xref: /linux/kernel/trace/bpf_trace.c (revision 40863f4d6ef2c34bb00dd1070dfaf9d5f27a497e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/namei.h>
26 
27 #include <net/bpf_sk_storage.h>
28 
29 #include <uapi/linux/bpf.h>
30 #include <uapi/linux/btf.h>
31 
32 #include <asm/tlb.h>
33 
34 #include "trace_probe.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include "bpf_trace.h"
39 
40 #define bpf_event_rcu_dereference(p)					\
41 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
42 
43 #define MAX_UPROBE_MULTI_CNT (1U << 20)
44 #define MAX_KPROBE_MULTI_CNT (1U << 20)
45 
46 #ifdef CONFIG_MODULES
47 struct bpf_trace_module {
48 	struct module *module;
49 	struct list_head list;
50 };
51 
52 static LIST_HEAD(bpf_trace_modules);
53 static DEFINE_MUTEX(bpf_module_mutex);
54 
55 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
56 {
57 	struct bpf_raw_event_map *btp, *ret = NULL;
58 	struct bpf_trace_module *btm;
59 	unsigned int i;
60 
61 	mutex_lock(&bpf_module_mutex);
62 	list_for_each_entry(btm, &bpf_trace_modules, list) {
63 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
64 			btp = &btm->module->bpf_raw_events[i];
65 			if (!strcmp(btp->tp->name, name)) {
66 				if (try_module_get(btm->module))
67 					ret = btp;
68 				goto out;
69 			}
70 		}
71 	}
72 out:
73 	mutex_unlock(&bpf_module_mutex);
74 	return ret;
75 }
76 #else
77 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
78 {
79 	return NULL;
80 }
81 #endif /* CONFIG_MODULES */
82 
83 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
84 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 
86 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
87 				  u64 flags, const struct btf **btf,
88 				  s32 *btf_id);
89 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
90 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
91 
92 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
93 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
94 
95 /**
96  * trace_call_bpf - invoke BPF program
97  * @call: tracepoint event
98  * @ctx: opaque context pointer
99  *
100  * kprobe handlers execute BPF programs via this helper.
101  * Can be used from static tracepoints in the future.
102  *
103  * Return: BPF programs always return an integer which is interpreted by
104  * kprobe handler as:
105  * 0 - return from kprobe (event is filtered out)
106  * 1 - store kprobe event into ring buffer
107  * Other values are reserved and currently alias to 1
108  */
109 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
110 {
111 	unsigned int ret;
112 
113 	cant_sleep();
114 
115 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
116 		/*
117 		 * since some bpf program is already running on this cpu,
118 		 * don't call into another bpf program (same or different)
119 		 * and don't send kprobe event into ring-buffer,
120 		 * so return zero here
121 		 */
122 		rcu_read_lock();
123 		bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
124 		rcu_read_unlock();
125 		ret = 0;
126 		goto out;
127 	}
128 
129 	/*
130 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
131 	 * to all call sites, we did a bpf_prog_array_valid() there to check
132 	 * whether call->prog_array is empty or not, which is
133 	 * a heuristic to speed up execution.
134 	 *
135 	 * If bpf_prog_array_valid() fetched prog_array was
136 	 * non-NULL, we go into trace_call_bpf() and do the actual
137 	 * proper rcu_dereference() under RCU lock.
138 	 * If it turns out that prog_array is NULL then, we bail out.
139 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
140 	 * was NULL, you'll skip the prog_array with the risk of missing
141 	 * out of events when it was updated in between this and the
142 	 * rcu_dereference() which is accepted risk.
143 	 */
144 	rcu_read_lock();
145 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
146 				 ctx, bpf_prog_run);
147 	rcu_read_unlock();
148 
149  out:
150 	__this_cpu_dec(bpf_prog_active);
151 
152 	return ret;
153 }
154 
155 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
156 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
157 {
158 	regs_set_return_value(regs, rc);
159 	override_function_with_return(regs);
160 	return 0;
161 }
162 
163 static const struct bpf_func_proto bpf_override_return_proto = {
164 	.func		= bpf_override_return,
165 	.gpl_only	= true,
166 	.ret_type	= RET_INTEGER,
167 	.arg1_type	= ARG_PTR_TO_CTX,
168 	.arg2_type	= ARG_ANYTHING,
169 };
170 #endif
171 
172 static __always_inline int
173 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
174 {
175 	int ret;
176 
177 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
178 	if (unlikely(ret < 0))
179 		memset(dst, 0, size);
180 	return ret;
181 }
182 
183 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
184 	   const void __user *, unsafe_ptr)
185 {
186 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
187 }
188 
189 const struct bpf_func_proto bpf_probe_read_user_proto = {
190 	.func		= bpf_probe_read_user,
191 	.gpl_only	= true,
192 	.ret_type	= RET_INTEGER,
193 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
194 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
195 	.arg3_type	= ARG_ANYTHING,
196 };
197 
198 static __always_inline int
199 bpf_probe_read_user_str_common(void *dst, u32 size,
200 			       const void __user *unsafe_ptr)
201 {
202 	int ret;
203 
204 	/*
205 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
206 	 * terminator into `dst`.
207 	 *
208 	 * strncpy_from_user() does long-sized strides in the fast path. If the
209 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
210 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
211 	 * and keys a hash map with it, then semantically identical strings can
212 	 * occupy multiple entries in the map.
213 	 */
214 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
215 	if (unlikely(ret < 0))
216 		memset(dst, 0, size);
217 	return ret;
218 }
219 
220 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
221 	   const void __user *, unsafe_ptr)
222 {
223 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
224 }
225 
226 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
227 	.func		= bpf_probe_read_user_str,
228 	.gpl_only	= true,
229 	.ret_type	= RET_INTEGER,
230 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
231 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
232 	.arg3_type	= ARG_ANYTHING,
233 };
234 
235 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
236 	   const void *, unsafe_ptr)
237 {
238 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
239 }
240 
241 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
242 	.func		= bpf_probe_read_kernel,
243 	.gpl_only	= true,
244 	.ret_type	= RET_INTEGER,
245 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
246 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
247 	.arg3_type	= ARG_ANYTHING,
248 };
249 
250 static __always_inline int
251 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
252 {
253 	int ret;
254 
255 	/*
256 	 * The strncpy_from_kernel_nofault() call will likely not fill the
257 	 * entire buffer, but that's okay in this circumstance as we're probing
258 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
259 	 * as well probe the stack. Thus, memory is explicitly cleared
260 	 * only in error case, so that improper users ignoring return
261 	 * code altogether don't copy garbage; otherwise length of string
262 	 * is returned that can be used for bpf_perf_event_output() et al.
263 	 */
264 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
265 	if (unlikely(ret < 0))
266 		memset(dst, 0, size);
267 	return ret;
268 }
269 
270 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
271 	   const void *, unsafe_ptr)
272 {
273 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
274 }
275 
276 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
277 	.func		= bpf_probe_read_kernel_str,
278 	.gpl_only	= true,
279 	.ret_type	= RET_INTEGER,
280 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
281 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
282 	.arg3_type	= ARG_ANYTHING,
283 };
284 
285 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
286 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
287 	   const void *, unsafe_ptr)
288 {
289 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
290 		return bpf_probe_read_user_common(dst, size,
291 				(__force void __user *)unsafe_ptr);
292 	}
293 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
294 }
295 
296 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
297 	.func		= bpf_probe_read_compat,
298 	.gpl_only	= true,
299 	.ret_type	= RET_INTEGER,
300 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
301 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
302 	.arg3_type	= ARG_ANYTHING,
303 };
304 
305 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
306 	   const void *, unsafe_ptr)
307 {
308 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
309 		return bpf_probe_read_user_str_common(dst, size,
310 				(__force void __user *)unsafe_ptr);
311 	}
312 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
313 }
314 
315 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
316 	.func		= bpf_probe_read_compat_str,
317 	.gpl_only	= true,
318 	.ret_type	= RET_INTEGER,
319 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
320 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
321 	.arg3_type	= ARG_ANYTHING,
322 };
323 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
324 
325 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
326 	   u32, size)
327 {
328 	/*
329 	 * Ensure we're in user context which is safe for the helper to
330 	 * run. This helper has no business in a kthread.
331 	 *
332 	 * access_ok() should prevent writing to non-user memory, but in
333 	 * some situations (nommu, temporary switch, etc) access_ok() does
334 	 * not provide enough validation, hence the check on KERNEL_DS.
335 	 *
336 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
337 	 * state, when the task or mm are switched. This is specifically
338 	 * required to prevent the use of temporary mm.
339 	 */
340 
341 	if (unlikely(in_interrupt() ||
342 		     current->flags & (PF_KTHREAD | PF_EXITING)))
343 		return -EPERM;
344 	if (unlikely(!nmi_uaccess_okay()))
345 		return -EPERM;
346 
347 	return copy_to_user_nofault(unsafe_ptr, src, size);
348 }
349 
350 static const struct bpf_func_proto bpf_probe_write_user_proto = {
351 	.func		= bpf_probe_write_user,
352 	.gpl_only	= true,
353 	.ret_type	= RET_INTEGER,
354 	.arg1_type	= ARG_ANYTHING,
355 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
356 	.arg3_type	= ARG_CONST_SIZE,
357 };
358 
359 #define MAX_TRACE_PRINTK_VARARGS	3
360 #define BPF_TRACE_PRINTK_SIZE		1024
361 
362 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
363 	   u64, arg2, u64, arg3)
364 {
365 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
366 	struct bpf_bprintf_data data = {
367 		.get_bin_args	= true,
368 		.get_buf	= true,
369 	};
370 	int ret;
371 
372 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
373 				  MAX_TRACE_PRINTK_VARARGS, &data);
374 	if (ret < 0)
375 		return ret;
376 
377 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
378 
379 	trace_bpf_trace_printk(data.buf);
380 
381 	bpf_bprintf_cleanup(&data);
382 
383 	return ret;
384 }
385 
386 static const struct bpf_func_proto bpf_trace_printk_proto = {
387 	.func		= bpf_trace_printk,
388 	.gpl_only	= true,
389 	.ret_type	= RET_INTEGER,
390 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
391 	.arg2_type	= ARG_CONST_SIZE,
392 };
393 
394 static void __set_printk_clr_event(struct work_struct *work)
395 {
396 	/*
397 	 * This program might be calling bpf_trace_printk,
398 	 * so enable the associated bpf_trace/bpf_trace_printk event.
399 	 * Repeat this each time as it is possible a user has
400 	 * disabled bpf_trace_printk events.  By loading a program
401 	 * calling bpf_trace_printk() however the user has expressed
402 	 * the intent to see such events.
403 	 */
404 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
405 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
406 }
407 static DECLARE_WORK(set_printk_work, __set_printk_clr_event);
408 
409 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
410 {
411 	schedule_work(&set_printk_work);
412 	return &bpf_trace_printk_proto;
413 }
414 
415 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
416 	   u32, data_len)
417 {
418 	struct bpf_bprintf_data data = {
419 		.get_bin_args	= true,
420 		.get_buf	= true,
421 	};
422 	int ret, num_args;
423 
424 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
425 	    (data_len && !args))
426 		return -EINVAL;
427 	num_args = data_len / 8;
428 
429 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
430 	if (ret < 0)
431 		return ret;
432 
433 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
434 
435 	trace_bpf_trace_printk(data.buf);
436 
437 	bpf_bprintf_cleanup(&data);
438 
439 	return ret;
440 }
441 
442 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
443 	.func		= bpf_trace_vprintk,
444 	.gpl_only	= true,
445 	.ret_type	= RET_INTEGER,
446 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
447 	.arg2_type	= ARG_CONST_SIZE,
448 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
449 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
450 };
451 
452 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
453 {
454 	schedule_work(&set_printk_work);
455 	return &bpf_trace_vprintk_proto;
456 }
457 
458 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
459 	   const void *, args, u32, data_len)
460 {
461 	struct bpf_bprintf_data data = {
462 		.get_bin_args	= true,
463 	};
464 	int err, num_args;
465 
466 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
467 	    (data_len && !args))
468 		return -EINVAL;
469 	num_args = data_len / 8;
470 
471 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
472 	if (err < 0)
473 		return err;
474 
475 	seq_bprintf(m, fmt, data.bin_args);
476 
477 	bpf_bprintf_cleanup(&data);
478 
479 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
480 }
481 
482 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
483 
484 static const struct bpf_func_proto bpf_seq_printf_proto = {
485 	.func		= bpf_seq_printf,
486 	.gpl_only	= true,
487 	.ret_type	= RET_INTEGER,
488 	.arg1_type	= ARG_PTR_TO_BTF_ID,
489 	.arg1_btf_id	= &btf_seq_file_ids[0],
490 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
491 	.arg3_type	= ARG_CONST_SIZE,
492 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
493 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
494 };
495 
496 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
497 {
498 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
499 }
500 
501 static const struct bpf_func_proto bpf_seq_write_proto = {
502 	.func		= bpf_seq_write,
503 	.gpl_only	= true,
504 	.ret_type	= RET_INTEGER,
505 	.arg1_type	= ARG_PTR_TO_BTF_ID,
506 	.arg1_btf_id	= &btf_seq_file_ids[0],
507 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
508 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
509 };
510 
511 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
512 	   u32, btf_ptr_size, u64, flags)
513 {
514 	const struct btf *btf;
515 	s32 btf_id;
516 	int ret;
517 
518 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
519 	if (ret)
520 		return ret;
521 
522 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
523 }
524 
525 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
526 	.func		= bpf_seq_printf_btf,
527 	.gpl_only	= true,
528 	.ret_type	= RET_INTEGER,
529 	.arg1_type	= ARG_PTR_TO_BTF_ID,
530 	.arg1_btf_id	= &btf_seq_file_ids[0],
531 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
532 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
533 	.arg4_type	= ARG_ANYTHING,
534 };
535 
536 static __always_inline int
537 get_map_perf_counter(struct bpf_map *map, u64 flags,
538 		     u64 *value, u64 *enabled, u64 *running)
539 {
540 	struct bpf_array *array = container_of(map, struct bpf_array, map);
541 	unsigned int cpu = smp_processor_id();
542 	u64 index = flags & BPF_F_INDEX_MASK;
543 	struct bpf_event_entry *ee;
544 
545 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
546 		return -EINVAL;
547 	if (index == BPF_F_CURRENT_CPU)
548 		index = cpu;
549 	if (unlikely(index >= array->map.max_entries))
550 		return -E2BIG;
551 
552 	ee = READ_ONCE(array->ptrs[index]);
553 	if (!ee)
554 		return -ENOENT;
555 
556 	return perf_event_read_local(ee->event, value, enabled, running);
557 }
558 
559 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
560 {
561 	u64 value = 0;
562 	int err;
563 
564 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
565 	/*
566 	 * this api is ugly since we miss [-22..-2] range of valid
567 	 * counter values, but that's uapi
568 	 */
569 	if (err)
570 		return err;
571 	return value;
572 }
573 
574 const struct bpf_func_proto bpf_perf_event_read_proto = {
575 	.func		= bpf_perf_event_read,
576 	.gpl_only	= true,
577 	.ret_type	= RET_INTEGER,
578 	.arg1_type	= ARG_CONST_MAP_PTR,
579 	.arg2_type	= ARG_ANYTHING,
580 };
581 
582 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
583 	   struct bpf_perf_event_value *, buf, u32, size)
584 {
585 	int err = -EINVAL;
586 
587 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
588 		goto clear;
589 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
590 				   &buf->running);
591 	if (unlikely(err))
592 		goto clear;
593 	return 0;
594 clear:
595 	memset(buf, 0, size);
596 	return err;
597 }
598 
599 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
600 	.func		= bpf_perf_event_read_value,
601 	.gpl_only	= true,
602 	.ret_type	= RET_INTEGER,
603 	.arg1_type	= ARG_CONST_MAP_PTR,
604 	.arg2_type	= ARG_ANYTHING,
605 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
606 	.arg4_type	= ARG_CONST_SIZE,
607 };
608 
609 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void)
610 {
611 	return &bpf_perf_event_read_value_proto;
612 }
613 
614 static __always_inline u64
615 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
616 			u64 flags, struct perf_raw_record *raw,
617 			struct perf_sample_data *sd)
618 {
619 	struct bpf_array *array = container_of(map, struct bpf_array, map);
620 	unsigned int cpu = smp_processor_id();
621 	u64 index = flags & BPF_F_INDEX_MASK;
622 	struct bpf_event_entry *ee;
623 	struct perf_event *event;
624 
625 	if (index == BPF_F_CURRENT_CPU)
626 		index = cpu;
627 	if (unlikely(index >= array->map.max_entries))
628 		return -E2BIG;
629 
630 	ee = READ_ONCE(array->ptrs[index]);
631 	if (!ee)
632 		return -ENOENT;
633 
634 	event = ee->event;
635 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
636 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
637 		return -EINVAL;
638 
639 	if (unlikely(event->oncpu != cpu))
640 		return -EOPNOTSUPP;
641 
642 	perf_sample_save_raw_data(sd, event, raw);
643 
644 	return perf_event_output(event, sd, regs);
645 }
646 
647 /*
648  * Support executing tracepoints in normal, irq, and nmi context that each call
649  * bpf_perf_event_output
650  */
651 struct bpf_trace_sample_data {
652 	struct perf_sample_data sds[3];
653 };
654 
655 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
656 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
657 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
658 	   u64, flags, void *, data, u64, size)
659 {
660 	struct bpf_trace_sample_data *sds;
661 	struct perf_raw_record raw = {
662 		.frag = {
663 			.size = size,
664 			.data = data,
665 		},
666 	};
667 	struct perf_sample_data *sd;
668 	int nest_level, err;
669 
670 	preempt_disable();
671 	sds = this_cpu_ptr(&bpf_trace_sds);
672 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
673 
674 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
675 		err = -EBUSY;
676 		goto out;
677 	}
678 
679 	sd = &sds->sds[nest_level - 1];
680 
681 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
682 		err = -EINVAL;
683 		goto out;
684 	}
685 
686 	perf_sample_data_init(sd, 0, 0);
687 
688 	err = __bpf_perf_event_output(regs, map, flags, &raw, sd);
689 out:
690 	this_cpu_dec(bpf_trace_nest_level);
691 	preempt_enable();
692 	return err;
693 }
694 
695 static const struct bpf_func_proto bpf_perf_event_output_proto = {
696 	.func		= bpf_perf_event_output,
697 	.gpl_only	= true,
698 	.ret_type	= RET_INTEGER,
699 	.arg1_type	= ARG_PTR_TO_CTX,
700 	.arg2_type	= ARG_CONST_MAP_PTR,
701 	.arg3_type	= ARG_ANYTHING,
702 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
703 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
704 };
705 
706 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
707 struct bpf_nested_pt_regs {
708 	struct pt_regs regs[3];
709 };
710 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
711 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
712 
713 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
714 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
715 {
716 	struct perf_raw_frag frag = {
717 		.copy		= ctx_copy,
718 		.size		= ctx_size,
719 		.data		= ctx,
720 	};
721 	struct perf_raw_record raw = {
722 		.frag = {
723 			{
724 				.next	= ctx_size ? &frag : NULL,
725 			},
726 			.size	= meta_size,
727 			.data	= meta,
728 		},
729 	};
730 	struct perf_sample_data *sd;
731 	struct pt_regs *regs;
732 	int nest_level;
733 	u64 ret;
734 
735 	preempt_disable();
736 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
737 
738 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
739 		ret = -EBUSY;
740 		goto out;
741 	}
742 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
743 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
744 
745 	perf_fetch_caller_regs(regs);
746 	perf_sample_data_init(sd, 0, 0);
747 
748 	ret = __bpf_perf_event_output(regs, map, flags, &raw, sd);
749 out:
750 	this_cpu_dec(bpf_event_output_nest_level);
751 	preempt_enable();
752 	return ret;
753 }
754 
755 BPF_CALL_0(bpf_get_current_task)
756 {
757 	return (long) current;
758 }
759 
760 const struct bpf_func_proto bpf_get_current_task_proto = {
761 	.func		= bpf_get_current_task,
762 	.gpl_only	= true,
763 	.ret_type	= RET_INTEGER,
764 };
765 
766 BPF_CALL_0(bpf_get_current_task_btf)
767 {
768 	return (unsigned long) current;
769 }
770 
771 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
772 	.func		= bpf_get_current_task_btf,
773 	.gpl_only	= true,
774 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
775 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
776 };
777 
778 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
779 {
780 	return (unsigned long) task_pt_regs(task);
781 }
782 
783 BTF_ID_LIST_SINGLE(bpf_task_pt_regs_ids, struct, pt_regs)
784 
785 const struct bpf_func_proto bpf_task_pt_regs_proto = {
786 	.func		= bpf_task_pt_regs,
787 	.gpl_only	= true,
788 	.arg1_type	= ARG_PTR_TO_BTF_ID,
789 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
790 	.ret_type	= RET_PTR_TO_BTF_ID,
791 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
792 };
793 
794 struct send_signal_irq_work {
795 	struct irq_work irq_work;
796 	struct task_struct *task;
797 	u32 sig;
798 	enum pid_type type;
799 	bool has_siginfo;
800 	struct kernel_siginfo info;
801 };
802 
803 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
804 
805 static void do_bpf_send_signal(struct irq_work *entry)
806 {
807 	struct send_signal_irq_work *work;
808 	struct kernel_siginfo *siginfo;
809 
810 	work = container_of(entry, struct send_signal_irq_work, irq_work);
811 	siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
812 
813 	group_send_sig_info(work->sig, siginfo, work->task, work->type);
814 	put_task_struct(work->task);
815 }
816 
817 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
818 {
819 	struct send_signal_irq_work *work = NULL;
820 	struct kernel_siginfo info;
821 	struct kernel_siginfo *siginfo;
822 
823 	if (!task) {
824 		task = current;
825 		siginfo = SEND_SIG_PRIV;
826 	} else {
827 		clear_siginfo(&info);
828 		info.si_signo = sig;
829 		info.si_errno = 0;
830 		info.si_code = SI_KERNEL;
831 		info.si_pid = 0;
832 		info.si_uid = 0;
833 		info.si_value.sival_ptr = (void *)(unsigned long)value;
834 		siginfo = &info;
835 	}
836 
837 	/* Similar to bpf_probe_write_user, task needs to be
838 	 * in a sound condition and kernel memory access be
839 	 * permitted in order to send signal to the current
840 	 * task.
841 	 */
842 	if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
843 		return -EPERM;
844 	if (unlikely(!nmi_uaccess_okay()))
845 		return -EPERM;
846 	/* Task should not be pid=1 to avoid kernel panic. */
847 	if (unlikely(is_global_init(task)))
848 		return -EPERM;
849 
850 	if (preempt_count() != 0 || irqs_disabled()) {
851 		/* Do an early check on signal validity. Otherwise,
852 		 * the error is lost in deferred irq_work.
853 		 */
854 		if (unlikely(!valid_signal(sig)))
855 			return -EINVAL;
856 
857 		work = this_cpu_ptr(&send_signal_work);
858 		if (irq_work_is_busy(&work->irq_work))
859 			return -EBUSY;
860 
861 		/* Add the current task, which is the target of sending signal,
862 		 * to the irq_work. The current task may change when queued
863 		 * irq works get executed.
864 		 */
865 		work->task = get_task_struct(task);
866 		work->has_siginfo = siginfo == &info;
867 		if (work->has_siginfo)
868 			copy_siginfo(&work->info, &info);
869 		work->sig = sig;
870 		work->type = type;
871 		irq_work_queue(&work->irq_work);
872 		return 0;
873 	}
874 
875 	return group_send_sig_info(sig, siginfo, task, type);
876 }
877 
878 BPF_CALL_1(bpf_send_signal, u32, sig)
879 {
880 	return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
881 }
882 
883 const struct bpf_func_proto bpf_send_signal_proto = {
884 	.func		= bpf_send_signal,
885 	.gpl_only	= false,
886 	.ret_type	= RET_INTEGER,
887 	.arg1_type	= ARG_ANYTHING,
888 };
889 
890 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
891 {
892 	return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
893 }
894 
895 const struct bpf_func_proto bpf_send_signal_thread_proto = {
896 	.func		= bpf_send_signal_thread,
897 	.gpl_only	= false,
898 	.ret_type	= RET_INTEGER,
899 	.arg1_type	= ARG_ANYTHING,
900 };
901 
902 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
903 {
904 	struct path copy;
905 	long len;
906 	char *p;
907 
908 	if (!sz)
909 		return 0;
910 
911 	/*
912 	 * The path pointer is verified as trusted and safe to use,
913 	 * but let's double check it's valid anyway to workaround
914 	 * potentially broken verifier.
915 	 */
916 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
917 	if (len < 0)
918 		return len;
919 
920 	p = d_path(&copy, buf, sz);
921 	if (IS_ERR(p)) {
922 		len = PTR_ERR(p);
923 	} else {
924 		len = buf + sz - p;
925 		memmove(buf, p, len);
926 	}
927 
928 	return len;
929 }
930 
931 BTF_SET_START(btf_allowlist_d_path)
932 #ifdef CONFIG_SECURITY
933 BTF_ID(func, security_file_permission)
934 BTF_ID(func, security_inode_getattr)
935 BTF_ID(func, security_file_open)
936 #endif
937 #ifdef CONFIG_SECURITY_PATH
938 BTF_ID(func, security_path_truncate)
939 #endif
940 BTF_ID(func, vfs_truncate)
941 BTF_ID(func, vfs_fallocate)
942 BTF_ID(func, dentry_open)
943 BTF_ID(func, vfs_getattr)
944 BTF_ID(func, filp_close)
945 BTF_SET_END(btf_allowlist_d_path)
946 
947 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
948 {
949 	if (prog->type == BPF_PROG_TYPE_TRACING &&
950 	    prog->expected_attach_type == BPF_TRACE_ITER)
951 		return true;
952 
953 	if (prog->type == BPF_PROG_TYPE_LSM)
954 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
955 
956 	return btf_id_set_contains(&btf_allowlist_d_path,
957 				   prog->aux->attach_btf_id);
958 }
959 
960 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
961 
962 static const struct bpf_func_proto bpf_d_path_proto = {
963 	.func		= bpf_d_path,
964 	.gpl_only	= false,
965 	.ret_type	= RET_INTEGER,
966 	.arg1_type	= ARG_PTR_TO_BTF_ID,
967 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
968 	.arg2_type	= ARG_PTR_TO_MEM,
969 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
970 	.allowed	= bpf_d_path_allowed,
971 };
972 
973 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
974 			 BTF_F_PTR_RAW | BTF_F_ZERO)
975 
976 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
977 				  u64 flags, const struct btf **btf,
978 				  s32 *btf_id)
979 {
980 	const struct btf_type *t;
981 
982 	if (unlikely(flags & ~(BTF_F_ALL)))
983 		return -EINVAL;
984 
985 	if (btf_ptr_size != sizeof(struct btf_ptr))
986 		return -EINVAL;
987 
988 	*btf = bpf_get_btf_vmlinux();
989 
990 	if (IS_ERR_OR_NULL(*btf))
991 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
992 
993 	if (ptr->type_id > 0)
994 		*btf_id = ptr->type_id;
995 	else
996 		return -EINVAL;
997 
998 	if (*btf_id > 0)
999 		t = btf_type_by_id(*btf, *btf_id);
1000 	if (*btf_id <= 0 || !t)
1001 		return -ENOENT;
1002 
1003 	return 0;
1004 }
1005 
1006 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1007 	   u32, btf_ptr_size, u64, flags)
1008 {
1009 	const struct btf *btf;
1010 	s32 btf_id;
1011 	int ret;
1012 
1013 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1014 	if (ret)
1015 		return ret;
1016 
1017 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1018 				      flags);
1019 }
1020 
1021 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1022 	.func		= bpf_snprintf_btf,
1023 	.gpl_only	= false,
1024 	.ret_type	= RET_INTEGER,
1025 	.arg1_type	= ARG_PTR_TO_MEM,
1026 	.arg2_type	= ARG_CONST_SIZE,
1027 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1028 	.arg4_type	= ARG_CONST_SIZE,
1029 	.arg5_type	= ARG_ANYTHING,
1030 };
1031 
1032 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1033 {
1034 	/* This helper call is inlined by verifier. */
1035 	return ((u64 *)ctx)[-2];
1036 }
1037 
1038 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1039 	.func		= bpf_get_func_ip_tracing,
1040 	.gpl_only	= true,
1041 	.ret_type	= RET_INTEGER,
1042 	.arg1_type	= ARG_PTR_TO_CTX,
1043 };
1044 
1045 static inline unsigned long get_entry_ip(unsigned long fentry_ip)
1046 {
1047 #ifdef CONFIG_X86_KERNEL_IBT
1048 	if (is_endbr((void *)(fentry_ip - ENDBR_INSN_SIZE)))
1049 		fentry_ip -= ENDBR_INSN_SIZE;
1050 #endif
1051 	return fentry_ip;
1052 }
1053 
1054 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1055 {
1056 	struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1057 	struct kprobe *kp;
1058 
1059 #ifdef CONFIG_UPROBES
1060 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1061 	if (run_ctx->is_uprobe)
1062 		return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1063 #endif
1064 
1065 	kp = kprobe_running();
1066 
1067 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1068 		return 0;
1069 
1070 	return get_entry_ip((uintptr_t)kp->addr);
1071 }
1072 
1073 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1074 	.func		= bpf_get_func_ip_kprobe,
1075 	.gpl_only	= true,
1076 	.ret_type	= RET_INTEGER,
1077 	.arg1_type	= ARG_PTR_TO_CTX,
1078 };
1079 
1080 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1081 {
1082 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1083 }
1084 
1085 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1086 	.func		= bpf_get_func_ip_kprobe_multi,
1087 	.gpl_only	= false,
1088 	.ret_type	= RET_INTEGER,
1089 	.arg1_type	= ARG_PTR_TO_CTX,
1090 };
1091 
1092 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1093 {
1094 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1095 }
1096 
1097 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1098 	.func		= bpf_get_attach_cookie_kprobe_multi,
1099 	.gpl_only	= false,
1100 	.ret_type	= RET_INTEGER,
1101 	.arg1_type	= ARG_PTR_TO_CTX,
1102 };
1103 
1104 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1105 {
1106 	return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1107 }
1108 
1109 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1110 	.func		= bpf_get_func_ip_uprobe_multi,
1111 	.gpl_only	= false,
1112 	.ret_type	= RET_INTEGER,
1113 	.arg1_type	= ARG_PTR_TO_CTX,
1114 };
1115 
1116 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1117 {
1118 	return bpf_uprobe_multi_cookie(current->bpf_ctx);
1119 }
1120 
1121 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1122 	.func		= bpf_get_attach_cookie_uprobe_multi,
1123 	.gpl_only	= false,
1124 	.ret_type	= RET_INTEGER,
1125 	.arg1_type	= ARG_PTR_TO_CTX,
1126 };
1127 
1128 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1129 {
1130 	struct bpf_trace_run_ctx *run_ctx;
1131 
1132 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1133 	return run_ctx->bpf_cookie;
1134 }
1135 
1136 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1137 	.func		= bpf_get_attach_cookie_trace,
1138 	.gpl_only	= false,
1139 	.ret_type	= RET_INTEGER,
1140 	.arg1_type	= ARG_PTR_TO_CTX,
1141 };
1142 
1143 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1144 {
1145 	return ctx->event->bpf_cookie;
1146 }
1147 
1148 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1149 	.func		= bpf_get_attach_cookie_pe,
1150 	.gpl_only	= false,
1151 	.ret_type	= RET_INTEGER,
1152 	.arg1_type	= ARG_PTR_TO_CTX,
1153 };
1154 
1155 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1156 {
1157 	struct bpf_trace_run_ctx *run_ctx;
1158 
1159 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1160 	return run_ctx->bpf_cookie;
1161 }
1162 
1163 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1164 	.func		= bpf_get_attach_cookie_tracing,
1165 	.gpl_only	= false,
1166 	.ret_type	= RET_INTEGER,
1167 	.arg1_type	= ARG_PTR_TO_CTX,
1168 };
1169 
1170 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1171 {
1172 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1173 	u32 entry_cnt = size / br_entry_size;
1174 
1175 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1176 
1177 	if (unlikely(flags))
1178 		return -EINVAL;
1179 
1180 	if (!entry_cnt)
1181 		return -ENOENT;
1182 
1183 	return entry_cnt * br_entry_size;
1184 }
1185 
1186 const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1187 	.func		= bpf_get_branch_snapshot,
1188 	.gpl_only	= true,
1189 	.ret_type	= RET_INTEGER,
1190 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1191 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1192 };
1193 
1194 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1195 {
1196 	/* This helper call is inlined by verifier. */
1197 	u64 nr_args = ((u64 *)ctx)[-1];
1198 
1199 	if ((u64) n >= nr_args)
1200 		return -EINVAL;
1201 	*value = ((u64 *)ctx)[n];
1202 	return 0;
1203 }
1204 
1205 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1206 	.func		= get_func_arg,
1207 	.ret_type	= RET_INTEGER,
1208 	.arg1_type	= ARG_PTR_TO_CTX,
1209 	.arg2_type	= ARG_ANYTHING,
1210 	.arg3_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1211 	.arg3_size	= sizeof(u64),
1212 };
1213 
1214 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1215 {
1216 	/* This helper call is inlined by verifier. */
1217 	u64 nr_args = ((u64 *)ctx)[-1];
1218 
1219 	*value = ((u64 *)ctx)[nr_args];
1220 	return 0;
1221 }
1222 
1223 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1224 	.func		= get_func_ret,
1225 	.ret_type	= RET_INTEGER,
1226 	.arg1_type	= ARG_PTR_TO_CTX,
1227 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1228 	.arg2_size	= sizeof(u64),
1229 };
1230 
1231 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1232 {
1233 	/* This helper call is inlined by verifier. */
1234 	return ((u64 *)ctx)[-1];
1235 }
1236 
1237 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1238 	.func		= get_func_arg_cnt,
1239 	.ret_type	= RET_INTEGER,
1240 	.arg1_type	= ARG_PTR_TO_CTX,
1241 };
1242 
1243 static const struct bpf_func_proto *
1244 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1245 {
1246 	const struct bpf_func_proto *func_proto;
1247 
1248 	switch (func_id) {
1249 	case BPF_FUNC_get_smp_processor_id:
1250 		return &bpf_get_smp_processor_id_proto;
1251 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1252 	case BPF_FUNC_probe_read:
1253 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1254 		       NULL : &bpf_probe_read_compat_proto;
1255 	case BPF_FUNC_probe_read_str:
1256 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1257 		       NULL : &bpf_probe_read_compat_str_proto;
1258 #endif
1259 	case BPF_FUNC_get_func_ip:
1260 		return &bpf_get_func_ip_proto_tracing;
1261 	default:
1262 		break;
1263 	}
1264 
1265 	func_proto = bpf_base_func_proto(func_id, prog);
1266 	if (func_proto)
1267 		return func_proto;
1268 
1269 	if (!bpf_token_capable(prog->aux->token, CAP_SYS_ADMIN))
1270 		return NULL;
1271 
1272 	switch (func_id) {
1273 	case BPF_FUNC_probe_write_user:
1274 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1275 		       NULL : &bpf_probe_write_user_proto;
1276 	default:
1277 		return NULL;
1278 	}
1279 }
1280 
1281 static bool is_kprobe_multi(const struct bpf_prog *prog)
1282 {
1283 	return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
1284 	       prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1285 }
1286 
1287 static inline bool is_kprobe_session(const struct bpf_prog *prog)
1288 {
1289 	return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1290 }
1291 
1292 static inline bool is_uprobe_multi(const struct bpf_prog *prog)
1293 {
1294 	return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI ||
1295 	       prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1296 }
1297 
1298 static inline bool is_uprobe_session(const struct bpf_prog *prog)
1299 {
1300 	return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1301 }
1302 
1303 static const struct bpf_func_proto *
1304 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1305 {
1306 	switch (func_id) {
1307 	case BPF_FUNC_perf_event_output:
1308 		return &bpf_perf_event_output_proto;
1309 	case BPF_FUNC_get_stackid:
1310 		return &bpf_get_stackid_proto;
1311 	case BPF_FUNC_get_stack:
1312 		return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto;
1313 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1314 	case BPF_FUNC_override_return:
1315 		return &bpf_override_return_proto;
1316 #endif
1317 	case BPF_FUNC_get_func_ip:
1318 		if (is_kprobe_multi(prog))
1319 			return &bpf_get_func_ip_proto_kprobe_multi;
1320 		if (is_uprobe_multi(prog))
1321 			return &bpf_get_func_ip_proto_uprobe_multi;
1322 		return &bpf_get_func_ip_proto_kprobe;
1323 	case BPF_FUNC_get_attach_cookie:
1324 		if (is_kprobe_multi(prog))
1325 			return &bpf_get_attach_cookie_proto_kmulti;
1326 		if (is_uprobe_multi(prog))
1327 			return &bpf_get_attach_cookie_proto_umulti;
1328 		return &bpf_get_attach_cookie_proto_trace;
1329 	default:
1330 		return bpf_tracing_func_proto(func_id, prog);
1331 	}
1332 }
1333 
1334 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1335 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1336 					const struct bpf_prog *prog,
1337 					struct bpf_insn_access_aux *info)
1338 {
1339 	if (off < 0 || off >= sizeof(struct pt_regs))
1340 		return false;
1341 	if (type != BPF_READ)
1342 		return false;
1343 	if (off % size != 0)
1344 		return false;
1345 	/*
1346 	 * Assertion for 32 bit to make sure last 8 byte access
1347 	 * (BPF_DW) to the last 4 byte member is disallowed.
1348 	 */
1349 	if (off + size > sizeof(struct pt_regs))
1350 		return false;
1351 
1352 	return true;
1353 }
1354 
1355 const struct bpf_verifier_ops kprobe_verifier_ops = {
1356 	.get_func_proto  = kprobe_prog_func_proto,
1357 	.is_valid_access = kprobe_prog_is_valid_access,
1358 };
1359 
1360 const struct bpf_prog_ops kprobe_prog_ops = {
1361 };
1362 
1363 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1364 	   u64, flags, void *, data, u64, size)
1365 {
1366 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1367 
1368 	/*
1369 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1370 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1371 	 * from there and call the same bpf_perf_event_output() helper inline.
1372 	 */
1373 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1374 }
1375 
1376 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1377 	.func		= bpf_perf_event_output_tp,
1378 	.gpl_only	= true,
1379 	.ret_type	= RET_INTEGER,
1380 	.arg1_type	= ARG_PTR_TO_CTX,
1381 	.arg2_type	= ARG_CONST_MAP_PTR,
1382 	.arg3_type	= ARG_ANYTHING,
1383 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1384 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1385 };
1386 
1387 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1388 	   u64, flags)
1389 {
1390 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1391 
1392 	/*
1393 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1394 	 * the other helper's function body cannot be inlined due to being
1395 	 * external, thus we need to call raw helper function.
1396 	 */
1397 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1398 			       flags, 0, 0);
1399 }
1400 
1401 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1402 	.func		= bpf_get_stackid_tp,
1403 	.gpl_only	= true,
1404 	.ret_type	= RET_INTEGER,
1405 	.arg1_type	= ARG_PTR_TO_CTX,
1406 	.arg2_type	= ARG_CONST_MAP_PTR,
1407 	.arg3_type	= ARG_ANYTHING,
1408 };
1409 
1410 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1411 	   u64, flags)
1412 {
1413 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1414 
1415 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1416 			     (unsigned long) size, flags, 0);
1417 }
1418 
1419 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1420 	.func		= bpf_get_stack_tp,
1421 	.gpl_only	= true,
1422 	.ret_type	= RET_INTEGER,
1423 	.arg1_type	= ARG_PTR_TO_CTX,
1424 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1425 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1426 	.arg4_type	= ARG_ANYTHING,
1427 };
1428 
1429 static const struct bpf_func_proto *
1430 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1431 {
1432 	switch (func_id) {
1433 	case BPF_FUNC_perf_event_output:
1434 		return &bpf_perf_event_output_proto_tp;
1435 	case BPF_FUNC_get_stackid:
1436 		return &bpf_get_stackid_proto_tp;
1437 	case BPF_FUNC_get_stack:
1438 		return &bpf_get_stack_proto_tp;
1439 	case BPF_FUNC_get_attach_cookie:
1440 		return &bpf_get_attach_cookie_proto_trace;
1441 	default:
1442 		return bpf_tracing_func_proto(func_id, prog);
1443 	}
1444 }
1445 
1446 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1447 				    const struct bpf_prog *prog,
1448 				    struct bpf_insn_access_aux *info)
1449 {
1450 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1451 		return false;
1452 	if (type != BPF_READ)
1453 		return false;
1454 	if (off % size != 0)
1455 		return false;
1456 
1457 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1458 	return true;
1459 }
1460 
1461 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1462 	.get_func_proto  = tp_prog_func_proto,
1463 	.is_valid_access = tp_prog_is_valid_access,
1464 };
1465 
1466 const struct bpf_prog_ops tracepoint_prog_ops = {
1467 };
1468 
1469 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1470 	   struct bpf_perf_event_value *, buf, u32, size)
1471 {
1472 	int err = -EINVAL;
1473 
1474 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1475 		goto clear;
1476 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1477 				    &buf->running);
1478 	if (unlikely(err))
1479 		goto clear;
1480 	return 0;
1481 clear:
1482 	memset(buf, 0, size);
1483 	return err;
1484 }
1485 
1486 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1487          .func           = bpf_perf_prog_read_value,
1488          .gpl_only       = true,
1489          .ret_type       = RET_INTEGER,
1490          .arg1_type      = ARG_PTR_TO_CTX,
1491          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1492          .arg3_type      = ARG_CONST_SIZE,
1493 };
1494 
1495 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1496 	   void *, buf, u32, size, u64, flags)
1497 {
1498 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1499 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1500 	u32 to_copy;
1501 
1502 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1503 		return -EINVAL;
1504 
1505 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1506 		return -ENOENT;
1507 
1508 	if (unlikely(!br_stack))
1509 		return -ENOENT;
1510 
1511 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1512 		return br_stack->nr * br_entry_size;
1513 
1514 	if (!buf || (size % br_entry_size != 0))
1515 		return -EINVAL;
1516 
1517 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1518 	memcpy(buf, br_stack->entries, to_copy);
1519 
1520 	return to_copy;
1521 }
1522 
1523 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1524 	.func           = bpf_read_branch_records,
1525 	.gpl_only       = true,
1526 	.ret_type       = RET_INTEGER,
1527 	.arg1_type      = ARG_PTR_TO_CTX,
1528 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1529 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1530 	.arg4_type      = ARG_ANYTHING,
1531 };
1532 
1533 static const struct bpf_func_proto *
1534 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1535 {
1536 	switch (func_id) {
1537 	case BPF_FUNC_perf_event_output:
1538 		return &bpf_perf_event_output_proto_tp;
1539 	case BPF_FUNC_get_stackid:
1540 		return &bpf_get_stackid_proto_pe;
1541 	case BPF_FUNC_get_stack:
1542 		return &bpf_get_stack_proto_pe;
1543 	case BPF_FUNC_perf_prog_read_value:
1544 		return &bpf_perf_prog_read_value_proto;
1545 	case BPF_FUNC_read_branch_records:
1546 		return &bpf_read_branch_records_proto;
1547 	case BPF_FUNC_get_attach_cookie:
1548 		return &bpf_get_attach_cookie_proto_pe;
1549 	default:
1550 		return bpf_tracing_func_proto(func_id, prog);
1551 	}
1552 }
1553 
1554 /*
1555  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1556  * to avoid potential recursive reuse issue when/if tracepoints are added
1557  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1558  *
1559  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1560  * in normal, irq, and nmi context.
1561  */
1562 struct bpf_raw_tp_regs {
1563 	struct pt_regs regs[3];
1564 };
1565 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1566 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1567 static struct pt_regs *get_bpf_raw_tp_regs(void)
1568 {
1569 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1570 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1571 
1572 	if (nest_level > ARRAY_SIZE(tp_regs->regs)) {
1573 		this_cpu_dec(bpf_raw_tp_nest_level);
1574 		return ERR_PTR(-EBUSY);
1575 	}
1576 
1577 	return &tp_regs->regs[nest_level - 1];
1578 }
1579 
1580 static void put_bpf_raw_tp_regs(void)
1581 {
1582 	this_cpu_dec(bpf_raw_tp_nest_level);
1583 }
1584 
1585 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1586 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1587 {
1588 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1589 	int ret;
1590 
1591 	if (IS_ERR(regs))
1592 		return PTR_ERR(regs);
1593 
1594 	perf_fetch_caller_regs(regs);
1595 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1596 
1597 	put_bpf_raw_tp_regs();
1598 	return ret;
1599 }
1600 
1601 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1602 	.func		= bpf_perf_event_output_raw_tp,
1603 	.gpl_only	= true,
1604 	.ret_type	= RET_INTEGER,
1605 	.arg1_type	= ARG_PTR_TO_CTX,
1606 	.arg2_type	= ARG_CONST_MAP_PTR,
1607 	.arg3_type	= ARG_ANYTHING,
1608 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1609 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1610 };
1611 
1612 extern const struct bpf_func_proto bpf_skb_output_proto;
1613 extern const struct bpf_func_proto bpf_xdp_output_proto;
1614 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1615 
1616 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1617 	   struct bpf_map *, map, u64, flags)
1618 {
1619 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1620 	int ret;
1621 
1622 	if (IS_ERR(regs))
1623 		return PTR_ERR(regs);
1624 
1625 	perf_fetch_caller_regs(regs);
1626 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1627 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1628 			      flags, 0, 0);
1629 	put_bpf_raw_tp_regs();
1630 	return ret;
1631 }
1632 
1633 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1634 	.func		= bpf_get_stackid_raw_tp,
1635 	.gpl_only	= true,
1636 	.ret_type	= RET_INTEGER,
1637 	.arg1_type	= ARG_PTR_TO_CTX,
1638 	.arg2_type	= ARG_CONST_MAP_PTR,
1639 	.arg3_type	= ARG_ANYTHING,
1640 };
1641 
1642 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1643 	   void *, buf, u32, size, u64, flags)
1644 {
1645 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1646 	int ret;
1647 
1648 	if (IS_ERR(regs))
1649 		return PTR_ERR(regs);
1650 
1651 	perf_fetch_caller_regs(regs);
1652 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1653 			    (unsigned long) size, flags, 0);
1654 	put_bpf_raw_tp_regs();
1655 	return ret;
1656 }
1657 
1658 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1659 	.func		= bpf_get_stack_raw_tp,
1660 	.gpl_only	= true,
1661 	.ret_type	= RET_INTEGER,
1662 	.arg1_type	= ARG_PTR_TO_CTX,
1663 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1664 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1665 	.arg4_type	= ARG_ANYTHING,
1666 };
1667 
1668 static const struct bpf_func_proto *
1669 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1670 {
1671 	switch (func_id) {
1672 	case BPF_FUNC_perf_event_output:
1673 		return &bpf_perf_event_output_proto_raw_tp;
1674 	case BPF_FUNC_get_stackid:
1675 		return &bpf_get_stackid_proto_raw_tp;
1676 	case BPF_FUNC_get_stack:
1677 		return &bpf_get_stack_proto_raw_tp;
1678 	case BPF_FUNC_get_attach_cookie:
1679 		return &bpf_get_attach_cookie_proto_tracing;
1680 	default:
1681 		return bpf_tracing_func_proto(func_id, prog);
1682 	}
1683 }
1684 
1685 const struct bpf_func_proto *
1686 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1687 {
1688 	const struct bpf_func_proto *fn;
1689 
1690 	switch (func_id) {
1691 #ifdef CONFIG_NET
1692 	case BPF_FUNC_skb_output:
1693 		return &bpf_skb_output_proto;
1694 	case BPF_FUNC_xdp_output:
1695 		return &bpf_xdp_output_proto;
1696 	case BPF_FUNC_skc_to_tcp6_sock:
1697 		return &bpf_skc_to_tcp6_sock_proto;
1698 	case BPF_FUNC_skc_to_tcp_sock:
1699 		return &bpf_skc_to_tcp_sock_proto;
1700 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1701 		return &bpf_skc_to_tcp_timewait_sock_proto;
1702 	case BPF_FUNC_skc_to_tcp_request_sock:
1703 		return &bpf_skc_to_tcp_request_sock_proto;
1704 	case BPF_FUNC_skc_to_udp6_sock:
1705 		return &bpf_skc_to_udp6_sock_proto;
1706 	case BPF_FUNC_skc_to_unix_sock:
1707 		return &bpf_skc_to_unix_sock_proto;
1708 	case BPF_FUNC_skc_to_mptcp_sock:
1709 		return &bpf_skc_to_mptcp_sock_proto;
1710 	case BPF_FUNC_sk_storage_get:
1711 		return &bpf_sk_storage_get_tracing_proto;
1712 	case BPF_FUNC_sk_storage_delete:
1713 		return &bpf_sk_storage_delete_tracing_proto;
1714 	case BPF_FUNC_sock_from_file:
1715 		return &bpf_sock_from_file_proto;
1716 	case BPF_FUNC_get_socket_cookie:
1717 		return &bpf_get_socket_ptr_cookie_proto;
1718 	case BPF_FUNC_xdp_get_buff_len:
1719 		return &bpf_xdp_get_buff_len_trace_proto;
1720 #endif
1721 	case BPF_FUNC_seq_printf:
1722 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1723 		       &bpf_seq_printf_proto :
1724 		       NULL;
1725 	case BPF_FUNC_seq_write:
1726 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1727 		       &bpf_seq_write_proto :
1728 		       NULL;
1729 	case BPF_FUNC_seq_printf_btf:
1730 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1731 		       &bpf_seq_printf_btf_proto :
1732 		       NULL;
1733 	case BPF_FUNC_d_path:
1734 		return &bpf_d_path_proto;
1735 	case BPF_FUNC_get_func_arg:
1736 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1737 	case BPF_FUNC_get_func_ret:
1738 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1739 	case BPF_FUNC_get_func_arg_cnt:
1740 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1741 	case BPF_FUNC_get_attach_cookie:
1742 		if (prog->type == BPF_PROG_TYPE_TRACING &&
1743 		    prog->expected_attach_type == BPF_TRACE_RAW_TP)
1744 			return &bpf_get_attach_cookie_proto_tracing;
1745 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1746 	default:
1747 		fn = raw_tp_prog_func_proto(func_id, prog);
1748 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1749 			fn = bpf_iter_get_func_proto(func_id, prog);
1750 		return fn;
1751 	}
1752 }
1753 
1754 static bool raw_tp_prog_is_valid_access(int off, int size,
1755 					enum bpf_access_type type,
1756 					const struct bpf_prog *prog,
1757 					struct bpf_insn_access_aux *info)
1758 {
1759 	return bpf_tracing_ctx_access(off, size, type);
1760 }
1761 
1762 static bool tracing_prog_is_valid_access(int off, int size,
1763 					 enum bpf_access_type type,
1764 					 const struct bpf_prog *prog,
1765 					 struct bpf_insn_access_aux *info)
1766 {
1767 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1768 }
1769 
1770 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1771 				     const union bpf_attr *kattr,
1772 				     union bpf_attr __user *uattr)
1773 {
1774 	return -ENOTSUPP;
1775 }
1776 
1777 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1778 	.get_func_proto  = raw_tp_prog_func_proto,
1779 	.is_valid_access = raw_tp_prog_is_valid_access,
1780 };
1781 
1782 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1783 #ifdef CONFIG_NET
1784 	.test_run = bpf_prog_test_run_raw_tp,
1785 #endif
1786 };
1787 
1788 const struct bpf_verifier_ops tracing_verifier_ops = {
1789 	.get_func_proto  = tracing_prog_func_proto,
1790 	.is_valid_access = tracing_prog_is_valid_access,
1791 };
1792 
1793 const struct bpf_prog_ops tracing_prog_ops = {
1794 	.test_run = bpf_prog_test_run_tracing,
1795 };
1796 
1797 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1798 						 enum bpf_access_type type,
1799 						 const struct bpf_prog *prog,
1800 						 struct bpf_insn_access_aux *info)
1801 {
1802 	if (off == 0) {
1803 		if (size != sizeof(u64) || type != BPF_READ)
1804 			return false;
1805 		info->reg_type = PTR_TO_TP_BUFFER;
1806 	}
1807 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1808 }
1809 
1810 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1811 	.get_func_proto  = raw_tp_prog_func_proto,
1812 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1813 };
1814 
1815 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1816 };
1817 
1818 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1819 				    const struct bpf_prog *prog,
1820 				    struct bpf_insn_access_aux *info)
1821 {
1822 	const int size_u64 = sizeof(u64);
1823 
1824 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1825 		return false;
1826 	if (type != BPF_READ)
1827 		return false;
1828 	if (off % size != 0) {
1829 		if (sizeof(unsigned long) != 4)
1830 			return false;
1831 		if (size != 8)
1832 			return false;
1833 		if (off % size != 4)
1834 			return false;
1835 	}
1836 
1837 	switch (off) {
1838 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1839 		bpf_ctx_record_field_size(info, size_u64);
1840 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1841 			return false;
1842 		break;
1843 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1844 		bpf_ctx_record_field_size(info, size_u64);
1845 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1846 			return false;
1847 		break;
1848 	default:
1849 		if (size != sizeof(long))
1850 			return false;
1851 	}
1852 
1853 	return true;
1854 }
1855 
1856 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1857 				      const struct bpf_insn *si,
1858 				      struct bpf_insn *insn_buf,
1859 				      struct bpf_prog *prog, u32 *target_size)
1860 {
1861 	struct bpf_insn *insn = insn_buf;
1862 
1863 	switch (si->off) {
1864 	case offsetof(struct bpf_perf_event_data, sample_period):
1865 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1866 						       data), si->dst_reg, si->src_reg,
1867 				      offsetof(struct bpf_perf_event_data_kern, data));
1868 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1869 				      bpf_target_off(struct perf_sample_data, period, 8,
1870 						     target_size));
1871 		break;
1872 	case offsetof(struct bpf_perf_event_data, addr):
1873 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1874 						       data), si->dst_reg, si->src_reg,
1875 				      offsetof(struct bpf_perf_event_data_kern, data));
1876 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1877 				      bpf_target_off(struct perf_sample_data, addr, 8,
1878 						     target_size));
1879 		break;
1880 	default:
1881 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1882 						       regs), si->dst_reg, si->src_reg,
1883 				      offsetof(struct bpf_perf_event_data_kern, regs));
1884 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1885 				      si->off);
1886 		break;
1887 	}
1888 
1889 	return insn - insn_buf;
1890 }
1891 
1892 const struct bpf_verifier_ops perf_event_verifier_ops = {
1893 	.get_func_proto		= pe_prog_func_proto,
1894 	.is_valid_access	= pe_prog_is_valid_access,
1895 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1896 };
1897 
1898 const struct bpf_prog_ops perf_event_prog_ops = {
1899 };
1900 
1901 static DEFINE_MUTEX(bpf_event_mutex);
1902 
1903 #define BPF_TRACE_MAX_PROGS 64
1904 
1905 int perf_event_attach_bpf_prog(struct perf_event *event,
1906 			       struct bpf_prog *prog,
1907 			       u64 bpf_cookie)
1908 {
1909 	struct bpf_prog_array *old_array;
1910 	struct bpf_prog_array *new_array;
1911 	int ret = -EEXIST;
1912 
1913 	/*
1914 	 * Kprobe override only works if they are on the function entry,
1915 	 * and only if they are on the opt-in list.
1916 	 */
1917 	if (prog->kprobe_override &&
1918 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1919 	     !trace_kprobe_error_injectable(event->tp_event)))
1920 		return -EINVAL;
1921 
1922 	mutex_lock(&bpf_event_mutex);
1923 
1924 	if (event->prog)
1925 		goto unlock;
1926 
1927 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1928 	if (old_array &&
1929 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1930 		ret = -E2BIG;
1931 		goto unlock;
1932 	}
1933 
1934 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
1935 	if (ret < 0)
1936 		goto unlock;
1937 
1938 	/* set the new array to event->tp_event and set event->prog */
1939 	event->prog = prog;
1940 	event->bpf_cookie = bpf_cookie;
1941 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1942 	bpf_prog_array_free_sleepable(old_array);
1943 
1944 unlock:
1945 	mutex_unlock(&bpf_event_mutex);
1946 	return ret;
1947 }
1948 
1949 void perf_event_detach_bpf_prog(struct perf_event *event)
1950 {
1951 	struct bpf_prog_array *old_array;
1952 	struct bpf_prog_array *new_array;
1953 	struct bpf_prog *prog = NULL;
1954 	int ret;
1955 
1956 	mutex_lock(&bpf_event_mutex);
1957 
1958 	if (!event->prog)
1959 		goto unlock;
1960 
1961 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1962 	if (!old_array)
1963 		goto put;
1964 
1965 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
1966 	if (ret < 0) {
1967 		bpf_prog_array_delete_safe(old_array, event->prog);
1968 	} else {
1969 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1970 		bpf_prog_array_free_sleepable(old_array);
1971 	}
1972 
1973 put:
1974 	prog = event->prog;
1975 	event->prog = NULL;
1976 
1977 unlock:
1978 	mutex_unlock(&bpf_event_mutex);
1979 
1980 	if (prog) {
1981 		/*
1982 		 * It could be that the bpf_prog is not sleepable (and will be freed
1983 		 * via normal RCU), but is called from a point that supports sleepable
1984 		 * programs and uses tasks-trace-RCU.
1985 		 */
1986 		synchronize_rcu_tasks_trace();
1987 
1988 		bpf_prog_put(prog);
1989 	}
1990 }
1991 
1992 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1993 {
1994 	struct perf_event_query_bpf __user *uquery = info;
1995 	struct perf_event_query_bpf query = {};
1996 	struct bpf_prog_array *progs;
1997 	u32 *ids, prog_cnt, ids_len;
1998 	int ret;
1999 
2000 	if (!perfmon_capable())
2001 		return -EPERM;
2002 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2003 		return -EINVAL;
2004 	if (copy_from_user(&query, uquery, sizeof(query)))
2005 		return -EFAULT;
2006 
2007 	ids_len = query.ids_len;
2008 	if (ids_len > BPF_TRACE_MAX_PROGS)
2009 		return -E2BIG;
2010 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2011 	if (!ids)
2012 		return -ENOMEM;
2013 	/*
2014 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2015 	 * is required when user only wants to check for uquery->prog_cnt.
2016 	 * There is no need to check for it since the case is handled
2017 	 * gracefully in bpf_prog_array_copy_info.
2018 	 */
2019 
2020 	mutex_lock(&bpf_event_mutex);
2021 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2022 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2023 	mutex_unlock(&bpf_event_mutex);
2024 
2025 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2026 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2027 		ret = -EFAULT;
2028 
2029 	kfree(ids);
2030 	return ret;
2031 }
2032 
2033 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2034 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2035 
2036 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2037 {
2038 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2039 
2040 	for (; btp < __stop__bpf_raw_tp; btp++) {
2041 		if (!strcmp(btp->tp->name, name))
2042 			return btp;
2043 	}
2044 
2045 	return bpf_get_raw_tracepoint_module(name);
2046 }
2047 
2048 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2049 {
2050 	struct module *mod;
2051 
2052 	guard(rcu)();
2053 	mod = __module_address((unsigned long)btp);
2054 	module_put(mod);
2055 }
2056 
2057 static __always_inline
2058 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
2059 {
2060 	struct bpf_prog *prog = link->link.prog;
2061 	struct bpf_run_ctx *old_run_ctx;
2062 	struct bpf_trace_run_ctx run_ctx;
2063 
2064 	cant_sleep();
2065 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2066 		bpf_prog_inc_misses_counter(prog);
2067 		goto out;
2068 	}
2069 
2070 	run_ctx.bpf_cookie = link->cookie;
2071 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2072 
2073 	rcu_read_lock();
2074 	(void) bpf_prog_run(prog, args);
2075 	rcu_read_unlock();
2076 
2077 	bpf_reset_run_ctx(old_run_ctx);
2078 out:
2079 	this_cpu_dec(*(prog->active));
2080 }
2081 
2082 #define UNPACK(...)			__VA_ARGS__
2083 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2084 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2085 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2086 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2087 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2088 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2089 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2090 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2091 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2092 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2093 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2094 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2095 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2096 
2097 #define SARG(X)		u64 arg##X
2098 #define COPY(X)		args[X] = arg##X
2099 
2100 #define __DL_COM	(,)
2101 #define __DL_SEM	(;)
2102 
2103 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2104 
2105 #define BPF_TRACE_DEFN_x(x)						\
2106 	void bpf_trace_run##x(struct bpf_raw_tp_link *link,		\
2107 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2108 	{								\
2109 		u64 args[x];						\
2110 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2111 		__bpf_trace_run(link, args);				\
2112 	}								\
2113 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2114 BPF_TRACE_DEFN_x(1);
2115 BPF_TRACE_DEFN_x(2);
2116 BPF_TRACE_DEFN_x(3);
2117 BPF_TRACE_DEFN_x(4);
2118 BPF_TRACE_DEFN_x(5);
2119 BPF_TRACE_DEFN_x(6);
2120 BPF_TRACE_DEFN_x(7);
2121 BPF_TRACE_DEFN_x(8);
2122 BPF_TRACE_DEFN_x(9);
2123 BPF_TRACE_DEFN_x(10);
2124 BPF_TRACE_DEFN_x(11);
2125 BPF_TRACE_DEFN_x(12);
2126 
2127 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2128 {
2129 	struct tracepoint *tp = btp->tp;
2130 	struct bpf_prog *prog = link->link.prog;
2131 
2132 	/*
2133 	 * check that program doesn't access arguments beyond what's
2134 	 * available in this tracepoint
2135 	 */
2136 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2137 		return -EINVAL;
2138 
2139 	if (prog->aux->max_tp_access > btp->writable_size)
2140 		return -EINVAL;
2141 
2142 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
2143 }
2144 
2145 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2146 {
2147 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
2148 }
2149 
2150 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2151 			    u32 *fd_type, const char **buf,
2152 			    u64 *probe_offset, u64 *probe_addr,
2153 			    unsigned long *missed)
2154 {
2155 	bool is_tracepoint, is_syscall_tp;
2156 	struct bpf_prog *prog;
2157 	int flags, err = 0;
2158 
2159 	prog = event->prog;
2160 	if (!prog)
2161 		return -ENOENT;
2162 
2163 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2164 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2165 		return -EOPNOTSUPP;
2166 
2167 	*prog_id = prog->aux->id;
2168 	flags = event->tp_event->flags;
2169 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2170 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2171 
2172 	if (is_tracepoint || is_syscall_tp) {
2173 		*buf = is_tracepoint ? event->tp_event->tp->name
2174 				     : event->tp_event->name;
2175 		/* We allow NULL pointer for tracepoint */
2176 		if (fd_type)
2177 			*fd_type = BPF_FD_TYPE_TRACEPOINT;
2178 		if (probe_offset)
2179 			*probe_offset = 0x0;
2180 		if (probe_addr)
2181 			*probe_addr = 0x0;
2182 	} else {
2183 		/* kprobe/uprobe */
2184 		err = -EOPNOTSUPP;
2185 #ifdef CONFIG_KPROBE_EVENTS
2186 		if (flags & TRACE_EVENT_FL_KPROBE)
2187 			err = bpf_get_kprobe_info(event, fd_type, buf,
2188 						  probe_offset, probe_addr, missed,
2189 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2190 #endif
2191 #ifdef CONFIG_UPROBE_EVENTS
2192 		if (flags & TRACE_EVENT_FL_UPROBE)
2193 			err = bpf_get_uprobe_info(event, fd_type, buf,
2194 						  probe_offset, probe_addr,
2195 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2196 #endif
2197 	}
2198 
2199 	return err;
2200 }
2201 
2202 static int __init send_signal_irq_work_init(void)
2203 {
2204 	int cpu;
2205 	struct send_signal_irq_work *work;
2206 
2207 	for_each_possible_cpu(cpu) {
2208 		work = per_cpu_ptr(&send_signal_work, cpu);
2209 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2210 	}
2211 	return 0;
2212 }
2213 
2214 subsys_initcall(send_signal_irq_work_init);
2215 
2216 #ifdef CONFIG_MODULES
2217 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2218 			    void *module)
2219 {
2220 	struct bpf_trace_module *btm, *tmp;
2221 	struct module *mod = module;
2222 	int ret = 0;
2223 
2224 	if (mod->num_bpf_raw_events == 0 ||
2225 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2226 		goto out;
2227 
2228 	mutex_lock(&bpf_module_mutex);
2229 
2230 	switch (op) {
2231 	case MODULE_STATE_COMING:
2232 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2233 		if (btm) {
2234 			btm->module = module;
2235 			list_add(&btm->list, &bpf_trace_modules);
2236 		} else {
2237 			ret = -ENOMEM;
2238 		}
2239 		break;
2240 	case MODULE_STATE_GOING:
2241 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2242 			if (btm->module == module) {
2243 				list_del(&btm->list);
2244 				kfree(btm);
2245 				break;
2246 			}
2247 		}
2248 		break;
2249 	}
2250 
2251 	mutex_unlock(&bpf_module_mutex);
2252 
2253 out:
2254 	return notifier_from_errno(ret);
2255 }
2256 
2257 static struct notifier_block bpf_module_nb = {
2258 	.notifier_call = bpf_event_notify,
2259 };
2260 
2261 static int __init bpf_event_init(void)
2262 {
2263 	register_module_notifier(&bpf_module_nb);
2264 	return 0;
2265 }
2266 
2267 fs_initcall(bpf_event_init);
2268 #endif /* CONFIG_MODULES */
2269 
2270 struct bpf_session_run_ctx {
2271 	struct bpf_run_ctx run_ctx;
2272 	bool is_return;
2273 	void *data;
2274 };
2275 
2276 #ifdef CONFIG_FPROBE
2277 struct bpf_kprobe_multi_link {
2278 	struct bpf_link link;
2279 	struct fprobe fp;
2280 	unsigned long *addrs;
2281 	u64 *cookies;
2282 	u32 cnt;
2283 	u32 mods_cnt;
2284 	struct module **mods;
2285 };
2286 
2287 struct bpf_kprobe_multi_run_ctx {
2288 	struct bpf_session_run_ctx session_ctx;
2289 	struct bpf_kprobe_multi_link *link;
2290 	unsigned long entry_ip;
2291 };
2292 
2293 struct user_syms {
2294 	const char **syms;
2295 	char *buf;
2296 };
2297 
2298 #ifndef CONFIG_HAVE_FTRACE_REGS_HAVING_PT_REGS
2299 static DEFINE_PER_CPU(struct pt_regs, bpf_kprobe_multi_pt_regs);
2300 #define bpf_kprobe_multi_pt_regs_ptr()	this_cpu_ptr(&bpf_kprobe_multi_pt_regs)
2301 #else
2302 #define bpf_kprobe_multi_pt_regs_ptr()	(NULL)
2303 #endif
2304 
2305 static unsigned long ftrace_get_entry_ip(unsigned long fentry_ip)
2306 {
2307 	unsigned long ip = ftrace_get_symaddr(fentry_ip);
2308 
2309 	return ip ? : fentry_ip;
2310 }
2311 
2312 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2313 {
2314 	unsigned long __user usymbol;
2315 	const char **syms = NULL;
2316 	char *buf = NULL, *p;
2317 	int err = -ENOMEM;
2318 	unsigned int i;
2319 
2320 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2321 	if (!syms)
2322 		goto error;
2323 
2324 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2325 	if (!buf)
2326 		goto error;
2327 
2328 	for (p = buf, i = 0; i < cnt; i++) {
2329 		if (__get_user(usymbol, usyms + i)) {
2330 			err = -EFAULT;
2331 			goto error;
2332 		}
2333 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2334 		if (err == KSYM_NAME_LEN)
2335 			err = -E2BIG;
2336 		if (err < 0)
2337 			goto error;
2338 		syms[i] = p;
2339 		p += err + 1;
2340 	}
2341 
2342 	us->syms = syms;
2343 	us->buf = buf;
2344 	return 0;
2345 
2346 error:
2347 	if (err) {
2348 		kvfree(syms);
2349 		kvfree(buf);
2350 	}
2351 	return err;
2352 }
2353 
2354 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2355 {
2356 	u32 i;
2357 
2358 	for (i = 0; i < cnt; i++)
2359 		module_put(mods[i]);
2360 }
2361 
2362 static void free_user_syms(struct user_syms *us)
2363 {
2364 	kvfree(us->syms);
2365 	kvfree(us->buf);
2366 }
2367 
2368 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2369 {
2370 	struct bpf_kprobe_multi_link *kmulti_link;
2371 
2372 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2373 	unregister_fprobe(&kmulti_link->fp);
2374 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2375 }
2376 
2377 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2378 {
2379 	struct bpf_kprobe_multi_link *kmulti_link;
2380 
2381 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2382 	kvfree(kmulti_link->addrs);
2383 	kvfree(kmulti_link->cookies);
2384 	kfree(kmulti_link->mods);
2385 	kfree(kmulti_link);
2386 }
2387 
2388 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2389 						struct bpf_link_info *info)
2390 {
2391 	u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies);
2392 	u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2393 	struct bpf_kprobe_multi_link *kmulti_link;
2394 	u32 ucount = info->kprobe_multi.count;
2395 	int err = 0, i;
2396 
2397 	if (!uaddrs ^ !ucount)
2398 		return -EINVAL;
2399 	if (ucookies && !ucount)
2400 		return -EINVAL;
2401 
2402 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2403 	info->kprobe_multi.count = kmulti_link->cnt;
2404 	info->kprobe_multi.flags = kmulti_link->link.flags;
2405 	info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2406 
2407 	if (!uaddrs)
2408 		return 0;
2409 	if (ucount < kmulti_link->cnt)
2410 		err = -ENOSPC;
2411 	else
2412 		ucount = kmulti_link->cnt;
2413 
2414 	if (ucookies) {
2415 		if (kmulti_link->cookies) {
2416 			if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64)))
2417 				return -EFAULT;
2418 		} else {
2419 			for (i = 0; i < ucount; i++) {
2420 				if (put_user(0, ucookies + i))
2421 					return -EFAULT;
2422 			}
2423 		}
2424 	}
2425 
2426 	if (kallsyms_show_value(current_cred())) {
2427 		if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2428 			return -EFAULT;
2429 	} else {
2430 		for (i = 0; i < ucount; i++) {
2431 			if (put_user(0, uaddrs + i))
2432 				return -EFAULT;
2433 		}
2434 	}
2435 	return err;
2436 }
2437 
2438 #ifdef CONFIG_PROC_FS
2439 static void bpf_kprobe_multi_show_fdinfo(const struct bpf_link *link,
2440 					 struct seq_file *seq)
2441 {
2442 	struct bpf_kprobe_multi_link *kmulti_link;
2443 
2444 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2445 
2446 	seq_printf(seq,
2447 		   "kprobe_cnt:\t%u\n"
2448 		   "missed:\t%lu\n",
2449 		   kmulti_link->cnt,
2450 		   kmulti_link->fp.nmissed);
2451 
2452 	seq_printf(seq, "%s\t %s\n", "cookie", "func");
2453 	for (int i = 0; i < kmulti_link->cnt; i++) {
2454 		seq_printf(seq,
2455 			   "%llu\t %pS\n",
2456 			   kmulti_link->cookies[i],
2457 			   (void *)kmulti_link->addrs[i]);
2458 	}
2459 }
2460 #endif
2461 
2462 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2463 	.release = bpf_kprobe_multi_link_release,
2464 	.dealloc_deferred = bpf_kprobe_multi_link_dealloc,
2465 	.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2466 #ifdef CONFIG_PROC_FS
2467 	.show_fdinfo = bpf_kprobe_multi_show_fdinfo,
2468 #endif
2469 };
2470 
2471 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2472 {
2473 	const struct bpf_kprobe_multi_link *link = priv;
2474 	unsigned long *addr_a = a, *addr_b = b;
2475 	u64 *cookie_a, *cookie_b;
2476 
2477 	cookie_a = link->cookies + (addr_a - link->addrs);
2478 	cookie_b = link->cookies + (addr_b - link->addrs);
2479 
2480 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2481 	swap(*addr_a, *addr_b);
2482 	swap(*cookie_a, *cookie_b);
2483 }
2484 
2485 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2486 {
2487 	const unsigned long *addr_a = a, *addr_b = b;
2488 
2489 	if (*addr_a == *addr_b)
2490 		return 0;
2491 	return *addr_a < *addr_b ? -1 : 1;
2492 }
2493 
2494 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2495 {
2496 	return bpf_kprobe_multi_addrs_cmp(a, b);
2497 }
2498 
2499 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2500 {
2501 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2502 	struct bpf_kprobe_multi_link *link;
2503 	u64 *cookie, entry_ip;
2504 	unsigned long *addr;
2505 
2506 	if (WARN_ON_ONCE(!ctx))
2507 		return 0;
2508 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2509 			       session_ctx.run_ctx);
2510 	link = run_ctx->link;
2511 	if (!link->cookies)
2512 		return 0;
2513 	entry_ip = run_ctx->entry_ip;
2514 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2515 		       bpf_kprobe_multi_addrs_cmp);
2516 	if (!addr)
2517 		return 0;
2518 	cookie = link->cookies + (addr - link->addrs);
2519 	return *cookie;
2520 }
2521 
2522 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2523 {
2524 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2525 
2526 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2527 			       session_ctx.run_ctx);
2528 	return run_ctx->entry_ip;
2529 }
2530 
2531 static int
2532 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2533 			   unsigned long entry_ip, struct ftrace_regs *fregs,
2534 			   bool is_return, void *data)
2535 {
2536 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2537 		.session_ctx = {
2538 			.is_return = is_return,
2539 			.data = data,
2540 		},
2541 		.link = link,
2542 		.entry_ip = entry_ip,
2543 	};
2544 	struct bpf_run_ctx *old_run_ctx;
2545 	struct pt_regs *regs;
2546 	int err;
2547 
2548 	/*
2549 	 * graph tracer framework ensures we won't migrate, so there is no need
2550 	 * to use migrate_disable for bpf_prog_run again. The check here just for
2551 	 * __this_cpu_inc_return.
2552 	 */
2553 	cant_sleep();
2554 
2555 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2556 		bpf_prog_inc_misses_counter(link->link.prog);
2557 		err = 1;
2558 		goto out;
2559 	}
2560 
2561 	rcu_read_lock();
2562 	regs = ftrace_partial_regs(fregs, bpf_kprobe_multi_pt_regs_ptr());
2563 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
2564 	err = bpf_prog_run(link->link.prog, regs);
2565 	bpf_reset_run_ctx(old_run_ctx);
2566 	rcu_read_unlock();
2567 
2568  out:
2569 	__this_cpu_dec(bpf_prog_active);
2570 	return err;
2571 }
2572 
2573 static int
2574 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2575 			  unsigned long ret_ip, struct ftrace_regs *fregs,
2576 			  void *data)
2577 {
2578 	struct bpf_kprobe_multi_link *link;
2579 	int err;
2580 
2581 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2582 	err = kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2583 					 fregs, false, data);
2584 	return is_kprobe_session(link->link.prog) ? err : 0;
2585 }
2586 
2587 static void
2588 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2589 			       unsigned long ret_ip, struct ftrace_regs *fregs,
2590 			       void *data)
2591 {
2592 	struct bpf_kprobe_multi_link *link;
2593 
2594 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2595 	kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2596 				   fregs, true, data);
2597 }
2598 
2599 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2600 {
2601 	const char **str_a = (const char **) a;
2602 	const char **str_b = (const char **) b;
2603 
2604 	return strcmp(*str_a, *str_b);
2605 }
2606 
2607 struct multi_symbols_sort {
2608 	const char **funcs;
2609 	u64 *cookies;
2610 };
2611 
2612 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2613 {
2614 	const struct multi_symbols_sort *data = priv;
2615 	const char **name_a = a, **name_b = b;
2616 
2617 	swap(*name_a, *name_b);
2618 
2619 	/* If defined, swap also related cookies. */
2620 	if (data->cookies) {
2621 		u64 *cookie_a, *cookie_b;
2622 
2623 		cookie_a = data->cookies + (name_a - data->funcs);
2624 		cookie_b = data->cookies + (name_b - data->funcs);
2625 		swap(*cookie_a, *cookie_b);
2626 	}
2627 }
2628 
2629 struct modules_array {
2630 	struct module **mods;
2631 	int mods_cnt;
2632 	int mods_cap;
2633 };
2634 
2635 static int add_module(struct modules_array *arr, struct module *mod)
2636 {
2637 	struct module **mods;
2638 
2639 	if (arr->mods_cnt == arr->mods_cap) {
2640 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2641 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2642 		if (!mods)
2643 			return -ENOMEM;
2644 		arr->mods = mods;
2645 	}
2646 
2647 	arr->mods[arr->mods_cnt] = mod;
2648 	arr->mods_cnt++;
2649 	return 0;
2650 }
2651 
2652 static bool has_module(struct modules_array *arr, struct module *mod)
2653 {
2654 	int i;
2655 
2656 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2657 		if (arr->mods[i] == mod)
2658 			return true;
2659 	}
2660 	return false;
2661 }
2662 
2663 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2664 {
2665 	struct modules_array arr = {};
2666 	u32 i, err = 0;
2667 
2668 	for (i = 0; i < addrs_cnt; i++) {
2669 		bool skip_add = false;
2670 		struct module *mod;
2671 
2672 		scoped_guard(rcu) {
2673 			mod = __module_address(addrs[i]);
2674 			/* Either no module or it's already stored  */
2675 			if (!mod || has_module(&arr, mod)) {
2676 				skip_add = true;
2677 				break; /* scoped_guard */
2678 			}
2679 			if (!try_module_get(mod))
2680 				err = -EINVAL;
2681 		}
2682 		if (skip_add)
2683 			continue;
2684 		if (err)
2685 			break;
2686 		err = add_module(&arr, mod);
2687 		if (err) {
2688 			module_put(mod);
2689 			break;
2690 		}
2691 	}
2692 
2693 	/* We return either err < 0 in case of error, ... */
2694 	if (err) {
2695 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2696 		kfree(arr.mods);
2697 		return err;
2698 	}
2699 
2700 	/* or number of modules found if everything is ok. */
2701 	*mods = arr.mods;
2702 	return arr.mods_cnt;
2703 }
2704 
2705 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2706 {
2707 	u32 i;
2708 
2709 	for (i = 0; i < cnt; i++) {
2710 		if (!within_error_injection_list(addrs[i]))
2711 			return -EINVAL;
2712 	}
2713 	return 0;
2714 }
2715 
2716 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2717 {
2718 	struct bpf_kprobe_multi_link *link = NULL;
2719 	struct bpf_link_primer link_primer;
2720 	void __user *ucookies;
2721 	unsigned long *addrs;
2722 	u32 flags, cnt, size;
2723 	void __user *uaddrs;
2724 	u64 *cookies = NULL;
2725 	void __user *usyms;
2726 	int err;
2727 
2728 	/* no support for 32bit archs yet */
2729 	if (sizeof(u64) != sizeof(void *))
2730 		return -EOPNOTSUPP;
2731 
2732 	if (attr->link_create.flags)
2733 		return -EINVAL;
2734 
2735 	if (!is_kprobe_multi(prog))
2736 		return -EINVAL;
2737 
2738 	flags = attr->link_create.kprobe_multi.flags;
2739 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2740 		return -EINVAL;
2741 
2742 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2743 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2744 	if (!!uaddrs == !!usyms)
2745 		return -EINVAL;
2746 
2747 	cnt = attr->link_create.kprobe_multi.cnt;
2748 	if (!cnt)
2749 		return -EINVAL;
2750 	if (cnt > MAX_KPROBE_MULTI_CNT)
2751 		return -E2BIG;
2752 
2753 	size = cnt * sizeof(*addrs);
2754 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2755 	if (!addrs)
2756 		return -ENOMEM;
2757 
2758 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2759 	if (ucookies) {
2760 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2761 		if (!cookies) {
2762 			err = -ENOMEM;
2763 			goto error;
2764 		}
2765 		if (copy_from_user(cookies, ucookies, size)) {
2766 			err = -EFAULT;
2767 			goto error;
2768 		}
2769 	}
2770 
2771 	if (uaddrs) {
2772 		if (copy_from_user(addrs, uaddrs, size)) {
2773 			err = -EFAULT;
2774 			goto error;
2775 		}
2776 	} else {
2777 		struct multi_symbols_sort data = {
2778 			.cookies = cookies,
2779 		};
2780 		struct user_syms us;
2781 
2782 		err = copy_user_syms(&us, usyms, cnt);
2783 		if (err)
2784 			goto error;
2785 
2786 		if (cookies)
2787 			data.funcs = us.syms;
2788 
2789 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2790 		       symbols_swap_r, &data);
2791 
2792 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2793 		free_user_syms(&us);
2794 		if (err)
2795 			goto error;
2796 	}
2797 
2798 	if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
2799 		err = -EINVAL;
2800 		goto error;
2801 	}
2802 
2803 	link = kzalloc(sizeof(*link), GFP_KERNEL);
2804 	if (!link) {
2805 		err = -ENOMEM;
2806 		goto error;
2807 	}
2808 
2809 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2810 		      &bpf_kprobe_multi_link_lops, prog, attr->link_create.attach_type);
2811 
2812 	err = bpf_link_prime(&link->link, &link_primer);
2813 	if (err)
2814 		goto error;
2815 
2816 	if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
2817 		link->fp.entry_handler = kprobe_multi_link_handler;
2818 	if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
2819 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
2820 	if (is_kprobe_session(prog))
2821 		link->fp.entry_data_size = sizeof(u64);
2822 
2823 	link->addrs = addrs;
2824 	link->cookies = cookies;
2825 	link->cnt = cnt;
2826 	link->link.flags = flags;
2827 
2828 	if (cookies) {
2829 		/*
2830 		 * Sorting addresses will trigger sorting cookies as well
2831 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
2832 		 * find cookie based on the address in bpf_get_attach_cookie
2833 		 * helper.
2834 		 */
2835 		sort_r(addrs, cnt, sizeof(*addrs),
2836 		       bpf_kprobe_multi_cookie_cmp,
2837 		       bpf_kprobe_multi_cookie_swap,
2838 		       link);
2839 	}
2840 
2841 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
2842 	if (err < 0) {
2843 		bpf_link_cleanup(&link_primer);
2844 		return err;
2845 	}
2846 	link->mods_cnt = err;
2847 
2848 	err = register_fprobe_ips(&link->fp, addrs, cnt);
2849 	if (err) {
2850 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
2851 		bpf_link_cleanup(&link_primer);
2852 		return err;
2853 	}
2854 
2855 	return bpf_link_settle(&link_primer);
2856 
2857 error:
2858 	kfree(link);
2859 	kvfree(addrs);
2860 	kvfree(cookies);
2861 	return err;
2862 }
2863 #else /* !CONFIG_FPROBE */
2864 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2865 {
2866 	return -EOPNOTSUPP;
2867 }
2868 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2869 {
2870 	return 0;
2871 }
2872 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2873 {
2874 	return 0;
2875 }
2876 #endif
2877 
2878 #ifdef CONFIG_UPROBES
2879 struct bpf_uprobe_multi_link;
2880 
2881 struct bpf_uprobe {
2882 	struct bpf_uprobe_multi_link *link;
2883 	loff_t offset;
2884 	unsigned long ref_ctr_offset;
2885 	u64 cookie;
2886 	struct uprobe *uprobe;
2887 	struct uprobe_consumer consumer;
2888 	bool session;
2889 };
2890 
2891 struct bpf_uprobe_multi_link {
2892 	struct path path;
2893 	struct bpf_link link;
2894 	u32 cnt;
2895 	struct bpf_uprobe *uprobes;
2896 	struct task_struct *task;
2897 };
2898 
2899 struct bpf_uprobe_multi_run_ctx {
2900 	struct bpf_session_run_ctx session_ctx;
2901 	unsigned long entry_ip;
2902 	struct bpf_uprobe *uprobe;
2903 };
2904 
2905 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt)
2906 {
2907 	u32 i;
2908 
2909 	for (i = 0; i < cnt; i++)
2910 		uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer);
2911 
2912 	if (cnt)
2913 		uprobe_unregister_sync();
2914 }
2915 
2916 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
2917 {
2918 	struct bpf_uprobe_multi_link *umulti_link;
2919 
2920 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
2921 	bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt);
2922 	if (umulti_link->task)
2923 		put_task_struct(umulti_link->task);
2924 	path_put(&umulti_link->path);
2925 }
2926 
2927 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
2928 {
2929 	struct bpf_uprobe_multi_link *umulti_link;
2930 
2931 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
2932 	kvfree(umulti_link->uprobes);
2933 	kfree(umulti_link);
2934 }
2935 
2936 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
2937 						struct bpf_link_info *info)
2938 {
2939 	u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
2940 	u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
2941 	u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
2942 	u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
2943 	u32 upath_size = info->uprobe_multi.path_size;
2944 	struct bpf_uprobe_multi_link *umulti_link;
2945 	u32 ucount = info->uprobe_multi.count;
2946 	int err = 0, i;
2947 	char *p, *buf;
2948 	long left = 0;
2949 
2950 	if (!upath ^ !upath_size)
2951 		return -EINVAL;
2952 
2953 	if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
2954 		return -EINVAL;
2955 
2956 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
2957 	info->uprobe_multi.count = umulti_link->cnt;
2958 	info->uprobe_multi.flags = umulti_link->link.flags;
2959 	info->uprobe_multi.pid = umulti_link->task ?
2960 				 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
2961 
2962 	upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX;
2963 	buf = kmalloc(upath_size, GFP_KERNEL);
2964 	if (!buf)
2965 		return -ENOMEM;
2966 	p = d_path(&umulti_link->path, buf, upath_size);
2967 	if (IS_ERR(p)) {
2968 		kfree(buf);
2969 		return PTR_ERR(p);
2970 	}
2971 	upath_size = buf + upath_size - p;
2972 
2973 	if (upath)
2974 		left = copy_to_user(upath, p, upath_size);
2975 	kfree(buf);
2976 	if (left)
2977 		return -EFAULT;
2978 	info->uprobe_multi.path_size = upath_size;
2979 
2980 	if (!uoffsets && !ucookies && !uref_ctr_offsets)
2981 		return 0;
2982 
2983 	if (ucount < umulti_link->cnt)
2984 		err = -ENOSPC;
2985 	else
2986 		ucount = umulti_link->cnt;
2987 
2988 	for (i = 0; i < ucount; i++) {
2989 		if (uoffsets &&
2990 		    put_user(umulti_link->uprobes[i].offset, uoffsets + i))
2991 			return -EFAULT;
2992 		if (uref_ctr_offsets &&
2993 		    put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
2994 			return -EFAULT;
2995 		if (ucookies &&
2996 		    put_user(umulti_link->uprobes[i].cookie, ucookies + i))
2997 			return -EFAULT;
2998 	}
2999 
3000 	return err;
3001 }
3002 
3003 #ifdef CONFIG_PROC_FS
3004 static void bpf_uprobe_multi_show_fdinfo(const struct bpf_link *link,
3005 					 struct seq_file *seq)
3006 {
3007 	struct bpf_uprobe_multi_link *umulti_link;
3008 	char *p, *buf;
3009 	pid_t pid;
3010 
3011 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3012 
3013 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3014 	if (!buf)
3015 		return;
3016 
3017 	p = d_path(&umulti_link->path, buf, PATH_MAX);
3018 	if (IS_ERR(p)) {
3019 		kfree(buf);
3020 		return;
3021 	}
3022 
3023 	pid = umulti_link->task ?
3024 	      task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3025 	seq_printf(seq,
3026 		   "uprobe_cnt:\t%u\n"
3027 		   "pid:\t%u\n"
3028 		   "path:\t%s\n",
3029 		   umulti_link->cnt, pid, p);
3030 
3031 	seq_printf(seq, "%s\t %s\t %s\n", "cookie", "offset", "ref_ctr_offset");
3032 	for (int i = 0; i < umulti_link->cnt; i++) {
3033 		seq_printf(seq,
3034 			   "%llu\t %#llx\t %#lx\n",
3035 			   umulti_link->uprobes[i].cookie,
3036 			   umulti_link->uprobes[i].offset,
3037 			   umulti_link->uprobes[i].ref_ctr_offset);
3038 	}
3039 
3040 	kfree(buf);
3041 }
3042 #endif
3043 
3044 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3045 	.release = bpf_uprobe_multi_link_release,
3046 	.dealloc_deferred = bpf_uprobe_multi_link_dealloc,
3047 	.fill_link_info = bpf_uprobe_multi_link_fill_link_info,
3048 #ifdef CONFIG_PROC_FS
3049 	.show_fdinfo = bpf_uprobe_multi_show_fdinfo,
3050 #endif
3051 };
3052 
3053 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3054 			   unsigned long entry_ip,
3055 			   struct pt_regs *regs,
3056 			   bool is_return, void *data)
3057 {
3058 	struct bpf_uprobe_multi_link *link = uprobe->link;
3059 	struct bpf_uprobe_multi_run_ctx run_ctx = {
3060 		.session_ctx = {
3061 			.is_return = is_return,
3062 			.data = data,
3063 		},
3064 		.entry_ip = entry_ip,
3065 		.uprobe = uprobe,
3066 	};
3067 	struct bpf_prog *prog = link->link.prog;
3068 	bool sleepable = prog->sleepable;
3069 	struct bpf_run_ctx *old_run_ctx;
3070 	int err;
3071 
3072 	if (link->task && !same_thread_group(current, link->task))
3073 		return 0;
3074 
3075 	if (sleepable)
3076 		rcu_read_lock_trace();
3077 	else
3078 		rcu_read_lock();
3079 
3080 	migrate_disable();
3081 
3082 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
3083 	err = bpf_prog_run(link->link.prog, regs);
3084 	bpf_reset_run_ctx(old_run_ctx);
3085 
3086 	migrate_enable();
3087 
3088 	if (sleepable)
3089 		rcu_read_unlock_trace();
3090 	else
3091 		rcu_read_unlock();
3092 	return err;
3093 }
3094 
3095 static bool
3096 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
3097 {
3098 	struct bpf_uprobe *uprobe;
3099 
3100 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3101 	return uprobe->link->task->mm == mm;
3102 }
3103 
3104 static int
3105 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
3106 			  __u64 *data)
3107 {
3108 	struct bpf_uprobe *uprobe;
3109 	int ret;
3110 
3111 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3112 	ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data);
3113 	if (uprobe->session)
3114 		return ret ? UPROBE_HANDLER_IGNORE : 0;
3115 	return 0;
3116 }
3117 
3118 static int
3119 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
3120 			      __u64 *data)
3121 {
3122 	struct bpf_uprobe *uprobe;
3123 
3124 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3125 	uprobe_prog_run(uprobe, func, regs, true, data);
3126 	return 0;
3127 }
3128 
3129 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3130 {
3131 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3132 
3133 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3134 			       session_ctx.run_ctx);
3135 	return run_ctx->entry_ip;
3136 }
3137 
3138 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3139 {
3140 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3141 
3142 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3143 			       session_ctx.run_ctx);
3144 	return run_ctx->uprobe->cookie;
3145 }
3146 
3147 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3148 {
3149 	struct bpf_uprobe_multi_link *link = NULL;
3150 	unsigned long __user *uref_ctr_offsets;
3151 	struct bpf_link_primer link_primer;
3152 	struct bpf_uprobe *uprobes = NULL;
3153 	struct task_struct *task = NULL;
3154 	unsigned long __user *uoffsets;
3155 	u64 __user *ucookies;
3156 	void __user *upath;
3157 	u32 flags, cnt, i;
3158 	struct path path;
3159 	char *name;
3160 	pid_t pid;
3161 	int err;
3162 
3163 	/* no support for 32bit archs yet */
3164 	if (sizeof(u64) != sizeof(void *))
3165 		return -EOPNOTSUPP;
3166 
3167 	if (attr->link_create.flags)
3168 		return -EINVAL;
3169 
3170 	if (!is_uprobe_multi(prog))
3171 		return -EINVAL;
3172 
3173 	flags = attr->link_create.uprobe_multi.flags;
3174 	if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3175 		return -EINVAL;
3176 
3177 	/*
3178 	 * path, offsets and cnt are mandatory,
3179 	 * ref_ctr_offsets and cookies are optional
3180 	 */
3181 	upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3182 	uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3183 	cnt = attr->link_create.uprobe_multi.cnt;
3184 	pid = attr->link_create.uprobe_multi.pid;
3185 
3186 	if (!upath || !uoffsets || !cnt || pid < 0)
3187 		return -EINVAL;
3188 	if (cnt > MAX_UPROBE_MULTI_CNT)
3189 		return -E2BIG;
3190 
3191 	uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3192 	ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3193 
3194 	name = strndup_user(upath, PATH_MAX);
3195 	if (IS_ERR(name)) {
3196 		err = PTR_ERR(name);
3197 		return err;
3198 	}
3199 
3200 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3201 	kfree(name);
3202 	if (err)
3203 		return err;
3204 
3205 	if (!d_is_reg(path.dentry)) {
3206 		err = -EBADF;
3207 		goto error_path_put;
3208 	}
3209 
3210 	if (pid) {
3211 		rcu_read_lock();
3212 		task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
3213 		rcu_read_unlock();
3214 		if (!task) {
3215 			err = -ESRCH;
3216 			goto error_path_put;
3217 		}
3218 	}
3219 
3220 	err = -ENOMEM;
3221 
3222 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3223 	uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3224 
3225 	if (!uprobes || !link)
3226 		goto error_free;
3227 
3228 	for (i = 0; i < cnt; i++) {
3229 		if (__get_user(uprobes[i].offset, uoffsets + i)) {
3230 			err = -EFAULT;
3231 			goto error_free;
3232 		}
3233 		if (uprobes[i].offset < 0) {
3234 			err = -EINVAL;
3235 			goto error_free;
3236 		}
3237 		if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3238 			err = -EFAULT;
3239 			goto error_free;
3240 		}
3241 		if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3242 			err = -EFAULT;
3243 			goto error_free;
3244 		}
3245 
3246 		uprobes[i].link = link;
3247 
3248 		if (!(flags & BPF_F_UPROBE_MULTI_RETURN))
3249 			uprobes[i].consumer.handler = uprobe_multi_link_handler;
3250 		if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog))
3251 			uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3252 		if (is_uprobe_session(prog))
3253 			uprobes[i].session = true;
3254 		if (pid)
3255 			uprobes[i].consumer.filter = uprobe_multi_link_filter;
3256 	}
3257 
3258 	link->cnt = cnt;
3259 	link->uprobes = uprobes;
3260 	link->path = path;
3261 	link->task = task;
3262 	link->link.flags = flags;
3263 
3264 	bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3265 		      &bpf_uprobe_multi_link_lops, prog, attr->link_create.attach_type);
3266 
3267 	for (i = 0; i < cnt; i++) {
3268 		uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry),
3269 						    uprobes[i].offset,
3270 						    uprobes[i].ref_ctr_offset,
3271 						    &uprobes[i].consumer);
3272 		if (IS_ERR(uprobes[i].uprobe)) {
3273 			err = PTR_ERR(uprobes[i].uprobe);
3274 			link->cnt = i;
3275 			goto error_unregister;
3276 		}
3277 	}
3278 
3279 	err = bpf_link_prime(&link->link, &link_primer);
3280 	if (err)
3281 		goto error_unregister;
3282 
3283 	return bpf_link_settle(&link_primer);
3284 
3285 error_unregister:
3286 	bpf_uprobe_unregister(uprobes, link->cnt);
3287 
3288 error_free:
3289 	kvfree(uprobes);
3290 	kfree(link);
3291 	if (task)
3292 		put_task_struct(task);
3293 error_path_put:
3294 	path_put(&path);
3295 	return err;
3296 }
3297 #else /* !CONFIG_UPROBES */
3298 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3299 {
3300 	return -EOPNOTSUPP;
3301 }
3302 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3303 {
3304 	return 0;
3305 }
3306 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3307 {
3308 	return 0;
3309 }
3310 #endif /* CONFIG_UPROBES */
3311 
3312 __bpf_kfunc_start_defs();
3313 
3314 __bpf_kfunc bool bpf_session_is_return(void)
3315 {
3316 	struct bpf_session_run_ctx *session_ctx;
3317 
3318 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3319 	return session_ctx->is_return;
3320 }
3321 
3322 __bpf_kfunc __u64 *bpf_session_cookie(void)
3323 {
3324 	struct bpf_session_run_ctx *session_ctx;
3325 
3326 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3327 	return session_ctx->data;
3328 }
3329 
3330 __bpf_kfunc_end_defs();
3331 
3332 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids)
3333 BTF_ID_FLAGS(func, bpf_session_is_return)
3334 BTF_ID_FLAGS(func, bpf_session_cookie)
3335 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids)
3336 
3337 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
3338 {
3339 	if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
3340 		return 0;
3341 
3342 	if (!is_kprobe_session(prog) && !is_uprobe_session(prog))
3343 		return -EACCES;
3344 
3345 	return 0;
3346 }
3347 
3348 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = {
3349 	.owner = THIS_MODULE,
3350 	.set = &kprobe_multi_kfunc_set_ids,
3351 	.filter = bpf_kprobe_multi_filter,
3352 };
3353 
3354 static int __init bpf_kprobe_multi_kfuncs_init(void)
3355 {
3356 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set);
3357 }
3358 
3359 late_initcall(bpf_kprobe_multi_kfuncs_init);
3360 
3361 typedef int (*copy_fn_t)(void *dst, const void *src, u32 size, struct task_struct *tsk);
3362 
3363 /*
3364  * The __always_inline is to make sure the compiler doesn't
3365  * generate indirect calls into callbacks, which is expensive,
3366  * on some kernel configurations. This allows compiler to put
3367  * direct calls into all the specific callback implementations
3368  * (copy_user_data_sleepable, copy_user_data_nofault, and so on)
3369  */
3370 static __always_inline int __bpf_dynptr_copy_str(struct bpf_dynptr *dptr, u32 doff, u32 size,
3371 						 const void *unsafe_src,
3372 						 copy_fn_t str_copy_fn,
3373 						 struct task_struct *tsk)
3374 {
3375 	struct bpf_dynptr_kern *dst;
3376 	u32 chunk_sz, off;
3377 	void *dst_slice;
3378 	int cnt, err;
3379 	char buf[256];
3380 
3381 	dst_slice = bpf_dynptr_slice_rdwr(dptr, doff, NULL, size);
3382 	if (likely(dst_slice))
3383 		return str_copy_fn(dst_slice, unsafe_src, size, tsk);
3384 
3385 	dst = (struct bpf_dynptr_kern *)dptr;
3386 	if (bpf_dynptr_check_off_len(dst, doff, size))
3387 		return -E2BIG;
3388 
3389 	for (off = 0; off < size; off += chunk_sz - 1) {
3390 		chunk_sz = min_t(u32, sizeof(buf), size - off);
3391 		/* Expect str_copy_fn to return count of copied bytes, including
3392 		 * zero terminator. Next iteration increment off by chunk_sz - 1 to
3393 		 * overwrite NUL.
3394 		 */
3395 		cnt = str_copy_fn(buf, unsafe_src + off, chunk_sz, tsk);
3396 		if (cnt < 0)
3397 			return cnt;
3398 		err = __bpf_dynptr_write(dst, doff + off, buf, cnt, 0);
3399 		if (err)
3400 			return err;
3401 		if (cnt < chunk_sz || chunk_sz == 1) /* we are done */
3402 			return off + cnt;
3403 	}
3404 	return off;
3405 }
3406 
3407 static __always_inline int __bpf_dynptr_copy(const struct bpf_dynptr *dptr, u32 doff,
3408 					     u32 size, const void *unsafe_src,
3409 					     copy_fn_t copy_fn, struct task_struct *tsk)
3410 {
3411 	struct bpf_dynptr_kern *dst;
3412 	void *dst_slice;
3413 	char buf[256];
3414 	u32 off, chunk_sz;
3415 	int err;
3416 
3417 	dst_slice = bpf_dynptr_slice_rdwr(dptr, doff, NULL, size);
3418 	if (likely(dst_slice))
3419 		return copy_fn(dst_slice, unsafe_src, size, tsk);
3420 
3421 	dst = (struct bpf_dynptr_kern *)dptr;
3422 	if (bpf_dynptr_check_off_len(dst, doff, size))
3423 		return -E2BIG;
3424 
3425 	for (off = 0; off < size; off += chunk_sz) {
3426 		chunk_sz = min_t(u32, sizeof(buf), size - off);
3427 		err = copy_fn(buf, unsafe_src + off, chunk_sz, tsk);
3428 		if (err)
3429 			return err;
3430 		err = __bpf_dynptr_write(dst, doff + off, buf, chunk_sz, 0);
3431 		if (err)
3432 			return err;
3433 	}
3434 	return 0;
3435 }
3436 
3437 static __always_inline int copy_user_data_nofault(void *dst, const void *unsafe_src,
3438 						  u32 size, struct task_struct *tsk)
3439 {
3440 	return copy_from_user_nofault(dst, (const void __user *)unsafe_src, size);
3441 }
3442 
3443 static __always_inline int copy_user_data_sleepable(void *dst, const void *unsafe_src,
3444 						    u32 size, struct task_struct *tsk)
3445 {
3446 	int ret;
3447 
3448 	if (!tsk) { /* Read from the current task */
3449 		ret = copy_from_user(dst, (const void __user *)unsafe_src, size);
3450 		if (ret)
3451 			return -EFAULT;
3452 		return 0;
3453 	}
3454 
3455 	ret = access_process_vm(tsk, (unsigned long)unsafe_src, dst, size, 0);
3456 	if (ret != size)
3457 		return -EFAULT;
3458 	return 0;
3459 }
3460 
3461 static __always_inline int copy_kernel_data_nofault(void *dst, const void *unsafe_src,
3462 						    u32 size, struct task_struct *tsk)
3463 {
3464 	return copy_from_kernel_nofault(dst, unsafe_src, size);
3465 }
3466 
3467 static __always_inline int copy_user_str_nofault(void *dst, const void *unsafe_src,
3468 						 u32 size, struct task_struct *tsk)
3469 {
3470 	return strncpy_from_user_nofault(dst, (const void __user *)unsafe_src, size);
3471 }
3472 
3473 static __always_inline int copy_user_str_sleepable(void *dst, const void *unsafe_src,
3474 						   u32 size, struct task_struct *tsk)
3475 {
3476 	int ret;
3477 
3478 	if (unlikely(size == 0))
3479 		return 0;
3480 
3481 	if (tsk) {
3482 		ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_src, dst, size, 0);
3483 	} else {
3484 		ret = strncpy_from_user(dst, (const void __user *)unsafe_src, size - 1);
3485 		/* strncpy_from_user does not guarantee NUL termination */
3486 		if (ret >= 0)
3487 			((char *)dst)[ret] = '\0';
3488 	}
3489 
3490 	if (ret < 0)
3491 		return ret;
3492 	return ret + 1;
3493 }
3494 
3495 static __always_inline int copy_kernel_str_nofault(void *dst, const void *unsafe_src,
3496 						   u32 size, struct task_struct *tsk)
3497 {
3498 	return strncpy_from_kernel_nofault(dst, unsafe_src, size);
3499 }
3500 
3501 __bpf_kfunc_start_defs();
3502 
3503 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
3504 				     u64 value)
3505 {
3506 	if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
3507 		return -EINVAL;
3508 
3509 	return bpf_send_signal_common(sig, type, task, value);
3510 }
3511 
3512 __bpf_kfunc int bpf_probe_read_user_dynptr(struct bpf_dynptr *dptr, u32 off,
3513 					   u32 size, const void __user *unsafe_ptr__ign)
3514 {
3515 	return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign,
3516 				 copy_user_data_nofault, NULL);
3517 }
3518 
3519 __bpf_kfunc int bpf_probe_read_kernel_dynptr(struct bpf_dynptr *dptr, u32 off,
3520 					     u32 size, const void *unsafe_ptr__ign)
3521 {
3522 	return __bpf_dynptr_copy(dptr, off, size, unsafe_ptr__ign,
3523 				 copy_kernel_data_nofault, NULL);
3524 }
3525 
3526 __bpf_kfunc int bpf_probe_read_user_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3527 					       u32 size, const void __user *unsafe_ptr__ign)
3528 {
3529 	return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign,
3530 				     copy_user_str_nofault, NULL);
3531 }
3532 
3533 __bpf_kfunc int bpf_probe_read_kernel_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3534 						 u32 size, const void *unsafe_ptr__ign)
3535 {
3536 	return __bpf_dynptr_copy_str(dptr, off, size, unsafe_ptr__ign,
3537 				     copy_kernel_str_nofault, NULL);
3538 }
3539 
3540 __bpf_kfunc int bpf_copy_from_user_dynptr(struct bpf_dynptr *dptr, u32 off,
3541 					  u32 size, const void __user *unsafe_ptr__ign)
3542 {
3543 	return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign,
3544 				 copy_user_data_sleepable, NULL);
3545 }
3546 
3547 __bpf_kfunc int bpf_copy_from_user_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3548 					      u32 size, const void __user *unsafe_ptr__ign)
3549 {
3550 	return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign,
3551 				     copy_user_str_sleepable, NULL);
3552 }
3553 
3554 __bpf_kfunc int bpf_copy_from_user_task_dynptr(struct bpf_dynptr *dptr, u32 off,
3555 					       u32 size, const void __user *unsafe_ptr__ign,
3556 					       struct task_struct *tsk)
3557 {
3558 	return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign,
3559 				 copy_user_data_sleepable, tsk);
3560 }
3561 
3562 __bpf_kfunc int bpf_copy_from_user_task_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3563 						   u32 size, const void __user *unsafe_ptr__ign,
3564 						   struct task_struct *tsk)
3565 {
3566 	return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign,
3567 				     copy_user_str_sleepable, tsk);
3568 }
3569 
3570 __bpf_kfunc_end_defs();
3571