1 /* 2 * Alarmtimer interface 3 * 4 * This interface provides a timer which is similarto hrtimers, 5 * but triggers a RTC alarm if the box is suspend. 6 * 7 * This interface is influenced by the Android RTC Alarm timer 8 * interface. 9 * 10 * Copyright (C) 2010 IBM Corperation 11 * 12 * Author: John Stultz <john.stultz@linaro.org> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/time.h> 19 #include <linux/hrtimer.h> 20 #include <linux/timerqueue.h> 21 #include <linux/rtc.h> 22 #include <linux/alarmtimer.h> 23 #include <linux/mutex.h> 24 #include <linux/platform_device.h> 25 #include <linux/posix-timers.h> 26 #include <linux/workqueue.h> 27 #include <linux/freezer.h> 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/alarmtimer.h> 31 32 /** 33 * struct alarm_base - Alarm timer bases 34 * @lock: Lock for syncrhonized access to the base 35 * @timerqueue: Timerqueue head managing the list of events 36 * @gettime: Function to read the time correlating to the base 37 * @base_clockid: clockid for the base 38 */ 39 static struct alarm_base { 40 spinlock_t lock; 41 struct timerqueue_head timerqueue; 42 ktime_t (*gettime)(void); 43 clockid_t base_clockid; 44 } alarm_bases[ALARM_NUMTYPE]; 45 46 /* freezer information to handle clock_nanosleep triggered wakeups */ 47 static enum alarmtimer_type freezer_alarmtype; 48 static ktime_t freezer_expires; 49 static ktime_t freezer_delta; 50 static DEFINE_SPINLOCK(freezer_delta_lock); 51 52 static struct wakeup_source *ws; 53 54 #ifdef CONFIG_RTC_CLASS 55 /* rtc timer and device for setting alarm wakeups at suspend */ 56 static struct rtc_timer rtctimer; 57 static struct rtc_device *rtcdev; 58 static DEFINE_SPINLOCK(rtcdev_lock); 59 60 /** 61 * alarmtimer_get_rtcdev - Return selected rtcdevice 62 * 63 * This function returns the rtc device to use for wakealarms. 64 * If one has not already been chosen, it checks to see if a 65 * functional rtc device is available. 66 */ 67 struct rtc_device *alarmtimer_get_rtcdev(void) 68 { 69 unsigned long flags; 70 struct rtc_device *ret; 71 72 spin_lock_irqsave(&rtcdev_lock, flags); 73 ret = rtcdev; 74 spin_unlock_irqrestore(&rtcdev_lock, flags); 75 76 return ret; 77 } 78 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 79 80 static int alarmtimer_rtc_add_device(struct device *dev, 81 struct class_interface *class_intf) 82 { 83 unsigned long flags; 84 struct rtc_device *rtc = to_rtc_device(dev); 85 86 if (rtcdev) 87 return -EBUSY; 88 89 if (!rtc->ops->set_alarm) 90 return -1; 91 if (!device_may_wakeup(rtc->dev.parent)) 92 return -1; 93 94 spin_lock_irqsave(&rtcdev_lock, flags); 95 if (!rtcdev) { 96 rtcdev = rtc; 97 /* hold a reference so it doesn't go away */ 98 get_device(dev); 99 } 100 spin_unlock_irqrestore(&rtcdev_lock, flags); 101 return 0; 102 } 103 104 static inline void alarmtimer_rtc_timer_init(void) 105 { 106 rtc_timer_init(&rtctimer, NULL, NULL); 107 } 108 109 static struct class_interface alarmtimer_rtc_interface = { 110 .add_dev = &alarmtimer_rtc_add_device, 111 }; 112 113 static int alarmtimer_rtc_interface_setup(void) 114 { 115 alarmtimer_rtc_interface.class = rtc_class; 116 return class_interface_register(&alarmtimer_rtc_interface); 117 } 118 static void alarmtimer_rtc_interface_remove(void) 119 { 120 class_interface_unregister(&alarmtimer_rtc_interface); 121 } 122 #else 123 struct rtc_device *alarmtimer_get_rtcdev(void) 124 { 125 return NULL; 126 } 127 #define rtcdev (NULL) 128 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 129 static inline void alarmtimer_rtc_interface_remove(void) { } 130 static inline void alarmtimer_rtc_timer_init(void) { } 131 #endif 132 133 /** 134 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 135 * @base: pointer to the base where the timer is being run 136 * @alarm: pointer to alarm being enqueued. 137 * 138 * Adds alarm to a alarm_base timerqueue 139 * 140 * Must hold base->lock when calling. 141 */ 142 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 143 { 144 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 145 timerqueue_del(&base->timerqueue, &alarm->node); 146 147 timerqueue_add(&base->timerqueue, &alarm->node); 148 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 149 } 150 151 /** 152 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 153 * @base: pointer to the base where the timer is running 154 * @alarm: pointer to alarm being removed 155 * 156 * Removes alarm to a alarm_base timerqueue 157 * 158 * Must hold base->lock when calling. 159 */ 160 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 161 { 162 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 163 return; 164 165 timerqueue_del(&base->timerqueue, &alarm->node); 166 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 167 } 168 169 170 /** 171 * alarmtimer_fired - Handles alarm hrtimer being fired. 172 * @timer: pointer to hrtimer being run 173 * 174 * When a alarm timer fires, this runs through the timerqueue to 175 * see which alarms expired, and runs those. If there are more alarm 176 * timers queued for the future, we set the hrtimer to fire when 177 * when the next future alarm timer expires. 178 */ 179 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 180 { 181 struct alarm *alarm = container_of(timer, struct alarm, timer); 182 struct alarm_base *base = &alarm_bases[alarm->type]; 183 unsigned long flags; 184 int ret = HRTIMER_NORESTART; 185 int restart = ALARMTIMER_NORESTART; 186 187 spin_lock_irqsave(&base->lock, flags); 188 alarmtimer_dequeue(base, alarm); 189 spin_unlock_irqrestore(&base->lock, flags); 190 191 if (alarm->function) 192 restart = alarm->function(alarm, base->gettime()); 193 194 spin_lock_irqsave(&base->lock, flags); 195 if (restart != ALARMTIMER_NORESTART) { 196 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 197 alarmtimer_enqueue(base, alarm); 198 ret = HRTIMER_RESTART; 199 } 200 spin_unlock_irqrestore(&base->lock, flags); 201 202 trace_alarmtimer_fired(alarm, base->gettime()); 203 return ret; 204 205 } 206 207 ktime_t alarm_expires_remaining(const struct alarm *alarm) 208 { 209 struct alarm_base *base = &alarm_bases[alarm->type]; 210 return ktime_sub(alarm->node.expires, base->gettime()); 211 } 212 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 213 214 #ifdef CONFIG_RTC_CLASS 215 /** 216 * alarmtimer_suspend - Suspend time callback 217 * @dev: unused 218 * @state: unused 219 * 220 * When we are going into suspend, we look through the bases 221 * to see which is the soonest timer to expire. We then 222 * set an rtc timer to fire that far into the future, which 223 * will wake us from suspend. 224 */ 225 static int alarmtimer_suspend(struct device *dev) 226 { 227 ktime_t min, now, expires; 228 int i, ret, type; 229 struct rtc_device *rtc; 230 unsigned long flags; 231 struct rtc_time tm; 232 233 spin_lock_irqsave(&freezer_delta_lock, flags); 234 min = freezer_delta; 235 expires = freezer_expires; 236 type = freezer_alarmtype; 237 freezer_delta = ktime_set(0, 0); 238 spin_unlock_irqrestore(&freezer_delta_lock, flags); 239 240 rtc = alarmtimer_get_rtcdev(); 241 /* If we have no rtcdev, just return */ 242 if (!rtc) 243 return 0; 244 245 /* Find the soonest timer to expire*/ 246 for (i = 0; i < ALARM_NUMTYPE; i++) { 247 struct alarm_base *base = &alarm_bases[i]; 248 struct timerqueue_node *next; 249 ktime_t delta; 250 251 spin_lock_irqsave(&base->lock, flags); 252 next = timerqueue_getnext(&base->timerqueue); 253 spin_unlock_irqrestore(&base->lock, flags); 254 if (!next) 255 continue; 256 delta = ktime_sub(next->expires, base->gettime()); 257 if (!min.tv64 || (delta.tv64 < min.tv64)) { 258 expires = next->expires; 259 min = delta; 260 type = i; 261 } 262 } 263 if (min.tv64 == 0) 264 return 0; 265 266 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 267 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC); 268 return -EBUSY; 269 } 270 271 trace_alarmtimer_suspend(expires, type); 272 273 /* Setup an rtc timer to fire that far in the future */ 274 rtc_timer_cancel(rtc, &rtctimer); 275 rtc_read_time(rtc, &tm); 276 now = rtc_tm_to_ktime(tm); 277 now = ktime_add(now, min); 278 279 /* Set alarm, if in the past reject suspend briefly to handle */ 280 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0)); 281 if (ret < 0) 282 __pm_wakeup_event(ws, MSEC_PER_SEC); 283 return ret; 284 } 285 286 static int alarmtimer_resume(struct device *dev) 287 { 288 struct rtc_device *rtc; 289 290 rtc = alarmtimer_get_rtcdev(); 291 if (rtc) 292 rtc_timer_cancel(rtc, &rtctimer); 293 return 0; 294 } 295 296 #else 297 static int alarmtimer_suspend(struct device *dev) 298 { 299 return 0; 300 } 301 302 static int alarmtimer_resume(struct device *dev) 303 { 304 return 0; 305 } 306 #endif 307 308 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 309 { 310 struct alarm_base *base; 311 unsigned long flags; 312 ktime_t delta; 313 314 switch(type) { 315 case ALARM_REALTIME: 316 base = &alarm_bases[ALARM_REALTIME]; 317 type = ALARM_REALTIME_FREEZER; 318 break; 319 case ALARM_BOOTTIME: 320 base = &alarm_bases[ALARM_BOOTTIME]; 321 type = ALARM_BOOTTIME_FREEZER; 322 break; 323 default: 324 WARN_ONCE(1, "Invalid alarm type: %d\n", type); 325 return; 326 } 327 328 delta = ktime_sub(absexp, base->gettime()); 329 330 spin_lock_irqsave(&freezer_delta_lock, flags); 331 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64)) { 332 freezer_delta = delta; 333 freezer_expires = absexp; 334 freezer_alarmtype = type; 335 } 336 spin_unlock_irqrestore(&freezer_delta_lock, flags); 337 } 338 339 340 /** 341 * alarm_init - Initialize an alarm structure 342 * @alarm: ptr to alarm to be initialized 343 * @type: the type of the alarm 344 * @function: callback that is run when the alarm fires 345 */ 346 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 347 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 348 { 349 timerqueue_init(&alarm->node); 350 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 351 HRTIMER_MODE_ABS); 352 alarm->timer.function = alarmtimer_fired; 353 alarm->function = function; 354 alarm->type = type; 355 alarm->state = ALARMTIMER_STATE_INACTIVE; 356 } 357 EXPORT_SYMBOL_GPL(alarm_init); 358 359 /** 360 * alarm_start - Sets an absolute alarm to fire 361 * @alarm: ptr to alarm to set 362 * @start: time to run the alarm 363 */ 364 void alarm_start(struct alarm *alarm, ktime_t start) 365 { 366 struct alarm_base *base = &alarm_bases[alarm->type]; 367 unsigned long flags; 368 369 spin_lock_irqsave(&base->lock, flags); 370 alarm->node.expires = start; 371 alarmtimer_enqueue(base, alarm); 372 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 373 spin_unlock_irqrestore(&base->lock, flags); 374 375 trace_alarmtimer_start(alarm, base->gettime()); 376 } 377 EXPORT_SYMBOL_GPL(alarm_start); 378 379 /** 380 * alarm_start_relative - Sets a relative alarm to fire 381 * @alarm: ptr to alarm to set 382 * @start: time relative to now to run the alarm 383 */ 384 void alarm_start_relative(struct alarm *alarm, ktime_t start) 385 { 386 struct alarm_base *base = &alarm_bases[alarm->type]; 387 388 start = ktime_add(start, base->gettime()); 389 alarm_start(alarm, start); 390 } 391 EXPORT_SYMBOL_GPL(alarm_start_relative); 392 393 void alarm_restart(struct alarm *alarm) 394 { 395 struct alarm_base *base = &alarm_bases[alarm->type]; 396 unsigned long flags; 397 398 spin_lock_irqsave(&base->lock, flags); 399 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 400 hrtimer_restart(&alarm->timer); 401 alarmtimer_enqueue(base, alarm); 402 spin_unlock_irqrestore(&base->lock, flags); 403 } 404 EXPORT_SYMBOL_GPL(alarm_restart); 405 406 /** 407 * alarm_try_to_cancel - Tries to cancel an alarm timer 408 * @alarm: ptr to alarm to be canceled 409 * 410 * Returns 1 if the timer was canceled, 0 if it was not running, 411 * and -1 if the callback was running 412 */ 413 int alarm_try_to_cancel(struct alarm *alarm) 414 { 415 struct alarm_base *base = &alarm_bases[alarm->type]; 416 unsigned long flags; 417 int ret; 418 419 spin_lock_irqsave(&base->lock, flags); 420 ret = hrtimer_try_to_cancel(&alarm->timer); 421 if (ret >= 0) 422 alarmtimer_dequeue(base, alarm); 423 spin_unlock_irqrestore(&base->lock, flags); 424 425 trace_alarmtimer_cancel(alarm, base->gettime()); 426 return ret; 427 } 428 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 429 430 431 /** 432 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 433 * @alarm: ptr to alarm to be canceled 434 * 435 * Returns 1 if the timer was canceled, 0 if it was not active. 436 */ 437 int alarm_cancel(struct alarm *alarm) 438 { 439 for (;;) { 440 int ret = alarm_try_to_cancel(alarm); 441 if (ret >= 0) 442 return ret; 443 cpu_relax(); 444 } 445 } 446 EXPORT_SYMBOL_GPL(alarm_cancel); 447 448 449 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 450 { 451 u64 overrun = 1; 452 ktime_t delta; 453 454 delta = ktime_sub(now, alarm->node.expires); 455 456 if (delta.tv64 < 0) 457 return 0; 458 459 if (unlikely(delta.tv64 >= interval.tv64)) { 460 s64 incr = ktime_to_ns(interval); 461 462 overrun = ktime_divns(delta, incr); 463 464 alarm->node.expires = ktime_add_ns(alarm->node.expires, 465 incr*overrun); 466 467 if (alarm->node.expires.tv64 > now.tv64) 468 return overrun; 469 /* 470 * This (and the ktime_add() below) is the 471 * correction for exact: 472 */ 473 overrun++; 474 } 475 476 alarm->node.expires = ktime_add(alarm->node.expires, interval); 477 return overrun; 478 } 479 EXPORT_SYMBOL_GPL(alarm_forward); 480 481 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 482 { 483 struct alarm_base *base = &alarm_bases[alarm->type]; 484 485 return alarm_forward(alarm, base->gettime(), interval); 486 } 487 EXPORT_SYMBOL_GPL(alarm_forward_now); 488 489 490 /** 491 * clock2alarm - helper that converts from clockid to alarmtypes 492 * @clockid: clockid. 493 */ 494 static enum alarmtimer_type clock2alarm(clockid_t clockid) 495 { 496 if (clockid == CLOCK_REALTIME_ALARM) 497 return ALARM_REALTIME; 498 if (clockid == CLOCK_BOOTTIME_ALARM) 499 return ALARM_BOOTTIME; 500 return -1; 501 } 502 503 /** 504 * alarm_handle_timer - Callback for posix timers 505 * @alarm: alarm that fired 506 * 507 * Posix timer callback for expired alarm timers. 508 */ 509 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 510 ktime_t now) 511 { 512 unsigned long flags; 513 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 514 it.alarm.alarmtimer); 515 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 516 517 spin_lock_irqsave(&ptr->it_lock, flags); 518 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) { 519 if (posix_timer_event(ptr, 0) != 0) 520 ptr->it_overrun++; 521 } 522 523 /* Re-add periodic timers */ 524 if (ptr->it.alarm.interval.tv64) { 525 ptr->it_overrun += alarm_forward(alarm, now, 526 ptr->it.alarm.interval); 527 result = ALARMTIMER_RESTART; 528 } 529 spin_unlock_irqrestore(&ptr->it_lock, flags); 530 531 return result; 532 } 533 534 /** 535 * alarm_clock_getres - posix getres interface 536 * @which_clock: clockid 537 * @tp: timespec to fill 538 * 539 * Returns the granularity of underlying alarm base clock 540 */ 541 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp) 542 { 543 if (!alarmtimer_get_rtcdev()) 544 return -EINVAL; 545 546 tp->tv_sec = 0; 547 tp->tv_nsec = hrtimer_resolution; 548 return 0; 549 } 550 551 /** 552 * alarm_clock_get - posix clock_get interface 553 * @which_clock: clockid 554 * @tp: timespec to fill. 555 * 556 * Provides the underlying alarm base time. 557 */ 558 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp) 559 { 560 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 561 562 if (!alarmtimer_get_rtcdev()) 563 return -EINVAL; 564 565 *tp = ktime_to_timespec(base->gettime()); 566 return 0; 567 } 568 569 /** 570 * alarm_timer_create - posix timer_create interface 571 * @new_timer: k_itimer pointer to manage 572 * 573 * Initializes the k_itimer structure. 574 */ 575 static int alarm_timer_create(struct k_itimer *new_timer) 576 { 577 enum alarmtimer_type type; 578 579 if (!alarmtimer_get_rtcdev()) 580 return -ENOTSUPP; 581 582 if (!capable(CAP_WAKE_ALARM)) 583 return -EPERM; 584 585 type = clock2alarm(new_timer->it_clock); 586 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 587 return 0; 588 } 589 590 /** 591 * alarm_timer_get - posix timer_get interface 592 * @new_timer: k_itimer pointer 593 * @cur_setting: itimerspec data to fill 594 * 595 * Copies out the current itimerspec data 596 */ 597 static void alarm_timer_get(struct k_itimer *timr, 598 struct itimerspec *cur_setting) 599 { 600 ktime_t relative_expiry_time = 601 alarm_expires_remaining(&(timr->it.alarm.alarmtimer)); 602 603 if (ktime_to_ns(relative_expiry_time) > 0) { 604 cur_setting->it_value = ktime_to_timespec(relative_expiry_time); 605 } else { 606 cur_setting->it_value.tv_sec = 0; 607 cur_setting->it_value.tv_nsec = 0; 608 } 609 610 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval); 611 } 612 613 /** 614 * alarm_timer_del - posix timer_del interface 615 * @timr: k_itimer pointer to be deleted 616 * 617 * Cancels any programmed alarms for the given timer. 618 */ 619 static int alarm_timer_del(struct k_itimer *timr) 620 { 621 if (!rtcdev) 622 return -ENOTSUPP; 623 624 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 625 return TIMER_RETRY; 626 627 return 0; 628 } 629 630 /** 631 * alarm_timer_set - posix timer_set interface 632 * @timr: k_itimer pointer to be deleted 633 * @flags: timer flags 634 * @new_setting: itimerspec to be used 635 * @old_setting: itimerspec being replaced 636 * 637 * Sets the timer to new_setting, and starts the timer. 638 */ 639 static int alarm_timer_set(struct k_itimer *timr, int flags, 640 struct itimerspec *new_setting, 641 struct itimerspec *old_setting) 642 { 643 ktime_t exp; 644 645 if (!rtcdev) 646 return -ENOTSUPP; 647 648 if (flags & ~TIMER_ABSTIME) 649 return -EINVAL; 650 651 if (old_setting) 652 alarm_timer_get(timr, old_setting); 653 654 /* If the timer was already set, cancel it */ 655 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 656 return TIMER_RETRY; 657 658 /* start the timer */ 659 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval); 660 exp = timespec_to_ktime(new_setting->it_value); 661 /* Convert (if necessary) to absolute time */ 662 if (flags != TIMER_ABSTIME) { 663 ktime_t now; 664 665 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime(); 666 exp = ktime_add(now, exp); 667 } 668 669 alarm_start(&timr->it.alarm.alarmtimer, exp); 670 return 0; 671 } 672 673 /** 674 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 675 * @alarm: ptr to alarm that fired 676 * 677 * Wakes up the task that set the alarmtimer 678 */ 679 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 680 ktime_t now) 681 { 682 struct task_struct *task = (struct task_struct *)alarm->data; 683 684 alarm->data = NULL; 685 if (task) 686 wake_up_process(task); 687 return ALARMTIMER_NORESTART; 688 } 689 690 /** 691 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 692 * @alarm: ptr to alarmtimer 693 * @absexp: absolute expiration time 694 * 695 * Sets the alarm timer and sleeps until it is fired or interrupted. 696 */ 697 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp) 698 { 699 alarm->data = (void *)current; 700 do { 701 set_current_state(TASK_INTERRUPTIBLE); 702 alarm_start(alarm, absexp); 703 if (likely(alarm->data)) 704 schedule(); 705 706 alarm_cancel(alarm); 707 } while (alarm->data && !signal_pending(current)); 708 709 __set_current_state(TASK_RUNNING); 710 711 return (alarm->data == NULL); 712 } 713 714 715 /** 716 * update_rmtp - Update remaining timespec value 717 * @exp: expiration time 718 * @type: timer type 719 * @rmtp: user pointer to remaining timepsec value 720 * 721 * Helper function that fills in rmtp value with time between 722 * now and the exp value 723 */ 724 static int update_rmtp(ktime_t exp, enum alarmtimer_type type, 725 struct timespec __user *rmtp) 726 { 727 struct timespec rmt; 728 ktime_t rem; 729 730 rem = ktime_sub(exp, alarm_bases[type].gettime()); 731 732 if (rem.tv64 <= 0) 733 return 0; 734 rmt = ktime_to_timespec(rem); 735 736 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 737 return -EFAULT; 738 739 return 1; 740 741 } 742 743 /** 744 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 745 * @restart: ptr to restart block 746 * 747 * Handles restarted clock_nanosleep calls 748 */ 749 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 750 { 751 enum alarmtimer_type type = restart->nanosleep.clockid; 752 ktime_t exp; 753 struct timespec __user *rmtp; 754 struct alarm alarm; 755 int ret = 0; 756 757 exp.tv64 = restart->nanosleep.expires; 758 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 759 760 if (alarmtimer_do_nsleep(&alarm, exp)) 761 goto out; 762 763 if (freezing(current)) 764 alarmtimer_freezerset(exp, type); 765 766 rmtp = restart->nanosleep.rmtp; 767 if (rmtp) { 768 ret = update_rmtp(exp, type, rmtp); 769 if (ret <= 0) 770 goto out; 771 } 772 773 774 /* The other values in restart are already filled in */ 775 ret = -ERESTART_RESTARTBLOCK; 776 out: 777 return ret; 778 } 779 780 /** 781 * alarm_timer_nsleep - alarmtimer nanosleep 782 * @which_clock: clockid 783 * @flags: determins abstime or relative 784 * @tsreq: requested sleep time (abs or rel) 785 * @rmtp: remaining sleep time saved 786 * 787 * Handles clock_nanosleep calls against _ALARM clockids 788 */ 789 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 790 struct timespec *tsreq, struct timespec __user *rmtp) 791 { 792 enum alarmtimer_type type = clock2alarm(which_clock); 793 struct alarm alarm; 794 ktime_t exp; 795 int ret = 0; 796 struct restart_block *restart; 797 798 if (!alarmtimer_get_rtcdev()) 799 return -ENOTSUPP; 800 801 if (flags & ~TIMER_ABSTIME) 802 return -EINVAL; 803 804 if (!capable(CAP_WAKE_ALARM)) 805 return -EPERM; 806 807 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 808 809 exp = timespec_to_ktime(*tsreq); 810 /* Convert (if necessary) to absolute time */ 811 if (flags != TIMER_ABSTIME) { 812 ktime_t now = alarm_bases[type].gettime(); 813 exp = ktime_add(now, exp); 814 } 815 816 if (alarmtimer_do_nsleep(&alarm, exp)) 817 goto out; 818 819 if (freezing(current)) 820 alarmtimer_freezerset(exp, type); 821 822 /* abs timers don't set remaining time or restart */ 823 if (flags == TIMER_ABSTIME) { 824 ret = -ERESTARTNOHAND; 825 goto out; 826 } 827 828 if (rmtp) { 829 ret = update_rmtp(exp, type, rmtp); 830 if (ret <= 0) 831 goto out; 832 } 833 834 restart = ¤t->restart_block; 835 restart->fn = alarm_timer_nsleep_restart; 836 restart->nanosleep.clockid = type; 837 restart->nanosleep.expires = exp.tv64; 838 restart->nanosleep.rmtp = rmtp; 839 ret = -ERESTART_RESTARTBLOCK; 840 841 out: 842 return ret; 843 } 844 845 846 /* Suspend hook structures */ 847 static const struct dev_pm_ops alarmtimer_pm_ops = { 848 .suspend = alarmtimer_suspend, 849 .resume = alarmtimer_resume, 850 }; 851 852 static struct platform_driver alarmtimer_driver = { 853 .driver = { 854 .name = "alarmtimer", 855 .pm = &alarmtimer_pm_ops, 856 } 857 }; 858 859 /** 860 * alarmtimer_init - Initialize alarm timer code 861 * 862 * This function initializes the alarm bases and registers 863 * the posix clock ids. 864 */ 865 static int __init alarmtimer_init(void) 866 { 867 struct platform_device *pdev; 868 int error = 0; 869 int i; 870 struct k_clock alarm_clock = { 871 .clock_getres = alarm_clock_getres, 872 .clock_get = alarm_clock_get, 873 .timer_create = alarm_timer_create, 874 .timer_set = alarm_timer_set, 875 .timer_del = alarm_timer_del, 876 .timer_get = alarm_timer_get, 877 .nsleep = alarm_timer_nsleep, 878 }; 879 880 alarmtimer_rtc_timer_init(); 881 882 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) { 883 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock); 884 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock); 885 } 886 887 /* Initialize alarm bases */ 888 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 889 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 890 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 891 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 892 for (i = 0; i < ALARM_NUMTYPE; i++) { 893 timerqueue_init_head(&alarm_bases[i].timerqueue); 894 spin_lock_init(&alarm_bases[i].lock); 895 } 896 897 error = alarmtimer_rtc_interface_setup(); 898 if (error) 899 return error; 900 901 error = platform_driver_register(&alarmtimer_driver); 902 if (error) 903 goto out_if; 904 905 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0); 906 if (IS_ERR(pdev)) { 907 error = PTR_ERR(pdev); 908 goto out_drv; 909 } 910 ws = wakeup_source_register("alarmtimer"); 911 return 0; 912 913 out_drv: 914 platform_driver_unregister(&alarmtimer_driver); 915 out_if: 916 alarmtimer_rtc_interface_remove(); 917 return error; 918 } 919 device_initcall(alarmtimer_init); 920