xref: /linux/kernel/sys.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/unistd.h>
40 
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
43 #endif
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
46 #endif
47 #ifndef SET_FPEMU_CTL
48 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
49 #endif
50 #ifndef GET_FPEMU_CTL
51 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
52 #endif
53 #ifndef SET_FPEXC_CTL
54 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_FPEXC_CTL
57 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
58 #endif
59 
60 /*
61  * this is where the system-wide overflow UID and GID are defined, for
62  * architectures that now have 32-bit UID/GID but didn't in the past
63  */
64 
65 int overflowuid = DEFAULT_OVERFLOWUID;
66 int overflowgid = DEFAULT_OVERFLOWGID;
67 
68 #ifdef CONFIG_UID16
69 EXPORT_SYMBOL(overflowuid);
70 EXPORT_SYMBOL(overflowgid);
71 #endif
72 
73 /*
74  * the same as above, but for filesystems which can only store a 16-bit
75  * UID and GID. as such, this is needed on all architectures
76  */
77 
78 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
79 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
80 
81 EXPORT_SYMBOL(fs_overflowuid);
82 EXPORT_SYMBOL(fs_overflowgid);
83 
84 /*
85  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
86  */
87 
88 int C_A_D = 1;
89 int cad_pid = 1;
90 
91 /*
92  *	Notifier list for kernel code which wants to be called
93  *	at shutdown. This is used to stop any idling DMA operations
94  *	and the like.
95  */
96 
97 static struct notifier_block *reboot_notifier_list;
98 static DEFINE_RWLOCK(notifier_lock);
99 
100 /**
101  *	notifier_chain_register	- Add notifier to a notifier chain
102  *	@list: Pointer to root list pointer
103  *	@n: New entry in notifier chain
104  *
105  *	Adds a notifier to a notifier chain.
106  *
107  *	Currently always returns zero.
108  */
109 
110 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
111 {
112 	write_lock(&notifier_lock);
113 	while(*list)
114 	{
115 		if(n->priority > (*list)->priority)
116 			break;
117 		list= &((*list)->next);
118 	}
119 	n->next = *list;
120 	*list=n;
121 	write_unlock(&notifier_lock);
122 	return 0;
123 }
124 
125 EXPORT_SYMBOL(notifier_chain_register);
126 
127 /**
128  *	notifier_chain_unregister - Remove notifier from a notifier chain
129  *	@nl: Pointer to root list pointer
130  *	@n: New entry in notifier chain
131  *
132  *	Removes a notifier from a notifier chain.
133  *
134  *	Returns zero on success, or %-ENOENT on failure.
135  */
136 
137 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
138 {
139 	write_lock(&notifier_lock);
140 	while((*nl)!=NULL)
141 	{
142 		if((*nl)==n)
143 		{
144 			*nl=n->next;
145 			write_unlock(&notifier_lock);
146 			return 0;
147 		}
148 		nl=&((*nl)->next);
149 	}
150 	write_unlock(&notifier_lock);
151 	return -ENOENT;
152 }
153 
154 EXPORT_SYMBOL(notifier_chain_unregister);
155 
156 /**
157  *	notifier_call_chain - Call functions in a notifier chain
158  *	@n: Pointer to root pointer of notifier chain
159  *	@val: Value passed unmodified to notifier function
160  *	@v: Pointer passed unmodified to notifier function
161  *
162  *	Calls each function in a notifier chain in turn.
163  *
164  *	If the return value of the notifier can be and'd
165  *	with %NOTIFY_STOP_MASK, then notifier_call_chain
166  *	will return immediately, with the return value of
167  *	the notifier function which halted execution.
168  *	Otherwise, the return value is the return value
169  *	of the last notifier function called.
170  */
171 
172 int __kprobes notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
173 {
174 	int ret=NOTIFY_DONE;
175 	struct notifier_block *nb = *n;
176 
177 	while(nb)
178 	{
179 		ret=nb->notifier_call(nb,val,v);
180 		if(ret&NOTIFY_STOP_MASK)
181 		{
182 			return ret;
183 		}
184 		nb=nb->next;
185 	}
186 	return ret;
187 }
188 
189 EXPORT_SYMBOL(notifier_call_chain);
190 
191 /**
192  *	register_reboot_notifier - Register function to be called at reboot time
193  *	@nb: Info about notifier function to be called
194  *
195  *	Registers a function with the list of functions
196  *	to be called at reboot time.
197  *
198  *	Currently always returns zero, as notifier_chain_register
199  *	always returns zero.
200  */
201 
202 int register_reboot_notifier(struct notifier_block * nb)
203 {
204 	return notifier_chain_register(&reboot_notifier_list, nb);
205 }
206 
207 EXPORT_SYMBOL(register_reboot_notifier);
208 
209 /**
210  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
211  *	@nb: Hook to be unregistered
212  *
213  *	Unregisters a previously registered reboot
214  *	notifier function.
215  *
216  *	Returns zero on success, or %-ENOENT on failure.
217  */
218 
219 int unregister_reboot_notifier(struct notifier_block * nb)
220 {
221 	return notifier_chain_unregister(&reboot_notifier_list, nb);
222 }
223 
224 EXPORT_SYMBOL(unregister_reboot_notifier);
225 
226 static int set_one_prio(struct task_struct *p, int niceval, int error)
227 {
228 	int no_nice;
229 
230 	if (p->uid != current->euid &&
231 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
232 		error = -EPERM;
233 		goto out;
234 	}
235 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
236 		error = -EACCES;
237 		goto out;
238 	}
239 	no_nice = security_task_setnice(p, niceval);
240 	if (no_nice) {
241 		error = no_nice;
242 		goto out;
243 	}
244 	if (error == -ESRCH)
245 		error = 0;
246 	set_user_nice(p, niceval);
247 out:
248 	return error;
249 }
250 
251 asmlinkage long sys_setpriority(int which, int who, int niceval)
252 {
253 	struct task_struct *g, *p;
254 	struct user_struct *user;
255 	int error = -EINVAL;
256 
257 	if (which > 2 || which < 0)
258 		goto out;
259 
260 	/* normalize: avoid signed division (rounding problems) */
261 	error = -ESRCH;
262 	if (niceval < -20)
263 		niceval = -20;
264 	if (niceval > 19)
265 		niceval = 19;
266 
267 	read_lock(&tasklist_lock);
268 	switch (which) {
269 		case PRIO_PROCESS:
270 			if (!who)
271 				who = current->pid;
272 			p = find_task_by_pid(who);
273 			if (p)
274 				error = set_one_prio(p, niceval, error);
275 			break;
276 		case PRIO_PGRP:
277 			if (!who)
278 				who = process_group(current);
279 			do_each_task_pid(who, PIDTYPE_PGID, p) {
280 				error = set_one_prio(p, niceval, error);
281 			} while_each_task_pid(who, PIDTYPE_PGID, p);
282 			break;
283 		case PRIO_USER:
284 			user = current->user;
285 			if (!who)
286 				who = current->uid;
287 			else
288 				if ((who != current->uid) && !(user = find_user(who)))
289 					goto out_unlock;	/* No processes for this user */
290 
291 			do_each_thread(g, p)
292 				if (p->uid == who)
293 					error = set_one_prio(p, niceval, error);
294 			while_each_thread(g, p);
295 			if (who != current->uid)
296 				free_uid(user);		/* For find_user() */
297 			break;
298 	}
299 out_unlock:
300 	read_unlock(&tasklist_lock);
301 out:
302 	return error;
303 }
304 
305 /*
306  * Ugh. To avoid negative return values, "getpriority()" will
307  * not return the normal nice-value, but a negated value that
308  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
309  * to stay compatible.
310  */
311 asmlinkage long sys_getpriority(int which, int who)
312 {
313 	struct task_struct *g, *p;
314 	struct user_struct *user;
315 	long niceval, retval = -ESRCH;
316 
317 	if (which > 2 || which < 0)
318 		return -EINVAL;
319 
320 	read_lock(&tasklist_lock);
321 	switch (which) {
322 		case PRIO_PROCESS:
323 			if (!who)
324 				who = current->pid;
325 			p = find_task_by_pid(who);
326 			if (p) {
327 				niceval = 20 - task_nice(p);
328 				if (niceval > retval)
329 					retval = niceval;
330 			}
331 			break;
332 		case PRIO_PGRP:
333 			if (!who)
334 				who = process_group(current);
335 			do_each_task_pid(who, PIDTYPE_PGID, p) {
336 				niceval = 20 - task_nice(p);
337 				if (niceval > retval)
338 					retval = niceval;
339 			} while_each_task_pid(who, PIDTYPE_PGID, p);
340 			break;
341 		case PRIO_USER:
342 			user = current->user;
343 			if (!who)
344 				who = current->uid;
345 			else
346 				if ((who != current->uid) && !(user = find_user(who)))
347 					goto out_unlock;	/* No processes for this user */
348 
349 			do_each_thread(g, p)
350 				if (p->uid == who) {
351 					niceval = 20 - task_nice(p);
352 					if (niceval > retval)
353 						retval = niceval;
354 				}
355 			while_each_thread(g, p);
356 			if (who != current->uid)
357 				free_uid(user);		/* for find_user() */
358 			break;
359 	}
360 out_unlock:
361 	read_unlock(&tasklist_lock);
362 
363 	return retval;
364 }
365 
366 /**
367  *	emergency_restart - reboot the system
368  *
369  *	Without shutting down any hardware or taking any locks
370  *	reboot the system.  This is called when we know we are in
371  *	trouble so this is our best effort to reboot.  This is
372  *	safe to call in interrupt context.
373  */
374 void emergency_restart(void)
375 {
376 	machine_emergency_restart();
377 }
378 EXPORT_SYMBOL_GPL(emergency_restart);
379 
380 void kernel_restart_prepare(char *cmd)
381 {
382 	notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
383 	system_state = SYSTEM_RESTART;
384 	device_shutdown();
385 }
386 
387 /**
388  *	kernel_restart - reboot the system
389  *	@cmd: pointer to buffer containing command to execute for restart
390  *		or %NULL
391  *
392  *	Shutdown everything and perform a clean reboot.
393  *	This is not safe to call in interrupt context.
394  */
395 void kernel_restart(char *cmd)
396 {
397 	kernel_restart_prepare(cmd);
398 	if (!cmd) {
399 		printk(KERN_EMERG "Restarting system.\n");
400 	} else {
401 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
402 	}
403 	printk(".\n");
404 	machine_restart(cmd);
405 }
406 EXPORT_SYMBOL_GPL(kernel_restart);
407 
408 /**
409  *	kernel_kexec - reboot the system
410  *
411  *	Move into place and start executing a preloaded standalone
412  *	executable.  If nothing was preloaded return an error.
413  */
414 void kernel_kexec(void)
415 {
416 #ifdef CONFIG_KEXEC
417 	struct kimage *image;
418 	image = xchg(&kexec_image, 0);
419 	if (!image) {
420 		return;
421 	}
422 	kernel_restart_prepare(NULL);
423 	printk(KERN_EMERG "Starting new kernel\n");
424 	machine_shutdown();
425 	machine_kexec(image);
426 #endif
427 }
428 EXPORT_SYMBOL_GPL(kernel_kexec);
429 
430 /**
431  *	kernel_halt - halt the system
432  *
433  *	Shutdown everything and perform a clean system halt.
434  */
435 void kernel_halt_prepare(void)
436 {
437 	notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
438 	system_state = SYSTEM_HALT;
439 	device_shutdown();
440 }
441 void kernel_halt(void)
442 {
443 	kernel_halt_prepare();
444 	printk(KERN_EMERG "System halted.\n");
445 	machine_halt();
446 }
447 EXPORT_SYMBOL_GPL(kernel_halt);
448 
449 /**
450  *	kernel_power_off - power_off the system
451  *
452  *	Shutdown everything and perform a clean system power_off.
453  */
454 void kernel_power_off_prepare(void)
455 {
456 	notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
457 	system_state = SYSTEM_POWER_OFF;
458 	device_shutdown();
459 }
460 void kernel_power_off(void)
461 {
462 	kernel_power_off_prepare();
463 	printk(KERN_EMERG "Power down.\n");
464 	machine_power_off();
465 }
466 EXPORT_SYMBOL_GPL(kernel_power_off);
467 
468 /*
469  * Reboot system call: for obvious reasons only root may call it,
470  * and even root needs to set up some magic numbers in the registers
471  * so that some mistake won't make this reboot the whole machine.
472  * You can also set the meaning of the ctrl-alt-del-key here.
473  *
474  * reboot doesn't sync: do that yourself before calling this.
475  */
476 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
477 {
478 	char buffer[256];
479 
480 	/* We only trust the superuser with rebooting the system. */
481 	if (!capable(CAP_SYS_BOOT))
482 		return -EPERM;
483 
484 	/* For safety, we require "magic" arguments. */
485 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
486 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
487 	                magic2 != LINUX_REBOOT_MAGIC2A &&
488 			magic2 != LINUX_REBOOT_MAGIC2B &&
489 	                magic2 != LINUX_REBOOT_MAGIC2C))
490 		return -EINVAL;
491 
492 	lock_kernel();
493 	switch (cmd) {
494 	case LINUX_REBOOT_CMD_RESTART:
495 		kernel_restart(NULL);
496 		break;
497 
498 	case LINUX_REBOOT_CMD_CAD_ON:
499 		C_A_D = 1;
500 		break;
501 
502 	case LINUX_REBOOT_CMD_CAD_OFF:
503 		C_A_D = 0;
504 		break;
505 
506 	case LINUX_REBOOT_CMD_HALT:
507 		kernel_halt();
508 		unlock_kernel();
509 		do_exit(0);
510 		break;
511 
512 	case LINUX_REBOOT_CMD_POWER_OFF:
513 		kernel_power_off();
514 		unlock_kernel();
515 		do_exit(0);
516 		break;
517 
518 	case LINUX_REBOOT_CMD_RESTART2:
519 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
520 			unlock_kernel();
521 			return -EFAULT;
522 		}
523 		buffer[sizeof(buffer) - 1] = '\0';
524 
525 		kernel_restart(buffer);
526 		break;
527 
528 	case LINUX_REBOOT_CMD_KEXEC:
529 		kernel_kexec();
530 		unlock_kernel();
531 		return -EINVAL;
532 
533 #ifdef CONFIG_SOFTWARE_SUSPEND
534 	case LINUX_REBOOT_CMD_SW_SUSPEND:
535 		{
536 			int ret = software_suspend();
537 			unlock_kernel();
538 			return ret;
539 		}
540 #endif
541 
542 	default:
543 		unlock_kernel();
544 		return -EINVAL;
545 	}
546 	unlock_kernel();
547 	return 0;
548 }
549 
550 static void deferred_cad(void *dummy)
551 {
552 	kernel_restart(NULL);
553 }
554 
555 /*
556  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
557  * As it's called within an interrupt, it may NOT sync: the only choice
558  * is whether to reboot at once, or just ignore the ctrl-alt-del.
559  */
560 void ctrl_alt_del(void)
561 {
562 	static DECLARE_WORK(cad_work, deferred_cad, NULL);
563 
564 	if (C_A_D)
565 		schedule_work(&cad_work);
566 	else
567 		kill_proc(cad_pid, SIGINT, 1);
568 }
569 
570 
571 /*
572  * Unprivileged users may change the real gid to the effective gid
573  * or vice versa.  (BSD-style)
574  *
575  * If you set the real gid at all, or set the effective gid to a value not
576  * equal to the real gid, then the saved gid is set to the new effective gid.
577  *
578  * This makes it possible for a setgid program to completely drop its
579  * privileges, which is often a useful assertion to make when you are doing
580  * a security audit over a program.
581  *
582  * The general idea is that a program which uses just setregid() will be
583  * 100% compatible with BSD.  A program which uses just setgid() will be
584  * 100% compatible with POSIX with saved IDs.
585  *
586  * SMP: There are not races, the GIDs are checked only by filesystem
587  *      operations (as far as semantic preservation is concerned).
588  */
589 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
590 {
591 	int old_rgid = current->gid;
592 	int old_egid = current->egid;
593 	int new_rgid = old_rgid;
594 	int new_egid = old_egid;
595 	int retval;
596 
597 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
598 	if (retval)
599 		return retval;
600 
601 	if (rgid != (gid_t) -1) {
602 		if ((old_rgid == rgid) ||
603 		    (current->egid==rgid) ||
604 		    capable(CAP_SETGID))
605 			new_rgid = rgid;
606 		else
607 			return -EPERM;
608 	}
609 	if (egid != (gid_t) -1) {
610 		if ((old_rgid == egid) ||
611 		    (current->egid == egid) ||
612 		    (current->sgid == egid) ||
613 		    capable(CAP_SETGID))
614 			new_egid = egid;
615 		else {
616 			return -EPERM;
617 		}
618 	}
619 	if (new_egid != old_egid)
620 	{
621 		current->mm->dumpable = suid_dumpable;
622 		smp_wmb();
623 	}
624 	if (rgid != (gid_t) -1 ||
625 	    (egid != (gid_t) -1 && egid != old_rgid))
626 		current->sgid = new_egid;
627 	current->fsgid = new_egid;
628 	current->egid = new_egid;
629 	current->gid = new_rgid;
630 	key_fsgid_changed(current);
631 	proc_id_connector(current, PROC_EVENT_GID);
632 	return 0;
633 }
634 
635 /*
636  * setgid() is implemented like SysV w/ SAVED_IDS
637  *
638  * SMP: Same implicit races as above.
639  */
640 asmlinkage long sys_setgid(gid_t gid)
641 {
642 	int old_egid = current->egid;
643 	int retval;
644 
645 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
646 	if (retval)
647 		return retval;
648 
649 	if (capable(CAP_SETGID))
650 	{
651 		if(old_egid != gid)
652 		{
653 			current->mm->dumpable = suid_dumpable;
654 			smp_wmb();
655 		}
656 		current->gid = current->egid = current->sgid = current->fsgid = gid;
657 	}
658 	else if ((gid == current->gid) || (gid == current->sgid))
659 	{
660 		if(old_egid != gid)
661 		{
662 			current->mm->dumpable = suid_dumpable;
663 			smp_wmb();
664 		}
665 		current->egid = current->fsgid = gid;
666 	}
667 	else
668 		return -EPERM;
669 
670 	key_fsgid_changed(current);
671 	proc_id_connector(current, PROC_EVENT_GID);
672 	return 0;
673 }
674 
675 static int set_user(uid_t new_ruid, int dumpclear)
676 {
677 	struct user_struct *new_user;
678 
679 	new_user = alloc_uid(new_ruid);
680 	if (!new_user)
681 		return -EAGAIN;
682 
683 	if (atomic_read(&new_user->processes) >=
684 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
685 			new_user != &root_user) {
686 		free_uid(new_user);
687 		return -EAGAIN;
688 	}
689 
690 	switch_uid(new_user);
691 
692 	if(dumpclear)
693 	{
694 		current->mm->dumpable = suid_dumpable;
695 		smp_wmb();
696 	}
697 	current->uid = new_ruid;
698 	return 0;
699 }
700 
701 /*
702  * Unprivileged users may change the real uid to the effective uid
703  * or vice versa.  (BSD-style)
704  *
705  * If you set the real uid at all, or set the effective uid to a value not
706  * equal to the real uid, then the saved uid is set to the new effective uid.
707  *
708  * This makes it possible for a setuid program to completely drop its
709  * privileges, which is often a useful assertion to make when you are doing
710  * a security audit over a program.
711  *
712  * The general idea is that a program which uses just setreuid() will be
713  * 100% compatible with BSD.  A program which uses just setuid() will be
714  * 100% compatible with POSIX with saved IDs.
715  */
716 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
717 {
718 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
719 	int retval;
720 
721 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
722 	if (retval)
723 		return retval;
724 
725 	new_ruid = old_ruid = current->uid;
726 	new_euid = old_euid = current->euid;
727 	old_suid = current->suid;
728 
729 	if (ruid != (uid_t) -1) {
730 		new_ruid = ruid;
731 		if ((old_ruid != ruid) &&
732 		    (current->euid != ruid) &&
733 		    !capable(CAP_SETUID))
734 			return -EPERM;
735 	}
736 
737 	if (euid != (uid_t) -1) {
738 		new_euid = euid;
739 		if ((old_ruid != euid) &&
740 		    (current->euid != euid) &&
741 		    (current->suid != euid) &&
742 		    !capable(CAP_SETUID))
743 			return -EPERM;
744 	}
745 
746 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
747 		return -EAGAIN;
748 
749 	if (new_euid != old_euid)
750 	{
751 		current->mm->dumpable = suid_dumpable;
752 		smp_wmb();
753 	}
754 	current->fsuid = current->euid = new_euid;
755 	if (ruid != (uid_t) -1 ||
756 	    (euid != (uid_t) -1 && euid != old_ruid))
757 		current->suid = current->euid;
758 	current->fsuid = current->euid;
759 
760 	key_fsuid_changed(current);
761 	proc_id_connector(current, PROC_EVENT_UID);
762 
763 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
764 }
765 
766 
767 
768 /*
769  * setuid() is implemented like SysV with SAVED_IDS
770  *
771  * Note that SAVED_ID's is deficient in that a setuid root program
772  * like sendmail, for example, cannot set its uid to be a normal
773  * user and then switch back, because if you're root, setuid() sets
774  * the saved uid too.  If you don't like this, blame the bright people
775  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
776  * will allow a root program to temporarily drop privileges and be able to
777  * regain them by swapping the real and effective uid.
778  */
779 asmlinkage long sys_setuid(uid_t uid)
780 {
781 	int old_euid = current->euid;
782 	int old_ruid, old_suid, new_ruid, new_suid;
783 	int retval;
784 
785 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
786 	if (retval)
787 		return retval;
788 
789 	old_ruid = new_ruid = current->uid;
790 	old_suid = current->suid;
791 	new_suid = old_suid;
792 
793 	if (capable(CAP_SETUID)) {
794 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
795 			return -EAGAIN;
796 		new_suid = uid;
797 	} else if ((uid != current->uid) && (uid != new_suid))
798 		return -EPERM;
799 
800 	if (old_euid != uid)
801 	{
802 		current->mm->dumpable = suid_dumpable;
803 		smp_wmb();
804 	}
805 	current->fsuid = current->euid = uid;
806 	current->suid = new_suid;
807 
808 	key_fsuid_changed(current);
809 	proc_id_connector(current, PROC_EVENT_UID);
810 
811 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
812 }
813 
814 
815 /*
816  * This function implements a generic ability to update ruid, euid,
817  * and suid.  This allows you to implement the 4.4 compatible seteuid().
818  */
819 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
820 {
821 	int old_ruid = current->uid;
822 	int old_euid = current->euid;
823 	int old_suid = current->suid;
824 	int retval;
825 
826 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
827 	if (retval)
828 		return retval;
829 
830 	if (!capable(CAP_SETUID)) {
831 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
832 		    (ruid != current->euid) && (ruid != current->suid))
833 			return -EPERM;
834 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
835 		    (euid != current->euid) && (euid != current->suid))
836 			return -EPERM;
837 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
838 		    (suid != current->euid) && (suid != current->suid))
839 			return -EPERM;
840 	}
841 	if (ruid != (uid_t) -1) {
842 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
843 			return -EAGAIN;
844 	}
845 	if (euid != (uid_t) -1) {
846 		if (euid != current->euid)
847 		{
848 			current->mm->dumpable = suid_dumpable;
849 			smp_wmb();
850 		}
851 		current->euid = euid;
852 	}
853 	current->fsuid = current->euid;
854 	if (suid != (uid_t) -1)
855 		current->suid = suid;
856 
857 	key_fsuid_changed(current);
858 	proc_id_connector(current, PROC_EVENT_UID);
859 
860 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
861 }
862 
863 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
864 {
865 	int retval;
866 
867 	if (!(retval = put_user(current->uid, ruid)) &&
868 	    !(retval = put_user(current->euid, euid)))
869 		retval = put_user(current->suid, suid);
870 
871 	return retval;
872 }
873 
874 /*
875  * Same as above, but for rgid, egid, sgid.
876  */
877 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
878 {
879 	int retval;
880 
881 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
882 	if (retval)
883 		return retval;
884 
885 	if (!capable(CAP_SETGID)) {
886 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
887 		    (rgid != current->egid) && (rgid != current->sgid))
888 			return -EPERM;
889 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
890 		    (egid != current->egid) && (egid != current->sgid))
891 			return -EPERM;
892 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
893 		    (sgid != current->egid) && (sgid != current->sgid))
894 			return -EPERM;
895 	}
896 	if (egid != (gid_t) -1) {
897 		if (egid != current->egid)
898 		{
899 			current->mm->dumpable = suid_dumpable;
900 			smp_wmb();
901 		}
902 		current->egid = egid;
903 	}
904 	current->fsgid = current->egid;
905 	if (rgid != (gid_t) -1)
906 		current->gid = rgid;
907 	if (sgid != (gid_t) -1)
908 		current->sgid = sgid;
909 
910 	key_fsgid_changed(current);
911 	proc_id_connector(current, PROC_EVENT_GID);
912 	return 0;
913 }
914 
915 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
916 {
917 	int retval;
918 
919 	if (!(retval = put_user(current->gid, rgid)) &&
920 	    !(retval = put_user(current->egid, egid)))
921 		retval = put_user(current->sgid, sgid);
922 
923 	return retval;
924 }
925 
926 
927 /*
928  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
929  * is used for "access()" and for the NFS daemon (letting nfsd stay at
930  * whatever uid it wants to). It normally shadows "euid", except when
931  * explicitly set by setfsuid() or for access..
932  */
933 asmlinkage long sys_setfsuid(uid_t uid)
934 {
935 	int old_fsuid;
936 
937 	old_fsuid = current->fsuid;
938 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
939 		return old_fsuid;
940 
941 	if (uid == current->uid || uid == current->euid ||
942 	    uid == current->suid || uid == current->fsuid ||
943 	    capable(CAP_SETUID))
944 	{
945 		if (uid != old_fsuid)
946 		{
947 			current->mm->dumpable = suid_dumpable;
948 			smp_wmb();
949 		}
950 		current->fsuid = uid;
951 	}
952 
953 	key_fsuid_changed(current);
954 	proc_id_connector(current, PROC_EVENT_UID);
955 
956 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
957 
958 	return old_fsuid;
959 }
960 
961 /*
962  * Samma p� svenska..
963  */
964 asmlinkage long sys_setfsgid(gid_t gid)
965 {
966 	int old_fsgid;
967 
968 	old_fsgid = current->fsgid;
969 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
970 		return old_fsgid;
971 
972 	if (gid == current->gid || gid == current->egid ||
973 	    gid == current->sgid || gid == current->fsgid ||
974 	    capable(CAP_SETGID))
975 	{
976 		if (gid != old_fsgid)
977 		{
978 			current->mm->dumpable = suid_dumpable;
979 			smp_wmb();
980 		}
981 		current->fsgid = gid;
982 		key_fsgid_changed(current);
983 		proc_id_connector(current, PROC_EVENT_GID);
984 	}
985 	return old_fsgid;
986 }
987 
988 asmlinkage long sys_times(struct tms __user * tbuf)
989 {
990 	/*
991 	 *	In the SMP world we might just be unlucky and have one of
992 	 *	the times increment as we use it. Since the value is an
993 	 *	atomically safe type this is just fine. Conceptually its
994 	 *	as if the syscall took an instant longer to occur.
995 	 */
996 	if (tbuf) {
997 		struct tms tmp;
998 		cputime_t utime, stime, cutime, cstime;
999 
1000 #ifdef CONFIG_SMP
1001 		if (thread_group_empty(current)) {
1002 			/*
1003 			 * Single thread case without the use of any locks.
1004 			 *
1005 			 * We may race with release_task if two threads are
1006 			 * executing. However, release task first adds up the
1007 			 * counters (__exit_signal) before  removing the task
1008 			 * from the process tasklist (__unhash_process).
1009 			 * __exit_signal also acquires and releases the
1010 			 * siglock which results in the proper memory ordering
1011 			 * so that the list modifications are always visible
1012 			 * after the counters have been updated.
1013 			 *
1014 			 * If the counters have been updated by the second thread
1015 			 * but the thread has not yet been removed from the list
1016 			 * then the other branch will be executing which will
1017 			 * block on tasklist_lock until the exit handling of the
1018 			 * other task is finished.
1019 			 *
1020 			 * This also implies that the sighand->siglock cannot
1021 			 * be held by another processor. So we can also
1022 			 * skip acquiring that lock.
1023 			 */
1024 			utime = cputime_add(current->signal->utime, current->utime);
1025 			stime = cputime_add(current->signal->utime, current->stime);
1026 			cutime = current->signal->cutime;
1027 			cstime = current->signal->cstime;
1028 		} else
1029 #endif
1030 		{
1031 
1032 			/* Process with multiple threads */
1033 			struct task_struct *tsk = current;
1034 			struct task_struct *t;
1035 
1036 			read_lock(&tasklist_lock);
1037 			utime = tsk->signal->utime;
1038 			stime = tsk->signal->stime;
1039 			t = tsk;
1040 			do {
1041 				utime = cputime_add(utime, t->utime);
1042 				stime = cputime_add(stime, t->stime);
1043 				t = next_thread(t);
1044 			} while (t != tsk);
1045 
1046 			/*
1047 			 * While we have tasklist_lock read-locked, no dying thread
1048 			 * can be updating current->signal->[us]time.  Instead,
1049 			 * we got their counts included in the live thread loop.
1050 			 * However, another thread can come in right now and
1051 			 * do a wait call that updates current->signal->c[us]time.
1052 			 * To make sure we always see that pair updated atomically,
1053 			 * we take the siglock around fetching them.
1054 			 */
1055 			spin_lock_irq(&tsk->sighand->siglock);
1056 			cutime = tsk->signal->cutime;
1057 			cstime = tsk->signal->cstime;
1058 			spin_unlock_irq(&tsk->sighand->siglock);
1059 			read_unlock(&tasklist_lock);
1060 		}
1061 		tmp.tms_utime = cputime_to_clock_t(utime);
1062 		tmp.tms_stime = cputime_to_clock_t(stime);
1063 		tmp.tms_cutime = cputime_to_clock_t(cutime);
1064 		tmp.tms_cstime = cputime_to_clock_t(cstime);
1065 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1066 			return -EFAULT;
1067 	}
1068 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1069 }
1070 
1071 /*
1072  * This needs some heavy checking ...
1073  * I just haven't the stomach for it. I also don't fully
1074  * understand sessions/pgrp etc. Let somebody who does explain it.
1075  *
1076  * OK, I think I have the protection semantics right.... this is really
1077  * only important on a multi-user system anyway, to make sure one user
1078  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1079  *
1080  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1081  * LBT 04.03.94
1082  */
1083 
1084 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1085 {
1086 	struct task_struct *p;
1087 	int err = -EINVAL;
1088 
1089 	if (!pid)
1090 		pid = current->pid;
1091 	if (!pgid)
1092 		pgid = pid;
1093 	if (pgid < 0)
1094 		return -EINVAL;
1095 
1096 	/* From this point forward we keep holding onto the tasklist lock
1097 	 * so that our parent does not change from under us. -DaveM
1098 	 */
1099 	write_lock_irq(&tasklist_lock);
1100 
1101 	err = -ESRCH;
1102 	p = find_task_by_pid(pid);
1103 	if (!p)
1104 		goto out;
1105 
1106 	err = -EINVAL;
1107 	if (!thread_group_leader(p))
1108 		goto out;
1109 
1110 	if (p->parent == current || p->real_parent == current) {
1111 		err = -EPERM;
1112 		if (p->signal->session != current->signal->session)
1113 			goto out;
1114 		err = -EACCES;
1115 		if (p->did_exec)
1116 			goto out;
1117 	} else {
1118 		err = -ESRCH;
1119 		if (p != current)
1120 			goto out;
1121 	}
1122 
1123 	err = -EPERM;
1124 	if (p->signal->leader)
1125 		goto out;
1126 
1127 	if (pgid != pid) {
1128 		struct task_struct *p;
1129 
1130 		do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1131 			if (p->signal->session == current->signal->session)
1132 				goto ok_pgid;
1133 		} while_each_task_pid(pgid, PIDTYPE_PGID, p);
1134 		goto out;
1135 	}
1136 
1137 ok_pgid:
1138 	err = security_task_setpgid(p, pgid);
1139 	if (err)
1140 		goto out;
1141 
1142 	if (process_group(p) != pgid) {
1143 		detach_pid(p, PIDTYPE_PGID);
1144 		p->signal->pgrp = pgid;
1145 		attach_pid(p, PIDTYPE_PGID, pgid);
1146 	}
1147 
1148 	err = 0;
1149 out:
1150 	/* All paths lead to here, thus we are safe. -DaveM */
1151 	write_unlock_irq(&tasklist_lock);
1152 	return err;
1153 }
1154 
1155 asmlinkage long sys_getpgid(pid_t pid)
1156 {
1157 	if (!pid) {
1158 		return process_group(current);
1159 	} else {
1160 		int retval;
1161 		struct task_struct *p;
1162 
1163 		read_lock(&tasklist_lock);
1164 		p = find_task_by_pid(pid);
1165 
1166 		retval = -ESRCH;
1167 		if (p) {
1168 			retval = security_task_getpgid(p);
1169 			if (!retval)
1170 				retval = process_group(p);
1171 		}
1172 		read_unlock(&tasklist_lock);
1173 		return retval;
1174 	}
1175 }
1176 
1177 #ifdef __ARCH_WANT_SYS_GETPGRP
1178 
1179 asmlinkage long sys_getpgrp(void)
1180 {
1181 	/* SMP - assuming writes are word atomic this is fine */
1182 	return process_group(current);
1183 }
1184 
1185 #endif
1186 
1187 asmlinkage long sys_getsid(pid_t pid)
1188 {
1189 	if (!pid) {
1190 		return current->signal->session;
1191 	} else {
1192 		int retval;
1193 		struct task_struct *p;
1194 
1195 		read_lock(&tasklist_lock);
1196 		p = find_task_by_pid(pid);
1197 
1198 		retval = -ESRCH;
1199 		if(p) {
1200 			retval = security_task_getsid(p);
1201 			if (!retval)
1202 				retval = p->signal->session;
1203 		}
1204 		read_unlock(&tasklist_lock);
1205 		return retval;
1206 	}
1207 }
1208 
1209 asmlinkage long sys_setsid(void)
1210 {
1211 	struct pid *pid;
1212 	int err = -EPERM;
1213 
1214 	if (!thread_group_leader(current))
1215 		return -EINVAL;
1216 
1217 	down(&tty_sem);
1218 	write_lock_irq(&tasklist_lock);
1219 
1220 	pid = find_pid(PIDTYPE_PGID, current->pid);
1221 	if (pid)
1222 		goto out;
1223 
1224 	current->signal->leader = 1;
1225 	__set_special_pids(current->pid, current->pid);
1226 	current->signal->tty = NULL;
1227 	current->signal->tty_old_pgrp = 0;
1228 	err = process_group(current);
1229 out:
1230 	write_unlock_irq(&tasklist_lock);
1231 	up(&tty_sem);
1232 	return err;
1233 }
1234 
1235 /*
1236  * Supplementary group IDs
1237  */
1238 
1239 /* init to 2 - one for init_task, one to ensure it is never freed */
1240 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1241 
1242 struct group_info *groups_alloc(int gidsetsize)
1243 {
1244 	struct group_info *group_info;
1245 	int nblocks;
1246 	int i;
1247 
1248 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1249 	/* Make sure we always allocate at least one indirect block pointer */
1250 	nblocks = nblocks ? : 1;
1251 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1252 	if (!group_info)
1253 		return NULL;
1254 	group_info->ngroups = gidsetsize;
1255 	group_info->nblocks = nblocks;
1256 	atomic_set(&group_info->usage, 1);
1257 
1258 	if (gidsetsize <= NGROUPS_SMALL) {
1259 		group_info->blocks[0] = group_info->small_block;
1260 	} else {
1261 		for (i = 0; i < nblocks; i++) {
1262 			gid_t *b;
1263 			b = (void *)__get_free_page(GFP_USER);
1264 			if (!b)
1265 				goto out_undo_partial_alloc;
1266 			group_info->blocks[i] = b;
1267 		}
1268 	}
1269 	return group_info;
1270 
1271 out_undo_partial_alloc:
1272 	while (--i >= 0) {
1273 		free_page((unsigned long)group_info->blocks[i]);
1274 	}
1275 	kfree(group_info);
1276 	return NULL;
1277 }
1278 
1279 EXPORT_SYMBOL(groups_alloc);
1280 
1281 void groups_free(struct group_info *group_info)
1282 {
1283 	if (group_info->blocks[0] != group_info->small_block) {
1284 		int i;
1285 		for (i = 0; i < group_info->nblocks; i++)
1286 			free_page((unsigned long)group_info->blocks[i]);
1287 	}
1288 	kfree(group_info);
1289 }
1290 
1291 EXPORT_SYMBOL(groups_free);
1292 
1293 /* export the group_info to a user-space array */
1294 static int groups_to_user(gid_t __user *grouplist,
1295     struct group_info *group_info)
1296 {
1297 	int i;
1298 	int count = group_info->ngroups;
1299 
1300 	for (i = 0; i < group_info->nblocks; i++) {
1301 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1302 		int off = i * NGROUPS_PER_BLOCK;
1303 		int len = cp_count * sizeof(*grouplist);
1304 
1305 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1306 			return -EFAULT;
1307 
1308 		count -= cp_count;
1309 	}
1310 	return 0;
1311 }
1312 
1313 /* fill a group_info from a user-space array - it must be allocated already */
1314 static int groups_from_user(struct group_info *group_info,
1315     gid_t __user *grouplist)
1316  {
1317 	int i;
1318 	int count = group_info->ngroups;
1319 
1320 	for (i = 0; i < group_info->nblocks; i++) {
1321 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1322 		int off = i * NGROUPS_PER_BLOCK;
1323 		int len = cp_count * sizeof(*grouplist);
1324 
1325 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1326 			return -EFAULT;
1327 
1328 		count -= cp_count;
1329 	}
1330 	return 0;
1331 }
1332 
1333 /* a simple Shell sort */
1334 static void groups_sort(struct group_info *group_info)
1335 {
1336 	int base, max, stride;
1337 	int gidsetsize = group_info->ngroups;
1338 
1339 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1340 		; /* nothing */
1341 	stride /= 3;
1342 
1343 	while (stride) {
1344 		max = gidsetsize - stride;
1345 		for (base = 0; base < max; base++) {
1346 			int left = base;
1347 			int right = left + stride;
1348 			gid_t tmp = GROUP_AT(group_info, right);
1349 
1350 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1351 				GROUP_AT(group_info, right) =
1352 				    GROUP_AT(group_info, left);
1353 				right = left;
1354 				left -= stride;
1355 			}
1356 			GROUP_AT(group_info, right) = tmp;
1357 		}
1358 		stride /= 3;
1359 	}
1360 }
1361 
1362 /* a simple bsearch */
1363 int groups_search(struct group_info *group_info, gid_t grp)
1364 {
1365 	int left, right;
1366 
1367 	if (!group_info)
1368 		return 0;
1369 
1370 	left = 0;
1371 	right = group_info->ngroups;
1372 	while (left < right) {
1373 		int mid = (left+right)/2;
1374 		int cmp = grp - GROUP_AT(group_info, mid);
1375 		if (cmp > 0)
1376 			left = mid + 1;
1377 		else if (cmp < 0)
1378 			right = mid;
1379 		else
1380 			return 1;
1381 	}
1382 	return 0;
1383 }
1384 
1385 /* validate and set current->group_info */
1386 int set_current_groups(struct group_info *group_info)
1387 {
1388 	int retval;
1389 	struct group_info *old_info;
1390 
1391 	retval = security_task_setgroups(group_info);
1392 	if (retval)
1393 		return retval;
1394 
1395 	groups_sort(group_info);
1396 	get_group_info(group_info);
1397 
1398 	task_lock(current);
1399 	old_info = current->group_info;
1400 	current->group_info = group_info;
1401 	task_unlock(current);
1402 
1403 	put_group_info(old_info);
1404 
1405 	return 0;
1406 }
1407 
1408 EXPORT_SYMBOL(set_current_groups);
1409 
1410 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1411 {
1412 	int i = 0;
1413 
1414 	/*
1415 	 *	SMP: Nobody else can change our grouplist. Thus we are
1416 	 *	safe.
1417 	 */
1418 
1419 	if (gidsetsize < 0)
1420 		return -EINVAL;
1421 
1422 	/* no need to grab task_lock here; it cannot change */
1423 	get_group_info(current->group_info);
1424 	i = current->group_info->ngroups;
1425 	if (gidsetsize) {
1426 		if (i > gidsetsize) {
1427 			i = -EINVAL;
1428 			goto out;
1429 		}
1430 		if (groups_to_user(grouplist, current->group_info)) {
1431 			i = -EFAULT;
1432 			goto out;
1433 		}
1434 	}
1435 out:
1436 	put_group_info(current->group_info);
1437 	return i;
1438 }
1439 
1440 /*
1441  *	SMP: Our groups are copy-on-write. We can set them safely
1442  *	without another task interfering.
1443  */
1444 
1445 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1446 {
1447 	struct group_info *group_info;
1448 	int retval;
1449 
1450 	if (!capable(CAP_SETGID))
1451 		return -EPERM;
1452 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1453 		return -EINVAL;
1454 
1455 	group_info = groups_alloc(gidsetsize);
1456 	if (!group_info)
1457 		return -ENOMEM;
1458 	retval = groups_from_user(group_info, grouplist);
1459 	if (retval) {
1460 		put_group_info(group_info);
1461 		return retval;
1462 	}
1463 
1464 	retval = set_current_groups(group_info);
1465 	put_group_info(group_info);
1466 
1467 	return retval;
1468 }
1469 
1470 /*
1471  * Check whether we're fsgid/egid or in the supplemental group..
1472  */
1473 int in_group_p(gid_t grp)
1474 {
1475 	int retval = 1;
1476 	if (grp != current->fsgid) {
1477 		get_group_info(current->group_info);
1478 		retval = groups_search(current->group_info, grp);
1479 		put_group_info(current->group_info);
1480 	}
1481 	return retval;
1482 }
1483 
1484 EXPORT_SYMBOL(in_group_p);
1485 
1486 int in_egroup_p(gid_t grp)
1487 {
1488 	int retval = 1;
1489 	if (grp != current->egid) {
1490 		get_group_info(current->group_info);
1491 		retval = groups_search(current->group_info, grp);
1492 		put_group_info(current->group_info);
1493 	}
1494 	return retval;
1495 }
1496 
1497 EXPORT_SYMBOL(in_egroup_p);
1498 
1499 DECLARE_RWSEM(uts_sem);
1500 
1501 EXPORT_SYMBOL(uts_sem);
1502 
1503 asmlinkage long sys_newuname(struct new_utsname __user * name)
1504 {
1505 	int errno = 0;
1506 
1507 	down_read(&uts_sem);
1508 	if (copy_to_user(name,&system_utsname,sizeof *name))
1509 		errno = -EFAULT;
1510 	up_read(&uts_sem);
1511 	return errno;
1512 }
1513 
1514 asmlinkage long sys_sethostname(char __user *name, int len)
1515 {
1516 	int errno;
1517 	char tmp[__NEW_UTS_LEN];
1518 
1519 	if (!capable(CAP_SYS_ADMIN))
1520 		return -EPERM;
1521 	if (len < 0 || len > __NEW_UTS_LEN)
1522 		return -EINVAL;
1523 	down_write(&uts_sem);
1524 	errno = -EFAULT;
1525 	if (!copy_from_user(tmp, name, len)) {
1526 		memcpy(system_utsname.nodename, tmp, len);
1527 		system_utsname.nodename[len] = 0;
1528 		errno = 0;
1529 	}
1530 	up_write(&uts_sem);
1531 	return errno;
1532 }
1533 
1534 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1535 
1536 asmlinkage long sys_gethostname(char __user *name, int len)
1537 {
1538 	int i, errno;
1539 
1540 	if (len < 0)
1541 		return -EINVAL;
1542 	down_read(&uts_sem);
1543 	i = 1 + strlen(system_utsname.nodename);
1544 	if (i > len)
1545 		i = len;
1546 	errno = 0;
1547 	if (copy_to_user(name, system_utsname.nodename, i))
1548 		errno = -EFAULT;
1549 	up_read(&uts_sem);
1550 	return errno;
1551 }
1552 
1553 #endif
1554 
1555 /*
1556  * Only setdomainname; getdomainname can be implemented by calling
1557  * uname()
1558  */
1559 asmlinkage long sys_setdomainname(char __user *name, int len)
1560 {
1561 	int errno;
1562 	char tmp[__NEW_UTS_LEN];
1563 
1564 	if (!capable(CAP_SYS_ADMIN))
1565 		return -EPERM;
1566 	if (len < 0 || len > __NEW_UTS_LEN)
1567 		return -EINVAL;
1568 
1569 	down_write(&uts_sem);
1570 	errno = -EFAULT;
1571 	if (!copy_from_user(tmp, name, len)) {
1572 		memcpy(system_utsname.domainname, tmp, len);
1573 		system_utsname.domainname[len] = 0;
1574 		errno = 0;
1575 	}
1576 	up_write(&uts_sem);
1577 	return errno;
1578 }
1579 
1580 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1581 {
1582 	if (resource >= RLIM_NLIMITS)
1583 		return -EINVAL;
1584 	else {
1585 		struct rlimit value;
1586 		task_lock(current->group_leader);
1587 		value = current->signal->rlim[resource];
1588 		task_unlock(current->group_leader);
1589 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1590 	}
1591 }
1592 
1593 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1594 
1595 /*
1596  *	Back compatibility for getrlimit. Needed for some apps.
1597  */
1598 
1599 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1600 {
1601 	struct rlimit x;
1602 	if (resource >= RLIM_NLIMITS)
1603 		return -EINVAL;
1604 
1605 	task_lock(current->group_leader);
1606 	x = current->signal->rlim[resource];
1607 	task_unlock(current->group_leader);
1608 	if(x.rlim_cur > 0x7FFFFFFF)
1609 		x.rlim_cur = 0x7FFFFFFF;
1610 	if(x.rlim_max > 0x7FFFFFFF)
1611 		x.rlim_max = 0x7FFFFFFF;
1612 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1613 }
1614 
1615 #endif
1616 
1617 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1618 {
1619 	struct rlimit new_rlim, *old_rlim;
1620 	int retval;
1621 
1622 	if (resource >= RLIM_NLIMITS)
1623 		return -EINVAL;
1624 	if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1625 		return -EFAULT;
1626        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1627                return -EINVAL;
1628 	old_rlim = current->signal->rlim + resource;
1629 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1630 	    !capable(CAP_SYS_RESOURCE))
1631 		return -EPERM;
1632 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1633 			return -EPERM;
1634 
1635 	retval = security_task_setrlimit(resource, &new_rlim);
1636 	if (retval)
1637 		return retval;
1638 
1639 	task_lock(current->group_leader);
1640 	*old_rlim = new_rlim;
1641 	task_unlock(current->group_leader);
1642 
1643 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1644 	    (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1645 	     new_rlim.rlim_cur <= cputime_to_secs(
1646 		     current->signal->it_prof_expires))) {
1647 		cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1648 		read_lock(&tasklist_lock);
1649 		spin_lock_irq(&current->sighand->siglock);
1650 		set_process_cpu_timer(current, CPUCLOCK_PROF,
1651 				      &cputime, NULL);
1652 		spin_unlock_irq(&current->sighand->siglock);
1653 		read_unlock(&tasklist_lock);
1654 	}
1655 
1656 	return 0;
1657 }
1658 
1659 /*
1660  * It would make sense to put struct rusage in the task_struct,
1661  * except that would make the task_struct be *really big*.  After
1662  * task_struct gets moved into malloc'ed memory, it would
1663  * make sense to do this.  It will make moving the rest of the information
1664  * a lot simpler!  (Which we're not doing right now because we're not
1665  * measuring them yet).
1666  *
1667  * This expects to be called with tasklist_lock read-locked or better,
1668  * and the siglock not locked.  It may momentarily take the siglock.
1669  *
1670  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1671  * races with threads incrementing their own counters.  But since word
1672  * reads are atomic, we either get new values or old values and we don't
1673  * care which for the sums.  We always take the siglock to protect reading
1674  * the c* fields from p->signal from races with exit.c updating those
1675  * fields when reaping, so a sample either gets all the additions of a
1676  * given child after it's reaped, or none so this sample is before reaping.
1677  */
1678 
1679 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1680 {
1681 	struct task_struct *t;
1682 	unsigned long flags;
1683 	cputime_t utime, stime;
1684 
1685 	memset((char *) r, 0, sizeof *r);
1686 
1687 	if (unlikely(!p->signal))
1688 		return;
1689 
1690 	switch (who) {
1691 		case RUSAGE_CHILDREN:
1692 			spin_lock_irqsave(&p->sighand->siglock, flags);
1693 			utime = p->signal->cutime;
1694 			stime = p->signal->cstime;
1695 			r->ru_nvcsw = p->signal->cnvcsw;
1696 			r->ru_nivcsw = p->signal->cnivcsw;
1697 			r->ru_minflt = p->signal->cmin_flt;
1698 			r->ru_majflt = p->signal->cmaj_flt;
1699 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1700 			cputime_to_timeval(utime, &r->ru_utime);
1701 			cputime_to_timeval(stime, &r->ru_stime);
1702 			break;
1703 		case RUSAGE_SELF:
1704 			spin_lock_irqsave(&p->sighand->siglock, flags);
1705 			utime = stime = cputime_zero;
1706 			goto sum_group;
1707 		case RUSAGE_BOTH:
1708 			spin_lock_irqsave(&p->sighand->siglock, flags);
1709 			utime = p->signal->cutime;
1710 			stime = p->signal->cstime;
1711 			r->ru_nvcsw = p->signal->cnvcsw;
1712 			r->ru_nivcsw = p->signal->cnivcsw;
1713 			r->ru_minflt = p->signal->cmin_flt;
1714 			r->ru_majflt = p->signal->cmaj_flt;
1715 		sum_group:
1716 			utime = cputime_add(utime, p->signal->utime);
1717 			stime = cputime_add(stime, p->signal->stime);
1718 			r->ru_nvcsw += p->signal->nvcsw;
1719 			r->ru_nivcsw += p->signal->nivcsw;
1720 			r->ru_minflt += p->signal->min_flt;
1721 			r->ru_majflt += p->signal->maj_flt;
1722 			t = p;
1723 			do {
1724 				utime = cputime_add(utime, t->utime);
1725 				stime = cputime_add(stime, t->stime);
1726 				r->ru_nvcsw += t->nvcsw;
1727 				r->ru_nivcsw += t->nivcsw;
1728 				r->ru_minflt += t->min_flt;
1729 				r->ru_majflt += t->maj_flt;
1730 				t = next_thread(t);
1731 			} while (t != p);
1732 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1733 			cputime_to_timeval(utime, &r->ru_utime);
1734 			cputime_to_timeval(stime, &r->ru_stime);
1735 			break;
1736 		default:
1737 			BUG();
1738 	}
1739 }
1740 
1741 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1742 {
1743 	struct rusage r;
1744 	read_lock(&tasklist_lock);
1745 	k_getrusage(p, who, &r);
1746 	read_unlock(&tasklist_lock);
1747 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1748 }
1749 
1750 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1751 {
1752 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1753 		return -EINVAL;
1754 	return getrusage(current, who, ru);
1755 }
1756 
1757 asmlinkage long sys_umask(int mask)
1758 {
1759 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1760 	return mask;
1761 }
1762 
1763 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1764 			  unsigned long arg4, unsigned long arg5)
1765 {
1766 	long error;
1767 
1768 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1769 	if (error)
1770 		return error;
1771 
1772 	switch (option) {
1773 		case PR_SET_PDEATHSIG:
1774 			if (!valid_signal(arg2)) {
1775 				error = -EINVAL;
1776 				break;
1777 			}
1778 			current->pdeath_signal = arg2;
1779 			break;
1780 		case PR_GET_PDEATHSIG:
1781 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1782 			break;
1783 		case PR_GET_DUMPABLE:
1784 			error = current->mm->dumpable;
1785 			break;
1786 		case PR_SET_DUMPABLE:
1787 			if (arg2 < 0 || arg2 > 2) {
1788 				error = -EINVAL;
1789 				break;
1790 			}
1791 			current->mm->dumpable = arg2;
1792 			break;
1793 
1794 		case PR_SET_UNALIGN:
1795 			error = SET_UNALIGN_CTL(current, arg2);
1796 			break;
1797 		case PR_GET_UNALIGN:
1798 			error = GET_UNALIGN_CTL(current, arg2);
1799 			break;
1800 		case PR_SET_FPEMU:
1801 			error = SET_FPEMU_CTL(current, arg2);
1802 			break;
1803 		case PR_GET_FPEMU:
1804 			error = GET_FPEMU_CTL(current, arg2);
1805 			break;
1806 		case PR_SET_FPEXC:
1807 			error = SET_FPEXC_CTL(current, arg2);
1808 			break;
1809 		case PR_GET_FPEXC:
1810 			error = GET_FPEXC_CTL(current, arg2);
1811 			break;
1812 		case PR_GET_TIMING:
1813 			error = PR_TIMING_STATISTICAL;
1814 			break;
1815 		case PR_SET_TIMING:
1816 			if (arg2 == PR_TIMING_STATISTICAL)
1817 				error = 0;
1818 			else
1819 				error = -EINVAL;
1820 			break;
1821 
1822 		case PR_GET_KEEPCAPS:
1823 			if (current->keep_capabilities)
1824 				error = 1;
1825 			break;
1826 		case PR_SET_KEEPCAPS:
1827 			if (arg2 != 0 && arg2 != 1) {
1828 				error = -EINVAL;
1829 				break;
1830 			}
1831 			current->keep_capabilities = arg2;
1832 			break;
1833 		case PR_SET_NAME: {
1834 			struct task_struct *me = current;
1835 			unsigned char ncomm[sizeof(me->comm)];
1836 
1837 			ncomm[sizeof(me->comm)-1] = 0;
1838 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1839 						sizeof(me->comm)-1) < 0)
1840 				return -EFAULT;
1841 			set_task_comm(me, ncomm);
1842 			return 0;
1843 		}
1844 		case PR_GET_NAME: {
1845 			struct task_struct *me = current;
1846 			unsigned char tcomm[sizeof(me->comm)];
1847 
1848 			get_task_comm(tcomm, me);
1849 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1850 				return -EFAULT;
1851 			return 0;
1852 		}
1853 		default:
1854 			error = -EINVAL;
1855 			break;
1856 	}
1857 	return error;
1858 }
1859