xref: /linux/kernel/time/alarmtimer.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/alarmtimer.h>
31 
32 /**
33  * struct alarm_base - Alarm timer bases
34  * @lock:		Lock for syncrhonized access to the base
35  * @timerqueue:		Timerqueue head managing the list of events
36  * @gettime:		Function to read the time correlating to the base
37  * @base_clockid:	clockid for the base
38  */
39 static struct alarm_base {
40 	spinlock_t		lock;
41 	struct timerqueue_head	timerqueue;
42 	ktime_t			(*gettime)(void);
43 	clockid_t		base_clockid;
44 } alarm_bases[ALARM_NUMTYPE];
45 
46 /* freezer information to handle clock_nanosleep triggered wakeups */
47 static enum alarmtimer_type freezer_alarmtype;
48 static ktime_t freezer_expires;
49 static ktime_t freezer_delta;
50 static DEFINE_SPINLOCK(freezer_delta_lock);
51 
52 static struct wakeup_source *ws;
53 
54 #ifdef CONFIG_RTC_CLASS
55 /* rtc timer and device for setting alarm wakeups at suspend */
56 static struct rtc_timer		rtctimer;
57 static struct rtc_device	*rtcdev;
58 static DEFINE_SPINLOCK(rtcdev_lock);
59 
60 /**
61  * alarmtimer_get_rtcdev - Return selected rtcdevice
62  *
63  * This function returns the rtc device to use for wakealarms.
64  * If one has not already been chosen, it checks to see if a
65  * functional rtc device is available.
66  */
67 struct rtc_device *alarmtimer_get_rtcdev(void)
68 {
69 	unsigned long flags;
70 	struct rtc_device *ret;
71 
72 	spin_lock_irqsave(&rtcdev_lock, flags);
73 	ret = rtcdev;
74 	spin_unlock_irqrestore(&rtcdev_lock, flags);
75 
76 	return ret;
77 }
78 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
79 
80 static int alarmtimer_rtc_add_device(struct device *dev,
81 				struct class_interface *class_intf)
82 {
83 	unsigned long flags;
84 	struct rtc_device *rtc = to_rtc_device(dev);
85 
86 	if (rtcdev)
87 		return -EBUSY;
88 
89 	if (!rtc->ops->set_alarm)
90 		return -1;
91 	if (!device_may_wakeup(rtc->dev.parent))
92 		return -1;
93 
94 	spin_lock_irqsave(&rtcdev_lock, flags);
95 	if (!rtcdev) {
96 		rtcdev = rtc;
97 		/* hold a reference so it doesn't go away */
98 		get_device(dev);
99 	}
100 	spin_unlock_irqrestore(&rtcdev_lock, flags);
101 	return 0;
102 }
103 
104 static inline void alarmtimer_rtc_timer_init(void)
105 {
106 	rtc_timer_init(&rtctimer, NULL, NULL);
107 }
108 
109 static struct class_interface alarmtimer_rtc_interface = {
110 	.add_dev = &alarmtimer_rtc_add_device,
111 };
112 
113 static int alarmtimer_rtc_interface_setup(void)
114 {
115 	alarmtimer_rtc_interface.class = rtc_class;
116 	return class_interface_register(&alarmtimer_rtc_interface);
117 }
118 static void alarmtimer_rtc_interface_remove(void)
119 {
120 	class_interface_unregister(&alarmtimer_rtc_interface);
121 }
122 #else
123 struct rtc_device *alarmtimer_get_rtcdev(void)
124 {
125 	return NULL;
126 }
127 #define rtcdev (NULL)
128 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
129 static inline void alarmtimer_rtc_interface_remove(void) { }
130 static inline void alarmtimer_rtc_timer_init(void) { }
131 #endif
132 
133 /**
134  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
135  * @base: pointer to the base where the timer is being run
136  * @alarm: pointer to alarm being enqueued.
137  *
138  * Adds alarm to a alarm_base timerqueue
139  *
140  * Must hold base->lock when calling.
141  */
142 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
143 {
144 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
145 		timerqueue_del(&base->timerqueue, &alarm->node);
146 
147 	timerqueue_add(&base->timerqueue, &alarm->node);
148 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
149 }
150 
151 /**
152  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
153  * @base: pointer to the base where the timer is running
154  * @alarm: pointer to alarm being removed
155  *
156  * Removes alarm to a alarm_base timerqueue
157  *
158  * Must hold base->lock when calling.
159  */
160 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
161 {
162 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
163 		return;
164 
165 	timerqueue_del(&base->timerqueue, &alarm->node);
166 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
167 }
168 
169 
170 /**
171  * alarmtimer_fired - Handles alarm hrtimer being fired.
172  * @timer: pointer to hrtimer being run
173  *
174  * When a alarm timer fires, this runs through the timerqueue to
175  * see which alarms expired, and runs those. If there are more alarm
176  * timers queued for the future, we set the hrtimer to fire when
177  * when the next future alarm timer expires.
178  */
179 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
180 {
181 	struct alarm *alarm = container_of(timer, struct alarm, timer);
182 	struct alarm_base *base = &alarm_bases[alarm->type];
183 	unsigned long flags;
184 	int ret = HRTIMER_NORESTART;
185 	int restart = ALARMTIMER_NORESTART;
186 
187 	spin_lock_irqsave(&base->lock, flags);
188 	alarmtimer_dequeue(base, alarm);
189 	spin_unlock_irqrestore(&base->lock, flags);
190 
191 	if (alarm->function)
192 		restart = alarm->function(alarm, base->gettime());
193 
194 	spin_lock_irqsave(&base->lock, flags);
195 	if (restart != ALARMTIMER_NORESTART) {
196 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
197 		alarmtimer_enqueue(base, alarm);
198 		ret = HRTIMER_RESTART;
199 	}
200 	spin_unlock_irqrestore(&base->lock, flags);
201 
202 	trace_alarmtimer_fired(alarm, base->gettime());
203 	return ret;
204 
205 }
206 
207 ktime_t alarm_expires_remaining(const struct alarm *alarm)
208 {
209 	struct alarm_base *base = &alarm_bases[alarm->type];
210 	return ktime_sub(alarm->node.expires, base->gettime());
211 }
212 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
213 
214 #ifdef CONFIG_RTC_CLASS
215 /**
216  * alarmtimer_suspend - Suspend time callback
217  * @dev: unused
218  * @state: unused
219  *
220  * When we are going into suspend, we look through the bases
221  * to see which is the soonest timer to expire. We then
222  * set an rtc timer to fire that far into the future, which
223  * will wake us from suspend.
224  */
225 static int alarmtimer_suspend(struct device *dev)
226 {
227 	ktime_t min, now, expires;
228 	int i, ret, type;
229 	struct rtc_device *rtc;
230 	unsigned long flags;
231 	struct rtc_time tm;
232 
233 	spin_lock_irqsave(&freezer_delta_lock, flags);
234 	min = freezer_delta;
235 	expires = freezer_expires;
236 	type = freezer_alarmtype;
237 	freezer_delta = ktime_set(0, 0);
238 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
239 
240 	rtc = alarmtimer_get_rtcdev();
241 	/* If we have no rtcdev, just return */
242 	if (!rtc)
243 		return 0;
244 
245 	/* Find the soonest timer to expire*/
246 	for (i = 0; i < ALARM_NUMTYPE; i++) {
247 		struct alarm_base *base = &alarm_bases[i];
248 		struct timerqueue_node *next;
249 		ktime_t delta;
250 
251 		spin_lock_irqsave(&base->lock, flags);
252 		next = timerqueue_getnext(&base->timerqueue);
253 		spin_unlock_irqrestore(&base->lock, flags);
254 		if (!next)
255 			continue;
256 		delta = ktime_sub(next->expires, base->gettime());
257 		if (!min.tv64 || (delta.tv64 < min.tv64)) {
258 			expires = next->expires;
259 			min = delta;
260 			type = i;
261 		}
262 	}
263 	if (min.tv64 == 0)
264 		return 0;
265 
266 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
267 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
268 		return -EBUSY;
269 	}
270 
271 	trace_alarmtimer_suspend(expires, type);
272 
273 	/* Setup an rtc timer to fire that far in the future */
274 	rtc_timer_cancel(rtc, &rtctimer);
275 	rtc_read_time(rtc, &tm);
276 	now = rtc_tm_to_ktime(tm);
277 	now = ktime_add(now, min);
278 
279 	/* Set alarm, if in the past reject suspend briefly to handle */
280 	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
281 	if (ret < 0)
282 		__pm_wakeup_event(ws, MSEC_PER_SEC);
283 	return ret;
284 }
285 
286 static int alarmtimer_resume(struct device *dev)
287 {
288 	struct rtc_device *rtc;
289 
290 	rtc = alarmtimer_get_rtcdev();
291 	if (rtc)
292 		rtc_timer_cancel(rtc, &rtctimer);
293 	return 0;
294 }
295 
296 #else
297 static int alarmtimer_suspend(struct device *dev)
298 {
299 	return 0;
300 }
301 
302 static int alarmtimer_resume(struct device *dev)
303 {
304 	return 0;
305 }
306 #endif
307 
308 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
309 {
310 	struct alarm_base *base;
311 	unsigned long flags;
312 	ktime_t delta;
313 
314 	switch(type) {
315 	case ALARM_REALTIME:
316 		base = &alarm_bases[ALARM_REALTIME];
317 		type = ALARM_REALTIME_FREEZER;
318 		break;
319 	case ALARM_BOOTTIME:
320 		base = &alarm_bases[ALARM_BOOTTIME];
321 		type = ALARM_BOOTTIME_FREEZER;
322 		break;
323 	default:
324 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
325 		return;
326 	}
327 
328 	delta = ktime_sub(absexp, base->gettime());
329 
330 	spin_lock_irqsave(&freezer_delta_lock, flags);
331 	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64)) {
332 		freezer_delta = delta;
333 		freezer_expires = absexp;
334 		freezer_alarmtype = type;
335 	}
336 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
337 }
338 
339 
340 /**
341  * alarm_init - Initialize an alarm structure
342  * @alarm: ptr to alarm to be initialized
343  * @type: the type of the alarm
344  * @function: callback that is run when the alarm fires
345  */
346 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348 {
349 	timerqueue_init(&alarm->node);
350 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
351 			HRTIMER_MODE_ABS);
352 	alarm->timer.function = alarmtimer_fired;
353 	alarm->function = function;
354 	alarm->type = type;
355 	alarm->state = ALARMTIMER_STATE_INACTIVE;
356 }
357 EXPORT_SYMBOL_GPL(alarm_init);
358 
359 /**
360  * alarm_start - Sets an absolute alarm to fire
361  * @alarm: ptr to alarm to set
362  * @start: time to run the alarm
363  */
364 void alarm_start(struct alarm *alarm, ktime_t start)
365 {
366 	struct alarm_base *base = &alarm_bases[alarm->type];
367 	unsigned long flags;
368 
369 	spin_lock_irqsave(&base->lock, flags);
370 	alarm->node.expires = start;
371 	alarmtimer_enqueue(base, alarm);
372 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
373 	spin_unlock_irqrestore(&base->lock, flags);
374 
375 	trace_alarmtimer_start(alarm, base->gettime());
376 }
377 EXPORT_SYMBOL_GPL(alarm_start);
378 
379 /**
380  * alarm_start_relative - Sets a relative alarm to fire
381  * @alarm: ptr to alarm to set
382  * @start: time relative to now to run the alarm
383  */
384 void alarm_start_relative(struct alarm *alarm, ktime_t start)
385 {
386 	struct alarm_base *base = &alarm_bases[alarm->type];
387 
388 	start = ktime_add(start, base->gettime());
389 	alarm_start(alarm, start);
390 }
391 EXPORT_SYMBOL_GPL(alarm_start_relative);
392 
393 void alarm_restart(struct alarm *alarm)
394 {
395 	struct alarm_base *base = &alarm_bases[alarm->type];
396 	unsigned long flags;
397 
398 	spin_lock_irqsave(&base->lock, flags);
399 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
400 	hrtimer_restart(&alarm->timer);
401 	alarmtimer_enqueue(base, alarm);
402 	spin_unlock_irqrestore(&base->lock, flags);
403 }
404 EXPORT_SYMBOL_GPL(alarm_restart);
405 
406 /**
407  * alarm_try_to_cancel - Tries to cancel an alarm timer
408  * @alarm: ptr to alarm to be canceled
409  *
410  * Returns 1 if the timer was canceled, 0 if it was not running,
411  * and -1 if the callback was running
412  */
413 int alarm_try_to_cancel(struct alarm *alarm)
414 {
415 	struct alarm_base *base = &alarm_bases[alarm->type];
416 	unsigned long flags;
417 	int ret;
418 
419 	spin_lock_irqsave(&base->lock, flags);
420 	ret = hrtimer_try_to_cancel(&alarm->timer);
421 	if (ret >= 0)
422 		alarmtimer_dequeue(base, alarm);
423 	spin_unlock_irqrestore(&base->lock, flags);
424 
425 	trace_alarmtimer_cancel(alarm, base->gettime());
426 	return ret;
427 }
428 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
429 
430 
431 /**
432  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
433  * @alarm: ptr to alarm to be canceled
434  *
435  * Returns 1 if the timer was canceled, 0 if it was not active.
436  */
437 int alarm_cancel(struct alarm *alarm)
438 {
439 	for (;;) {
440 		int ret = alarm_try_to_cancel(alarm);
441 		if (ret >= 0)
442 			return ret;
443 		cpu_relax();
444 	}
445 }
446 EXPORT_SYMBOL_GPL(alarm_cancel);
447 
448 
449 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
450 {
451 	u64 overrun = 1;
452 	ktime_t delta;
453 
454 	delta = ktime_sub(now, alarm->node.expires);
455 
456 	if (delta.tv64 < 0)
457 		return 0;
458 
459 	if (unlikely(delta.tv64 >= interval.tv64)) {
460 		s64 incr = ktime_to_ns(interval);
461 
462 		overrun = ktime_divns(delta, incr);
463 
464 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
465 							incr*overrun);
466 
467 		if (alarm->node.expires.tv64 > now.tv64)
468 			return overrun;
469 		/*
470 		 * This (and the ktime_add() below) is the
471 		 * correction for exact:
472 		 */
473 		overrun++;
474 	}
475 
476 	alarm->node.expires = ktime_add(alarm->node.expires, interval);
477 	return overrun;
478 }
479 EXPORT_SYMBOL_GPL(alarm_forward);
480 
481 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
482 {
483 	struct alarm_base *base = &alarm_bases[alarm->type];
484 
485 	return alarm_forward(alarm, base->gettime(), interval);
486 }
487 EXPORT_SYMBOL_GPL(alarm_forward_now);
488 
489 
490 /**
491  * clock2alarm - helper that converts from clockid to alarmtypes
492  * @clockid: clockid.
493  */
494 static enum alarmtimer_type clock2alarm(clockid_t clockid)
495 {
496 	if (clockid == CLOCK_REALTIME_ALARM)
497 		return ALARM_REALTIME;
498 	if (clockid == CLOCK_BOOTTIME_ALARM)
499 		return ALARM_BOOTTIME;
500 	return -1;
501 }
502 
503 /**
504  * alarm_handle_timer - Callback for posix timers
505  * @alarm: alarm that fired
506  *
507  * Posix timer callback for expired alarm timers.
508  */
509 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
510 							ktime_t now)
511 {
512 	unsigned long flags;
513 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
514 						it.alarm.alarmtimer);
515 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
516 
517 	spin_lock_irqsave(&ptr->it_lock, flags);
518 	if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
519 		if (posix_timer_event(ptr, 0) != 0)
520 			ptr->it_overrun++;
521 	}
522 
523 	/* Re-add periodic timers */
524 	if (ptr->it.alarm.interval.tv64) {
525 		ptr->it_overrun += alarm_forward(alarm, now,
526 						ptr->it.alarm.interval);
527 		result = ALARMTIMER_RESTART;
528 	}
529 	spin_unlock_irqrestore(&ptr->it_lock, flags);
530 
531 	return result;
532 }
533 
534 /**
535  * alarm_clock_getres - posix getres interface
536  * @which_clock: clockid
537  * @tp: timespec to fill
538  *
539  * Returns the granularity of underlying alarm base clock
540  */
541 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
542 {
543 	if (!alarmtimer_get_rtcdev())
544 		return -EINVAL;
545 
546 	tp->tv_sec = 0;
547 	tp->tv_nsec = hrtimer_resolution;
548 	return 0;
549 }
550 
551 /**
552  * alarm_clock_get - posix clock_get interface
553  * @which_clock: clockid
554  * @tp: timespec to fill.
555  *
556  * Provides the underlying alarm base time.
557  */
558 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
559 {
560 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
561 
562 	if (!alarmtimer_get_rtcdev())
563 		return -EINVAL;
564 
565 	*tp = ktime_to_timespec(base->gettime());
566 	return 0;
567 }
568 
569 /**
570  * alarm_timer_create - posix timer_create interface
571  * @new_timer: k_itimer pointer to manage
572  *
573  * Initializes the k_itimer structure.
574  */
575 static int alarm_timer_create(struct k_itimer *new_timer)
576 {
577 	enum  alarmtimer_type type;
578 
579 	if (!alarmtimer_get_rtcdev())
580 		return -ENOTSUPP;
581 
582 	if (!capable(CAP_WAKE_ALARM))
583 		return -EPERM;
584 
585 	type = clock2alarm(new_timer->it_clock);
586 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
587 	return 0;
588 }
589 
590 /**
591  * alarm_timer_get - posix timer_get interface
592  * @new_timer: k_itimer pointer
593  * @cur_setting: itimerspec data to fill
594  *
595  * Copies out the current itimerspec data
596  */
597 static void alarm_timer_get(struct k_itimer *timr,
598 				struct itimerspec *cur_setting)
599 {
600 	ktime_t relative_expiry_time =
601 		alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
602 
603 	if (ktime_to_ns(relative_expiry_time) > 0) {
604 		cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
605 	} else {
606 		cur_setting->it_value.tv_sec = 0;
607 		cur_setting->it_value.tv_nsec = 0;
608 	}
609 
610 	cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
611 }
612 
613 /**
614  * alarm_timer_del - posix timer_del interface
615  * @timr: k_itimer pointer to be deleted
616  *
617  * Cancels any programmed alarms for the given timer.
618  */
619 static int alarm_timer_del(struct k_itimer *timr)
620 {
621 	if (!rtcdev)
622 		return -ENOTSUPP;
623 
624 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
625 		return TIMER_RETRY;
626 
627 	return 0;
628 }
629 
630 /**
631  * alarm_timer_set - posix timer_set interface
632  * @timr: k_itimer pointer to be deleted
633  * @flags: timer flags
634  * @new_setting: itimerspec to be used
635  * @old_setting: itimerspec being replaced
636  *
637  * Sets the timer to new_setting, and starts the timer.
638  */
639 static int alarm_timer_set(struct k_itimer *timr, int flags,
640 				struct itimerspec *new_setting,
641 				struct itimerspec *old_setting)
642 {
643 	ktime_t exp;
644 
645 	if (!rtcdev)
646 		return -ENOTSUPP;
647 
648 	if (flags & ~TIMER_ABSTIME)
649 		return -EINVAL;
650 
651 	if (old_setting)
652 		alarm_timer_get(timr, old_setting);
653 
654 	/* If the timer was already set, cancel it */
655 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
656 		return TIMER_RETRY;
657 
658 	/* start the timer */
659 	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
660 	exp = timespec_to_ktime(new_setting->it_value);
661 	/* Convert (if necessary) to absolute time */
662 	if (flags != TIMER_ABSTIME) {
663 		ktime_t now;
664 
665 		now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
666 		exp = ktime_add(now, exp);
667 	}
668 
669 	alarm_start(&timr->it.alarm.alarmtimer, exp);
670 	return 0;
671 }
672 
673 /**
674  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
675  * @alarm: ptr to alarm that fired
676  *
677  * Wakes up the task that set the alarmtimer
678  */
679 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
680 								ktime_t now)
681 {
682 	struct task_struct *task = (struct task_struct *)alarm->data;
683 
684 	alarm->data = NULL;
685 	if (task)
686 		wake_up_process(task);
687 	return ALARMTIMER_NORESTART;
688 }
689 
690 /**
691  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
692  * @alarm: ptr to alarmtimer
693  * @absexp: absolute expiration time
694  *
695  * Sets the alarm timer and sleeps until it is fired or interrupted.
696  */
697 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
698 {
699 	alarm->data = (void *)current;
700 	do {
701 		set_current_state(TASK_INTERRUPTIBLE);
702 		alarm_start(alarm, absexp);
703 		if (likely(alarm->data))
704 			schedule();
705 
706 		alarm_cancel(alarm);
707 	} while (alarm->data && !signal_pending(current));
708 
709 	__set_current_state(TASK_RUNNING);
710 
711 	return (alarm->data == NULL);
712 }
713 
714 
715 /**
716  * update_rmtp - Update remaining timespec value
717  * @exp: expiration time
718  * @type: timer type
719  * @rmtp: user pointer to remaining timepsec value
720  *
721  * Helper function that fills in rmtp value with time between
722  * now and the exp value
723  */
724 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
725 			struct timespec __user *rmtp)
726 {
727 	struct timespec rmt;
728 	ktime_t rem;
729 
730 	rem = ktime_sub(exp, alarm_bases[type].gettime());
731 
732 	if (rem.tv64 <= 0)
733 		return 0;
734 	rmt = ktime_to_timespec(rem);
735 
736 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
737 		return -EFAULT;
738 
739 	return 1;
740 
741 }
742 
743 /**
744  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
745  * @restart: ptr to restart block
746  *
747  * Handles restarted clock_nanosleep calls
748  */
749 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
750 {
751 	enum  alarmtimer_type type = restart->nanosleep.clockid;
752 	ktime_t exp;
753 	struct timespec __user  *rmtp;
754 	struct alarm alarm;
755 	int ret = 0;
756 
757 	exp.tv64 = restart->nanosleep.expires;
758 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
759 
760 	if (alarmtimer_do_nsleep(&alarm, exp))
761 		goto out;
762 
763 	if (freezing(current))
764 		alarmtimer_freezerset(exp, type);
765 
766 	rmtp = restart->nanosleep.rmtp;
767 	if (rmtp) {
768 		ret = update_rmtp(exp, type, rmtp);
769 		if (ret <= 0)
770 			goto out;
771 	}
772 
773 
774 	/* The other values in restart are already filled in */
775 	ret = -ERESTART_RESTARTBLOCK;
776 out:
777 	return ret;
778 }
779 
780 /**
781  * alarm_timer_nsleep - alarmtimer nanosleep
782  * @which_clock: clockid
783  * @flags: determins abstime or relative
784  * @tsreq: requested sleep time (abs or rel)
785  * @rmtp: remaining sleep time saved
786  *
787  * Handles clock_nanosleep calls against _ALARM clockids
788  */
789 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
790 		     struct timespec *tsreq, struct timespec __user *rmtp)
791 {
792 	enum  alarmtimer_type type = clock2alarm(which_clock);
793 	struct alarm alarm;
794 	ktime_t exp;
795 	int ret = 0;
796 	struct restart_block *restart;
797 
798 	if (!alarmtimer_get_rtcdev())
799 		return -ENOTSUPP;
800 
801 	if (flags & ~TIMER_ABSTIME)
802 		return -EINVAL;
803 
804 	if (!capable(CAP_WAKE_ALARM))
805 		return -EPERM;
806 
807 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
808 
809 	exp = timespec_to_ktime(*tsreq);
810 	/* Convert (if necessary) to absolute time */
811 	if (flags != TIMER_ABSTIME) {
812 		ktime_t now = alarm_bases[type].gettime();
813 		exp = ktime_add(now, exp);
814 	}
815 
816 	if (alarmtimer_do_nsleep(&alarm, exp))
817 		goto out;
818 
819 	if (freezing(current))
820 		alarmtimer_freezerset(exp, type);
821 
822 	/* abs timers don't set remaining time or restart */
823 	if (flags == TIMER_ABSTIME) {
824 		ret = -ERESTARTNOHAND;
825 		goto out;
826 	}
827 
828 	if (rmtp) {
829 		ret = update_rmtp(exp, type, rmtp);
830 		if (ret <= 0)
831 			goto out;
832 	}
833 
834 	restart = &current->restart_block;
835 	restart->fn = alarm_timer_nsleep_restart;
836 	restart->nanosleep.clockid = type;
837 	restart->nanosleep.expires = exp.tv64;
838 	restart->nanosleep.rmtp = rmtp;
839 	ret = -ERESTART_RESTARTBLOCK;
840 
841 out:
842 	return ret;
843 }
844 
845 
846 /* Suspend hook structures */
847 static const struct dev_pm_ops alarmtimer_pm_ops = {
848 	.suspend = alarmtimer_suspend,
849 	.resume = alarmtimer_resume,
850 };
851 
852 static struct platform_driver alarmtimer_driver = {
853 	.driver = {
854 		.name = "alarmtimer",
855 		.pm = &alarmtimer_pm_ops,
856 	}
857 };
858 
859 /**
860  * alarmtimer_init - Initialize alarm timer code
861  *
862  * This function initializes the alarm bases and registers
863  * the posix clock ids.
864  */
865 static int __init alarmtimer_init(void)
866 {
867 	struct platform_device *pdev;
868 	int error = 0;
869 	int i;
870 	struct k_clock alarm_clock = {
871 		.clock_getres	= alarm_clock_getres,
872 		.clock_get	= alarm_clock_get,
873 		.timer_create	= alarm_timer_create,
874 		.timer_set	= alarm_timer_set,
875 		.timer_del	= alarm_timer_del,
876 		.timer_get	= alarm_timer_get,
877 		.nsleep		= alarm_timer_nsleep,
878 	};
879 
880 	alarmtimer_rtc_timer_init();
881 
882 	if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
883 		posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
884 		posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
885 	}
886 
887 	/* Initialize alarm bases */
888 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
889 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
890 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
891 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
892 	for (i = 0; i < ALARM_NUMTYPE; i++) {
893 		timerqueue_init_head(&alarm_bases[i].timerqueue);
894 		spin_lock_init(&alarm_bases[i].lock);
895 	}
896 
897 	error = alarmtimer_rtc_interface_setup();
898 	if (error)
899 		return error;
900 
901 	error = platform_driver_register(&alarmtimer_driver);
902 	if (error)
903 		goto out_if;
904 
905 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
906 	if (IS_ERR(pdev)) {
907 		error = PTR_ERR(pdev);
908 		goto out_drv;
909 	}
910 	ws = wakeup_source_register("alarmtimer");
911 	return 0;
912 
913 out_drv:
914 	platform_driver_unregister(&alarmtimer_driver);
915 out_if:
916 	alarmtimer_rtc_interface_remove();
917 	return error;
918 }
919 device_initcall(alarmtimer_init);
920