	spin_unlock_irqrestore(&uidhash_lock, flags);
277 	sched_destroy_user(up);
278 	key_put(up->uid_keyring);
279 	key_put(up->session_keyring);
280 	kmem_cache_free(uid_cachep, up);
281 }
282 
283 #endif	/* CONFIG_FAIR_USER_SCHED */
284 
285 /*
286  * Locate the user_struct for the passed UID.  If found, take a ref on it.  The
287  * caller must undo that ref with free_uid().
288  *
289  * If the user_struct could not be found, return NULL.
290  */
291 struct user_struct *find_user(uid_t uid)
292 {
293 	struct user_struct *ret;
294 	unsigned long flags;
295 	struct user_namespace *ns = current->nsproxy->user_ns;
296 
297 	spin_lock_irqsave(&uidhash_lock, flags);
298 	ret = uid_hash_find(uid, uidhashentry(ns, uid));
299 	spin_unlock_irqrestore(&uidhash_lock, flags);
300 	return ret;
301 }
302 
303 void free_uid(struct user_struct *up)
304 {
305 	unsigned long flags;
306 
307 	if (!up)
308 		return;
309 
310 	local_irq_save(flags);
311 	if (atomic_dec_and_lock(&up->__count, &uidhash_lock))
312 		free_user(up, flags);
313 	else
314 		local_irq_restore(flags);
315 }
316 
317 struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid)
318 {
319 	struct hlist_head *hashent = uidhashentry(ns, uid);
320 	struct user_struct *up;
321 
322 	/* Make uid_hash_find() + user_kobject_create() + uid_hash_insert()
323 	 * atomic.
324 	 */
325 	uids_mutex_lock();
326 
327 	spin_lock_irq(&uidhash_lock);
328 	up = uid_hash_find(uid, hashent);
329 	spin_unlock_irq(&uidhash_lock);
330 
331 	if (!up) {
332 		struct user_struct *new;
333 
334 		new = kmem_cache_alloc(uid_cachep, GFP_KERNEL);
335 		if (!new)
336 			return NULL;
337 		new->uid = uid;
338 		atomic_set(&new->__count, 1);
339 		atomic_set(&new->processes, 0);
340 		atomic_set(&new->files, 0);
341 		atomic_set(&new->sigpending, 0);
342 #ifdef CONFIG_INOTIFY_USER
343 		atomic_set(&new->inotify_watches, 0);
344 		atomic_set(&new->inotify_devs, 0);
345 #endif
346 
347 		new->mq_bytes = 0;
348 		new->locked_shm = 0;
349 
350 		if (alloc_uid_keyring(new, current) < 0) {
351 			kmem_cache_free(uid_cachep, new);
352 			return NULL;
353 		}
354 
355 		if (sched_create_user(new) < 0) {
356 			key_put(new->uid_keyring);
357 			key_put(new->session_keyring);
358 			kmem_cache_free(uid_cachep, new);
359 			return NULL;
360 		}
361 
362 		if (user_kobject_create(new)) {
363 			sched_destroy_user(new);
364 			key_put(new->uid_keyring);
365 			key_put(new->session_keyring);
366 			kmem_cache_free(uid_cachep, new);
367 			uids_mutex_unlock();
368 			return NULL;
369 		}
370 
371 		/*
372 		 * Before adding this, check whether we raced
373 		 * on adding the same user already..
374 		 */
375 		spin_lock_irq(&uidhash_lock);
376 		up = uid_hash_find(uid, hashent);
377 		if (up) {
378 			/* This case is not possible when CONFIG_FAIR_USER_SCHED
379 			 * is defined, since we serialize alloc_uid() using
380 			 * uids_mutex. Hence no need to call
381 			 * sched_destroy_user() or remove_user_sysfs_dir().
382 			 */
383 			key_put(new->uid_keyring);
384 			key_put(new->session_keyring);
385 			kmem_cache_free(uid_cachep, new);
386 		} else {
387 			uid_hash_insert(new, hashent);
388 			up = new;
389 		}
390 		spin_unlock_irq(&uidhash_lock);
391 
392 	}
393 
394 	uids_mutex_unlock();
395 
396 	return up;
397 }
398 
399 void switch_uid(struct user_struct *new_user)
400 {
401 	struct user_struct *old_user;
402 
403 	/* What if a process setreuid()'s and this brings the
404 	 * new uid over his NPROC rlimit?  We can check this now
405 	 * cheaply with the new uid cache, so if it matters
406 	 * we should be checking for it.  -DaveM
407 	 */
408 	old_user = current->user;
409 	atomic_inc(&new_user->processes);
410 	atomic_dec(&old_user->processes);
411 	switch_uid_keyring(new_user);
412 	current->user = new_user;
413 	sched_switch_user(current);
414 
415 	/*
416 	 * We need to synchronize with __sigqueue_alloc()
417 	 * doing a get_uid(p->user).. If that saw the old
418 	 * user value, we need to wait until it has exited
419 	 * its critical region before we can free the old
420 	 * structure.
421 	 */
422 	smp_mb();
423 	spin_unlock_wait(&current->sighand->siglock);
424 
425 	free_uid(old_user);
426 	suid_keys(current);
427 }
428 
429 void release_uids(struct user_namespace *ns)
430 {
431 	int i;
432 	unsigned long flags;
433 	struct hlist_head *head;
434 	struct hlist_node *nd;
435 
436 	spin_lock_irqsave(&uidhash_lock, flags);
437 	/*
438 	 * collapse the chains so that the user_struct-s will
439 	 * be still alive, but not in hashes. subsequent free_uid()
440 	 * will free them.
441 	 */
442 	for (i = 0; i < UIDHASH_SZ; i++) {
443 		head = ns->uidhash_table + i;
444 		while (!hlist_empty(head)) {
445 			nd = head->first;
446 			hlist_del_init(nd);
447 		}
448 	}
449 	spin_unlock_irqrestore(&uidhash_lock, flags);
450 
451 	free_uid(ns->root_user);
452 }
453 
454 static int __init uid_cache_init(void)
455 {
456 	int n;
457 
458 	uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct),
459 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
460 
461 	for(n = 0; n < UIDHASH_SZ; ++n)
462 		INIT_HLIST_HEAD(init_user_ns.uidhash_table + n);
463 
464 	/* Insert the root user immediately (init already runs as root) */
465 	spin_lock_irq(&uidhash_lock);
466 	uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0));
467 	spin_unlock_irq(&uidhash_lock);
468 
469 	return 0;
470 }
471 
472 module_init(uid_cache_init);
473